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SECURING ACCESSIBLE SYSTEMS USING BASE FUNCTION
ENCODING

TECHNICAL FIELD

(1] The present invention relates generally to electronic computing devices and
computer systems, and more specifically, to securing software and firmware on devices and

systems which are accessible to attack.

BACKGROUND

2] The use of computers, electronic computing devices and computer software in all
of their various forms is recognized to be very common and is growing every day. As well,
with the pervasiveness of powerful communication networks, the ease with which computer
software programs and data files may be accessed, exchanged, copied and distributed is also
growing daily. In order to take advantage of these computer and communication systems and
the efficiencies that they offer, there is a need for a method of storing and exchanging

computer software and data securely.

[3] One method of maintaining confidentiality or privacy that has demonstrated
widespread use and acceptance is encryption of data using secret cryptographic keys. Existing
encryption systems are designed to protect their secret keys or other secret data against a
"black box attack". This is a situation where an attacker has knowledge of the algorithm and
may examine various inputs to and outputs from the algorithm, but has no visibility into the

execution of the algorithm itself (such as an adaptive chosen input/output attack).

[4] While cryptographic systems relying on the black box model are very common, it
has been shown that this model does not reflect reality. Often, the attacker is in a position to
observe at least some aspect of the execution of the algorithm, and has sufficient access to the
targeted algorithm to mount a successful attack (i.e. side-channel attacks such as timing
analysis, power analysis, cache attacks, fault injection, etc.) Such attacks are often referred to
as “grey-box” attacks, the assumption being that the attacker is able to observe at least part of

the system execution.
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I5] Recognizing this, an effort has been made to design encryption algorithms and data

channels which are resistant to a more powerful attack model--the "white box attack". A white
box attack is an attack on a software algorithm in which it is assumed that the attacker has full
visibility into the execution of the algorithm. To date, such protection systems have met with
reasonable success, but as such protection systems have become more and more sophisticated,
so has the sophistication of the attacking techniques (such as encoding reduction attacks,
statistical bucketing attacks and homomorphic mapping attacks). Thus, many existing white

box protection systems are being shown to be ineffective against concerted attacks.

[6] Obfuscation of software by means of simple encodings has been in use for some
time. In order to be useful, applications of such encodings in software obfuscation must not
increase the time and space consumption of the software unduly, so such encodings are
typically relatively simple. Hence, while they can protect software in bulk, they do not
provide a high degree of security. There are many communication boundaries in software
which represent particular vulnerabilities: passage of data in unprotected form into or out of an
obfuscated program, passage of data into or out of a cipher implementation in software or
hardware, and the like. The strength of prior encoding strategies typically is sharply limited
by the data sizes which they protect. For conventional encodings, such protected items are on
the order of 32 bits, sometimes 64 bits, and sometimes smaller pieces of data such as
characters or bytes. Given the limitations of encodings and the operand sizes, fairly swift

brute-force cracking of such encodings cannot be prevented in general.

7] There is therefore a need for more effective secret-hiding and tamper-resistance
techniques, providing protection of software code and data in general, as well as protection of
secret cryptographic keys, biometric data, encrypted data and the like. It also is desirable to
provide a much stronger form of protection for software boundaries than conventional simple

encodings.

SUMMARY

[8] Embodiments of the present invention aim generally at providing more effective
secret-hiding and tamper-resistance techniques, providing protection of software code and data

without fear that security will be breached.
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9] The methods and systems disclosed herein are not limited to any particular

underlying program. They may be applied to cryptographic systems, but equally, may be
applied to non-cryptographic systems. As well, the software code that is being protected does
not dictate what is done to protect it, so the protection techniques are not constrained by the
underlying code. This may provide an advantage over other protection techniques which can
leave or create patterns that are based on the underlying code. Such patterns may provide

weaknesses that can be exploited by attackers.

[10] Some embodiments disclosed herein provide “profound data dependence”, which
can make it difficult or impossible to unentangle or distinguish the protected code and the code
which is providing protection. For example, AES algorithms typically execute the same way
all the time, no matter what the input data is. This makes it straightforward for an attacker to
know what he is looking for and where to find it. Most white box protection systems have a
rigid equation structure which does not address this type of problem. That is, an attacker may
know what types of operations or effects to look for, and where in code or execution to look to
find those operations or effects. In contrast, embodiments disclosed herein may provide
coding which is not rigid, such as where each iteration of a protection algorithm results in a
different encoding. Thus, the system is extremely non-repeatable. Among other things, this
may make embodiments disclosed herein more resistant to a “compare” type attack, in which
an attacker changes 1 bit and observes how the targeted program changes. In some
embodiments disclosed herein, if an attacker changes 1 bit, then the protected code will look

completely different.

[11] As a matter of overview, the embodiments of tools, families of tools, and

techniques described herein may generally be grouped as follows:

D Systems and techniques for blurring boundaries between modules of targeted code,
and between the targeted code and the protection code. This may be accomplished, for
example, by blending code together with surrounding code, and interleaving ciphers with other

code, which is usually not done in other protective systems.

2) Systems and techniques for ensuring that a crack requires human intervention.
Humans look for patterns that they have seen before. By introducing random functions
according to embodiments disclosed herein, repetitive and/or common patterns can be

removed so that automated attacks are largely ineffective.
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3) Systems and techniques for protecting against “compare attacks”. As noted above,

a compare attack is an attack where two iterations of code execution are compared to see the
difference, such as changing a single input bit to see how the operation and output change.
Protection algorithms as disclosed herein may result in dramatically different functions with
each iteration of the protected code, so a compare attack does not provide any useful

information,

[12] The obfuscation techniques described herein may be implemented wherever the
overhead can be accommodated. White box protection systems typically have larger

overheads than the techniques described herein, and are therefore at a disadvantage.

[13] Some embodiments include systems and techniques for software protection that
operate by applying bijective “base” functions to the targeted code. These base functions are
pairs of mutually-inverse functions fx, fx"' which are used, for example, to encode an
operation, and then un-encode the operation at a later point in a software application. The
encoding obscures the original function and the data which it generates. There is no loss of
information, as the unencoding operation accommodates for the encoding operation,
“undoing” or “reversing” its effect later in the encoded application. Base function pairs may
be chosen such that an attacker cannot easily find or determine the inverse function. That is,
given a function fx, the inverse fx may not be found easily without the key K. The key K may
be used at code generation time, but then discarded once the functions fx, fK'l have been
generated and applied to the targeted code. These base function pairs are also lossless, i.e.
mathematically invertible. The protected software application does not need to decode a
function or process completely to use it elsewhere in the targeted code, as the encoding and
unencoding changes are included within the encoded application. In some embodiments it
may be preferred that the base functions are “deeply non-linear”, thus making homomorphic
attacks more difficult. In some embodiments, base function pairs may include permutation
polynomial encodings. A permutation polynomial is a polynomial which is invertible (a

polynomial bijection).

[14] Some embodiments may generate or use base function pairs in such a manner that
they generate “instance diversity” and “dynamic diversity”. To achieve “instance diversity”,
each base function pair may create a secure “communication channel”, such as between

portions of a software application, between two software applications or platforms, or the like.
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Dynamic diversity may be created by linking operation of the software to the input data. Each

time an encoding is performed, such as for communication between two encoded applications,
instance and dynamic diversity may be generated between the two applications. The base
functions may be highly “text dependent” so they offer good resistance to plaintext and
perturbation attacks. If an attacker changes anything, even making a very small change such
as the value of 1 bit, the change will result in a very large behavioural change. This feature is
a significant contrast to conventional cipher code, which typically results in the same patterns
and structure with each iteration of the code, regardless of the changes that an attacker makes.
By making small changes and observing the impact, the attacker is able to gather information
about the operation of cipher code, but he is not able to do the same with software encoded
using systems and techniques disclosed herein. The diversity provided by embodiments
disclosed herein also provides resistance to a “class crack”. That is, it is not possible to
provide an attack methodology which can systematically and automatically crack each
embodiment of the invention in all cases. Note also, that conventional white box
implementations and code optimizers will not provide sufficient diversity to gain any effective

protection.

[15] The diversity and non-invertibility of the inventive base functions increase the
complexity of the attack problem immensely. In contrast to conventional software code or
code protection systems, when attempting to defeat the systems and techniques disclosed
herein, an attacker must first figure out what function, code portion, application, or the like he

is attacking, then how to invert it, and then how to exploit it.

[16] The diversity provided by embodiments disclosed herein may provide a variable,
randomly-chosen structure to protected code. An engine which generates the base function
pairs and encodings may rely on a random or pseudo-random key to choose the underlying
function and/or the key. However, a key according to embodiments disclosed herein may not
be as small as the keys of many conventional security systems (i.e. 64 or 128 bits); rather, it
may be thousands or tens of thousands of bits. For example, a prototype was developed which

uses 2,000 bits.

[17] The base functions disclosed herein may include bijections used to encode, decode,

or recode data. Such bijections may include the following characteristics:
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[18] 1) Encoding wide data elements (typically four or more host computer words

wide), unlike typical scalar encodings (see [5, 7] listed in the Appendix), but like block

ciphers.

[19] 2) Encoding data only: unlike typical scalar encodings, but like ciphers, they are
not required to protect computations other than those involved in their own recoding of data

elements.

[20] 3) Concealing blocks or streams of data, and/or producing fixed-length hashes of
blocks or streams of data for authentication purposes, similar to block ciphers, but unlike

scalar encodings.

[21] 4) Employing forms of operations purposely chosen from the operation repertoire
of the software in which they will reside and with which they will be interlocked; i.e., they are

designed to resemble the code in the context of which they are embedded, unlike ciphers.

[22] 5) Unlike both ciphers and scalar encodings, employing massive multicoding. A
scalar encoding generally employs one or at most a few mathematical constructions. A cipher
typically employs a slightly larger number, but the number is still small. In some embodiments
of the invention, a variety of encodings are applied to an entire function, creating an intricately
interlaced structure resulting from the interaction of many forms of protection with one

another.

[23] 6) Unlike both ciphers and scalar encodings providing massively diverse
algorithmic architecture. Embodiments may have no fixed number of rounds, no fixed widths
for operands of various substeps, no fixed interconnection of the various substeps, and no

predetermined number of iterations of any kind.

[24] 7) Unlike both ciphers and scalar encodings, providing massive dynamic diversity
by means of highly data-dependent algorithms: i.e., for any particular employment of a base
function bijection, the path through its substeps, its iteration counts, and the like, depend

intensely on the actual data input to be encoded, decoded, or recoded.

[25] 8) Unlike both ciphers and scalar encodings, providing massive interdependence

with their embedding context; i.e., their behavior may depend strongly on the software in
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which they are embedded, and the software in which they are embedded can be made to

depend strongly on them.

[26] Some embodiments may use a large quantity of real entropy (i.e., a large truly
random input). However, if an engine which generates the base function pairs is not itself
exposed to attackers, it may be safe to employ significantly smaller keys which then generate
much larger pseudo-random keys by means of a pseudo-random number generator, since in
that case, the attacker must contend with both the real key entropy (that for the seed to the
pseudo-random number generator) and the randomness inevitably resulting from the

programming of the generator.

[27] In some embodiments, biased permutations may also be used. If internal data is
used to generate base function pairs or other encoding data/functions rather than random
numbers, then the resulting encoding will contain bias. If code is introduced to create
unbiased permutations that coding may be readily apparent, resulting in a weakness in the
system. In contrast, embodiments disclosed herein may generate biased permutations, but then
use various tools to make them less biased. This approach has been shown to be much less

apparent than known techniques.

[28] Some embodiments may include techniques for binding pipe-starts and pipe-ends,
so that the targeted software code is tied to applications or platforms at both ends. This may
be useful, for example, in a peer-to-peer data transfer environment or a digital rights
management (DRM) environment. Systems and techniques disclosed herein also may be used
to tie ciphers to other software applications or platforms, which is generally difficult to do

using conventional techniques.

[29] Some embodiments may use “function-indexed interleaving”. This technique
provides deep nonlinearity from linear components, and nonlinear equation solving. It can be
used in many ways, such as boundary protection, dynamic constant generation (e.g. key-to-
code), providing dynamic diversity (data-dependent functionality), self-combining ciphers,
cipher mixing and combining ciphers and non-ciphers. For example, it may be used to mix
black box ciphers with the other protection code disclosed herein, providing the long term
security of a black box cipher, with the other benefits of white box security. As noted above,
the encoding of the embodiments disclosed herein may be highly dependent on run-time data.

With function index interleaving, two kinds of information are used: a key, K, which
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determines the base functions and structure, and R, which determines which obfuscations are

to be applied to the “defining implementations”. Typically the client does not see R. The key,
K, may be augmented from the context, though in some examples described herein, only R is
augmented in this way. Optionally, semi-consistent information or data from a user or his
device (such as a smart phone, tablet computer, PDA, server or desktop computer system, or

the like) such as an IP address, could be used to encode and decode as a runtime key.

[30] Recursive function-indexed interleaving also may be used. Function-indexed
interleaving typically interleaves arbitrary functions. If some of these functions are
themselves functions obtained by function-indexed interleaving, then that is a recursive use of

function-indexed interleaving.

[31] Some embodiments may include random cross-linking, cross-trapping, dataflow
duplication, random cross-connection, and random checks, combined with code-reordering,

create omni-directional cross-dependencies and variable-dependent coding.

[32] Some embodiments may use memory-shuffling with fractured transforms (dynamic
data mangling) to hide dataflow may also be employed. In dynamic data mangling, an array A
of memory cells may be used which can be viewed as having virtual indices 0, 1, 2, ..., M-1
where M is the size of the array and the modulus of a permutation polynomial p on the finite
ring Z/(M) (i.e., the integers modulo M), as in a C program array. However, for any given
index i, there is no fixed position in the array to which it corresponds, since it is addressed as
p(i), and p employs coefficients determined from the inputs to the program. The locations
A[p(0)], A[p(D)], ... , A[p(M-1)] may be considered “pseudo-registers” Ry, ... , Ry extending
those of the host machine. By moving data in and out of these registers, recoding the moved
data at every move, and by re-using these “pseudo-registers” for many different values (e.g.,
by employing graph-coloring register allocation), the difficulty for an attacker to follow the

data-flow of the program may be greatly increased.

[33] Some embodiments may use “spread and blend” encoding. This is another way of
describing the use of base functions plus code interleaving, which “smears out” the boundaries
of the base functions to make them more difficult for an attacker to discern. General data
blending may have portions of base functions that are mixed with other code, making it more

difficult to identify and lift the code.
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[34] Some embodiments provide security lifecycle management. Black box security

provides good long-term protection, but is not very useful in today’s applications.
Embodiments disclosed herein may refresh implementations faster than they can be cracked
on unprotected devices. Different devices and applications have different needs. For
example, a pay-per-view television broadcast such as a sporting event, may have very little
value several days after the event, so it may only be necessary to provide sufficient security to
protect the broadcast data for a day or so. Similarly, the market for computer games may tail
off very quickly after several weeks, so it may be critical only to protect the game for the first
few weeks or months. Embodiments disclosed herein may allow a user to apply the level of
security that is required, trading off the security against performance. Literally, an adjustable
“obfuscation dial” can be placed on the control console. Although the specific defined level of
security achieved may be unknown, the intensity with which obfuscating methods are applied
may be controlled. Generally, these settings may be adjusted when the application is created
with its embedded base function, as part of a software development process. Security analysis
may provide an estimate of how difficult the application will be to crack given a specific level
of obfuscation. Based on the estimate, an engineering decision may be made of how to
balance performance needs against the need for security, and “obfuscation dial” may be set
accordingly. This kind of flexibility is not available with other protection systems. With
AES, for example, a fixed key length and fixed code is used, which cannot be adjusted.

[35] Some embodiments may provide a flexible security refresh rate, allowing for a
trade-off of complexity for the “moving target” of refreshing code. In many cases, the need is

to refresh fast enough to stay ahead of potential attackers.

[36] Some embodiments may not have a primary aim of providing long-term data
security in hacker-exposed environments. For that, the solution is not to expose the data to
hackers, but only to expose means of access to the data by, e.g., providing a web presence for
credential-protected (SecureID(TM), pass-phrases, etc.) clients which access the data via
protected conversations which can expose, at most, a small portion of the data. In a hacker-
exposed environment, it may be expected that a process of refreshing the exposed software in
some fashion will be deployed. For example, in satellite TV conditional access systems,
cryptographic keys embedded in the software in the set-top boxes (STBs) are refreshed on a

regular basis, so that any compromise of the keys has value for only a limited period of time.
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Currently, such cryptographic keys may be protected over this limited exposure period by

means of software obfuscation and/or white-box cryptography.

137] However, white-box cryptography has proven to be vulnerable to attacks which can
be executed very swiftly by cryptographically-sophisticated attackers with expert knowledge
of the analysis of executable programs, since the cryptographic algorithms employed are
amongst the most thoroughly examined algorithms in existence, and the tools for analysing
programs have become very sophisticated of late as well. Moreover, ciphers have peculiar
computational properties in that they are often defined over arithmetic domains not normally
used in computation: for example, AES is defined over a Galois field, RSA public-key
cryptosystems are defined by modular arithmetic over extremely large moduli, 3DES over bit

operations, table lookups, and bit-permutations extended with duplicated bits.

[38] In fact, the sophisticated analysis of programs has created a method of attack
which sometimes can bypass the need for cryptanalysis altogether: the code-lifting attack,
whereby the attacker simply extracts the cryptographic algorithm and employs it with no
further analysis (since it is, after all, an operational piece of software, however obfuscated it

may be) to crack a software application's functionality.

[39] Some embodiments may provide much stronger short-term resistance to attack.
Such protection may be suitable for systems where the time over which resistance is needed is
relatively short, because longer term security is addressed by means of refreshing the software
which resides on the exposed platforms. This addresses a specific unfilled need which
focusses at the point of tension created by highly sophisticated cryptanalytic tools and
knowledge, extremely well studied ciphers, limited protections affordable via software
obfuscation, highly sophisticated tools for the analysis of executable programs, and the limited
exposure times for software in typical commercial content distribution environments. The goal
is to prevent the kinds of attacks which experience with white-box cryptography has shown to
be within the state of the art: swift cryptanalytic attacks and/or code-lifting attacks so swift
that they have value even given the limited lifespans of validity between refreshes of the

exposed programs (such as STB programs).

[40] In many cases, it is only necessary to resist analysis for the duration of a refresh
cycle, and to tie cipher-replacement so tightly to the application in which it resides that code-

lifting attacks are also infeasible for the duration of a refresh cycle. The refresh cycle rate is

10
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determined by engineering and cost considerations: how much bandwidth can be allocated to

refreshes, how smoothly we can integrate refreshes with ongoing service without loss of
quality-of-service, and so on: these are all problems very well understood in the art of
providing conditional access systems. These considerations indicate roughly how long our

protections must stand up to analytic and lifting attacks.

[41] Some embodiments may provide significantly larger encodings which can resist
attacks for longer periods of time, by abandoning the notion of computing with encoded
operands — as is done with the simpler encodings above — and replacing it with something
more like a cipher. Ciphers themselves can be, and are, used for this purpose, but often they
cannot easily be interlocked with ordinary software because (1) their algorithms are rigidly
fixed by cipher standards, and (2) their computations are typically very different from ordinary
software and therefore are neither readily concealed within it, nor readily interlocked with it.
The base-functions described herein provide an alternative which permits concealment and
interlocking: they make use of conventional operations, and their algorithms are enormously
more flexible than is the case with ciphers. They can be combined with ciphers to combine a
level of black-box security as strong as conventional cryptography with a level of white-box

security significantly superior to both simple encodings as above and known white-box

cryptography.

[42] In some embodiments, a base function may be created by selecting a word size w
and a vector length N, and generating an invertible state-vector function configured to operate
on an N-vector of w-element words, which includes a combination of multiple invertible
operations. The state-vector function may receive an input of at least 64 bits and provides an
output of at least 64 bits. A first portion of steps in the state-vector function may perform
linear or affine computations over Z/(2"). Portions of steps in the state-vector function may be
indexed using first and second indexing techniques. At least one operation in an existing
computer program may then be modified to execute the state-vector function instead of the
selected operation. Each of the indexing techniques may control a different indexing
operation, such as if-then-else constructs, switches, element-permutation selections, iteration
counts, element rotation counts, function-indexed key indexes, or the like. Some of the steps
in the state-vector function may be non-T-function operations. Generally, each step in the
state-vector function may be invertible, such that the entire state-vector function is invertible

by inverting each step. In some configurations the state-vector function may be keyed using,

11
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for example, a run-time key, a generation-time key, or a function-indexed key. The state-

vector function may be implemented by various operation types, such as linear operations,
matrix operations, random swaps, or the like. Various encoding schemes also may be applied
to inputs and/or outputs of the state-vector function, and/or operations within the state-vector
function. In some configurations, different encodings may be applied to as to produce

fractures at various points associated with the state-vector function.

[43] In some embodiments, base functions as disclosed herein may be executed by, for
example, receiving an input having a word size w, applying an invertible state-vector function
configured to operate on N-vectors of w-element words to the input, where the state-vector
function includes multiple invertible operations, and a first portion of steps in the state-vector
function perform linear or affine computations over Z/(2"). Additional operations may be
applied to the output of the invertible state-vector function, where each is selected based upon
a different indexing technique. Generally, the state-vector function may have any of the

properties disclosed herein with respect to the state-vector function and base functions.

[44] In some embodiments, a first operation may be executed by performing a second
operation, for example, by receiving an input X encoded as 4(X) with a first encoding 4,
performing a first plurality of computer-executable operations on the input using the value of
B (X), where B is the inverse of a second encoding mechanism B, the second encoding B
being different from the first encoding 4, providing an output based upon B'(X). Such
operation may be considered a “fracture”, and may allow for an operation to be performed
without being accessible or visible to an external user, or to a potential attacker. In some
configurations, the output of the first operation may not be provided external to executable

code with which the first operation is integrated.

[45] In some embodiments, for a matrix operation configured to receive an input and
provide an output, prior to performing the operation, the input may be permuted according to a
sorting-network topology. The matrix operation may be executed using the permuted input to
generate the output, and the output permuted according to the sorting-network topology. The

permuted output then may be provided as the output of the matrix operation.

[46] In some embodiments, a first input may be received, and a function-indexed
interleaved first function applied to the first input to generate a first output having a left

portion and a right portion. A function-index interleaved second function may be applied to
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the first output to generate a second output, where the left portion of the first output is used as

a right input to the second function, and the right portion of the first output is used as a left
input to the second function. The second output may then be provided as an encoding of the

first input.

[47] In some embodiments, a key K may be generated, and a pair of base functions f,
fx! generated based upon the key K and a randomization information R. The base function fx
may be applied to a first end of a communication pipe, and the inverse fx" to a second end of
the communication pipe, after which the key K may be discarded. The communication pipe

may span applications on a single platform, or on separate platforms.

[48] In some embodiments, one or more operations to be executed by a computer
system during execution of a program may be duplicated to create a first copy of the operation
or operations. The program may then be modified to execute the first operation copy instead
of the first operation. Each operation and the corresponding copy may be encoded using a
different encoding. Pairs of operations also may be used to create a check value, such as
where the difference between execution of an operation result and execution of the copy is
added to the result of the operation or the result of the operation copy. This may allow for

detection of a modification made by an attacker during execution of the program.

[49] In some embodiments, during execution of a program that includes multiple
operations and a copy of each operation, upon reaching an execution point at which an
operation of the plurality of operations should be performed, either a copy or the original
operation may be selected randomly and executed by the program. The result of the
randomly-selected operations may be equivalent to a result that would have been obtained had

only a single copy of the operations been performed.

[50] In some embodiments, an input may be received from an application. An array of
size M may be defined with a number of M-register locations c,....c, withn <M. A
permutation polynomial p, an input-based 1x# vector mapping matrix 4 yielding z from the
input, and a series of constants ¢; = p(z+i) also may be defined. A series of operations may
then be performed, with each operation providing an intermediate result that is stored in an M-
register selected randomly from the M-registers. A final result may then be provided to the
application based upon the series of intermediate results from a final M-register storing the

final result. Each intermediate result stored in an M-register, may have a separate encoding
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applied to the intermediate result prior to storing the intermediate result in the corresponding

M-register. The different encodings applied to intermediate results may be randomly chosen
from among multiple different encodings. Similarly, different decodings, which may or may
not correspond to the encodings used to store intermediate results in the M-registers, may be
applied to intermediate results stored in M-registers. New M-registers may be allocated as

needed, for example, only when required according to a graph-coloring allocation algorithm.

[51] In some embodiments, a first operation g(y) that produces at least a first value a as
an output may be executed, and a first variable x encoded as aX+b, using a and a second value
b. A second operation f{aX+b) may be executed using aX+b as an input, and a decoding
operation using a and b may be performed, after which ¢ and b may be discarded. The value b
also may be the output of a third operation 4(z). Different encodings may be used for multiple
input values encoded as aX+b, using different execution instances of g(3) and/or A(z). The
values may be selected from any values stored in a computer-readable memory, based upon
the expected time that the constant(s) are stored in the memory. Similarly, existing computer-
readable program code containing instructions to execute an operation f(aX+b) and g(¥), and
g(y) produces at least a first value ¢ when executed; may be modified to encode x as cX+d.

The operation f{cX+d) may be executed for at least one x, and ¢ and d subsequently discarded.

[52] In some embodiments, at least one base function may be blended with executable
program code for an existing application. For example, the base function may be blended with
the executable program code by replacing at least one operation in the existing program code
with the base function. The base function also may be blended with the existing application
by applying one, some, or all of the techniques disclosed herein, including fractures, variable
dependent coding, dynamic data mangling, and/or cross-linking. The base functions and/or
any blending techniques used may include, or may exclusively include, operations which are
similar or indistinguishable from the operations present in the portion of the existing
application program code with which they are blended. Thus, it may be difficult or impossible
for an attacker to distinguish the base function and/or the blending technique operations from
those that would be present in the existing executable program code in the absence of the base

function.

[53] In some embodiments, a computer system and/or computer program product may

be provided that includes a processor and/or a computer-readable storage medium storing
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instructions which cause the processor to perform one or more of the techniques disclosed

herein.

[54] Moreover, because the algorithms used with base functions disclosed herein may
be relatively flexible and open-ended, they permit highly flexible schemes of software
diversity, and the varied instances can differ more deeply than is possible with white-box
cryptography. Thus, they are far less vulnerable to automated attacks. Whenever attacks can
be forced to require human participation, it is highly advantageous, because we can new
instances of protected code and data may be automatically generated at computer speeds, but

they can only be compromised at human speeds.

[55] Other systems, methods, features and advantages of the invention will be, or will
become, apparent to one with skill in the art upon examination of the following figures and
detailed description. It is intended that all such additional systems, methods, features and
advantages be included within this description, be within the scope of the invention, and be

protected by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[56] In the appended drawings:

[57] Figure 1 shows a commutative diagram for an encrypted function, in accordance

with the present invention;

[58] Figure 2 shows a Virtual Machine General Instruction Format, in accordance with

the present invention;

[59] Figure 3 shows a Virtual Machine Enter/Exit Instruction Format, in accordance

with the present invention;

[60] Figure 4 shows a Mark I “Woodenman’ Construction, in accordance with the

present invention;

[61] Figures 5 and 6 show the first and second half respectively, of a Mark II

Construction, in accordance with the present invention;
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[62] Figure 7 shows a graphical representation of a sorting network, in accordance with

the present invention;

[63] Figure 8 shows a flow chart of method of performing function-indexed

interleaving, in accordance with the present invention;

[64] Figure 9 shows a flow chart of method of performing control-flow duplication, in

accordance with the present invention;

[65] Figure 10 shows a flow chart of method of performing data-flow duplication, in

accordance with the present invention; and

[66] Figure 11 shows a flow chart of method of creating fx segments, in accordance with

the present invention.

[67] Figure 12 presents a process flow diagram for implementation of the Mark II

protection system of the invention;

[68] Figure 13 shows a graphical representation of the irregular structure of segment

design in a Mark III implementation of the invention;

[69] Figure 14 shows a graphical representation of the granularity that may be achieved

with T-function splitting in a Mark III implementation of the invention;

[70] Figure 15 shows a graphical representation of the overall structure of a Mark 111

implementation of the invention;

[71] Figure 16 shows a graphical representation of the defensive layers of a Mark I11

implementation of the invention;

[72] Figure 17 shows a graphical representation of mass data encoding in an

implementation of the invention;

[73] Figures 18 and 19 show graphical representations of control flow encoding in an

implementation of the invention;

[74] Figure 20 shows a graphical representation of dynamic data mangling in an

implementation of the invention;
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[75] Figure 21 shows a graphical representation of cross-linking and cross-trapping in

an implementation of the invention;

[76] Figure 22 shows a graphical representation of context dependent coding in an

implementation of the invention;

[77] Figure 23 presents a process flow diagram for implementation of the Mark II

protection system of the invention;

[78] Figure 24 shows a graphical representation of a typical usage of Mass Data

Encoding or Dynamic Data Mangling in an implementation of the invention.

[79] Figure 25 shows an exemplary block diagram setting out the primary problems that

the embodiments of the invention seek to address;
[80] Table 25 presents a table which categorizes software boundary problems;

[81] Figure 26 shows a block diagram of an exemplary software system in unprotected

form, under white box protection, and protected with the system of the invention;

[82] Figure 27 shows a bar diagram contrasting the levels of protection provided by
black box, security, white box security and protection under an exemplary embodiment of the

invention;

[83] Figure 28 shows a process flow diagram contrasting ciphers, hashes and exemplary

base functions in accordance with the present invention;

[84] Figure 29 shows an exemplary block diagram of how base functions of the

invention may be used to provide secure communication pipes;

[85] Figure 30 shows a process flow diagram for function-indexed interleaving in

accordance with the present invention;

[86] Figure 31 presents a process flow diagram for implementation of the Mark I

protection system of the invention;

DETAILED DESCRIPTION
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[87] Embodiments disclosed herein describe systems, techniques, and computer

program products that may allow for securing aspects of computer systems that may be
exposed to attackers. For example, software applications that have been distributed on
commodity hardware for operation by end users may come under attack from entities that have

access to the code during execution.

[88] Generally, embodiments disclosed herein provide techniques to create a set of base
functions, and integrate those functions with existing program code in ways that make it
difficult or impossible for a potential attacker to isolate, distinguish, or closely examine the
base functions and/or the existing program code. For example, processes disclosed herein may
receive existing program code, and combine base functions with the existing code. The base
functions and existing code also may be combined using various techniques such as fractures,
dynamic data mangling, cross-linking, and/or variable dependent coding as disclosed herein,
to further blend the base functions and existing code. The base functions and other techniques
may use operations that are computationally similar, identical, or indistinguishable from those
used by the existing program code, which can increase the difficulty for a potential attacker to
distinguish the protected code from the protection techniques applied. As will be described
herein, this can provide a final software product that is much more resilient to a variety of

attacks than is possible using conventional protection techniques.

[89] As shown in Figure 25, embodiments disclosed herein may provide solutions for
several fundamental problems that may arise when software is to be protected from attack,
such as software boundary protection, advanced diversity and renewability problems and

protection measurability problems.

[90] Software boundary problems may be organized into five groups as shown in Table
1: skin problems, data boundaries, code boundaries, boundaries between protected data and

protected code, and boundaries between protected software and secured hardware.

Table 1
Bounday Problem Description
. k ta and ions can b
Skin Data flows from unprotected Atta? s on unprotected da a and comp utatio noe
Problem | to protected domains starting points for compromising their data and
P computation counterparts in the protected domain. These
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Data flows from protected to
unprotected domains

Computation boundary
between unprotected and
protected domains

problems typically are hard to solve without introducing a
trusted enabling mechanism at the boundary.

Data
Boundary

Data type boundary

Current data transformation techniques are limited to
individual data types, not multiple data types or mass
data. The boundaries among distinct protected data items
stand out, permitting identification and partitioning.

Data dependence boundary

Data diffusion via existing data flow protections is
limited. Original data flow and computational logic is
exposed. Most current whitebox cryptographic
weaknesses are related to both data type and data
dependency boundary problems.

Data crossing functional
boundaries

Data communications among functional components of
an application system, whether running on the same or
different devices, or as client and server, are made
vulnerable because the communication boundaries are
clearly evident.

Code
Boundary

Functional boundaries among
protected components

Boundaries among functional components are still visible
after protecting those components. For example,
whitebox cryptography components can be identified by
their distinctive computations. In general, such protected
computation segments can be easily partitioned, creating
vulnerabilities to component-based attacks such as code
lifting, code replacement, code cloning, replay, code
sniffing, and code spoofing.

Boundaries between injected
code and the protected
version of the original
application code

Current individual protection techniques create secured
code that is localized to particular computations. Code
boundaries resulting from use of different protection
techniques are not effectively glued and interlocked.

Boundary between protected data and
protected code

Protected data and protected code are not effectively
locked together to prevent code or data lifting attacks.
Current whitebox cryptographic implementations are
vulnerable to such lifting attacks in the field.

Boundary between protected software and
secured hardware

We lack effective techniques to lock protected hardware
and protected software to one another. The boundary
between protected software and secure hardware is
vulnerable, since data crossing the boundary is
unprotected or weakly protected.

1]

There are three types of “skin problems” which may be addressed by embodiments

disclosed herein: data flows from unprotected to protected domains, data flows from protected

19




10

15

20

25

30

WO 2013/142981 PCT/CA2013/000305

to unprotected domains, and computation boundaries between unprotected and protected
domains. Ultimately, data and user interaction should be performed in an unencoded form, so
that the user can understand the information. In each case, attacks on unprotected data and
computations can be the starting point for compromising their data and computation
counterparts in the protected domain. These problems conventionally are hard to solve
without introducing a trusted enabling mechanism at the boundary. However, the diversity
provided by embodiments disclosed herein, and encoding at the boundary itself, provides a

degree of protection that is not provided by known systems.

[92] Data Boundaries may be categorized as one of three types: data type boundaries,
data dependency boundaries and data crossing functional component boundaries. With regard
to data type boundaries, current data transformation techniques are limited to individual data
types, not multiple data types or mass data. The boundaries among distinct protected data
items stand out, permitting identification and partitioning. With regard to data dependency
boundaries, data diffusion via existing data flow protections is limited: original data flow and
computational logic is exposed. Most current white box cryptography weaknesses are related
to both data type and data dependency boundary problems. Finally, with regard to data
crossing functional component boundaries, data communications among functional
components of an application system, whether running on the same or different devices, or as
client and server, are made vulnerable because the communication boundaries are clearly
evident. The use of base function encodings and function-indexed interleaving by
embodiments disclosed herein may address some or all of these data boundary issues because

both the data and the boundaries themselves may be obscured.

[93] Code Boundaries may be categorized into two types: functional boundaries among
protected components, and boundaries between injected code and the protected version of the
original application code. Functional boundaries among protected components are a weakness
because boundaries among functional components are still visible after protecting those
components. That is, with white box protection, the white box cryptographic components can
generally be identified by their distinctive computations. In general, such protected
computation segments can be easily partitioned, creating vulnerabilities to component-based
attacks such as code lifting, code replacement, code cloning, replay, code sniffing, and code
spoofing. Similarly, boundaries between injected protection code and the protected version of

the original application code are also generally visible. Current individual protection
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techniques create secured code that is localized to particular computations. Code boundaries

resulting from use of different protection techniques are not effectively glued and interlocked.
In contrast, the use of base function encodings and function-indexed interleaving by
embodiments disclosed herein may address all of these code boundary issues, because code
may be obscured and interleaved with the protection code itself. Because basic computer
processing and arithmetic functions are used for the protection code, there is no distinctive

code which the attacker will quickly identify.

[94] The boundary between protected data and protected code presents another
weakness which can be exploited by an attacker as current white box techniques do not secure
the boundary between protected data and protected code. In contrast, embodiments disclosed
herein may lock together the protected data and protected code, to prevent code or data lifting
attacks. Current white box cryptography implementations are vulnerable to such lifting

attacks in the field.

[95] Similarly, the boundary between protected software and secured hardware presents
a vulnerability as existing white box techniques do not protect the boundary between protected
software and secure hardware - data crossing such a boundary is unprotected or weakly
protected. In contrast, embodiments disclosed herein may lock protected hardware and

protected software to one another.

[96] There are also logistical issues associated with security, in particular, diversity and
renewability problems. Current program diversity is limited by program constructs and
structures, and by limitations of the individual protection techniques applied. As a result,
diversified instances do not vary deeply (e.g., program structure variation is extremely
limited), and instances may be sufficiently similar to permit attacks based on comparing
diversified instances. Current protection techniques are limited to static diversity and fixed
security. In contrast, embodiments as disclosed herein may provide dynamic diversity which
may allow for intelligent control and management of the level of security provided by
diversity and renewability. As disclosed in further detail herein, resolving advanced diversity

and renewability problems may be fundamental to security lifecycle management.

[97] Figure 26 shows a block diagram of an example software system protected under a
known white box model, and under an example embodiment as disclosed herein. The original

code and data functions, modules and storage blocks to be protected are represented by the
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geometric shapes labeled F1, F2, F3, D1 and D2. Existing white box and similar protection

techniques may be used to protect the various code and data functions, modules and storage
blocks, but even in a protected form they will (at the very least) disclose unprotected data and
other information at their boundaries. In contrast, embodiments of the present invention may
resolve these boundary problems. In some cases, once an instance of an embodiment as
disclosed herein has been executed, an observer cannot tell which parts are F1, F2, F3, D1, D2
and data from the original program, even though the observer has access to the program and

can observe and alter its operation.

[98] This may be accomplished, for example, by interleaving the code together between
different code and data functions, modules and storage blocks, thus “gluing” these components
together. With the code closely tied in this way, true boundary protection can be provided. As
described above, diversity and renewability are provided in terms of 1) much greater
flexibility being provided than past systems; 2) easy and powerful control; 3) enable dynamic
diversity and security; and 4) measurable and manageable diversity. Embodiments disclosed
herein also may provide a “complexity property” of one-way bijection functions, as well as a
measurable, controllable and auditable mechanism to guarantee required security for the user.
Bijections are described in greater detail hereinafter, but in short, they are lossless pairs of
functions, fx, fx"', which perform a transposition of a function, which is undone later in the
protected code. The transposition may be done in thousands or millions of different ways,
each transposition generally being done in a completely different and non-repeatable manner.
Various techniques may be used to conceal existing programs, achieving massive multicoding
of bijective functions, which are not humanly programmed, but are generated by random
computational processes. This includes bijective functions which can be used in cipher- and

hash-like ways to solve boundary problems.

