International Bureau

(10) International Publication Number WO 2016/095880 A1

- (43) International Publication Date 23 June 2016 (23.06.2016)
- (51) International Patent Classification:

 C07D 473/34 (2006.01) A61P 17/10 (2006.01)

 A61K 31/52 (2006.01) A61P 17/18 (2006.01)
- (21) International Application Number:

PCT/CZ2015/050009

(22) International Filing Date:

21 October 2015 (21.10.2015)

(25) Filing Language:

English

(26) Publication Language:

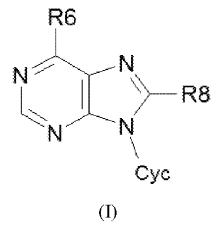
English

(30) Priority Data:

Lysolaje (CZ).

Priority Data:
PV2014-908 15 December 2014 (15.12.2014)

CZ


- (71) Applicant: USTAV EXPERIMENTALNI BOTANIKY AV CR, V.V.I. [CZ/CZ]; Rozvojova 263, 16502 Praha 6 -
- (72) Inventors: ZAHAJSKA, Lenka; Slechtitelu 27, 78371
 Olomouc (CZ). NISLER, Jaroslav; Kmochova 23, 77900
 Olomouc (CZ). KADLECOVA, Alena; Kosticka 25, 69153 Tvrdonice (CZ). ZATLOUKAL, Marek; Revolucni 18a, 78701 Sumperk (CZ). GRUZ, Jiri; U stavu 138, 78314 Bohunovice (CZ). VOLLER, Jiri; Pristavni 1263/10B, 635 00 Brno Bystrc (CZ). DOLEZAL, Karel; Posluchov 31, 78365 Hlubocky (CZ). STRNAD, Miroslav; Zapadni 25, 77900 Olomouc (CZ).

- (74) Agent: HARTVICHOVA, Katerina; INVENTIA s.r.o., Na Belidle 3, 15000 Praha 5 (CZ).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: 6,8-DISUBSTITUTED-9-(HETEROCYCLYL)PURINES, COMPOSITIONS CONTAINING THESE DERIVATIVES AND THEIR USE IN COSMETIC AND MEDICINAL APPLICATIONS

(57) Abstract: 6,8-Disubstituted-9-(heterocyclyl) purines which can be used in pharmaceutical and cosmetic compositions and/or applications are provided. These 6,8-disubstituted-9-(heterocyclyl) purines have a wide range of biological activities, including for example antioxidant, anti-inflammatory, anti-senescent, as well as other activities which are especially useful in pharmaceutical and cosmetic applications.

WO 2016/095880 A1

1

6,8-Disubstituted-9-(heterocyclyl)purines, compositions containing these derivatives and their use in cosmetic and medicinal applications

Field of Art

5

The invention relates to 6,8-disubstituted-9-(heterocyclyl)purine derivatives, their use in cosmetic and medicinal applications and compositions containing these derivatives.

Background Art

10

15

Various adenine derivatives are known in the art to be versatile compounds with many interesting properties in medicine, cosmetics and agriculture (WO 03/040144). Some of them occur naturally as plant hormones, e.g., kinetin, isopentenyladenine, trans-zeatin, dihydrozeatin, 6-benzylaminopurine, 6-(3-hydroxybenzylamino)purine (Strnad, M. *Physiol. Plant.* 1997, 101, 674; Wojtania and Gabryszewska, *Biotechnologia* 2004, 2, 162; Baroja-Fernández et al., *Plant. Physiol. Biochem.* 2002, 40, 217; Peixe et al., *Scientia Horticulturae* 2007, 113, 1). The application of these plant hormones to plants, however, brings significants undesired side effects, including problems with heterogeneity of growth and root growth inhibition (Werbrouck et al., *Physiol. Plant.* 1996, 98, 291).

20 WO 2008/008770 and WO 2009/086457 relate to 6,9-disubstituted purine derivatives, bearing 2-tetrahydropyranyl or 2-tetrahydrofuranyl moiety in position 9, and to their use in cosmetics as anti-inflammatory and antiaging components of skin care products.

The present invention provides for use of 6,8-disubstituted purine derivatives bearing 2-tetrahydropyranyl or 2-tetrahydrofuranyl moiety in cosmetic applications. Use of these compounds does not result in the undesired side effects such as cell proliferation and apoptosis, which are the problem of many adenine-based compounds known heretofore. The compounds exhibit very strong antioxidant properties.

The compounds of this invention have improved selectivities and efficiencies and lower toxicities than the known 6-(substituted amino)purines and 6,9-disubstituted purines.

30

25

Disclosure of the Invention

The present invention provides 6,8-disubstituted-9-(heterocyclyl)purines of the general formula I

wherein

5

Cyc is heterocyclyl selected from the group consisting of 2-tetrahydropyranyl and 2-tetrahydrofuranyl;

R6 is -NH-R_v,

R_v is selected from the group consisting of:

- C_1 to C_8 linear or branched alkyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkoxy,
- C₂ to C₈ linear or branched alkenyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C₁ to C₄ alkoxy,
 - C_3 to C_8 cycloalkyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,
 - benzyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,
 - phenyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,
 - furfuryl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,

20 and

15

R8 is selected from the group comprising amino, hydroxy, halogen, acyl, acyloxy, amido, alkoxy, benzyloxy, alkylamino, dialkylamino, alkenylamino, carbamoyl, carboxyl, cyano, hydrazino, - NHOH, -NHCONH₂, -NH-C(NH)NH₂, nitro, sulphanyl, alkylsulphanyl, sulpho, and alkyloxycarbonyl.

25

It is to be understood that the general formula encompasses the compounds as such, the compounds in the form of pharmaceutically acceptable salts with alkali metals, ammonium or amines, in the form of racemates or optically active isomers (when optically active atoms are present), as well as in the form of addition salts with acids.

Throughout this specification, unless specifically indicated otherwise, the generic substituents have the following meanings:

- halogen denotes fluorine, bromine, chlorine, or iodine atom,
- 5 hydroxy denotes the group –OH;

WO 2016/095880

- sulphanyl denotes the group –SH;
- amino denotes the group –NH₂;
- hydrazino denotes the group –NHNH₂;
- carbamoyl denotes the group -CONH₂;
- 10 cyano denotes the group –CN;
 - carboxyl denotes the group -COOH;
 - nitro denotes the group –NO₂;
 - sulpho denotes the group –SO₂R_a, wherein R_a is hydrogen, alkyl, or alkenyl;
 - acyl denotes $-C(O)R_b$, wherein R_b is alkyl, or alkenyl;
- acyloxy denotes $-O-C(O)R_c$, wherein R_c is hydrogen, alkyl or alkenyl;
 - alkoxy denotes the group -OR_d, wherein R_d is alkyl;
 - alkylamino denotes the group $-N(R_e)_2$, wherein each R_e is independently selected from hydrogen, alkyl, and alkenyl, each of which can be substituted by amino or hydroxyl substituent;
 - alkylsulphanyl denotes the group –SR_f, wherein R_f is alkyl;
- alkyloxycarbonyl denotes the group –C(O)OR_g, wherein R_g is alkyl or alkenyl;
 - amido refers to group $-C(O)N(R_h)_2$, wherein each R_h is independently hydrogen, alkyl, or alkenyl;
 - alkyl denotes a linear or branched alkyl chain containing 1 to 8 carbon atoms, which may be optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, amino, sulphanyl, carboxyl, cyano, nitro, carbamoyl;
- alkenyl denotes a linear or branched alkenyl chain containing 2 to 8 carbon atoms (preferably vinyl, allyl, 1-propenyl, 1-methylethenyl, but-1 to 3-enyl, pent-1 to 4-enyl, hex-1 to 5-enyl, hept-1 to 6-enyl, 3-methylbut-2-en-1-yl) which may be optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, amino, sulphanyl, carboxyl, cyano, nitro, carbamoyl;
- cycloalkyl denotes a monocyclic or polycyclic alkyl group containing 3 to 8 carbon atoms (preferably cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or adamantyl), which may be optionally substituted with one or more substituents selected from the group consisting of hydroxy, halogen, amino, sulphanyl, carboxyl, cyano, nitro, carbamoyl.

4

 \mathbf{R}_{y} is preferably selected from the group containg furfuryl, phenyl, benzyl, n-alkyl and n-alkenyl containg 4, 5 and 6 carbon atoms, (cyclohexyl)methyl and 3,3-dimethylallyl, which may be optionally substituted with one or more substituents selected from the group consisting of hydroxy, methoxy, methyl or amino group. In a preferred embodiment, R_{y} is selected from the group consisting of furfuryl, phenyl, benzyl, 3-methylbut-2-en-1-yl, 4-hydroxy-3-methylbut-2-en-1-yl, cyclohexylmethyl, allyl or 3,3-dimethylallyl, which may be optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, methoxy, methyl, amino, nitro or their combinations.

5

15

20

25

30

In another preferred embodiment, **R8** is selected from the group consisting of amino, hydroxy, chloro, fluoro, bromo, amino(C_1 - C_5 alkyl)amino, hydroxy(C_1 - C_5 alkyl)amino, NHOH, NHNH₂, carboxy, nitro, sulfanyl, methylsulfanyl, and methoxy. R8 is more preferably amino or alkylamino.

The preferred 6.8-disubstituted-9-(heterocyclyl)purines of this invention of the general formula I are selected from the group consisting of: 6-furfurylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6benzylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino (C_1-C_5) alkylamino, hydroxy (C_1-C_5) alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-fluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2tetrahydrofuranyl)purine, 6-(3-fluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4fluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-bromobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino $(C_1-C_5 \text{ alkyl})$ amino, hydroxy $(C_1-C_5 \text{ alkyl})$ amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-iodobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2methylsulphanyl, chlorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, 5

10

15

20

25

30

hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-chlorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4-chlorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3methylsulphanyl, methylbenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-methoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-methoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C_1 - C_5 alkyl)amino, hydroxy(C_1 - C_5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2methylsulphanyl, hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy) -9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4-hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3ethoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,5-dichlorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino (C_1-C_5) alkyl)amino, hydroxy (C_1-C_5) alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(5-chloro-2-fluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2,3,5-trifluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-chloro-2,6-

6

difluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino (C_1-C_5) alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,5-difluorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 5 2-tetrahydrofuranyl)purine, 6-(3-(trifluoromethyl)benzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,4-dihydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, 10 methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,5-dihydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino (C_1-C_5) alkyl)amino, hydroxy (C_1-C_5) alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,5-dimethoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, 15 sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2,5-dimethoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-hydroxy-4-20 methoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-hydroxy-3methoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, 25 methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4-hydroxy-3methoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-hydroxy-5methoxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, 30 methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-aminobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-aminobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo,

7

amino $(C_1-C_5 \text{ alkyl})$ amino, hydroxy $(C_1-C_5 \text{ alkyl})$ amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4methylsulphanyl, aminobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,4,5-trimethoxybenzylamino)-5 8-(amino, hydroxy, chloro, fluoro, bromo, amino (C_1-C_5) alkyl)amino, hydroxy (C_1-C_5) alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2,4.5-trichlorobenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-10 cyclohexylamino-8-(amino, hydroxy, chloro, fluoro, bromo, $amino(C_1-C_5 \quad alkyl)amino,$ hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-cyclopentylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-15 tetrahydrofuranyl)purine, 6-cyclobutylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁- C_5 alkyl)amino, hydroxy(C_1 - C_5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-allylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 20 2-tetrahydrofuranyl)purine, 6-diallylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, isopentylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-25 tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,3-dimethylallylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino $(C_1-C_5 \text{ alkyl})$ amino, hydroxy $(C_1-C_5 \text{ alkyl})$ amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl tetrahydrofuranyl)purine, 6-(3-hydroxymethyl-3-methylallyl)amino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, 30 nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(Z)-(4-hydroxy-3-methylbut-2-en-1-ylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-

8

5

10

15

20

25

30

(E)-(4-hydroxy-3-methylbut-2-en-1-ylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁- C_5 alkyl)amino, hydroxy(C_1 - C_5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4-hydroxy-3methylbutylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-propargylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2tetrahydrofuranyl)purine, 6-anilino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C_1 - C_5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, methylsulphanyl, bromoanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,5-dichloroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl 2carboxyl, nitro, tetrahydrofuranyl)purine, 6-(3,5-difluoroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3,5dimethylanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2,3-dimethoxyanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, methylsulphanyl, carboxyl, nitro, sulphanyl, methoxy)-9-(2-tetrahydropyranyl tetrahydrofuranyl)purine, 6-(3-chloroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-chloro-5fluoroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2-fluoroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl carboxyl, nitro, sulphanyl, tetrahydrofuranyl)purine, 6-(3-fluoroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl,

9

methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2methoxyanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-methoxyanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2tetrahydrofuranyl)purine, 6-(3-methylanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(2,3,5-trifluoroanilino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine.

5

10

15

20

25

30

More preferred 6,8-disubstituted-9-(heterocyclyl)purines are: 6-furfurylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl 2carboxyl, nitro, sulphanyl, tetrahydrofuranyl)purine, 6-(3-hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(Z)-(4-hydroxy-3-methylbut-2en-1-ylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(E)-(4-hydroxy-3-methylbut-2-en-1-ylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4-hydroxy-3-methylbutylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine.

Generally, the most preferred 6,8-disubstituted-9-(heterocyclyl)purines are 8-hydroxymethylamino-6-furfurylamino-9-(2-tetrahydropyranyl)purine, 8-hydroxyethylamino-6-furfurylamino-9-(2-tetrahydropyranyl)purine and 8-hydroxypropylamino-6-furfurylamino-9-(2-tetrahydropyranyl)purine and 8-hydroxypropylamino-8-furfurylamino-9-(2-tetrahydropyranyl)purine and 8-hydroxypropylamino-8-furfurylamino-9-(2-tetrahydropyranyl)purine and 8-hydroxypropylamino-8-furfurylamino-9-(2-tetrahydropyranyl)purine and 8-hydroxypropyranyl

10

tetrahydropyranyl)purine and their salts, wherein furfuryl group can optionally be substitued by one or more substituents selected from halogen, hydroxy, methoxy, methyl and their combinations.

Salts of 6,8-disubstituted-9-(heterocyclyl)purines of the present invention include salts with alkali metals, ammonium or amines, as well as in the form of addition salts with acids. When the compounds of this invention contain a chiral centre, then all enantiomers, mixtures of enantiomers and racemates fall within the framework of the present invention.

5

10

20

25

30

The 6,8-disubstituted-9-(heterocyclyl)purines have a wide range of biological activities, including antioxidant, anti-inflammatory, anti-senescent, pro-differentiation as well as other activities which are especially useful in pharmaceutical and cosmetic applications. Compositions containing the compounds of the invention possess growth-regulatory, differentiating, antisenescent and antiaging properties with improved selectivities and efficiencies and lower toxicities than analogues known heretofore.

This invention also provides 6,8-disubstituted-9-(heterocyclyl)purines of the general formula I for use as antioxidants for inhibiting improper and unsatisfactory metabolic processes in mammals or plants using either *in vivo* or *in vitro* techniques.

This invention also provides compounds 6,8-disubstituted-9-(heterocyclyl)purines of the general formula I for use as antioxidants for inhibiting lipid pre-oxidation in mammals or plants either *in vivo* or *in vitro*.

The compounds of the present invention thus can be used as medicaments. They can be used in methods of treatment of a variety of conditions in mammals, especially in humans. In particular, such conditions include skin conditions, such as acne, erythema, redness. The compounds may also be used as antineurodegenerative drugs, or in methods of suppression of immunostimulation (e.g., treatment of arthritis or suppression of transplant rejection). The compounds show in particular antioxidant, anti-inflammatory, anti-senescent properties.

This invention further provides 6,8-disubstituted-9-(heterocyclyl)purines of the general formula I or alkali metal salts, ammonium salts, amine salts thereof, and addition salts thereof with acids, in the form of racemates or optically active isomers, for preparation of pharmaceutical compositions.

The compounds of the present invention can be used in cosmetics. Cosmetic uses of these compounds and their salts include inhibition, delaying, or reducing the adverse effects of aging and senescence of cells, especially human epidermal cells such as keratinocytes or fibroblasts; the cosmetic uses also include improving the overall appearance and condition of the skin, including

11

age-related changes and changes that may not be closely related to aging (e.g., acne, erythema, redness, and the like).

This invention further provides cosmetic compositions comprising one or more 6,8-disubstituted-9-(heterocyclyl)purines of formula I in a cosmetically acceptable carrier system.

This invention also provides use of the compounds of formula I for inhibiting cell senescence and aging in mammals or plants comprising application of an effective amount of the 6,8-disubstituted-9-(heterocyclyl)purines using either *in vivo* or *in vitro* techniques.

This invention also provides use for inhibiting or delaying the adverse effects of aging and/or improving the cosmetic appearance of mammalian cells, especially human skin cells, by applying an effective of the 6,8-disubstituted-9-(heterocyclyl)purines to the mammalian cells.

10

15

20

25

30

This invention further provides methods for rejuvenation of cell, stimulation of cell proliferation and/or differentiation in an organism by application of an effective amount of the 6,8-disubstituted-9-(heterocyclyl)purines of this invention.

As used herein, ameliorating the adverse effect of aging of mammalian cells means that the development of the morphological changes that normally occur with aging in normal mammalian cells *in vitro* or *in vivo* is slowed, reversed, and/or delayed. The adverse effects of aging also include age-related changes in gene expression and protein biosynthesis. The ameliorative effect referred to herein is achieved without substantially increasing the growth rate or total proliferative capacity of the cells that are treated. Ameliorating the adverse effects of aging on cells may be detected as a delay or reversal of the onset of age-related morphological and phenotypical changes that normally occur with aging of the cells. Age-related changes *in vivo* include changes in mammalian tissues, such as the development of, or increase in number or depth of, wrinkles, lines, sagging skin, discolorations, blotchiness, leathery, and/or yellowed appearance associated with the cosmetic appearance of the skin as well as the associated changes in the structural and functional integrity of the tissue. The 6,8-disubstituted-9-(heterocyclyl)purines of this invention are effective in improving the overall appearance and condition of the skin, including age-related changes and changes that may not be closely related to aging (e.g., acne, erythema, redness, and the like).

Compositions containing one or more of the 6,8-disubstituted-9-(heterocyclyl)purines of the present invention are useful for treating senescing and aging cells in mammals and plants.

The 6,8-disubstituted-9-(heterocyclyl)purines of the present invention can also be used as growth regulators in tissue cultures for stimulation of proliferation, morphogenesis, and senescence.

The 6,8-disubstituted-9-(heterocyclyl)purines of the present invention can also be used as cell division and differentiation factors of plant, mammal, microorganisms, yeast, and fungal cells.

12

The 6,8-disubstituted-9-(heterocyclyl)purines of the present invention can also be used for preparation of affinity absorption matrices, immobilised enzymes for process control, immunoassay reagents, diagnostic samples, as well as compounds and oligonucleotides, labelled by ¹⁴C, ³H, avidin, biotin, or the like.

The compounds of this invention, can also be used for preparation of compositions suitable for use with plant and mammalian embryonic stem cells and embryo (especially oocytes) cloning.

Suitable routes for administration include oral, rectal, topical (including dermal, ocular, buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravitreous, intravenous, intradermal, intrathecal and epidural).

10

15

20

25

30

The therapeutic and/or cosmetic compositions generally comprise about 1% to about 95% of the active ingredient. Single-dose forms of administration preferably comprise about 20% to about 90% of the active ingredient and administration forms which are not single-dose preferably comprise about 5% to about 20% of the active ingredient. Unit dose forms are, for example, coated tablets, tablets, ampoules, vials, suppositories or capsules. Other forms of administration are, for example, ointments, creams, pastes, foams, tinctures, lipsticks, drops, sprays, dispersions and the like. Examples are capsules containing from about 0.05 g to about 1.0 g of the active ingredient.

The pharmaceutical and cosmetic compositions of the present invention are prepared in a manner known *per se*, for example by means of conventional mixing, granulating, coating, dissolving or lyophilising processes.

Preferably, solutions of the active ingredient, and in addition also suspensions or dispersions, especially isotonic aqueous solutions, dispersions or suspensions, are used, it being possible for these to be prepared before use, for example in the case of lyophilised compositions which comprise the active substance by itself or together with a carrier, for example mannitol. The compositions can be sterilized and/or comprise excipients, for example preservatives, stabilisers, wetting agents and/or emulsifiers, solubilizing agents, salts for regulating the osmotic pressure and/or buffers, and they are prepared in a manner known per se, for example by means of conventional dissolving or lyophilising processes. The solutions or suspensions mentioned can comprise viscosity-increasing substances, such sodium carboxymethylcellulose, as carboxymethylcellulose, dextran, polyvinylpyrrolidone or gelatine.

Suspensions in oil comprise, as the oily component, vegetable, synthetic or semi-synthetic oils customary for injection purposes. Oils which may be mentioned are, in particular, liquid fatty acid esters which contain, as the acid component, a long-chain fatty acid having 8-22, in particular 12-

13

22, carbon atoms (e., lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, acid, arachidonic acid, behenic acid, and the like) or corresponding unsaturated acids (e.g., oleic acid, elaidic acid, euric acid, brasidic acid or linoleic acid). Other additional ingredients known in the art can be included if desired (e.g., antioxidants such as vitamin E, β-carotene, or 3,5-di-tert-butyl-4-hydroxytoluene, and the like). The alcohol component of these fatty acid esters generally contains no more than about 6 carbon atoms and can be monoor polyhydric. Mono-, di-, or trihydric alcohols such as methanol, ethanol, propanol, butanol, or pentanol, or isomers thereof, can be used; glycols and glycerols are generally preferred. Fatty acid esters can therefore include, for example, ethyl oleate, isopropyl myristate, isopropyl palmitate, "Labrafil M 2375" (polyoxyethylene glycerol trioleate from Gattefoseé, Paris), "Labrafil M 1944 CS" (unsaturated polyglycolated glycerides prepared by an alcoholysis of apricot kernel oil and made up of glycerides and polyethylene glycol esters; from Gattefoseé, Paris), "Labrasol" (saturated polyglycolated glycerides prepared by an alcoholysis of TCM and made up of glycerides and polyethylene glycol esters; from Gattefoseé, Paris), and/or "Miglyol 812" (triglyceride of saturated fatty acids of chain length C8 to C12 from Hüls AG, Germany), and in particular vegetable oils, such as cottonseed oil, almond oil, olive oil, castor oil, sesame oil, soybean oil and, in particular, groundnut oil as well as mixtures thereof.

5

10

15

20

25

30

The preparation of the compositions intended for human use should, of course, be carried out in the customary and approved manner under sterile conditions, and maintained under appropriate conditions up to and including the time of use.

For example, pharmaceutical compositions for oral use can be obtained by combining the active ingredient with one or more solid carriers, if appropriate granulating the resulting mixture, and, if desired, processing the mixture or granules to tablets or coated tablet cores, if appropriate by addition of additional excipients. Suitable carriers are, in particular, fillers, such as sugars, for example lactose, sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium diphosphate, or calcium hydrogen phosphate, and furthermore binders, such as starches, for example maize, wheat, rice or potato starch, methylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone, and/or, if desired, desintegrators, such as the above mentioned starches, and furthermore carboxymethyl-starch, cross-linked polyvinylpyrrolidone, alginic acid or a salt thereof, such as sodium alginate. Additional excipients are, in particular, flow regulators and lubricants, for example salicylic acid, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol, or derivatives thereof.

14

Coated tablet cores can be provided with suitable coatings which, if appropriate, are resistant to gastric juice, the coatings used being, *inter alia*, concentrated sugar solutions, which, if appropriate, comprise gum arabic, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, coating solutions in suitable organic solvents or solvent mixtures or, for the preparation of coatings which are resistant to gastric juice, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Dyes or pigments can be admixed to the tablets or coated tablet coatings, for example for identification or characterisation of different doses of active ingredient.

5

10

15

20

25

30

Pharmaceutical compositions, which can be used orally, can also be in the form hard capsules of gelatine and soft, closed capsules of gelatine and a plasticiser, such as glycerol or sorbitol. The hard capsules can contain the active ingredient in the form of granules, mixed for example with fillers, such as maize starch, binders and/or lubricants, such as talc or magnesium stearate, and stabilisers if appropriate. In soft capsules, the active ingredient is preferably dissolved or suspended in suitable liquid excipients, such as greasy oils, paraffin oil or liquid polyethylene glycol's or fatty acid esters of ethylene glycol or propylene glycol, it being likewise possible to add stabilisers and detergents such as, for example, the polyethylene sorbitan fatty acid ester type.

Other oral forms of administration include, for example, syrups prepared in the customary manner, which comprise the active ingredient, for example, in suspended form and in a concentration of about 5% to 20%, preferably about 10% or in a similar concentration which results in a suitable individual dose, for example, when 5 or 10 ml are measured out. Other forms include pulverulent or liquid concentrates for preparing shakes, beverages, and the like. Such concentrates can also be packed in unit dose quantities.

Pharmaceutical compositions, which can be used rectally, are, for example, suppositories that comprise a combination of the active ingredient with a suppository base. Suitable suppository bases are, for example, naturally occurring or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols.

Compositions which are suitable for parental administration are aqueous solutions of an active ingredient in water-soluble form, for example of water-soluble salt, or aqueous injection suspensions, which comprise viscosity-increasing substances, for example sodium carboxymethylcellulose, sorbitol and/or dextran, and if appropriate, stabilizers. The active ingredient can also be present here in the form of a lyophilisate, if appropriate together with excipients, and be dissolved before parenteral administration by addition of suitable solvents. Solutions such as are used, for example, for parental administration can also be used as infusion

15

solutions. Preferred preservatives are, for example antioxidants, such as ascorbic acid, or microbicides, such as sorbic or benzoic acid.