[99] Embodiments disclosed herein may provide improved security and security
guarantees (i.e. validated security and validated security metrics) relative to conventional
techniques. Greater diversity in time and space than is provided by white box cryptography
also may be achieved. The security metrics are based on computational complexity of known
attacks, the basic primitive being the generation of mutually inverse function pairs. Other

primitives can be constructed as described herein, with or without symmetric or asymmetric

auxiliary keys.
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[(100] Figure 27 contrasts conventional black box and white box models with properties

of the embodiments disclosed herein, in terms of the long-term security and resistance to
hostile attacks. Cryptography is largely reliant on Ciphers and Hashes; Ciphers enable transfer
of secrets over unsecured or public channels, while Hashes validate provenance. These
capabilities have enormous numbers of uses. In a black-box environment, such cryptographic
techniques may have very good long term security. However, in terms of resistance to attacks,
such systems have a very short life. As explained above, Ciphers and Hashes have a rigid
structure and very standardized equations which are straightforward to attack. White box
protection may be used to improve the level of resistance to attacks, but even in such an
environment the protected code will still reveal patterns and equations from the original
Cipher-code and Hash-code, and boundaries will not be protected. As well, white box

protection will not provide diversity which protects code against perturbation attacks.

[101] In contrast, embodiments disclosed herein may incorporate Cipher-like and Hash-
like encodings, which gives the protective encodings the security and strength of Ciphers and
Hashes. In other words, the process of applying white box encodings to Ciphers and Hashes
typically uses simple encodihgs in an attempt to protect and obscure very distinctive code.
The techniques disclosed herein, however, may use strong, diverse encodings to protect any
code. With the diverse encodings and interleaving as disclosed, distinctiveness in the targeted
code will be removed. Thus, as shown, the disclosed techniques may provide a much stronger

security profile than conventional black box and white box protection.

[102] Figure 1 shows a commutative diagram for an encrypted function using encodings,
in accordance with embodiments of the present invention. For a F where F::D—R is total, a
bijection d: D— D’ and a bijection #: R—R’ may be selected. F'=r°Fe°d !is an encoded
version of F; d is an input encoding or a domain, encoding and  is an output encoding or a
range encoding. A bijection such as d or r is simply called an encoding. In the particular case
where F is a function, the diagram shown in Figure 1 then commutes, and computation with F”
is computation with an encrypted function. Additional details regarding the use of such

encodings generally are provided in Section 2.3 of the Appendix.

[103] Figure 28 contrasts the properties of conventional Ciphers and Hashes with those
of the bijective base functions disclosed herein. Ciphers are non-lossy functions; they

preserve all of the information that they encode, so the information can be unencoded and used
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in the same manner as the original. Ciphers are invertible provided that one is given the

key(s), but it is hard to determine the key or keys K7, K2 from instances of plain and
encrypted information (“PLAIN” and “ENCRYPTED” in Figure 28). Hashes are lossy above
a certain length, but this typically is not a problem because hashes are generally used just for
validation. With a hash it is hard to determine the optional key, K, from instances of the

original data and the hash (“PLAIN” and “HASHED” in Figure 28).

[104] The base functions disclosed herein may serve in place of either ciphers or hashes,
as it is hard to determine the key or keys from consideration of the encoding and unencoding
functions fi, fx. The advantage that the base functions provide over the use of Ciphers or
Hashes, is that the computations used by the base functions are more similar to ordinary code,
which makes it easier to blend the code of the base functions with the targeted code. As noted
above, Ciphers and Hashes use very distinctive code and structure which is difficult to obscure

or hide, resulting in vulnerability.

[105] Mutually-inverse base function pairs as disclosed herein may employ random
secret information (entropy) in two ways: as key information K which is used to determine the
mutually inverse functions fx, /i, and as randomization information R which determines fow

the fx, fx ' implementations are obscured.

[106] For example, two mutually inverse base functions may be represented by
subroutines G and H, written in C. The base functions may be constructed by an automated
base function generator program or system, with G being an obfuscated implementation of the
mathematical function fx and H being an obfuscated implementation of the mathematical
function fx'. Thus, G can be used to ‘encrypt’ data or code, which can then be ‘decrypted’

with H (or vice versa).

[107] Optionally, run-time keys can be provided in additional to the build-time key K.
For example, if the input of a given base function is wider than the output, the extra input
vector elements can be used as a run-time key. This is much like the situation with a cipher
such as AES-128. A typical run of AES-128 has two inputs: one is a 128-bit key, and one is a
128-bit text. The implementation performs encipherment or decipherment of the text under
control of the key. Similarly, a base-function can be constructed to encrypt differently
depending on the content of its extra inputs, so that the extra inputs in effect become a runtime

key (as opposed to the software generation time key K controlling the static aspects of the base
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function). The building blocks of base functions disclosed herein make it relatively easy to

dictate whether the runtime key is the same for the implementations of both fi, fx ' or is
different for fx than for fx': if the runtime key is added to the selector vector, it is the same for

frand fx"', and if it is added elsewhere, it differs between fx and fi\.

[108] Key information K can be used to select far more varied encoding functions than in
known white box systems, permitting much stronger spatial and temporal diversity. Diversity
is also provided with other techniques used in embodiments of the invention such as Function-
Indexed Interleaving which provides dynamic diversity via text-dependence. Further diversity
may also be provided by variants of Control-Flow Encoding and Mass-Data Encoding

described hereinafter.

[109] Base functions as disclosed herein may incorporate or make use of state vector
functions. In general, as used herein a state-vector function is organized around a vector of N
elements, each element of which is a w-bit quantity. The state vector function may be
executed using a series of steps, in each of which a number between zero and N of the
elements of the vector are modified. In a step in which zero elements are modified, the step

essentially applies the identity function on the state-vector.

[110] In some embodiments, one or more of the state-vector functions used in
constructing a base function may be invertible. A state-vector function is invertible if, for
each and every step in the state-vector function, a step-inverse exists such that that applying
the step-algorithm and then applying the step-inverse algorithm has no net effect. Any finite
sequence of invertible steps is invertible by performing the inverse-step algorithms in the

reverse order of their originals.

[111] [lustrative examples of invertible steps on a vector of w-bit elements include
adding two elements, such as adding i to j to obtain i+j, multiplying an element by an odd
constant over Z/(2"), mapping a contiguous or non-contiguous sub-vector of the elements to
new values by taking the product with an invertible matrix over Z/(2"). The associated inverse
steps for these examples are subtracting element i from element j, multiplying the element by
the multiplicative inverse of the original constant multiplier over Z/(2"), and mapping the sub-

vector back to its original values by multiplying by the inverse of that matrix, respectively.

25



10

15

20

25

30

WO 2013/142981 PCT/CA2013/000305
[112] Some embodiments may use one or more state-vector functions that have one or

more indexed steps. A step is indexed if, in addition to its normal inputs, it takes an additional
index input such that changing the index changes the computed function. For example, the
step of adding a constant vector could be indexed by the constant vector, or the step of
permuting a sub-vector could be indexed by the permutation applied. In each case, the

specific function executed is determined at least in part by the index provided to the function.

[113] Indexed steps also may be invertible. Generally, an indexed step is invertible if it
computes an invertible step for each index, and the index used to compute the step, or
information from which that index can be derived, is available when inverting the step. For
example, Sy7 is invertible if S17" is defined, and the index (17) is available at the appropriate
time to ensure that it 17" is computed when inverting the state-vector function. As an
example, a step may operate on some elements of the state. To index this step, other elements
of the state may be used to compute the index. If invertible steps are then performed on the
other elements, the index by may be retrieved by inverting those steps, as long as the two sets

of elements do not overlap.

[114] Function-Indexed Interleaving as disclosed herein is a specific example of the
principle of the use of indexed steps within a base function. Other uses of indexed steps as
disclosed herein may include: allowing the creation of keyed state-vector functions: the set of
indexes used in some of the indexed steps can be used as a key. In that case, the index is not
obtained from within the computation, but is provided by an additional input; i.e., the function
takes the state-vector plus the key as an input. If the indexed steps are invertible, and the
ordinary, non-indexed steps are invertible, then the whole state-vector function is invertible,

rather like a keyed cipher.

[115] In some embodiments, the index information may provide or may serve as a key
for the generated base functions. If the state-vector function is partially evaluated with respect
to the index information when the state-vector function is generated, so that the index does not
appear in the execution of the generated function explicitly, it is a generation-time key. If
code to handle the index information is generated during execution of the state-vector
function, so that the index does appear in the execution of the generated function explicitly, it
is a run-time key. If the code internally generates the index within the state-vector function, it

is a function-indexed key.
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[116] In an embodiment, a base function may be constructed based upon an initial

selected or identified word-size w. In some configurations, the default integer size of the host
platform may be used as the word size w. For example, on modern personal computers the
default integer size typically is 32 bits. As another example, the short integer length as used,
for example, in C may be used, such as 16 bits. In other configurations, a 64-bit word size
may be used. A vector length N is also selected for the base function, which represents the
length of inputs and outputs in the w-sized words, typically encompassing four or more words
internally. In some embodiments, such as where interleaving techniques as disclosed herein
are used, it may be preferred for the word size w to be twice the internal word size of the N-
vector. The state-vector function then may be created by concatenating a series of steps or
combinations of steps, each of which performs invertible steps on N-vectors of w-element
word. The inverse of the state-vector function may be generated by concatenating the inverses

of the steps in the reverse order.

[117] In some embodiments, one or more keys also may be incorporated into the state-
vector function. Various types of keying may be applied to, or integrated with, the state-
vector function, including run-time keying, generation-time keying, and function-indexed
keying as previously described. To generate a run-time keyed state-vector function, the
function may be modified to receive the key explicitly as an additional input to the function.
To generate a generation-time keyed state-vector function, code in the state-vector function
may be partially evaluated with respect to a provided key. For many types of operations, this
alone or in conjunction with typical compiler optimizations may be sufficient to make the key
unrecoverable or unapparent within the generated code. To generate a function-indexed keyed
state-vector function, the state-vector function may be constructed such that appropriate keys

for inverse operations are provided as needed within the state-vector function.

[118] In some embodiments, it may be preferred to select an implementation for the
state-vector function that accepts a relatively wide input and provides a relatively wide output,
and which includes a complex set of invertible steps. Specifically, it may be preferred to
construct an implementation that accepts at least a 64-bit wide input and output. It also may
be preferred for a significant number of steps in the state-vector function, such as at least 50%
or more, to be linear or affine operations over Z/(2w). It also may be preferred to select steps

for the state-vector function which have wide variety
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[119] In some embodiments, it may be preferred to index a significant portion of the

steps, such as at least 50% or more, using multiple forms of indexing. Suitable forms of
indexing include if-then-else or switch constructs, element-permutation selection, iteration
counts, element rotation counts, and the like. It also may be preferred for some or all of the

indexes to be function-indexed keys as disclosed herein.

[120] In some embodiments, it may be preferred for the initial and/or final steps of the
state-vector function to be steps which mix input entropy across the entire state-vector,

typically other than any separate key-input.

[121] In some embodiments, it may be preferred to construct the state-vector function
such that at least every few steps, a non-T-function step is performed. Referring to
programming operations, examples of T-function steps include addition, subtraction,
multiplication, bitwise AND|, bitwise XOR, bitwise NOT, and the like; examples of non-T-
function steps include division, modulo assignment, bitwise right shift assignment, and the
like. Other examples of non-T-function steps include function-indexed keyed element-wise
rotations, sub-vector permutations, and the like. As previously disclosed, the inclusion of non-
T-function steps can prevent or reduce the efficacy of certain types of attacks, such as bit-slice

attacks.

[122] As previously described, a state-vector function pair includes the state-vector
function as described herein and the complete inverse of the state-vector function. In
operation, construction of the state-vector function pair may, but need not be performed by, for
example, combining a series of parameterized algorithms and/or inverse algorithms in the
form of language source such as C++ code or the like. Similarly, substitution of generation-
time keys may, but need not be performed by a combination of macro substitution in the
macro preprocessor, function in-lining, and use of parameterized templates. Such
combinations, substitutions, and other operations may be automated within a state-vector
generating system as disclosed herein. Once the state-vector function pair has been generated,
one or both may be protected using binary- and/or compiler-level tools to further modify the
generated code. In some embodiments, the specific modifications made to one or both
functions in the state-vector function pair may be selected based upon whether or not each

member is expected to execute in an environment likely to be subject to attack.
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[123] For example, in some embodiments, the function or a part of the function that is

expected to be in an exposed environment may be bound near a point at which an input vector
is provided to the state-vector function, and/or near the point where an output vector is
consumed by its invoking code. The code may be bound by, for example, the use of dynamic
data mangling and/or fractures as disclosed herein. For example, the inputs provided may be
from a mangled store, and outputs may be fetched by an invoker from the mangled store.
Other techniques may be used to bind code at these points, such as data-flow duplication with
cross-linking and cross-trapping as disclosed herein. Different combinations may be used,
such as where dynamic data mangling, fractures, and data-flow duplication are all applied at
the same point to bind the code at that point. The protections applied to code expected to be in
an exposed environment may be applied within one or both of the state-vector function, with
the portion of the code affected determined by the needed level of security. For example,
applying multiple additional protection types at each possible point or almost each possible
point may provide maximal security; applying a single protection at multiple points, or
multiple protection types at only a single code point, may provide a lower level of security but
improved performance during code generation and/or execution. In some embodiments,
fractures may be applied at multiple points throughout the generation and binding process,
because many opportunities for fracture creation may exist due to generation of many linear

and affine operations among the steps of the state-vector function during its construction.

[124] In some embodiments, it may be useful to make one member of a state-vector
function pair more compact than the other. This may be done, for example, by making the
other member of the pair more expensive to compute. As a specific example, when one
member of a state-vector function pair is to be used on exposed and/or limited-power
hardware such as a smart card or the like, it may be preferred for a hardware-resident member
of the state-vector function pair to be significantly more compact than in other embodiments
disclosed herein. To do so, a corresponding server-resident or other non-exposed member of
the state-vector function pair may be made significantly more costly to compute. As a specific
example, rather than using a relatively high number of coefficients as disclosed and as would
be expected for a state-vector function generation technique as disclosed previously, a
repetitious algorithm may be used. The repetitious algorithm may use coefficients supplied by
a predictable stream generation process or similar source, such as a pseudo-random number
generator that uses a seed which completely determines the generated sequence. A suitable

example of such a generator is the a pseudo-random generator based on ARC4. In some
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embodiments, such as where the available RAM or similar memory is relatively limited, a

variant that uses a smaller element size may be preferred. The pseudo-random number
generator may be used to generate all matrix elements and displacement-vector elements.
Appropriate constraints may be applied to ensure invertibility of the resulting function. To
invert, the generated matrices can be reproduced by knowledge of the seed, at the cost of
creating the complete stream used in the exposed pair member, reading it in reverse,
multiplicatively inverting each matrix, and additively inverting each vector element in a
displacement, over Z/(2"). Thus, a limited-resource device such as a smart card may be
adapted to execute one of a state-vector function pair, while the system as a whole still

receives at least some of the benefits of a complete state-vector function system as disclosed

herein.
[125] Securing Communication Pipes
[126] As shown in the block diagram of Figure 29, base functions as disclosed herein

may be used to provide a secure communication pipe from one or more applications on one or
more platforms, to one or more applications on one or more other platforms (i.e. an e-link).
The same process may be used to pro'tect communication from one sub-application to another
sub-application on a single platform. In short, a base function pair f, fx.) may be used to
protect a pipe by performing a cipher-like encrypt and decrypt at respective ends of the pipe.
In an embodiment, the base function pair fx, fx.1 may be applied to the pipe start and pipe end,
and also applied to the application and its platform, thus binding them together and binding
them to the pipe. This secures (1) the application to the pipe-start, (2) the pipe-start to the

pipe-end, and (3) the pipe-end to the application information flow.

[127] An illustrative way of effecting such a process is as follows. Firstly, a key K is
generated using a random or pseudo-random process. The base-functions f, fi! are then
generated using the key K and randomization information R. The base functions are then
applied to pipe-start and pipe-end so that at run time, the pipe-start computes fx, and the pipe-
end computes fx'. The key K can then be discarded as it is not required to execute the
protected code. In an application such as this, the base-function specifications will be cipher-
based specifications for fx, fx (similar to FIPS-197 for AES encrypt and decrypt). Cloaked
base-functions are specific implementations (pipe-start and pipe-end above) of the smooth

base-functions designed to foil attempts by attackers to find K, invert a base-function (i.e.,
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break encryption), or break any of the bindings shown above. That is, a smooth base function

is one which implements fx or fx' straightforwardly, with no added obfuscation. A cloaked
base function still computes fx or fx ', but it does so in a far less straightforward manner. Its
implementation makes use of the obfuscation entropy R to find randomly chosen, hard to
follow techniques for implementing f or fx'. Further examples of techniques for creating and

using cloaked base functions are provided in further detail herein.
[128] Function-Indexed Interleaving

[129] To guard against homomorphic mapping attacks, embodiments disclosed herein
may use replace matrix functions with functions which are (1) wide-input; that is, the number
of bits comprising a single input is large, so that the set of possible input values is extremely
large, and (2) deeply nonlinear; that is, functions which cannot possibly be converted into
linear functions by i/o encoding (i.e., by individually recoding individual inputs and individual
outputs). Making the inputs wide makes brute force inversion by tabulating the function over
all inputs consume infeasibly vast amounts of memory, and deep nonlinearity prevents

homomorphic mapping attacks.

[130] Some embodiments may use “Function-Indexed Interleaving”, which may provide
diffusion and/or confusion components which are deeply nonlinear. A function from vectors
to vectors is deeply nonlinear if and only if it cannot be implemented by a matrix together with
arbitrary individual input- and output-encodings. If it is not deeply nonlinear, then it is “linear
up to I/0O encoding” (“linearity up to I/O encoding” is a weakness exploited in the BGE attack
on WhiteBox AES.)

[131] Function-Indexed Interleaving allows conformant deeply nonlinear systems of
equations to be solved by linear-like means. It can be used to foster data-dependent
processing, a form of dynamic diversity, in which not only the result of a computation, but the
nature of the computation itself, is dependent on the data. Figure 30 shows a process flow
diagram of an example Function-Indexed Interleaving process, which interleaves a single 4 x 4
function with a family of 4 x 4 functions. The 1 x 1 function with 1 x 1 function-family case
permits combining of arbitrary kinds of functions, such as combining a cipher with itself (in
the spirit of 3DES) to increase key-space; combining different ciphers with one another;
combining standard ciphers with other functions; and combining hardware and software

functions into a single function.
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[132] In the example implementation shown in Figure 30, the square boxes represent

bijective functions, typically but not necessarily implemented by matrices. The triangle has
the same inputs as the square box it touches and is used to control a switch which selects
among multiple right-side functions, with inputs and outputs interleaving left-side and right-

side inputs and outputs as shown:
- if the left-side box and right-side boxes are 1-to-1, so is the whole function;
- if the left-side box and right-side boxes are bijective, so is the whole function;

- if the left-side box and right-side boxes are MDS (maximum distance separable), so

is the whole function, whether bijective or not.

[133] If the triangle and all boxes are linear and chosen at random, then (by observation)

over 80% of the constructions are deeply nonlinear.

[134] In an example embodiment disclosed herein, function-indexed interleaving appears
four times in an fx, fx ' specification. Each time it includes three 4 x 4 linear mappings for
some 4 x 4 matrix M. Each instance of function-indexed interleaving has a single left-side

function and 2* = 16 right-side functions.

[135] Notably, function-indexed interleaving also may be nested, such that the left-
function or right-function-family may themselves be instances of function-indexed
interleaving. In such a configuration, the result is a recursive instance of function-indexed
interleaving. In general, such instances typically are more difficult for an attacker to
understand than non-recursive instances; that is, increasing the level of recursion in function-

indexed interleaving should increase the level of obscurity.

[136] A further example embodiment and corresponding mathematical treatment of
function-indexed interleaving is provided in Section 2.9, and specifically in Section 2.9.2, of

the Appendix, and Figure 8.
[137] Mark I System

[138] Three specific example embodiments are described in detail herein, referred to as
the Mark I, II and III systems. An exemplary implementation of the Mark I system is

presented in the process flow diagram of Figure 31. In this example, the square boxes
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represent mixed Boolean arithmetic (MBA) polynomial encoded matrices. The ambiguity of

MBA polynomial data- and operation-encodings is likely to be very high and to increase
rapidly with the degree of the polynomial. Each matrix is encoded independently, and the
interface encodings need not match. Thus, 2 x 2 recodings cannot be linearly merged with
predecessors and successors. The central construction is function-indexed interleaving which
causes the text processing to be text-dependent. Using simple variants with shifts, the number
of interleaved functions can be very large with low overhead. For example, permuting rows
and columns of 4 x 4 matrices gives 576 choices. As another example, XORing with initial
and final constants gives a relatively very high number of choices. Initial and final recodings
mix the entropy across corresponding inputs/outputs of the left fixed matrix and the right

selectable matrices. Internal input/output recodings on each matrix raise the homomorphic

2 2
23W/ 25W/

mapping work factor from order to order allowing for full ‘birthday paradox’

vulnerability — the work factor may be higher, but is unlikely to be lower.

[139] An example embodiment of a Mark I system and corresponding mathematical

treatment is provided in Sections 3.5 and 4 of the Appendix and in Figure 4.

[140] However, it has been found that a Mark I type implementation may have two

weaknesses that can be exploited in some circumstances:
1) Static dependency analysis can be used to isolate the components.

2) Only shift operations and comparisons in the ‘switch’ are non-T-functions. All of
the other components are T-functions and therefore may be recursively analysable using a bit-

slice attack.
[141] T-Functions

[142] A function f: (B*)F — (B")™ mapping from a k-vector of w-bit words to an m-vector
of w-bit words is a T-function if for every pair of vectors x € (B"), y € (B")" - y = f{x), with
x’#xand y’=f{x’), and with bits numbered from 0 to w - 1 in the w-bit words, the lowest
numbered bit in an element word at which y and y’ differ is not lower than the lowest

numbered bit in an element word at which x and x’ differ.

[143] Thus, a function which is a T-function will have the property that a change to an

input element’s 2’ bit never affects an output element’s 2 bit when i > j. Typically, the bit-
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order numbering within words is considered to be from low-order (2%) to high-order (2¥™")

bits, regarding words as representing binary magnitudes, so this may be restated as: an output
bit can only depend on input bits of the same or lower order. So it may be possible to “slice
off” or ignore higher bits and still get valid data. Some embodiments also may incorporate
tens of millions of T-functions, in contrast to known implementations which only use
hundreds of T-functions. As a result, embodiments disclosed herein may be more resistant to

bit slicing attacks and statistical attacks.

[144] Functions composable from A, V,, — computed over B" together with +, —, X over
Z/(2™), so that all operations operate on w-bit words, are T-functions. Obscure constructions
with the T-function property are vulnerable to bit-slice attacks, since it is possible to obtain,
from any T-function, another legitimate T-function, by dropping high-order bits from all
words in input and output vectors. The T-function property does not hold for right bit-shifts,
bitwise rotations, division operations, or remainder/modulus operations based on a
divisor/modulus which is not a power of two, nor does it hold for functions in which
conditional branches make decisions in which higher-order condition bits affect the value of
lower-order output bits. For conditional branches and comparison-based conditional
execution, conditional execution on the basis of conditions formed using any one of the six
standard comparisons =, #, <, >, <, > all can easily violate the T-function condition, and
indeed, in normal code using comparison-based branching logic, it is easier to violate the T-

function condition than it is to conform to it.
[145] External and Internal Vulnerabilities and Attack-Resistance

[146] By repeatedly applying either of a pair of bijective functions fx fx where fx, 1!
are T-functions, it may be possible to precisely characterize the computations using a bit-slice
attack. In such an attack, the operation of these functions is considered ignoring all but the
low-order bits, and then the low-order two bits, and so on. This provides information until the
full word size (e.g., 32 bits) is reached, at which point complete information on how the
function behaves may be available, which is tantamount to knowledge of the key K. This is an
external vulnerability. While the attack gains knowledge of implementation details, it does so
without any examination of the code implementing those details, and could be performed as an

adaptive known plaintext attack on a black-box implementation.
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[147] A less severe external vulnerability may exist if the functions of the pair have the

property that each acts as a specific T-function on specific domains, and the number of distinct
T-functions is low. In this case, a statistical bucketing attack can characterize each T-function.
Then if the domains can similarly be characterized, again, without any examination of the
code, using an adaptive known plaintext attack, an attacker can fully characterize the
functionality of a member of the pair, completely bypassing its protections, using only black-
box methods. Plainly, it may be desirable to have an effective number of distinct T-functions
to foil the above attack. In Mark III type implementations, for example, there are over 10
distinct T-functions per segment and over 10*° T-functions over all. Mark III type

implementations are described in further detail herein.

[148] In some cases, the pair of implementations may include functions which achieve
Sfull cascade, that is, every output depends on every input, and on average, changing one input
bit changes half of the output bits. An example of an internal vulnerability may occur in a
Mark II type implementation where, by ‘cutting’ the implementation at certain points, it may
be possible to find a sub-implementation (a component) corresponding to a matrix such that
the level of dependency is exactly 2 x 2 (in which case the component is a mixer matrix) or 4
x 4 (in which case it is one of the L, S, or R matrices). Once these have been isolated,
properties of linear functions allow very efficient characterization of these matrices. This is an
internal attack because it requires non-black-box methods: it actually requires examination of
internals of the implementations, whether static (to determine the dependencies) or dynamic

(to characterize the matrices by linearity-based analyses).

[149] As a general rule, the more external attacks are prevented, and a potential attacker
is forced to rely on increasingly fine-grained internal attacks, the harder the attacker’s job
becomes, and most especially, the harder the attacks become to automate. Automated attacks
are especially dangerous because they can effectively provide class cracks which allow all

instances of a given technology to be broken by tools which can be widely distributed.

[150] Thus embodiments disclosed herein may provide, by means of of variable and
increasingly intricate internal structures and increasingly variegated defenses, an environment
in which any full crack of an instance requires many sub-cracks, the needed sub-cracks vary
from instance to instance, the structure and number of the attacked components varies from

instance to instance, and the protection mechanisms employed vary from instance to instance.
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In this case, automating an attack becomes a sufficiently large task to discourage attackers

from attempting it. In the substantial time it would take to build such an attack tool, the
deployed protections may have been updated or otherwise may have moved on to a new

technology for which the attack-tool’s algorithm no longer suffices.
[151] Mark II System

[152] A block diagram of an example Mark II type implementation according to an
embodiment is presented in Figures 23 and 12. Figure 23 presents the processing of a “base
core function” which appears four times in Figure 12. The complete execution flow fora
Mark II type system is shown in Figures 5 and 6, and described in further detail with reference

to Figures 5 and 6 in Section 5.1 of the Appendix.

[153] In an implementation according to a Mark II type embodiment, explicit use of
recoding is part of the functionality chosen by K. Right-side recodes and permutations are
chosen text-dependently from pairs for a total of 16 configurations per core and 65,536
configurations over all. However, a T-function count of 65,536 over all may be much too low
for many cases; even a blind bit-slice attack, which ignores the internal structure and uses
statistical bucketing, might suffice to crack the Mark I implementation given sufficient attack

time.

[154] The balance of a Mark II type implementation is shown in Figure 12. Initial and
final permutations and recodes as shown are statically chosen at random. Swapping sides
between cores 1 & 2 and between cores 3 & 4, and half-swapping between cores 2 & 3, ensure
text dependence across the entire text width. However, the highly regular structure facilitates
component-isolation by interior dependency analysis. Once the components are isolated, the
T-functions can be analysed by bit-slice analysis. The non-T-function parts are simple and can
be cracked using straightforward attacks. Thus, the Mark II implementation is effective and is

useful in many applications, but could be compromised with sufficient access and effort.

[155] The Mark II proposal is similar to Mark I in that it has a fixed internal structure,
with only coefficient variations among the base function implementation pairs. Further
description regarding the example embodiment of a Mark II implementation and a

corresponding mathematical treatment is provided in Section 5.1 of the Appendix.

[156]  Mark I1I System
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[157] In contrast to the Mark I and Mark II implementations described above, a Mark III

base function design according to an embodiment disclosed herein may include the following

properties:

- an irregular and key-determined structure, so that the attacker cannot know the

details of the structure in advance;

- highly data-dependent functionality: varying the data varies the processing of the

data, making statistical bucketing attacks resource-intensive;

- a relatively extremely high T-function count (the number of separate sub-functions
susceptible to a recursive bit-slice attack), making a blind bit-slice attack on its T-functions

infeasible;

- redundant and implicitly cross-checked data-flow, making code-modification

attacks highly resource-intensive; and

- omni-directional obfuscation-induced dependencies, making dependency-based

analysis resource-intensive.

[158] Figure 13 shows a schematic representation of execution flow in a portion of an
example Mark III type implementation. Similar to the example execution flows described
with respect to the Mark I and Mark II type implementations, each component may represent a
function, process, algorithm or the like, with arrows representing potential execution paths
between them. Where different arrows lead to different points within the components, it will
be understood that different portions of the component may be executed, or different execution
paths within the component may be selected. As shown in Figure 13, a Mark III type
implementation may provide an irregular, key-dependent, data-dependent, dataflow-redundant,
cross-linked, cross-checked, tamper-chaotic structure, containing a nested function-indexed-
interleaving within a function-indexed interleaving. Cross-linking can be omnidirectional
because right-side selection depends on the inputs, not the outputs, of the left-side in each
interleaving, so that simple code reordering within each segment allows right-to-left cross
connections as well as left-to-right ones. As shown in Figure 14, Irregular Extremely fine-

grained T-function splitting makes overall T-function partitioning attack ineffective.
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[159] Figure 15 shows another example schematic of a portion of a Mark III type

implementation as disclosed herein. As shown in Figure 15, the initial and final mixing may
use linear transforms of 32-bit words having widths of 3 to 6. Five to seven segments may be
are used, each of which contains a 3-band recursive instance of function-indexed interleaving.
Each band is 3 to 6 elements wide, with a total of 12 elements for all three bands. Matrices are
I/0 permuted and I/O rotated, giving over 100 million T-subfunctions per segment: the whole
base function has over 10*° T-subfunctions. Dataflow duplication, random cross-connection,
and random checks, combined with code-reordering also may be used, creating omni-

directional cross-dependencies.

[160] A number of the different defenses that may be used in a Mark III type system are

shown graphically in Figure 16. They include features such as the following:

- memory-shuffling with fractured transforms (dynamic data mangling) which hides

dataflow;

- random cross-linking, cross-trapping, and variable-dependent coding which causes

pervasive inter-dependence and chaotic tamper response;

- permutation polynomial encodings and function-indexed interleaving which hobble

linear attacks;

- variable, randomly-chosen structure which hobbles advance-knowledge attacks;

and

- functionality is highly dependent on run-time data, reducing repeatability and

hobbling statistical bucketing attacks.

[161] Further details regarding a Mark III type implementation are provided in Section 6
of the Appendix. A related process for creating an invertible matrix over Z/(2") is provided in
Section 3.3 of the Appendix. As shown and described, initial and/or final mixing stelps also

may be used, examples of which are provided in Section 2.8 of the Appendix.

[162] By replacing conditional swaps with 2 x 2 bijective matrices mixing each input into
each output, we can take precisely the same network topology and produce a mixing network
which mixes every input of a base function with every other initially, and we can employ

another such network finally to mix every output of the base function with every other. As
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noted above the mixing is not entirely even, and its bias can be reduced with conditional swaps

replaced by mixing steps. A segment’s input and output vectors also may be subdivided, for
example as described in further detail in Sections 6.2.3-6.2.7 of the Appendix, and as

illustrated in Figure 11.
[163] Data-Flow Duplication

[164] Some embodiments may include data flow duplication techniques. For example, as
described below, for every instruction which is not a JUMP. . ., ENTER, or EXIT, the
instruction may copied so that an original instruction is immediately followed by its copy, and
new registers may be chosen for all of the copied instructions such that, if x and y are

instructions, with y being the copy of x,

[165] 1) if x inputs the output of an ENTER instruction, then the corresponding y input

uses the same output;

[166] 2) if x inputs the output of an original instruction # with copy v, then the
corresponding input of y inputs from the v output corresponding to the u output from which x

inputs; and

[167] 3) if x outputs to an EXIT instruction, then the corresponding output of y outputs

to a a special unused sink node indicating that its output is discarded.

[168] Thus, all of the computations except for the branches have an original and a copy
occurrence.

[169] To accomplish this transformation, we proceed as follows.

[170] We add a new instruction JUMPA (‘jump arbitrarily’), which is an unconditional

branch with fwo destinations in control-flow graph (cfg) form, just like a conditional branch,
but with no input: instead, JUMPA chooses between its two destinations at random. JUMPA
is not actually part of the VM instruction set, and no JUMPA will occur in the final obfuscated

implementation of f or fk.

[171] We use JUMPA in the following transformation procedure:
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[172] 1) If the implementation is not in SMA (static multi-assignment) form already,

convert it to SMA form;

[173] 2) For each of BB X of the BB’s in the implementation Xj, . . .,Xy, replace it with
three BBs C;, X;, X’; by creating a new BB X’; which is identical to X, and adding a new
BBC,; which contains only a single JUMPA instruction targeting both X; and X’;, making X;
and X’; the two targets of C;’s JUMPA, and making every non-JUMPA branch-target pointing
to X, point to C;instead.

[174] 3) Convert the implementation to SSA form (static single assignment), isolating
the local data-flow in each X; and X’;, although corresponding instructions in X; and X’; still

compute identical values.

[175] 4) Merge all of the code in each X’; back into its X, alternating instructions from
X;and X’;in the merge so that corresponding pairs of instructions are successive: first the X;

instruction, and then the corresponding X’; instruction.

[176] 5) Make each branch-target which is a C; point to the corresponding X; instead,
and remove all of the C;and X*; BBs. At this point, the data-flow has been duplicated, the
original shape of the CFG has been restored, and the implementation is free of JUMPA

instructions. Remember which instructions correspond in each X; for future use.

[177] Further details regarding control flow duplication are provided in Section 5.2.6 of
the Appendix, and described with respect to Figure 9, which shows an example process for

control flow duplication according to embodiments disclosed herein.
[178] Fractures and Fracture Functions

[179] Generally when an encoded output is produced, it is consumed with exactly the
same encoding assumed, so that an encoded operation z = f{x, y) becomes z’ =/’ (x’, y’) where

1

(x’ ¥, 2) = (ex(x), ey(y), ex(z)), for encodings ey, e,, e., and where f* =e, o fo[ e, ", ey_l].

[180] In some embodiments, it may be advantageous to output a value with one
encoding, and subsequently input assuming some other encoding. If x is output as as e;(x),
and later consumed assuming encoding e, in effect we have applied e, ™' © e; to the unencoded
value. Such an intentional mismatch between the encoding in which a value is produced and

the encoding assumed when it is consumed is referred to herein as a “fracture.” If the
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encodings are linear, so is the fracture function e, ‘o e 1, and if they are permutation

polynomials, so is the fracture function e; "< ;.

[181] In some embodiments, fractures may be useful in obfuscation because the
computation which they perform effectively does not appear in the encoded code - the amount
and form of code to perform a normal networked encoding and one which adds an operation
by means of a fracture is identical, and there appears to be no obvious way to disambiguate

these cases, since encodings themselves tend to be somewhat ambiguous.

[182] Note that the defining property of a fracture is the fracture function, for example
v ! o u. Generally, there are many different choices of consuming encoding v and producing
encoding u# which produce exactly the same fracture function. It is quite possible, for
example, to have uy, ..., ug vy, . .., v such that v; ! » u;is the same fracture function for i =
1, ..., k. Thus, specifying the fracture function does not necessarily specify the producing

and consuming encodings which imply it.
[183] Data Scrambling via Mass Data Encoding

[184] Mass Data Encoding (MDE) is described in United States Patent No. 7,350,085,
the contents of which are incorporated herein by reference. In short, MDE scrambles memory
locations in a hash-like fashion, dynamically recoding memory cells on each store and
dynamically recoding and relocating memory cells by background processing. By
mismatching fetch and store recodings, a fetch or store can perform an add or multiply while
continuing to look like a simple fetch or store. This makes it hard for an attacker to

disambiguate between mere obfuscation and useful work.

[185] MDE is compiled, not just interpreted, so supporting data structures are partially
implicit and hence, well-obscured. Actual addresses are always scrambled and rescrambled by
background activity. As shown in Figure 17, the code accessing the Virtual MDE memory is
initially written as if it were accessing an ordinary piece of memory. The code is then
modified by the methods described in US patent 7,350,085 to employ a mapping technique
which encodes both the data and locations in the memory. Thus, the locations accessed move
around over time, and the encodings applied to the data likewise change over time, under the
feet of the running code. This technique of protection has substantial overhead, but its highly

dynamic nature makes it arduous for an attacker to penetrate the meaning of software which
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uses it. Cells are recoded when stored, and are recoded periodically by background activity.

Mismatching recode on store and corresponding recode on fetch can do a covert add or
multiply (key-controllable). Fetched items are recoded, but not to smooth (i.e., not to
unencoded). Stored items are not smooth prior to store, and are recoded on store to a
dynamically chosen new cell encoding. Stored data are meaningless without the code which
accesses them. One program can have any number of distinct, nonoverlapping MDE
memories. An MDE memory can be moved as a block from one place to another or can be
transmitted from one program to another via a transmission medium. That is, messages of

sufficient bulk can be transmitted in MDE-memory form.

[186] The initial state of the memory is not produced by hacker-visible activity, and

hence conceals how its contents were derived. That is, the initial state is especially obscure.
[187] Control Confusion via Control Flow

[188] Control Flow Encoding (CFE) is described in United States Patent No. 6,779,114,
the contents of which are incorporated herein by reference. CFE combines code-fragments
into multi-function lumps with functionality controlled by register-switching: many-to-many
mapping of functionality to code locations; execution highly unrepeatable if external entropy
available: the same original code turns into many alternative executions in CFE code. By
modifying the register-switching and dispatch code, key information can control what is

executed and therefore control the computation performed by embodiments of the invention.

[189] Code represented by the control-flow graph of Figure 18, where the letters denote
code fragments, can be encoded as shown in Figure 19. The protected control-flow encoding
shows lumps created by combining pieces, executed under the control of the dispatcher, with

the ‘active’ piece(s) selected by register switching.

[190] CFE is compiled, not just interpreted, so supporting data structures are partially
implicit, and hence, well-obscured. Lumps combine multiple pieces; that is, they have
multiple possible functionalities. When a lump is executed, which piece(s) is/are active is
determined by which operate via registers pointing to real data, not dummy data. The same
piece may occur in multiple lumps, with different data-encodings: mapping from

functionalities to code-locations is many-to-many.
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[191] The dispatcher can be arranged to select pieces which embody a background

process, making it hard to distinguish background and foreground activity. Available entropy
is used to determine which alternative way of executing a sequence of pieces is employed,
providing dynamic execution diversity (nonrepeating execution). As well, key information

can be used to influence dispatch and hence vary the represented algorithm.
[192] Dynamic Data Mangling

[193] As shown in Figure 20 re-use of M-registers may be maximized, allocating
separate M-registers only where required, using Chaitin’s graph-coloring allocation algorithm.
As aresult, M-registers are re-used frequently, making data-flow harder for attackers to

follow.

[194] To do so, first a modulus M, a permutation polynomial p over the mod-M ring, an
input-based 1xn vector mapping matrix 4 yielding z from the inputs, and a series of constant ¢;
= p(z+i) for 1 <i < M, may be selected, where the ¢; values are distinct since p is a mod-M
perm-polynomial. Locations ¢y, ..., ¢, (with n < M) are treated in an array X of size M as ‘M-

registers’.

[195] During computation, data may be moved randomly into and out of M-registers, and
from M-register to M-register, changing encoding at each move. Some embodiments also may
randomly cause either the encodings to form an unbroken sequence, or may inject fractures as

disclosed herein where encodings do not match.

[196] Given a fracture with data in encoding el, the input is assumed to be in encoding
€2, thus computing the fracture function e3 = e2-1 o el. Ifel, 2 are linear, so is e3. Ifel, e2
are permutation polynomials, so is 3. The code has identical form whether a fracture is
present or not; i.e., it is ambiguous whether or not a fracture is present. Thus, as previously
described, fractures may provide a means of injecting hidden computations such that the code

looks much the same before and after it is added.

[197] Additional details and mathematical treatment of the use of dynamic data mangling

is provided in Section 7.8.14 of the Appendix.

[198] Cross-Linking and Cross-Trapping
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[199] The generous application of cross-linking and cross-trapping can provide

aggressive chaotic response to tampering and perturbation attacks, with much stronger
transcoding and massive static analysis resistance. In an embodiment, cross-linking and cross-

trapping may be effected as follows, as illustrated in Figure 21:
1) copy computations at least once;

2) randomly swap connections between the original and the copy. Because they are

duplicates, the results will not change;

3) encode all of the resulting computations so that duplicates are independently
encoded;
4) randomly take duplicate results and inject computations adding their difference (=

0) or multiplying one by the ring inverse of the other (= 1) and then adding the 0 or
multiplying by the 1 (in encoded form). The injected encoded 0-adds and 1-multiplies have no

functional effect unless tampering occurs, in which case the code behaves chaotically.

[200] An added benefit is that the static dependency graph becomes much denser than
that for the original program, making static analysis attacks difficult. Thus, effective
tampering requires that the (differently encoded) duplicates be correctly identified and the
correct duplicates be changed in effectively the same way under different encodings. This is

much harder to accomplish than ordinary tampering without cross-linking and cross-trapping.

[201] An example implementation of data-flow duplication is provided in Section 5.2.8-
5.2.10 of the Appendix, and illustrated in Figure 10. In addition to its normal use within the
entry and exit base-functions, data flow duplication and cross-checking or trapping also may
be performed using these transformations for the data-flow within the decision-block
including the transfer of information from the outputs of the entry base-function to inputs of
the decision-block and the transfer of information from the outputs of the decision-block to

the inputs of the exit base-function.
[202] Context-Dependent Coding

[203] In some embodiments, the context in which base function pairs are implemented
may be an integral part of the operation of the base-function. Context includes information

from the application, hardware, and/or communication. Context of one base-function
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component can also include information from other components, which are part of the

application in which it resides.

[204] Referring to Figure 22, an implementation of a base-function pair or a similar
construct may be hosted on a platform from which hardware or other platform signature
constants can be derived and on which the implementation can be made to depend. It may be
preferred for the implementation to reside in a containing application from which an
application signature or other application constants can be derived and on which the

implementation can be made to depend.

[205] The implementation may also take inputs from which further constant signature

information can be derived and on which the implementation can be made to depend.
[206] Biased Permutations via Sorting Networks

[207] Permutations may provide a basis for storing enormous numbers of alternatives in
limited space. For example, row/column permutations may be used to turn a non-repeating
4x4 matrix into 576 non-repeating 4x4 matrices. In some embodiments, the order of
computations may be permuted, deep dependence of computations on run-time data may be

generated, and the like.

[208] Referring to Figure 7, some embodiments may first sort, at each cross-link,
compare, and swap on greater-than. To permute, swaps are performed with probability %2. It
is easy to show that if the network sorts correctly with a compare-swap, then it permutes with
random swap with the full range of permutations as possible outputs. Some embodiments may
use a recommended probability %2 Boolean generator to compare two text-based full-range

permutation polynomial encoded values.

[209] Such sorting networks permute in a biased fashion, that is, some permutations are
more probable than others, since the number of swap configurations is 2" ¥/sges,
However, the permutation count is equal to the number of elements to permute, which does
not evenly divide the number of swap-configurations. In spite of the biased output, the

advantage is simplicity and high dependency count with non-T functionality.

[210] Unbiased Permutations via Simple Selection

45



10

15

20

25

WO 2013/142981 PCT/CA2013/000305
[211] In some embodiments, unbiased permutations can also be generated by selecting a

1* element at random by taking the 7; mod » element among the elements (zero origin),
selecting 2™ element at random by taking the 7, mod (#-1) element at random from the
remaining elements, and the like. With this process each r; is a full range text-based perm-
poly value. This may provide almost perfectly bias-free and non-T-function. However,
operations may be harder to hide in or interleave with ordinary code than for sorting-network-

based permutation.
[212] Hobbling Bit-Slice Analysis

[213] As explained above, bit-slice attacks are a common attack tool: repeatedly
executing a function and ignoring all but the lowest-order bit, and then the lowest-order two
bits, the three lowest-order bits, etc. This allows the attacker to gain information until the full
word size (say 32 bits) is reached, at which point complete information has been obtained on

how the function behaves.

[214] A function constructed using T-function and non-T-function components has
subdomains over which it is a T-function embedded in an entire domain in which the function
is not. In some embodiment it may be advantageous to make the number of such subdomains
very large (for example, in a Mark III type system as described herein, there may be over 10%
such subdomains) to make bucketing attacks on the subdomains highly resource-intensive. In
some embodiments, liberal use also may be made of non-T-function computations at other

points, such as at decision points, in permutations, in recodings, and the like.
[215] An Example General Data Blending Mechanism

[216] Figure 24 shows a graphical representation of a typical usage of Mass Data
Encoding or Dynamic Data Mangling as described above. If inputs to a base function are
provided by such an obscured memory array, by either of these two techniques, and the results
are also obtained by the application from the obscured memory array, it becomes difficult for
an attacker to analyse the data-flow of information entering or leaving the base function,

making attacks on the base function more arduous.

[217] Security-Refresh Rate
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[218] For effective application security lifecycle management, applications typically

must be capable of resisting attacks on an ongoing basis. As part of this resistance, such
applications may be configured to self-upgrade in response to security-refresh messages
containing security renewal information. Such upgrades may involve patch files, table

replacements, new cryptographic keys, and other security-related information.

[219] A viable level of security is one in which application security is refreshed
frequently enough so that the time taken to compromise an instance’s security is longer than
the time to the security-refresh which invalidates the compromise; i.e., instances are refreshed
faster than they can typically be broken. This is certainly achievable at very high security-
refresh rates. However, such frequent refresh actions consume bandwidth, and as we raise the
refresh rate, the proportion of bandwidth allocated to security-refresh messages increases, and

available non-security payload bandwidth decreases.

[220] Plainly, then, engineering the appropriate security-refresh rate is required for each
kind of application, since the tolerable overheads vary greatly depending on context. For
example, if we expect only gray-box attacks (neighbor side-channel attacks) in a cloud
application, we would use a lower refresh rate than if we expected white-box attacks (insider

attacks by malicious cloud-provider staff).
[221] Authentication of Equality With Chaotic Failure

[222] Suppose we have an application in which authentication is password-like:
authentication succeeds where G, the supplied value, matches a reference value ['; i.e., when G
=T. Further suppose that we care about what happens when G =T, but if not, we only insist
that whatever the authentication authorized is no longer feasible. That is, we succeed when G

=T, but if G # I, further computation may simply fail.

[223] The authenticating equality is not affected by applying any non-lossy function to
both sides: for any bijection ¢, we can equivalently test whether ¢ (¢) = ¢ (I). The
authenticating equality may remain valid with high probability even if ¢ is lossy, if ¢ is
carefully chosen so that the probability that ¢ (G) = ¢ (I') when G# T’ is sufficiently low (as it
is in Unix password authentication, for example). Based on technology previously described
herein, we can easily perform such a test. We previously described a method for foiling

tampering by duplicating data-flow, randomly cross connecting the data-flow between
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duplicate instances, and performing encoded checking to ensure that the equalities have not

been compromised. We can adapt this approach to test whether G =I', or in encoded form,

whether ¢ (G) = ¢ (D).

[224] We note that a data-flow yielding ¢ (G) already duplicates a dataflow yielding ¢
(I') along the success path where G =1". We therefore omit, for this comparison, the data-flow
duplication step. Then we simply cross-connect as described above and insert checks. By
using these computations as coefficients for future encoded computations, we ensure that, if ¢
(G) = ¢ (I), all will proceed normally, but if ¢ (G) # ¢ (I'), while further computation will
proceed, the results will be chaotic and its functionality will fail. Moreover, since ¢ is a

function, if ¢ (G) # ¢ (I'), we can be sure that G #T'.
[225] Variable-Dependent Coding

[226] In some embodiments that incorporate operations which make use of one or more
variables which need not have a specific value during their use in the operation, variable-
dependent coding may be used to further obscure the operation of related code. One way of
doing so is to use values that are used or generated by other operations in nearby or related
sections of code. Thus, such values may be used repeatedly for different purposes within a
region of code, which may make it more difficult for an attacker to discern any individual use,
or to extract information about the specific operations being performed in relation to those
values. For example, if a value x is encoded as aX+b, there may be a great deal of leeway in
the specific values used for the constants g and b. In this example, if there are values available
within the executing code that remain constant over the life of x, they may be used as one or

more of the constants a and/or b.

[227] Further, for a single defined operation, different values may be used during each
execution of the operation, such that the specific values used may change each time the
operation is executed. This may act as an additional barrier to a potential attacker, who may
not be able to track values from one execution to another as might be expected for other types
of clear, encrypted, or obfuscated code. Continuing the example above, a first operation f(Y)
may return values a and b and a second operation g(Z) may return values ¢ and d, each of
which is stored in memory for a period of time. The variable x may be encoded during the
time that g and b are stored in memory as aX+b, and as cX+d during the time that ¢ and d are

stored in memory. Thus, the appropriate constants will be available via the memory to allow
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for decoding or otherwise manipulating x in the appropriate encoding. The values may be

overwritten or discarded after that time, since the encoding constants need only be available

during the time that x is used by operations within the executing program.

[228] Similarly, variable values generated during execution of code may be used for
other purposes in addition to or as an alternative to the finite encoding example provided. For
example, variable values may be used to select a random item from a list or index, as a seed
for a pseudo-random number generator, as an additive, multiplicative, or other scaling factor,
or the like. More generally, variable values generated by one portion of executed code may be
used in any place where a constant value is needed at another portion of executed code, for a

duration not more than the generated variable values are expected to be available.
[229] Example Advantages

[230] Embodiments of the invention described herein may be used to provide the
following, where a “sufficient period of time” may be selected based on, or otherwise

determined by, the needs of security lifecycle management:

1) Black-Box Security: security as a keyed black-box cipher against attacks up to

adaptive known plaintext for a sufficient period of time;

2) Secure Boundary: securely pass information in and out to/from surrounding code

in encoded form for a sufficient period of time;

3) Key-Hiding: prevent key-extraction from implementations for a sufficient period of
time;
4) Secure Weakest-Path: cryptographically secure even on weakest data path for a

sufficient period of time;

5) Antj-Partitioning: partition implementation into its construction blocks for a

sufficient period of time;

6) Application-Locking: cannot extract implementation from its containing

application for a sufficient period of time; and
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7 Node-Locking: cannot extract implementation from its host platform for a

sufficient period of time.

[231] Generally, embodiments disclosed herein relate to base-function encoding, using
various techniques and systems as disclosed. Specific embodiments also may be referred to

herein, such as in the Appendix, as “ClearBox™ implementations.

[232] The various techniques as disclosed herein may use operations that are similar in
nature to those used in an application that is being protected by the disclosed techniques, as
previously described. That is, the protection techniques such as base functions, fractures,
dynamic data mangling, cross-linking, and variable dependent coding may use operations that
are similar to those used by the original application code, such that it may be difficult or
impossible for a potential attacker to distinguish between the original application code and the
protective measures disclosed herein. As a specific example, base functions may be
constructed using operations that are the same as, or computationally similar to, the operations
performed by the original application code with which the base functions are integrated, in
contrast to the distinctive functions typically employed by, for example, known encryption
techniques. Such operations and techniques that are difficult or impossible to distinguish may

be described herein as “computationally similar.”

[233] A method is generally conceived to be a self-consistent sequence of steps leading
to a desired result. These steps require physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of electrical or magnetic signals capable
of being stored, transferred, combined, compared, and otherwise manipulated. It is convenient
at times, principally for reasons of common usage, to refer to these signals as bits, values,
parameters, items, elements, objects, symbols, characters, terms, numbers, or the like. It
should be noted, however, that all of these terms and similar terms are to be associated with
the appropriate physical quantities and are merely convenient labels applied to these
quantities. The description of the present invention has been presented for purposes of
illustration but is not intended to be exhaustive or limited to the disclosed embodiments. Many
modifications and variations will be apparent to those of ordinary skill in the art. The
embodiments were chosen to explain the principles of the invention and its practical

applications and to enable others of ordinary skill in the art to understand the invention in
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order to implement various embodiments with various modifications as might be suited to

other contemplated uses.

[234] Embodiments disclosed herein may be implemented in and used with a variety of
computer systems and architectures. Figure 32 is an example computer system 3200 suitable
for implementing embodiments disclosed herein. The computer 3200 may include a
communication bus 3201 which interconnects major components of the system, such as a
central processor 3210; a fixed storage 3240, such as a hard drive, flash storage, SAN device,
or the like; a memory 3220; an input/output module 3230, such as a display screen connected
via a display adapter, and/or one or more controllers and associated user input devices such as
a keyboard, mouse, and the like; and a network interface 3250, such as an Ethernet or similar

interface to allow communication with one or more other computer systems.

[235] As will be readily understood by one of skill in the art, the bus 3201 allows data
communication between the central processor 3210 other components. Applications resident
with the computer 3200 generally may be stored on and accessed via a computer readable
medium, such as the storage 3240 or other local or remote storage device. Generally, each
module shown may be integral with the computer or may be separate and accessed through
other interfaces. For example, the storage 3240 may be local storage such as a hard drive, or

remote storage such as a network-attached storage device.

[236] Many other devices or components may be connected in a similar manner.
Conversely, all of the components shown need not be present to practice embodiments
disclosed herein. The components can be interconnected in different ways from that shown.
The operation of a computer such as that shown is readily known in the art and is not
discussed in detail in this application. Code to implement embodiments of the present
disclosure may be stored in a computer-readable storage medium such as one or more of the

memory 3220, the storage 3240, or combinations thereof.

[237] More generally, various embodiments disclosed herein may include or be
embodied in the form of computer-implemented processes and apparatuses for practicing those
processes. Embodiments also may be embodied in the form of a computer program product
having computer program code containing instructions embodied in non-transitory and/or
tangible media, such as floppy diskettes, CD-ROMs, hard drives, USB (universal serial bus)

drives, or any other machine readable storage medium. When such computer program code is
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loaded into and executed by a computer, the computer may become an apparatus for practicing

embodiments disclosed herein. Embodiments also may be embodied in the form of computer
program code, for example, whether stored in a storage medium, loaded into and/or executed
by a computer, or transmitted over some transmission medium, such as over electrical wiring
or cabling, through fiber optics, or via electromagnetic radiation, wherein when the computer
program code is loaded into and executed by a computer, the computer becomes an apparatus
for practicing embodiments disclosed herein. When implemented on a general-purpose
processor, the computer program code may configure the processor to create specific logic
circuits. In some configurations, a set of computer-readable instructions stored on a computer-
readable storage medium may be implemented by a general-purpose processor, which may
transform the general-purpose processor or a device containing the general-purpose processor
into a special-purpose device configured to implement or carry out the instructions.
Embodiments may be implemented using hardware that may include a processor, such as a
general purpose microprocessor and/or an Application Specific Integrated Circuit (ASIC) that
embodies all or part of the techniques according to embodiments of the disclosed subject

matter in hardware and/or firmware.

[238] In some embodiments, the various features and functions disclosed herein may be
implemented by one or more modules within a computer system, and/or within software
executed by the computer system. For example, a computer system according to some
embodiments disclosed herein may include one or more modules configured to receive
existing computer executable code, to modify the code as disclosed herein, and to output the
modified code. Each module may include one or more sub-modules, such as where a module
configured to modify existing computer executable code includes one or more modules to
generate base functions, blend the base functions with the code, and output the blended code.
Similarly, other modules may be used to implement other functions disclosed herein. Each
module may be configured to perform a single function, or a module may perform multiple
functions. Similarly, each function may be implemented by one or more modules operating

individually or in coordination.

[239] One or more currently preferred embodiments have been described by way of
example. It will be apparent to persons skilled in the art that a number of variations and
modifications can be made without departing from the scope of the invention as defined in the

claims.

52



WO 2013/142981 PCT/CA2013/000305

I, INTRODUCTION

This document addresses the problem of creating pairs of programmatic imple-
mentations, F, G, for pairs of bijective functions f, f~!, respectively, such that

{1} given white-box sccess to F and a value y, it is ‘hard’ to find z for which

(2} given white-box access to G and a value 7, it is ‘hard’ to find y for which
= [Ny
{3} given white-box access to F| it is *hard’ to find an implementation @ for
£t and
{4} given white-box access to &, it is “hard’ to find an implementation P for f.
We note that information K sufficient to readily determine f, f~' can be re-
garded as a key for a synunetric cipher, with £ and G being encryption and de-
eryvption according to key K.
We have not specified what we mean by ‘hard’. At s minimum, we want it to be
significantiv less effortful to choose K and generate sueh F, ¢ than it s to solve any
of problems {1}-{4) above,
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APPENDIX

Abbreviation Ezrpansion

AES Advanced Encryption Standard
agg aggregation

AP application procedural interface
BA Boolean-arithmetic

BE basic block

OFC control-How graph

DES Data Encryption Standard

B directsd praph

d1l dynamiecally linked library

OF Galois field {= finite field)

A intervening aggregation

iff if and only if

MBEA mixed Boolesn-arithmetic

MDS maximum distance separable
MF multi-function

OF output extension

PE partial evaluation

PLEB point-wise Hnear partitioned bijection
RSA Rivest-Shamir- Adleman

RS rosidus! number system

REFE reverse partisl evaluation

TR tamper resistancs

£13] substitution hox

SBE software-based entity

80 shared object

VHDL very high speed integrated cirenit

hardware deseription language

TapLg 2, Abbroviations

2, TERMINOLOGY AND NOTATION

We write © - 7 to denote “such that” and we write © iff © o denote ~if and
ordy if". Table 1 summarizes many of the potations, and Table 2
summarizes manv of the abbreviations, emploved heran,

2.1. Sets, Tuples, Relations, and Functions. For a set 8, we write |S] to
denate the cordinality of § (i.e., the number of members in st §), We also use n!
to denote the absolute value of & number n.

We write {mis, ma, ..., iy} todenote the set whose members arenng, ma. ... My,
{Hence i my, ma, ... oy are sll distinet, [{myomg, ool = &) We also write
{r | O} to denote the set of all entities of the form r such that the condition
holds, where O s normally a condition depending on x.

2.1.1. Cuartestan Produets, Tuples, and Veefors. Where A and B oare sets, A = B is
the Cartestan product of A and B; Le., the set of all pairs {a.b) wherea € A {Le, a
is a member of A) and b € B (ie., bisa member of ). Thus we have (0. b € A= B,
In general, for sets 5,5, ..., 5%, a member of 5 = 5 x -+ 5 8§ I8 a b-tuple of
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the form {&;,80,.. . .8 where 5, € & for @ = 1,2, ., Bo M= (s, .8 i85 a8

tuple, we write 1 to denote the length of § {in this case, ¢ = &k Le., the tuple has
k element positions). For any r, we consider » to be the same as {2) — & tuple of
length one whose sole element is r. If all of the clements of a tuple belong to the
same set, we call 1t a veetor over that set.

If w and ¢ are two tuples, then u v is their eoncatenation: the tuple of length
|4 v obtained by ereating a tuple containing the slements of v in order and then
the elements of v in orders eg., (e boedl iz oy 2y = {abed r p.2).

We consider parentheses to be significant in Cartesian products: for sets A, B, (',
members of {4 » B} = C look ke {{a, bl ¢} wheress members of 4 = {8 = O look like
{a {boeli, wherea ¢ A, be B, and ¢ & €. Similarly, members of A x (B x By = C
fook Bke (o, (b bat et where g € 4, b B ¢ B and e & (.

2.1.2. Relations, Multi-functions {MFe), and Funetions, A k-arv relation on & Car-
tesian product S x -+ x Sy of & sets {where we must have b > 2) is anv set
BG5S w x5, Usnally, we will be Interested in dinary relations; Le., relations
R Ax Bfor two sets A, B (not necessarily distinet). For such a binary relation,
we write a R b to indicate that {a,b) € R. For example, where R is the set of real
numbers, the binary relation < € R x R on pairs of real munbers is the set of all
pairs of real mumbers {x, ¥} such that ¢ is smaller than y, and when we write 2 < y
it mesns that {r ) € <,

The notstion B2 A ~ B indicstes that # € A » B ie, that R s s binayy
relation on A x 8. This notation is shmilar to that used for functions below. Its
intent s to indicate that the binarv relation Iz interpreted as s multi-function
{MF), the relational abstraction of a computation — not necessarily deterministic

which takes an input from set A and returns an output in set B, In the case of &
fanetion, this computation must be deferministic, whereas In the case of an Mp, the
comsputation need pot be detenministic, and so it I8 a better mathematical model
for mimeh software in which external events may effect the progress of execution
within a given process. A is the domain of MF R, and B is the eodomain of vy R
Foranveet X € A wedefine R{X}={ys Bldre X - (ry e R} BR{X}isthe
image of X under R, For s MF R A+~ B and a € A, we write R{a) = b to mean
R{lal} = {b}, we write Ria) — btomean that b ¢ R{{a}}, we write R{a} - b to
mean that 5 ¢ R{{a}}, and we write R{a) = L {read "Ria} is undefined” to mean
that there isno h e B {a, b ¢ I

For s binary relation 117 4 — B, we define

RV e {hay (abye RY .

R is the inverse of R,
For binary redstions B0 A Band S0 B e O, we doline So B Aes O by

So R is the composition of § with R Composition of binary relations is associative;

e, for binary relations Q. B, 5, {So Rio) = So{H«0)). Hence for binary relations

R By, ..., By, wemay freely write 0+~ o Ryo By without parentheses hecause

the expression has the same meaning no matter where we put them, Note that
(Rpo v e Roo Ry XY= Rl - (RN}

in which we first take the image of X under Ry, and then that image’s image under
Ry, and so on up to the penultimate image's image under Ry, which is the reason
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that the R,'s in the composition on the left are written in the reverse order of the
imaging operations, just like the R;'s in the imaging mgtwmmﬁ o1 t} & nghr
Where Byt Aje Bifori= 1., k. R ;

oAy x-oox .~§z< ®

F

and
Rizgoooooxmed =~ (.o oy HY Riwgy g fori=1,.. . k.
R .., By is the Mggwfgfd?fsrs af Byo.. ., I%’;g,
W lwm Fz’g“ Arxox Ay e Bifori= 1, 0. n, R= (R, ..., Ry is that binary

relation -
BoAgx o Ay 7 By 52 2 By,
and
Hiwg, ooo@mb— 0.0 tn ) iff Rire .o xmi— g fori=1,...,n.

{Ry...., Ry} is the conglomeration of Ry.. .., K.
We write [0 A+ B to indicate that f iz a function from A to B; e, that
f:z A s B - i%:}r any a & % ::grxf% »‘3 B ¥ ] (gz‘* —+ &, then fia) = b For any set 8,

2.1.3. Directed Graphs, Control-Flow Graphs, and Dominators. A directed groph
émx s an ordered pair G = (N, 4] where set N is the node-set and binary wla!iwn

A path in a DG G = (N, A} s a sequence of nodes {(ng, ... n) &xxhe*r{' n; & N
fori=1, handimmeg e Afori= 1, k-1 k- 1 > 1 is the length of
the path. The shortest possible path has the form {ny) with length zero. A path
{ry..... Ny} f:z"”i(‘fif" HY no node appears twice in it Le,, iff there are no indices
fgwith 1<« j <k for which iy = nj. For a set S, we define ;;’“ =3 S
where 5§ &;}gwﬁrx r 211?1@~ and x appears ¥~ 1 times (so that §' = §), and we define
S = §YUSTUSYL. - the infinite union of all Cartesian products for § of all
possible lengths. Thm every path in C is an ¢lement of N7,

In a directed graph (56} G = (N, A). a node y € N is reachable from a node 3 €

V if there is a path in & which begins with » and ends with y. (Henee every m}fi
is reachable from itsell) The reach of v & N is {y € N | y s reachable from x}.
Two nodes .y are connected in G Hf one of the two following conditions hold
recursively:

(1% there Is a path of 7 in which both 2 and y appear, or
2) there is a node = ¢ N in G such that o and = are connected sand g and
are connected,
{If v = y, then the singleton {i.e.. length one} path (r} is & path from 5 to g, so
every 11(.;«{ie.. ne N of G is connected to itself) A DG G = IN A} s A connected DO
Y every pair of nodes 2,y € NV of G §s connected.

For every node o & N, {y | {o.y) ¢ A}, the number of arcs in A which start
at x and end at some other node, is the out-degree of node x, and for every node
y&e N, {x|{r.y) e A}, the number of ares in A which start at some node and
end at . is the in-degree of node y. The degree of a node n € N is the sum of n's
in- and out-degrees.

A source node in a DG G = (N, A} Is a node whose in-degree is zero, and a sink
node inoa DG G o= (N A) I8 a node whose out-degree is zoro,
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A DG G = (N, A) is a control-flow graph (Cr¢) HT it has a distinguished souree
node g € N from which every node n £ N is reachable,

Let & = (N, A4) be a CPC with souree node ng. A node r ¢ N dominates a node
o N iff every path beginning with ng and ending with ¥ contains r. (Note that,
by this definition and the remarks above, every node dominates itsell ] A set of
nodes X dominates a sot of podes ¥V oin o crc T every path beginning with a
start node and ending with an element of ¥ containg an element of X

With ¢ = (N, 4] and # as above, & ponempty pode set X & N dominatesa
nonempty node set ¥V O N I every path starting with ng and ending with an
element of Y contains an element of X. {Note that the case of a single node
dominating another single node is the special case of this definition where (X =
¥l=13}

2.2, Algebraic Structures. Z denotes the set of all integers and N denotes the
set of all integers greater than zeto (the notural numbers). Z/(m) denotes the ring
of the integers modulo m, for some integer m > 0. Whenever m is a prime number,
Z/{m} = cr(m}, the Galois field of the integers modulo m. B denotes the set {0, 1)
of bits, which may be identified with the two elements of the ring Z/{2) = cr(2).

2,21, Hentities. Identities (Le., eguations) play & erneisl role in obfusecation: if for
two expressions X, Y, we know that X = Y, then we can substitute the value of V'
for the value of X, and we can substitute the computation of ¥ for the computation
of X, and view versa

That such substitutions based on algebraje identities is erucial to obfuscation
15 easily seen by the fact that their wse I8 found to varving extents in every one
of 5,7, 8, 10, 11,12, 21, 22, 23, 24, 28, 29, 30].

Sometimes we wish to identify {equate) Boolean expressions, which niay them-
selves involve equations, For example, in typieal computer arithmetie,

=00 {~{xVi-2}} -1 <0
[using signed comparisony, Thus * #ff * equates conditions, and 5o expressions
containing “ #F 7 are also identities - specifically, condition identities or Boolean
identities.
2,22, Matriees. We denote an r x ¢ (r rows, ¢ columns) matrix M by
My Wiya o e Mg |
Hing MWaa - MMae

i

M

Wey Whes 0 pe |

where its transpose is denoted by M7 where

Tlyy Mgy s Wiy

Wiie fHgas <+ MWien
. "3" - P4 s
‘“W = . . R 5 H

%}mu Mige <+ Ipe

so that, for example, ;

zm/““’@,
s S b d of
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223, Relationskip of 7/(2%) to Computer Arithmetie. On B”, the set of all length-
n bit-vectors, define addition { ) and multiplication {- ] as usual for computers
with 2's camplement fixed point arithmetic (see [251). Then (B®, 4.1 is the finite
two's complement ring of order 2%, The modular integer ring Z/{2%} is isomorphic
to {B™.+,. ). which is the basis of typical computer fixed-point computations (ad-
dition, subtraction, multiplication, division, and remainder} on computers with an
n-bit word length.

{For convenience, we may write » -y {r multiplied by ¥} by zy: e, we may
represent multiplication by juxtaposition, & common convention in algebra.

In view of this iamm;srp%ﬁi«z:m we e these two rings Interchangeably, even though
wi can view (BT, 4.+ ) as containing signed numbers in the ranuge —2%~1 to 271 . g
inclusive. The reason that we can get away with ignoring the issue of whether the
elements of (B, +, ) occupy the signed range above or the range of magnitudes
from 0 to 2% - 1 inclusive, is that the effect of the arithmetie uperations “+" and
“7 om bit-veetors in BY is identical whether we interpret the numbers as two's
complement signed numbers or binary magnitude unsigned numbers.

The issue of whether we interpret the numbers as signed arises only for the
mequality operators <, >, %, >, which means that we should decide in advance
how particular numbers are to be treated: inconsistent interpretations will pro-
duce anomalous results, just as incorrect use of signed and unsigned comparison
instructions by a C or C++ compiler will produce anomalous eode.

224 Bitwise Computer Instructions and (B% .V, A, ). On B®, the set of all length-
1t bit-vectors, & computer with n-bit words tspmﬁh }:srwsz}m Entmw and { A, in-
m’z ive or {V yand not { ). Then {B", v, A, ~) it a Boolean algebra. In | 85 dy ),
in which the W»f’tm—imgi his one, 0 s false am% 118 frue
For any two V{*%"%i}?b v & B, we define the bitwise erclusive or {4} of u and
by wib v s {u A () v () Av). For convendence, we typieally represent ~x
‘%z} F. I?m“ uz‘miméa we ean ais&:x oxpress this identity as u Gv = {u A8V IR A v,
Sinee vector mmdtiplication - bitwise and { A} — in a Boolean algebra is asso-
clative, (B¥ 2, /) is a ring (called a Boolean ring).

22,5, T-Functions and Non-T-Funetions. A funetion §: (B¥)% + (B¥Y" mapping
from a k-vector of w-bit words to an m-vector of w-bit words is a T junsiéstm if
for every pair of vectors x ¢ (B")*, y ¢ (B¥)™ = y = f{z), with @’ # 2 and
y = f{2'), and with bits rumbered fmm 0 toow - 1 in the u-hit words, the lowest
mumberad bit in an element word at which y and ¢ differ is not lower than the lowest
munbered bit in an element word at which z sand 2" differ. Tvpieally we consider
this mumbering within words to be from low-order {2¥) to high-order (2971} hits,
regarding words as representing binary magnitudes, so we ean restate this as; an
ontput bit can only depend on inpm bits of the same or lower order.

Funetions composable from 2,V 4. - computed over BY together with +, ~, =
over /{293, so that all agwmtww« 0{){‘1“*312{* on w-bit words, are T-functions. Obscure
mm»;tmstmz‘m with the T-function property are vulnerable to bit-slice attacks, sinee
we can obiain from any T-function another legitimate T-function by dropping high-
order bits from all words in input and output vectors.

The T-function property does not hold for right bit-shifts, bitwise rotations,

division operations, or remainder/modulus operations based on & divisor/modulus
which is not a power of two, nor does it hold for functions in which conditional
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branches meake decisions in which higher-order condition bits affect the value of
lower-order output bits.

For conditional hranches and comparison-based conditional execution, note that
conditionsl execution on the basis of conditions formed using anv one of the six
standard comparisons =, #, <, >, <, > all can easily violate the T-function condi-
tion, and indeed. in normal code using comparison-based branching logie. it is casier
1o violate the T-function condition than it is to conform to it.

2.2.6. Polynomiels. A polynomial is an expression of the form fir) = meg @, =
Wi oo b asr’ = myr 4+ (where 2% = 1 for anv 2}, If ag # 0. then 4 is the
degree of the polvnomial. Polynomials can be added, subtracted, multiplied, and
divided, and the result of such operations are themselves polynomials. 1§ d = O, the
polynomial is conetant; Le., it consists simply of the scalar constant an. I d » O,
the polynomial is non-constant. We can have polvnomials over finite and infinite
rings and fields,

A non-constant polynomial is sreeducible if it cannot be written as the product
of two or more non-constant polvnomials. Irreducible polvnomials play a réle for
polynomials similar to that played by primes for the integers,

The variable » has no special significance: as regards a particular polynomial, it
i just a place-holder. Of course, we may substitute a value for r to evaluate the
polynomial - that is, variable r is only significant when we substitute something
for it

We may identify a polynomial with its codflicient {(d + L-vector {gu,....aq. aph

Polynomials over GF{2} = Z/{2) have special significance in ervptography, since
the {d + 1l-vector of codfficients is simply a bit-string and can efficiently he repre-
sented on a computer (e.g., polynomisls of degrees up to 7 can be represented as
8-bit bytes;; addition and subtraction are identical; and the sum of two such poly-
nouials in bit-string representation is computed using bitwise <& {exclusive or}.

2.3. Encodings. We formally introduce encodings here,
Let Fi: D — Rbe total. Choose a bijection o D = I and a bijeetion 7 B R
We call F' = roF od ! an encoded version of F. d is an input encoding or & domain
encoding and v is an outpu! encoding or a range encoding. A bhijection such as d
of ¢ i simply called an encoding. In the partieular case where F' is a function.
the diagram shown in Fig. 1 then commutes, and computation with F' is simply computation
with an encrypted function [28, 29]. As shown in Fig. 1, only D', F' (the encrypted function)

and R’ are visible to the attacker. None of the original information is visible to the attacker (D,

F, R), nor is the information used to perform the encoding.
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Let B Sm‘ e & where mng € N, for i = 1, 2..... k. Then the relation
conpatenation By §B i I:?gf is that mtxmfm B o= vyoe 8™ e 877, with
ranging over {1,2, ... JL} {z, ii} & Ht ; ~~~~~ L2k i i}?g? M_.;z;,ﬁ vl el
€ B, Plainly B! = B,'] f:?? I B ;; . £ 5}3““33% are hijections, and there
fore are encodings, then 8 is also a hijection and an encoding. 8 is then called a
concatenated encoding, and B, is the ith component of B.

{We might view the following as a special ease of the above where the m,'s and
ny's all have the value 1) Let Bis 8~ Sl ford = 1,2,.. ., k. Then the relation
aggregation By, Ba, ..., By i*« that relation B - Yo £ 8 .r" S, with ¢ ranging
»:awr{i,?,,., %} (re. e Bi= 12,k iff {{yg.,mm i;ﬂ,r.,?;}*;}}% B!
Plainly B~ = [B] ’,,,.,Sk | If By, .. 1, are hijections, and therefore are
encodings, then B is also a bijection and an encoding. 8 is then called an aggregated
encoding, and B, is the ith component of B,

Let B § e *’é' for i = 1,2,, ..k, Then the relation conglomerution

(B By o B
is that relation B - vric 8, vre 8,
(e dry e B ({r,. oo, ool e (B, B

231 Network Eneoded Computations. Generally, outpat of a transformation will
beeome the input to another subsequent transformation, which means the output
encoding of the first must mateh the input encoding of the second as follows.

A networked encoding for computing ¥V ¢ X (Le. transformation X followed by
tmxmfwmmicm Yisanencodingof the orm V' o X' = (HoY oG YolFoe X o
Foly = HolY s X)aFol,

In the wm*mi cage, W kmw encoded networks, which are data-flow networks in
which the node functions are encoded functions.

Encodings may be derived from slgebraie structures {see §2.2). For
example, finite ring encoding {FR} is based on the fact that affine functions z° «
exlr) = sa -+ bover Z/(2%), where w is the word wisdth, which can be implemented
by jgnering overflow so that the modulus is the natural machine integer modulus,
are lossless whenever § is odd,

We note from Fig. 1 that the kev to encoded computation is that
inputs, outputs, and computation are all encoded. For example, eonsider eloments
of Z/{2¥}, the ring of the integers modulo 2%, where w is the preferred word-width
for some computer {tvpically 8, 16, 32, or #;s»i?s with a trend over time towards the
higher widths), The unitg of Z;{"“‘ {a o, thosp with a paltiplicative inverse) are
the odd elements 1,3,5,..,,2% - 1,

Suppose we want to encode additions, subtractions, and multiplications on a
hinary ecmputer with word-width @ so that the unencoded computations are per-
formed over Z/(2¥). We could use affine encodings over £/ "(‘W} With unencoded
variables r, g, ¢ and corresponding encoded variables o7, ¢, ¢ where

7 e {x) = Bex b by ¥ = eyly) = sy + by RN S N
We want to detenmine how to compute

e e fid votation was inteoduced for function aggregation by Jobn Backus s iz s
Turing Amss‘j i@;mw [ have taken 0 to apply o bloary relations in geoeral.
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:g - }:,z “:w; ?fé :g‘ - ;rg - g},’ :§ o ;{"l Xi gfs‘ :
Le.. we need representations for +', ' x". (Over a network of such operations, we

wottld have many different encodings +', -/, x’, with the requirement being that

the result of an operation employs the same encoding as the corresponding input
encoding of the consuming operation.)