Ointments are oil-in-water emulsions, which comprise not more than 70%, but preferably 20 - 50% of water or aqueous phase. The fatty phase consists, in particular, hydrocarbons, for example vaseline, paraffin oil or hard paraffin's, which preferably comprise suitable hydroxy compounds, such as fatty alcohol's or esters thereof, for example cetyl alcohol or wool wax alcohols, such as wool wax, to improve the water-binding capacity. Emulsifiers are corresponding lipophilic substances, such as sorbitan fatty acid esters (Spans), for example sorbitan oleate and/or sorbitan isostearate. Additives to the aqueous phase are, for example, humectants, such as polyalcohols, for example, glycerol, propylene glycol, sorbitol and/or polyethylene glycol, or preservatives and odoriferous substances.

5

10

15

20

25

30

Fatty ointments are anhydrous and comprise, as the base, in particular, hydrocarbons, for example paraffin, vaseline or paraffin oil, and furthermore naturally occurring or semi-synthetic fats, for example, hydrogenated coconut-fatty acid triglycerides, or, preferably, hydrogenated oils, for example hydrogenated groundnut or castor oil, and furthermore fatty acid partial esters of glycerol, for example glycerol mono- and/or distearate, and for example, the fatty alcohols. They also can contain emulsifiers and/or additives mentioned in connection with the ointments which increase uptake of water.

Creams are oil-in-water emulsions, which comprise more than 50% of water. Oily bases used are, in particular, fatty alcohols, for example, lauryl, cetyl or stearyl alcohols, fatty acids, for example palmitic or stearic acid, liquid to solid waxes, for example isopropyl myristate, wool wax or beeswax, and/or hydrocarbons, for example vaseline (petrolatum) or paraffin oil. Emulsifiers are surface-active substances with predominantly hydrophilic properties, such as corresponding nonionic emulsifiers, for example fatty acid esters of polyalcohols or ethyleneoxy adducts thereof, such as polyglyceric acid fatty acid esters or polyethylene sorbitan fatty esters (Tweens), and furthermore polyoxyethylene fatty alcohol ethers or polyoxyethylene fatty acid esters, or corresponding ionic emulsifiers, such as alkali metal salts of fatty alcohol sulphates, for example, sodium lauryl sulphate, sodium cetyl sulphate or sodium stearyl sulphate, which are usually used in the presence of fatty alcohols, for example cetyl stearyl alcohol or stearyl alcohol. Additives to the aqueous phase are, *inter alia*, agents which prevent the creams from drying out, for example polyalcohols, such as glycerol, sorbitol, propylene glycol and/or polyethylene glycols, and furthermore preservatives and odoriferous substances.

Pastes are creams and ointments having secretion-absorbing powder constituents, such as metal oxides, for example, titanium oxide or zinc oxide, and furthermore talc and/or aluminium silicates, which have the task of binding the moisture or secretions present.

Foams (i.e., liquid oil-in-water emulsions packaged in aerosol form) can be administered from pressurised containers. Propellant gases include halogenated hydrocarbons, such as polyhalogenated alkanes such as dichlorofluoromethane and dichlorotetrafluoroethane, or, preferably, non-halogenated gaseous hydrocarbons, air, N₂O, or carbon dioxide. The oily phases used are, *inter alia*, those mentioned above for ointments and creams, and the additives mentioned there are likewise used.

Tinctures and solutions usually comprise an aqueous-ethanolic base to which, humectants for reducing evaporation, such as polyalcohols (e.g., glycerol, glycols, polyethylene glycol) and reoiling substances, such as fatty acid esters with lower polyethylene glycols (e.g., lipophilic substances soluble in the aqueous mixture) to substitute the fatty substances removed from the skin with the ethanol, and, if necessary or desired, other excipients and additives, are admixed.

The present invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefor. Veterinary carriers are materials for administering the composition and may be solid, liquid, or gaseous materials, which are inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally, or by any other desired route.

The invention also relates to a process or method for treatment of the disease states mentioned above. The compounds can be administered prophylactically or therapeutically as such or in the form of pharmaceutical compositions, preferably in an amount, which is effective against the diseases mentioned. With a warm-blooded animal, for example, a human requiring such treatment, the compounds are used, in particular, in the form of pharmaceutical composition. A daily dose of about 0.1 to about 5 g, preferably 0.5 g to about 2 g, of a compound of the present invention is administered here for a body weight of about 70 kg.

Brief description of Drawings

5

Fig. 1. Effect of compound 5 on callus growth. Kinetin and *trans*-zeatin (tZ) are used as standards. Error bars show standard deviation of the mean for 5 replicate determination. Control is the value for the treatment without any cytokinin.

Fig. 2. Shows growth curves of 6-furfurylamino-8-(2-hydroxyethylamino)-9-(tetrahydropyran-2-yl)-9H-purinu (compund 243).

5

10

15

20

25

30

Examples of carrying out the Invention

The following examples serve to illustrate the invention without limiting the scope thereof. Unless otherwise stated, all percentages and the like amounts are based on weight.

The starting materials may be obtained from commercial sources (Sigma, Aldrich, Fluka, etc.) or can be prepared as described below.

Evaporations were carried out on a rotary evaporator under vacuum at temperatures below 80°C. Melting points were determined on a Koffler block and are uncorrected. Purity of prepared compounds was confirmed by high performance liquid chromatography (HPLC) (Beckman Gold system). The samples were dissolved in methanol, applied to LiChroCARD 250 x 4 mm column filled with Purospher RP-18e, 5 μm (Merck) and the separated constituents were eluted by isocratic elution using a mixture of methanol (HPLC grade) and AcOH/AcONH₄ buffer (pH = 3,4; 40 mM; with addition of 5% MeOH) at a flow rate of 0.5 ml/min. Eluting compounds were detected by scanning the UV absorbance of the eluate between 200 and 300 nm. The ¹H-NMR spectra (σ ppm; J, Hz) were measured on Varian Unity 300 (300MHz) instruments. All spectra were obtained at 25°C using tetramethylsilane as internal standard. Electron impact mass spectra m/z (rel. %, composition, deviation) were measured on a VG 7070E spectrometer (70eV, 200oC, direct inlet). Quadrupole mass spectra were measured on a Micromass ZMD detector with electrospray ionization. Samples for MS were dissolved in methanol + 5 % HCOOH. Merck silica gel PharmPrep 60 CC (40-63 μm) was used for column chromatography.

6-Alkylamino-8-substituted-9-(tetrahydropyran-2-yl)-9*H*-purines were prepared using four-step reaction scheme, which included: tetrahydropyranylation of 6-chloropurine, reaction of 6-chloro-9-(tetrahydropyran-2-yl)-9*H*-purine with appropriate alkenyl- or arylalkylamine in alcohole and a base, introduction of a halogen atom into the position 8 and substitution of the halogen with a nucleophile (amine or alcoholate) to afford the 6,8-disubstituted-9-(heterocyclyl)purine.

Example 1 Synthesis of 6-chloro-9-(tetrahydropyran-2-yl)-9H-purine

The compound was prepared from 6-chloropurine according to the literature (Taddei et al., *Org. Biomol. Chem.* 2004, 2, 665). A mixture of 6-chloropurine (20.0 g, 129 mmol), *p*-toluenesulfonic acid (0.23 g, 1.85 mmol), 3,4-dihydro-2*H*-pyran (14.5 ml, 159 mmol) in tetrahydrofuran (175 ml) was refluxed under argon at 84°C for 22 h. After cooling, concentrated ammonia (5 ml) was added, undissolved particles were filtered off and the filtrate evaporated to dryness. The yellowish oil was dissolved in ethyl acetate (250 ml) and extracted with brine (75 ml), water (2 x 75 ml) and then

18

dried over sodium sulfate. The organic extracts were concentrated *in vacuo* into an yellow oil that was extracted with boiling cyclohexane (cca 250 ml). Light yellow cyclohexane extract was separated from the undissolved orange rest by decantation. The extraction procedure was repeated twice with 150 ml cyclohexane. The cyclohexane extracts were cooled in a fridge overnight to precipitate colourless crystals. Yield: 19.1 g, 62 %. M.p.: 68°C. ¹H NMR (300 MHz, DMSO- d_6): δ 1.61 (2H, m, THP), 1.76 (1H, m, THP), 2.00 (2H, m, THP), 2.34 (1H, m, THP), 3.73 (1H, m, THP H4′), 4.03 (1H, dm, J = 11 Hz, THP H3′), 5.80 (1H, dd, J = 2.3, 11 Hz, THP H2′), 8.81 (1H, s, H8), 8.92 (1H, s, H2).

10 Examples 2 Syntheses of 6-alkylamino/aralkylamino-9-(tetrahydropyran-2-yl)-9H-purines 6-Furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

6-Chloro-9-(tetrahydropyran-2-yl)-9*H*-purine (Ex 1.) (3.89 g, 16 mmol) was dissolved in 1-propanol (30 ml). Furfurylamine (2.9 ml, 33 mmol) and triethylamine (4.3 ml, 31 mmol) were added. The solution was stirred at room temperature over night. Crystals (the first portion) were filtered off, washed with cold 1-propanol and then thoroughly with water. The filtrate was heated at 70 °C for 3 h, cooled and left in a refrigerator over night. Crystals (the second portion) were filtered off, washed with cold 1-propanol and then thoroughly with water. Filtrate was partly evaporated and after crystallization in a refrigerator was obtained the third portion of product. The off white crystalline product was dried in dessiccator with P_2O_5 . Yield: 3.46 g, 71%. M. p.: 141-143 °C. HPLC $R_t = 9.1$ min (70 % $CH_3OH + 30$ % buffer); UV (70 % $CH_3OH + 30$ % buffer) λ_{max} 267 nm, λ_{min} 235 nm. MS ESI+ (CV 18) m/z (rel. %): 300 [M+H]⁺ (100), 322 [M+Na]⁺ (36), 621 [2M+Na]⁺ (38); (CV 38) m/z (rel. %): 216 [$C_{10}H_9N_5O+H]$ ⁺ (100), 322 [M+Na]⁺ (56), 238 [$C_{10}H_9N_5O+Na]$ ⁺ (22), 300 [M+H]⁺ (21).

25 6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine

5

15

20

30

6-Chloro-9-(tetrahydropyran-2-yl)-9*H*-purine (Ex 1.) (4.02 g, 17 mmol) was dissolved in 2-propanol (47 ml). 3-Methylbut-2-en-1-amine hydrochloride (3.08 g, 25 mmol) and triethylamine (5.9 ml, 42 mmol) were added. The solution was stirred and heated at 65 °C for 14 h. The mixture was evaporated to dryness, dissolved in 50 ml of chloroform and extracted with 30 ml of water three times. Chloroform layer was dried with MgSO₄ and evaporated. The crude product crystallizes after drying in desiccator with P_2O_5 (4.56 g, 94 %). The solid was crystallized from ethyl acetate (8 ml) to give white crystals. Yield: 2.86 g, 73 %. M. p.: 95-98 °C. MS ESI+ (CV 18) m/z (rel. %): 288 [M+H]⁺ (100), 310 [M+Na]⁺ (37), 597 [2M+Na]⁺ (28); (CV 38) m/z (rel. %): 204 [$C_{10}H_{13}N_5+H$]⁺ (100), 310 [M+Na]⁺ (37), 288 [M+H]⁺ (19), 226 [$C_{10}H_{13}N_5+Na$]⁺ (17).

19

(*E*)-6-(4-Hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine Prepared in the same way like 6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (Ex 2.1). White crystals. Yield: 76 %. M. p.: 111-116 °C (ethyl acetate). HPLC $R_t = 10.4 \text{ min } (55 \% \text{ CH}_3\text{OH} + 45 \% \text{ buffer})$; $R_t = 8.6 \text{ min } (60 \% \text{ CH}_3\text{OH} + 40 \% \text{ buffer})$; UV (55 % CH₃OH + 45 % buffer) λ_{max} 268 nm, λ_{min} 231 nm. MS ESI+ (CV 20) m/z (rel. %): 304 [M+H]⁺ (100), 326 [M+Na]⁺ (17), 220 [C₁₀H₁₃N₅O+H]⁺ (16).

(Z)-6-(4-Hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine

(*Z*)-4-Amino-1-methylbut-2-en-1-ol (0.87 g, 8.6 mmol) was dissolved in 1-propanol (14 ml). Triethylamine (0.95 ml, 6.9 mmol) and 6-chloro-9-(tetrahydropyran-2-yl)purine (Ex 1.) (1.64 g, 6.9 mmol) were added and the mixture heated at 45 °C for 6 h. After cooling, the mixture was filtered, filtrate partly evaporated and purified by column chromatography (60,3 g of silica gel, mobile phase chloroform : acetone 4:1, flow rate 7.5 ml/min. The product was a light yellow viscous substance which starts to crystallize after two weeks of drying over P_2O_5 in a vacuum desiccator. M. p.: 127 - 131°C. Yield 1.50 g (72 %). MS ESI+ (CV 18) m/z (rel. %): 304 [M+H]⁺ (100), 326 [M+Na]⁺ (17); (CV 38) m/z (rel. %): 220 [C₁₀H₁₃N₅O+H]⁺ (100), 326 [M+Na]⁺ (32), 242 [C₁₀H₁₃N₅O+Na]⁺ (29).

20 6-Benzylamino-9-(tetrahydropyran-2-yl)-9H-purine

5

10

15

25

6-Chloro-9-(tetrahydropyran-2-yl)-9H-purine (Ex 1.) (2.52 g, 10.6 mmol) was dissolved in 2-propanol (13.5 ml). Benzylamine (1.4 ml, 12.8 mmol) and triethylamine (1.5 ml, 10.5 mmol) were added. The solution was stirred and heated at 40 °C for 8 h. The mixture was evaporated to dryness, dissolved in 20 ml of ethyl acetate and extracted with 15 ml of water twice. Ethyl acetate layer was dried with Na₂SO₄ and evaporated. The crude product crystallizes after drying in desiccator with P₂O₅ to give (2.14 g, 66 %). white crystals, m. p.: 124-127 °C. MS ESI+ (CV 10) m/z (rel. %): 310 [M+H]⁺ (100); (CV 40) m/z (rel. %): 226 [C₁₂H₁₁N₅+H]⁺ (100), 310 [M+H]⁺ (13).

Examples 3: Syntheses of 8-halogen-6-alkylamino/aralkylamino-9-(tetrahydropyran-2-yl)-9*H*-purines

8-Chloro-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

The compound was prepared from 6-furfurylamino-9-(tetrahydropyran-2-yl)-9*H*-purine (Ex 2.1) applying the procedure described in literature (Nolsøe et al., *Synth. Commun.* 1998, 28, 4303;

20

Gunji, Helv. Chim. Acta 2000, 83, 1331). 20 mL (36 mmol) of commercially available 1.8 M lithium diisopropylamide solution was under argon dissolved in 30 mL dry tetrahydrofuran cooled to -78 °C. The mixture was treated dropwise over 20 min with solution of 3.64 g (12,2 mmol) 6furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine in 35 mL dry tetrahydrofurane, then the reaction mixture was stirred at -78 °C for 2 h. After this time, 4.7 mL (36.6 mmol) benzensulfonylchloride was added dropwise over 20 min, and the mixture farther stirred for 3 h. Without loading the bottle with argon, 30 mL 20 % NH₄Cl solution was added dropwise. The cooling bath was removed and the mixture left to get room temperature. The layers were separated. The aqueous layer was extracted with diethyl ether $(2 \times 27 \text{ mL})$. The combined organic layers were washed with 65 mL brine and water (2 × 50 mL), dried with Na₂SO₄, and evaporated. The crude product was voided of benzensulfonamide by crystallization from ethyl acetate and ethanol. The rest after crystallization was evaporated and purified by column chromatography (silica gel; mobile phase chloroform: acetone 95:5). The product was recrystallized from methanol/diethyl ether. Light beige crystals. Yield: 2.80 g, 69 %. M.p.: 110-114 °C. HPLC $R_t = 17.3 \text{ min} (60 \% \text{ CH}_3\text{OH} + 40 \% \text{ buffer})$ (flow rate 0.6 ml/min). MS ESI+ (CV 10) m/z (rel. %): 334 [M+H]⁺ (100), 336 [M+H]⁺ (51); (CV 20) m/z (rel. %): 334 $[M+H]^+$ (100), 336 $[M+H]^+$ (34), 250 $[C_{10}H_8CIN_5O+H]^+$ (53), 252 $[C_{10}H_8CIN_5O+H]^+$ (19). ¹H NMR (300 MHz, DMSO- d_6): δ 1.62 (3H, mm, THP, H4′, 5′), 1.85 (1H, dd, J = 12.6, 2.4 Hz, THP H3'), 1.97 (1H, d, J = 11.2 Hz, THP H4'), 2.89 (1H, qq, J = 11.8, 4.1 Hz, THP H3'), 3.66 (1H, tt, J = 11.3, 3.6 Hz THP H6'), 4.02 (1H, d, J = 11.3 Hz, THP H6'), 4.66 (2H, s, -NH-CH₂-Fur), 5.63 (1H, d, J = 10.6 Hz, THP H2²), 6.22 (1H, d, J = 2.6 Hz, Fur H3²), 6.35(1H, m, Fur H4'), 7.53 (1H, m, Fur H5'), 8.26 (1H, s, H2), 8.42 (1H, bs, N⁶H). ¹³C NMR (300 MHz, DMSO-*d*₆): δ 22.58 (THP C4′), 24.46 (THP C5′), 28.09 (THP C3′), 36.51(-NH-**C**H₂-Fur), 68.10 (THP C6'), 83.11(THP C2'), 106.71 (Fur C3'), 110.43 (Fur C4'), 117.87 (C5), 136.32 (C8), 141.87(Fur C5´), 150.16 (C4), 152.62 (Fur C2´), 152.73 (C2), 153.11 (C6).

25

30

20

5

10

15

8-Bromo-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

The compound was prepared from 6-furfurylamino-9-(tetrahydropyran-2-yl)-9*H*-purine (Ex 2.1) applying the procedure described in literature (Nolsøe et al., *Synth. Commun.* 1998, 28, 4303; Gunji, *Helv. Chim. Acta* 2000, 83, 1331). 0.93 g (3.1 mmol) of (2.1) was under argon dissolved in 10 ml dry tetrahydrofuran and cooled to -78 °C. The solution was treated dropwise over 10 min with 3.7 ml (7.5 mmol) of lithium diisopropylamide solution. The reaction mixture was then stirred at -78 °C for 1 h. After this time, a solution of 2.7 g (8.2 mmol) tetrahydrofuran was added dropwise over 10 min, and the mixture further stirred for 1 h. Without loading the bottle with argon, 9 ml of 20 % NH₄Cl solution was added dropwise. The

cooling bath was removed and the mixture left to get room temperature. The layers were separated. The organic layer was washed with 15 ml brine and water (2 × 15 ml), dried with MgSO₄, and evaporated. The crude product was purified by column chromatography (mobile phase hexanes: ethyl acetate 3:2. After column chromatography, the collected fractions were concentrated in vacuo and dried in desiccator with P₂O₅ for 4 days to give light beige-brown powder. Yield: 0.44 g, 37 %. M. p.: 108-112 °C (cryst. from ethyl acetate). HPLC $R_t = 11.5 \text{ min}$ (75 % $CH_3OH + 25 \%$ buffer). UV (75 % CH₃OH + 25 % buffer) λ_{max} 272 nm, λ_{min} 238 nm. MS ESI+ (CV 10) m/z (rel. %): $380 [M+H]^+ (100)$, $378 [M+H]^+ (86)$, $294 [C_{10}H_8BrN_5O+H]^+ (9)$; $296 [C10H8BrN5O+H]^+ (8)$; (CV 30) m/z (rel. %): 296 [C10H8BrN5O+H]⁺ (100), 294 [C10H8BrN5O+H]⁺ (93), 228 [C6H5BrN5]⁺ (28), 226 [C6H5BrN5]⁺ (27), 380 [M+H]⁺ (10), 378 [M+H]⁺ (9). ¹H NMR (300 MHz, DMSO- d_6): δ 1.56 (1H, m, THP H5′), 1.65 (2H, mm, THP H4′, 5′), 1.85 (1H, dd, J = 12.9, 2.4, THP H3'), 1.99 (1H, d, J = 11.8, THP H4'), 3.00 (1H, qq, J = 11.8, 4.2, THP H3'), 3.65 (1H, tt, J = 11.3, 3.6, THP H6, 4.04 (1H, d, J = 11.3, THP H6), 4.67 (2H, bs, NH-CH₂-Fur), 5.61 (1H, dd, J = 11.2, 2.0, THP H2), 6.23 (1H, d, J = 3.2, Fur H3), 6.35 (1H, m, Fur H4), 7.53 (1H, m, Fur H5´), 8.24 (1H, s, H2), 8.42 (1H, bs, N⁶H). 13 C-NMR (300 MHz, DMSO- d_6): δ 22.56 (THP C4'), 24.37 (THP C5'), 27.98 (THP C3'), 36.44 (NH-CH₂-Fur), 68.04 (THP C6'), 84.10 (THP C2'), 106.62 (Fur C3'), 110.34 (Fur C4'), 119.46 (C5), 125.88 (C8), 141.76 (Fur C5'), 150.13 (C4), 152.45 (C2), 152.56 (Fur C2'), 152.95 (C6).

20 8-Iodo-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

5

10

15

25

30

The compound was prepared from 6-furfurylamino-9-(tetrahydropyran-2-yl)-9*H*-purine (Ex *2.1*) applying the procedure described in literature (Nolsøe et al., *Synth. Commun.* 1998, 28, 4303; Gunji, *Helv. Chim. Acta* 2000, 83, 1331). 2.12 g (7.1 mmol) of (*2.1*) was under argon dissolved in 35 ml dry tetrahydrofuran and cooled to -78 °C. The solution was treated dropwise over 16 min with 21 ml (42 mmol) of lithium diisopropylamide solution. The reaction mixture was then stirred at -78 °C for 70 min. After this time, a solution of 12.5 g (49 mmol) iodine in 8.0 ml of dry tetrahydrofuran was added dropwise, and the mixture further stirred for 1 h. The reaction was quenched, without loading the bottle with argon, with a solution of Na₂S₂O₃.5•H₂O (24 g) added dropwise. The cooling bath was removed and the mixture left to get room temperature. The layers were separated. The organic layer was washed with 15 ml brine and water (2 × 40 ml). Water layers were reextracted with ethyl acetate (2 x 40 ml). Combined organic layers were dried with MgSO₄, and evaporated. The crude product was purified by column chromatography (mobile phase hexanes: ethyl acetate 3:2. After column chromatography, the collected fractions were concentrated *in vacuo* and dried in desiccator with P₂O₅ to give light beige powder. Yield: 2.00 g,

66 %. M. p.: 130-134 °C (cryst. from ethyl acetate). HPLC $R_t = 6.0 \text{ min } (90 \% \text{ CH}_3\text{OH} + 10 \% \text{ buffer})$, $R_t = 8.6 \text{ min } (80 \% \text{ CH}_3\text{OH} + 20 \% \text{ buffer})$. UV (80 % CH₃OH + 20 % buffer) λ_{max} 276 nm, λ_{min} 240 nm. MS ESI+ (CV 10) m/z (rel. %): 426 [M+H]⁺ (100). ¹H NMR (300 MHz, DMSO- d_6): δ 1.56 (1H, m, THP H5′), 1.64 (2H, mm, THP H4′, 5′), 1.81 (1H, dd, J = 12.9, 2.4, THP H3′), 1.99 (1H, d, J = 11.8, THP H4′), 3.09 (1H, qq, J = 11.8, 3.3, THP H3′), 3.64 (1H, tt, J = 11.3, 2.9, THP H6′), 4.05 (1H, d, J = 11.3, THP H6′), 4.65 (2H, bs, NH-CH₂-Fur), 5.54 (1H, dd, J = 11.3, 2.2, THP H2′), 6.21 (1H, d, J = 2.9, Fur H3′), 6.35 (1H, m, Fur H4′), 7.53 (1H, m, Fur H5′), 8.17 (1H, s, H2), 8.42 (1H, bs, N⁶H). ¹³C-NMR (300 MHz, DMSO- d_6): δ 22.67 (THP C4′), 24.39 (THP C5′), 28.07 (THP C3′), 36.41 (NH-CH₂-Fur), 68.01 (THP C6′), 85.77 (THP C2′), 101.75 (C8), 106.57 (Fur C3′), 110.34 (Fur C4′), 122.07 (C5), 141.72 (Fur C5′), 150.16 (C4), 152.03 (C2), 152.67 (Fur C2′), 152.80 (C6).

8-Chloro-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine

5

10

15

20

25

30

The compound was prepared from 6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9Hpurine (Ex 2.2) applying the procedure described in literature (Nolsøe et al., Synth. Commun. 1998, 28, 4303; Gunji, Helv. Chim. Acta 2000, 83, 1331). 2.08 g (7.2 mmol) of (2.2) was under argon dissolved in 30 ml dry tetrahydrofuran and cooled to -78 °C. The solution was treated dropwise over 30 min with 22 ml (44 mmol) of lithium diisopropylamide solution. The reaction mixture was then stirred at -78 °C for 1 h. After this time, a solution of 3.43 g (14.5 mmol) hexachloroethane in 15.0 ml of dry tetrahydrofuran was added dropwise over 20 min, and the mixture further stirred for 1 h. Without loading the bottle with argon, 30 ml of 18 % NH₄Cl solution was added dropwise. The cooling bath was removed and the mixture left to get room temperature. The layers were separated. The organic layer was washed with 40 ml brine and water $(2 \times 25 \text{ ml})$, dried with Na₂SO₄, and evaporated. The crude product was purified by column chromatography (mobile phase hexanes : ethyl acetate 3:2, on TLC chromatogram $R_f = 0.14$). After column chromatography, the collected fractions were concentrated in vacuo. Light beige crystals. Yield: 1.53 g, 66 %. M. p.: 118 - 120 °C (cryst. from hexanes : ethyl acetate 3:2). HPLC $R_t = 14.5 \text{ min } (80 \% \text{ CH}_3\text{OH} + 20 \% \text{ buffer}). \text{ MS ESI+ (CV 10) m/z (rel. \%): } 322 [M+H]^+ (100),$ 324 $[M+H]^+$ (31); (CV 35) m/z (rel. %): 238 $[C_{10}H_{12}ClN_5+H]^+$ (100), 240 $[C_{10}H_{12}ClN_5+H]^+$ (31), 182 [C6H5CIN5]⁺ (17), 170 [C5H4CIN5]⁺ (17), 322 [M+H]⁺ (12). ¹H NMR (300 MHz, DMSO d_6): δ 1.55 (3H, mm, THP, H4′, 5′), 1.66 (3H, s, -CH₃), 1.68 (3H, s, -CH₃), 1.84 (1H, d, J = 13.0Hz, THP H3 $^{\circ}$), 1.97 (1H, d, J = 11.0 Hz, THP H4 $^{\circ}$), 2.89 (1H, qq, J = 12.4, 3.4 Hz, THP H3 $^{\circ}$), 3.65 $(1H, tt, J = 11.3, 3.6 Hz THP H6^2), 4.01 (1H, m, THP H6^2), 4.04 (2H, bs, -NH-CH₂-), 5.26 (1H, t, t)$ J = 6.6 Hz, $-\text{CH}_2$ -CH=), 5.62 (1H, d, J = 11.7 Hz, THP H2´), 8.07 (1H, bs, N⁶H), 8.22 (1H, s, H2).