Where Juxtaposition represents » over Z/(2¥), —z in 2's complement is —2 in
27i2%), and » yin s complement s xy in 2729}, Thus ife, is the sncoding of v and
e; itsinverse, v = e o) = sovdby and e 10 = - bss = el N e (besl D

{
{another affine encoding over Z7{2%}1). Then

Sy

= oeale, )+ €y )
S et FRTS e N
SRR E oy 80y (B — g, mby —p T e by

which has the general form 2¥ = ¢12" 4 eay’ + 0 with constants oy, ¢s, ¢y the original

data and encoding coéfficients have vanished. 1f y is a positive or negative canstant
k. we may choose ey = id {i.e., sy = 1 and by = 0}, and the sbove reduces to

L S ¢
woe (e MY+ b
:::gv«zri,ﬁzsz“ w}u{??:—m%y’&;»’ly %k«h;;(i

which has the general form 2" = ¢;2" + ¢, for constants ¢, ¢y, Alternatively, we
can compute " = r’ +" kas 2" = 2" where we define &. = &, and b. = b, — &,k 80
that we can compute 2” = ' +" b with no computation at all. To make " = ~'2’
without computation, we simply define . = g, and b, = b, and set 2 = 2
Similarly, for subtraction

:’ ot ‘}‘”; ‘‘‘‘‘‘‘ !gj(‘
o g A e d
=e e, -,y )
P . . - : ¥ - -
w {8y I Eae (=8 80y + (b — 5, Yeoh, + &y e, by}

which again has the general form ¢ = ¢12’ < oy’ 4 oy with constants oy, ¢y, 040

the original data and encoding coéfficients have vanished, I ¢ is a constaut ¢, we
compute it without computation by negsting »° without computation, and then
adding & as described above. For multiplication,

P o b g Ey
L, T e, Y i
I R DU S ,
= gy a8y sy b (s sy ey
F (5] fq» Yerbeiy 4 (B g;wg:";fg:};lg;%}

which has the general form 2" = o2’y = cax’ + 5y’ 4 ¢4 for constants oy, 2,09, 0.

Finally, if x is a constant &, we may choose e, = id {ie., we may choose g, = 1
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and by = 0} in which case the above nmitiplication formmda reduces to

:P e j: ;&ir Ef,
= ey {k X ﬁ;zéyi,}é

= sy sk} g + (e — 5] s kby)

which has the general form =% = £y + 0y for constants ey, o, Alternatively, if & is
invertitde (Le., odd) in Z/{2%}, we can compute 2" =k x" 3’ a8 2" = ¢ by defining
g2 = ke and b = by, which has the standard affine form for Frt encoding, and
allows us to take ¢, but with encoding e. rather than its own encoding €y, o be
*', s that we can compute =* = k x" y" with no computation at all.

Polynomials of higher order may also be used: in general [27), for 1 < w & N,
over Z7{2%,

. . &
Plx) = g oy 2197 0p 022”0 65 ... og agx®

18 a permutation polynomial {ie,, hijective or lossless polynomial) iff

(17 o is & (modulo 2% for i = 1,.. ., 4,
(2} i3 odd,

(3) o+ g + ... Is oven, and

(4} ag + s + 07 + .. & even

a characterization due to Rivest. {Only s subset of the bijections on Z[0-2¥ - 1]
can be written as such a permutation polynomisl over Z/{2°) ) The higher the
degree, the more entropy contained in a choice of polynomial, but time and space
complexity rise correspondingly.

Permutation polynomials exist over many rings and fields. Klimov 17} extended
this characterization 1o what he called generulized permutation polynomials, which
are like those described above except that any given ¢, may be + or — {modylo
2%} or bitwise exclusive-or (5} on BY aned the ¢ aperations ean be applied in any
fimed order.

While we can write polynomdals of arbitrary degree, every polynomial over
Z/2%) s eguivalent to a polynomial of very limited degres. In fact, it has been
kuown that, for w € N, every permutation pelynomial P over Z/{2%) has an equiv-
alent permutation polynomial Q over £12%) of degree < w+ 1,

A diffienlty with permutation polynomials, whether generalized or not, is that
they only become truly useful when their inverses are known and computationsliy
convenient. It is known that most permutation polynomials have inverses of high
degree {close to 2% for permutation polynomials over Z7(2%)). However, using
Hivest's [non-generalized) characterization above, if af = 0 for 4 = 2,...,d then
the degree of the inverse is the same a8 the degree of the polynomial to be inverted,
Formulas for inverses for permutation polynomials are as follows (see section C for a more
rigorous treatment):

2.3.2. Quadratic Polynomials and Inverses. If Plr) = ax® + br + ¢ where ¢ = 0
and b is odd, then P is invertible, and

Pir) =difser+f,
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where the constant coiéfficients are defined by

44
{5 B e e
5
)(ifﬁ i
€ 5 o QT
5 b
3
£ aes

23 3 C i&g’m" i’rmﬂx{mém?w {md Imw 68, if F‘{ r) = ar® + br* 4 er 4+ d where o =

. 3 3
Py =er + frragr+h,
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Y 2835 Notes on Permutation Polynomials Over Z/{p™). Let p be a prime and w &
N. Tﬂw properties permutation polynomdals over Z/7{p¥) are explored in a 19%&
paper by Mullen and Stevens 19, which teaches us the following,

(1} With v(m) being the number of pps over Z/{m}, for arbitrarv m ¢ N
with e > 0, where m = H ,,,,, " 3}" with pi.. ... e distinet primes and
T e ¢ N, we have 7(m) H L Tl
{2} The number of functionally ti%%lﬂi‘t Pps over Z7(p") is
Y pm.&;gm;«'l;««c‘%’;{m

T(p
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where Sp{n} = 3 s the greatest integer p - vyipl < n,

and
]
Note that Np(n) is that integer x = p" | {x 4 1) but p™ 7 &', and we have

No(n) = ~1 (mod p).
(3} Every polynomial function fir} = gfi a,x' can be expressed in the falling
factorial form
Nin
sy =3 ar
P
where 79 = [['20r — i) with 2™ = 1. 2 is a fulling faetorial.
2.3.6. Notes on Permutation Polynomials Over Z/(2%). For a computer with w-bit
words, PPs over Z/(2¥) are especially convenient, since addition, multiplieation, and
subtraction mod 2% ean be performed by simply ignoring overflows, underflows. and
the distinetion between magnitude and 2's complement computations, and taking
the ordinary uncarrected hardware result for such machines. Moreover, this is also
the defanlt behavior of computations on operands of tvpe int, signed int, or
unsigned int in programs written in C, C++, or Java™,
Adjusting the results from [19° above, the munber of functionally distinet pes
over Z7{2%) is

T{L“’j - ;253{‘%":5?m«%-}}mé?z«s‘ﬁf} .
- v,“g‘*} £ L i . I3 P N
where Ss{w) = E::”jj (i), Nalw) is the greatest integer pi- 1n(p) < w, and

w0 =3 |5

T

Note that Ny(n) is that integer & = 2% | (K + 1}! but 27 7 g1, and we have AL(n) =

2.3.7. General Notes on Encodings. I denotes an encoded implementation derived
from hunetion P, To emphasize that P maps m-veetors to n-vectors, we write 2 P.
P is then called an n x m function or an n = m transformation. For a matrix
M. LM indicates that M has m eolumns and # rows. (These notations naturally
correspond, taking application of M to a vector as funetion application.)

& E (muemonie: enfropy-transfer function) is any function from me-vectors over
8 10 n-vectors over B which loses no bits of information for m < n and at most w—n
bits for m = n. A function [} f which is not an instance of "E is lossy. Multiple
cecurrences of T E in a given formula or equation denote the same function.

»€ (mnemonie: entropy vector; is an arbitrary vector selected from B®. Multiple
oecurrences of e in s given formula or eguation denocte the same vector,

An affine function or affine transformation (AT} is a vector-fo-vector function
V' odefined for all veetors v € S™ for some set S by RVige) = BAMav 5 ad
{eoneiselv: Vir) = Mr + d), where M is a constant mstrix, and d & constant
displacement veetor. If A and B are ATs, then so are A| 3, (4. B, and A« B where
defined. An AT Vi{z) = Mxr + dis a linear function or linear fransformation (LT)
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A funetion f2 F¥ s F from k-voctars 16 me-veetors over {F 4,0 € GPE) for
gome prime power £ is deeply nontinear ¥ # linear hmetion ¢: F* — F™ and

encodings dy, ... e, . Pl Fora Flow folry . rgloge ﬂ«'gg s&f;;*é
(Note that if Zg @ f = [r{,....r ] eg'eldy ' .. 4" where ¢ is affine, then
certaiply Jlinear g, rooooorm - f = r il o g o §gi'{§‘ . md;;}}, sinee we ran

choose ri. ..., 1y 1o perform the elementwise addition of the vector displacement
of g'.}

If g A% oo A™ is not deeply nonlinear for a prime power |A] > 1, we sav that i
is linear up to 1/0 encoding.

We have proven the following regarding linearity and identity up to 1/0 encoding.

{1} 1f a function is lincar up to 1/0 encoding, then so are all of its projections.

(2} Two matrices are identical up to 1/0 encoding iff one can be converted
into the other by & sequence of multiplications of & row or s column by a
nonzero sealar,

(33 If two functions are linear up to /0 encoading and identical up to /o
encoding, then they are 1/0 encodings of matrices which are also identical
up to 10 eneoding,

(4} If two matrices are identical up to 1/0 encoding, then so are their corre-
sponding subinatrices.

(5) IT M is a nonzero matrix over GF{n}, there is a matrix M' over GrFin) so
that M, A are identical up to 1/0 encoding, where M' (the 1/0-vanoniel
Jorm of M) has a leading row and column which contain only 0's and 1's.

2.3.8, *Fuectures and Frocture Funetions. As noted in §2.3.1, generally

when an encoded output is produesd, it is consumed with exactly the same eneoding
assumedd, so that an encoded operation @ = fr,y) becomes 2 = {2, ¥’} where
(7.4 2) = (ee{x).ey(y), e:(2)), €5, 0, are the encodings, and f' = ¢, o f o
ertel)

It is sometimes advantageous to output a value with one encoding, and subse-
quently input asswming some other encoding. 1f we output r a8 e (), and later
consume it assuming encoding es, in effect we have applied e5' o &y to the unen-
coded value. We eall such an intentional mismateh between the encoding in which a
value is produced and the encoding assumed when it is consumed a fracture, 1f the
cncodings are linear, so is the fracture function e Yoy, and if they are permutation
polynomials, so is the frocture fanetion &*{{1 o1,

Fruetures are potentislly wseful in obfuseation becanse the computation which
they perform effectively does not appear in the code - the amount and form of eade
to perform a normal networked encoding and one which adds an operation by means
of a fracture is identical, and there appears to be no obvious way to disambiguate
these eases, since encodings themselves tend to he somewhat ambiguous.

Nuote that the defining property of a fractare is the fracture funetion v oy, say,
Generally, there are many different choloss of consuming encoding v and producing
encoding u which produce exactly the same fructare funetion: it is quite possibla,
for example, to have uy.. .., ug, vy, ..., such that i.':§ oty 1% the same fmeture
Junetion for i = 1,. .. k. Thus specifyving the fracture function does not nail down
the producing and consuming encodings which imply it

24. Partial Evaluation (PE). A partial ¢valuation (PE) of an MF is the gen-
eration of a MF by freezing some of the inputs of some other MF (or the MF so0

66



WO 2013/142981 PCT/CA2013/000305

APPENDIX

generated). More formally, let fii X x Y+ Z be an MF. The partial evaluation
ipE) {;f [ for constant ¢ ¢ Y is the derivation of that MF g0 X« Z such that, for
any & X and » ¢ Z, rzi:r% - 2 ff fiz.e} — 2. To indicate this PE relationship,
W sy al»(} write f;" cha f{- eh We may also refer to the MF g derived by PE of f
as a partial evaluation {PE) {.;t f . That is, the term partial evaluation may be used
to refer to either the derivation process or its result.

To provide a specific example, lot us consider the case of compilation,

Without PE, for a compiler program p. we may have pr § « E where § is the set
of all source code files and E is the set of object code files. Then ¢ = pls) would
denote an application of the compiler program p to the source eode file s, vielding
the abject code file e, (We take p to be a function, and not just a multi-function.
because we typically want compilers to be deterministic. )

Now suppose we have a very general compiler ¢, which inputs a source program
&, together with a pair of semantic deseriptions: a source language semantie de-
seription d and a description of the semanties of exeeutable code on the desired
target platform . It compiles the souree program according to the source language
semantic deseription into executable code for the desired target platform. We then
have 41 S x (D x T} — E where § is the set of souree code files, 2 is the set
of source semantic descriptions, T s the set of platform executable code semantie
descriptions, and E is the set of ohjeet code files for any platform. Then a specific
compiler is a PE p of ¢ with respect to a constant tuple {d.t] € D = T, ie., a pair
cousisting of a specific source language semantic description and a specific target
platiorm semantic deseription: that is, p(s) = gls. (d. 1)) for some specific, constant
{d.ti & Dx T In this case, X {the input set which the PE retains) is § {the set
of source code files), Y (the input set which the PE removes by choosing a specific
member of ity is D » T {the Cartesian product of the set D of souree semantic
deseriptions and the set T of target platform semantic deseriptions), and Z (the
putput set; is E [the set of object eode files),

PEis used in [10, 11]: the ARs-128 cipher [16] and the DES cipher [18] are partially
evaluated with respect to the kev in order to hide the kev from attackers. A more
detailed deseription of the underlying methods and svstem s given in (21, 220,

Optimizing compilers perform P when they replace general computations with
more specific ones by determining where operands will be constant at run-time,
and then replacing their operations with constants or with more specific operations
which no longer need to input the {effectively constant) operands,

2.5. Output Extension (OE). Suppose we have a funetion f: 7 — V. Funetion
g U ws Vo Wik an nggigmf extension (OB} of f U for every uw £ U7 we have
gluj = { flu),w) for some w ¢ W, That s, g gives us evervthing that f does, and
in addition produces extra output information,

We may also use the term oufput ertension (OF) to refer to the process of finding
sueh a function g given such a fnetion f.

Where funetion f is implemented as a routine or other program fragment, it is
generally straightforward to determine a routine or program fragment hmplementing
a funetion g which is an O of function £, since the problem of finding such a function
g is very loosely constrained.
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2.6. Reverse Partial Evaluation (RPE). To create general, low-overhead, of
fective interlocks for binding protections to snEs, we will emplov a novel method
based on reverse partial evaluation (RPEL

Plainly, for almost any MF or program g X - Z. there is an extremelyv large
set of programs or MPs f, sets Y, and constants ¢ € Y, for which, for any arbitrary
r ¢ X, we always have glz) = flr. el

We eall the process of finding such a tuple (f, .Y {or the tuple which we find
by this process) a reverse partial evaluation (RPE) of g.

Notice that PE tends to be specific and deterministic, whercas RPE offers an
indefinitely large number of alternatives: for a given g, there can be any munber of
different tuples {f.e,Y) every one of which qualifies as an RPE of ¢.

Finding an efficient program which is the r of & more general program may
e very difficult that is, the problem is very tightly constrained. Finding an
efficient RPE of a given specific program is normally quite easy hecause we have so
many legitimate choices — that is, the problem is very Joosely constrained.

2.7. Control Flow Graphs {CFGs) in Code Compilation. In compilers, we
typieally represent the possible flow of control through a program hy a control flow
graph (CFG; see the definition in §2.1.3), where a bagic block (BB) of executable code
(a ‘straight line” code sequence which has a single start point, a single end point,
and s executed sequentially from its start point to its end point) is represented by
& graph node, and an are connects the node corresponding to a 8R U to the node
corresponding to a BB V if, during the execution of the containing program, eontrol
either would alwavs, or could possibly, flow from the end of BB U to the start of
BB V. This can happen in multiple wavs:
{1} Control flow may naturally fall through from s U to e V.,
For example, in the C code fragment below, control flow naturally falls
through from U7 to V'
switch(radix) {
case HEX:
£
case OCT:
v

}
{2} Control flow may be directed from I7 to V by an intra-procedural eontrol
construet such as a while-loop, an if-statement, or a goto-statement.
For example, in the C code fragment below, control is directed from A
to Z by the break-statement:
switch(radix) {
case HEX:
A
break;
case OCT:
B

}
£

{3} Control fiow may be directed from U to V' by a csll or a return,
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For example, in the C code fragment below, control is directed from B
to A by the call to £0) in the body of g(). and from 4 to € by the return
from the eall to £():

void f(void) {

A
return;

'

int g{int a, float x) {
B
10
«

}

i4) Control flow may be directed from I7 to V by an exceptional control-flow

event.

For example, in the C++ code fragment below, control is potentially
directed from 7 to V' by a failure of the dynamic_cast of, sav, a reference
¥ to a reference to an object in class 4

#include<typeinio»

int g{int a, float x} {
try {
ir

Ak x = dynamic_cast<Ad>{(y);

catch{bad_cast ¢) {
i(.’
}

}

For each node n € N ina ¢FC C = (N, T) — C for control, T for transfer
node 1 is taken to denote a specific B8, and that BB computes an MP determined
by the code which BB n contains: some function f20 X — ¥, where X represents
the set of all possible values read and used by the code of n {and hence the inputs
to function f). and Y represents the set of all possible values written out by the
ende of 1 {and hence the outputs from function f). Typieally f is a funetion, hut
if f makes use of nondeterministic inputs such as the ewrrent reading of a high-
resolution hardware elock, £ is an MF but not a function. Moreover, some computer
hardware includes instructions which may produce nondeterministic results, which,
again, may cause [ to be an MF. but not a funetion.

For an entire program having a ¢re ¢ = (N, T and start node ng, we identify
N with the set of BBs of the program, we identify ng with the 88 appearing at the
starting paint of the program (typically the beginning B8 of the routine main()
for a C or C++ program). and we identify T with every feasible transfer of control
from one BY of the program to another,

Sometimes, instead of a CFG for an entire program. we may have a OFG for a
single routine. In that case, we identifv ¥ with the ser of Bus of the routine, we
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identify np with the BB appearing at the beginning of the routine, and we identify
T with every possible transfer of control from one 88 of the routine to another,

2.8, *Permuting by Pair-Swapping. Here wo consider how to prodnce permu-
tations of n slements using only random 2 = 2 switch elements which compute either
Y1 W2 o Ty, T2 (00 SWap) of Yo, ¥y — Ty, T2 (swap), each with probability %

2.8.1. *Permuting by Blind Pair Swamping. A sorting network may be represented as shown in
Figure 7, by a series of parallel wires 72 in which, at certain points, at right angles to these wires,
one wire is connected to another wire by a cross-connection 74 (representing a compare-and-swap-
if-greater operation on the data being elements carried by the two connected wires). If, irrespective
of the inputs, the output emerges in sorted order, the resulting network is a sorting network. The
comparisons in a sorting network are data-independent: correct sorting results at the right ends of the
wires irrespective of the data introduced at the left ends of the wires. Compare-and-swap-if-greater
operations can be reordered so long as the relative order of the comparisons sharing an end-point are

preserved.

An effivient way of cotstrueting such a sorting network for n nodes is given by
Bateher’s Odd-Even Mergesort (2], whiech is a data-independent sort: exactly the
same compare-and-swap-if-greater operations are performed irrespective of the data
to he sorted. The algorithm performs O{n{logn}) comparisons in sorting s set of
n elements. Details of the algorithm can be found at these UrLs: (3]

I soeh a network will sort arbitrary data into onder, it follows that,  the
comtpars-and-swap-if-greater operations sre replaced with operations which swap
with probability L, the same network configuration will permute a sequence of n
distinct elements into a random order, probably a biased one. This is the basis
of the mechanism we will nse to implement permutations, using psendo-random
true/false varistes created using computations.

Note that the number of permutations of » elements is n!, whereas the munber of
swap-configurations, using one bit in position 2° tw indicate whether the ith swap
was done or not done, iz 2¥% where B(n) is the number of stages in & Batcher
network sorting n eloments,

For example, for n = 3, r! = &, b{n} = 3, and 2"% = & so there must he
permutations which can be selected more than one way, but some of them cannot,
Simdlarly, for v = 5 nl = 120, dn) = 9, and 2% = 512, so there must be
permutations which ean be seleeted more than one way, but the number of swap
eonfigurations which select a given permutation eannot always be the same hecause
120 ¢ 512

Reduecing bias requires that we ensure that the number of ways of reaching any
permutation is ronghly the same for each permutation. Sines 2% is a power of
two for any n, this eannot be done simply by adding extra stages, It s necessary
in some cases to use other methods for reducing bias,

2R.2. *Permuting by Controlled Pair-Swapping. The method described in §2.8.1

suffers from significant biss {the biss ean easily excesd two to onel. The
problem was that the number of random swap/no-swap decisions is always a power
of 2, whereas the number of permutations iz always a factorial, and for element
eounts above 2, the number of pernmmtations never evenly divides the wumber of
swap/no-swap lineups which form a number hetween (f and 2% - 1 inclusive which
catt be viewsd as o string of © bits: one bit per swap)/ no-swap decision.
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There are two different mechanisms which we can deploy to obtain results from
the same kinds of decision elements {(comparing two pseudo-random numbers). We
hegin with a straight selection problem: to generate s permutation, we choose one
of n elements for a given position, and then choose one of n ~ 1 remaining elements
for another, and so on, until we are forced to choose the remaining element for the
remaluing position.

The first method of removing bias might be called attenuation. Suppose. for
example, that we need to choose one of 12 elements. We could ereate a binary
tree of decisions with 16 leaf nodes, and map the leaf nodes onto the 12 elements,
with 8 being reachable via one leaf and 4 being reachable by two leaf nodes each.
{We simply wrap the 16 leaf nodes around the 12 choices mitil all leaf nodes have
been used: Le., we ereate a sequence of 16 elements by repeating the element num-
hers from 1 to 12 untll we have an element number for sach of the 16 leaf nodes:
{1,2,3,4,5,6,7.5,0,10, 11,12, 1,2,3. 4.} At this point, we have a maximum 2:1
bias in our selection. If we use a tree with 32 leaf nodes, we will have 4 elements
reachable from two leal nodes and 8 reachable from 3. and our maximum bias is
reduced to 32, I we use a tree with 64 leal nodes, we will have 8 elements reachable
from 5 leaf nodes and 4 reachable from 6, and our maximum bias is redueced to 5:4.
Attenuation produces fast but bulky ecode.

The second method of removing blas might be called reselection. Suppose, as
above, that we need to choose one of 12 elements, We could creste a binary tree
of decisions with 16 Jeal nodes, and map 12 leaf nodes to the 12 choices. The
other four cholees map to looping back and performing the whole selection over

again. With probability %, we succeed on the first try. With probability 2, we

suceeed in the first two tries. With probability :% we succeed in the first three,

Reseleetion has the advantage that it can almost completely eliminate bias, It
has the disadvantage that, while spatially compact, it involves redoing some steps,
Also, since we would want to it the mumber of iterations, it involves eounting
the repetitions and defaulting to a {slightlyv) biased choles on those rare ecases where
the count is exceeded. Reselection s more compaet, slower, and oliminates more of
the hias than attenuation

The third method of removing bias might be called reconfiguration. Suppose,
as above, that we need 1o choose one of 12 elements. We note that using 16 leaf
nodes, we have a bias of 2:1 with 8 nodes reachiable 1 way and 4 reachable 2 wavs,
Suppose we set up three wavs to identify the mapping of leaf nodes to elements.
For each of the 12 elements, it appears in the *1 way” set in two configurations
and in the *2 wavs” set in one confimwation. We then {using reselection) choose
one of the three configurations, and then select using the tree of 16 resulting in
an almost perfectly nnbiased selection, and we only had 1o apply reselection on
3 elements, not 12, At the cost of & little extra data, this method provides the
best combination of compactness and speed when the munber of configurations
needed to eliminate hias i small. {The maximum possible number of confignrations
i bounded above by the number of elements from which to choose, but at that
number of configurations, wsing reconfiguration is pointless because choosing the
vonfiguration is simply another of instance of the problem whose bias we are tryving
tor rodluee.

2.9, Deep Nonlinearity: Function-Indexed Interleaving. The AES-128 im-
plementation described in [10, built using the methods of 21, has been penetrated
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using the attack in 4. While this attack snceeeded, the attack is quite complex,
and would require significant human labor to apply to any particular software im-
plementation, so even without modifications, the methods of 21 are useful. Tt
would he extremely difficult to make the attack of 4] suceeed against an attack on
an implementation according to (21} fortified m*aforaimgg to (22]. However, we now
seck stronger protection, and so it hehooves us to find wavs to further bulwark the
methods of [21, 220 in order to render attacks sueh as those in [4] infeasible.

2.9.1. Shallow Nonlinearity and Homomorphic Mapping Aftacks. Much use is made
in implementations according to {21, 22] of wide-input linear transformations (§4.0
in (21 ) and the matrix blocking method deseribed in §4.1 on pp. 9-10 (paragraphs
0195 [0208] in [21 1. 1t is true that the methods of [21] produce non-linear encoded
§§¥§§}§{‘mm§tﬁ¥lﬂf§% of such linear transformation matriess, However, the implemen-
tations are shallowly nonlinear. That s, such s matrix is converted into a network
of substitution boxes {lookup tables) which necessarily have a lmited number of
elements due 1o space limitations. The nonlinear encodings {arbitrary 1-to-1 fune-
tions, themselves representable as substitution boxes! Le., ag lookup tables) on
values used to index such boxes and on element values retrieved from such boxes
are likewise restricted to lmited ranges due to space limitations.

Thus any data transformation computed by an input-output-encoded implemen-
tation of such & blocked matrix representation, which is implemented as a network
of substitution boxes, or a similar devices for representing essentially arbitrary ran-
dom functions, is near up fo 1/0 encmling: that is, any such transformation ean be
converted to a linear fanction by individually recoding each input vector element
and individually recoding each output vector element,

The attack method in 4] Is 8 particular instance of a class of attacks based
on homomorphic mapping. The attack takes advantage of the known properties
of linear functions, in this case over Gr{2°) sinece that is the algebraic basis of
the computations in the AES. In particular, addition in OF(27) is performed using
bitwise < (exclusive or), and this function defines a Latin square of precisely known
form. Thus it is possible to searel for a homomorphism from an encoded table-
ipokup W*E‘HMEE hf 1o an unencoded one, and it Is possible in the case of any
function [ = Qo2& e Q' where & is bitwige, to find an ap;zrsmzxmie solution
U = s A ’Mr B p*—aﬂlmim affine 4 (Lo, an approximation (3 which is within an
afflmz mapping A of the real ) with wawua?si@ efficiency. These facts are exploited
in the attack of [4], and there are other attacks which could similarly exploit the
fact that the blocked matrix function implementations of 21, 22] are linear up to
1/0 encoding. While such attacks vield only partial information, thev may narrow
the search for exact information to the point where the remaining possibilities can
be explored by exhaustive search. For example, a white-box implementation of
encryption or decryvption using the building blocks provided by 21, 22 may be
vidnerable to keveextraction attacks such as that in |4, or related attacks based on
homomorphic mapping.

242, Foiling Homomorphic Mapping: Deeply Nonlinear Functions. The solution
to homomorphic mapping attacks is to replace such matrix functions with functions
whieh are (1) wide-input; that is, the munber of bits comprising a single input is
large, so that the set of possible input values is extremely large, and (2) deeply non-
lineqr: that is, functions which cannot possibly be eonverted into linear funetions
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by /0 encoding {ie.. by individually recoding individual inputs and individual
outputs],

Making the inputs wide makes brute foree inversion by tabulating the function
over all inputs consume infeasibly vast amounts of memory, and deep nonlinearity
prevents homomorphie mapping attacks such as that in [4..

For example, we could replace the MixColumns and InvMixColumns transforma-
tions in AES, which input and output 32-bit (4-byte) values, with deeply noulinear
MDs transforms which input and output 64-bit {8-hvte) values, rendering brute-
foree inversion of either of these impossible. Call these variants MixColumnsey and
InvMixColumnsgs. (Since encryption of a message is done at the sender and de-
ervption at the recipient, these would not normally be present on the same network
node, 50 an attacker normally has access only to one of them.}

Suppose, for example, that we want to construct such a deeply nonlinear vector-
to-vector function over GF(27) {where n is the polynomial — fe., the hit-string —
size for the implementation) or, respectively, over Z/(2%) (where n is the desired

Let & = our chosen representation of GF{2™) {respectively, of 272", ¢y = our
chosen representation of GF{(2%) (respectively, of Z/{2%1), and G, = owr chosen
representation of Gr{2} {respectively, of Z/{2%)1.

Suppose we need to implement a deeply nonlinear funetion f: G¥ — 6%, withp >
Jand g > 20 Le., one mapping p-vectors to g-veetors over our chosen representation
€ of grF{any,

If we wanted a linear function, we conld construct one using a ¢ x p matrix over
&, and i we wanted one which was nonlinear, but linear up to 1/0 encoding, we
could use a blocked encoded implementation of such s matrix according to [21, 22).
These methods do not suffice to obtain deep nonlinesrity, however.

We note that elements of G, Gy, Gy are sll bit-strings {of lengths n, u, v, respec-
tively), Eg. fn = % and ¢ = v = 4, then elements of ¢ are 8-bit hvtes and
elements of Gy, and G, are 4-bit nybbles (half-bytes),

The following construction is called function-indeved irderleaving. We introduce
operations extractir, #|{ -} and interleave! -, -} which are readily implementable
on virtually any modern computer, as would he evident to those versed in code
generation by compiler. For a bit-string

S = (by by, ),

we define
extractir s {8} = (b Briq... .. 00

Le. extract]r, & returns bits r to s, inclusive. For a vector of bit-strings

i

Vo= (51.8,....5.),

we define

5

extractir, # (V') = {extract r, ¢}(5;), extract|r, s{S;). ... extract'r, s/{3.}} .
£ 5 3 : E ¢ j i

Le., extractr,s] returns a new veetor containing bits r to s, inclusive, of sach
of the old veetor elements. For two vectors of bit-strings of the same length, say
Ve (8, 0 8 cand W= (T TS, we define

interleave(V. W) = (8, 1Ty, S /T, ..., 5.

Gty
‘;.{37
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Lo, each element of intw?ea&* VW) s the concatenation of the eorresponding
elemment ol Vowith the corresponding element of 5&‘
To obtain our tim§s§f« nonlinear function [ CF o Q9 abwwe. we proceed as
{ollows per the flaw chart of Figure 8
80 Seleet s fametion 1, S O A ;«&5*’“‘*'*‘xﬁé%’s‘%i&p sedect @og % poanatrix
over Gy, {Since singl Al square sybrst viny
homomorphic mapping. it is proforred i%m& m% sqiare submatrices of the
WA representation of L be nonsingular. 18 L i 808, 0o square sl
mmatrix of Lois singulay, so this preference s cortad éx «szﬁf«“ﬁ.»
82 Seleet & = 2 functions fi0 G0 e GF for i o Ok - 1, or alternatively,

Fe

Woeay oreate vilneraddits to

select B > 2 g ok p matnees over G, (Sinee singular square sulanattices
ean create valneralalities 1o homomor s’%m‘ mappng, 1t s preferred that
most square submatrices of the matniy representation of Bo.. . 1 be
sonsingular, W R fi oy sre DS, go square sib-matnix of any R, i«

satigular, so this preforence is certainly satistied.)
84 Seleet a function « 67 oo {01, &k 1) for which

SGEY = {01k - 1)

e, choose an ¢ that s Cente’ of ‘surpetive’)

Other than the requirement “?mt # be anto, we conld choose a2 random
However, even simple comstructions sufflee for obtaining . As an example,
we give onr preferred nggwgz;g won for x, as follows

ok < u, we choose s nvar function &0 67 s ¢, (or squivalently, s
Porpomatnix over €0 and & funetion

oy iy v {01,k 1)

Simalagly, i w < & € Qu, we cati choose s linear function sy 67 -« G and
a funetion »,0 GF vn {0010k 1 and o on, Then et s sy o0, In
the preferred M:z?w%%:mwtéz fope T, L%, ar sonue othey oy of T,

Suppose B oo 20 Then # coudd return the low-ordes bt of the bit-stony
representation w% an cloment of Gy b 4L 5o conbd et the loweordig
3 bats, mnd i general 1 & < u, sy could return the walne of the §?«§§”§‘fi§i§§
wpwhilo b alued for oo preferred chowee of & P sy, i obtadned by
#Etyae ting the m fowosordder bats of t the #y w%}”mi

The above preferred method permits us 1o use a blocked matrix inple
smentation for sy, so that the methode of f} 3 ospply o Moreover,
we can stralghtlorwardly obtain an bnpleaentation of 5 Cwhen s ine
vertible, using this preferred constrgetion, by the method diselosed below,
which generates an £V function whose oonstraction is singlar to that of 7.

85 Foranv V¢ &7 Lot

Vi & extract i u 1‘5’@"”3 .
Vo owoextract u.on WV, and
Vi dnterleave LV, R4

where j o #iV, .

i

88 The function f defined n step (4 ahove may of may not he deeply nonlin.
ear. The mext step, then, s to check for deep noulinearity, %’%v determine
this ysing the {olowing test,
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If f is deeply nonlinear, then if we freeze all of its inputs but one to
constant values, and ignore all of its vutpits but ane, we obtain s 1 x 1
projection [’ 1f we choose different values for the frozen inputs, we may
obtain different f* functions. For a lnear funetion, or a funetion linear up
to 1/ 0 eneoding, the number of distinet {7 functions obtainable by choosing
different values for the frozen inputs is easily computed. For example, if
po=gand §is ee-l {Le, if LBy, .. . Bey are 1-to-1) then there are
exactly (¢ such Dunctions. [ can only be -to-1 in this construction if
q P

We simply count such [ functions, represented as [Glvectors over
{eg.. by using & hash table to store the number of vecurrences of cach
vector as the p — 1 frozen-input constants are varisd over all possibilities).
If the mumber of distinet [ funetions conld not be obtained by replacing f
with a p x g matrix, then f is deeply nonlinear.

We can aceelerate this test by notieing that we may perform the ahove
test, not on f, but on arbitrary 1 3 projections g of f, where g is obtainesd
by freczing all but three of the inputs to constant values and ignoring all
but one of the outputs, This reduces the mumber of function instances to
eount for a given unfrozen inpat and a given unignored outpt from (G !
to (77, which may provide a substantial spoedup, Moreover, if f is deeply
nonlinear, we generally discover this fairly soom during testing: the very
first thme we find a projection function count not obtainable from a matrix,
we know that g is deeply nounlinear, and therefore f Is deeply nonlinear.

If we use the acceleration using g with a random selection of three inputs
atd one owtput, and we do not sucesed in demonstrating deep nondinearity
of f.then [ is probably Hnear up to 1/0 encoding.

{Note that it is possible that the projection instance counts are obtain-
able by matrix but that f is still deeply nonlinear. However, this is unlikely
to occur by chanee and we may fgnore it. In any case, if the alove test
ncdicates that f is deeply nonlinear, then it certainly is deeply nonlinear,
That is, in testing for deep nonlinearity, the above test may generate g false
negative, but never a false positive, )

If the test in step 88 does not show that f is deeply nonlinear {or, for the

variant inunediately following this list, sufficiently deeply nonlinear), we

return to step 80 and try again.

Otherwise, we terminate the construction, having obtained the desired

deeply nonlinear funetion f.
As a variant of the above, we may wish to obtain a function f which is deeply
nonlinear, and not only that, but that its projections are also deeply nonlinesr,
In that case, in step 88 above, we may increase the munber of ¢ funetions with
randomly selected distinet groups of three inputs and one output, for which we
must show that the [ instance connt is not obtainsble by matrix. The more of
these we test, the more we ensure that f is not only deeply nonlinear, bt is deeply
nonlinear over all parts of its domain. We must balance the cost of such testing
agabnst the importance of obtaining » deeply noulinesr fnetion which is guaranteed
1o be deeply nonlinear over more and more of its domain,

293, Erperimental Verifieation. 1000 pseudo-random trials of the preferred em-
bodiment of the methoed for constrocting deeply nonlinesr functions £ were trisd
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with preudo-randomly generated MDS matrices L and Ra By (k = 2} where [
G s 08, = PP, and €y = Gy = oF(2Y), The MBS matrices were geners
ated nsing the Vandermonde matrix method with pseudo-randomly selected distinet
eoifficients. OFf the resulting 1000 fanctions, 804 were deeply nonlinear; Le., in 504
of the executions of the construction method, step 88 indicated

that the method had produced a deeply vonlineay function on its first try,

A similar experiment was performed in which, instead of using the selector fune-
tion g = syoay according to the preferred embodiment, function so was implemented
as & table of 16 1-hit elements with cach element chosen pseudo-randomly from the
set {1, 1}, OF 1000 such functions, T84 were deeply nonlinear: fe., in 784 of the con-
strictions, step 88 indicated that the construction method’s first try had produced
@ deeply nonlinear function,

Finally, a similar experiment was performed in which s was created a8 a table
mapping from 7 to pseudo-randomly selected eloments of {0,1}. In 1000 pseudo-
random trials, this produced 997 deeply noulinear functions. Thus this method
produces the highest proportion of deeply nonlinear functions. However, it requires
g sizable table (512 tyvtes for this small experfment, and 2048 bytes for a similar
fanetion f1 G s G with the same 170 dimensions as the MixColumns matrix of
AES) to store 2,

We see, then, that the eonstruction method given above for creating deeply
nomlinear functions over finite fields and rings, and in particular, its preferred em-
hodiment, are quite efficient. Moreover, creating inverses of the geperated deeply
nettinear functions is straleghtforwand, as we will see helow,

34,4, Propertics of the Above Construction. A function fr GF »e G¥ construeted
as deseribed above has the following properties:
(b7 M L and Ry... ., By are 1-to-], then [ is 1-to- 1)
(2 if L and Ry.. .., B are bijective (Le., if they are 1-to-1 and onto, so that
p = g), then f is bijective; and
(3) if L and Ry, ..., R arve all maximum distance separable (MDS see below ),
then fis MDS.
The Hamming distance hotween two k-vectors, say 4 = (g, 0} and ¢ =
{1y.....0}, is the number of element positions at which u and v differ; ie. it s

Ala,v) = fieNli<kandu; # 0.}

A marimum distanes separable (MD3) function 1 §% v+ 8% where 5 i5 a finite set
and (8 > 2, is & function for which for any z.y £ 5P, if A{r.y} = d > 0, then
Al(fiz), flyii 2 g —d+ 1. I p = g, such an MDs function is always bijective. Any
projection f7 of an Mps funetion f: 8% « 39 obtained by freezing m < p of the
inputs to constant values and ignoring all but n < g of the outputs, withn > 1 (so
that f 5% s %) is also an MDS function. If § iz a finite Held or finite ring and [
is a function computed by a g p matrix {an MDS matrix, sinee the veetor transform
it compmtes is MDS), sav A, then any 2 x> matrix M " phtained by deleting all but
y of the rows of M and then deleting all bat 2 of the columns {where 3 > 1), i
nonsingular: Lo, every square sub-matrix of M iz nonsingular,

Such Mbs funetions are important in eryptography: they are used to perform a
kind of ‘ideal mixing’. For example, the AES eipher [16] employs an MDS funetion
as one of the two state-slement mixing funetions in each of its rounds except the
last.
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20.5. Inverting the Constructed Function. When we employ a 1-to-1 {asually desp-
Iy nondinear) fnetion £GP s GY for some foite field or Anite ving &, we often
need an inverse, or at least a relative inverse, of f as well. (In terms of [21, 220, the
corresponding situation is that we have & I-to-1 linear function f: &%« §%, which
will he shallowly nonlinear after 1/0 sneoding, whose inverse or elative inverse we
require, However, we can strengthen [21, 22 significantly by using deeply nonlinear
functions and (relative) inverses instesd. }

We now give o mwethod by means of which such an inverse (i p = g} or relative
inverse {if p < g} is obtained for a 1-to-] function f (deeply nonlinear or otherwise]
ereated according to our method.

For smy bijective function f: 8%« 87, there is a unique function f~1: 5% e
R fof~tew f~lo feiden, I f1 8% e 8" and m < n, [ cannet be bijective,
However, f may still be -to-1, in which case there is a unique relative inverse
FU S s 8™ e 1o e f = ddem. That is, if we ignore vectors in 8" which
eannot be produced by ealling f, then £ acts like sn inverse for veetors which
can be produced by calling f.

We now disclose a method for constructing such a relative inverse for the fune-
tions [ which we construet, whenever L and all of Re, ... By are 1-to-l {in
which case ¢ = p). Hp = q, then L and all of By, ... Re.y are bijpctive, and such
w relative inverse of Jis algo the [ordinary) mverse of f.

This method van be emploved when function # {see step 84 of Figure 8
is constructed from s linear funetion #y sued a final function #; is employed to map
the output of sy onto {0, .. &~ 1}, where s is computed as the remainder from
dividing the & result by & (I k is a power of two, we may compute 52 by taking
the log, k low-order bits of the s¢ result, which Is a convenience, but is not actually
reguired for our current purpose).

We define linear funetions L™ and By ', .. R ; o be the relative inverses of L
amd Ry, ..., Ry, respectively. {Sinee these functions are computed by a matrices,
their relative inverses can be obtained easily and efficiently by solving simuiltaneous
linear equations by Gaussian elimination or the like — Le., by methods well known
in the art of linear algebrs over finite fiedds and finite rings.)

Wit have # = g < 8y from the construction of §. We define 8} = &y » L1, where
L% s the relative inverse of L. (Thus 8] is eomputed by a 1 » ¢ matrix over
@, easily discovered by methods well known in the art of Hoear algebra over finite
fields and finite rings.) We define & = & 0 5}, We now have an onte function
B 5 { Y - §

The degired relative inverse — or ondinary inverse il p = ¢ — I8 the funetion
F78 G e 0 defined as follows,

For any W o 49 let

W, = extract 0, u - 1}{W},
W, = extract/u, n — 1{W}, and
JHW) = interleave! L7 (W), B7HWL) )
where j = &/(W,],
When p = ¢, this is just the ordinary inverse of f. When p < ¢, the Tunetion
behaves lke an imverse only for vectors in J{GF} € OV,

If we have an unrestricted form for &, Le., if it is not construeted as in the
preferred embodiment above, we ean still invert or relatively invert a bijective or
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{-tenl f. For exatnple, if # s simply o table over elements of GF, then if we define
amew table s = s o LY then the formula sbove for 777, bt weing this ditferae
<, remains correct, Thix new table ¢ can be obtained by traversing all dletnents ¢
of GF determining Lio ), and filling in elament Lie) clement of 57 with the contents
of ¢lepent ¢ of &,

et

230 Statie Single Assignment {(SSA) Form. Suppose we wrileé s program in
& language such ¢ C. Data will comnprise sealar vanables, arrays, amnd structures,

The routines {funetions in C terminology ) tvpieally set as M. Fach routine
van be representi<d by a eontead flowe graph (0P see 12.1.3) ) i wilieh the
todhis denote basie Slocks (i Lo, stralght-line codv soginents voding b s transter
of comtroll,

A routine is i statie single assignment (38A) form with respeet 1o s sealar
variabies if and only zf overy sealar variable has exactly one dominating sssigninent,
{rtherwive, 31 B0 statie mallbassigrment (S04 form

Wi note that 1t s not ;;{ wsitde, in general, to convert an srhitrary € osde routine
to saa form with respect to ts sealar variables within the © language itsell. The
vesson is that there can be locations in the code, such as following an $f-construet
with both a Drn-alternative and an else-nltornative shere two ditforent data-flow
paths merge — fe, where a variable, sav 1, s assigned in bath the thenepath and
the rlve-path. A similar problem arises with respect to loops, which can be entered
fronn the top or reenteraed from the bottom,

Teo handle this problem, a specind {orm of assignment s added: 8 Srassignment.
Flg, in the case of the then-path apd elee-path assiguments to x, we could rensme
the assignod variables 2. and X, respoctively, and then, mumediately after the
merging of those paths at the bottom of the (f-consirnet, insert the G-assgnment

Xgow (g Xald;

With the extensdon of ooassignaments, it = now possible o con %’é*ﬁ an arbitrary €
rostine into 88 form as Jong as every variable v initializved at the start. (1f not,
a farther refinetnent, mentioned below, suffices 1o make the method completely
general ) Using the comvention i 1, we need not perform the conversion a@;z@t%
C extended with Gasstgnments {and wonssignments) see below), bt can ratler
petform it i a furnther extension in which varisbles can be sulweriptad as :;@ig«s W
Below. so that the corresponding original variable can alwavs be found by romoving
the subsenipt,

2181, Conversion from SMA Form to 854 Foren, Conversion 1o 854 form involyves
(13 computation of deminators in the CFQ, best achievisd using the dominance
algorithm i B30
(21 compitation of the dominanee frontier for assignments in the CFG, which
determine optimal placements for oassignments, best achieved using the
dominance frontier algorithm in (13 and
(% conversion of the code to 384 form, best achieved naing the algorithm in 14
(minus it dominstors and dominance froatier parts, which are replaced by
algorithins from 135, noting that the conversion method in %iw paper fnils
Whess every mﬂm?‘;i@ i the original O routine s defined (Lo, assigned a
value) in a position dominating all other uses. H this s not i%w s lor any
yariable v, we can address it by adding an initial weassignment of the form

e ay 3 %
LY
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{denoting utidization fo an andeBned valued at the beginning of the rone
tine, immediatoly fodlowing the ENTER Instraction, pror 1o the conversion
of the routine frot SMA 1o 584 oy

23102, Conversion from S84 Form (o S04 Form, The reverse conpversion irom 8
form 1o SMA form s triviad
1) Each o-assigument takes s inputs fom vardous basic blocks {ais) which
can casily be identified in ssa fonn since there s only ope static Joeation
at which any sealar varable I set to a valoe, When the eutput of an
wstrnetion other than an Suassignipent computes s vanable which & an
mptl 1o 8 Ceassightnent, ert a MOVE instruction smumsdiately after the
wstruction which eapies the output of the ingtruction to the variable whick
w the suiput of the Seasigmment,
() Bemove all owsesipnipents and wenssignmetis
Note that the veverse comversion does not reenver the onginal program, It does,
however, vield & semantically eguivalent program which i in sa (he, exvontable)
forem, That bv i we convert an orlpine! routine, which v abways in sas form wlen
written in & langnage such as €, to ssu form, and then to saa form, the final
ssia-form of program s unlikely to be identieal to the SMacorginal, although it s
functionally eauivalent to it

3, BASE  Foxerios Pams axo 1R DUriiuenNTOorion

I this section, we jopose a method for generating pairs of whate-box trap-
door one-way fanetions, and especially for generating Base funciion
hijeetions in mutually inverse pairs, such that an attacker, provided with the imple
mentation of one wember of stueh & pair, cannot readily find an buplementation for
ity jmverse (the other membey of the palr), nor can the altacker readily ind poant
sversions for the provided lmplementation

3.1, White-Box Trapdoor One-Way Punctions: Definitions, We define what
& trapdoot she-way function s in general, then dead with the white-box case, z«ami
fnish with separation of the entropy in implementations tnto key and randomization
B0 £ iy

311 Trapdoor One-Way Fanctions, We start with the lollowing dedinitions taken
from 31
Total £: X+ ¥ s 4 one-way function M fir} s eanly’ computed Vr < X bt
it b eompatationally infeasible’ to compute ¥ = flrd o gior almest sl g © f{X)
J sbove B a trapdoor one.nay Junetion Y f ow opeewny Dawetion and e @
s, gIven &, o @gnmmuwms feasible for any g © J{XN o tind 2 - fle) oy (H S
i a bijeetion, £ s such an s

112 White-Boy Trapdoor One-Wey Fusetions, To the above stondard definitions
from 311, we add the following nenestandard definitions for the whitehox attack
. i?ﬁ exE,

f above is s whiteobor onewway function T f i designed to be implementable
s ax 1o have the oneway fune tion property szta@%w white-hi altack, Simtlarly, f
woa white-bor tropdoor one-way function W f designed 1o be inplamentalde so
as to have the trapdoot one-way fanetion property under white-lox attack.
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Bijection f2 X+« Y i & encoway bypection Ml f’%* s ety comprited

R
Yr o+ X, but it s Ccomputationally nfeasible’ to find ¥ 3 r o ¥y for “aluost
all’ o V.
Bijection f above b a trapdoor oneccay byection. U £0 X o0 ¥ s & otieeway

bijection and s = 0t is, given &, cotnputationally feasible for any g © ¥ to Hnd
v x o= [yl (For Ma;ﬁzzgéa: a svimmettie cipher [ which has been partially
evaduated with respect to 8 Koy & % & tmgximg areswny bipetion:  the seret
inforrmation i the ey 5.0

Bijection [ above is 8 = hite-bor oneeway dction M f s desdpned 1o by e
g%“vxiwzmg&%w s 5% 10 have the onewsy Bjction property greler whiteebox attack
Similarly, f is a white-bor trapdoor ene-way bijection T [ s desgned to be pes
pentable so 8 to have the trapdoot oneway bijection property under wiite-box
attack. (For example, an effective whitebox fixed-koy implementation of @ svime
mwdtie cipher [ s a whitebox oneeway trapdoot hgection the seoret inlormation
& b the ey

NJL A whitebox trapdoor one-way bjection impletientation & an nplemet-
ration of a bijection [ such that, given that implementation of [, without seered
informnation, it b hard to B s compayt tationally feasibile §‘§:§§m e ation of i
{The speeific sectel infurmation could isell be a eomputationally feasible %iizgf&im

)

werration of f

313 Key Entropy and Rondomization-Entropy. We find two functions [y f&
sueds that, given s partionlar comstruction algoritlan, & definition of fu amd fx
Cuse %* fomnd g;;z‘s's* gonly K. K i the degeentoopy

We then find two implomentations py, and Q; where Py, tmplements f and

qn, Hnplements VORy and By provide rendomiratien-entropy which does not
affect fanctionality: it b only tsed to detertuine Aoy the functionality is represented

%
i hopes of shecuring the implementation sufficlently to prevent amacking of the
iplemortations for a period of time

P atpl Qup, OOMPTINE G eyl b dppverse Tase Punction smplementation pair
12 Security: History, Theory, and Proposed Approach. Our initial af-

reqrpts to buld whitehox trapdoor oneway function tmplementations in onttually
fverse prirs were based on the expectation of the mtras %%mﬁ" o dmambigus-

thoms o by W&Jm *?}:‘* % By vyl ¢ %x‘imi}’;@@ R 5‘\\%& j oof Bimeny Tunu S sl
deoply nonlinear functivi-indexed interloavings {s0e 292 ) of Huear {une

thotgs, plus s few other operations to eliniuate the T-function property of such
iplementations over computer anmthmetic e ovet 27427y wirh typieal o o 321
It bas been  demonstrated conelusively that this expectation s falee: any sueh
sttempt to produce an intractable disunbiguation problesn by means of e oddinig
adone fails becanse encodings simple enough to use are also shinple enoug st analyee
sificiently
This led us to seek programmatic defonses, in which encodings indeed play a
part, but o which they work in concert with dynamic programnastic mechanisms
eontrolflow  ronstine calls, brosder data organdzation, ete ). Many problioms yedatodd
fi ;&‘g‘@%@gfﬁ%m are diffiendt.  We have proven, b sxsimnie, 1 timt "‘N?%e}yﬁw*&% sl
reachability problems for control-tlow fattening it the presence of encoding are

Wi *&?&*é'mw“ prapaCehard 5?
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Muore generally, we have Rive's Theorem, which states that, for any non-trivial
property of partial funetions, there I8 no genersl and effective method to deeide
whether & given algorithm computes a fanetion with that property. {(“Trivial’ means
that the property either holds either for all partial functions or for no partial func-
tions.) The theorem is named after Henry Gordon Rice, and is also known as the
“Rice-Myhill-Shapiro Theorem” after Rice, John Myhill, and Norman Shapiro.

An alternative statement of Rice’s Theorem is the following. Let 8 be a set of
languages® that is non-trivial, meaning that:

{1} there is a Turing machine (TM} which recognizes a language in 8. and
{2} there is a T™M which recognizes a language not in 8.
Then it s undecidable whether the language deeided by an arbitrary T™ Hes in S,

Rice’s theorem applies only to Hnguistic properties, not operational ones, E.g.
it Is decidable whether a T™ halts on a given input in < & steps, it is decidable
whether a TM halts on every input In < & steps, and it is decidable whether & T
linguistic and Rice’s Theorem implies that & perfectly general virus recoguizer is
mpossible,

Patents in Irdeto’s patent portfolio include software obfuscation and tamper-
resistance implemented by means of data-flow encoding |5, 7, 8] {the encoding of
sealars and veetors and operations upon them), control-flow encoding 6] {modifi-
cation of control-flow in a program to make it Input-dependent with a many-to-
many mapping from functions computed and chunks of code to compute them),
and masa-data encoding 1200 (software-based virtual menory of memories in which
logical addresses are physieally scattered and are also dynamically recoded and
phvsically moved around over time by a background process).

Of the above methods for obfuscating software and rendering it tamper-resistant,
data-fHow encoding s primarily s static process {although varieble-dependent cod-
ing, in which the codfficients for the encoding of vertain variables and veetors are
provided by other variables and vectors, renders it potentially somewhat dvnamic),
whereas control-flow encoding and maess-deta encoding ave primarily dynumie: data
structures are planned statically, hut the actual operation of these sofware pro-
tections is largely a result of the dynamic operations performed on these data-
structures at run-time.

The control-flow encoding was primarily aimed at {1} reducing repeatability to
foil dynamic attacks, and {2} protecting disambiguation of control-flow by bury-
ing the normal control-flow of a program in considerable extra control-flow. The
massg-data encoding was originally almed at finding an encoding which would work
correctly in the presence of a high degree of dynamic aliasing: e.g., in € programs
making aggressive use of polnters,

A diffficulty with the above forms of dynamic encoding is that the support data
structures {(dispstel and register-mapping tables for conirol-flow encoding, virtual-
memory en/de-code tables and address-mapping tables for mass-date eneoding)
themselves leak information.

We propose to use protections similar to a combination of control-flow encoding
and mass-data encoding, b with a sharp reduction in specialized data-structures,
by moving most of the specialized processing which they support from rn-time to
compile-time. Let us eall this new form of protection, with much of the dyvnamic

@& : > . -
~& language i 4 wet of strings over an alphabel. Aw slphabef W a Bnite, non-ompty set.
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variahility of control-flow encoding and mase-dita encodimg, but with specialized
dutactruetares moved fromg runtime to compile-titne, dynamie data mangling,

A benedit of ehiminating wost of the apeciniited dafa-ruetures Al rmn-time s
that the operations which support dynamie data mangling become harder to dis
timguish from the oode to which it is applied

3.5 Choosing Invertible Matrices over 2127 1 To create s imvertible matrix
M oaver 270290 and s mverse M7, we provend as follows,

Chocse ypper-trinngular invertibie matrioes with noteero eletuents ot and above
the disgounsl, where an n o« n ypper-inangular invertible matnix U e s man B8

vhwsets s thag

'S IR -1 drand(27 - 1
o o o T e 2k randdY 7 and
» %’ﬁ‘»;g ty g v AL
Since all disgonal elements are odd, U s eontalnly invertible,

e gw@e’iu tly choose two siucls random upper triangalar matrioes XY, Then
Moo X¥Tand M0 o YTy

This approsch ensures that the computation of inverses s vry easy siwe all
inversions arv compatted o upper triangular matviees, which are alre: ady I row-
echelon form where all lrarling row clements are units of /(2%

ER ) Virtual Machine and Instruction Set. The proposed form
o implementations s progratunatic and operational.  We therefore
define it from the ground up n terms of & virtusl mz@f%ﬁm (VM) with a single
shread of eamtrol (no paralielian, po timeslicing with an instroction set hesed
on the operations i the flangouage O s inplemented Iy z;swiwz’z; comnpilers (goc for
G Linay, CLLEXE for sis Winsdows ) for both Butel 1402 and Inted 1464 Instouetion
st zw**s;m tures, where the defanlt sive of & {signed) (0t or unsigned int = 32-
Bits, The Vi instruction sel operates without overfiow checking, interpeeting 32-Hi
wipds as unsiened guantities exoept where otherwise stated

3451 Rowt Instrue "W% Haowt mstroctions comprise seven Helds: g 0Bt apoode,
three 1-hat Wteral flags LI L2 L3 and three 33-bit operands éi@i?&“‘f’%"z‘msf 1, operand
&, operamd 3, tach wf which is Lteral o the eorvesporsding Bteral Hag b st and &
seriator putmbor otherwhbo (soe Fig, 2 ) Al strsetions use this lormat,
exoept for EXTER and 91T, which tse the format shown i Fig, 3 ), Wil
i 2i-bit fiekd holdling a rount &, a 5-hit opoode, three -0t Hteral flags all 0t 1o
and fiﬁ, S0 pegister tipnbers,
The root wtraetion s b shown m Tahle 3

i

i
3
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3432 Impled Instructions and the Basie Instruction Set. Implied lnstructions,

earh hased on special use of a basic instruction, are showsn i Table §

The set comprising the root and mnphed msiruetions comprises the
Vit's Basie instruetion set.

%
fomaly

”

L3 Corvespondenee with © Languoage Operafors, The basie lptretions o
corpespod o aperators in the langpusge ©

he Boolean comparisons B0, NE, VLT, VLE, SLT, sbE, and thetr implid coun
terparts UCE, DQT, sOT, sof, produce | i the msmgmﬁw*a = true awd O otherwise,
Al snithinetie i 30-bat anthumetic with po overflow ol hing, as s typeesl of ©
language huplementations, and all anthmetie & unsigned exeept ’%&?%‘%v ot herwise
estond

Neote that sDD, St SIUL, DIV, BEM, ARD, OR, NOR, 1. N URT. VLE LaT,
PR, LESH, and LRSH correspond to O binary operators ¢, ~ o f %0 &1, 7, »=,
fe <, <m > > <€ 3> respectively, with sasigned int operands wosnming 30-bit
“ﬁ“‘g’?@*ﬁ tnts, Similarly, NEG, XOT correspand to unary C operators =,

ively, with 32-bit ungigned 1n% operands. Fumally, sLT, 81LE, 07T, sCE correspotd
to €, €w, » e owith 2001 int é@@wmw%«w 1lsh, arsh correspond to O <<, 3«:} rin
speetively, with 32 §§§§’ int operassds and a posttive shifteeount, and the capalal
of LOAD, STORE, JUMP, JUMPZ, JUMPRZ correspond 1o the memory access and
control capabilition uﬁ C ouptting bit-fields, funetion pomters, and funetion ealls

The above behavior on 32-hit ints and gnsigned 1nts<is not part of the 50/1HC
C «aandards, but it 1 the default beluvior provided by both gec on onv Lanux
atsd CLOEXE on Windows for Intel 2482 and 1460 architectures

Thus theve s a close correspandeteos batween the above VAL iruction set s

minstbes and the de %@ tor standard e C in 5} é% FReptat o,

344 Moero Instractions. Maero lstructions tepresetst khiotns wsed in the imple
seadiaton of Base function pairs, BEach tmnero Dedruction can very easily be
expanded into a body of code which containg only hasde é?éﬁﬁg‘%ié‘%é&%%* e 0342
ofr o 340, pessibly with the use of some oxtra toanporary registers. Reasonable
expatisions are olwions and therelore omitted.
The geperal form or s wacro instrycetion W roughly
mnemonie [parametors)  dy, o de e 8L B

denoting a mapping taking af NPl victor combr g register vdaes (8., .. 80 ]
atd producing an ontpal vector comprissng register walues (dy, . do

The omp oF 1507¢) peirerreTers IhRY b valtew, oF ol Of IoTe sOUe 1 ”’W%‘%“i"»
VT Aﬁf« e,.mi}f« {HWY Bg 0, OF QNS Oof e o mmere Wt @il case thos
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Opeode Mnemonie  Operands Effect
0 HALT {ignored} halt execution
I ADD {gg G g-_}_‘z 343 fi§ [ T S 53 in Z E?{ ;
2 8UB dy e 0, iy iy o - fu 1N Z l)fé H
3 MuL f?k s Fiy d é,f§ e ?s ® iy in Z 2 §
i v dy e g iy dy e dnfiy in ﬁég}
5 REM dy e fa,iy dy o+ o mad iy in Ng
6 AND dy e g iy dy » fa Ay hitwise
7 OR dy e dg, iy iy e iy Vg hitwizse
xooXon %,’51 L 5:'_%,?3‘3 i§§ S 53 o8 f:g bitwise
9 5o dy e fo, iy iy v iy
0 NE iy« io,4q dy e Ty #£1
i1owver dy v i, i dy < iy < iy unsigned]
12 ULE ey o fu, iy dy = (i3 < iy unsigned]
13 su7 dy v 1y, iy dy T§§ :%T»if‘.;ﬁ{?d}
i1 sLE dy e ig, iy iy o :fg Ly Siﬂ?@di
15 LLSH iy e fy.dn ds “z w2 mod 2 2% Na
16 LRSH i e i, iy s 4 Lin No
17 AHSH dy o i,y dy e da/ ‘}"“ in My then set {iy mod 32}
high-order gii bits e dy /2%
I8 LOAD gy e i, 01 dy o Ml(ia +ig)mod 2 24 in Ng
16 srong &y — f9,dn M iy + iz} mod 2% iy Ng| «
20 JUMPZ 117 da. iy T T U T § ¢ Z,.-f{23~} ifig =10
21 JUMPNZ 07 da. i PO e dg + iy in 227 i iy £ 0
2% suMpsuB d e da.is e POR4L PO e dy iy
23 ENTER ey, e emter routine, setting registers dy, ... de
to the routine mputs
24 ExIT wo 8y, ..., 8 exit routine, taking the routine ontputs
from registers sy, ..., 5z
legend:
Fro..., 8k source operands: registers; can’t be literal
dy, ..., de destination operands: registers; can’t be literal
TS PO input operands: register contents or literal
Mial source/dest memory location, address = ¢
T e ¥ replace contents of x with value v
P program counter (address of next instruetion)
Tapre 3. Virtual Maechine Root Instruction Set

inner sequence is modified by the outer macro instruction of which the sequence is
a parameter.
The macro instruetions comprise the following:

SAVEREGSTT 54,... .8 gy~ T

84



WO 2013/142981 PCT/CA2013/000305
APPENDIX

Implied Instruction  Translation

MOVE oy o g OR gy e 2.8

NEG dy — iy SUB dy ~ (0, ia
NOT = s XOR dy - f. {~110n Z/{2%})

UGT de o dg.12 ULT oy = fa, iz
VR ng A {"3’, o VLE Q{} e ii";? é:@

ST dy o i, in SLT dy e ia,ia
SOF iy o falin SLE dy e d9, 09

JUMP . ig JUMPZ U7 fa. 4y
TavLe 4. Implied Virtual Machine Instructions

Store &, in Mid+ i~ 1 for i = L. .,n then set r — r+ n. Typieally, » would
specify the stack pointer register.
RESTORERBGR{] dye, .y e 7
Set r e r - 1 then load dy from Md -+ @ -~ 1] for ¢ = 1, .., n. Typieally, » would
specify the stack pointer register,
LNEARMAPID M] dy,. ., dy e 81uou. . dpy
where 2 A is an m % n matrix over Z/(2%%). which, where & = {85..... fer ) and
do={dy, ..., dy ), computes d = Me, with d, g treated as columnn veetors during the
comnputation
SHORTROTATEL]  dy.....dn = fo: 81.....8n
where, using register or literal ig and letting
| . {(~1) fo it .25 ii@f{ 3% A 3}} i

. - 3 5y s £ Fre Ry
with A computed bitwise over B**, which computes, over Z7(2°°},

By e B
T P {25 &3
fori=1..... n when & > 0, and computes

o B s
dp e P 4 §/Q”" 8

LONGROTATELDD dy..... e <l 81,0, S
where, using register or literal {p and letting

2]

5,

with A computed bitwise over B*?, which, letting

# i

. 2”: 2,,.& --~-:‘:Sz %‘kai f} - 2 :?zizgw»- i'!‘/gs

fend g §
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wver Ng. eomputes, over Z/{291},

I} e 9%4:; " p}i‘wfﬁ;}ﬁs

o Tl

for i = 1.....n when k > 0, and computes

fori=1,..., nwhen b <k

SEQUENCED ... 6] dyooo iy« 8100 8,
where iy, ..., Ip are instructions, which computes the instruetions sequentially, where
81, ... &y are the registers from which the sequence inputs and dy .. ., de are the
registers to which it outputs;

SsPLIT{ey, oo oed s, dy v &y
- N V4 : R - & IO ) P S
whore 2 <0 ¢, € 2% - Llri=1,.. kand 1l < f[f‘f T 992 1. assigns

dy o | e | mod g,

. 0 . R R .
for i = 1.... k, where we assume [] j=1 €071 = 1 where € is an arbitrary funetion:
Lo, the product of no eleaments at all i= always 1

CHOORED .. ] L. i e BgT B, ., S

where iy, ..., i are instructions, which computes the single instroction i pae 0001,
where gy, ..., 8, are all the registers which are used as inputs by any of i, .. i,
dy. ..., dyy are all the register which are used as outpuis by any of &, ... i, and
sny register which may or 1eay not be used as ap input or output by the CHOOSE
instroction must appear as both aninput in s, ... sy andanoutput indy, .. dy!
where the expansion of a CHOOSE macro instruction into basic VM Instructions uses
& hinary tree of comparisons as close to balanced as possible: for example, i & = 16,
there are 15 branches in & balanced bhinary tree, each having the form

COR d e & 0

JUMPNZ a7
of i at the tree root is 2% {splitting the upper and lower half of the values}, at
its left descendant is 2% {splitting the first and second quarter of the values), and
at its right descendant is 20 4 2% (splitting the third and fourth quarter of the
values}), amd so ong

REPEAT [0, bi] dy... .. y — dg1 84000, 8y

where i I8 either a literad or a register, executes

I U A TP )
a4+ 272w g+ 1Yo, times;
PERMUTEDpy, o ooped dayoody v 80t 81,0008,
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where sach of gy, py b8 s permutation of (1. ni which performs 4, - S
ford o L nowhered s ek s (e i plavesin s, s, the permutation

of dy, . dy sedected by s, with an expansion into %awgé“ VAL s ruetions using
the satne a8 pearly as §xM§§ Ay balanoed oy tree of comparisons and branhes
which was deseribed for the CHOOSE macro nretion:

B M W W W S S W W R e B A R R B R R W S e B R MmN e e e o

RECODE[ry. .. en) dy iy o 8L e

3

eompttes d, oo eix ) for 1o L on, whieh may be implemented sither erplicaty

by stranghtforsarnd %w%&* ot pmplicitly by fractyrs

?M‘i‘%???fit‘g ,,,,, Q,@E ﬁfgg,hyﬁﬁfgw BB s g Py

%

compites o, oo el Jor £ b s, with the impleme ?ﬂéﬁg‘%tm§¥fww’§x*‘§« w Dednr wn
wrplicit é‘%g‘*”’}&ﬁ@%ﬁ*ii of the o s, rather than an wnplicd! e, fractury BIhest e

of T ¢

R L N I R I R o O T T

FRACTURE g, e ) dy o da e s s
computes d, o e s, for i o 1L n, with the impletsentation preference being an
spliest (Lo, frocture ) application of the o, 's, rather than an erplicst application
of thee o aped

FUNININT Dot i, Mleighe  Foigha Pt bt borpne ]y oty oo 840, f
whete tr 0 g+ Mg alid B = feg & B, COMPULes

g

& . )
ﬁ:;*,gi ({;i”"y‘*ﬁ%«&m« L T 5‘*‘?\\”

1o oladn the Lt resyd
Rupd O we Ay, 5 *};M;M

tor ldtadn the aedector, o, nel

Aenpls fgxmg«, B e w‘fng S Bamm whe 0o By

to obtain the rgh! resddt, by a simpdified variant of funetion-andered tnteriearing
which 18 ot necessarily bijective, gt plaindy 4 Bijective (1o, total, Tao], and
abto] whemever my o ong for ro (et nght ) with ey computing a bijective funce
Lot ated with sty projeetion of e obtained by webitrandy ﬁ*@:m 2 rasulating s
Bijective Bunstion.

1.5 Modelling Program Structure. We we s model fram the soonlled red
dragon ook (1
For every baade v instraetion other than the brated instraetions JuMe, Joupz
med MPNZ, the neyt instruction exe -z»m% e the one bumediately followlng the
current instroction. Thus, in terms of coutrol-low, the program forms s graph in

which the straight-line chunks of codde which are only satered at the beginning and
oy Wl st the end, correspoted to nodes in s graph

Accordingly, durning comstruction, we view onr Panction routine imple

sentations as control Bow grapls (CPOs) w0 52,131 Fack node is identified

with a fasie Bk (a0 & sequence of VAL Instractions in which the first imstraction
w eqther the st indtruction in the routine (alwavs a1 ENTER mstruction) of is the
st ination of 5 branh lnstruction. 1o other matrietion in the basie Bloek s the
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destinetion of & braneh netroetion. and the s gstrnctiar of the Dot bk B
altways o branoh of an 007 lnstraction,

We pestrict the control-flow praph to have a wugle ank wode, amd only this ~ink

sewlels 0 e B A BT sty uction, o that there b eractly one ENTER msirstun
sm& gt EXTT iniractben in the reagline

Within a neede of the OP0, exespt for any ENTER, 50T, of braneh svatrmetion,
e festractons can be viewed s s deto-How prasd i whieh the ordening of the
inatnctions s bhmlted ouly by the depetidescies among them. These are of three

e

11} An instnwtion y i ppnt-outputadependent onoan st raetion ¢ HY y takes s

s bnpwt & value produced as anontpat by ror y s mpatoutput depenedont

on an ptruction which s mpat-ontpat dependent on 2

A voap instruetion ¢ badestoredependent o s STORE instraction iy

%wmx a value from o estion into whoch proviowsly » stored that value, ot

o b Bowdestore deperidens o an lnstruction wineh b ibstoreadopendent

iy 7

(4: A sronp mstpgtion 8 stadeetoreedependent ol & YTORE peineton
r MY » stotes o o ooation b which p sudwequently stoges, o g B3

stope-store-dependent on an nstruction which s store-stosedependent on

b

¥

These depetsloncios reguire that ¥ be exeoutad alter 7. The ordeting of a basie
Block s then cotsttained 1o an crdening cofsistont with & topodogioal sort of the
s rietions 3 containg wing thew depetdencbs is 8 g gmr‘mﬁ exrider

i Mang b oOWaolgaoay” PRopasay

We inelude hore cur originad g%ﬁ”sxgxw& of s method for hullding whitehayt trage
doot oteaway Banctions n pmtually mverse pairs
The %%ﬁ“}%ﬁ“%é miakes nse of the following

b Permitation pody zmz%zmip £vet
208 with modull > P sed se encodings for integral vadues, sddition,
sl mnltiplicat lon-byea-constan s 271

We expect gém to e practioal due to the known ?ézzﬁi%;}zéwz that every
perinepaly ey 2 is equivalent 1o one of degree < w6 1 We expect
sidy pnoodings to have M 3

: ambiguity due to the veny Eﬁg’w“ pammber of
a%z« soes of numbers 1o add or multiply sid encodings to employ: every
v has mnsny eqitivalent permepolys,

v ??w fametion and funotiomenverse comtrnctions of 28 with =
very large sumber of right-side function indices (Lo, & large Hmit w for the
sedevdan )

This will make the deep nonlinearity of the mutuslly pverse Bunction
padr fine-grained, making direet attacks on the anderlving malttions moge
diffieult

(33 Use of fruetures {see “envoding fracture” in the isdex) at interfaess in the
o raetion, eheding fractures ainony o Bipetioas far 4 * L8 L ainee

%

the o'y noed ot employ the same enoodings, so loug as they aresll o1
The effect of fractures i to furthay deepen the nonli imearity of the eone
%1 EEEOL I,
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b Palrwise mising of mitial fuputs and final outpuats to s»gzm;@% t
Lnearity resulting from the construction evenly over the in
spaces, amd pairwise mixing of [ inpats and outputs, @wig
of g, mputs and outputs for ¢ o crr o foal hestniotong &%m xmg\sgsx N

altarks

%

The comstruction i= shown in Fig. 4 on po 40 Loy the case where the mutusdly
e Punetions Hhap SveClidy o Dye0iole, w0 ‘%?‘m% i zi&%vﬁfﬂmmf@ o the v

g

docstent’s thevrorn on et iebeged ;.;;sxrﬁe«mm,z arpd s bnversion copollary
sangiov an £ wespping boeotors to dovectors asd g Renotions mapping veelors 1o
wvpetors for 4 o Loooon We will discuss Snad sdinstments after the deseription
of the mitial constrountion per g0

40 The caght tuput veetor sl ar mded B patrs by 3« 2 mddug oper-
wthoges, whivk eontdd be petfortiod by enonedasd matrls sasppings, wlwre the
aatricss are oot o ring wieh ax ZHT ar THE The notrty sperstions
sre expanded into encoded aperations where the ey s A ring-based
pernRdation gz«am'zwgsés«?«» Uy thoee Blads of operations swed 50 Be o
eodderd s Jowsg a the mapping perfrmed by the miers b Hnear or affine
swkdition of Wu variebdes tmddwnrt, sddition of & constant 1o & wariable
(oo, and x.,(.,%wg*iwsssm of @ variable I 2 consiamt (pleon’

The purpose of the ¥ 3 mbung i this B bection-indesed intoriaving
e appdied natvely, the projection from npats DALY te ompure 157 &
Hrear up to VO aweding, though the projction frow pgs 2488
caltpsts DG ot By omiwing dnpets 10 04 B A T 8 and o (1
Tadow b iy ondtpaets 14 300 B0 T8, we vnepe that sl plageetiols
fronn oty o outputy and Boesr up to 1 0 enoading Jo ot exis

41 Afrer srep an sbwie, we have gl iternedinte, of wlioh LIAT will be
shireeteed (o U Bl siede anpd 2SR wil] be divected 1o v of The g, Bttions
arsording to the chodos made by the loetboedndeod terloaving sodecton

The sedoction Punction, whibcl ohooses whinh of the vightoide Bametions
il b wsed, b compated by the 1w 4 mapper. asvaher polviesaially en
conded aflfime operation over the g T Bapper takes exnctiy the same
fopnt st he ledUside Srsetion, to ensure that the liversbm wetland o 5285

oy ke
42 The Swtch perlorme Uy st seletion of g, §?“§ dirreting termebintes
AR from step A0 1o the &ﬁmm:mw . saplenistion,

Although this b shown 1 i 4 s s dinple suitelidng of Rtetimefiatos to
the chiowen g, Bupletiestation, 4 g%m% e, Bl cpwration ean be el mote
thaw this, I parthendar, 8 b higlly deradde that the mnber of cholors B
B exteemnedy Iarge, so that onr mavtnally Blletive whitebox trapdoor ouse
way Bmetion tuplermestations sxhibé §me»~;,§mxm§ steep nonBvesrite In
eteder o sokdeve this, e il o sl & [ L z:.zgx;ww«*zm»
Tyme i bmited spane. A s statter, sonsider sny poasingniar 4 v 4 madrin
wwis 2730 whete w b expeotadd 1o be 32 64 or oven largvr. Aseuning
eaech row and oGiNEmE Boumigue. by permiting the rows and oobnns, we
et obtain B0 dbtinet metrioes. We sate adeo vary the somelitgs st the
Bvpdaries then, &t the podnts where arrows copmmsioate o voe box 1o
st ber ta Pl 4 and meny other medhode of waristion oxist. Thos we

e

v Dudely vendily sebiove s vaet wupply of 0% i s Budied sosount of speae
by propealy Bnpdesnenting this Switch’

O the ofoside of Pl 4 woomin the &tzm*% tor £ pradie, Fhis o done to fadl
Bospoanerplde wagping sftacks . 1o sueh an altsek, v bave s kaows Bind
of ppeyation ¢ ey, and for ey gven goenreded spetation o, there are
thrve slots 1o B Thos the munber of possibde g

By r whers » s the mapiher of olementr of e ving e, b 2L New

4

s

95 3% ;m‘izxgm‘é st
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document’s theotem on function-indexed iterleaving, and s inversion oorollary,
eiaploy an [ mapping dvectors to fvectors and g functions mapping voectors to

Gvectars for @0 Lo oo We will discnss final adpstiments after the deseription
of the mtial construction por se,

40 The cight input veetor elements ate wived in paits by 2« 2 mixing oper-
ations, which could be performed by encoded matrix mappings. whese the
st tices aze vt & ving sueh as 270270 ar Z08% ). The matrix operations
are expanded (nto encoded operations where the encodings are ring-hased
perumtation podvoomialx. Only three kinds of operations need 1o he one
coddedd o Jong ax the mapping performed by the mixers s Hoear or affine:
akbition of twe wariables addvar), sddition of & constant 1o & wariabde
addeon ), and maltuplicstion of & vatiable by s constant {muleon

The purpose of the 2 0 2 mixing is this. I function-indexed interleaving
oappied maavely, the progetion froms nputs 1357 1o outputs 1,357 &
Huear up to 0 eneoding, though the projoction from npats 2465 10
ontputs 2068 s pot. By mixing mputs 12, 30 56, 7 8 snd, in (10
bedow  mixing entputs 12, 3 L 567 8 we enome that such projections
from mpaits to outputs sod linear up to 0 eneoding do not exis

41 After step so above, we have odght intermediates, of which 1,457 will be
ihreeted to the loft side and 246 8 will be directed to one of the g, functions

areonding to the chotoe made by the function-indexed interleaving selevtor,

The selection Nowtion, which chooses whivh of the riglnide funetion
will be wsedd, i computesd by the 1o 4 mapper, ather polvoomially en-
coded affine operation over the ring This mapper takes exactly the samme
pt ax the leftside funetion, to etmure that the inversion method of 2245

Wk
42 The Switch petforms the actual seloction of Goi By lirocting termndintes
2,068 from step 40 1o the appropriate g, inplementation.
Althosgh thes 1 shown in Py 4 avoa dimple switching of interus

ba chiosen ¢, implementation, in practice, the niwwzmm cut b mach e

than this. In partionlsr, 1t & highly dewrable that 1he mouber of chodess
be extremely large, so that our mutually bijective whitebox trapdinr onee
Wiy évzrwwzz implementations oxhibit fine-grained deep ponlinearnity, In
obder to achiove thiv, we st reprosent s huge numbsr of g bnplenenta-
trons i Hmiled spece. As & starter, cotsidder any nonsinenlar 4 x4 matrix
amer 0T wlhere e be oxpected to be 02, 64, or even larges. Sssuming
cach row and column B undque, by permuting the rows and colnnns, we
eun obinin 576 dulinet matrioes, %’&w caty alve yary ;Ew @ gmmgm at the
heosmmddarios (e, a1 the potnts whese arrows comppioats from one box to
another in Fig. 4, and many other methods of wariation exist. Thus we

eal fabrly readily achieve & vt supply of 9.¢ in s bmited amount of space
by §§s§*w§w§§*y mnggzi stimg ths Swnch’

43 On the lelt side of Fig. 4, we mix the joputs 1o £ in pairs. This i done to foil
homororphic mag %; ang attacks. In such an altack, we have a Enown kind
of operation o >y ad for any given wiwneoded opetation o, twge are
throes slos 1o fﬁ%?ﬁ Thes the monber of §w~*§z#:v Silmse 18 bonded alwme
by v where v e the oueber of elaments of the ring e, by 9% Now

g
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wnppeosice thiat the attacker enjovs the muximal expected “hirthday paradoy

aivantage. We then expect an attack complesity of 277 whieh for o - 32
w27 tries and for o o 68 i 2% tries

Now suppose that we can mix mputs in pairs, There are now five slots
to e, ate! the above @k M%zg&%ﬁ wa, s pranting the atta foy the
maimal ‘xpm“m? Thartheday paradend advantage, i an attack complexity
of 2708 which for w = 325 2% tries and for w0 61 ks 2V pries. Pladaly,

thenn, it o lughly sdvantageows I we can ipexteoaddy mix laputs {and, for

sy, ontputs) o begoe we Bave 3 ixings on w%:g ta £,

W Om the right side of Fig. 4, we mix the inputs to the g i pairs. This
dote to fod homomeorphie mappdng attacks s poted in 18 above, and has
the same mlvardans,

43 The § « $ mapper on the bft side s a podvpomially encoded Bnear or affine

ransiamation.