23

¹³C NMR (300 MHz, DMSO- d_6): δ 17.74 (-CH₃), 22.49 (THP C4′), 24.36 (THP C5′), 25.30 (-CH₃), 27.98 (THP C3′), 37.56 (-NH-CH₂-), 68.00 (THP C6′), 82.94 (THP C2′), 117.72 (C5), 121.72 (-CH=), 133.30 (=C<), 135.74 (C8), 149.41 (C4), 152.77 (C2), 153.00 (C6).

5 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine

10

15

20

25

30

The compound was prepared from 6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9Hpurine (Ex 2.2) applying the procedure described in literature (Nolsøe et al., Synth. Commun. 1998, 28, 4303; Gunji, Helv. Chim. Acta 2000, 83, 1331). 3.00 g (10.4 mmol) of (2.2) was under argon dissolved in 30 ml dry tetrahydrofuran and cooled to -78 °C. The solution was treated dropwise over 40 min with 31 ml (62 mmol) of lithium diisopropylamide solution. The reaction mixture was then stirred at -78 °C for 1 h. After this time, a solution of 8.50 g (25.6 mmol) tetrabromomethane in 8.0 ml was added dropwise over 20 min, and the mixture farther stirred for 1 h. Without loading the bottle with argon, 50 ml of 20 % NH₄Cl solution was added dropwise. The cooling bath was removed and the mixture left to get room temperature. The layers were separated. The organic layer was washed with 50 ml brine and water (2 \times 50 ml), dried with Na₂SO₄, and evaporated. The crude product was purified by column chromatography (mobile phase hexanes: ethyl acetate 3:2, on TLC chromatogram $R_f = 0.17$). After column chromatography, the collected fractions were concentrated in vacuo into app. volume 50 ml and let to crystallize in refrigerator over night. Light beige crystals were filtered off, washed with hexanes and dried. Yield: 2.28 g, 60 %. M. p.: 125-128 °C. HPLC $R_t = 14.2 \text{ min}$ (80 % $CH_3OH + 20 \%$ buffer). UV (70 % $CH_3OH + 30$ % buffer) λ_{max} 274 nm, λ_{min} 235 nm. MS ESI+ (CV 20) m/z (rel. %): 368 [M+H]⁺ (100), 366 $[M+H]^{+}$ (98), 282 $[C_{10}H_{11}BrN_{5}+H]^{+}$ (30), 284 $[C_{10}H_{11}BrN_{5}+H]^{+}$ (28). ¹H NMR (300 MHz, DMSO d_6): δ 1.55 (3H, mm, THP, H4′, 5′), 1.65 (3H, s, -CH₃), 1.68 (3H, s, -CH₃), 1.82 (1H, d, J = 12.8Hz, THP H3´), 1.97 (1H, m, THP H4´), 2.99 (1H, qq, J = 12.1, 4.0 Hz, THP H3´), 3.63 (1H, tt, J = 10.8, 3.6 Hz THP H6'), 4.01 (1H, m, THP H6'), 4.05 (2H, bs, -NH-C \mathbf{H}_2 -), 5.26 (1H, t, J = 6.4 Hz, - CH_2 - CH_2), 5.59 (1H, d, J = 10.9 Hz, THP H2′), 8.08 (1H, bs, N⁶H), 8.20 (1H, s, H2). ¹³C NMR (300 MHz, DMSO-d₆): δ 17.74 (-CH₃), 22.56 (THP C4′), 24.36 (THP C5′), 25.30 (-CH₃), 27.96 (THP C3'), 37.56 (-NH-CH₂-), 68.01 (THP C6'), 84.02 (THP C2'), 119.43 (C5), 121.73 (-CH=), 125.36 (C8), 133.27 (=C<), 149.80 (C4), 152.58 (C2), 153.00 (C6).

(*E*)-8-*Chloro-6-*(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (*E*)-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (Ex 2.3) (0.93 g, 3.1 mmol) was dissolved under argon in dry tetrahydrofuran (15 ml). The solution was treated dropwise with commercially available 1.8 M lithium diisopropylamide solution (15 ml, 30 mmol).

24

The reaction mixture was stirred at -78 °C for 1.5 h. After this time, solution of hexachloroethane (2.14 mL, 9.0 mmol) in dry tetrahydrofuran (6 ml) was added dropwise over 12 min to the reaction mixture, which was then stirred for 1 h. Then, 20 % NH₄Cl (20 ml) was added dropwise. After spontaneous warming to room temperature, the layers were separated. The aqueous layer was extracted with ethyl acetate (3 × 10 mL). Collected organic layers were dried with Na₂SO₄, and evaporated. The crude product was purified by column chromatography (silica gel; mobile phase chloroform:acetone, 95:5. Beige crystals. Yield: 0.51 g, 49 %. M. p.: 130-134 °C (crystallized from 2-propanol). HPLC $R_t = 15.3 \text{ min } (60 \% \text{ CH}_3\text{OH} + 40 \% \text{ buffer})$, MS ESI+ (CV 10) m/z (rel. %): 338 $[M+H]^+$ (100), 340 $[M+H]^+$ (33); (CV 20) m/z (rel. %): 254 $[C_{10}H_{12}CIN_5O+H]^+$ (100), 256 $[C_{10}H_{12}CIN_5O+H]^+$ (45), 338 $[M+H]^+$ (86), 340 $[M+H]^+$ (44). ¹H NMR (300 MHz, DMSO- d_6): δ 1.55 (1H, m, THP, H5⁻), 1.60 (1H, m, THP, H5⁻), 1.66 (3H, s, -CH₃), 1.70 (1H, m, THP, H4⁻), 1.84 (1H, dd, J = 12.8, 2.2 Hz, THP H3´), 1.98 (1H, d, J = 12.3 Hz THP H4´), 2.89 (1H, qq, J = 12.8) 12.1, 3.6 Hz, THP H3'), 3.63 (1H, tt, J = 11.3, 3.6 Hz THP H6'), 3.78 (2H, d, J = 5.7 Hz, -CH₂-OH), 4.03 (1H, d, J = 11.3 Hz THP H6'), 4.10 (2H, bs, -NH-CH₂-), 4.72 (1H, t, J = 5.7 Hz, OH), 5.50 (1H, tt, J = 6.7, 1.7 Hz, -CH₂-CH=), 5.63 (1H, dd, J = 11.3, 2.2 Hz, THP H2'), 8.04 (1H, bs, $N^{6}H$), 8.23 (1H, s, H2). ¹³C NMR (300 MHz, DMSO- d_{6}): δ 13.56 (-CH₃), 22.52 (THP C4′), 24.39 (THP C5⁻), 28.04 (-CH₂-OH), 28.04 (THP C3⁻), 37.25 (-NH-CH₂-), 65.75 (-CH₂-OH), 68.03 (THP C6'), 82.99 (THP C2'), 117.80 (C5), 120.32 (-CH=), 135.79 (C8), 137.39 (=C<), 149.49 (C4), 152.78 (C2), 153.12 (C6).

5

10

15

20

25

30

(*E*)-8-Bromo-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (*E*)-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (Ex 2.3) (2.44 g, 8.0 mmol) was dissolved under argon in dry tetrahydrofuran (55 ml). The solution was treated dropwise over 1 h with commercially available 1.8 M lithium diisopropylamide solution (45 ml, 90 mmol). The reaction mixture was stirred at -78 °C for 1.0 h. After this time, solution of tetrabromomethane (8.01 g, 24.2 mmol) in dry tetrahydrofuran (20 ml) was added dropwise over 35 min to the reaction mixture, which was then stirred for 1 h. Then, 20 % NH₄Cl (70 ml) was added dropwise. After spontaneous warming to room temperature, the layers were separated. The aqueous layer was extracted with diethyl ether (1 × 70 ml). Collected organic layers were washed with brine (2 x 50 ml), dried with Na₂SO₄, and evaporated. The crude product was purified by column chromatography (silica gel; mobile phase chloroform : ethyl acetate 1:3, on TLC chromatogram $R_f = 0.11$. Light beige crystals. Yield: 1.19 g, 45 %. M. p.: 138-142 °C (crystallized from ethyl acetate). HPLC $R_t = 15.5$ min (60 % CH₃OH + 40 % buffer). UV (60 % CH₃OH + 40 % buffer) λ_{max} 274 nm, λ_{min} 235 nm. MS ESI+ (CV 18) m/z (rel. %): 382 [M+H]⁺ (100), 384 [M+H]⁺ (92); 406 [M+Na]⁺ (60), 404 [M+Na]⁺ (57); (CV 37) m/z (rel. %): 406 [M+Na]⁺ (100), 404

25

 $[M+Na]^+$ (96),332 $[C_{10}H_{12}BrN_5O+Na]^+$ (88), $320 \quad [C_{10}H_{12}BrN_5O+Na]^+$ (85),300 $[C_{10}H_{12}BrN_5O+H]^+$ (84), 298 $[C_{10}H_{12}BrN_5O+H]^+$ (82), 382 $[M+H]^+$ (36), 384 $[M+H]^+$ (35). ¹H NMR (300 MHz, DMSO- d_6): δ 1.55 (1H, m, THP, H5'), 1.60 (1H, m, THP, H5'), 1.66 (3H, s, - CH_3), 1.70 (1H, m, THP, H4'), 1.84 (1H, dd, J = 12.8, 2.2 Hz, THP H3'), 1.98 (1H, d, J = 12.3 Hz THP H4´), 2.89 (1H, qq, J = 12.1, 3.6 Hz, THP H3´), 3.63 (1H, tt, J = 11.3, 3.6 Hz THP H6´), 3.78 $(2H, d, J = 5.7 \text{ Hz}, -CH_2-OH), 4.03 (1H, d, J = 11.3 \text{ Hz} \text{ THP H6}^2), 4.10 (2H, bs, -NH-CH_2-), 4.72$ (1H, t, J = 5.7 Hz, OH), 5.50 (1H, tt, J = 6.7, 1.7 Hz, -CH₂-CH=), 5.63 (1H, dd, J = 11.3, 2.2 Hz, THP H2'), 8.04 (1H, bs, N⁶H), 8.23 (1H, s, H2). ¹³C NMR (300 MHz, DMSO- d_6): δ 13.56 (-CH₃), 22.52 (THP C4'), 24.39 (THP C5'), 28.04 (-CH₂-OH), 28.04 (THP C3'), 37.25 (-NH-CH₂-), 65.75 (-CH₂-OH), 68.03 (THP C6⁻), 82.99 (THP C2⁻), 117.80 (C5), 120.32 (-CH=), 135.79 (C8), 137.39 (=C<), 149.49 (C4), 152.78 (C2), 153.12 (C6).

8-Bromo-6-benzylamino-9-(tetrahydropyran-2-yl)-9H-purine

5

10

15

20

25

30

The compound was prepared from 6-benzylamino-9-(tetrahydropyran-2-yl)-9H-purine (Ex 2.5) applying the procedure described in literature (Nolsøe et al., Synth. Commun. 1998, 28, 4303; Gunji, Helv. Chim. Acta 2000, 83, 1331). 2.14 g (6.9 mmol) of (2.1) was under argon dissolved in 25 ml dry tetrahydrofuran and cooled to -78 °C. The solution was treated dropwise over 30 min with 21 ml (42 mmol) of lithium diisopropylamide solution. The reaction mixture was then stirred at -78 °C for 1 h. After this time, a solution of 4.58 g (13.8 mmol) tetrabromomethane in 10 ml of dry tetrahydrofuran was added dropwise over 20 min, and the mixture further stirred for 1 h. Without loading the bottle with argon, 44 ml of 20 % NH₄Cl solution was added dropwise. The cooling bath was removed and the mixture left to get room temperature. The layers were separated. The organic layer was washed with 15 ml of water (3×30 ml), dried with Na₂SO₄, and evaporated. The crude product was purified by column chromatography (mobile phase hexanes : ethyl acetate 3:2, on TLC chromatogram $R_f = 0.17$). After column chromatography, the collected fractions were partly concentrated in vacuo let to crystallize in refrigerator over night. Light beige crystals were filtered off, washed with hexanes and dried. Yield: 2.05 g, 76 %. M. p.: 120-124 °C. HPLC R_t = 16.6 min (75 % CH₃OH + 25 % buffer). UV (75 % CH₃OH + 25 % buffer) λ_{max} 274 nm, λ_{min} 235 nm. MS ESI+ (CV 10) m/z (rel. %): 390 [M+H]⁺ (100), 388 [M+H]⁺ (84). ¹H NMR (300 MHz, DMSO- d_6): δ 1.55 (1H, m, THP H5'), 1.66 (3H, mm, THP H4', 5'), 1.84 (1H, d, J = 12.8, THP H3´), 1.98 (1H, d, J = 8.8, THP H4´), 3.00 (1H, qq, J = 12.6, 4.9, THP H3´), 3.69 (1H, m, THP H6'), 4.03 (1H, d, J = 11.8, THP H6'), 4.67 (2H, bs, NH-CH₂-Ph), 5.61 (1H, d, J = 9.8, THP H2'), 7.21 (1H, m, Ph H3'), 7.29 (4H, m, Ph), 8.20 (1H, s, H2), 8.59 (1H, bs, N^6 H).

26

8-Iodo-6-benzylamino-9-(tetrahydropyran-2-yl)-9H-purine

The compound was prepared from 6-benzylamino-9-(tetrahydropyran-2-yl)-9H-purine (Ex 2.5) applying the procedure described in literature (Nolsøe et al., Synth. Commun. 1998, 28, 4303; Gunji, Helv. Chim. Acta 2000, 83, 1331). 6-Benzylamino-9-(tetrahydropyran-2-yl)-9H-purine (0,30) g; 0,97 mmol) was under argon dissolved in dry tetrahydrofuran (3 ml) and cooled to -78 °C. The solution was treated dropwise with 1.5 ml (42 mmol) of lithium diisopropylamide solution. The reaction mixture was then stirred at -78 °C for 70 min. After this time, a solution of 0.98 g (3.9 mmol) iodine in 1.5 ml of dry tetrahydrofuran was added dropwise, and the mixture further stirred for 1 h. The reaction was quenched, without loading the bottle with argon, with 10 ml of solution of Na₂S₂O₃,5•H₂O (1.4 g, 5.7 mmol) added dropwise. The cooling bath was removed and the mixture left to get room temperature. The layers were separated. The organic layer was diluted with 6 ml of diethyl ether and washed twice with 5 ml of water. Combined organic layers were dried with Na₂SO₄, and evaporated. The crude product was purified by column chromatography (mobile phase hexanes : ethyl acetate 3:2, on TLC chromatogram $R_f = 0.18$. After column chromatography, the collected fractions were concentrated in vacuo and residue crystallized from ethyl ether to give white crystals. Yield: 134 mg, 32 %. M. p.: 153-155 °C. HPLC R_t = 15.7 min $(75 \% \text{ CH}_3\text{OH} + 25 \% \text{ buffer})$. UV $(75 \% \text{ CH}_3\text{OH} + 25 \% \text{ buffer}) \lambda_{\text{max}} 278 \text{ nm}, \lambda_{\text{min}} 239 \text{ nm}$. MS ESI+ (CV 13) m/z (rel. %): 436 $[M+H]^+$ (100); (CV 30) m/z (rel. %): 352 $[C_{12}H_{10}N_5I+H]^+$ (100). 436 [M+H]⁺ (55). ¹H NMR (300 MHz, DMSO- d_6): δ 1.57 (2H, m, THP H5´), 1.64 (1H, qq, J =12.4, 3.4, THP H4 $^{\circ}$), 1.81 (1H, d, J = 12.4, THP H3 $^{\circ}$), 1.99 (1H, d, J = 12.4, THP H4 $^{\circ}$), 3.09 (1H, qq, J = 12.4, 3.4, THP H3′), 3.64 (1H, tt, <math>J = 11.1, 3.4, THP H6′), 4.05 (1H, d, <math>J = 11.1, THP H6′), 4.67 (2H, bs, NH-CH₂-Ph), 5.54 (1H, dd, J = 11.1, 2.3, THP H2′), 7.20 (1H, tt, J = 6.8, 2.3, Ph H4'), 7.28 (2H, tt, J = 6.8, 2.3, Ph H3', H5'), 7.29 (2H, dd, J = 6.8, 2.3, Ph H2', H6'), 8.13 (1H, s, H2), 8.50 (1H, bs, N⁶H). 13 C-NMR (300 MHz, DMSO- d_6): δ 22.67 (THP C4′), 24.39 (THP C5′), 28.06 (THP C3'), 42.87 (NH-CH₂-Ph), 68.00 (THP C6'), 85.76 (THP C2'), 101.56 (C8), 122.00 (C5), 126.52 (Ph C4'), 128.03 (Ph C2', C6'), 128.10 (Ph C3', C5'), 490.98 (C4), 152.01 (C2), 152.98 (C6).

5

10

15

20

25

Table 1: Compounds of this invention prepared according to Example 3 (R6 – substituent in purine position 6, R8 – substituent in purine position 8, R9=Cyc – substituent in purine position 9)

	Subatituar	CHN analyses					
No.	Substituent			calculated / found			ESI-MS
	R6	R8	R9	%C	%Н	%N	[M ⁺ H ⁺]
1	furfurylamino	Cl	2-tetrahydropyranyl	54.0/53.9	4.8/4.7	21.0/21.5	334.8
2	benzylamino	Cl	2-tetrahydropyranyl	59.4/59.5	5.3/5.2	20.4/20.8	344.8
3	(3-methylbut-2-en-1-yl)amino	Cl	2-tetrahydropyranyl	56.0/56.1	6.3/6.5	21.8/21.5	322.8
4	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	Cl	2-tetrahydropyranyl	53.3/52.9	6.0/6.2	20.7/21.0	338.8
5	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	Cl	2-tetrahydropyranyl	53.3/52.7	6.0/6.3	20.7/21.1	338.8
6	allylamino	Cl	2-tetrahydropyranyl	53.2/53.8	5.5/5.4	23.8/23.6	294.8
7	3-fluorobenzylamino	Cl	2-tetrahydropyranyl	56.4/56.0	4.7/4.9	19.3/19.7	362.8
8	3-methoxylbenzylamino	Cl	2-tetrahydropyranyl	57.8/58.0	5.4/5.3	18.7/18.5	374.9
9	3-hydroxylbenzylamino	Cl	2-tetrahydropyranyl	56.8/57.5	5.0/5.2	19.5/19.1	360.8
10	3.4-dihydroxybenzylamino	Cl	2-tetrahydropyranyl	54.3/54.5	4.8/4.9	18.6/18.4	376.8
11	3.4-difluorobenzylamino	Cl	2-tetrahydropyranyl	53.8/54.0	4.3/4.3	18.4/18.2	380.8
12	3.4-dimethoxybenzylamino	Cl	2-tetrahydropyranyl	56.5/56.8	5.5/5.4	17.3/17.0	404.9
13	4-hydroxybenzylamino	Cl	2-tetrahydropyranyl	56.8/56.9	5.0/5.0	19.5/19.6	360.8
14	4-hydroxy-3,5-dimethoxybenzylamino	Cl	2-tetrahydropyranyl	54.4/54.6	5.3/5.2	16.7/16.9	420.9
15	anilino	Cl	2-tetrahydropyranyl	58.3/58.1	4.9/5.1	21.2/21.3	330.8
16	4-hydroxyanilino	Cl	2-tetrahydropyranyl	55.6/55.3	4.7/4.9	20.3/20.3	346.8
17	3-methoxyanilino	Cl	2-tetrahydropyranyl	56.8/56.7	5.0/5.1	19.5/19.4	360.8
18	3-fluoroanilino	Cl	2-tetrahydropyranyl	55.3/55.5	4.4/4.5	20.1/19.9	348.8
19	3-chloroanilino	Cl	2-tetrahydropyranyl	52.8/53.0	4.2/4.2	19.2/19.0	365.2
20	3-methylanilino	Cl	2-tetrahydropyranyl	59.4/59.3	5.3/5.4	20.4/20.5	344.8
21	furfurylamino	Br	2-tetrahydropyranyl	47.6/47.4	4.3/4.4	18.5/18.4	379.2
22	benzylamino	Br	2-tetrahydropyranyl	52.6/52.8	4.7/4.5	18.0/18.1	389.3
23	(3-methylbut-2-en-1-yl)amino	Br	2-tetrahydropyranyl	49.2/49.4	5.5/5.4	19.1/19.2	367.2
24	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	Br	2-tetrahydropyranyl	47.1/47.2	5.3/5.2	18.3/18.1	383.3
25	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	Br	2-tetrahydropyranyl	47.1/47.0	5.3/5.3	18.3/18.3	383.3
26	3-fluorobenzylamino	Br	2-tetrahydropyranyl	50.3/50.6	4.2/4.1	17.2/17.5	407.2
27	3,4-difluorobenzylamino	Br	2-tetrahydropyranyl	48.1/47.8	3.8/3.7	16.5/16.3	425.3

WO 2016/095880

	G 1 44	CHN analyses					
No.	Substituer	calculated / found			ESI-MS		
	R6	R8	R9	%С	%Н	%N	[M ⁺ H ⁺]
28	3-methoxybenzylamino	Br	2-tetrahydropyranyl	51.7/51.8	4.8/5.0	16.7/16.8	419.3
29	3-hydroxylbenzylamino	Br	2-tetrahydropyranyl	50.5/50.2	4.5/4.5	17.3/17.1	405.3
30	3-chlorobenzylamino	Br	2-tetrahydropyranyl	48.3/48.5	4.1/4.0	16.6/16.8	423.7
31	4-chlorobenzylamino	Br	2-tetrahydropyranyl	48.3/48.5	4.1/3.9	16.6/16.9	423.7
32	2-bromobenzylamino	Br	2-tetrahydropyranyl	43.7/43.4	3.7/3.9	15.0/14.9	468.2
33	3-jodobenzylamino	Br	2-tetrahydropyranyl	39.7/40.0	3.3/3.3	13.6/13.7	515.2
34	3-methylbenzylamino	Br	2-tetrahydropyranyl	53.7/53.6	5.0/5.1	17.4/17.6	403.3
35	2-methoxybenzylamino	Br	2-tetrahydropyranyl	51.7/51.7	4.8/5.0	16.7/16.8	419.3
36	4-methoxylbenzylamino	Br	2-tetrahydropyranyl	51.7/51.6	4.8/4.9	16.7/16.7	419.3
37	4-hydroxybenzylamino	Br	2-tetrahydropyranyl	50.5/50.3	4.5/4.6	17.3/17.2	405.3
38	3.4-dichlorobenzylamino	Br	2-tetrahydropyranyl	44.7/44.5	3.5/3.2	15.3/15.6	458.2
39	3.4-dihydroxybenzylamino	Br	2-tetrahydropyranyl	48.6/48.4	4.3/4.1	16.7/17.1	421.3
40	2-hydroxy-3-methoxybenzylamino	Br	2-tetrahydropyranyl	49.8/50.1	4.6/4.5	16.1/16.0	435.3
41	3.4-dimethoxybenzylamino	Br	2-tetrahydropyranyl	50.9/50.8	5.0/5.2	15.6/15.4	449.3
42	anilino	Br	2-tetrahydropyranyl	51.4/51.4	4.3/4.2	18.7/18.5	375.2
43	3-methoxyanilino	Br	2-tetrahydropyranyl	50.5/50.5	4.5/4.5	17.3/17.5	405.3
44	4-hydroxyanilino	Br	2-tetrahydropyranyl	49.3/49.5	4.1/4.1	18.0/18.0	391.2
45	furfurylamino	I	2-tetrahydropyranyl	42.4/42.3	3.8/3.6	16.5/16.2	426.2
46	benzylamino	I	2-tetrahydropyranyl	46.9/46.9	4.2/4.1	16.1/15.7	436.3
47	(3-methylbut-2-en-1-yl)amino	I	2-tetrahydropyranyl	43.6/43.5	4.9/4.9	17.0/17.4	414.3
48	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	I	2-tetrahydropyranyl	42.0/42.1	4.7/4.6	16.3/16.2	430.3
49	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	I	2-tetrahydropyranyl	42.0/42.1	4.7/4.8	16.3/16.5	430.3
50	3-fluorobenzylamino	I	2-tetrahydropyranyl	45.1/45.3	3.8/3.5	15.5/15.7	454.3
51	3-chlorobenzylamino	I	2-tetrahydropyranyl	43.5/43.8	3.7/3.8	14.9/15.1	470.7
52	3-methoxylbenzylamino	I	2-tetrahydropyranyl	46.5/46.4	4.3/4.5	15.1/15.0	466.3
53	3-hydroxybenzylamino	I	2-tetrahydropyranyl	45.3/45.1	4.0/4.1	15.5/15.3	452.3
54	3.4-dihydroxybenzylamino	I	2-tetrahydropyranyl	43.7/43.8	3.9/3.7	15.0/14.8	468.3
55	3.4-difluorobenzylamino	I	2-tetrahydropyranyl	43.3/43.6	3.4/3.5	14.9/14.7	472.3
56	3.4-dimethoxybenzylamino	I	2-tetrahydropyranyl	46.1/46.4	4.5/4.7	14.1/14.3	496.3
57	4-hydroxybenzylamino	I	2-tetrahydropyranyl	45.3/45.2	4.0/4.1	15.5/15.6	452.3

WO 2016/095880

No.	Substituent						
				cal	ESI-MS		
	R6	R8	R9	%С	%Н	%N	[M ⁺ H ⁺]
58	2-hydroxy-3-methoxybenzylamino	I	2-tetrahydropyranyl	44.9/45.0	4.2/4.0	14.6/14.2	482.3
59	anilino	I	2-tetrahydropyranyl	45.6/45.8	3.8/3.9	16.6/16.3	422.2
60	4-hydroxyanilino	I	2-tetrahydropyranyl	44.0/44.3	3.7/3.8	16.0/16.2	438.2
61	3-methoxyanilino	I	2-tetrahydropyranyl	45.3/45.1	4.0/3.9	15.5/15.8	452.3
62	3-methylanilino	I	2-tetrahydropyranyl	46.9/46.8	4.2/4.0	16.1/16.0	436.3
63	furfurylamino	Cl	2-tetrahydrofuranyl	52.6/52.9	4.4/4.6	21.9/22.1	320.8
64	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	Cl	2-tetrahydrofuranyl	51.9/52.2	5.6/5.4	21.6/21.5	324.8
65	(3-methylbut-2-en-1-yl)amino	Cl	2-tetrahydrofuranyl	54.6/54.8	5.9/5.7	22.8/22.9	308.8
66	3.4-dihydroxybenzylamino	Cl	2-tetrahydrofuranyl	53.1/53.5	4.5/4.6	19.4/19.2	362.8
67	3.4-difluorobenzylamino	Cl	2-tetrahydrofuranyl	52.5/52.8	3.9/3.8	19.2/19.0	366.8
68	3.4-dimethoxybenzylamino	Cl	2-tetrahydrofuranyl	55.5/55.2	5.2/5.3	18.0/17.6	340.8
69	3-methoxylbenzylamino	Cl	2-tetrahydrofuranyl	56.8/56.7	5.0/5.1	19.5/19.7	360.8
70	3-hydroxybenzylamino	Cl	2-tetrahydrofuranyl	55.6/55.4	4.7/4.8	20.3/20.1	346.8
71	3-fluorobenzylamino	Cl	2-tetrahydrofuranyl	55.3/55.6	4.4/4.4	20.1/19.8	348.8
72	furfurylamino	Br	2-tetrahydrofuranyl	46.2/46.0	3.9/4.0	19.2/18.9	365.2
73	benzylamino	Br	2-tetrahydrofuranyl	51.4/51.3	4.3/4.1	18.7/18.5	375.2
74	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	Br	2-tetrahydrofuranyl	45.7/45.7	4.9/4.5	19.0/19.2	369.2
75	(3-methylbut-2-en-1-yl)amino	Br	2-tetrahydrofuranyl	47.7/47.9	5.2/5.2	19.9/19.8	353.2
76	3-hydroxylbenzylamino	I	2-tetrahydrofuranyl	44.0/44.1	3.7/3.8	16.0/16.1	438.2
77	4-hydroxybenzylamino	I	2-tetrahydrofuranyl	44.0/43.8	3.7/3.9	16.0/16.0	438.2
78	anilino	I	2-tetrahydrofuranyl	44.2/44.1	3.5/3.6	17.2/17.5	408.2
79	3-hydroxyanilino	I	2-tetrahydrofuranyl	42.6/42.5	3.3/3.1	16.6/17.0	424.2

Example 4: Syntheses of 6-alkylamino-8-substituted-9-(tetrahydroparan-2-yl)-9H-purines

6-Fur fur ylamino-8-dimethylamino-9-(tetrahydropyran-2-yl)-9H-purine

8-Chloro-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (Ex 3.1) (229 mg, 0.69 mmol) was dissolved in 50% solution of dimethylamine in methanol (3 ml). The solution was stirred at room temperature over night and evaporated. The residue was dissolved in chloroform (6 ml), extracted with water (2 x 7.5 ml), dried with Na₂SO₄, and evaporated. After crystallization from ethyl acetate (6 ml) were obtained yellowish crystals. Yield: 195 mg (83 %). M. p.: 174-176°C. TLC R_f = 0.29

30

(chloroform : acetone 4:1). MS ESI+ (CV 10) m/z (rel. %): 343 [M+H]⁺ (100); (CV 24) m/z (rel. %): 259 [$C_{12}H_{14}N_6O+H$]⁺ (100). 343 [M+H]⁺ (89). ¹H (500 MHz, DMSO- d_6): δ 1.47-1.61 (4H, m), 1.89-1.94 (1H, m), 2.85 (6H, s), 2.99-3.08 (1H, m), 3.58 (1H, dt, J = 11.3 Hz, J = 2.45 Hz), 3.99 (1H, bd, J = 11.31 Hz), 4.63 (2H, bs), 5.29 (1H, dd, J = 11.30 Hz, J = 2.14 Hz), 6.16 (1H, dd, J = 3.06 Hz, J = 0.61 Hz), 6.30 (1H, dd, J = 3.06 Hz, J = 1.83 Hz), 7.47 (1H, dd, J = 1.83 Hz, J = 0.61 Hz), 7.56 (1H, t, J = 6.11 Hz), 8.06 (1H, s). ¹³C (125 MHz, DMSO- d_6): 23.5, 25.0, 28.0, 37.2, 42.8, 68.4, 83.3, 107.0, 110.9, 117.4, 142.2, 150.5, 150.8, 152.7, 153.9, 155.9.

8-(2-Aminoethylamino)-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

5

10 0.40 g (1.05 mmol) 8-Bromo-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (3.2) was dissolved in 1,2-diaminoethane (3.0 ml) and heated at 50 °C for 35 min, then left over night at room temperature. The reaction mixture was evaporated and the residue purified by column chromatography (silica gel; gradient elution, starting with mobile phase chloroform: methanol: NH₄OH 95:5:0.5, ending with mobile phase chloroform: methanol: NH₄OH 9:1:0.1). After column chromatography, the collected fractions were concentrated in vacuo and dried in 15 dessiccator with P₂O₅. Yellowish viscous substance. Yield: 0.36 g, 77 %. MS ESI+ (CV 20) m/z (rel. %): 358 $[M+H]^+$ (100), (CV 45) m/z (rel. %): 274 $[C_{12}H_{15}N_7O+H]^+$ (100), 358 $[M+H]^+$ (37). ¹H NMR (300 MHz, CDCl₃): δ 1.65-1.83 (4H, m, THP), 1.94-2.15 (2H, m, THP), 2.99 (1H, q, J =6.2 Hz, THP), 3.43-3.60 (3H, m, -NH-CH₂-CH₂-), 3.77-3.68 (1H, m, -NH-CH₂-CH₂-), 4.20 (1H, d, J = 11.2 Hz, THP), 4.75-4.88 (3H, m, THP, -NH-CH₂-Fur), 5.72 (1H, d, J = 9.7 Hz, THP), 5.83 20 (1H, m, Fur), 6.29 (2H, d, J = 9.7 Hz, Fur), 7.38 (1H, s, -NH-CH₂-Fur), 8.19 (1H, s, H2). ¹³C NMR (300 MHz, CDCl₂): δ 22.04, 24.63, 29.22, 37.26, 40.70, 44.76, 68.82, 82.04, 106.68, 109.86, 116.89, 141.51, 148.11, 149.15, 150.65, 151.32, 152.04.

6-Furfurylamino-8-(2-hydroxyethylamino)-9-(tetrahydropyran-2-yl)-9H-purine
0.30 g (0.9 mmol) 8-Chloro-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (3.1) was dissolved in ethanolamine (2.0 ml) and heated at 80 °C for 75 min. The reaction mixture was evaporated and the residue purified by column chromatography (silica gel; mobile phase chloroform: methanol: NH₄OH 95:5:0.5). The product was dried in dessiccator with P₂O₅..
Yellowish foam. Yield: 0.18 g, 56 %. HPLC R_t = 12.5 min (60 % CH₃OH + 40 % buffer). UV (60 % CH₃OH + 40 % buffer) λ_{max} 283 nm, λ_{min} 243 nm. MS ESI+ (CV 10) m/z (rel. %): 359 [M+H]⁺ (100), 275 [C₁₂H₁₄N₆O₂+H]⁺ (8); (CV 40) m/z (rel. %): 275 [C₁₂H₁₄N₆O₂+H]⁺ (100). 359 [M+H]⁺ (19). ¹H (500 MHz, DMSO-d₆): δ 1.47-1.51 (1H, m), 1.54-1.63 (3H, m), 1.86-1.94 (1H, m), 2.47-

2.54 (1H, m), 3.37-3.41 (2H, m), 3.56-3.57 (2H, bs), 3.60-3.65 (1H, m), 3.96-3.99 (1H, bd, <math>J =

31

10.39 Hz), 4.61-4.62 (2H, d), 4.75 (1H, bs), 5.49 (1H, dd, J = 10.80 Hz, J = 2.32 Hz), 6.14-6.15 (1H, bd, J = 3.06 Hz), 6.28-6.32 (2H, m), 7.15-7.18 (1H, t), 7.46-7.47 (1H, m), 7.94 (1H, s). ¹³C (125 MHz, DMSO- d_6): δ 23.1, 24.9, 28.9, 37.3, 45.3, 60.2, 68.5, 81.7, 106.8, 110.9, 117.6, 142.0, 149.1, 149.5, 151.3, 151.8, 154.2.

5

10

15

20

6-Furfurylamino-8-(3-hydroxypropylamino)-9-(tetrahydropyran-2-yl)-9H-purine

0.28 g (0.8 mmol) 8-Chloro-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (3.1) was dissolved in 3-amino-1-propanol (2.0 ml) and heated at 60 °C for 6 h. The reaction mixture was evaporated and the residue purified by column chromatography (silica gel; mobile phase chloroform: acetone 85:15, on TLC chromatogram $R_f = 0.14$). The product was dried in dessiccator with P₂O₅. Yellowish foam. Yield: 0.28 g, 90 %. HPLC R_t = 11.6 min (65 % CH₃OH + 35 % buffer). UV (65 % CH₃OH + 35 % buffer) λ_{max} 283 nm, λ_{min} 244 nm. MS ESI+ (CV 20) m/z (rel. %): 373 $[M+H]^+$ (100), 289 $[C_{13}H_{16}N_6O_2+H]^+$ (14). (CV 30) m/z (rel. %): 289 $[C_{13}H_{16}N_6O_2+H]^+$ (100), 373 $[M+H]^+$ (82). ¹H NMR (300 MHz, CDCl₃): δ 1.51 (1H, m, THP H5'), 1.64 (3H, mm, THP H3', 4', 5'), 1.77 (2H, dui, J = 6.2, -NH-CH₂-CH₂-CH₂-), 1.93 (1H, m, THP H4'), 2.56 (1H, qq, J = 11.8, 4.2, THP H3'), 3.45 (2H, J = t, 6.0, -NH-CH₂-CH₂-CH₂-), 3.53 (2H, t, J = 5.9, -NH-CH₂-CH₂-CH₂-OH), 3.65 (1H, tt, J = 11.3, 3.3, THP H5′), 4.01 (1H, d, J = 11.3, THP H6´), 4.67 (2H, d, 6.2, -NH-CH₂-Fur), 4.68 (1H, bs, -OH), 5.52 (1H, dd, J = 11.2, 2.0, THPH2´), 6.19 (1H, d, J = 3.2, Fur H3´), 6.34 (1H, m, Fur H4´), 6.50 (1H, t, J = 5.5, HN8), 7.24 (1H, t, J = 6.2, HN6), 7.51 (1H, m, Fur H5'), 7.99 (1H, s, H2). ¹³C-NMR (300 MHz, DMSO- d_6): δ 22.57 (THP C4'), 24.31 (THP C5'), 28.32 (THP C3'), 36.81 (NH-CH₂-Fur), 31.93 (-NH-CH₂-), 39.98 (-NH-CH₂-CH₂-CH₂-), 58.94 (-CH₂-CH₂-CH₂-NH₂), 67.94 (THP C6'), 81.12 (THP C2'), 106.34 (Fur C3'), 110.35 (Fur C4'), 117.12 (C5), 141.54 (Fur C5'), 148.48 (C2), 148.99 (C4), 150.70 (C6), 151.23 (C8), 153.70 (Fur C2').

25

30

8-Allylamino-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

0.21 g (0.64 mmol) 8-Chloro-6-furfurylamino-9-(tetrahydropyran-2-yl)-9*H*-purine (3.1) was dissolved in allylamine (2.0 ml) and heated at 60 °C for 10 h. The reaction mixture was evaporated. The residue was then evaporated 3 times with methanol (3 ml) and 3 times with chloroform (3 ml). The product was purified by column chromatography (silica gel; mobile phase chloroform : acetone 9:1). The product was dried in dessiccator with P_2O_5 . Rust-coloured viscous liquid. Yield: 0.13 g, 58 %. HPLC (flow rate 0.6 ml/min) $R_t = 23.5$ min (60 % CH₃OH + 40 % buffer). MS ESI+ (CV 10) m/z (rel. %): 355 [M+H]⁺ (100), 709 [2M+H]⁺ (21), (CV 20) m/z (rel. %): 355 [M+H]⁺ (100), 271 [$C_{13}H_{14}N_6O+H$]⁺ (24), 1H NMR (300 MHz, CDCl₃): δ 1.51 (1H, m,

THP H5′), 1.65 (3H, mm, THP H3′, 4′, 5′), 1.94 (1H, d, J = 11.8, THP H4′), 2.63 (1H, qq, J = 11.8, 4.2, THP H3′), 3.69 (1H, m, THP H6′), 4.01 (1H, m, THP H6′), 4.02 (2H, t, J = 5.5, -CH₂-CH=CH₂), 4.67 (2H, d, J = 6.2, -NH-CH₂-Fur), 5.09 (1H, dd, J = 10.3, 1.5, -CH₂-CH=CH₂), 5.21 (1H, dd, J = 17.2, 1.8, -CH₂-CH=CH₂), 5.53 (1H, dd, J = 11.2, 2.0, THP H2′), 5.99 (1H, m, -CH₂-CH=CH₂), 6.19 (1H, d, J = 3.2, Fur H3′), 6.34 (1H, m, Fur H4′), 6.59 (1H, t, J = 5.9, HN8), 7.20 (1H, t, J = 6.2, HN6), 7.51 (1H, m, Fur H5′), 7.99 (1H, s, H2). ¹³C-NMR (300 MHz, DMSO- d_6): δ 22.57 (THP C4′), 24.28 (THP C5′), 28.29 (THP C3′), 36.76 (NH-CH₂-Fur), 44.35 (-CH₂-CH=CH₂), 67.89 (THP C6′), 81.17 (THP C2′), 106.30 (Fur C3′), 110.27 (Fur C4′), 115, 01 (-CH₂-CH=CH₂), 117.09 (C5), 135.78 (-CH₂-CH=CH₂), 141.46 (Fur C5′), 148.51 (C2), 149.15 (C8), 150.77 (C6), 150.87 (C4), 153.64 (Fur C2′).

6-Furfurylamino-8-methoxy-9-(tetrahydropyran-2-yl)-9H-purine

5

10

15

20

25

Potassium tert-butoxide (107 mg, 0.53 mmol) was added to a solution of 8-chloro-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (264 mg, 0.79 mmol) (3.1) in dry methanol (7 ml) and the solution was heated at 60 °C for 10 h. After filtration, the mixture was evaporated and purified by column chromatography (silica gel, mobile phase chloroform : acetone 9:1). Product was crystallized from ethyl acetate.

Yield: 201 mg, 73 %.White crystals, m. p.: 137-139 °C. MS ESI+ (CV 25) m/z (rel. %): 246 $[C_{11}H_{11}N_5O_2+H]^+$ (100), 330 $[M+H]^+$ (91). ¹H NMR (300 MHz, CDCl₃): δ 1.52 (1H, m, THP H5′), 1.60 (2H, mm, THP H4′, 5′), 1.75 (1H, d, J = 11.8, THP H3′), 1.94 (1H, d, J = 11.8, THP H4′), 2.75 (1H, qq, J = 11.8, 4.2, THP H3′), 3.59 (1H, tt, J = 11.3, 3.6, THP H6′), 3.98 (1H, d, J = 11.3, THP H6′), 4.11 (3H, s, -OCH₃), 4.69 (2H, d, J = 6.2, -NH-CH₂-Fur), 5.46 (1H, dd, J = 11.2, 2.0, THP H2′), 6.21 (1H, d, J = 3.2, Fur H3′), 6.34 (1H, m, Fur H4′), 7.52 (1H, m, Fur H5′), 7.68 (1H, t, J = 6.2, HN6), 8.31 (1H, s, H2). ¹³C-NMR (300 MHz, DMSO- J_6): δ 22.67 (THP C4′), 24.47 (THP C5′), 27.94 (THP C3′), 36.72 (NH-CH₂-Fur), 57.08 (-OCH₃), 67.72 (THP C6′), 80.79 (THP C2′), 106.39 (Fur C3′), 110.30 (Fur C4′), 114.78 (C5), 141.58 (Fur C5′), 148.81 (C8), 150.58 (C2), 152.09 (C6), 153.23 (Fur C2′), 154.16 (C4).

$30 \qquad \textit{6-Furfurylamino-8-propyloxy-9-(tetrahydropyran-2-yl)-9H-purine}$

8-Bromo-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (303 mg, 0.80 mmol) (3.2) was dissolved in propanol (5 ml). The solution of 0.41 g (10.25 mmol) NaOH in water (13 ml) was added. The reaction mixture was heated under vigorous stirring at 60°C over night. The reaction mixture was evaporated. The residue was dissolved in ethyl acetate (10 ml), washed with water (3

x 10 ml), dried with MgSO₄, filtered off and evaporated. The crude product was purified by column chromatography (silica gel; mobile phase hexanes : ethyl acetate 3:2, on TLC chromatogram $R_f = 0.14$. After column chromatography, the collected fractions were concentrated in vacuo. The product was dried in dessiccator with P₂O₅. Yellow viscous liquid. Yield: 187 mg, 65 %. HPLC $R_t = 15.9 \text{ min}$ (75 % $CH_3OH + 25 \%$ buffer). UV (75 % $CH_3OH + 25 \%$ buffer) λ_{max} 257 nm, λ_{min} 235 nm. MS ESI+ (CV 10) 358 [M+H]⁺ (100), (CV 25) m/z (rel. %): 330 [M+H]⁺ (100), 274 $[C_{13}H_{15}N_5O_2+H]^+$ (97). ¹H NMR (300 MHz, CDCl₃): δ 1.00 (3H, t, J = 11.8, -CH₂CH₂CH₃), 1.56 (3H, m, THP H4′, H5′), 1.80 (3H, m, THP H3′, -CH₂CH₂CH₃), 1.96 (1H, d, J = 11.9, THP H4 $^{\circ}$), 2.75 (1H, qq, J = 12.0, 3.5, THP H3 $^{\circ}$), 3.59 (1H, tt, J = 11.5, 2.4, THP H6 $^{\circ}$), 3.98 (1H, d, J = 11.0, THP H6'), 4.46 (2H, q, J = 4.1, -CH₂CH₂CH₃), 4.69 (2H, d, J = 5.7, -NH- CH_2 -Fur), 5.47 (1H, dd, J = 11.1, 1.7, THP H2´), 6.20 (1H, d, J = 2.9, Fur H3´), 6.34 (1H, t, J = 2.9), Fur H3´ 2.3, Fur H4'), 7.52 (1H, s, Fur H5'), 7.59 (1H, t, J = 6.0, HN6), 8.31 (1H, s, H2). ¹³C-NMR (300) MHz, DMSO- d_6): δ 10.06 (-CH₂CH₂CH₃), 21.61 (-CH₂CH₂CH₃), 22.71 (THP C4'), 24.22 (THP C5´), 27.97 (THP C3´), 36.90 (NH-CH₂-Fur), 67.72 (THP C6´), 71.34 (-CH₂CH₂CH₃), 80.74 (THP C2'), 106.38 (Fur C3'), 110.28 (Fur C4'), 114.82 (C5), 141.56 (Fur C5'), 148.81 (C8), 150.48 (C2), 152.02 (C6), 153.25 (Fur C2'), 153.27 (C4).

8-Benzyloxy-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine

5

10

15

20

25

30

Sodium (25 mg, 1.1 mmol) was dissolved in dry benzyl alcohol (3 ml). 8-Bromo-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (206 mg, 0.54 mmol) (3.2) was added to the sodium benzyl alcoholate. The reaction mixture was heated at 65 °C over night. After cooling, the mixture was diluted with ethyl ether (8 ml). The prepcipitate was filtered off and the filtrate purified by column chromatography (silica gel; mobile phase hexanes : ethyl acetate 1:1, on TLC chromatogram R_f = 0.09. After column chromatography, the collected fractions were concentrated in vacuo. The product was precipitated from hexanes, crystallized from methanol and dried in dessiccator with P_2O_5 . White crystals. Yield: 43 mg, 20 %. M. p.: 132-135 °C. HPLC $R_t = 13.8 \text{ min}$ (80 % CH_3OH +20% buffer), $R_1 = 21.3$ min (75 % $CH_3OH + 25\%$ buffer). UV (75 % $CH_3OH + 25\%$ buffer) λ_{max} 268 nm, λ_{min} 236 nm. MS ESI+ (CV 10) m/z (rel. %): 406 [M+H]⁺ (100), 322 $[C_{17}H_{15}N_5O_2+H]^+$ (17), (CV 40) m/z (rel. %): 322 $[C_{17}H_{15}N_5O_2+H]^+$ (100), 254 $[C_{13}H_{12}N_5O]^+$ (27), 406 [M+H]⁺ (24). ¹H NMR (300 MHz, CDCl₃): δ 1.57 (2H, s, THP H5′), 1.56 (1H, mm, THP H4'), 1.77 (1H, d, J = 13.1, THP H3'), 1.94 (1H, d, J = 11.9, THP H4'), 2.76 (1H, qq, J = 12.1, 3.3, THP H3'), 3.59 (1H, m, THP H6'), 4.00 (1H, d, J = 11.3, THP H6'), 4.71 (2H, d, J = 6.2, NH-C**H**₂-Fur), 5.50 (1H, d, J = 10.7, THP H2′), 5.57 (2H, d, J = 1.4, O-CH₂-Ph), 6.21 (1H, m, Fur H3'), 6.34 (1H, s, Fur H4'), 7.41 (3H, m, HBn), 7.52 (3H, m, Fur H5', HBn), 7.69 (1H, t, J = 5.6,

34

HN6), 8.15 (1H, s, H2). ¹³C-NMR (300 MHz, DMSO-*d*₆): δ 22.63 (THP C4´), 24.51 (THP C5´), 28.00 (THP C3´), 36.90 (NH-CH₂-Fur), 71.02 (-OCH₂-Ph), 67.72 (THP C6´), 80.84 (THP C2´), 106.44 (Fur C3´), 110.30 (Fur C4´), 114.82 (C5), 127.79 (Ph), 128.23 (Ph), 128.44 (Ph), 135.61 (Ph), 141.60 (Fur C5´), 148.81 (C8), 150.66 (C2), 152.13 (C6), 153.20 (Fur C2´), 154.16 (C4).

5

10

15

6-Furfurylamino-8-methylsulfanyl-9-(tetrahydropyran-2-yl)-9H-purine

Sodium methanthiolate (0.28 g, 4.00 mmol) was added to a solution of 8-bromo-6-furfurylamino-9-(tetrahydropyran-2-yl)-9H-purine (0.76 g, 2.01 mmol) (3.2) in 2-propanol (8 ml) and the solution was heated at 45 °C for 2.5 h. The mixture was evaporated and diluted with water (6 ml) and ethyl acetate (7 ml). After extraction, the water layer was washed with ethyl acetate (1 x 7 ml). Collected organic layers were dried with Na₂SO₂, filtered and evaporated. The crude crystalline product (0.67 g, 96 %) was crystallized from 2-propanol (9 ml) and ethanol (8 ml). Light yellowbrownish crystals, m. p.: 153-156 °C. HPLC $R_i = 10.3 \text{ min } (80 \% \text{ CH}_3\text{OH} + 20 \% \text{ buffer})$. UV (80 % CH₃OH + 20 % buffer) λ_{max} 285 nm, λ_{min} 250 nm. MS ESI+ (CV 10) m/z (rel. %): 716 [2M+Na]⁺ (100), 346 [M+H]⁺ (97), (CV 25) m/z (rel. %): 716 [2M+Na]⁺ (100), 346 [M+H]⁺ (82), 262 $[C_{11}H_{11}N_5OS+H]^+$ (24), ¹H NMR (300 MHz, CDCl₃): δ 1.54 (1H, m, THP H5'), 1.61 (1H, m, THP H4 $^{\circ}$), 1.75 (1H, dd, J = 11.8, 4.2, THP H3 $^{\circ}$), 1.95 (1H, d, J = 11.8, THP H4 $^{\circ}$), 2.69 (3H, d, J = 11.8) 0.7, $-SCH_3$, 2.71 (1H, qq, J = 11.8, 4.2, THP H3'), 3.64 (1H, tt, J = 11.3, 3.6, THP H6'), 4.03 (1H, d, J = 11.3, THP H6'), 4.73 (2H, bs, -NH-CH₂-Fur), 5.59 (1H, dd, J = 11.2, 2.0, THP H2'), 6.23 $(1H, dd, J = 3.1, 0.7, Fur H3^2), 6.35 (1H, m, Fur H4^2), 7.53 (1H, m, Fur H5^2), 7.94 (1H, t, J = 6.2, t)$ HN6), 8.16 (1H, s, H2). ¹³C-NMR (300 MHz, DMSO-d₆): δ 14.25 (-SCH₃₎ 22.41 (THP C4′), 24.40 (THP C5'), 28.45 (THP C3'), 36.47 (NH-CH₂-Fur), 67.98 (THP C6'), 82.38 (THP C2'), 106.57 (Fur C3'), 110.33 (Fur C4'), 118.96 (C5), 141.96 (Fur C5'), 149.01 (C8), 150.88 (C4), 151.23 (C2), 152.28 (C6), 152.69 (Fur C2').