46 The 4 x 3 mappers on the rght ade are polvinomally encoded inear or
sifine transformations

47 The tmplemwntation of § ends by mixing ontpats in ‘gm;%’i Partly this =
om0 wake homomorphie mapping sttacks more diffionlt directly; ;e m’ix
it i done to ensure that the sputs are mived in pades in the inverse fg
for the remsons givedt in 42 dhenve, sinee the §7 bnplementation inv xgv X
the roverse compeeition of that shown in Fig. L w0 that inpauts % A
st pts and vice versg

48 Stmlarly, the huplomentation of sach g [in terms of the BvM docignent s
%%m%z;z ooty function-iedoxed interleaving ) ends In mmnwm%gww i pealrs,

soll to make bomotmorphic mapping & étmﬁ ¥s more cost iy and o enmare that

% gty are wixed i pairs imoeach g, 7, sinee the g 3&3@% Lt al bons
invelve the reverse composition of that shewn in Fig. 4, so that inputs
bty Ll paatx arel e vorwg

49 Fioallv, the final outputs are mixed o pairs, perhags by polvaomially o
eodded 2 2 malnx operations, pest as the matial inputs were in 40, 5 ordet
to ersire that no projections of numbers of puts to nambers of ontprts

#xist which are Bpear up 1o 170 encoding, but rather that all such projee

tions are deeply noulinear.

e

i

e

The final adjustrents modify the stoactare found 1 P 4 ss Fod lows

entitees, inchuding A identities, the boundaries Trepresaqad

Py arrows desoting date-fow are Blurred, in order 1o iy eote
g&%:ﬁ stions denoted by blocks o the fgure with compatations i suecessor
Bk Sinee we have complete contrad over the envodings ased i the
Blocks, we ate well gwgi woned 1o achineve such Blurring

& W made Mx%sé weer of the fractures poted 1n 84, g?gmg 3pto help
retire that the mplanestation & ponlinear al every level

. '%s% optinme @%w mplementation to ensure sdequate performance, For ex-

* §§j_% L
£
]

atgple, when many polynomisls are stnpdosed, the powers of an inpat are
cotnpitod onee for sl wses of that mpat,
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The Mark U propesal is similar to Mark | {see 04 on p, 39) in that i1 had a fixed
ternal stractie, m%’%g only ooodliclont varmtions aimong Bise finotion

implementation pairs

5% Initid ‘itmwwrw Chooslng f» and 5@. The it program does ot
omploy internal arrays, Fxoopt for the initial scoessing of the inpat and the final
delivery of the output (Lo, except for the implementation of the VM Inaruetions
ENTER and EXITL all operations in the program are sealar sasd do et ;m&%:w T
of LOAD of STORE instructions, which are only strictly needit for indexed memory
s N

All cotmputations aperate on B and produce results from BY. bt foe ann,
SUE, MUL, such values are interpreted as elemeonts of 271871 and the results are the
appropriate + .~ x posults for that wodalar ring. That &, © o ler efnal s
o0 & L T and T, are those sppropriate for unsigned 1nt operands in a typical
d2-bit *g@ww%am» %i‘ﬂg;&“&i‘iwg‘;?xing m%% no overflow checking,

We consume K (kev) entropy o the construetion of fir, and the specification
aof fx then é‘iéiii%ﬁ% of only o spreciioal on of 5& : with exactly the same structure
(et with differont coifflelosts, of oot

The basie strueture of either f or f,00 s shown in Fig, 3 the first
faldl: and Fig & {the secorel hadl ), where elreled 8. b, 2, ﬁ et g h denote
sfb-Dage onbeetors,

i

i

501 Date-Flow, The datadlow along the arrows in flﬁzﬁﬁ Soand 6 = oalwave an
elewnent of B™ {a 3200t word) travelling from the beginning of the artow to the
arvowhead, When an arrow splits 1o two directions, the word s carried to the point
denoted by both of the arrowhesds

512 Independent. Random Cheice of Senilar Componente. For the [x specifica.
tion, where two components 1 Fige 5 amd 6 have the same label, they are chosen
tdependently of oge another) indesd, overy companent s i%%mw i rundomly and

independently, vninfluenced by any other o s§§§§:w ;gm;@ For the . specifieation, of
eotirse, all compononts are chosets 5o as to specify %mwzmwﬁ iverse of the fiy

detined by the fy specifieation, so that onee the 5’% &gmqﬁg tion has been chosen,
the fu P spocification is paled: no further K e ropy 1 consmed o construct 1,

S LA nxn versus i on Some eotnponent abides in Fles 5 and 6 wse snosxn labeld,
stch an dxd L oor 80 permttation, whereas others wse an w0 on Jabel, sch as &8
povvrde or 404 pevande

The nox e sndiontes that the conpeent hias n éz;giiziﬁ and v oatpiits, aned oxeguts
g the compotent can move entfopy Totn an inpaal to & non-corresponding outpat
s i mapinng & vector through & mstrixs.

The n @ u mdicates that the component bas n inpaits and n ompats, and ox.
senting the compotent can only move entropy from an luput 10 & :mmgw@mf
yabed ;iiim N i «'%gm i, }?Zi’g% @ xwgggg:w%f%* Py vw’&gxw w€ ¥4 «@gsi;w@&x m*f\z* E 4»;3,4%! ”i” et howre
s that o D04 recode tabios fowr sealnr values, and recodes each ot separately with
no iteraction with any of the others
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5.14. Selection Components. The selection components in Figs. 5 and 6 are labelled
seleet 1 of 2 dxd permut’'ns or select 1 of 2 4:4 recodes.
Those labelled seoct 1 of 2 4xd permmt’ns have the form
PERMUTELDp . o] didodady o 897 80089, 84, 82
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whore py, py are randomiy chosen 4 « 4 pernagtations, with s coming from a dxd §
vis a £4 reowde,
Those labelled sefoct § of 2 404 recodes have the form
CHOGSEIn Y dy ded dy v 80 &y, 8y, 80, 8y
with s coming from a Ixd S via a 44 rocode, where each 1, i3 8 VA macro instruetion
of the form
rEconu{ey epen, 5] dydacdady oo 8180, 8, 94

with all ¢, encodings in the RECODES chosen randomly for fi

5150 Four Ocourences of Function-Indered Interleaving, Panetion-indexed inter-
Es*&?’i?%é.i, {i«v'jx«:v:'%%afi éti* 282, ’ appears four %ézzg@ it an fu ot fxf spcis
fieation. BEach titne it comprises three 4 < 4 Hnear mappiogs (VM macro instrue
oy Z(W}’Z&R&mi’{i;‘&ﬁ o o some 4 x4 matrix M labelled dxd L dx2 S and
ixd Roin Figs. 5 and 6, whose | x 4 matrices are chosen independently using
the method in £33 tegrether with one 40 recode (vyr macts instrge-
tion RECODELe  po o0 0] L oL with the four ¢, encodings chosen randomly from
the avallable permmtation polviomial encodings), two oecurences of seler | of 2
dxd permnt s, and two cecurences of seloet 1 of 2 404 recodes {see 55,140

Fach lnstanee of function-indeged interleaving has a single left-side fupetion amd
2% = 16 right-side funetions.,
5.1.6. Other Components. The remaining components are not within instances of
funetiop-indeged interleaving, comprising three ocetirenoes of an 8% recode, each
of the form

pECODELey, o eed  dilds e By s
and two oconrences of an 8X% PERMUTATION, each of the form
f’fi?{f‘x%i”f@:j{;é} dyo.tds e B8y L
with (for fx ) a single, randoraly chosen permutation, sud eight ocoureneces of & 2x2
arixer, each of the form
ey
§A?‘4¥§X$§?~M$*{§ﬁ{} dg,{zﬁg v By, Ha

where M 2 2 2 « 2 matrix chosen, for fio, by the method given in 13.3,

52, Obfuseating fx or f,:ia Implementations. The following methods are em-
proved to obsoure a program immplementing fy or jgg. where implementations Juve
the cotamon stracture detailed fn 550 on po 43 and disgramued in Fig. &
asnd Fig, 6.

The trapsformations in the following sections are performed one after the other
exeept where otherwise noted in the body of the sections.

5.2.1. Copy Flision. Naive code for fx or f° implementations contains many
SMOVE instraetions. When a value & transferred from one register to another a
oV Es thromgh intermediate registers, 1t is often possible to eliminate the interme-
diste stepy and transfer the yesull directly 1o the final destination,

This is especially effective in the case of PERMUTES, which are naively imple-
menited using sequences of MOVEs, Eg. simplification of the fnitial and Snal Sx8
permmtation means that the rapdemly chosen pernimtation only means that which
data-How source are first reccives a particular input is chosen st random, and which
data-flow sink are finally delivers o partieular outpat s chosen at random.
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The rule s that any MOVE which can be eliminated by ordinary levels of opti-
mization, must be eliminated; Lo, the final version of an  obfuscated fi or f g"%
anplementation must contain the smallest number of MOVE instructions achievable
wsing ordinary {Le . non-heroiel levels of optimization,

More spevifically, sssmming that we can readily associated a value producer with
its value consumers in 884 form, those MOVEs which must be dided are those which
can be removed in 854 by renumbering outputs and reconverting to 884 until no
further copy elisions oceur,

A MovE can be elided when 1t forms an are in a tree of operations i which
sovEs form the ares, the original salue producer [possibly ¢rassignment} is the
oot the root dominates the MOVE ares and the consumers, and no conswper is
sell & ceassignment.

Copy elision can be perforined at various points in the following process. and is
certaindy done as a final step to remove redundant MOVE instructions,

g

5.2.2. Branch-to-Branch Eliswon, A related form of elision can he performed on
branches, I & hasic bloek (3R} contains only an unconditional braneh Bstruction
{Le., an nnconditional 08P basie instruction), then the target of any branch which
branches to that B8 can be mudified to braneh directly 1o the target of the jump
tor which it branches, elimivating s branch to san unconditional branch, This can
repeated until no snch branch-to-branch occurences remain, and any unreachable
uis which contaly only an uneonditional JUMP ean then be remmoved,

bBranch-to-braneh elision can be performed st various points in the following
process, and & cortainly done as s final step 10 eliminate branch-to-unconditionsl-
branch sequences,

*

523, Unwsed Code Elmination. When code Is in ssa form, i any register s the
ontput of an struction r, but never the input of an instruction ¥, instruction z s
wnused code. We can repeatedly remove all such instructions until po unused code
FEIEITS,

This ean be done st various thnes during obfuscation, and is certainly done as a
finad step to elinduate unused code,

5200 THash Insertion and Generation of Distinet Dynamie Valges, Choose s | « 8
hesh mateix of randomly chosen distinet odd slements over Z/{2%%) and generate
eode which maps the originad inputs through this matrix vielding a single ouiput.
Place the code for the hash-matrix computation {(initially a LINEARMAP yoscro-
instruction? nmediately following the initial EXTER instruction. The single outpat
15 a ‘hash’ of the inputs, and will be used to generate distinet dynamie values
CyCa Oy, oo far memory shinffling (see §5.2.130

Next, choose a permtation polyvnomial (#p) Pooand, where @ is the output
register containing the output from the above matrix computation, insert code to
generate A values O« Plo+ itover /(2 whoere p = [log, A7 and A7s derivation
will be deseribed later. Initially, the PP computations are jnserted a8 a RECODE
maero-instruction in which all the encodings are identically P,

5.2.5. Maero-Tnstraction FErpansion. Al macro-instractions are expanded Lo se-
quences of basie struetions, The expansions are trivial and therefore omitted
here.

After expansion, only baste instructions remain.
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526, *Control-Flow Duplicatron. Ope matrix s added in 35,24, mapping
all eight inputs to one ontput. and there are 20 matrices shown in Figs. 5
and 6. each denoting the mapping of two or four mputs totwo or four
outputs, respectively, each of the 21 matrix-mappings expanding into a contiguous
sequence X of basie instructions with ne internal braneh (e, JUMP. L 1 lnstruetions,

The hash matrix-computation is mitially the frst matrix-mapping computation,
We take the code for matrices in a horizontal row, such as the 22 mixer row
near the beginning and end of the OB structure in Figs. 5 and 6, or the dx{ L,
{xd 8 sequence in each “round’, to be computed sequentially; 1e, first the eode
for the leftmost matrix, then the code for the one o its vight, and so on. More-
over. in each ‘round’, we note that the code for the computation of the x4 L and
Ix4 S matrix mappings necessarily precedes the code for the computation of the
seloct 1 of 2 4xd permut “ns, followed by the select 1 of 2 44 recodes, followed by
the dxd It code, followed by the select ] of 2 4xd recodes, followed by the select |
of 2 dxd permnt s at the right side of the figure

In terms of the representation noted in 83,5, depending on which of the
20 matrices we are dealing with, the code for computing the effect of the matriy
on the 2- or devector to which it is applied appears in the representation as a
stradght-line sequence of Instruetions which

{1} oeeuples an entire basic dlock (11 except for a final conditional branch
sequence {a comparison followed by a conditional branch, taking the form
of an ULT, JUMPNZ instruction pair, immediately following the matyix cone
putation: eg.. this is initially the case for the matrices labelled Ixd4 B in
Figs. 5 and 6, sinee they immediately follow the point at which the f -then-
elge structure, which contains a then-ui and an else-Bi each euding with
A JUMP to the BB containing the code for the Jxd R matrix mapping fol
lowad by the eonditional sequence {an CLT followed by the JUMPNZ ending
the 1) selects one of two recodes as indicated in the diagram by a select |
of 2 4:4 recodes following the dxd Ror

{2} ocenrs ina BB with computational instruetions both preceding and following
it in the straight-line code of the B g, this is initindly the case for each
of the matrices labelled dxd L and dx4 S in Figs, 5 and 6, and for all of
the matrices labelled 2¢2 mixer in Fig. 5 and all but the leftmost matrix
labelled 2¢2 mixer iu Fig. 6 or

{3} vccurs at the beginning of a uit and 18 followed by further computational
instruetions: this is the case for the leftuest matrix labelled 2x2 mixer in
Fig, 6; or

{4} veeurs at the beginning of a pp and is followed by & branch Jnstracton
{3estb. ) or & conditional branch instruction sequence (ULT, JUMPNZE
this does pot initially oecur in Figs, 5 and 6, but might sfter processing
deseribed below,

It a manner deseribed below, we replace each such block of matrix code with &
branch to one of two coples of the block of code, terminated by a branch to a
eomunon point; Le, in effect, replace the code

X
with the code

if r < ' then X else X,
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where r s an output of an instruction dominating X {and henee the above 1f.
comstruct ) and the dominating instruction is chosen uniformdy at random from the
passible predecessors. Xy, X, are the then- and else-nstanees, respeetively, of the
block X of straight-line code.
To sccomplish the above trapsformation. we procesd as follows {per Figure 9%
900 I the implementation is not currently in ssa form, convert it to ssa form
as deseribed in 82,101
905 Choose an ipstraction | undonnldy at random from &l of the nstructions
which bave a single output and dominate the first mstnetion of the code
for the subiect matriy mapping,
910 Convert the implementation to sMA form as deseribed in 82,102 00 p, 30
915 Isolate the contiguous sequence of nstruetions comprising the matriy map-
ping eode tor the subject matrix, That . il the first matrixanapping
instroction for the subject matrix does not begin a B, place an uncondi-
tional JUMP instruction immediately before said frst jnstraction, splitting
the 28 into two at that point, and it the last matrix-mapping instruction
for the subiect matrix does not immediately precede a JUMP. . oF EXIT 1o
strnetion, insert an unconditional JUMP instruction mmediatedy alter sadd
fast instruction, splitting #s BB into two at that point. At this point, the
original #11 has been longitudinally cut into multiple 8 zero, one, or two
times, and the code for the subject matrix mapping s olated in its own
BB eontaining only that mapping code followed by a single unconditional
JUMP instruction.
20 Create two new Bits. The first, O (for whoose’), contalns anldy an UL,
TUMPNZ sequenee implementing an

i r < 2" then ... else ...

decision.  For register v, we use the output of our selected insteaction |
above. Letting X be our isolated B above, the second s X7, an exact
copy of X in every respoeet except that 1t is a distinet, and initially isolated,
graph node in what was originally a control-flow graph (Cr¢ ), but eurrently
is not sinee CFGs do not have solated nodes.
925 Replace the original X in the ¢rg with €, X X7 as follows, Cause all
hranch-targets which originally pointed to X 1o point to €. Cause (s final
branch to branch to X on the < 2% and to X7 on the > 2% alternative,
respectively.
930 Convert the implementation to ssa form, isolating the computations in X
awd X7 from one another: at this peint, thev are distinet, but compute
wlentical results.
438 Perform branch-to-hranch olision {see 55.2.2).
Note that, while this replicates computations, iU does not produce disting coples
for comparison, because, on vach execution, only one of the two paths performing
the matrix-apping for & given matrix is exeouted,
527, Come-From Insertion. If the implementation 8 pot ourrently in s form,
convert it to sMA form {see 21023

Then, for each Boolean comparison ULT tnstruction eomputing ry < 29 vielding
T true; or O 0OF false) and providing Hs input (o a JUMPNZ {hump i true’)
instruction. randomly choose two constants ¢ — rand(2%) and ¢y — rand(2%),

97



WO 2013/142981 PCT/CA2013/000305
APPENDIX

ad insert code after the comparison VLT but beliwe the JUMPXRZ nstruction taking
its input, where the inserted code computes vy o
At the true destination of the 10MPNZ, insert vy o o, atid af the false destination
of the JUMPNZ, Im8erL ry w0y, (Heeall that, when the code s in OPG form, each
conditional branch has two targets.)
Remember that the outputs of the instructions computing r. and ry should he
identical, for future use,

e é{l . f‘g}f‘ggb

528 *Date-Flow Duplication, In a manner deseribed below, for every instruetion
which s not & JUMP. .. | ENTER, or 2X1T. the instruction s copied {so that an
original fustruction s immediately followed by its copyl, and new registers are
chosens for all of the copied instruetions such that, if r and ¥ are instractions, with
y being the copy of z,

{1} if » inputs the output of an ENTER instruction, then the corresponding y
mput uses the same output:

{2} i = inputs the output of an original instruction u with copy v, then the
corresponding input of y inputs from the v output corresponding to the o
ontput from which r inputs; and

{33 i r outpuis to an EXIT instruction, then the corresponding output of y ont-
pits to a a special unused sink node indicating that its ourput s discarded,

Thus all of the computations except for the branches have an original and a copy
GUURTeNce:,

To sccomplish this transformation, we proceed s follows ( per Figure 10):

We ndd & pew instruction JUMPA Champ arbitrarily”), which is an uneonditional
hranch with fne destinations in control-flow graph (CvG) form Just like a con-
ditional branch (see §3.5) but with no input: instead, JustPa chooses
hetween its two destinations al random.  JUMPA Is pol actually part of the vt
instruetion set, and no JUMPA will occur in the final obfuseated implementation of

frcoor £t
We use J0Mpa in the following transformation procedure.

1000 I the implementation s not in sMA formn already, convert it 1o $Ma form
{see §2.10.2).

1003 For each of 88 X, of the gizs in the mplementation X, .. .. Xy, replace it
with three Bis €, X, X by creating a new BB X[ which is identical to X,
and adding & new R € which contains only a single JUMPA instruction
targetting both X, and X, making X, and X the two targets of O)'s
susmpa, and making every non-JuMpes branch-target pointing to X, point
tor £ fnstead.

1010 Convert the implementation to 854 form (see $2,10.1), isolating
the loeal data-flow in each X, and X, although corresponding instructions
in X, and X still compute identical values,

1013 Merge all of the code in each X7 back into its X, alternating instractions
from X, and X in the merge so that corresponding pairs of instroctions
are suceessive: first the X, instruction, snd then the corresponding X/
instruetion,

1020 Make sach branch-target which is & € point to the corresponding X, in-
stesd, and remove all of the C, and X nes. At this point, the data-tlow has
been duplicated. the origing shape of the €FG has been restored, and the
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impleamentation is free of JUMPA fnstructions. Remember which instrue.
tions correspond in each X, for future use,

528 *Random Cross-Connsction, H the implementation is not currently in ssa
form, convert the eade 1o 888 form {see 22,101 Prae 1o the use of 484
form, some of the instructions gy below i»,wm*n to produce identieal outpits may
he o-assignments taking their inputs from non-o-sssignment instruetions known to
produce Wentical outputs,

Due to transformations applied in 15.2.6, 85.2.8, amd 5527

many instructions belong to gmm which are statically known to produce
identical outputs. Such cases were noted in these sections, with the added remark
that the information on such identical outputs should be retained for future use, Wi
now make wse of this saved information. The mumber of copies is always two? two for
data-tlow duplication, two for exported control-flow duplication {sinee both control-
and dats-flow duplication have been applied to them, but only one instanee of a
control-flow duplicated computation cecurs in an exeention of the implementation),
and two for ‘come-from’ insertion,

There are two ways in which a pair of nstructions in ssa form in the mplemen-
tation can be kpown to have dentical results as g result of the actions in 35,26,

£5.2.8, and §5.2.7. Two instructions can be datasflow
duplicates of one another, or two ceassigniments can have inputs known to be data.
flow duaplicates of one another due to control-flow duplication of matrix-mapping
computations.

Let sy, uy be s pair instroctions which are known on the basis of such saved
imformation to have dentical ontputs, each u, taking & inputs, where & s cither
ane or two if the instruction 15 & basie instruction {e.g., NEC of MUL) and is two for
a oeassignment foll sv@ ing a control-low duplicated matrix-mapping.

With probability £ =. we flip use of the uy, ug outputs as follows: for every instruc-
tion consiming the uy output {if any), we modify it to take the we output instead,
aned vice versa

Wa repeat this for every possible such pair uy, e until no such pairs remain to
be eonsidered for flipping.

The effect of this transformation s as follows, As a result of data-flow duplica-
tion, except for the very beginning and end of the implementation, data-flow is split
o two distinet subgraphs which never overlap, After random eross-conpection,
these two data-flow graphs have been thoroughly merged into a single data-flow
graph.

52100 "Check Insertion, I the implementation is not eurrently in s8a fonn, con-
vert it to ssa form {see §2.10.1).

As i random eross-connection in §5.2.9, we proceed through the pairs
.y, say, of nstroctions knows to have identical outputs as a result of value
duplication due to the processing in $5.2.6, §h.28, and §5.2.7,

Asin £5.2.9, such instructions may either be basie instructions or
orassigninents, and we use exsctly the same eriterion for identifving suech palrs as
in §5.2.49.

Succossively choose sueh pairs of Instructions with known identical ontputs due
duplication resulting from steps £5.2.6, 55.2.8, and §5.2.7
until each pair has beon chosen,

by

gt
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For each such instruction palr wg, us, say, select, uniformly at random from
all cholces of u. not previously used a8 a u, in such processing, or if no sueh
choloe exists, from all cholees of w, including those previously used as a ue in such
processing. a single instruction . such that u, Is dominated by both of vy ue. (I
no steh a, exists st all, do pot further process the u, w, pair: siimply proceed to the
next pair, or if none remains, terminate the processing according to this section |

Let oy, 00, 0. be the outputs of g, ws, 1., respectively, Immediately ollowing u..
place vode to compute og « 0, + 0, — o, atid canse sll inputters of o, 1o Input oy
swteadd, {Sines o, o0 on, we shoudd bave o4 = 2., 5o this shoudd have no net effect
nnless an attacker tampers with the code )

Contintue such provessing umil all sueh pairs u, . u,, have been selocted,

The r., ry checks in connection with §5.2.7 fedp prevent bramnh jam-
ming: the others help to foil purturbation attacks by causing downstream compu-
tations to mallinetion if one member of a pair is modified without modifving the
ather.}

5211, Transesding. I the implementation Is not ourrently in 8Ma form, convert
it o sMa form {see 52,102
Take each binarv operation eomputing

T fly gl
where fisone of +, -, or », and replace it with a computation which is the algebraie
simplification of
e3(2) « J{i,‘l‘g géf}wf‘g 25,355
or equivalently, replace the operation [ with an algebraie simplification of
LA ‘; 8 L Ky

such that for each are connecting a produeer to s consmmer, the encoding (the ¢
function} of the produced value matehes the encoding assunud by the consumer
{where the inverse of the encoding is applied). That is, perform network encoding
(see 523.1)

When the output ¢ above Is used as the luput of & comparison EQ, NE, ULT,
VST, ULE, UG, SUT, SOT, SLE, 808, or a conditional Dranedy JUMPE o JUMPNE, ¥4
must be the dentity encoding. Moreover, any output derived as the final outpat
of & RECODE macro-instriction, of the expansion of a RECODE macro-nstraction,
in the original program, eannot be further modified; Lo, the RECODE s taken to
do a plain computation whose output cannot be encoded. Initial inputs and final
ontputs also wse the ddentity encoding. That s, any output whose transcoding
wontld change the fanetion computed by the program is left unencoded,

Where an input is a constant ¢, replace it with some eonstant e der, and treat it
as if it came from a producer which produced it with encoding ¢,

Sometimes U I8 not possible to make all the producer and consumer encodings
wateh evervwhere they should, Where this ocenrs, produce with an outpat en-
coding o, aml an input encoding ey and insert e, o o) " on the are to resolve the
conflict,

Fach ¢, 5 a bijective guadratic permutation polynomial (99 function over
Z/(2%y or the inverse of such a PP, according to the scheme chosen for this pur-
pose as described i section C, Let us simply refer to them as PPS. Since PPS involve only
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mudtiphieations and sdditions, & PP scan be computed as a sequence of afline steps,
which we now assume to be the case.

5212, Register Mingmization, If the implementation is not in sMa form, convent
it to sua form (see 12,102 on p. 304

We now derive a conflict graph for the lifespans in registers, A lfespan begins
when a value is produced e, s output 1o the register by an instruction ) and ends
at the point where no further uses of the value are made {Le, after the last time
the value output by an instruction 1s used as an input with no intermediate changes
ta the register in between placing the vaine n the register and using ity that s,
after the last consumer connected by a data-flow are to the consumer has completed
execution, Two lifespans conflict {(Le., overlap) if they hegin at different producers
and there is a point in exeeution at which both are both have been started and
neither of them has ended.

We can view this as a graph where the lifespans are the nodes and an are connects
two nodes if and only if the lifespans conflict, The significance of the graph is that,
if two lfespans conflict, their produced values must be stored in different registers,
whereas if they do not, their produced values may be stored in the same register,

The val permits an indefinite nnber of registers (well, 292 of them, at any rate},
but our purpose is to minimize the nunber of registers to increase the obsourity of
shuffling values through memory by potentially making many different operations
use the same location,

Starting with the sodes of minimal degree in the graph, we remove nodes one at a
time with their incident ares, until all podes have been removed. We then reinsert
thom in reverse order, with any ares which were removed with them, choosing
registers for themn as we reinsert them, This s & variant on Chaitin's algorithm,
and tends to produce efficient graph colorings (e, register allocations) in the sense
that the number of distinet colors {registers) tends towards the minimal number,

Retain the lifespan information and the conflict graph for further use i 85213
on p. 53

5213, *Memory ShufHling. I the implementation is not in ssa form, convert it to
s8A form {see §2.1001 on p. 290

Include in the implementation a memory array A containing 29 hinary words,
where g = Hogp N (see £5.2.4 on P47

Identify in the code all instances of a contiguons pair of instroctions (MUL.ADD)

on which instruction precedes the other), where », b, and 2 are constant inputs and
7 % a non-consant input. and in which either the MUL is the only instruetion which
mputs the output of the ADD or SUR, or viee versa, and in which the afline output
vialie ¢ is subsequently used as an input by some other instruetion. Onee sueh a
pair hes been found, remove it from further consideration, but continue until sl
such pairs have been found. Call these pairs Py .. Py, Note that each such pair
has only a single non-constant input r.

Associate with Py, Py values Ky K v, intially all equal to 1

Traverse Ky, .. ., Ky, At each K, with probability & changing each traversee’s
value 10 2, Traverse the K's of value 2, with probability = changing each traverses’s
value to 3. Traverse the K, 's of value 3, with probability = changing each traversee’s
value to 4,

-

*

15 v s
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At this point, for each pair P there 8 s value K, with a value belonging to the
set {1,2,3.4}.

Prefine ﬁ‘g oo By as follows. Let By be the munber of points in the live range
of the palr's {mgpm {the y computed by the afline mapping above} at which s non-
hranch basic instruction can be inserted which would lie in the lve range if it were
inserted, R, is a measure of the size of the live rauge,

Pefine Wy, o, Wa as follows, Let 1) be the cardinality of the largest set of
instructions overlapping the live range lie, either in the live range, or starting
the live range by outputting its value, or terminating & path in the live range by
consuming ity value) such that no wember of the set dominates any of the others,
This estinates the ‘width” or path-multiplicity of the live range.

For each such live range of & y which 1s the output of a pair I, with a probability
which is the smaller of 1 and K W,/ R, select each point at which an instruetion
can be Inserted into the range as noted above, so that, in the fairly common case
where W, = 1, there is an expected number K, of such selected points in the live
range for the y output of . Let the set of selected points for a given Hve range
he S, =0 that the erpected value of 8, » K where 1V, = 1. (O course, the actual
value of (8,1 may differ.)

Define Fy. ... Fy as follows. In the live range of the g-outpat of pair I, plaindy
cach instruetion, sayv w. mputting this g~output s dominated by the pair-member
producing the yeoutput: call it m. If for each such w, there is an 5 © S so that m
dospinates ¢ which in turn domdinstes v F, = 1 Otherwise, F, = E,i

We now restrict our attention to those pairs I, for which £, = . Far vach such
pair £, we allocate a new set of 5,0 4 Dindexes in A, Oy, ... .C’},M.;? {see £5.2.4),

s that D, and each mm&?wr of 8, has 115 own assigned index, We reise
indices as much as possible among P, S, pairs under the constraint that the set of
indices for a given B, S, pair can overlap with the set of indices for another only if
thedr corresponding P, y-outputs are not connected by an are in the contlict graph
tLae, if thedr Hive ranges 1o not overlap: see §5.2.12)

Remove the pair P, a [MULADD or (MULSUR) - replacing it with a RECODE,
STORELOAD, RECODE sequence, Each RECODE maps one input to one ontput, so
we recode a value on each store and load. There is then a sequence sy, fie W
czze%s that the final RECODE above dominates &, 8w, where sy 60 € S w

an instruetion z;;;m:z;zw the g-output of the reny mad Pooand o w% elemnent of the
i’%fﬂxii new s¢, . 8, 0 dominates jts successors. As a resuit, we take the rinput of
the removed %Mggif«ma map it through 200 4 1) gECODEs, and then pass it to w.
We meddify the final RECODE so that the net effect of the sertes of recodings 5 to
provide y to w with the lnput-encoding expected by wi Le,, we introduce & fracture
which computes y « 57« b by modifving the last encoding in the sequence. We
repeat this for all instraetions w, pever changing an intenmediate encoding onee
it has heen chiosen [sinee some &% may appear on paths to multiple y-consiners
i Le, if recodings have been chosen for one path, don’t change them for another
overlapping path

We proceed as above for every pair P for which F, = 1. We then convert the
fmplementation fo sMA form {see §2.10.2) and expand all of the RECODE
macro-instrietions,

=

5.2.14. Randem Instruction Redrdering. 1 the huplementation is not in 88a form,
comvert i to $sa form {see 1210010
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Ensuring that redundant MOVE instractions are first elided {see 85.2.1),
reorder the instruetions in each BR as a topological sort of its instructions using the
dependenev-based partial order in §3.5 Among the candidate successors
of an instruction during the sort, the sucoessor is chosen uniformly at random.

5210, Final Cleanups and Code Emission. Perform copy elision (see §5.2.1)

brauch-to-hranch elision {see 55.2.2), ard unused code elimination

{see £5.2.3)
Perform register minimization (see $55.2.12) to mindmize the number of
registors (remporary variables), but making no attempt to change the number of
locations used in the shuffling arrav A {see §5.2.13) When minimization

eompletes, the code Is in $MA form.
Emit the code,

6. CloarBox Maux 111

The Mark 11 proposal differs from that for Mark 1isee §4) awd Mark 11
{80055 ) ins that it has a variable internad structure in which both codfficients
and strocture vary among  Base function impletmentation pairs,

As previously, the primary ¢ vehicle s a mutaally inverse pair of cipher-
or hash-like fupetion implementations formed in mutually inverse pairs according
to an algorithm, belonging to a very large family of such pairs, with the precise
pair determined both by the algorithm and a {typically large) key K. In addition
1o the kev information K, the algorithm which forms the pairs eonsumes randon-
ization information R, which is wsed 1o specify those obfnscational aspects of the
implementation which do not affect the external behavior of the pair, but only the
internal processing by which this external behavior is achieved,

6i.1. Design Principles. We expect MARKIT to be used in environments in
which the implementation is exposed to whitee and/or grev-box attacks, and n
which the operation of the applications making use of ' MARK U1 involve commu-
nleation acToss & Betwork.

6.1.1. Security-flefresh Rate. For effective applications security lilecyele manage-
ment, applications must resist attacks on an ongoing hasis. As part of this resis-
tance, we expect sich applications to self-upgrade in respouse to seenrity-refresh
messages containing seeurity renewal information. Such upgrades may invelve pateh
files, table replacoments, new eryprographic keys, and other security-related infor-
mation,

A viable level of security is one in application security is refroshed frequently
enongh so that the time taken to compromise an instance’s seeurity is longer than
the time to the securitv-refresh which invalidates the compromise; fe., nstanees
are refreshed faster than they can typically be broken,

This is certainly achievabile at very high securitv-refresh rates. However, such
frequent refresh actions consume bandwidth, and as we ralse the refresh rate, the
propartion of bandwidth allocated to security-refresh messages inereases, and avail-
able pon-security pavioad bandwidth decreases,

Plainly, then, engineering the appropriate securitv-relresh rate is required for
each kind of application, since the tolerahle overheads vary greatly depending on
context., For exsmuple, if we expect only gray-box attacks (neighbor side-channel
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attacks} in a coud application, we would use a lower refresh vate than if we expected
white-box attacks {insider attacks by malicious coud-provider staff 1.

o

6.1.2. Erternal and Internal Vulnerabilities and Aflesk- Resistanece. Suppose that
our palr of implementations implement functions fg. f h; where fy. f,ﬂ;i are T-
functions, Then by repeatedly applving either of these functions, we can precisely
characterize its computations using a bit-slice attack in which we first consider
the operation of these functions ignoring all but the low-order bits, and then the
low-order two bits, and so on, gaining information until the hull word size (say 32
hits) is reached, at which point we have complete information on how the function
behaves, which is tantamount to knowledge of the key K.