25

30

20

8-Dimethylamino-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (3.5) (206 mg, 0.56 mmol) was dissolved in 50% solution of dimethylamine in methanol. The solution was left at room temperature over night, evaporated and purified by column chromatography (silica gel, mobile phase chloroform : acetone 95:5). Yellowish crystals. Yield: 169 mg, 91 %. M. p.: 76-79°C. HPLC (flow rate 0.6 ml/min) R_t = 34.7 min (60 % CH₃OH + 40 % buffer). UV (60 % CH₃OH + 40 % buffer) λ_{max} 281 nm, λ_{min} 245 nm. MS ESI+ (CV 10) m/z (rel. %): 247 [C₁₂H₁₈N₆+H]⁺ (100), 331 [M+H]⁺ (90); (CV 20) m/z (rel. %): 247 [C₁₂H₁₈N₆+H]⁺ (100), 331 [M+H]⁺ (37). ¹H NMR (300 MHz, DMSO-d₆): δ 1.58 (3H, mm, THP, H4′, 5′), 1.65 (3H, s, =C-CH₃), 1.67 (1H, d, J = 11.8,

35

THP H3′), 1.69 (3H, s, =C-CH₃), 1.94 (1H, m, THP H4′), 2.88 (6H, s, -N-(CH₃)₂), 3.09 (1H, m, THP H3′), 3.61 (1H, tt, J = 11.3, 3.6 Hz THP H6′), 4.03 (1H, m, THP H6′), 4.05 (2H, t, J = 6.2, -NH-CH₂-CH=), 5.28 (1H, t, J = 6.2, -CH₂-CH=), 5.32 (1H, dd, J = 11.2, 2.0, THP H2′), 7.15 (1H, t, J = 6.2, N⁶H), 8.07 (1H, s, H2). ¹³C NMR (300 MHz, DMSO- d_6): δ 17.74 (=C-CH₃), 22.86 (THP C4′), 24.46 (THP C5′), 25.30 (=C-CH₃), 27.43 (THP C3′), 37.78 (-NH-CH₂-), 42.21 (-N-(CH₃)₂), 67.78 (THP C6′), 82.68 (THP C2′), 116.61 (C5), 122.56 (-CH=), 132.69 (=C<), 149.56 (C8), 150.40 (C2), 152.37 (C6), 155.02 (C4).

5

8-(2-Aminoethylamino)-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine 10 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9*H*-purine (296 mg, mmol) (3.5) was dissolved in 2.0 ml of 1,2-diaminoethane and heated at 60 °C under argon for 5 h. The reaction mixture was evaporated and the residue purified by column chromatography (silica gel, mobile phase CHCl₃: CH₃OH: NH₄OH 95:5:0.5, on TLC chromatogram $R_f = 0.19$). The product was dried in dessiccator with P_2O_5 to give white foam. Yield: 260 mg, 93 %. HPLC R_1 = 12.8 min (50 % CH₃OH + 50 % buffer). UV (50 % CH₃OH + 50 % buffer) λ_{max} 282 nm, λ_{min} 241 15 nm. MS ESI+ (CV 20) m/z (rel. %): 346 $[M+H]^+$ (100), 262 $[C_{12}H_{18}N_7+H]^+$ (12); (CV 30) m/z (rel. %): 262 $[C_{12}H_{18}N_7+H]^+$ (100), 346 $[M+H]^+$ (59). ¹H NMR (300 MHz, DMSO- d_6): δ 1.52 (1H, m, THP H5'), 1.63 (1H, m, THP H4'), 1.64 (1H, m, THP H5'), 1.66 (3H, s, -CH₃), 1.67 (1H, m, THP H3'), 1.69 (3H, s, -CH₃), 1.93 (1H, m, THP H4'), 2.59 (1H, qq, J = 11.7, 4.0 Hz, THP H3'), 2.84 (1H, tt, J = 6.2, 2.2 Hz, -CH₂CH₂NH₂), 3.42 (3H, m, -CH₂CH₂NH₂), 3.52 (2H, m, -CH₂CH₂NH₂),20 3.66 (1H, t, J = 11.7 Hz, THP H6´), 4.02 (1H, m, THP H6´), 4.4 (2H, s (br), -NH-C**H**₂-CH=), 5.28 (1H, t, J = 6.8, -NH-CH₂-CH=), 5.51 (1H, d, J = 11.7 Hz, THP H2²), 6.48 (1H, t, J = 6.0 Hz, -NH-CH₂-CH₂-), 6.81 (1H, t, J = 6.0 Hz, -N**H**-CH₂-CH=), 7.97 (1H, s, H2). ¹³C NMR (300 MHz, DMSO-*d*₆): δ 17.77 (-CH₃), 22.58 (THP C4′), 24.38 (THP C5′), 25.38 (-CH₃), 28.32 (THP C3′), 37.88 (-NH-CH₂-CH=), 40.57 (-CH₂CH₂NH₂), 44.37 (-NH-CH₂CH₂-), 67.90 (THP C6'), 81.18 25 (THP C2'), 116.86 (C5), 122.87 (-CH=), 132.60 (-CH₂CH=C), 148.50 (C8), 148.77 (C2), 150.88 (C4), 151.07 (C6).

8-(3-Aminopropylamino)-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine

8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (331 mg, 0.90 mmol) (3.5) was dissolved in 4.0 ml of 2-propanol, 1.4 ml (16.7 mmol) of 1,3-diaminopropane and 0.15 ml (1.1 mmol) triethylamine was added and the solution heated under argon at 65 °C for 16 h. After cooling, the reaction mixture was left in refrigerator for 3 h. White crystals of salts were filtered off. The filtrate was evaporated *in vacuo* and the residue purified by column

36

chromatography (silica gel, mobile phase CHCl₃ : CH₃OH : NH₄OH 9:1:0.1, on TLC chromatogram $R_f = 0.21$). The product was dried in dessiccator with P_2O_5 to give yellowish viscous liquid. Yield: 252 mg, 78 %. HPLC $R_t = 14.0$ min (50 % CH₃OH + 50 % buffer). UV (50 % CH₃OH + 50 % buffer) λ_{max} 283 nm, λ_{min} 243 nm. MS ESI+ (CV 15) m/z (rel. %): 360 [M+H]⁺ (100), 276 [C₁₃H₂₀N₇+H]⁺ (13); (CV 45) m/z (rel. %): 276 [C₁₃H₂₀N₇+H]⁺ (100), 208 [C₈H₁₄N₇]⁺ (45), 360 [M+H]⁺ (28). ¹H NMR (300 MHz, DMSO- d_6): δ 1.49 (1H, m, THP H5'), 1.64 (5H, m, THP H3', H4', H5', -CH₂CH₂CH₂NH₂), 1.65 (3H, s, -CH₃), 1.68 (3H, s, -CH₃), 1.93 (1H, m, THP H4'), 2.57 (1H, qq, J = 12.0, 4.4, THP H3'), 2.64 (2H, t, J = 6.3, -CH₂CH₂CH₂NH₂), 3.42 (2H, q, J = 6.3, -CH₂CH₂CH₂NH₂), 3.64 (1H, t, J = 10.6, THP H6'), 4.03 (3H, m, THP H6', -NH-CH₂-CH=), 5.29 (1H, t, J = 6.5, -NH-CH₂-CH=), 5.49 (1H, d, J = 9.8, THP H2'), 6.65 (1H, bs, N⁸H-), 6.77 (1H, t, J = 5.7, -N⁶H), 7.95 (1H, s, H2). ¹³C NMR (300 MHz, DMSO- d_6): δ 17.71 (-CH₃), 22.56 (THP C4'), 24.27 (THP C5'), 25.33 (-CH₃), 28.22 (THP C3'), 32.23 (-CH₂CH₂CH₂NH₂), 37.82 (-NH-CH₂-CH=), 39.51 (-CH₂CH₂NH₂), 40.55 (-NH-CH₂-C), 67.83 (THP C6'), 81.01 (THP C2'), 116.96 (C5), 122.95 (-CH=), 132.37 (-CH₂CH=C<), 148.48 (C8), 148.50 (C2), 150.93 (C4), 150.93 (C6).

5

10

15

20

25

30

8-(4-Aminobutylamino)-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9*H*-purine (331) 0.90 mmol) (3.5) was dissolved in 4.0 ml of 2-propanol, 0.9 ml (9.0 mmol) of 1,4-diaminobutane and 0.15 ml (1.1 mmol) triethylamine was added and the solution heated under argon at 65 °C for 2 days. The reaction mixture was evaporated in vacuo and dried in dessiccator with P₂O₅. Crystalline residue was dissolved in 5 ml of future mobile phase. Crystals were filtered off and product from the filtrate purified by column chromatography (mobile phase CHCl₃: CH₃OH: NH₄OH 9:1:0.1). The product was dried in dessiccator with P₂O₅ to give yellowish viscous liquid. Yield: 264 mg, 78 %. HPLC $R_t = 18.2 \text{ min} (50 \% \text{ CH}_3\text{OH} + 50 \% \text{ buffer}), R_t = 8.3 \text{ min} (60 \% \text{ CH}_3\text{OH} + 40 \% \text{ buffer}).$ UV (50 % CH₃OH + 50 % buffer) λ_{max} 283 nm, λ_{min} 243 nm. MS ESI+ (CV 15) m/z (rel. %): 374 $[M+H]^+$ (100), 290 $[C_{14}H_{22}N_7+H]^+$ (71); (CV 45) m/z (rel. %): 290 $[C_{14}H_{22}N_7+H]^+$, (100), 374 $[M+H]^+$ (36), 222 $[C_9H_{16}N_7]^+$ (13). ¹H NMR (300 MHz, DMSO- d_6): δ 1.39 (2H, p, J=7.5, - $NHCH_2CH_2CH_2$ -), 1.50 (1H, d, J = 7.5, THP H5'), 1.64 (5H, m, THP H3', H4', H5', -NHCH₂CH₂CH₂CH₂.), 1.65 (3H, s, -CH₃), 1.68 (3H, s, -CH₃), 1.93 (1H, m, THP H4'), 2.56 (3H, t, J = 6.8, THP H3', -NHCH₂CH₂CH₂CH₂CH₂), 3.34 (2H, t, J = 9.0, -CH₂CH₂CH₂-NH₂), 3.65 (1H, t, J = 9.0, -CH₂CH₂CH₂-NH₂-NH₂), 3.65 (1H, t, J = 9.0, -CH₂CH₂CH₂-NH₂-NH₂), 3.65 (1H, t, J = 9.0, -CH₂CH₂CH₂-NH 10.5, THP H6'), 4.03 (3H, m, THP H6', -NH-CH₂-CH=), 5.29 (1H, t, J = 6.8, -NH-CH₂-CH=), 5.48 (1H, d, J = 10.5 Hz, THP H2′), 6.40 (1H, t, J = 6.8, -NHCH₂CH₂), 6.77 (1H, t, J = 5.6, -NH-CH₂-CH=), 7.95 (1H, s, H2). ¹³C NMR (300 MHz, DMSO- d_6): δ 17.71 (-CH₃), 22.66 (THP C4′),

37

24.27 (THP C5´), 25.33 (-CH₃), 26.54 (Bu), 28.24 (THP C3´), 30.64 (Bu), 37.82 (-NH-CH₂-CH=), 41.40 (Bu), 42.19 (Bu), 67.83 (THP C6´), 81.06 (THP C2´), 117.03 (C5), 122.95 (-CH=), 132.37 (-CH₂CH=C<), 148.49 (C8), 148.67 (C2), 150.89 (C4), 151.00 (C6).

8-(6-Aminohexylamino)-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine 5 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9*H*-purine (321 mg, 0.88 mmol) (Example 3) was dissolved in 4.0 ml of 2-propanol and 1.0 g (8.7 mmol) of 1,6diaminohexane was added. The solution was heated under argon at 65 °C for 4 days. The reaction mixture was evaporated in vacuo and dried in dessiccator with P₂O₅. Crystalline residue was 10 dissolved in 4 ml of future mobile phase. Crystals were filtered off and product from the filtrate separated by column chromatography (mobile phase CHCl₃:CH₃OH:NH₄OH 9:1:0.1). The product was dried in dessiccator with P₂O₅ to give light yellowish glassy substance. Yield: 289 mg, 82 %. HPLC $R_t = 11.8 \text{ min} (60 \% \text{ CH}_3\text{OH} + 40 \% \text{ buffer})$. UV (60 % $\text{CH}_3\text{OH} + 40 \% \text{ buffer}) \lambda_{\text{max}} 285$ nm, λ_{min} 244 nm. MS ESI+ (CV 15) m/z (rel. %): 402 [M+H]⁺ (100), 318 [C₁₆H₂₆N₇+H]⁺ (36); (CV 35) m/z (rel. %): 250 $[C_{11}H_{20}N_7]^+$ (100), 318 $[C_{16}H_{26}N_7+H]^+$, (90), 402 $[M+H]^+$ (26). H NMR (300) 15 MHz, DMSO- d_6): δ 1.32 (6H, p, J = 7.5, Hex), 1.50 (1H, d, J = 7.3, THP H5´), 1.64 (5H, m, THP H3', H4', H5', Hex), 1.65 (3H, s, -CH₃), 1.68 (3H, s, -CH₃), 1.93 (1H, m, THP H4'), 2.50 (2H, q, , J = 1.8, Hex), 2.60 (1H, m, THP H3'), 3.34 (2H, q, J = 7.1, Hex), 3.65 (1H, t, J = 11.0 Hz, THP H6'), 3.99 (2H, bs, -NH-CH₂-CH=), 4.05 (1H, d, J = 7.1, THP H6'), 5.29 (1H, t, J = 6.3, -NH-CH₂-CH=), 5.49 (1H, d, J = 10.4, THP H2'), 6.30 (1H, t, J = 5.6, -N⁸H), 6.81 (1H, t, J = 5.9, -NH-CH₂-20 CH=), 7.95 (1H, s, H2). 13 C NMR (300 MHz, DMSO- d_6): δ 17.70 (-CH₃), 22.57 (THP C4′), 24.32 (THP C5'), 25.32 (-CH₃), 28.24 (THP C3'), 26.11 (Hex), 26.32 (Hex), 28.95 (Hex), 33.23 (Hex), 37.84 (-NH-CH₂-CH=), 41.52 (Hex), 42.14 (Hex), 67.83 (THP C6'), 81.05 (THP C2'), 117.02 (C5), 122.95 (-CH=), 132.36 (-CH₂CH=C<), 148.50 (C8), 148.67 (C2), 150.87 (C4), 150.96 (C6).

25

30

8-(2-Hydroxyethylamino)-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (246 mg, 0.67 mmol) (*Example 3*) was dissolved in ethanolamine (2.0 ml). The reaction mixture was heated at 80 °C for 1.5 h, evaporated and the residue purified by column chromatography (silica gel; mobile phase chloroform : methanol 95:5). The product was dried in dessiccator with P_2O_5 . Light yellow viscous substance. Yield: 180 mg, 76 %. HPLC (flow rate 0.6 ml/min) R_t = 14.4 min (60 % $CH_3OH + 40$ % buffer). UV (60 % $CH_3OH + 40$ % buffer) λ_{max} 284 nm. MS ESI+ (CV 20) m/z (rel. %): 347 [M+H]⁺ (100), 263 [$C_{12}H_{19}N_6O+H$]⁺ (26); (CV 35) m/z (rel. %): 347 [M+H]⁺ (100), 263 [$C_{12}H_{19}N_6O+H$] (100), 1.87-

38

1.88 (1H, m), 2.45-2.50 (m, 1H), 3.36-3.40 (2H, m), 3.55-3.62 (3H, m), 3.96-3.99 (3H, m), 5.23-5.28 (1H, m), 5.48 (1H, dd, J = 10.70 Hz, J = 1.83 Hz), 6.26 (1H, t, J = 5.50 Hz), 6.71 (1H, t, J = 6.11 Hz), 7.92 (1H, s). ¹³C (125 MHz, DMSO- d_6): 18.3, 23.0, 24.9, 25.9, 28.9, 38.4, 45.3, 60.2, 68.3, 68.5, 81.8, 117.4, 123.4, 133.1, 149.3, 151.6, 151.7.

5

10

15

20

8-Amino-6-(3-methylbut-2-en-1-ylamino)-chloro-9-(tetrahydropyran-2-yl)-9H-purine 8-Amino-6-chloro-9-(tetrahydropyran-2-yl)-9H-purine (72 mg, 0.28 mmol) (Ex. 4.16.1) and 3methylbut-2-en-1-amine hydrochloride (60 mg, 0.55 mmol) were dissolved in 1-propanol (5 ml) and diisopropylethlylamine (194 µl, 1.13 mmol). The mixture was heated at 110 °C for 90 h. The mixture was evaporated and the residue mixed with intended mobile phase (ethyl acetate: acetone : NH₄OH 9:1:0.1). The arisen solid was filtered off, the filtrate evaporated and the residue purified by column chromatography (silica gel; mobile phase ethyl acetate : acetone : NH₄OH 9:1:0.1). White solid. Yield: 21 mg, 24 %. HPLC $R_t = 12.3 \text{ min} (70 \% \text{ CH}_3\text{OH} + 30 \% \text{ buffer})$. UV (70 % CH₃OH + 30 % buffer) λ_{max} 280 nm, λ_{min} 239 nm. MS ESI+ (CV 20) m/z (rel. %): 303 [M+H]⁺ (100), 219 $[C_{10}H_{14}N_6+H]^+$ (13); (CV 40) m/z (rel. %): 219 $[C_{10}H_{14}N_6+H]^+$ (100), 303 $[M+H]^+$ (77), 163 $[C_6H_7N_6]^+$ (12). ¹H NMR (300 MHz, DMSO- d_6): δ 1.49 (1H, d, J = 7.6, THP H5′), 1.64 (3H, m, THP H3′, H4′, H5′), 1.64 (3H, s, -CH₃), 1.66 (3H, s, -CH₃), 1.93 (1H, m, THP H4′), 2.64 (1H, d, J = 11.4, THP H3'), 3.65 (1H, t, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 3.98 (1H, s, THP H6'), 4.03 (2H, d, J = 10.5 Hz, THP H6'), 4.05 (2H, d, J = 10.5 Hz, THP H6'), 4.05 (2H, d, J = 10.5 Hz, THP H6'), 4.05 (2H, d, J = 10.5 Hz, THP H6' 5.6, -NH-C \mathbf{H}_2 -CH=), 5.27 (1H, t, J = 7.6, -NH-C \mathbf{H}_2 -C \mathbf{H} =), 5.48 (1H, d, J = 10.5, THP H2′), 6.31 $(2H, s, -N^8H_2)$, 6.71 (1H, t, J = 5.7, -NH-CH₂-CH=), 7.95 (1H, s, H2). ¹³C NMR (300 MHz, DMSO-*d*₆): δ 17.77 (-CH₃), 22.60 (THP C4´), 24.30 (THP C5´), 25.31 (-CH₃), 28.21 (THP C3´), 37.96 (-NH-CH₂-CH=), 67.77 (THP C6[^]), 81.18 (THP C2[^]), 116.99 (C5), 122.92 (-CH=), 132.39 (-CH₂CH=C), 148.43 (C8), 148.43 (C2), 150.95 (C4), 151.02 (C6).

8-Methoxy-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine

Potassium *tert*-butoxide (103 mg; 0.92 mmol) was dissolved in dry methanol (2.0 ml). 8-Bromo-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9*H*-purine (3.5) (248 mg, 0.68 mmol) was added to the solution. The reaction mixture was heated at 45 °C for 13 h. After cooling, the mixture was placed in a refrigerator over night, filtered and evaporated. The residue was purified by column chromatography (silica gel; mobile phase chloroform: acetone 9:1, on TLC chromatogram R_f = 0.14). The product was dried in dessiccator with P₂O₅. Light yellow viscous substance. Yield: 170 mg, 79 %. HPLC R_t = 10.8 min (80 % CH₃OH + 20 % buffer). MS ESI+ (CV 12) m/z (rel. %): 318 [M+H]⁺ (100); (CV 25) m/z (rel. %): 234 [C₁₁H₁₅N₅O+H]⁺ (100). 318 [M+H]⁺ (76).

8-(3-Aminopropyloxy)-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine Sodium hydride in mineral oil (34 %) (67 mg, 0.95 mmol) had been dissolving, under argon, in a mixture of 3-amino-1-propanol (66 µl, 0.86 mmol) and dimethylformamide (5 ml) for 1.5 h. Then 8-chloro-6-(3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9*H*-purine (3.4) (214 mg, 0.66 5 mmol) was added. The reaction mixture was stirred under argon at room temperature for 4 days, evaporated and the residue purified by column chromatography (silica gel; gradient elution, starting with chloroform as a mobile phase, ending with mobile phase chloroform: methanol: NH₄OH 9:1:0.1). The product was dried in dessiccator with P₂O₅. Yellow viscous substance. Yield: 156 mg, 65 %. HPLC $R_t = 7.7 \text{ min}$ (60 % $CH_3OH + 40 \%$ buffer). UV (60 % $CH_3OH + 40 \%$ 10 % buffer) λ_{max} 268 nm, λ_{min} 233 nm. MS ESI+ (CV 18) m/z (rel. %): 361 [M+H]⁺ (100); 277 $[C_{13}H_{20}N_6O+H]^+$ (15). (CV 29) m/z (rel. %): 277 $[C_{13}H_{20}N_6O+H]^+$ (100), 361 $[M+H]^+$ (96); 220 $[C_{10}H_{13}N_5O+H]^+$ (38). ¹H NMR (300 MHz, DMSO- d_6): δ 1.52 (1H, m, THP H5′), 1.64 (2H, m, THP H4′, H5′), 1.65 (3H, s, -CH₃), 1.68 (3H, s, -CH₃), 1.75 (1H, m, THP H3′), 1.85 (2H, t, J =6.5, $-OCH_2CH_2CH_2NH_2$), 1.94 (1H, m, THP H4'), 2.70 (2H, t, J = 6.6, $-OCH_2CH_2CH_2NH_2$), 2.73 15 $(1H, m, THP H3^2), 3.56 (1H, m, THP H6^2), 3.97 (1H, d, J = 11.3, THP H6), 4.05 (2H, bs, -NH-1)$ CH_2 -CH=), 4.53 (2H, q, J = 5.4, -OC H_2 CH₂CH₂NH₂), 5.28 (1H, t, J = 6.5, -NH-CH₂-CH=), 5.44 $(1H, d, J = 9.5, THP H2^{2}), 7.26 (1H, t, J = 5.7, -N^{6}H), 8.10 (1H, s, H2).$ ¹³C NMR (300 MHz, DMSO- d_6): δ 17.71 (-CH₃), 22.72 (THP C4′), 24.53 (THP C5′), 25.30 (-CH₃), 27.98 (THP C3'), 32.03 (-OCH₂CH₂CH₂NH₂), 38.00 (-NH-CH₂-CH=), 67.71 (THP C6'), 20 68.06 (-OCH₂CH₂CH₂NH₂), 80.68 (THP C2'), 114.62 (C5), 122.50 (-CH=) , 132.72 (-CH₂CH=C<), 150.61 (C8), 150.61 (C2), 152.17 (C4), 153.48 (C6).

(E) - 8 - Dimethylamino - 6 - (4 - hydroxy - 3 - methylbut - 2 - en - 1 - ylamino) - 9 - (tetrahydropyran - 2 - yl) - 9 H-purine

25

30

(*E*)-8-Chloro-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (*3.6*) (234 mg, 0.69 mmol) was dissolved in 50% solution of dimethylamine in methanol (2.5 ml). The solution was left at room temperature for 2 days, evaporated and extracted in ethyl acetate (3 ml): water (3 ml). Water layer reextracted with ethyl acetate (2 x 3 ml). Collected ethyl acetate layers were dried with MgSO₄ and evaporated. The product was dried in dessiccator with P₂O₅. White crystals. Yield: 217 mg, 90 %. M. p.: 110-114°C. HPLC R_t = 13.8 min (60 % CH₃OH + 40 % buffer). UV (60 % CH₃OH + 40 % buffer) λ_{max} 281 nm, λ_{min} 245 nm. MS ESI+ (methanol) (CV 25) m/z (rel. %): 347 [M+H]⁺ (100), 715 [2M+Na]⁺ (71), 263 [C₁₂H₁₈N₆O+H]⁺ (15); (CV 40) m/z (rel. %): 369 [M+Na]⁺ (100), 347 [M+H]⁺ (88), 263 [C₁₂H₁₈N₆O+H]⁺ (88), 715 [2M+Na]⁺ (53). ¹H

NMR (300 MHz, DMSO- d_6): δ 1.49 (1H, m, THP, H5′), 1.56 (1H, m, THP, H4′), 1.61 (1H, m, THP, H3′), 1.66 (3H, s, =C-CH₃), 1.67 (1H, m, THP H3′), 1.93 (1H, m, THP H4′), 2.88 (6H, s, -N-(CH₃)₂), 3.09 (1H, qq, J = 12.1, 3.6, THP H3′), 3.61 (1H, tt, J = 11.3, 3.6, THP H6′), 3.78 (2H, d, J = 5.7, -CH₂-OH), 4.03 (1H, d, J = 11.3, THP H6′), 4.11 (2H, t, J = 5.7, -NH-CH₂-CH=), 4.71 (1H, t, J = 5.7, -OH), 5.32 (1H, dd, J = 11.3, 2.2, THP H2′), 5.50 (1H, tt, J = 6.7, 1.7, -CH₂-CH=), 7.20 (1H, t, J = 5.7, N⁶H), 8.08 (1H, s, H2). ¹³C NMR (300 MHz, DMSO- d_6): δ 13.57 (=C-CH₃), 22.90 (THP C4′), 24.49 (THP C5′), 27.47 (THP C3′), 37.42 (-NH-CH₂-), 42.23 (-N-(CH₃)₂), 65.88 (-CH₂-OH), 67.84 (THP C6′), 82.74 (THP C2′), 116.68 (C5), 121.17 (-CH=), 132.91 (=C<), 149.57 (C4), 150.44 (C2), 152.44 (C6), 155.10 (C8).