This is an erfernal valnerability,. While the attack galng knowledge of imple-
mentation details, it does so without any examination of the code Implementing
those details, and conld be performed as an & adaptive known plainfext attack on
a black-box implementation.

A less severe external vulnerability exists if the funetions of the pair have the
property that esch acts as & specific T-funection on speeific domains, and the num-
ber of distinet T-functions is low. In this case, a statistical bucketing attack can
characterize ench T-funetion. Then if the domains can similarly be characterized,
again, without any examination of the code, using an adaptive known plaintext
aftack, sy attacker can fully characterize the functionality of a member of the pair,
completely bypassing its protections, using only black-box methods.

Plainly, we must ensure that the effective number of distinet T-functions is suf-
ficient to foil the above attack. {In Mark I implementations, there are over 1P
distinet T-funetions per segment and over 10% T-funetions over all.)

Now, suppose that the pair of implementations comprises fanctions which achieve
full ensende {every output depends on every input., and on average, changing one
input hit changes halfl of the output bits). An example of an internal vuloerability
opecurs in the Mark I implementation where, by ‘entting’ the lmplementation at
certain points, we can find s sub-implementation {a component} corresponding to
a matrix such that the level of dependency s exactly 2 x 2 (in which case the
component is s mixer matrix} or 4 x 4 {in which ease it is one of the L, 5, or R
matrices. Onee these have been isolated, properties of lnear functions allow very
efficient characterization of these matrices.

This is an infernal attack because It reguires non-black-box methods: It actually
requires examination of internals of the implementations, whether static (Lo deter-
mine the dependencies) or dynamic (o characterize the matrices by lnearity-hased
analyses:.

Az a genersl rule, the more we can rompletely foll external attacks, and foree
the attacker into inereasingly fine-grained internal attacks, the harder the atiacker’s
job becomes, and most espeecially, the harder the attacks become to automate.

Automated attacks are especiaily dangerous because they can effectively provide
class eracks which allow sil instanees of a given techology 1o be broken by tools
which can be wilely distribated.

Thus, we seek, by using variable and increasingly intricate internal structures
and increasingly variegated defenses, to create an environment in which

{1} any full erack of an instance requires many sub-cracks;
(23 the needed sub-eracks vary from instanes to instance;
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{3} the strueture and punber of the attacked components varies from Instanee
tey nstanee; and
{41 the protection mechanisms emploved vary from instance to instance;
%0 that antomating the attack becomes a sufficiently large task to discourage at-
tackers from attempting it (since, in the substantial tme it wonld take to build such
an attack tool, the deploved protections would have moved on to a new technology
where the attack-tool's algorithm vo longer suffiees |

6.2. Initial Structure: Choosing [y and 5,&. Mark HI funetions have an
imput and output width of 12 32-hit words for a total width of 384 bite. The
implementation consists primarily of a series of segments, in which each segment is
aninstanee of moetion-indexed interleaving (P11, The series of segments §s proveded
and followed by initial and final mixing steps intended to foil blind dependency-
analysis attacks {ones performed starting at the inputs, wsed 1o derive dependency
relations without considering the struetural details of the mplemeoenation under
sttackl

We will mainly deal with fir. The seginent fnverses are fairly obwious given our
well-known Fit methods, and the over-all £, 'is found by coneatenating the inverses
of the fyx segments in reverse order, sandwiched between the initisl and final mixing
steps in reverse order,

Each such segiment has a left-function, a selector compuitation which uses the
same nputs as the left-function, and s right-function. The right-function is a
nested instance of Fii. Hence each segment divides the input- and output-vectors
into three subveetors: the portion which enters and exits the onter left-function,
the portion which enters and exits the inner left-function, and the portion which
enters atd exits the inper right-function. We will eall these the left, middle, and
right subvectors,

6.2.1. Selecting Matrices Over Z/(27). We select matrices in two different ways:
o general select anom x nomatrix over Z/{2%) at random under the con-
straints that no dement s & 0 or 1 and all elements are distinet; or
o fnvertible: seleet an 1 x nomatrix over Z/(27) according to the method
given in §3.3 on p. 33, but with the additional coustraints that the resuiting
matrix contains no elements with value 0 or 1 and all elements are distinet,

6.2.2. *nitial and Final Miring Steps. In 528, we give technigues for
permuting a sequence of clements or other forms of chodeps using decisions having
a sorting-network topology, By replacing conditional swaps with 2 » 2 hijective
matrices mixing each input inte each output, we can take precisely the same net-
work topology and produce a mixing network which mixes every input of the cp
funetion with every other initially, and we can erploy another such network fnally
1o mix every output of the ¢ function with every other. As was the case with
permitations, the mixing 1s not entirely even, and its bias can be nxdueed using the
technigues in §2.8.2 but again, with conditional swaps replaced by mixing
(,‘iﬁégkﬁu

6.2.3. *Subdividing a Segment’s Input and Output Vectors, The lollowing cholees
are an example only: many other choless are possible with different widths and
wider cholees of division-sizes.
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If input subvectors for a segment are statically divided in a particular way, say
3-5-4 for left, middle, aund right, respectively, then so are its outputs.

The permitted subvector lengths for the above are three, four, five, and six 32-
bit words. Sinee each input and output vector has length twelve 32-bit words {334
hitg}, it follows that the ten permitted configurations, in lexicographic order from
left 1o right and then down, are

336 345 354 63 4-3-5

4-4-4 453 534 543 633
If we number the above ten configurations in order from O to 9, then the number
of the configuration chosen for each segment we generate is chosen statically by
rand {10} i.e.. we choose from the ten possibilities shove uniformly at random at
construction time.

6.2.4. *Selecting the Ordering for a Segment’s Inputs and Outputs. The fivst seg-
ment inputs the initial inputs to fx or f gz . andd henee is input-unconstrained. Sim-
ilarly the last segment outputs to fx or f 1,;;11. and henece iz output-unconstrained.
Thus the inputs of the first segment, or outputs of the last, are aftached to the
initial inputs or final outputs, respectively, unifornly at random.

In all other cases, we select the ordering of inputs and outputs of segments as
follows,

We note that, for any segment, the outputs of its left cutput-subvector depends
only on the inputs of its left input-subvector, the outputs of its middle output-
subvector depends only on the inputs of its left and middle input-subvectors, and
the outputs of its right output-subvector depend on the inputs of the left, middle,
and right subvectors.

We therefore statieally link the inputs of a segment Y to the outputs of its
preceding segment X uniformly at random under the following constraints.

(1) Segment X's right output-vector outputs must have the maximal number
of links to segment ¥ 's left input-vector inputs. For example, if X' is a 6-3-3
segment and Y is a 3-4-5 segment, then three of X's right output-subvector
outputs are linked to three of Y's left input-subvector nputs.

(2} Any of segment X's right output-vector outputs which are not linked to
segment Y's left input-vector inputs under constraint (1} above must be
linked to segment Y's middle input-vector inputs. For example, in the 6-
3-3 X, 3-4-5 Y case above, the remaining three of X's right output-vector
outputs are linked to three of ¥'s middle input-veetor inputs.

(3) After satisfaction of constraints {1) and {2} above, segment X's middle
output-vector outputs are linked into the leftmost possible of ¥'s input-
subvectors, where those in Y 's left input-subvector are leftmost, those inY's
middle input-subveetor are intermediate between leftmost and rightmost.
and those in ¥'s right input-subvector are rightmost.

A summary of the above is that we statically attempt to maximize dependencies
on inputs as we transfer information from one segment to the next. We are al-
ways guaranteed to achieve ‘full cascade’ after two segments (so that every output
depends on every input), and we also try to maximize the width of the datafiow
carrving these dependencies [hence constraints (2 and (3} above).

‘e o ) -~ : S T )
6.2.5. *A Concatenation of Segments. fg {and hence f '] is a sequence of seg-
ments.  Each segment’s basie configuration r-s-f is chosen statically according
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to 86.2.3, and each I8 statieally linked from the original inputs or from
its predecessor sccording to £6.2 4. The mumber of succosstve segments

making up an f (and hence fg Y4 implementation i uniformly randomly chosen
from the set {56, 7}

6.2.6. “Immutable Encodings. At cortain points in the code, we use immutable
encodings. The significance of an immutable encoding, whether it s the dentity
encoding, a linear encoding, or a permmtation polynomial encoding, is that it cannot
he ehianged when obfuseation 1= applied to the fy or ;}f nuplementation its
presence s part of the semantics and therefore cannot be modified,

H immntalde encodings are mentioned without specifieation of the encoding, a
perrautation polvnomial is assumed,

6.2.7. "Creating a Segment. Given a configuration r-s-f {for example}], we ereate
an fio segment as follows (per Figure T

OO Using the fnvertible method of 86.2.1, choose an r o« r matrix
Losn s o x matrixX M.oand & 0 21 matrix A, and 24 uniforly randomly
chosen imummtable encodings: 12 applied to the inputs to these matrices
and 12 applied to their outputs {(viewing the matrices a8 vector-mapping
funetions). Let us refer to these three matrices with their input and output
mumutable encodings as fanctions LM, R, Theu £ = Log o Lo L,
M Moue © M o My and R o Ry 0 B o By, where Xog performs
the immutable output encodings, and X, performs the immutable input
encodings, attached 1o matrix X, for X ¢ {L. M R}

105 Using the general method of 56.2.1, choose a [« r selector matrix
O with eorresponding function ¢ which takes the same inputs ax £ and has
mput encodings Ly, and output encoding Oyl O = Cug 0 Co Ly, {The
corresponding [ &‘ segment will have a seloctor of the form €, 0 C oL o
L., which will be simplified, of course. |

Take the two high-order bits of C's output and add 2 to form an iteration
count i the range 2 to 5. One less than this iteration count is a number in
the range 1 to 4 which is the number of times the outputs of the entire right
side function (taking the «f Inputs and producing the s outputs) has it
s fod directly back into its inputs and 8 executed all over again, before
s outputs are passed on to s suceeeding segment.

LHIO Choose 25 selector funetions T, 2, and Oy, . 8, each similar 1o ¢
above, The high-order four bits of these provide numbers in the range 0 1o
15, which added to 8, provide rotation counts in the range % w 23, The I,
rotation connts are applied to the inputs to M and the O, rotation eotnts
are applicd to the eutputs from M,

These rotations are pot permuted when the inputs and ontputs of M
are permnuted in the next step.

1S Chowse p s sllog, &1 seloctor pairs 4. ... «»";ogn By,.... ﬁ;@, .. .., i,
Vi Ve, each similar to © above, which provide just sufficient 4, «to-
B, comparisons and sufficient I-to-V, comparisons to control our random
permmtation of the wputs to and outputs from M. respectively, by the
roethod of $2.8 by comtrolling 115 random swaps, Bach comparison
generates a Boolean decision (swap or don’t swap ) with a swap probahility
oof ahout é,
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The logical ordering of selected functionality around the ¢ inputs and out-
puts for M is initial rotations. then initial permutation. then input encod-
ings, then matrix mapping, then t-input-output functionality {the R-part
functionality ), then output encodings, then output permutation, then fiual
rotations.  When a selector uses A inputs, it uses them with the same
encoding as M does (namely, the My, encodings), so irrespective of any
permutations, a selector alwavs sees exactly the same inputs in exactly the
same order as M does,

Note that all of the above steps are inade the loop for the M funetion-
ality: Le. evervthing from initial rotations to final rotations is performed
on each teration.

As aresult, simplifications are possible: for example, the input encodings
need not be done separately for M and the selectors which use M's inputs:
thev can share the same encoded values,

25 We now procesd with the lnner FiI implementation composed of the s
input-output part and the f-input-omtput part {the M-functionality part
and the R-functionality part),

Using the general method of §6.2.1. choose a 1 x & selector
matrix ¢ with corresponding function ¢ which takes the same inputs
as M and has input encodings L), and output encoding e, ¢
Crue @€' 0 My, (The corresponding ' segment will have a selector of the

form ) o C o L7V o LD 1 which will be simplified, of course. )

Take the two high-order hits of C7s output and add 2 to form an iteration
count in the range 2 10 5, One less than this iteration count 8 a number
in the range 1 to 4 which is the number of times the outputs of the R
functionality (taking the ¢ jnputs and producing the ¢ outputs) has its
inputs fed directly back into its inputs and is executed all over again, during
one fteration of the s-inputs-outputs, Me-part loop. Le., in oue iteration
for the middle sinputs-outputs part, all iterations for the f-Inputs-outputs
are performed, so if the s-part iterates four times and the t-part iteration
count iv three, the -part s repeated 12 times: three times for each s-part
iteration.

130 Choose 2t selector functions I7,.. . . I} and O, ... O}, each similar to '
above, The high-order four bits of these provide numbers in the range 0 to
15, which added to 8, provide rotation counts in the range 8 to 23, The I/
rotation counts are applied to the inputs to R and the ] rotation counts
are applied 1o the outputs from R,

These rotations are not permuted when the inputs and outputs of R are
permuted in the next step.

1135 Choose ¢ =2 f{log, 1}* selector pairs 4),.... .,»'i;% 3. By, ef\{’.gu,éz{;&
Vi . V. each similar to ' above, which provide just sufficient 4j-to-
B comparisons and sufficient {(-to-V] comparisons to control our random

permutation of the mmputs to and outputs from R, respectivelv, hy the

method of 2.8 by controdling its random swaps. Each comparison
generates a Boolean decision (swap or don't swap) with a swap probability
of about %
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The logical ordering of seleeted funetionality around the ¢ inputs and out-
puts for R is: initiad rotations, then initial permutation, then input encod.
ings, then matrix mapping. then ontput encodings, then output permutsa-
tion, then final rotations. When a selector uses R inputs, it uses them with
the same encoding as R does {namely, the 12, encodings ), 8o irrospective of
any permutations, a selector always sees exactly the same nputs in exactly
the same order as R does,

Note that all of the above steps are inside the loop for the t-iuputs-
outputs (R-part) fanetionality: be, evervibing from inithl rotations to
final rotations s performed on each teration.

As a result, simplifications are possibler for example, the input encodings
need not be done separately for K and the selectors which use R's fnpurs
they can share the same eaeoded values,

6.3. Obfuscating fx or ;' Implementations. The following methods are em-
plovidd 1o obsenre a program imblementing fp or f,f, where implanentations have
the structure given in 56,2 above,

The transformations in the following sections are performed one after the other
except where otherwise noted 11 the body of the sections,

6.3.1. Cleanups. The cleanups listed in 55.2.1, §5.2.2, and £5.2.3
are performed as needed, as in the Mark 11 implementation.

6.3.2. “Heash Insertion and Generation of Distinet Dynamie Values, The transform
of 81524 iz performed, but using & 1 x 12 matrix taking all of the inputs,
Otherwise, this s very similar to the corresponding Mark 1 step.

6.3.5. Macro Instruction Erpaneion. This s done as in the Mark 1 nnplementation,

.34, Come-From Insertion. This Is dope as 1o the Mark 11 implementation. Note
that, i Mark HI all of the control-flow exists to ereate the nested per-segment
loops.

6.3.40. Random nstruction Redndering. We note that, in function-indexed inter-
leaving {¥F11) as emploved in the generation of segments of the unplementation,
we have dividd inputs and outputs into possibly frregular groups of widths r-s-1,
respectively, In fo and j;*
o the r outputs depend only on the r inputs;
o the & outputs depend on the roand & inpats; and
o the t ontputs depend on the v, s, and £ ipats;
where the selector computation for the ¥i1 between r and s is considered part of the s
eotapitation, and the seloctor computation for the P11 between s atd § s considerad
part of £ computation. Note that, with this understanding, the » outputs do net
depend on the r outpufz, and the ¢ omtputs do not depend on the r and & outputs,
Hothe inplapentation is not in S84 form, convert 1t 1o ssa form (see L2.10.1)
and romove redundant MOVE instraetions (see £5.2.1)
Wo now topologically sort each segment by itsell, thereby mixing the r, s, and !
instruetion ssquences randomiy,
We similarly topologically sort the initial mixing by tsell, sl the final mixing
by ftseldf
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We concatenate the sorted orderings: initial mixing, segment 1, segment 2, .,
segment &, final mixing, Create a new relation R representing the ‘precedes’ re-
lntionship in this concatenated ordering, Create a new relation B by remeving
one i every 1wo ares {r, g © R ouniformly at random, snd, nolting B with the
execution constraints to form the over all ‘procedes’ relation, topologically sort the
entire sequence again,

Instruction redrdering is now complete,

6.3.6. *DateFlow Duplieation. This is performed as in the Mark H implementation
see 8528,

6.3.7. "Random Cross-Connection. This 18 done ax in the Mark H inplementation
{sev £5.2.0)

638, *Cheek Insertion, This is dope as in the Mark 1 implementation (see 552,10,
with the following change: among the candidate placements for s check,
with probability i a candidate within the current segment s chosen (where such a
candidate exists], and with probability % a candidate o a later seginent s chosen
{where such 8 candidate exists), As a residt of this change, and of the madifisd
reordering scheme in 80,05 with high probability all of the ro 5. ¢ segments
are crossecontiested and made dependent on one another by the inserted ehocks,

6,39, Transecoding. This s done a5 in the Mark 1 hnplementation {(see $5.2.11}

6.3.10. Register Minimization. This is performed ss in the Mark 1 implementation
(e 852120

G311 *Memory Shufffing. This is performed as in the Mark 11 implementation
fee 55.2.13) Note that, since we have loops but no if then-else, the Wis
are generally minimal, which eliminates some anomalies whicl conld arise in the
Mark 1 implementation,

6.3.12. Final Cleanups and Code Emisston. These are performed as in the Mark H
implementation {see 52,15}

7 BLENDING AND ANCHORING TECHNIQUES
The value of & member of a pair of mutually inverse base functions s

greatly increased if it can be anchored to the application which smplovs it and the
platforin on which that application resides, and i it data and code can be Mended
with the data and code of the application of which it forms a part, in the sense that
the boundary between different kinds of data or code beeomes blurred,
The effeet of such anchoring and blending s to
(13 Bl code- and data-Bfting attacks,
(23 fodl mput-point, omtput-point, and other boundary attacks by obfuseating
the exaet position of the houndary, and
(3} increase dependencies between the PROTECTIVE »ode and dats and thelr sur-
rounding contextual code and data, thereby inereasing tamper-resistanee
by inereased fragility nnder tanpeyring,
The kinds of data and eode bowlaries to be addressed are:
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{1 mput boundaries, where unencoded data must be encoded and brought from

.

‘¥ ‘§

its unproteeted domain into the protected domain (see 87.3),
sutput bowndaries, where protected data must be decoded and brought from
the protected domain into the unprotected domain {see §7.3),

o entry boundaries, where control passes from unprotected code into pro-

tocted and obfuscated code {see 5741
ertt boundaries, where control passes from protected and obfiscated code
mto unprotectad code {(see 57 .4),

G} separating bounderies, where data changes from a form in which entropy

from multiple variables is evenly mixed across a sizable hit-veetar to a form
in which entropy from individual variables is more isolsted. although still
encoded, and computations are performed on these more isolated variables,
andd

} miring houndaries, where data changes from s form in which entropy from

individual variables is encoded but relatively isolated, generally containing
the results of computations on such variables, to a form in which entropy
from mltiple variables is evenly mixed aeross a sizable hit-veetor,

The challenge for protecting separating and miring houndaries is that frequently,

ing eome from other sites where the data were also separated into relatively fow
vartables. This permits an attack in which isolated variables are perturbed, with
the vesult that, after mixing and reseparation, bolated variables respond to the
perturbation, revesling the connection of the values at the perturbing site to those
at the responding site

In addition to the above forms of blending, we seek to anchor code and data to
their context by means of interlocking technigues ineluding

{1} data-dependent ecoifficients, where data-flow at some code sites in the code

{2}

it

s |

provides variables used to compute codfficients which control encodings st
subsequently execnted code sites in the code (see 471 below), amd
data-flove duplication with cross-cheeking and eross-trapping, where certain
parts of the data-flow are replicated {(but with different encodings), data-
How links are swapped among duplicates, and computations are injected
which, if the duplicates mateh with respect to their nnencoded values, have
no net effect, but if the duplicates fadl to mateh with respect 1o thelr une
encoded values, cause computation to subtdy fail or degrade,

dista-fow corruption and repair, where orrors are injected into data-fHow at
certain code sites, and these errors are correeted at subsequently exeented
code sites,

control o corruption and repair, where only executing code needs to be in
a correctly executable state, so long as, as part of its execution, it ensures
the correct executability of the subsequent state in effect, there s a
woving window of correctness including the enrrently exeenting code, and
code & corrupted when left but ecorreeted hefore entry g changes (o
data such as routine-variables, case-indices, and the like, to aveid problems
inherent in selb-modifving code, Lo, all such corruption should affect data
used in contral, not the actual code itself,

shared Mackboards, where multiple pieces of code make use of an instanee of
dynanie data mangling, where a dynamically addressed store with ongoing
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data-shuffling and recoding is shared among multiple pieces of code, making
it harder for attackers to separate the data-flow of one of the pieces of code
from that belonging 1o other pleces of ende,

{6} parallel functions, where code for performing some function is interleaved
with that performing one or more others so that the two or more functions
are executed in parallel by a single thread of control, which {combined with
other technigues sbove) makes separating the code for the two functions
difficult, and

i subset lymps-and-picees, where we deploy subsets of the functionality of the
humps-and-pleces control-flow protection patent (US 6,779,114, including
switchable very large routines which combine multiple routines into a single
rositine,

o,
)

7.1. Data-Dependent Coefficients. Exsmining the formulas for permutation-
polvnomial inverses {see §2.32, £2.3.3, aml §2.3.4,

we note that multiplieative ring inverses over the word ring's {typieally 292 o 2%
ol ewrrent comptters) are used extensively, {Thev are the denominators in the
fractions in the formulas: eg., a/c' means ac ! which means afe~ 1% where ¢ is
the multiplicative ring inverse of ¢}

For a machine with a w-bit word, ¢ and ¢ are two numbers such that « -
et 1, where - is the mnltiplication operation operation within the ring. Lo, it is
minltiplication of two w-bit binary words with overflow ignored as in C and C#+.

While we ean easily find such inverses computationally by emploving the Ex-
teneded Fuedidean Algorithm 15, 26, this is undesirable beeanse the algorithm is
easily recognizable. Thus we need another means of converting soms of the en-
tropy provided by input data into a choice of random eoifficients for permutation
polvnomials,

We recommend an approach along these lines: in advance, randomly choose
numbers

i

{i.ﬁ«éﬁi.ﬁ«z. v ow e A fiﬁ«. o

in which each a; is an odd number in the range 3 1o 2% - 1 inclusive, all a,'s are
pairwise distinet, and there is no pair ay, e, in the list such that o, - a, = 1. We
will also employ their multiplicative inverses

.

v B w -
Lty W, oL G

found in advanee using the Extendad Eueclidoan Algorithm noted ahove,

Then for any random nonzero word walue © chosen from the early computations
within a CB function, we choose a product ¢ using the bits of v1 if bit 2 is set in
. then a, is in the product. This gives & product of from one to w factors whese
inverse is found by using e again: if bit 2’ is set in v, then a;! is in the produet
giving the inverse, o1

H e = 32 this gives us a very large number of potential coéfficients and inverse
coctficients, In fact, the munber is so large that we may choose to use only part of
v L, replace w by some smaller nmber and have a smaller munber of ¢,'s and
their inverses — which is probably still adequate: 18 bits instead of 32 still would
permit a selection of over 200,000 cosflicient « inverse codflicient pairs.

Note that we have only provided a means for generating odd codfficients, Other
kinds of codfficlent are easier to generate, since either wo only require their additive
mverses {even elements don’t have wultiplicative inverses), In order to generate a
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coetficient which is even, we simply double a generated walue v. It order to create
on whose wgzzma s O, we simply logically left shift ¢ by | positions (e, we

-

multiply it by 2 7! with overtlow lmnored).

7.2. Fine Control for Encoding Intensity. In the cwrrent Transcoder, there
are settings ealled data-flow level and control-flow level which nominally run from
o 100 mdicating how strongly encoded the data- or cantrol-flow should be.

Traditionally, the mechansims wsaed to offect this ostensibly fine-grained control
are of two varietisg

(1} sudden differences in behavior which oceur at certain specifie numeric thresh-
olds in the date- or control-flowslevel, so that, below the threshold. a certain
traustormation is not applisd, and above the threshold, it is, and

(2} fine-grained differences in the probability-threshold for performing a certain
transformation on a certain code fragment, so that at a lowsr data-flow level,
i proudo-random variate might have to fall above 0.8 in order to canse it to
be transformed, whereas at a higher one, it might only have to fsll above
0.2 in order to eause the transformation,

We have no p?ﬁéﬁvn‘] with method (1), but we can improve on (2). The problem
with method {2 is that, simply by chance, the actual level achioved may not fall
near the mtended level, We therefore recommend the following Improvement.

We keep a running tally of total sites to be covered, sites covered so far, and how
many receivid the probability-controlled transformn {the fneluded sites) and how
many did not {the ereluded sites), When the ratio of ineluded sites is bolow the
desived ratio,  we inevease the probability of performing the transform above its
nominal valise, snd when it is above the desired ratio, we deervace the prohability
of performing the transform below i1s nominal value, A proper setting for the degree
of increase amd dectease can be gauged by experimentation. This can effectively
cause the actual ratio for an affected region of code 10 be protected to closely track
the desired ratio, instead of wandering away from that ratio due to chance effects,

This will have its best effect when the total mumber of potential sites is large,
Little fino-grained control can be sxereised if only a fow sites exist, short of mussive
code duplication to increase the effective munber of sites,

This readily exrends to cases with more than two choiees. Consider for example

the use of permutation polyvnomial encodings over Z/(2™) (or over Z7(9%Y for
revent, more powerful platforms). I we vary among no eneoding or encodings of
degrees 1 through 6, then there are seven possible ehoioss to be covered, amongst
which we apportion the probabilities sccording to the desived ratios, The zame
principle applies: If we are getting too little of something, we push its probability
upy i we are getting too much, we lower its probability down.
7.3, Input and Output Boundaries. At an inpuf boundary, unencoded data
mmst be encoded and brought from its anprotected domain into the protected do-
main. At an ewfput boundary, protected data must be decoded and bronght from
the protected domain into its unprotected domain,

This is an appropriate place to deplay fine control of encoding ntensity (see §7.2)

for data-flow, Measuring data-flow distance in munber of graph Ares
in the data-flow graph, where an are connects a value-producing operation 1o the
operation which consumes it, we proceed as follows,
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{1} Protect the implementation at its chosen intensity {normally
fairly high.
{2} Protect operations which are 1, 2. 3, .. | k ares away from operations
mside the implementation with diminishing intensities until the

normal transeoded tensity of surromnding code I8 reached, for both the
input boundary and the output boundary.
This requires that we be able to gauge such distanees, which requires sotne extra
support from the Transcoder to add such selective distance information and to
respond to it by controlling encoding intensity as outlined in 7.2,
Additional protections which apply to input/ontput boundaries are data-depend-
ent codfficients to increase the dependency of the computations at the entry of

the Base funetion on the code which provides the inputs and to inerease
the dependency of the computations receiving the Base functionoutputs on the code
within the mmplementation which provides those outputs, and shared

blackboards (i data can enter and leave by ofg o shared Blackboard  an instance
of dynamic data mangling — then it s much harder for an attacker to follow the
data-flow for that datal,

7.4, Entry and Exit Boundaries. Tvpically, the point at which a -
implementation reccives its inputs immediately follows the point at which control
anters the implementation. and the point at which a imple-
mentation provides its outputs imnediately precedes the point at which eontrol
leaves the implementation.

As aresult, all of the protections in §7.3 typically also protect the entry
ated erit boundaries. However, the - implementation will typically have
strouger control-flow protections than regular transcoded code,

Therefore we need to perform fine-grained stepwise increment on entry and step-
wise diminishiment on exit of the control-flow level Our metrie for distanee here
s the estimated muunber of Fapio or machine-code instruetions to be executed
along the shortest path leading to the entryv-point {for entrv) or departing from
the exit-point (for exiti, with blending for s distance of, say, one or two hundred
fnstruction units for each of entry and exit,

This would be an excellent place o deploy control-flow corruption and wpair
to tie together the code nearing the entry and the PROTECTIVEeutry code, and the
PROTECTIVE €xit code and the code moving away from the sxit, o increase the level
of protection in the vicinity of the PROTECTIVEentry and exit,

7.5, Separating and Mixing Boundaries. The general situstion in which we
speounter separating and mixing boundaries s one in which straetured data is

cutpt in Brhtly encoded or ynencoded foom from s nmplementation. or
Huhtly encoded or wpencoded straetured data enters a nplementation,

or a pair of implementations of the invention are used 1o sandhwich a decision-making
computation which we wish to hide,

The effect of separating and/or mixing is that we have potentially exposed data
after the separation or prior to the mixing, creating an attack point. Thus,
addition to the relevant protections for these situations already covered In §7.3 on

P65 and 174, we need stronger protections for any computations which we
nevd to sanpdwich betweey Base functions used as separating or mixing

funetions,
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i the decision is based on checking a password, or some similar equality com-
parison, we strougly recommend the method of A as the best cholee for
its protection. However, we are rarelyv so fortunate,

The more commmon case is that we need 1o perform some arthnutic, some cotn-
parisans, some bitwise Boolean operations, and so on. For these, we recommend
the following protections (see § 71

{1} first and most important, data-flow duplication with cross-checking and
cross-frapping 1o massively increase the data-dependencies hetween the in-
tial hase-function and the decision code,and the deeision cade
and the final base-funetion;

{2y liberal we of data-flow-dependent coifficients; with cosicients 1 the dec
ston block set by the preceding hase-funetion and cosficients in
the following base-function set by the code in the decision bloek:

(3 use of shaved blackboands {dyvnamic data mangling arravs) as sites used to
cotmmunicate from the Intial base funetion to the decision code
and from the decision code to the final base funetion; and

{4} if possible, parallel functions, so that the decision code is mixed with other
irrelevant code, making it hard for the attacker to snalvse and distinguish
from the eode with which it is computed in parallel by interleaving their
computations,

7.6. General Protections. Certain protections can be applied at every bound-
ary, and between boundaries, in order to further protect code in contexts where
base-funetions are deploved, namely control and dofa-flow corruption
and repair, parallel functions, aud subset lumps and pieces. Where feasible, these
added protections will increase the analvtical difficulties faced by the attacker: in
particular, they will render static analysis infeasible and dynanie analysis costly.

7.7. EXEMPLARY Protection Scenario. Data ix provided in s form encoded vig
! hase fupction, so that information is smeared across its entire state
veetor, The data thus encoded comprises

{1y a 1250t key

{27 1 128-bit data stroctare with a variety of fields, some only a fow bits wide,

one 32 bits wide, and some up to 16 bits wide

A compiutation is to be performed on the flelds of the data strneture and information
on the eurrent platform, as a result of which either the key will be delivered in a form
ready for use (indicating that the eurrent platform infonmation plus the delivered
duta strueture lead 1o g decision 1o release the Kevl, or 4 nonsense string of the same
size as the key will be delivered in a form which appears to be ready for use bt
in fact will Bail Gudicating that the curpent platform information plus the deliveted
data structure lead 1o 8 decision not to release the kev ),

The attacker™s goal is 1o obtain the 12851t kev frrespective of the content of
the fields and the information on the current platform. The defender’s goal is 10
ensure that the kev is corroctly deliverad on a “ves' dectsion unless the defender’s
implementation is tampered with, but is not obtainable by the attacker in situations
where the decision would be “no’ in the absence of tampenng,

This captures the primary  blending necds of the protective system: there are imput, output,
entry, exit, separation, awd mixing boundaries to protect,
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7.5 Implementing the Protections with Blending. Here we deseribe the im-
plementation of the protections from date-flovsdependent coéflivients through sube
sel lampa-gred-pieces listed starting &7 for the protection scenario described
557 on po 67 as proposed in §7.2 through §7.6.

TR Starting Configuration, Our starting eonflgnration cotnprises the Transcoder

mitermediate representation of the PROTECTIVE SYSTEM CORE, a 128-bit X 256-bit functi

iito which the containing applcation inputs a 256-bit value comtaining in en-
coded form a 128-bit encoded Key and a 128:bit data strueture and from which the
application receives a 125 bt differently encoded kev ready for use.
The core vomprises
(11 an entry 256-bit « 256-bit base-function accepting 256 bits in which en-
tropy is mixed across the entire 256 bits, devoding this to a strueture with a
128-hit encoded key {encoded by some other 125-bit x 12%bit base-funetion
beforehand) and & 12%-hit data structure with separated fields in smooth
{unencoded) form
{2} adecision-block accepting the 128-bit data structure and the 128bit kev,
performing computations on fields of the 128bit data structure, deciding
whether to release the key or not, and providing to a second base-funetion
either the 125-bit encoded key tself (if the decision = *procesd’} or a value
which uses the key and further information form the 12%hit data strue-
ture as an entropy source and provides to a second 128hit « 12%:bit bases
function either the sncoded ky or a nonsense value of the same widthe
{3) an exit 125-bit « 125-bit base-funetion and returns a differently encoded
kew ready for use in some white-boX crvptographic function {e.g., AES-128),
The entry and exit base-functions are construeted according to the Mark HI de-
sign (see L6). The core is inline code in e containing routine; Le., it is not
entered by s routine call nor exited by s rowtine returne rather, surrounding fune-
tionality is included within s routine containing but the surrounding functionality
and the core,
The combination of the core and the application is ealled the program.

T2 *Subdividing Segment Input and Output Vectors, The following material is
exemplary: far wider cholees exist, Here we choose doubly recursive funetion-
indexed interleaving, vielding three-part division of segments, It could also be
singly recursive {two-part division), triply recursive (four-part division ), or order n
recursive ({n & 1j-part division ),

In 26.2.3 a division was given for 170 vectors in the 1 2-words-wide (384
bit 170} Mark HI implementation. According to the above, we have an Sowords-wide
entry base-function and a J-words-wide exit base-function. We subdivide entry
segrents as follows

22-4 2233 3244 3420 22

1 we number the above fonr configurations in order from € to 3, then the munber
of the configuration chosen for each segment we generate is chosen statically by
randid); Le. we choose from the four possibilities above nntformiy at random at
construction tme,

For the exit base-function, the segments are subdivided as follows:

212 L3 2414
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I we number the above three configurations in order from 0 to 2, then the number
of the configuration chosen for esnch segment we generate I8 chosen statically by
rand(3); Le., we choose from the three possibilities above uniformly at random at
construction time.

il
i

8.8, "Distance Metrics. We make use of measures of distance from an operation
to a core input and from a core output to an operation. There are four metries:
two for date-flow distance and two for control-flow distance.

*Data-Flow Distances.  We colleet input-distances down to 200 and output-
distanee up to +200. Bevond that point. we can ignore greater distanees, and
apply heuristic methods to svoid computing them.

The distance of every computational instruetion in the core from the core is
zovo. (A eomputational instruetion is one which either inputs one or more values
o outputs one or more values.)

The distance of every other eomputational instruction (1) from the core is
either negative {if it provides values which affect values which are consumed by the
corel or positive (i it consumes values affected by values which are produced by
the corel.

We assume that, for the most part, both are not true; Le., that either the core is
not in the body of a loop in which the core is repeatedly emploved, or it Is in a loop,
but that the loop is sufficiently extensive that we can ignore any information fad
into the core which is affected by outputs from previous core executions. However,
instructions may reside in routines which may be called both before and after the
exeention of the core, in which case the data-flow distanee 15 a pair comprising its
input-distance and its output-distance.

Input-distance is determined as follows.

o If & 1 outputs a value whieh is & direct input to the core, or loads a value
which is a direet input to the core which the core accepts as a data-flow
edge {Le, as & ‘virtusl register’} ar stores an input which the core loads
from memory, s input-distance ¥ ~1. Otherwise,

e if & 1 r outputs & value which is a direct input to a y 1 which has an
input-distance of —k {and possibly an output-distance of +& as well due
to instructions in routines called both before and after the core, as noted
above) or z loads a value which is input by such a ¥, or stores an input
which such a y loads from memory, its input-distance s & - 1,

When the sbove considerations give an instruetion multiple distinet input-distances,
the oue closest 1o zevo I8 correct,
Cutput-digtance is determnined as follows,

o If the core cutputs a wlue which is a direct input to a ¢, or loads a
value which is a direet fuput to the €1 which the €1 accepts as a dats-flow
edge {Le, as a “virtual register’) or stores an input which the 1 loads from
memary, its output-distance is +1. Otherwise,

o if 4 1 r with output-distance +& (and possibly an input-distance of ~ & as
well due to instractions in routines ealled both before and after the core,
as noted above) outputs a value which is & direet input to a <1 y or such
a 1 loads a value which is input by such & y. or stores an input which
such 8 ¥ loads from memory, y has ontput-distance +& + L
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When the above considerations give an instruction multiple distinet output-distances,
the one elosest 1o zero 18 correct.

This metrie completely ignores control-flow. A return-with-value instruction is
treaded as a load for this purpose. A routine-entry instruction inputting values to
variables within a routine is considered to be a store-instruction for this purpose,
*Control-Flow Distance. We collect entry-distances down to - 200 and exit-distances
up to 200, Bevond that point, we can ignore greater distances, and apply heuristie
methods to void computing them.

We view instructions as connected by directed ares in the control-flow graph
of the program, conditional branches having two outgoing ares {leading to the
steeessor if the tested eondition s true or falsel and indexed branches {case- or
switch-statement branches) having multiple successors chosen by a controlling in-
dex which is tested against the case- labels of the control-strueture. For a rontine
return-instruction, its suecessors are determined by the sites from which the routine
is calledd: Lo, they are all of the instructions which may be exeented munedintely
after return from the rountine, and the return instruction is considered to be an
indexed branch to those post-return instructions,

Any instruction within the core has a conutral-tlow distance of zero from the
core. As above, we assime a non-looping scenario in which any looping invelving
the core is sufficlently large-seale and infrequent to permit us to ignore it. However,
in the case of control-flow distance, instructions may reside in rouwtines which may
he ealled both hefore and after the execution of the core, in which case the control-
flow distance is a pair comprising its entry-distance and its exit-distance.