(*E*)-6-(4-Hydroxy-3-methylbut-2-en-1-ylamino)-8-methoxy-9-(tetrahydropyran-2-yl)-9H-purine (*E*)-8-Chloro-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (*3.6*) (190 mg, 0.56 mmol) was dissolved in methanol (1.6 ml) and 30% aqueous NaOH (1.6 ml) was added. The mixture was heated at 60 °C under vigorous stirring for 0.5 h. Then, the mixture was evaporated, dissolved in ethyl acetate (5 ml) and washed with water. After drying and concentration *in vacuo*, the crude product was purified by column chromatography (silica gel, mobile phase chloroform : acetone 9:1, on TLC chromatogram $R_f = 0.10$). The product was dried in dessiccator with P_2O_5 . White crystals. Yield: 83 mg, 44 %. M. p.: 126 - 130 °C. MS ESI+ (CV 10) m/z (rel. %): 334 [M+H]⁺ (100); (CV 30) m/z (rel. %): 250 [$C_{11}H_{15}N_5O_2+H$]⁺ (100), 334 [M+H]⁺ (40).

(*E*)-8-Benzyloxy-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine Sodium (120 mg, 5.2 mmol) was dissolved in dry benzyl alcohol (5 ml). (*E*)-8-Bromo-6-(4-hydroxy-3-methylbut-2-en-1-ylamino)-9-(tetrahydropyran-2-yl)-9H-purine (3.6) (192 mg, 0.50 mmol) was added to the sodium benzyl alcoholate. The reaction mixture was heated at 65 °C for 2 days. After cooling, the mixture was evaporated diluted with chloroform : acetone 75:25 (5 ml). The prepcipitate was filtered off and the filtrate purified by column chromatography (silica gel; mobile phase chloroform : acetone 75:25, on TLC chromatogram $R_f = 0.14$). After column chromatography, the collected fractions were concentrated *in vacuo*. The product was dried in dessiccator with P_2O_5 . Yellowish viscous substance. Yield: 20 mg, 10 %. HPLC $R_t = 9.3$ min (80 % $CH_3OH + 20$ % buffer), $R_t = 18.9$ min (70 % $CH_3OH + 30$ % buffer). UV (70 % $CH_3OH + 30$ % buffer) λ_{max} 268 nm, λ_{min} 233 nm. MS ESI+ (CV 20) m/z (rel. %): 410 [M+H]⁺ (100); (CV 40) m/z (rel. %): 326 [$C_{17}H_{19}N_5O_2+H$]⁺ (100), 406 [M+H]⁺ (49). ^{1}H (500 MHz, DMSO- d_6): δ 1.46-1.48 (2H, m), 1.54-1.60 (1H, m), 1.61 (3H, s). 1.70-1.75 (1H, m), 1.82-1.90 (1H, m), 2.71 (1H, dq, *J*

41

=11.31 Hz, J = 3.97 Hz), 3.51-3.56 (1H, m), 3.73 (2H, s), 3.92-3.94 (1H, m), 4.08 (2H, bs), 4.66 (1H, bs), 5.43-5.53 (4H, m), 7.26-7.40 (4H, m), 7.48 (2H, d, J = 7.03 Hz), 8.07 (1H, s). ¹³C (125 MHz, DMSO- d_6): δ 14.8, 23.2, 25.1, 28.6, 38.0, 66.4, 68.1, 68.3, 71.5, 81.4, 115.2, 121.6, 128.3, 128.8, 129.0, 136.2, 137.5, 151.4, 152.9, 153.8.

5

10

15

20

25

30

6-Benzylamino-8-benzyloxy-9-(tetrahydropyran-2-yl)-9H-purine

Sodium (40 mg, 1.7 mmol) was dissolved in dry benzyl alcohol (.1.0 ml). 8-Bromo-6-benzylamino-9-(tetrahydropyran-2-yl)-9H-purine (3.8) (387 mg, 1.00 mmol) dissolved was dimethylformamide (3.0 ml) and the solution added dropwise to the sodium benzyl alcoholate solution. The reaction mixture was heated at room temperature under argon atmosphere for 4.5 h. Then, the mixture was neutralized with 2 drops of glacial acetic acid and evaporated. The crude product, in form of white solid, was triturated with ethyl acetate (10 ml), heated in a boiling water bath and filtered. The filtrate was left in a refrigerator for 2 days. The crystals were filtered off and dried in dessiccator with P₂O₅. White crystals. Yield: 267 mg, 64 %. M. p.: 149-151 °C. HPLC R_t = 13.0 min (85 % CH₃OH + 15 % buffer). UV (85 % CH₃OH + 15 % buffer) λ_{max} 269 nm, λ_{min} 234 nm. MS ESI+ (CV 20) m/z (rel. %): 416 [M+H]⁺ (100); (CV 50) m/z (rel. %): 332 $[C_{17}H_{17}N_5O+H]^+$ (100), 416 $[M+H]^+$ (13). ¹H NMR (300 MHz, DMSO- d_6): δ 1.51 (2H, m, THP) H5´), 1.65 (1H, m, THP H4´), 1.77 (1H, d, J = 13.1, THP H3´), 1.93 (1H, d, J = 12.3, THP H4´), 2.76 (1H, qq, J = 12.1, 3.6, THP H3'), 3.58 (1H, m, H6'), 4.05 (1H, d, J = 11.3, THP H6'), 4.72(2H, d, J = 1.7, NH-CH₂-Ph), 5.50 (1H, dd, J = 11.1, 1.7, THP H2²), 5.58 (2H, d, J = 11.3, O-CH₂-Ph)Ph), 7.19 (1H, m, J = 6.8, 2.3, Ph H4′), 7.35 (7H, m, Ph), 7.52 (2H, m, Ph), 8.11 (1H, s, H2), 7.82 (1H, bs, N⁶H). ¹³C-NMR (300 MHz, DMSO- d_6): δ 22.64 (THP C4′), 24.52 (THP C5′), 28.01 (THP C3´), 43.18 (NH-CH₂-Ph), 67.72 (THP C6´), 71.01 (OCH₂Ph), 80.84 (THP C2´), 114.56 (C5), 126.41 (Ph C4'), 127.09 (2x) (Ph), 127.78 (2x) (Ph), 128.04 (2x) (Ph), 128.22 (Ph), 128.43 (2x) (Ph), 135.62 (Ph), 140.37 (Ph), 150.76 (2x) (Pur), 152.39 (Pur), 153.41 (Pur).

8-(4-Aminobutylamino)-6-benzylamino)-9-(tetrahydropyran-2-yl)-9H-purine

8-Bromo-6-benzylamino-9-(tetrahydropyran-2-yl)-9H-purine (3.8) (400 mg, 1.03 mmol), 1,4-diaminobutane (1.0 ml, 9.95 mmol) and diisopropylethylamine (0.18 ml, 1.03 mmol) in 2-propanol (5.5ml) were heated at 80 °C over night and evaporated. The residue was dissolved in a mixture of chloroform (4 ml) and methanol (1 ml), filtered and the filtrate was purified by column chromatography (silica gel; mobile phase chloroform:methanol:NH₄OH 85:15:1.5, on TLC chromatogram $R_f = 0.18$). After column chromatography, the collected fractions were concentrated *in vacuo*. The product was dried in dessiccator with P_2O_5 . Yellowish viscous substance. Yield: 373

42

mg, 92 %. HPLC R_t = 13.0 min (60 % CH₃OH + 40 % buffer), R_t = 18.6 min (50 % CH₃OH + 50 % buffer), UV (60 % CH₃OH + 40 % buffer) λ_{max} 285 nm, λ_{min} 244 nm. ¹H NMR (300 MHz, DMSO- d_6): δ 1.40 (2H, p, J = 7.2, Bu), 1.50 (1H, d, J = 7.3, THP H5′), 1.63 (5H, m, THP H3′ H4′ H5′, Bu), 1.93 (1H, bs, THP H4′), 2.56 (2H, t, J = 6.8, Bu), 2.57 (1H, qq, covered, THP H3′), 3.35 (2H, m, Bu), 3.65 (1H, t, J = 10.6, THP H6′), 4.01 (1H, d, J = 10.8, THP H6′), 4.68 (2H, d, J = 5.5, NH-CH₂-Ph), 5.50 (1H, d, J = 9.9, THP H2′), 6.43 (1H, bs, N⁸H), 7.18 (1H, t, J = 6.9, N⁶H), 7.32 (5H, m, Ph), 7.94 (1H, s, H2). ¹³C-NMR (300 MHz, DMSO- d_6): δ 22.57 (THP C4′), 24.32 (THP C5′), 26.53 (Bu), 28.25 (THP C3′), 41.34 (Bu), 42.22 (Bu), 43.16 (NH-CH₂-Ph), 67.84 (THP C6′), 81.11 (THP C2′), 117.02 (C5), 126.29 (Ph C4′), 127.13 (2x) (Ph), 127.96 (2x) (Ph), 140.85 (Ph), 148.45 (Pur), 148.92 (Pur), 150.96 (Pur), 151.05 (Pur).

Table 2: Compounds of this invention prepared according to Example 4

5

	Substituent				CHN analyses			
No.	Sun		cal	ESI-MS				
	R6	R8	R9	%C	%Н	%N	- [M ⁺ H ⁺]	
80	furfurylamino	(CH) N 3 2	2-tetrahydropyranyl	59.6/59.5	6.5/6.4	24.5/24.7	343.4	
81	benzylamino	(CH) N 3 2	2-tetrahydropyranyl	64.8/64.9	6.9/6.7	23.9/24.1	353.4	
82	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	(CH ₃) N ₃₂	2-tetrahydropyranyl	58.9/58.6	7.6/7.8	24.3/24.2	347.4	
83	(4-hydroxy-3-methylbutyl)amino	(CH) N 3 2	2-tetrahydropyranyl	58.6/58.7	8.1/8.2	24.1/24.4	349.5	
84	2-fluorobenzylamino	(CH) N 3 2	2-tetrahydropyranyl	61.6/61.8	6.3/6.5	22.7/22.5	371.4	
85	3-fluorobenzylamino	(CH) N 3 2	2-tetrahydropyranyl	61.6/61.7	6.3/6.4	22.7/22.6	371.4	
86	3-chlorobenzylamino	(CH) N 3 2	2-tetrahydropyranyl	59.0/59.0	6.0/5.8	21.7/21.5	387.9	
87	3-bromobenzylamino	(CH) N 3 2	2-tetrahydropyranyl	52.9/52.7	5.4/5.2	19.5/19.0	432.3	
88	3-iodobenzylamino	(CH) N 3 2	2-tetrahydropyranyl	47.7/47.9	4.9/5.1	17.6/17.4	479.3	
89	4-methylbenzylamino	(CH) N 3 2	2-tetrahydropyranyl	65.6/66.0	7.2/7.1	22.9/23.4	367.5	
90	2-methoxylbenzylamino	(CH ₃) N _{3 2}	2-tetrahydropyranyl	62.8/63.0	6.9/7.0	22.0/22.2	383.5	
91	3-methoxylbenzylamino	(CH) N 3 2	2-tetrahydropyranyl	62.8/62.8	6.9/6.9	22.0/21.9	383.5	
92	3,4-dichlorobenzylamino	(CH) N 3 2	2-tetrahydropyranyl	54.2/54.1	5.3/5.5	20.0/20.4	422.3	
93	2-hydroxy-3-methoxybenzylamino	(CH ₃) N _{3 2}	2-tetrahydropyranyl	60.3/60.1	6.6/6.5	21.1/21.3	399.5	
94	3,4-dimethoxybenzylamino	(CH ₎ N _{3 2}	2-tetrahydropyranyl	61.2/61.5	6.8/6.9	20.4/20.1	413.5	
95	anilino	(CH) N 3 2	2-tetrahydropyranyl	63.9/64.2	6.6/.6.9	24.8/24.7	339.4	
96	3-fluoroanilino	(CH) N 3 2	2-tetrahydropyranyl	60.6/60.8	5.9/9.1	23.6/23.8	357.4	

WO 2016/095880

	Substituent			C	ESI-MS			
No.	Su	Substituent			calculated / found			
	R6	R8	R9	%C	%Н	%N	[M ⁺ H ⁺]	
97	2-chloroanilino	(CH) N 3 2	2-tetrahydropyranyl	58.0/58.2	5.7/5.4	22.5/22.3	373.9	
98	3-methoxyanilino	(CH) N 3 2	2-tetrahydropyranyl	61.9/62.3	6.6/6.5	22.8/22.7	369.4	
99	3-methylanilino	(CH) N 3 2	2-tetrahydropyranyl	64.8/65.2	6.9/7.0	23.9/24.1	353.4	
100	furfurylamino	CH =CHCH NH 2 2	2-tetrahydropyranyl	61.0/61.6	6.3/6.5	23.7/23.9	355.4	
101	benzylamino	CH =CHCH NH 2 2	2-tetrahydropyranyl	65.9/65.8	6.6/6.5	23.1/23.4	365.5	
102	furfurylamino	NH 2	2-tetrahydropyranyl	57.3/57.7	5.8/5.7	26.7/26.8	315.4	
103	benzylamino	NH 2	2-tetrahydropyranyl	63.0/63.2	6.2/6.2	25.9/26.1	325.4	
104	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH 2	2-tetrahydropyranyl	56.6/56.8	7.0/7.1	26.4/26.6	319.4	
105	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH 2	2-tetrahydropyranyl	56.6/56.1	7.0/7.2	26.4/26.5	319.4	
106	(4-hydroxy-3-methylbutyl)amino	NH 2	2-tetrahydropyranyl	56.2/55.7	7.6/7.5	26.2/26.1	321.4	
107	(3-methylbut-2-en-1-yl)amino	NH 2	2-tetrahydropyranyl	59.2/59.7	8.0/7.8	27.6/27.5	305.4	
108	3-fluorobenzylamino	NH 2	2-tetrahydropyranyl	59.6/60.1	5.6/5.4	24.6/24.6	343.4	
109	2-chlorobenzylamino	NH 2	2-tetrahydropyranyl	56.9/57.3	5.3/5.1	23.4/23.5	359.8	
110	2-bromobenzylamino	NH 2	2-tetrahydropyranyl	50.6/50.4	4.8/4.9	20.8/21.1	404.3	
111	3-methoxybenzylamino	NH 2	2-tetrahydropyranyl	61.0/61.2	6.3/6.4	23.7/24.0	355.4	
112	3-aminobenzylamino	NH 2	2-tetrahydropyranyl	60.2/60.0	6.2/6.5	28.9/28.7	340.4	
113	3-hydroxybenzylamino	NH 2	2-tetrahydropyranyl	60.0/60.1	5.9/6.1	24.7/24.6	341.4	
114	4-hydroxybenzylamino	NH 2	2-tetrahydropyranyl	60.0/60.3	5.9/5.7	24.7/24.7	341.4	
115	2,3-dihydroxybenzylamino	NH 2	2-tetrahydropyranyl	57.3/57.7	5.7/5.7	23.6/23.5	357.4	
116	3,4-dihydroxybenzylamino	NH 2	2-tetrahydropyranyl	57.3/57.9	5.7/5.8	23.6/23.7	357.4	
117	3-hydroxy-4-methoxybenzylamino	NH 2	2-tetrahydropyranyl	58.4/58.0	6.0/5.9	22.7/22.6	371.4	
118	anilino	NH 2	2-tetrahydropyranyl	61.9/70.3	5.9/5.8	27.1/27.4	311.4	
119	3-fluoroanilino	NH 2	2-tetrahydropyranyl	58.5/58.9	5.2/5.3	25.6/25.8	329.4	
120	3-hydroxyanilino	NH 2	2-tetrahydropyranyl	58.9/58.5	5.6/5.7	25.8/25.7	327.4	
121	3-aminoanilino	NH 2	2-tetrahydropyranyl	59.1/59.7	5.9/6.1	23.1/22.7	326.4	
122	3,4-dihydroxyanilino	NH 2	2-tetrahydropyranyl	56.1/56.6	5.3/5.0	24.6/24.8	343.4	
123	3-methoxyanilino	NH 2	2-tetrahydropyranyl	60.0/59.3	5.9/5.8	24.7/24.7	341.4	
124	furfurylamino	CH O	2-tetrahydropyranyl	58.4/58.8	5.8/5.8	21.3/21.4	330.4	

	Substituent			C	CHN analyses			
No.	Su	DSHILLEHI		cale	calculated / found			
	R6	R8	R9	%С	%Н	%N	[M ⁺ H ⁺]	
125	benzylamino	CH O	2-tetrahydropyranyl	63.7/63.5	6.2/6.4	20.6/20.8	340.4	
126	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	CH ₃ O	2-tetrahydropyranyl	57.6/57.4	7.0/7.2	21.0/21.2	334.4	
127	(3-methylbut-2-en-1-yl)amino	CH O	2-tetrahydropyranyl	60.6/61.0	7.3/7.2	22.1/22.2	318.4	
128	3-methoxylbenzylamino	CH O	2-tetrahydropyranyl	61.8/61.6	6.3/6.3	19.0/19.2	370.4	
129	3-hydroxybenzylamino	CH O	2-tetrahydropyranyl	60.8/60.5	6.0/6.2	19.7/19.9	356.4	
130	3-fluorobenzylamino	CH O	2-tetrahydropyranyl	60.5/60.1	5.6/5.7	19.6/19.8	358.4	
131	4-hydroxylbenzylamino	CH O	2-tetrahydropyranyl	60.8/61.3	6.0/5.9	19.7/19.9	356.4	
132	3-methoxyanilino	CH O	2-tetrahydropyranyl	60.8/61.2	6.0/6.2	19.7/20.0	356.4	
133	furfurylamino	C H O 3 7	2-tetrahydropyranyl	60.5/61.0	6.5/6.4	19.6/19.7	358.4	
134	benzylamino	C H O 3 7	2-tetrahydropyranyl	65.4/65.2	6.9/6.8	19.1/19.0	368.5	
135	furfurylamino	C H -CH O 6 5 2	2-tetrahydropyranyl	65.2/65.4	5.7/5.9	17.3/17.5	406.5	
136	benzylamino	C H -CH O 6 5 2	2-tetrahydropyranyl	69.4/69.3	6.1/6.0	16.9/16.7	416.5	
137	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	C H -CH O 6 5 2	2-tetrahydropyranyl	64.5/64.6	6.7/6.8	17.1/17.2	410.5	
138	3-hydroxybenzylamino	C H -CH O 6 5 2	2-tetrahydropyranyl	66.8/66.5	5.8/5.9	16.2/16.3	432.5	
139	3-methoxyanilino	C H -CH O 6 5 2	2-tetrahydropyranyl	66.8/66.6	5.8/5.8	16.2/16.4	432.5	
140	furfurylamino	SH	2-tetrahydropyranyl	54.4/54.6	5.2/5.4	21.1/21.3	332.4	
141	benzylamino	SH	2-tetrahydropyranyl	59.8/60.1	5.6/5.4	20.5/20.8	342.4	
142	3-methoxylbenzylamino	SH	2-tetrahydropyranyl	58.2/58.7	5.7/5.5	18.9/18.7	372.5	
143	anilino	SH	2-tetrahydropyranyl	58.7/58.5	5.2/5.3	21.4/21.5	328.4	
144	4-methoxyanilino	SH	2-tetrahydropyranyl	57.1/57.2	5.4/5.5	19.6/19.8	358.4	
145	furfurylamino	CH S	2-tetrahydropyranyl	55.6/55.6	5.5/5.5	20.3/20.3	346.4	
146	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	CH S	2-tetrahydropyranyl	55.0/55.3	6.6/6.4	20.0/20.2	350.5	
147	(3-methylbut-2-en-1-yl)amino	CH S	2-tetrahydropyranyl	57.6/57.3	7.0/7.2	21.0/20.8	334.5	
148	benzylamino	CH S	2-tetrahydropyranyl	60.8/60.9	6.0/6.4	19.7/19.6	356.5	
149	3-hydroxybenzylamino	CH S	2-tetrahydropyranyl	58.2/58.4	5.7/5.8	18.9/19.0	372.5	
150	3-methoxybenzylamino	CH S	2-tetrahydropyranyl	59.2/59.0	6.0/6.2	18.2/17.9	386.5	
151	3-fluorobenzylamino	CH S	2-tetrahydropyranyl	57.9/58.1	5.4/5.5	18.8/18.5	374.5	

	Substituent		C	EGI MG			
No.	Substituent			cale	ESI-MS		
	R6	R8	R9	%C	%Н	%N	[M ⁺ H ⁺]
152	furfurylamino	CH SO 3 2	2-tetrahydropyranyl	50.9/50.5	5.1/5.0	18.6/18.8	378.4
153	benzylamino	CH SO 3 2	2-tetrahydropyranyl	55.8/55.7	5.5/5.3	18.1/17.9	388.5
154	anilino	CH SO 3 2	2-tetrahydropyranyl	54.7/54.9	5.1/5.3	18.8/18.8	374.4
155	3-fluoroanilino	CH SO 3 2	2-tetrahydropyranyl	52.2/52.4	4.6/4.8	17.9/18.2	392.4
156	3-methoxyanilino	CH SO 3 2	2-tetrahydropyranyl	53.6/54.0	5.3/5.5	17.4/17.8	404.5
157	furfurylamino	NH (CH) S 2 2 3	2-tetrahydropyranyl	55.7/55.8	6.2/6.4	21.6/21.5	389.5
158	benzylamino	NH (CH) S 2 2 3	2-tetrahydropyranyl	60.3/60.2	6.6/6.9	21.1/21.0	399.5
159	furfurylamino	ОН	2-tetrahydropyranyl	57.1/57.3	5.4/5.4	22.2/21.8	316.3
160	benzylamino	ОН	2-tetrahydropyranyl	62.8/62.7	5.9/6.2	21.5/21.3	326.4
161	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	ОН	2-tetrahydropyranyl	56.4/56.1	6.6/6.7	21.9/22.2	320.4
162	3-hydroxybenzylamino	ОН	2-tetrahydropyranyl	59.8/60.0	5.6/5.3	20.5/20.9	342.4
163	3-methoxylbenzylamino	ОН	2-tetrahydropyranyl	60.8/60.9	6.0/5.8	19.7/19.9	356.4
164	anilino	ОН	2-tetrahydropyranyl	61.7/61.5	5.5/5.7	22.5/22.1	312.4
165	3-hydroxyanilino	ОН	2-tetrahydropyranyl	58.7/58.6	5.2/5.4	21.4/21.3	328.4
166	furfurylamino	H NCH 2 2	2-tetrahydropyranyl	58.5/58.4	6.1/6.4	25.6/25.4	329.4
167	furfurylamino	CH OCO	2-tetrahydropyranyl	57.1/57.1	5.4/5.6	19.6/19.8	358.4
168	benzylamino	CH OCO	2-tetrahydropyranyl	62.1/62.3	5.8/5.6	19.1/18.6	368.4
169	furfurylamino	CH CH OCO 3 2	2-tetrahydropyranyl	58.2/58.5	5.7/5.3	18.9/18.7	372.4
170	furfurylamino	NH (CH) NH 2 22	2-tetrahydropyranyl	57.1/57.2	6.5/6.2	27.4/27.2	358.4
171	benzylamino	NH (CH) NH 2 22	2-tetrahydropyranyl	62.1/62.3	6.9/7.2	26.7/26.4	368.5
172	(3-methylbut-2-en-1-yl)amino	NH (CH) NH 2 2 2	2-tetrahydropyranyl	59.1/59.3	7.9/8.1	28.4/28.2	346.5
173	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH (CH) NH 2 2 2	2-tetrahydropyranyl	56.5/56.5	7.5/7.7	27.1/27.2	362.5
174	4-hydroxybenzylamino	NH (CH) NH 2 2 2	2-tetrahydropyranyl	59.5/60.3	6.6/6.6	25.6/25.2	384.5
175	anilino	NH (CH) NH 2 2 2	2-tetrahydropyranyl	61.2/61.6	6.6/6.5	27.7/27.8	354.4
176	furfurylamino	NH (CH) NH 2 2 3	2-tetrahydropyranyl	58.2/58.0	6.8/6.7	26.4/26.3	372.5
177	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH (CH) NH 2 23	2-tetrahydropyranyl	57.6/57.2	7.8/7.5	26.1/25.8	376.5
178	furfurylamino	NH (CH) NH 2 2 4	2-tetrahydropyranyl	59.2/59.0	7.1/7.3	25.4/25.4	386.5

No.	Substituent Substituent			CHN analyses calculated / found			ESI-MS
	R6	R8	R9	%С	%Н	%N	[M ⁺ H ⁺]
179	furfurylamino	NH (CH) O 2 2 3	2-tetrahydropyranyl	58.1/58.4	6.5/6.4	22.6/22.9	373.4
180	(3-methylbut-2-en-1-yl)amino	NH (CH) O 2 23	2-tetrahydropyranyl	60.0/60.5	7.8/8.0	23.3/23.4	361.5
181	furfurylamino	HO(CH) NH 2 2	2-tetrahydropyranyl	57.0/57.3	6.2/6.3	23.5/23.7	359.4
182	benzylamino	HO(CH) NH 2 2	2-tetrahydropyranyl	61.9/62.1	6.6/6.6	22.8/22.5	369.4
183	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	HO(CH) NH 2 2	2-tetrahydropyranyl	56.3/56.3	7.2/7.1	23.2/23.3	363.4
184	(3-methylbut-2-en-1-yl)amino	HO(CH) NH 2 2	2-tetrahydropyranyl	58.9/58.8	7.6/7.2	24.3/24.5	347.4
185	furfurylamino	HO(CH) NH 2 3	2-tetrahydropyranyl	58.1/58.4	6.5/6.9	22.6/22.4	373.4
186	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	HO(CH) NH 2 3	2-tetrahydropyranyl	57.4/57.9	7.5/7.4	22.3/22.6	377.5
187	(3-methylbut-2-en-1-yl)amino	HO(CH) NH 2 3	2-tetrahydropyranyl	60.0/59.8	7.8/7.6	23.3/23.3	361.5

Table 3: Compounds of this invention prepared according to Example 4

No	Sul	Substituent			HN analy ulated / fo	ESI-MS	
	R6	R8	R9	%C	%H/	%N	[M ⁺ H ⁺]
188	furfurylamino	(CH) N 3 2	2-tetrahydrofuranyl	58.5/58.3	6.1/6.1	25.6/25.4	329.4
189	(Z)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	(CH) N 3 2	2-tetrahydrofuranyl	57.8/58.4	7.3/7.4	25.3/25.0	333.4
190	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	(CH ₃) N _{3 2}	2-tetrahydrofuranyl	57.8/58.2	7.3/7.4	25.3/25.3	333.4
191	4-chlorobenzylamino	(CH) N 3 2	2-tetrahydrofuranyl	58.0/58.2	5.7/5.9	22.5/22.6	373.9
192	3-methoxylbenzylamino	(CH) N 3 2	2-tetrahydrofuranyl	61.9/61.8	6.6/6.4	22.8/23.0	369.4
193	2-hydroxy-3-methoxybenzylamino	(CH) N 3 2	2-tetrahydrofuranyl	59.4/59.5	6.3/6.4	21.9/22.2	385.4
194	anilino	(CH) N 3 2	2-tetrahydrofuranyl	63.0/63.2	6.2/6.2	25.9/26.1	330.4
195	3-methoxyanilino	(CH) N 3 2	2-tetrahydrofuranyl	61.0/61.6	6.3/6.1	23.7/23.6	355.4
196	furfurylamino	CH =CHCH NH 2 2	2-tetrahydrofuranyl	60.0/60.5	5.9/6.0	24.7/24.5	341.4
197	furfurylamino	NH 2	2-tetrahydrofuranyl	56.0/56.2	5.4/5.7	28.0/28.4	301.3
198	benzylamino	NH 2	2-tetrahydrofuranyl	61.9/62.3	5.9/6.2	27.1/26.5	311.4
199	(Z)-(4-hydroxy-3-methylbut-2-en-1-	NH 2	2-tetrahydrofuranyl	55.3/55.1	6.6/6.8	27.6/27.8	305.4

NI.	Substituent			Cl	ESI-MS		
No	Sui	Substituent			calculated / found		
-	R6	R8	R9	%С	% H/	%N	[M ⁺ H ⁺]
	yl)amino						
200	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH 2	2-tetrahydrofuranyl	55.3/55.5	6.6/6.5	27.6/27.9	305.4
201	4-hydroxybenzylamino	NH 2	2-tetrahydrofuranyl	58.9/58.4	5.6/5.4	25.8/25.1	327.4
202	3,4-dihydroxybenzylamino	NH 2	2-tetrahydrofuranyl	56.1/56.4	5.3/5.2	24.6/24.4	343.4
203	4-hydroxy-3,5-dimethoxybenzylamino	NH 2	2-tetrahydrofuranyl	56.0/56.0	5.7/5.8	21.8/21.3	387.4
204	anilino	NH 2	2-tetrahydrofuranyl	60.8/60.7	5.4/5.6	28.4/28.6	297.3
205	3-hydroxyanilino	NH 2	2-tetrahydrofuranyl	57.7/57.9	5.2/5.0	26.3/26.4	313.3
206	furfurylamino	CH O	2-tetrahydrofuranyl	57.1/57.3	5.4/5.8	22.2/22.5	316.3
207	(3-methylbut-2-en-1-yl)amino	CH O	2-tetrahydrofuranyl	59.4/59.2	7.0/6.8	23.1/23.4	304.4
208	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	CH O	2-tetrahydrofuranyl	56.4/56.7	6.6/6.7	21.9/22.1	320.4
209	3-methoxylbenzylamino	CH O	2-tetrahydrofuranyl	60.8/60.7	6.0/6.3	19.7/19.9	356.4
210	anilino	CH O	2-tetrahydrofuranyl	61.7/61.9	5.5/5.9	22.5/22.1	312.4
211	furfurylamino	C H -CH O 6 5 2	2-tetrahydrofuranyl	64.4/64.5	5.4/5.1	17.9/17.8	392.4
212	furfurylamino	SH	2-tetrahydrofuranyl	53.0/53.1	4.8/4.9	22.1/22.1	318.4
213	benzylamino	SH	2-tetrahydrofuranyl	58.7/58.9	5.2/5.2	21.4/21.5	328.4
214	(3-methylbut-2-en-1-yl)amino	SH	2-tetrahydrofuranyl	55.1/54.7	6.3/6.4	22.9/23.3	306.4
215	4-methoxyanilino	SH	2-tetrahydrofuranyl	56.0/55.4	5.0/5.1	20.4/20.8	344.4
216	furfurylamino	CH S	2-tetrahydrofuranyl	54.4/54.5	5.2/5.6	21.1/21.6	332.4
217	benzylamino	CH S	2-tetrahydrofuranyl	59.8/60.1	5.6/5.5	20.5/20.4	342.4
218	(3-methylbut-2-en-1-yl)amino	CH S 3	2-tetrahydrofuranyl	56.4/56.6	6.6/6.7	21.9/22.0	320.4
219	furfurylamino	CH SO 3 2	2-tetrahydrofuranyl	49.6/49.1	4.7/4.8	19.3/19.1	364.4
220	furfurylamino	NH (CH) S 2 2 3	2-tetrahydrofuranyl	54.5/54.1	5.9/6.1	22.4/22.3	375.5
221	furfurylamino	ОН	2-tetrahydrofuranyl	55.8/55.7	5.0/5.2	23.2/23.0	302.3
222	benzylamino	ОН	2-tetrahydrofuranyl	61.7/62.0	5.5/5.4	22.5/22.7	312.4
223	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	ОН	2-tetrahydrofuranyl	55.1/55.4	6.3/6.3	22.9/22.6	306.3
224	4-hydroxybenzylamino	ОН	2-tetrahydrofuranyl	58.7/58.9	5.2/5.1	21.4/21.2	328.4
225	anilino	ОН	2-tetrahydrofuranyl	60.6/60.3	5.1/5.0	23.6/23.7	298.3

48

	C1	CHN analyses					
No	Substituent			calculated / found			ESI-MS
	R6	R8	R9	%C	% H/	%N	[M ⁺ H ⁺]
226	3-methoxyanilino	ОН	2-tetrahydrofuranyl	58.7/58.1	5.2/5.3	21.4/21.5	328.4
227	furfurylamino	H NCH 2 2	2-tetrahydrofuranyl	57.3/57.0	5.8/5.9	26.7/26.4	315.4
228	benzylamino	H NCH 2 2	2-tetrahydrofuranyl	63.0/63.1	6.2/6.4	25.9/25.7	325.4
229	3-methoxyanilino	H NCH 2 2	2-tetrahydrofuranyl	58.7/58.7	5.2/5.7	21.4/21.6	328.4
230	furfurylamino	CH OCO	2-tetrahydrofuranyl	59.8/59.9	5.6/5.4	20.5/20.2	342.4
231	benzylamino	CH CH OCO	2-tetrahydrofuranyl	65.7/95.2	6.3/6.1	19.2/19.0	366.4
232	4-hydroxylbenzylamino	CH CH OCO	2-tetrahydrofuranyl	63.0/62.5	6.1/6.1	18.4/18.1	382.4
233	furfurylamino	NH (CH) NH 2 2 2	2-tetrahydrofuranyl	56.0/56.2	6.2/6.3	28.6/28.4	344.4
234	benzylamino	NH (CH) NH 2 2 2	2-tetrahydrofuranyl	61.2/61.1	6.6/6.8	27.7/27.8	354.4
235	(3-methylbut-2-en-1-yl)amino	NH (CH) NH 2 2 2	2-tetrahydrofuranyl	58.0/58.3	7.6/7.5	29.6/29.5	332.4
236	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH (CH) NH 2 2 2	2-tetrahydrofuranyl	55.3/55.7	7.3/7.1	28.2/28.4	348.4
237	3-hydroxybenzylamino	NH (CH) NH 2 2 2	2-tetrahydrofuranyl	58.5/58.4	6.3/6.4	26.5/26.3	370.4
238	furfurylamino	NH (CH) NH 2 2 3	2-tetrahydrofuranyl	57.1/57.1	6.5/6.9	27.4/27.3	358.4
239	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH (CH) NH 2 23	2-tetrahydrofuranyl	56.5/56.4	7.5/7.9	27.1/27.0	362.5
240	furfurylamino	NH (CH) NH 2 2 6	2-tetrahydrofuranyl	60.1/60.3	7.3/7.1	24.5/24.0	400.5
241	furfurylamino	NH (CH) O 2 2 3	2-tetrahydrofuranyl	57.0/57.5	6.2/6.2	23.5/23.8	359.4
242	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	NH (CH) O 2 2 3	2-tetrahydrofuranyl	56.3/56.6	7.2/7.0	23.2/23.7	363.4
243	furfurylamino	HO(CH) NH 2 2	2-tetrahydrofuranyl	55.8/55.7	5.9/6.0	24.4/24.3	345.4
244	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	HO(CH_) NH_2 2	2-tetrahydrofuranyl	55.1/55.0	6.9/6.7	24.1/24.3	349.4
245	(3-methylbut-2-en-1-yl)amino	HO(CH) NH 2 2	2-tetrahydrofuranyl	57.8/57.9	7.3/7.1	25.3/25.0	333.4
246	furfurylamino	HO(CH) NH 2 3	2-tetrahydrofuranyl	57.0/56.6	6.2/6.5	23.5/23.5	359.4
247	(E)-(4-hydroxy-3-methylbut-2-en-1-yl)amino	HO(CH) NH 2 3	2-tetrahydrofuranyl	56.3/56.0	7.2/7.1	23.2/23.1	363.4

Example 5: Radical scavenging activity determined by ORAC

The ability of compounds to scavenge free radicals in vitro was determined by Oxygen Radical

Absorbance Capacity (ORAC) method. Fluorescein (100 μ L, 500 mM) and 25 μ L of compound solution were added into each working well in a 96-well microplate preincubated at 37 °C. Thereafter, 25 μ L of 250 mM AAPH was quickly added, microplate was shaken for 5 s and the fluorescence (Ex. 485 nm, Em. 510 nm) was read every 3 min over 90 min by using microplate reader Infinite 200 (TECAN, Switzerland). The net area under the curve was used to express antioxidant activity relative to trolox which was used as a standard. Compounds with ORAC value higher than 1 are more effective than trolox, the hydrophilic equivalent of vitamin E, on an equimolar basis.

Table 4. The ability of compounds to scavenge free radicals in ORAC assay

5

10

Compound	ORAC
Compound	(compound/trolox ratio)
KTHP*	0.6 ± 0.1 *
46	1.4 ± 0.0
145	1.3 ± 0.1
80	2.2 ± 0.1
102	4.5 ± 0.1
82	8.5 ± 0.4
107	24.4 ± 1.5
172	28.3 ± 1.6
124	30.1 ± 3.1
100	32.4 ± 3.2
185	48.3 ± 2.3
181	78.1 ± 3.9
170	181.3 ± 5.2

*Mean \pm SD (n=3)

*KTHP – kinetin-9-tetrahydropyranyl as a reference compound.

Example 6: Protection of membrane lipid peroxidation

A typical symptom associated with senescence as a direct consequence of increased reactive oxygen species is lipid peroxidation. Therefore the levels of MDA, a decomposition product of lipid peroxidation, were measured in detached wheat leaves that were exposed to the prepared novel derivatives and kinetin for four days in the dark as described in Example 8. MDA levels were measured using a thiobarbituric acid (TBA) method. In detail, 100 mg of fresh plant material

was homogenized by high speed shaking in a ball mill (MM301, Retsch, Germany) with 1 mL of 80% methanol. The crude extract was centrifuged at 10,000xg for 5 min, and 100 μL aliquot of supernatant was vortexed with 100 μL of 0.5% (w/v) TBA containing 0.1% (w/v) trichloroacetic acid, and the resulting solution was then incubated for 30 min at 95 °C. The samples were quickly cooled on ice and recentrifuged for 5 min at 1000xg. The absorbance of supernatant was measured at 532 nm with background subtraction at 600 nm and the amount of MDA-TBA complex was calculated from the coefficient of absorbance 155 mM⁻¹cm⁻¹. Novel derivatives significantly reduced peroxidation of membrane lipids compared to untreated control (Table 5 - the values express content of MDA, the decomposition product of membrane lipids). The compounds of this invention dramatically reduced the level of membrane lipid peroxidation during the dark senescence in the detached wheat leaves as you can see from the results in the table 5.

The newly prepared derivatives of the general formula I thus had protective function against the negative action the reactive oxygen species that are highly accumulated in tissues during leaf senescence.

15

10

Table 5. The effect of novel compounds on lipid membrane peroxidation during the senescence of detached leaves of *Triticum aestivum* cv. Hereward in dark conditions.

Compound No.	MDA (nmol/g FW)
Control	18.9 (±2.2)
1	12.8 (±1.0)
4	13.2 (±1.5)
5	13.2 (±1.5)
9	12.4 (±1.3)
10	12.8 (±1.1)
13	11.9 (±1.3)
14	12.2 (±1.4)
16	11.6 (±1.0)
21	12.1 (±1.2)
24	11.4 (±0.9)
25	11.7 (±1.1)
29	12.3 (±1.4)
39	11.6 (±1.2)
44	10.7 (±0.8)
46	10.9 (±1.0)
80	11.3 (±0.9)
82	10.8 (±1.0)

	51
100	10.2 (±1.1)
102	10.4 (±0.9)
107	10.5 (±0.5)
124	10.3 (±0.7)
145	9.6 (±0.8)
172	10.8 (±0.9)
170	10.4 (±0.7)
181	9.5 (±0.5)
185	10.2 (±1.1)
189	10.8 (±0.9)
197	9.2 (±0.6)
201	8.7 (±0.7)
206	10.5 (±0.4)
221	10.2 (±0.5)
224	9.3 (±0.8)
233	9.8 (±0.7)
238	9.4 (±0.7)
241	9.6 (±0.8)

Example 7: Growth curves for 6-furfurylamino-8-amino-9-(tetrahydropyran-2-yl)-9H-purine (compound 102) and 6-furfurylamino-8-(2-hydroxyethylamino)-9-(tetrahydropyran-2-yl)-9H-purine (compound 243)

9.5 (±0.6)

245

5

10

15

The experiments were realised with human diploid fibroblasts BJ v 24-well cultivation plates. The cells were seeded into individual wells (10.000 cell per well) and incubated in DMEM medium with 10 % FBS. Do jednotlivých jamek bylo vyseto přibližně 10000 buněk v médiu DMEM s 10 % FBS. The tested compound was added after 24 hours to final concentration between 6,25 and 50 μ M. Each concentration was tested in 4 replicates. DMSO vehikulum was tested as nontoxic control. To abtain better results of variability at least 8 wells were ket as controls (columns A and D). Cultivation medium with tested compound or DMSOwas exchanged twice a week. Seventh or eight day and then14 day old cella were harvested, trypsinised and cunted on Coulter Z2 intrument. The tested compounds in the concentration range tested and in relation to length of cultivation didn't affect the growth parameters of cells negatively (Fig. 2).

Example 8: Senescence Inhibition by Novel Compounds Tested on Winter Wheat Leaf Segments

Seeds of winter wheat, Triticum aestivum cv. Hereward, were washed under running water for 24 hours and then sown on vermiculite soaked with Knop's solution. They were placed in the grown chamber at 25°C with a 16/8 hours light period at 50 mmol.m⁻².s⁻¹. After 7 days, the first leaf was fully developed and the second leaf had started to grow. A tip section of the first leaf, approximately 35 mm long, was removed from 5 seedlings and trimmed slightly to a combined weight of 100 mg. The basal ends of the five leaf tips were placed in the wells of a microtiter polystyrene plate containing 150 ml of a cytokinin solution each. The entire plate was inserted into a plastic box lined with paper tissues soaked in distilled water to prevent leaf sections from drying out. After 96 hours incubation in the dark at 25°C, the leaves were removed and chlorophyll extracted by heating at 80C for 10 min in 5 ml of 80% ethanol (v/v). The sample volume was then restored to 5 ml by the addition of 80% ethanol (v/v). The absorbance of the extract was recorded at 665 nm. In addition, chlorophyll extracts from fresh leaves and leaf tips incubated in deionized water were measured. From the obtained data, the concetration with highest activity was selected for each compound tested. Relative activity of the compound at this concentration was calculated (see Table 6 below). The activity obtained for 10⁻⁴ M kinetin (Kin) was set as 100%. The values shown are means of five replicates and the whole experiment was repeated twice.

The compounds to be tested were dissolved in dimethylsulfoxide (DMSO) and the solution brought up to 10^{-3} M with distilled water. This stock was further diluted in distilled water to concentrations ranging from 10^{-8} M to 10^{-4} M. The final concentration of DMSO did not exceed 0.2% and therefore did not affect biological activity in the assay system used. As summarized in Table 6 below, the presence of C-8 substitutent was benefitial and led to increase of antisenescent properties.

Table 6. The effect of compounds in 10⁻⁴ mol/L concentration on retention of chlorophyll in excised wheat leaf tips

Compound	Activity (%) (s.d.)
kinetin	100
1	105 (±3)
5	118 (±5)
7	110 (±2)
8	125 (±6)

5

10

15

20

Compound	Activity (%)
48	120 (±4)
50	121 (±4)
52	120 (±3)
53	125 (±6)
54	138 (±7)

		53		
9	115 (±4)		55	133 (±5)
10	132 (±7)		56	141 (±8)
11	127 (±5)		63	110 (±2)
12	140 (±7)		64	123 (±4)
21	108 (±3)		66	132 (±5)
24	123 (±6)		67	128 (±6)
26	117 (±5)		68	142 (±5)
27	124 (±4)		69	115 (±4)
28	126 (±7)		70	126 (±1)
29	117 (±2)		71	119 (±3)
39	128 (±3)		72	106 (±2)
41	133 (±7)		74	127 (±5)
45	112 (±4)		76	112 (±3)

^{*} Activity of kinetin set at 100%; standard deviations are of the mean for 10 replicate determinations.

Example 9: Inhibition of human cell aging by novel compounds

In this example, human diploid fibroblasts (HDF cells of various passage levels: passage 25 - designated HDF25; passage 45 - designated HDF45; passage 80 - designated HDF80) were stained for beta-galactosidase activity. The medium used for the cell cultivation was removed the cells were washed twice in PNS, and fixed in 2-3 ml of fixing solution comprised of a 2% formaldehyde and 0.2% glutaraldehyde in PBS. The cells were incubated at room temperature for 5 minutes, and then washed twice with PBS. The cells were subsequently incubated at 37 °C (without CO₂) for 1 to 16 hours in 2-3 ml of the solution comprising potassium ferricyanide (5 mM), potassium ferrocyanide (5 mM), MgCl₂ (2 mM), X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) (1 mg/ml), in citric/phosphate buffer, pH 6.0) Following this incubation period, the cell samples were observed in order to detect the presence of blue cells, indicating that X-gal had been cleaved (positively senescent cells). In this experiment, senescent cells, but no other cells were stained blue due to the action of beta-galactosidase on the substrate.

5

10

54

Table 7: The effect of novel compounds on the number of senescent cells in the culture of human fibroblasts

Compound	SENESCI	ENT CELI	LS (%)
	HDF25	HDF45	HDF80
BAP	5	9	45
kinetin	3	5	38
KTHP	3	4	26
21	3	5	20
24	3	5	21
26	2	5	19
27	2	4	21
39	3	4	20
41	2	6	21
45	3	5	20
48	2	4	21
50	3	4	19
52	2	6	21
53	2	5	21
54	3	5	20
55	3	4	18
56	3	5	21
63	2	4	19
64	3	4	8
66	2	4	16
67	4	6	18
68	2	5	19
69	3	4	14
70	2	5	18
71	3	6	19
72	3	4	17
74	3	5	21
76	3	4	15

*BAP = 6-benzylaminopurine; kinetin = 6-furfurylaminopurine; KTHP – kinetin-9-tetrahydropyranyl

5

10

As shown in Table 7, with an increasing number of passages, the staining became darker. For the oldest cells, there were only blue cells ranging from bright blue to almost opaque colour. The 6,8-disubstituted-9-(heterocyclyl)purines were very effective in comparison to BAP and kinetin ("classical cytokinin", known in the prior art) in retaining much lower level of senescent cells after 80 passages. In the case of long-standing cultivation the cells treated with the compounds of the invention were able to live for a 30 % longer period than the control cells.

Example 10: Effects of new derivatives on the lifespan of C. elegans

5

10

15

20

25

C. elegans is a standard model of aging. Its relevance for human aging is generally accepted based primarily on molecular similarity in aging mechanisms and evolutionary conservation of several pathways related to health- and life-span including insulin/*IGF*-I signaling. (Olsen et. al 2006, doi: 10.1196/annals.1354.015) It is used for drug screening campaigns (reviewied e.g. in Kaletta et al. 2006, doi: 10.1038/nrd2031) including those searching for compounds with cytoprotective activity. Compounds with a life-span extendending effect in C. elegans and known health benefits in human include resveratrol, ECG and curcumin (Liao et, al 2011, doi: 10.1016/j.mad.2011.07.008; Wood et al. 2004, doi: 10.1038/nature02789; Abbas et al. 2009, doi: 10.1055/s-0028-1088378).

The strain used in this experiment was fem-1(hc17). When grown at 25°C all animals develop into females which prevents further reproduction and contamination of experiment with progeny. Agesynchronized adults (obtained by sodium hypochlorite treatment) were maintaned in liquid Scomplete medium. Amphotericin B (0.1 ug/ml) was added to medium to prevent fungal contamination. *E. coli* strain OP50 (6 mg/ml) was added as a food source. At 4th day of adulthood, worms (53 worms in average per experimental condition) were treated with the test compounds and pipetted into 96-well plate. DMSO vehiculum was used as a negative control and 6-benzylaminopurine (BAP) as a control known in a prior art. Plates were sealed by adhesive PCR foil to prevent evaporation of the medium and the seal was changed once a week to ensure the worms have enough oxygen. Living worms (i.e those moving when exposed to intensive light) were counted in a microscope every 2-3 days until the worms reached 22nd day of adulthood. The effects of the compounds on worm life-span were were evaluated in software OASIS (Yang et al 2011, doi: 10.1371/journal.pone.002352).

Results: 100 microM 8-amino-kinetin (82) and 8-bromo-isopentenyladenine (4) extended life-span of C.elegans in comparison with DMSO vehiculum (Bonferroni corrected p<0.05) - Fig. X shows survival curves including the one for equimolar comparator 6-benzylaminopurine. Corresponding restricted means were 15.31, 15.7, 12.98, 12.95 respectively.

Example 11: Effect of the novel compounds on plant cell division

Cytokinin-dependent tobacco callus *Nicotiana tabacum* L. cv. Wisconsin 38 was maintained at 25°C in darkness on modified MS medium, containing 4μmol/l nicotinic acid, 2.4 μmol/l pyridoxine hydrochloride, 1.2 μmol/l thiamine, 26.6 μmol/l glycine, 1.37 μmol/l glutamine, 1.8 μmol/l myo-inositol, 30g/l of sucrose, 8g/l of agar, 5.37 μmol/l NAA and 0.5 μmol/l BAP. Subcultivation was carried out every three weeks. Fourteen days before the bioassay, the callus

tissue was transferred to the media without BAP. Biological activity was determined from the increase in fresh callus weight after four weeks of cultivation. Five replicates were prepared for each cytokinin concentration and the entire test was repeated twice. From the obtained data, the concentration with highest activity was selected for each compound tested. Relative activity at this concentration was calculated (see Table 17 below). The activity obtained for 10^{-6} M kinetin (Kin) was set as 100%.

The cytokinins to be tested were dissolved in dimethylsulfoxide (DMSO) and the solution brought up to 10^{-3} M with distilled water. This stock was further diluted in the respective media used for the biotest to concentrations ranging from 10^{-8} M to 10^{-4} M. The final concentration of DMSO did not exceed 0.2% and therefore did not affect biological activity in the assay system used.

As summarized in Table 8, the compounds of this invention increases the cell division promoting activity and in contrast to cytokinins, which show sharp concentration optimum, most of the new compounds have markedly extended range of the optimal concentration (over two to three orders of magnitude). As shown in Figure 1, new derivatives of purine derivatives thus loose their cytotoxic effects when applied in higher concentrations.

Table 8. The effect on growth of cytokinin-dependent tobacco callus *Nicotiana tabacum* L. cv. Wisconsins 38.

Compound	Concentration	Activity
	with highest	(%);
	activity (mol/l)	(s.d.)
Kinetin	10 ⁻⁶	100
3	10^{-6} - 10^{-4}	118 (±6)
5	10^{-6} - 10^{-4}	124 (±6)
7	10^{-6} - 10^{-4}	114 (±5)
8	10^{-6} - 10^{-4}	119 (±7)
9	10^{-6} - 10^{-4}	108 (±3)
23	10 ⁻⁶ -10 ⁻⁵	125 (±7)
24	10 ⁻⁶ -10 ⁻⁵	128 (±8)
26	10^{-6} - 10^{-5}	117 (±4)
27	10^{-6} - 10^{-5}	115 (±4)
28	10^{-6} - 10^{-4}	107 (±2)
29	10^{-6} - 10^{-4}	112 (±3)
64	10 ⁻⁶ -10 ⁻⁴	130 (±10)

5

10

Compound	Concentration	Activity
	with highest	(%)
	activity (mol/l)	
124	10^{-6} - 10^{-4}	105 (±2)
125	10^{-6} - 10^{-4}	104 (±2)
126	10^{-6} - 10^{-4}	116 (±6)
127	10^{-6} - 10^{-4}	114 (±6)
128	10^{-6} - 10^{-5}	121 (±5)
129	10^{-6} - 10^{-5}	111 (±4)
130	10 ⁻⁶ -10 ⁻⁴	108 (±3)
145	10^{-6} - 10^{-4}	103 (±5)
146	10^{-6} - 10^{-5}	108 (±5)
147	10^{-6} - 10^{-4}	112 (±2)
149	10^{-6} - 10^{-4}	107 (±1)
150	10^{-6} - 10^{-5}	105 (±2)
151	10^{-6} - 10^{-4}	109 (±5)

57

65	10^{-6} - 10^{-4}	127 (±9)
69	10^{-6} - 10^{-4}	111 (±5)
70	10^{-6} - 10^{-4}	110 (±1)
71	10^{-6} - 10^{-4}	116 (±2)
74	10^{-6} - 10^{-4}	122 (±4)
75	10^{-6} - 10^{-4}	119 (±4)
76	10^{-6} - 10^{-4}	114 (±3)

206	10 ⁻⁶ -10 ⁻⁴	110 (±3)
207	10^{-6} - 10^{-4}	114 (±3)
208	10^{-6} - 10^{-4}	119 (±7)
209	10^{-6} - 10^{-4}	112 (±4)
216	10^{-6} - 10^{-4}	103 (±4)
218	10 ⁻⁶ -10 ⁻⁴	113 (±5)

15

20

25

Example 12: In vitro Cytotoxic Activity (Metabolisation of Calcein AM).

Because toxic compounds negatively influence metabolic processes of cells, many standard cytotoxicity assays are based on measurement of metabolisation rate of various artificial substrates. Resulting product is then quantified, for example, by means of spectrometry. The assays can be easily modified for use in 96-well plates. For evaluation of cytotoxicity of the 6,8-disubstituted-6,8-disubstituted-9-(heterocyclyl)purines of this invention, a microtiter assay based on quantification of metabolisation of Calcein AM was used. The assay is widely used in drug screening programs and in chemosensitivity testing. In live cells, Calcein AM is enzymatically hydrolysed and acummulation of resulting calcein is manifested by green fluorescence.

The following human cell lines were used for rutine screening of the compounds: normal diploid fibroblasts BJ, T-lymphoblastic leukemia cell line CEM, promyelocytic leukemia cell line HL-60, erytroid leukemia cell line K-562, breast carcinoma cell line MCF-7, osteosarcoma cell line HOS and melanoma cell line G-361. The cells were maintained in Nunc/Corning 80 cm² plastic tissue culture flasks and cultured in cell culture medium (DMEM with 5 g/l glucose, 2mM glutamine, 100 U/ml penicillin, 100 mmg/ml streptomycin, 10% fetal calf serum and sodium bicarbonate).

The cell suspensions were prepared and diluted according to the particular cell type and the expected target cell density (2.500-30.000 cells per well based on cell growth characteristics) and pipetted (80 μ l) into 96-well plates. Inoculates were allowed a pre-incubation period of 24 hours at 37°C and 5% CO₂ for stabilization. Tested compound was added in total volume of 20 μ l of water at time zero. Usually, test compound was evaluated at six 3-fold dilutions. In routine testing, the highest concentration tested was 100 μ M, but it could have been adjusted because of limited solubility of a compound. All drug concentrations were tested in triplicates.

Incubations of cells with the test compounds lasted for 72 hours at 37°C, in 5% CO₂ atmosphere and 100% humidity. At the end of incubation period Calcein AM in PBS was added into final

^{*} Activity of kinetin set at 100%.

concentration of 1 μ g / ml. After another 1 hour of incubation fluorescence (FD) was measured with the Labsystem FIA Reader Fluoroscan Ascent (UK). Growth inhibition (GI) was estimated using the following equitation: GI = (mean FD_{drug exposed wells} – mean FD_{blank}) / (mean FD_{control wells} – mean FD_{blank}) x 100%. The GI₅₀ value, the drug concentration causing 50% reduction of Calcein AM conversion, was calculated from the obtained dose response curves.

Cytoxicity of compounds was tested on panel of cell lines of different histogenetic and species origin. As shown in Table 9, 6,8-disubstituted-9-(heterocyclyl)purines exceeded maximal concentration tested which suggests that the compounds could be applied at concentrations causing desired effect without negative side effects.

10

Table 9. Cytotoxicity for different cancer cell lines

Compound		Cell line tested / IC ₅₀ (µmol/L)					
	ВЈ	СЕМ	K-562	MCF7	HOS	G-361	tested (µmol/L)
3	>50	>50	>50	>50	>50	>50	50
5	>50	>50	>50	>50	>50	>50	50
7	>100	>100	>50	>100	>100	>100	100
8	>100	>100	>100	>100	>100	>100	100
9	>50	>50	>50	>50	>50	>50	50
23	>50	>50	>50	>50	>50	>50	50
24	>50	>50	>50	>50	>50	>50	50
26	>50	>50	>50	>50	>50	>50	50
27	>50	>50	>50	>50	>50	>50	50
28	>50	>50	>50	>50	>50	>50	50
29	>50	>50	>50	>50	>50	>50	50
64	>50	>50	>50	>50	>50	>50	50
65	>50	>50	>50	>50	>50	>50	50
69	>50	>50	>50	>50	>50	>50	50
124	>50	>50	>50	>50	>50	>50	50
125	>50	>50	>50	>50	>50	>50	50
126	>50	>50	>50	>50	>50	>50	50
127	>50	>50	>50	>50	>50	>50	50
128	>50	>50	>50	>50	>50	>50	50

59							
129	>50	>50	>50	>50	>50	>50	50
130	>50	>50	>50	>50	>50	>50	50
145	>50	>50	>50	>50	>50	>50	50
146	>50	>50	>50	>50	>50	>50	50
147	>50	>50	>50	>50	>50	>50	50
149	>50	>50	>50	>50	>50	>50	50
150	>50	>50	>50	>50	>50	>50	50
151	>50	>50	>50	>50	>50	>50	50
206	>50	>50	>50	>50	>50	>50	50
207	>50	>50	>50	>50	>50	>50	50
208	>50	>50	>50	>50	>50	>50	50
209	>50	>50	>50	>50	>50	>50	50
216	>50	>50	>50	>50	>50	>50	50
218	>50	>50	>50	>50	>50	>50	50

Example 13: In vitro Cytotoxic Activity (metabolisation of MTT).

MTT (metabolic tetrazolium toxicity) assay is a standard colorimetric assay for evaluation of cytotoxicity. Mitochondrial dehydrogenase activity converts yellow MTT into violet formazan which is measured by means of spectrometry.

Human diploid fibroblast BJ (passage 18-22) were seeded into 96-well plate (5.000 cells per well). After 6 hours cultivation medium (DMEM with 5 g/l glucose, 2mM glutamine, 100 U/ml penicillin, 100 mmg/ml streptomycin, 10% fetal calf serum and sodium bicarbonate) was replaced with the cultivation medium containing test compounds in concentration range of 0-200 \square M. Highest concentration was adjusted if the solubility of the compound was limiting. Every concentration was tested in pentaplicate. MTT was added to the cells after 72 hours incubation (final concentration 0.5 mg / ml) and incubation continued for another 3 hours. MTT was solubilised by DMSO and absorbance at 570 nm was measured. Growth inhibition (GI) was estimated using the following equitation: GI = (mean A drug exposed wells— mean A_{blank} / mean A control wells— mean A_{blank}) x 100%. The GI₂₀ value, the drug concentration causing 20% decrease in mitochondrial dehydrogenase activity, was calculated from the obtained dose response curves.

As shown in Table 10, GI_{20} of 6,8-disubstituted-9-(heterocyclyl)purines exceded maximal concentration tested which suggests that the compounds could be applied at concentrations causing desired effect without negative side effects.

5

10

60 **Table 10.** Cytotoxicity for human diploid fibroblasts

	GI ₂₀	Maximum tested concentration
Compound	(µmol/L)	(µmol/L)
3	>50	50
5	>100	100
7	>200	200
8	>200	200
9	>100	100
23	>100	100
24	>100	100
26	>100	100
27	>100	100
28	>100	100
29	>100	100
64	>100	100
65	>100	100
69	>100	100
124	>100	100
125	>100	100
126	>100	100
127	>100	100
128	>100	100
129	>100	100
130	>100	100
145	>100	100
146	>100	100
147	>100	100
149	>100	100
150	>100	100
151	>100	100
206	>100	100
207	>100	100
208	>100	100

61					
209	>100	100			
216	>100	100			
218	>100	100			

Example 13: Ames Test.

5

10

15

20

A number of tests related to the safety of have been carried out using conventionally accepted protocols and procedures. The results of these studies are summarized herein. Tests were carried out using DMSO as solvent and dose levels of compound 21, 24, 26, 27, 39, 41, 45, 48, 50, 52, 53, 54, 55, 56, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 76, 124, 125, 126, 127, 128, 129, 130, 145, 146, 147, 149, 150, 151, 208, 216, 218 a 243 at 2.5, 5.0, 15, 50, 500, 1500, and 5000 μg/plate based upon standard protocol and procedures (Ames et al., Mutation Research, 31, 347-364 (1975); Maron et al., Mutation Research, 113, 173-215 (1983)). Using Salmonella typhimurium histidien auxotrophs TA98 and TA100 in the presence and absence of Aroclor-induced rat liver S9, no positive mutagenic responses were observed.

Example 14: Formulations.

The growth regulatory formulations usually contain from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, of active ingredient mixture comprising a 6,8-disubstitued purine of this invention, from 1 to 99.9% by weight of a solid or liquid formulation adjuvant, and from 0 to 25% by weight, especially from 0.1 to 25% by weight, of a surfactant. Whereas commercial products are usually formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further ingredients, such as stabilizers, e.g., vegetable oils or epoxidised vegetable oils (epoxidised coconut, rapeseed oil or soybean oil), antifoams, e.g., silicone oil, preservatives, viscosity regulators, binders, tackifiers, and also fertilisers or other active ingredients. Preferred formulations have especially the following compositions: (% = percent by weight):

25	Emulsifiable concentrates	a)	b)	c)	d)
	active ingredient mixture	5%	10%	25%	50%
	calcium dodecylbenzenesulfonate	6%	8%	6%	8%
	castor oil polyglycol ether (36 mol	4%	-	4%	4%
	of ethylene oxide)				
30	octylphenol polyglycol ether (7-8 mol-	4%	-	2%	
	of ethylene oxide)				

	62			
cyclohexanone	-	-	10%	20%
aromatic hydrocarbon	85%	78%	55%	16%
mixture (C9-C12)				

5 Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.

	Solutions	a)	b)	c)
	d)			
10	active ingredient mixture	5%	10%	50%
	90%			
	1-methoxy-3-(3-methoxy-			
	propoxy)-propane	-	20%	20% -
	polyethylene glycol (MW 400)	20%	10%	
15	N-methyl-2-pyrrolidone	-	-	30%
	10%			
	aromatic. hydrocarbon	75%	60%	
	mixture $9C_9$ - C_{12})			

The solutions are suitable for use in the form of microdrops.

20

25

30

Wettable powders	a)	b)	c)	d)
active ingredient mixture	5%	25%	50%	80%
sodium lignosulfonate	4%	-	3%	-
sodium lauryl sulfate	2%	3%	-	4%
sodium diisobutylnaphthalene-				
sulfonate	-	6%	5%	6%
octylphenol polyglycol ether (7-8 mol	-	1%	2%	-
of ethylene oxide)				
highly dispersed silicic acid	1%	3%	5%	10%
kaolin	88%	62%	35%	_

The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

	Suspension concentrates	63 a)	b)	c)	d)
	active ingredient mixture	3%	10%	25%	50%
	ethylene glycol	5%	5%	5%	5%
	nonylphenol polyglycol ether	-	1%	2%	-
5	(15 mol of ethylene oxide)				
	sodium lignosulfonate	3%	3%	4%	5%
	carboxymethylcellulose	1%	1%	1%	1%
	37% aqueous formaldehyde	0.2%	0.2%	0.2%	0.2%
	solution				
10	silicone oil emulsion	0.8%	0.8%	0.8%	0.8%
	water	87%	79%	62%	38%

The finely ground active ingredient is intimately mixed with the adjutants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water .

Dry Capsules

5000 capsules, each of which contain 0.25 g of one of the 6,8-disubstituted-6,8-disubstituted-9-(heterocyclyl)purinesas active ingredient, are prepared as follows:

20 <u>Composition:</u> Active ingredient: 1250 g; Talc:180 g; Wheat starch:120 g; Magnesium stearate:80 g; Lactose 20 g.

<u>Preparation process:</u> The powdered substances mentioned are pressed through a sieve of mesh width 0.6 mm. Portions of 0.33 g of the mixture are transferred to gelatine capsules with the aid of a capsule-filling machine.

25

15

Soft Capsules

5000 soft gelatine capsules, each of which contain 0.05 g of one of the 6,8-disubstituted-6,8-disubstituted-9-(heterocyclyl)purine as active ingredient, are prepared as follows:

<u>Composition</u>: 250 g Active ingredient + 2 litres Lauroglycol

Preparation process: The powdered active ingredient is suspended in Lauroglykol® (propylene glycol laurate, Gattefossé S.A., Saint Priest, France) and ground in a wet-pulveriser to a particle size of about 1 to 3 mm. Portions of in each case 0.419 g of the mixture are then transferred to soft gelatine capsules by means of a capsule-filling machine.

64

Soft Capsules

5000 soft gelatine capsules, each of which contain 0.05 g of one of the 6,8-disubstituted-6,8-disubstituted-9-(heterocyclyl)purine as active ingredient, are prepared as follows:

Composition: 250 g Active ingredient +1 litre PEG 400 +1 litre Tween 80

Preparation process: The powdered active ingredient is suspended in PEG 400 (polyethylene glycol of Mr between 380 and about 420, Sigma, Fluka, Aldrich, USA) and Tween[®] 80 (polyoxyethylene sorbitan monolaurate, Atlas Chem. Inc., Inc., USA, supplied by Sigma, Fluka, Aldrich, USA) and ground in a wet-pulveriser to a particle size of about 1 to 3 mm. Portions of in each case 0.43 g of the mixture are then transferred to soft gelatine capsules by means of a capsule-filling machine.

Example 15: Gel formulation

15

20

An ointment formulation was tested during a pilot clinical study with 4 volunteers with psoriatic skin disorders. The components are given in grams per 100 g.

Compound	Content
8-Amino-6-furfurylamino-9-tetrahydropyranylpurine	1.0 g
Butylhydroxytoluenum	0.2 g
Butylparaben	0.2 g
Diethyleneglycol monoethyl ether	10.0 g
Silica colloidalis anhydrica	5.0 g
Propylene glycol laurate	83.6 g

The gel consistence may be additionally modified by addition of silica colloidalis anhydrica. It is again expected that the transdermal Transcutol P/Lauroglycol FCC system will increase the efficiency of 8-amino-6-furfurylamino-9-tetrahydropyranyl- purine. Silica colloidalis anhydrica will probably slow down the penetration of the active substance.

Example 16: Preparation procedure of a skin ointment

The formulation components are given in grams per 200 g:

65

Compound	Content
8-Amino-6-furfurylamino-9-tetrahydropyranylpurine	2.0 g
Butylhydroxytoluenum	0.4 g
Butylparaben	0.4 g
Diethyleneglycol monoethyl ether	20.0 g
Glycerol dibehenate	44.0 g
Propylene glycol laurate	133.2 g

Recommended procedure

Phase A: 2 grams of 8-amino-6-furfurylamino-9-tetrahydropyranylpurine were dissolved in 20 g of Transcutol P while stirring continuously at room temperature in a separate glass or stainless-steel container. The dissolution process may be accelerated by heating the solution to a maximal temperature of 40°C.

Phase B: 0.4 grams of Nipanox BHT and 0.4 g of Nipabutyl were dissolved while stirring continuously in 133.2 g of Lauroglycol FCC at a temperature of approximately 70°C in another separate glass or stainless-steel container. The clear oily solution is heated to a temperature of approximately 80°C and 44 g of Compritol 888 ATO are melted in it while stirring continuously. The clear oily solution is cooled down to approximately 60°C and during continuous stirring and cooling down is mixed with phase A. The resulting whitish ointment-like substance is divided into approximately 15 gram portions and filled into prearranged plastic containers.

15

10

5

Example 17: Formulation of a composition for topical application to the skin

A composition for topical application to the skin contains the following ingredients by weight%: Active ingredient:

0.3 %

	8-An	nino-6-furfurylamino-9-tetrahydropyranylpurine	0.1 %
20	Oil phase:		
		Cetyl alcohol	5.0 %
		Glyceryl monostearate	15.0 %
		Sorbitan monooleate	0.3 %

Polysorbate 80 USP

66

Aqueous phase:

Methylcellulose 100 cps

1.0 %

Methyl paraben

0.25 %

Propyl paraben

0.15 %

Purified water

q.s. to 100 %

Methyl paraben and propyl paraben were dissolved in hot water and subsequently methylcellulose was dispersed in the hot water. The mixture was chilled at 6°C until the methylcellulose dissolved. The mixture was then heated to 72°C and added to the oil phase which was heated to 70°C while stirring continuously. 8-Amino-6-furfurylamino-9-tetrahydropyranylpurine was added at a temperature of 35°C and the resulting mixture was stirred continuously until dispersed. This composition is applied to the skin on at least a daily basis until the desired skin-ameliorating (antiaging) effect is reached.

10

67 CLAIMS

1. 6,8-Disubstituted-9-(heterocyclyl)purines of general formula I

wherein

5

15

20

25

30

Cyc is heterocyclyl selected from the group consisting of 2-tetrahydropyranyl and 2-tetrahydrofuranyl;

R6 is -NH-R_v,

 $\mathbf{R}_{\mathbf{v}}$ is selected from the group consisting of:

- C_1 to C_8 linear or branched alkyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkoxy,
- C_2 to C_8 linear or branched alkenyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkoxy,
- C_3 to C_8 cycloalkyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,
- benzyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,
- phenyl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,
- furfuryl, optionally substituted by at least one substituent selected from the group consisting of hydroxy, halogen, C_1 to C_4 alkyl, C_1 to C_4 alkoxy,

and

R8 is selected from the group comprising amino, hydroxy, halogen, acyl, acyloxy, amido, alkoxy, benzyloxy, alkylamino, dialkylamino, alkenylamino, carbamoyl, carboxyl, cyano, hydrazino, -NHOH, -NHCONH₂, -NH-C(NH)NH₂, nitro, sulphanyl, alkylsulphanyl, sulpho, and alkyloxycarbonyl.

2. The 6,8-disubstituted-9-(heterocyclyl)purines of claim 1, wherein R_y is selected from the group consisting of furfuryl, phenyl, benzyl, 3-methylbut-2-en-1-yl, cyclohexylmethyl, allyl or 3,3-

68

dimethylallyl, wherein each of these substituents can optionally be substituted with one or more substitutents selected from halogen, hydroxy, methoxy, methyl, amino, nitro or combinations thereof.

- 3. The 6,8-disubstituted-9-(heterocyclyl)purines of claim 1 or 2, wherein R8 is selected from the group consisting of amino, alkylamino, hydroxy, chloro, fluoro, bromo, amino(C₁-C₅ alkyl)amino, hydroxy(C₁-C₅ alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy.
- 10 4. The 6,8-disubstituted-9-(heterocyclyl)purines of claim 1, selected from the group comprising 6furfurylamino-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(3-hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-15 tetrahydrofuranyl)purine, 6-(4-hydroxybenzylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(Z)-(4-hydroxy-3-methylbut-2-en-1-ylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH₂, carboxyl, nitro, sulphanyl, 20 methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(E)-(4methylsulphanyl, hydroxy-3-methylbut-2-en-1-ylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine, 6-(4-hydroxy-3-25 methylbutylamino)-8-(amino, hydroxy, chloro, fluoro, bromo, amino(C1-C5 alkyl)amino, hydroxy(C1-C5 alkyl)amino, NHOH, NHNH2, carboxyl, nitro, sulphanyl, methylsulphanyl, methoxy)-9-(2-tetrahydropyranyl or 2-tetrahydrofuranyl)purine or salts and their salts with alkali metals, ammonia and amines, in the form fo racemates and optical isoemrs as well as their additional salts with acids thereof.

30

5. The 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 for use as antioxidants in plants, mammals or humans, in particular for use as antioxidants for inhibiting lipid pre-oxidation in plants, mammals or humans.

69

6. The 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 for use as medicaments.

- 7. The 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 for use in a method of treatment of skin conditions such as acne, erythema and redness, as antineurodegenerative drugs, in methods of suppression of immunostimulation, in a method of treatment of inflammation.
- 8. Use of the 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 as cosmetics.
 - 9. Use of the 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 as cosmetics in inhibition, delaying, or reducing the adverse effects of aging and senescence, and for improving the overall appearance and condition of the skin.

10. Use of the 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 as growth regulators in tissue cultures for stimulation of proliferation, morphogenesis and senescence; as cell division and differentiation factors of plant, mammal, microorganisms, yeast and fungal cells.

20

25

30

15

- 11. Use of the 6,8-disubstituted-9-(heterocyclyl)purines according to any one of claims 1 to 4 for preparation of affinity absorption matrices, immobilised enzymes for process control, immunoassay reagents, diagnostic samples, as well as compounds and oligonucleotides, labelled by ¹⁴C, ³H, avidin, biotin; for use with plant and mammalian (non-human) embryonic stem cells and embryo cloning.
- 12. A method for ameliorating the adverse effects of aging in mammalian and plant cells, said method comprising administering at least one 6,8-disubstituted-9-(heterocyclyl)purine according to any one of claims 1 to 4, to the mammalian cells or tissue in an amount effective to ameliorate the adverse effects of aging in the cells.
- 13. Pharmaceutical and/or cosmetic composition comprising one or more 6,8-disubstituted-9-(heterocyclyl)purine of the formula I according to any one of claims 1 to 4 and at least one auxiliary substance.

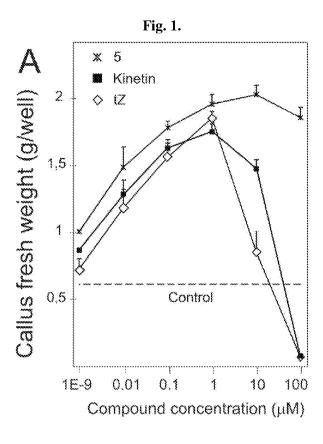
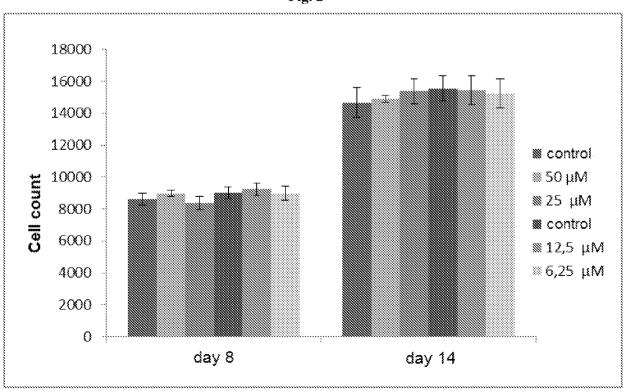



Fig. 2

INTERNATIONAL SEARCH REPORT

International application No PCT/CZ2015/050009

A. CLASSIFICATION OF SUBJECT MATTER INV. C07D473/34 A61K3

A61K31/52

A61P17/10

A61P17/18

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

CO7D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SUÁREZ ROSA M ET AL: "Inhibitors of the TAM subfamily of tyrosine kinases: Synthesis and biological evaluation", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, vol. 61, 12 June 2012 (2012-06-12), pages 2-25, XP028991147, ISSN: 0223-5234, DOI: 10.1016/J.EJMECH.2012.06.005 examples 20a, 20c, 20d	1,2
X	WO 2009/086457 A2 (INST OF EX BOTANY ACADEMY OF S [CZ]; SZUCOVA LUCIE [CZ]; ZATLOUKAL MAR) 9 July 2009 (2009-07-09) cited in the application examples	1-13

Χ See patent family annex.

Special categories of cited documents

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of mailing of the international search report

Date of the actual completion of the international search

8 December 2015 18/12/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Fazzi, Raffaella

1

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
PCT/CZ2015/050009

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT			
ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	WO 2008/008770 A2 (CARME COSMECEUTICAL SCIENCES I [US]; SZUCOVA LUCIE [CZ]; ZATLOUKAL MAR) 17 January 2008 (2008-01-17) cited in the application examples	1-13	
A	WO 03/040144 A2 (USTAV EX BOTAN AKADEMIE VED CE [CZ]; DOLEZAL KAREL [CZ]; POPA IGOR [CZ) 15 May 2003 (2003-05-15) cited in the application examples	1-13	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/CZ2015/050009

Patent document cited in search report	Publication date	Patent family Publication member(s) date
WO 2009086457 A	2 09-07-2009	AU 2008345103 A1 09-07-200 CA 2710981 A1 09-07-200 EP 2245031 A2 03-11-201 ES 2463997 T3 29-05-201 US 2009170879 A1 02-07-200 US 2011230503 A1 22-09-201 WO 2009086457 A2 09-07-200
WO 2008008770 A	2 17-01-2008	AU 2007272576 A1 17-01-200 BR P10714161 A2 25-12-201 CA 2657516 A1 17-01-200 CN 101646435 A 10-02-201 EA 200970110 A1 30-06-200 EP 2043630 A2 08-04-200 JP 5309023 B2 09-10-201 JP 5309023 B2 09-10-201 JP 2009543799 A 10-12-200 KR 20090047457 A 12-05-200 KR 2008009508 A1 10-01-200 US 2010234401 A1 16-09-201 US 2011224238 A1 15-09-201 US 2013072505 A1 21-03-201 WO 2008008770 A2 17-01-200 WO 2008008770 A2 17-01-200 WO
WO 03040144 A	2 15-05-2003	AU 2002363362 B2 22-05-200 AU 2008203837 A1 04-09-200 BR 0211597 A 13-07-200 CA 2455972 A1 15-05-200 CN 1556808 A 22-12-200 CZ 20012818 A3 12-03-200 HU 0401407 A2 19-05-200 JP 2005508386 A 31-03-200 KR 20050016267 A 21-02-200 MX PA04000936 A 17-02-200 MX PA04000936 A 17-02-200 NO 329434 B1 18-10-201 NZ 531086 A 23-12-200 SG 119228 A1 28-02-200 SG 127738 A1 29-12-200 US 2005043328 A1 24-02-200 US 2008014227 A1 17-01-200 WO 03040144 A2 15-05-200 YU 8904 A 17-08-200 ZA 200401461 A 13-06-200