Euatry-distanee is deteripined as follows,

o If an instruetion has a successor instruction in the core or is a branch with
a destination in the core, its entry control-flow distance is —1. Otherwise.

e if an instroetion r has an immediate successor instruetion y which has an
entry eontrol-flow distance of ~ & {and possibly an exit control-flow distance
of + & as well due to instractions in routines called both belore and alter the
core, s noted abovel, or v is a branch one of whose destination instruction
s such a g, its entry control-flow distance s & ~ L

When the above considerations give an instruction multiple distinet eptryv-distances,
the one closest to zero 18 eorrect,
Erit-distanee is determined as {ollows,

# If & core bstruetion has a sgecessor instruction outside the core or s a
hranch with a destination fnstruction outside the core, that instruetion
outside the core has an exit control-flow distanee of +1. Otherwise,

o if an instruction r which has an exit control-flow distance of +& {and pos-
sihly an entry control-flow distance of ~&" as well due to instructions in
routines ealled hoth before and after the core, as noted aboved has an im-
mediate successar instruction g, or if such an r branches to an instruction
y, then y has an exit control-flow distance of 44 + L

When the above considerations give an imstruction multiple distinet exit-distances,
the pie closest 1o 2oro is oorrect.

T84, Cleanups. The oleamaps Hsted fn 552,10 85,22, and £5.2.5
are performed ag needed, as in the Mark I implementation, pot only for
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the entry and exit base-function implementations. but for the decision-block
and the application as well.

TRE, *Hash Insertion and Generation of Distinet Dynarnie Values, Instead of per-
forming the transform of (524 onee per base-function {i.e.. performing

it for the entry function, and performing it separately for the exit function), we
perform this transform within the application nsing a 1 x 16 matrix whose mputs
are selected from data available in the application some time before the entry
base-function is computed, We use it to ereate gn array for dynvanue data man-
gling which will serve the application. both the entry and exit base-functions
and the decision-block, so that they all use one shared blackboard.

T8.6. Macro Instruction Erpunsion. This is done as in the Mark 1 apd Mark HI
implementations.

TR.T. Come-From Insertion, This is done as in the Mark TH implementation, but
extends to every branch with an entry-distance or exit-distance from the core which
has an absolute value of 100 or less Le., it extends well bevond the Hmits of the
ClearBox implementations in the core.

TRE8. *Control-Flow Corruption und Repair. As part of processing the code, the
code is flattened: the branch labels are made destination points in s svitch-
statement-like construct, and destinations are resched by branching to this switch,
passing it an index which eorresponds to the switch case-label which leads to the
desired destination,

This should be dene for all code which is in the core or which is in a basic block
with any instroections having  an entrv-distance or exit-distance from the core
with an absolute value of 100 or less,

We consider the destinations” corresponding indices to be stored in vanables
Py, Uy, cottisponding to nodes in the control-flow graph which represent hasie
blocks By. ..., B, {eutered via a label and exited via a final branch, return, or cally

Prior to flattening, we randomly label each basie block in the corraption region
with a total bijective fimetion L {1 . n} e {1, nd, for §= 1,0, 0, under
the following constraints,

{1} I a basic block B, can exit to blocks B ..., B, . then its labelling L,
function has the property that Li{jed = je, for ko 1 om

{27 I two distinet hasie blocks 8, B, can both exit to bloek By, then L, = L.

{3} If a basic block I3, ean exit to a block B, then the number of pomts &
at which L&y # Lk} is bounded sbove by four times the number of
destination basic blocks possessed by any basie block which can exit to B

After flattening, every basie bloek B, Is entered with the variables vo 00 0
a state such that for its predecessor's Ls, Lo(j = v, for j = 1,0 n (This does
not mean that the variables” states are correct, but only that they agree with the
predecessors’ L's.) It then procesds to swap variables so that for each varisble,
Lnlj) = vy this almost certainly is a different state of vy, .., v, than the one
with which it was entered, although in view of the constraints, the number of
changes has a reasonable bound.

Thus, by the time the end of & basie hlock s reached, the variables correspond
1o destinations in such a way that current destinations are correct, but most others
are usually incorrect,
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7889, Random Fustruction Redrdering. We note that, in function-indexed inter-
leaving (F11} as emploved in the generation of segments of the implementation,
we hiave divided inputs and outputs into possibly trregilar groups of widths res-f,
respectivelv. In fi and f for each of the entry and exit base-funetions,
o the r outputs depend only on the r inputs;
e the 2 outputs depewd on the rand & inputs; and
o the t ontputs depend on the r, &, and ¢ inputs;
where the selector computation for the P11 between r and s is considered part of the &
computation, and the seloctor eomputation for the Fi1 between ¢ and ¢ is considered
part of ¢ computation. Note that, with this understanding. the s outputs do not
depend on the r outpute, and the t outputs do not depend on the r and & outputs.
If the program is not in s8A form, convert it to ssa form (see §2.10.1)
and remove redundant MOVE instructions (see £52.1y
We now tapologieally sort each segment in each of the emtry and exit hase
functions by itself, thereby mixing the r, s, and ¢ instruetion sequences randomly.
We similarly topologieally sort the initial mixing by itself, and the final mixing by
itself in cach base-function. We likewise topologieally sort every basie block {every
straight-line streteh of code without auy branches or routine ealls or returns) in the
application and the decision-block.
For each of: the entry and exit base-functions, we concatenate the sorted or-
derings: initial mixing, segment 1, segment 2, ... segment &, final mixing. Create
a new relation /U representing the *precedes’ relationship in this coneatennted or-

S X

dering. Create a new relation I by removing one in every two ares {r gy} € I

uniformly at random, and, uniting B with the execution constraints to form the

over all ‘precades’ relation, topologically sort the entire sequence again.
Instruction redrdering for the program is now camplete,

TR0, *Deta-Flow Duplication with Cross-Checking/ Trapping. The method for
these transformations is as in Mark I isee 85.2.3, 65,29, and £5.2.10,

with the modifications in Mark TH {see 26.3.8), hut it s adso
done for additional pieces of code,

Specifically, in addition to its normal use within the entry and exit base-
funections, we also perform these transformations for the data-flow within the decision-
block including the transfer of information from the outputs of the entry base-
funetion to inputs of the decision-bloek and the transfer of information from the
outputs of the decision-block to the inputs of the exit base-function.

There are further changes 10 these steps for our blending scenario (see §7.7),

ecoverad in the pext section.

Y R11. "Deeision Hiding. In the decision-block. the fields of the [28-bit structure
are examined, computations are performed upon them, and s pass-fail decision is
reached and delivered as a value, We duplicate some of these computations so that
the decision value, consisting of one of & pair of arbitrary constants ey and op.
i« generated at least eight times. Transcoding will make these values look distinet.

Since thev are duplicates, cross-linking and eross-checking apply to them, In
particular, we can assume that they will vield ¢pae. and on that basis, perform
operations on data-flow words in the key as it Is input to the exit hase-function
which cancel on a pass but do not cancel on a fail. The cancelling values can make
use of further values from the strueture (f ¢ - 0g caneels, then so does oy~ éplen ).
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The eombination of this with eross-lnking and eross-chocking as in 17,8140

will eause the kev to wary chaotically in a data-dependent fastion, but will, with
high probahility, cause a nonsense value of the same size as the key to be delivered
ta the application code following the exit base-function whenever the decision-
block’s tests on the strueture lead to a fall” decision. {(This method s related to
the password-checking techinique in 1A )

T2 Transeoding, This is done as in the Mark I implementation (see §5.2.11),
but with the following changes.
We divide the protection level as follows:

{1} finitering protection using linear mappings,

{27 permepoly protection wsing quadratic polvnomials:

{3 2-veetor function-matrix protection using quadratic polvnomial clements;
Code in the core is protected at the level 3 (strong). Code out to an input-distance
or output-distance with an absolute value not exeeeding 100 i protected at level 2
{intermediate}, and the remainder of the application is protected at level 1 {weak ).

In addition, transeoding makes use of data-dependent codfficients as follows.
{1} constants derived in the application code leading up to the entry base
function set one eighth of the eoéfficients in the entry base-function’s
transeoding.

{23 constants derived in the entry hase-funetion set one gquarter of the codflicionts

in the transeoding of the decision-block.

{31 constants derived in the decision-block set vne guarter of the codfficients

it the exit base-function.

{4 constants derived in the exit base-function set at least one eighth of the

cocficionts in the application code receiving the ontputs from the exit
base-funetion.

7.8.13. Hegister Mumization. This is performed as in the Mark I implementation
(o0 85212 ), but for the whole program.

TR14. *Dymamie Data Mangling [ Memory Shuffting). This is performed as in the
Mark H implementation {see £5.2.13), but affects code bevond the core.
In particular, the shared blackboard provided by the shuffled memory is used to
provide the inputs from the application to the entry base-function and the out-
puts from the entry base-funetion to the decision-block and the inputs from the
decision-block to the exit base-funetion, and the outputs from the exit base
fusetion to the application.

T.8.15, Final Clranups and Code Emission. These are performed as in the Mark 1
implementation {see §5.2.15), but for the entive program.

SECTION AL PAUTHENTICATION 8Y BQUALITY Wit Uaonio FalLune

Suppose we have an application in which authentication is password-like: au-
thentication succerds where (7, the supplied value, matches o reference value I
te, when (=

Further suppose that we eare about what happens when ¢ = I, but if not, we
onlv insist that whatever the authentication authorized is no longer feasible, That
i« we sueceed when G = 1, but i G 4 T, further computation may simply fail.
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The suthenticating equality is not affeeted by applving sny non-lossv function
to both sides: for any bijection o, we ean equivalently test whether o(6) = &(I'),
The suthenticating equality may remain valid with high probability even if o is

is sufficiently low {as it is in Unix password anthentication, for example).
Based on technology previously described herein, we can easily perform such
a test. We previously deseribed a method for foiling tampering by duplicating

data-flow {see §5.2.8), randomly cross connecting the dats-flow between
duphicate instances {see §5.2.9}, and performing encoded cheeking to ensure

that the equalities have not been compromised (see 15.2.10).

We can adapt this approach to test whether ¢ = ' in encoded form, whether
oGy oll) We note that a data-flow vielding o€ already duplicates a data-
flow vielding o(I'} along the suceess path where ¢ = I, We therefore omit, for this
comparison, the data-flow duplication step. Then we simply cross-connect as in
§5.2.9 and insert cheeks as in §5.2.10. By using these computations as codfficients
for fnture encoded computations, we ensure that, if ¢(G) = (1), all will procesd
normally, but if &G} # oI}, while rther eomputation will proceed. the results
will be chaotic and its functionality will fail. Moreover, sinee ¢ is a funetion, if
GG ol we can he sure that & 4 1
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SECTION C.
Polynomial inverse computations over Z/(2"),
program component transformations and
ClearBox Cryptography *

In the theory and practice of software obfuseation and pro-

tection, transformations over Z7{27) and more generally over 11" play
an wnportant role. ClearBox research is not an exception. In this note
we present algorithms to compute the permmtation inverse f ' o) of a
given permutation polynamial f{r) and multiplicative inverse iz} of
a given mvertible polvnonial flr} over Z/(27). Results of special poly.
numial functions for efficient mnplementations to cooperate with general
obinscation principles are discussed and presented.
We also investigate algorithms to generate matrices over B* with polyno
minks ax their determinants and deseribe algorithins to use permutation
polynomials and matrix functions over 8" to transfors anthmetic op-
erations and data arvavs, These transformations ean be composed with
existing MuA transformations  for the protection of software operations
m the general ClearBox crvptography settings. Exampes are given to
lustrate new algorithimes,

1 Introduction and notations
Let N be the set of natural numbers and Z the integer ring. Let B = {0.1},

The mathematical base of the arithmetic logic unit of a microprocessor is
abstracted in the following algebra svsten.

Definition 1. Withne N we de jsm the algebraic system (B AL v, 0, -, <
S TR e et e w4 e k), a Boolean-arithmetie a%w hr i

{na-algebral, or gﬁvﬂ;i where < o denote left and right shifts, » denotes mul-
tiply, and signed comparvs and arithmetic vight shift are indicated by . n 1s the
dimension of the algebra.

BA n] includes the Boolean algebra (B™, A, v, ~), the integer modular ring
27127, and Galois field cri27),

Note that a very hasic requircment of PROTECTION design is to make its imple-
mentation eastly mix with application code. Therefore, building transformations
on BA[n] becomes an efficient approach. We also argue that it is sufficient he-
canse there are enough munber of computational hard problems directly related
to BAn.

* Veraon: January 30, 2012,
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2 Polynomials over Z/(2")

Let fird be a function over Z/7{2%), where n & NU I flr) is representable as
#E

50

st where a; & Z7(27), i=0.....m-1and m < N. then fleyis a
! is the set of all polynomials over

oo
pelynommal function, or a polynomial. T7(2%
the ring Z7{2").

Let P?g 2%3[x] be the set of all permutation polynomials in /(2%

Let 2% be hw falling factorial power r{z — e = 2} (& ~ b + 1}, where
ke N. Any polynomial f{x) can be represented as 3.7 @, s“ where /97 is 1
For i € N, let v{i) = 37, 1+/27]. Each ;m?ww;%zmi over Z7{2%% can be
nniguely expressed in s%w fortn flz) = ‘«“‘;_w; a, -9, where @, & Z/(3%V00
and w 1s the mzéﬁiw integer for which 27 [ {w + 13! but 27 ¢! Becanse zs?
this uniqueness, w is called the degree of fix), tivrmu% by degi f1 Mi or H flrs

Note that v{i) equals to the 2-adic order of 11, which is i ~ s where s is Eh«
sum of all digits of § in binary number representation, or the Hamming weight
of i . This is quite useful in several algorithms in this note.

For polynomials over Z/{2"), the upper bound of ther i%ﬁg}(*“« is pumber w
sich that v{w + 1) = n but ggs@ | < i, Assume 1 s a power of 2, and 1 o= 20
Becawse ving 1l = p(24 1) = 24122 =2l < nand v(n+2) = {2 42y =
P 2D =, we have w o= 2+ 1= 0+ 1L For example, polynomials over
/{25y, the ?3.%;{?303«{ possible &mw{f is 33

Becanse of the fact that the highest degree of polynomials in 27127 )]] is
about In{n ), this greatly reduces the computation cost comparing to polynomials
over finite field or(27).

There are quite amount of permutation polypomials over the ring, The car
dinality of Z/{2"[z] is 27002y SEH YR One cighth, or 200021 £ viki -3
are peronttations. For n = 32,64, there drw“*"”‘, 92271 permutations, respectively,

3 Permutation polynomials

For a given polynomsial, flz) = S10, ape® € Z/{27 o], it is a permutation if and
onlyifay isodd and both Y ageyand 37 as. are even CAn interesting
wiywm ation is that iaé%itz;:% factorial representation flr) =
‘«%“ %«z #i the conditions become by odd and both B2 and by even.

;li this sec Wz% we provide an efficient algorithm to compute the permuta-
tion mverse £ ), which is also referrad as composition inverse,

3.1 Compute preimages (roots) of a permutation polynomial

For a given permutation polynomial, we have an algorithan to compute its preime-
Ages,

Proposition 1. Let y = flr) = S0 L ar' be a permutation polynonsal over
Z/(2%y, For any given value 3 & Z/{2%). we can find a & Z/(2%) such that
flat = 3 by the following steps:
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1. I?s?*m‘k flry ond 3;
2o o= W
3. the Oth bit of o s the Oth bit of 3~ ap:
{0} fori from U ton—1
by the ith bit of o is the ith bit of 5 — ag — {6y — Lo — E:jij s
i Qutput o,

The computation is correet hecause for a gm*mst&gam polynomial fle), the
ith bit of (fir] -~ r) iz fully determined by bit values of zat 1= 0,1, 1 ]
and cocfhicients of f{r).

C. 3.2 The inverse of a permutation polynomial

In this section we present the following algorithm to compute the composition
mverse of any given perumtation polynomials in Z/( §x§

Qm;}mxtmn 2 Let fir) = S0 aar e @ permutation polynomial over Z7(2")

el e
and let [~y = S0 balt be wts permutation inverse, The following :sf,é“gm
provide a me %‘fmf to compute cocfficients of §71

1. Input firy:
2 fori from O toin+ 1)
(o) Inputs fir) and i to !‘rwgwwhm:. i
(b Output x, {Note: floy =i}
3, é);; w Fise
§. Jorj from | tan 41
(o) ty = S0 bt
fhi by == (g o v Pimodd®
jel 3{;‘ s 5@{; RSy e i‘&;}%? * Lo rod 2"
. Output by by oo by oy,

The correctness of the algorithm i hased on the ollowing arguments, Sinee
o) = S0 "é . by 1“? ia’ determined by (n+2) pairs of values (4, [ i) = {i.0; ),
the coetfict M;i« m £ ) ean be computed hv solving a system of equations.

The complexity of g}w algorithm is O(n*),

C. 4  Multiplicative inverse function of a polynomial

For a given polynomial function f{r) over Z/(27, we want 1o detormine if f{r)
has a multiplicative inverse function g{r} such that fla} » glr) = 1, for all
re 27127, and denoted by fir) ! i it exists. We also want to compute f{r)"',

Let MIP(2")[x] be the set of all multiplicative fnvertible polynomials in
2/ iﬂ;a'.'ji,
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C. 4.1 Criterion of f(x) € MIP(27%)[x]
Proposition 3. Let f{r] be a polynomial function cver 27127}

1. flr) hes o multiplicative inverse function iy if end only if the cocffi-
cients ¢ is odd and ¢y 15 cven moa falling factorial power cxpression;

“w b 3 3
2. There qre 2rint 8- 200 vk 2 X?iﬁgﬁpgérﬁ*‘*s invertible polynomials in Z/{2% 3 r],
3 flri? is g polynomial and con be computed by an e flicient algorithm,

Proof. Obviously, over Z7(2%) fir) has a multiplicative inverse function if and
only if fir&el = 1 im’ all z & 2/ 271 In its falling factorial power expression,
only coe %Efiki."{ii&tl? 2 and constans play a role in the least significant hit beeause
2divides % for all k 2 2 r = 0, ¢p must be odd, and if o = 1, ¢; must
be even. On the other %mm% with these conditions flri&l = 1 s tue for all
s Z/{27

The efficient algorithm is stated in the following proposition.

Proposition 4. Let f{x} be o multiplicative invertible polynomial in Z/{2" }x].
Its multiplicative yverse f{ry”t can be generated by the following steps:

i, Set
ro = filry +8egirl,

where g{a) € Z/{2% r] s any polynomal;

2. Erxecute the recurrence equation
Tiop = a2 - flaye )

by In{n) times to generate a new polynomial 1{x};
5. Standardize tixl to its falling foctorial representation of degree at most {(n+

iy

4. output Hrh

The correctness of the algonithm is based on the following observation: for
any tnvertible element o ¢ Z7{2%), the Newton teration used m the process
doubles the munber of bits in term of accuracy of computing o', The mumber
% is used beeause the first 3 bits of flr) and f{r) 7 are identical for all x due to
the fact the first 3 bits of @ and a~* are identie: zi for all odd number a £ 2/(275.

Sinee polvnomials are closed under the composition operation, we have the
inverse in polvnomial format.

Note that the algorithm with different mitial values produces different inter-
mediate coruputations, and therefore diversified code,

The pertormance of the algorithm s efficient since 1t takes only Inin) tera-
tions, This svinbolic computation produces a formula of the polynomial inverse
which ean be used to compute the coeflicient instances of the inverse.
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C. 4.2  An algorithm to compute f(z)~!

Avother method (o compute the inverse of a given multiphicatively invertible
polynomial f{r} is due to the fact that any polvnomial fr) over Z/{2%} can
be determined by the set of values {10, f{11 - L fin+ 13} The following 15 a
simple algorithm,

{. Take a multipheatively invertible fir) as input

2. Compute { O il fin+ 13}

3. Compute the mod nverses {f107 f(1i-5h - fin+ 1Y

4. Compute the cocticients of polvnomial glz) = flr)!
{a} Compute {alling factorial formar coc §§1sﬁ wnuts {agjol glr) based on the

value set {g{0) = f{0y Lgllyes fLLV o glnd L= fins 1Y)

by Trim cocHficients o, by modulo 271
o3 Convert {alling factorial tormat 1o normal fonmat

5. Output gla) = fir) .

E?wﬁgﬁwms?%zi; holds becanse of the simple fact that fi)eg{i) = Imad{2"1.{ =
0.1, < .+ 1 The step of trimming the coeflicients 1 necessary in order to pro-
duce zero cocfficients to have the shortest representation which s needed for
efficient computations.

C.4.3 Multiplicatively invertible polynomials with nilpotent
coetticients

All zmz%z%g‘}i%miiv&%‘ invertible polynomials over Z/{27} formn a group. the unit
group of Z7(2% e, Its subgroups can be investigated for efficient m;zzg;zxmimm
in terms of m*eim fxi number of non-zero coefficients. For example, 1s the inverse
of a nilpotent coeflicient polynomial sull a mlpotent one? If so, this can be an
efficient subset. The following result is what we expected.

Lemma 1. Let fir) = ay 4 ayo + < ca,a0™ € Z/{2% ] with pilpotent coeffi-
cients; ar = Omod(2.4 = 1,2, .-+ .m. Then

. i"}ifi&é {ffig” f%‘? {l"ézgxw}”sf

200f flry s zsz;«gg‘:z;séswm,s Iy invertible, that is, ap is odd, we have 3{f{z)" 1) <
af{x

3. For any integer m & N, the set

¥y

— 3 ’ - e
N AZH2M) = §S axt e 2/ ekl = Lol = Omod(27), 1 <0 4 <)

e 3 E

FEEE

ix a subgroup of the unit group UHZ/(2" 1 a ), #).

Here is o shore proof, Ifwe lot tlr) = flr) - ag. then H{2)® = 0. Therefore
Flaed = ey + optixn, Stimilarly f{o)? = do + dyt{r). The first result follows from
an induction on s € N The second result can be proved by the Newton iteration
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Process, Iuey = Ipld - flod« o, with o == 1 and the first result. As a matter
of fact, oy = xol2 ~ flr)x 2y = 2~ flo) o and 1y = 2{2 ~ flri» 0, By
mduction rq is a ;mixnm;m;? of fir) and has a degree not greater than that of
fiwy The third result is easy to check thanks again to the nilpotent property of
cocfiicients, and the profl is complete.

A Smalltalk implementation of the algorithm in previous subsection provides
us the following examples of inverses of nilpotent coefficient polynomials over

FIOREE LY
Z;g; g

L. A quadratic ;’m%}’rzmgzzixi flry = XAHRAL L1730 2470 e 4 iﬂ‘s%“ﬁﬁﬁiw
2% with inverse f{ry ! = 1116251450 + IR57631 744« 22 ifi’?‘%wiﬁ§ « r*, which
i« also a quadratic pelvinomial;

2. A cubic polyoomial f{r) = 1235235780 + 6887870501616 » £ I6TSIAMITIOR0 »
x4 (3937063433981 « x* with inv T Jiry ! = 616443269 + 3803362688 +
£+ 2102048128 » o7 4 1208221606 » 1+, which is also a cubic polymomial:

3. A quartic polyvnomial flr) = 0853231 4 1720201426304 » £233022192005.40 «
r* 4 1303677070761054 « 7 4+ (303R167006304 » »* with inverse flr)y ! =
IRA6913231 4 3760455680 1 43063152640 2% L IRO617216 e 27 £ 200540160 +

, which 1s also a quartic polyvimomial,

Remark 1. The nidpotent cocflicients condition could be relaxed by @) = maod{270.1 >
2. More detailed investigation needed.

C. 5  Decomposition, factorization of permutation and
multiplicatively invertible polynomials

useful because a general gx;clysmmmi over Z ;“m Ex;z«a (ﬁwfrw (n+ ‘%} Ami zi‘ a hggf;?%
degree permutation is used as transformation transformed code would become
mefficient. Morcover code obluseation can also benefit from small representations
based on the rational that small I Anguage eomponents make the management of
code diversity and untformity easier. Note that in the context of data transfor
malmzzq wt%eﬁf representations are required for both fr) and its tnverse [ 1 (r)
[ flry ! incase of MIP{27)), which turns out to be a {%@:&iix nging issue,

For a given permmtation polvnomial fir) the number of its no-zero terms
in conventional polynomial representation is defined as its weight weil f{r)iin
falling factonial representation, we can have similar definition of weight, but &t
will be treated different since there is no fi%}%”i’é&gﬁf Sequaring aﬁﬂ'{mtimz works
here). Obviows weil flo)) < degl f{ry), To have both fir) and f ') in small
representations, put restrictions on degree is an obvious option, it is known to ?r;}vidw
provides a class of permutation polvnoraials fir) such that deg{ flx)) = deg(f Hx)).
O the other hand, finding f{z) with small wed{ fla)) and wei f 7V r)y s an g’;;»
tion to fnd useful small representations, becanse of the existence of efficient
exponentiation compntations such as repeated squaring method.
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Polynomial function decomposition provides us another means o find fx)
with small representations. If fluo) = glh{e)), deglglai) and deg(B{e)) are in-
teger factors of deg{ f{r)). We have similar case for multivariate polvnomals,
which can be morpher code of an arithmetic operation.

Polvnomial factorization is our third approach to have small representations,
Note that there are about 1/m irreducible polynomials of degress e in Gr{23{r]

For example, there are only 99 degree 10 polynomials over Gr(2) are i
reducible. Fortunately, permutation polynorials, 1/R of ar(2)[#], are far from
irreducible, BExisting mathematical  miles make any factorization of f{r) over
G2y extend to factorizations (not unique) over /{27 for any n > 2, and
coefficient conditions over Gr{2) for a polvonomial to be a permutation {or mul-
tiphicatively invertible] does not restrict ¢ being irreducible. In this context, for
fiz) and f ' ry ideal small representations are small number of factors and
each factor 18 a power of a polvnomial with a small representation such as low
degree one or low weight one (kind of recursive definition),

Representing polvnomials using mixed addtion terms, composition compo-
nents,  multipheation  factors provides another exeellent example that the same
set of techniques serve hoth efficient computation and software obfuscation pur-
poses {an existing example is additon chain for RSA key obfuscation ). Sinee
our ultimate goal is for the morpher code which is a composition of three per-
mtation polynomials with anthmetic operations, and a bivariate polynomial as
Ingt result, we have good chances to construet/find large number of permuts-
tion polynonsials of small representations to have optimized result code {general
alporithn 18 1o be determined - we have some baste wdeas),

In the following subsections we describe algorithins for
these three approaches as well as their mixture,

. 5.1 Low degree or low weight f{x)

We have obtained a sufficient condition on coeflicients of a permutation
polynomial f{z) such that both fix) and ') has the same degree, which
can be small.

Here 18 the result about the degree of B fir)+ gy, where floiglyl Al
W27
Let m be a positive integer and let P (Z7(2731 be a set of polvnomials over

zggsilzzﬁ ?,

i

3
s ™ i v e Ty ) g
PrlZ/(2%)) = ¢} aux' | Yo, € Z/(2").asnl=laf =0i=2....m
et

The degree s moand there are 2m -~ 1 cocticionts,
We investigated the case of less restricted conditions, and possible necessary

theoretical condition based on a svstem of cocflicient equations s complicated,
but it does shine some Hght on the computation of such polynomials{details
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omitted here). At this point we use computation to do search and would resume
theoretical studies if the computation results eould provide further information.

The basic computation algorithm s to apply algorithm in section €.3.2 for the
computation of inverse and tune the coefficients to find small representation.

Over Galois field, low weight polynomials, such as low weight irreducible poly-
nonnals are studied through computation In this Galois ring Z/12% lease,
we shall use algorithm in section € 3.2 again, to compute and find low weight ones,
Agam coeflicient tuning process happens at runtime,

5.2 Decomposition

Polynomial time decomposition methods over field {not necessarily finite)

are known but over Galols rings, no convinemg
general algonthm tounded/ discovered vet, to my knowledge so far. On the other
hand, methods and ideas over fields provide valuable  information for works on
rings.

A special elass of polynomials called Chebvshev polvnomials {of the first kind}
1, (r) deserve our attention. Recall that T,(r) can be defined by the following
recurrence relation: Tole) = L (e = o T (o) = 20,0~ T, (23 A prop-
erty of Chebyshey polynomials 15 about the composition: T (0) = T (T izh.
An %tfggcrmtifxg observation 1s that all odd indexed polynomial T, (20 h =
£.2,-++, are permutation polynomials over Z/{2%). Therefore big mié indexed
€ hw%w«hev polynomials can be decomposed mto low degree Chebyshev permu-
tation polviomials,

Note that if f{r} = glh{r}}, and g{z) and h{z) € Z/(27}{z], these compo-
nents glr) and A{r) are sull permmtations, Decomposition of multiplicatively
wvertibe will be interesting, because components are not necessarily multiplica-
tively invertible.

C.5.3 Factorization of f(x) and f(z,y)

Factorization of a given polynomial f(a) € Z/(2%) ] starts st Z/(2) #) = av(2) 2],
Then various  forms of Hensel lifting can be choosen to factor f {x) over Z/{ (2™).
Algorithims in this area are well studied {except factoring multivariate gm%gww«
mials) and we will use existing algorithms,

Most permutation polynomials are not basic prisnitive polvnomials and have
nonetrivial factors. For example, permutation polynomial

flodem x4 B8ex® 416 e 2 = pld e r + 1%

Forany f{a) & Z/(2")[x], square-free factorization algorithm and Berlekamp's
¢-matnx algorithm  are used to factor f{r) & Z/(2)x]. Note that we may just
have a partial lactorization, finding two coprime factors, to go to the next step
to factor flrie Z/(2)r 0 > 2
The following form of Hensel's Lemma s
the one having the essenee of the techmique.
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Let B be a ring and deal [ ¢ R For any f ¢ R, and any factorization
F = ghimodlyof fin RIT such t’éme gedig by = 1maodly, then there exist ¢°
and B* such that [ = ¢*h*modl*, §* = g;;rsmi. E* w hmedl, and wmoreover,
gedig® A%y = lmedl-.

A &m zmw “z:«ﬁ: B ms@i g* can be constructed directly from the Brout's identiry

iwmw §m« gm wress we can have desired results,

Note that {actors of a permutation polynomial are not necessanly ;}wrm%zi -
tions, This provides another Havar in terms of diversity amoung different species,
However, factors of a multiplicatively invertible polynomial are still maltiplica-
tively mvertible.

5.4 Mixing addition terms, multiplication factors, and composition
components

We know that all permutation polynomials over Z7(27) form a group PP(2%}[x)
based on function compesition operation o. The unit group WZ/ yy’{ﬁ o) oof
polynomial ring Z/(2% 1z based on ring mnidtiplication is the set of all multi-
plicatively invertible polynomials MIP{27 1z (see section C. 4).

Here is a simple but interesting observation:

Proposition 5. Let fir) = rhir} € PP(2%){z]. a permutation polynomial with
3
23

serp constant term, Then hix) & MIP(27rl. That s, R{z) as multiplicatively
invertible.

Note that the cocfficients of 27, 2% and #™ of fiz) must be odd. even
and even, respectively, In that fumz‘z% these conditions enable A{r)'s constant
term 1o he odd, and coeflicient of ' even. The correctness of the ohservation
follows Proposition 3.

Another observation is the intersection PP{2%)[x] 1 MIP(27)[r]. which is
empty {contaming only odd constant binetions if we %&3&3« PP 97 {.r has con-
stant functions). This implies that the two function sets are orthogonal in some
sense, '

Back to the set of Chebyshey polyvnomials {of the first kind) 7., (r). Previously
we mentioned odd indexed ones are permutations. It is easy to see that even
mdexed T2} {also even indexed Chebyshev polynomials of the second kind)
are multiplicative invertible polynomials, Therefore big even indexed ones can
be decomposed into simall ones based on Ty (o) = T (T (001, and alternatively,
it can be factored nto small factors for reductble ones.

More studies can be done in this area, Including algorithms to select suitable
transformations for the purpose of generating highly obfuscated code,

i

. . . & m @
6 Generalized polynomials f(x) = agfaxy -3 aga!

For a generalized polvnomial f{r) to be a permutation, Klimov  gave an inter-
esting if and only if condition hased on its coefficient set {ae. -+ a4}, That is
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the same condition for the polynomial function fia) = z:‘fw L', obtained by

replacing all 7 operations with +, reforred as the reduced polynomial of f{r).

Because the associative law 1= dnvalid in f{o), it actually represents a set of

functions, generated from all possible orders of operations as well as combinations
of operators + and

An interesting new result was published in the end of 2011 on conde
tions of single eyele property: assuming the operation order 18 from left to right,
that is, f(r) has functions of the format( - {{eo" (aya)) ] (aza® )7 -7 (aga?y).

Proposition 6. With the order restriction mm’ an m«sgmg;ium that there

4 45 a single cye i

are no consecusitive - operators, !’m = aag ey xl P agr
permatation if and only f it is o single eycle permutation over the ?‘qu (¥ 1
where §is the numbr of odd numbers in {i 0y, i} {12, d). which s

the sot of degree indices of terms a, 21 with an + operator iw’gamﬁ them.,

This s an interesting result although Z 12747 could be a big ring.

7 Matrix transformations

Marrix functions over 270271 with predetermined detnminant funections are con-
strueted in this section for the transformations of arithmetic operations and
vectors, The following is a set of matrices we try to work on:

Q= Mo da oy N seNalegr e B gz,
M= glr), Vyle) € MIP(27}

where B™[r.y.2.- -] are multivariate fanctions over BAin?

Recalled tEmt MK?”}” is the set of all multiplicative invertible polynomials
aver £/{2%)

A few lines of explanations. This is a set of matrices whose determinants
are pmltiplicative tnvertible polynomials, With a predetermined detorminant a
matrix in {2 can be constructed based on elementary row and column operations
over the ring Z/(2% ). Nete that other operations in BAn] are also invelved but
we " favor” z;zgziia;ﬁwazi@m and addition. The ollowang standard algorithm which
is rernarkably similar 1o matrices over fiolds offers more details,

Proposition 7. Letmon e N Lt A, be a set :!f;m;«m?u from BAln]lz.y.z. -
refermed as conter! function set, Let AT be the set of generated funcitons from A,,.
T following process generates an invertsble matrir M o= {my (e g0 Vs
cver BAln fmore precisely entries my (roy. 2.3 & (A, U MIP27 0~ ) whos
detersnant is o polynomial f{r) € MIP{2™:

1. Inputs: BA algebra dimension n, A, MIP(2") and matrir dimension m;
Randomly choose m polynomials fiir, fole, - fla) from MIP(2™) and
setm, oy 2= filry:
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d. Repeat finite steps of the faé‘e‘awﬁsg g‘sﬁmw
{a} Randomly prckup i j& {1.2,--- .m} e ml;
(&1 Randomly pickup viz.y. 2, -y € AY;

{c; Randomly pevform a row z‘?;@f ration R, «viz, g2, )+ R
operation C s ri{r,y, 2 )+ 0
? ® F

S 5
S G Grumn

" - 7y Py
4 Output: a m < m matrr unth determinant Ha y filx).

In the algorithm the contert function set A, Is aninteresting concept. This set
of functions from BAlnjx, g, 2, | defines the required ‘similarity” for the matrix
transformations to seamlessly blend into the application code environment. A
can be predefined based on existing application code format and projected code
format. A typleal example of A is a set of expressions in the code context,

This concept can also helps us imtroduce dependencies between code variables
in both application and transformations, See example Section D,

Remark 20 An alternative algorithm to construct the matrix = by upper {or
Jower) triangular matrices with polynomials in MIP(2%) 1o form the diagonal
entries and elements from A7 to form the upper {or lower) enties, The produat
of these matrices is sull Mi%"w

Remark 3. About the uniformity of inverses of matrices in 2. There are wwo
types of appheations: with or without the matrix inverse code in application
code, To transform vectors (data arrays) it s may not boen necessary because
the inverse computation can be happened in server side which does not need
code obfuscation. But to transform operands in operations using matrix inverse
hecomes necessary to keep original functionality.

Matrices in £2 serves the later case well becase entries of the inverse matrix are
composed of elements from A, and polynomials (the inverse of determinants ).

Remark §. The algorithin can be fine tuned based an precise eriteria of defined

code uniformity level and eriteria of performance of transtormed code.

C. 8 Block-invertible function matrices

I this section we construet a sepeial set of square block matrices with block
invertible properties to be applied to the coding context that both internal and
external tramsformations keep multiplicative invertibilities,

Note that this is also an extension of the constant case construction that
applicd in White-Box ags key hiding .

C.8.1 The existance of block-invertible function matrices

fu this seetion, we refer an even polynomial n (27{2" 11]x] as a polynomial whose
coethicient of # and constant term are both even numbers (relationship with the
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nilpotent radical of the polynomial ring (Z/(2%)){x]?). Let subset & < (Z/127 )} [«]
be the union of mmltiplicative invertible polvnomials and even polvnomials. Then
i ) 3

¥eow i
3 - ¢ TS ST £ *
Vo o) = Y et € (Z/(27)}x]leyds even}
§ ok

wosubring (W, 4,4} Let T =« 2Z/(2" 0 (271200 = 2.3 ,n+ 1 >, the
wdeal generated in the ring &,

It is casy to verify that ¥/% is isomorphic to Z: the set of multiplicatively
invertible polynomials becomes odd numbers and even polynomials are turned
nto even numbers, We will see that this isomorphism transforms the construction
method over filed Z/(2) in [7] to the ring ¥

Note that ¥ contains the subring generated by unit group U{{Z/(2" ire
and nilpotent radical ideal N{({Z/{2" Wl o). The matrix ring M{¥ 1.y, is what
we work on in this section, First we have the following result:

Lemma 2. For a given non-zeve square matrir A € M{¥.x,. there erist tiwo
invertuable matrices P.Q & M{Wh.x, such that Ml = P+ D Q. where D is a
diagonal matre with v ones and 8 ~ r 2eros, where r e N

Lemma 3. For any s,r € N with s > v, there vxit two invertioble motrices
T.Ae M(W.x, such that T = D+ A, where D is ¢ diagonal matriz with v ones
and s o r zeros, where r & N

The correctness of these two lemmas follws the isomorphism above, For this
subset of polynomials in ¥, the basic idea of the construction algorithin works
fine here in the function matrices cases {even over the BA  algebra, essentially
over the modular ring Z/(2").

136



WO 2013/142981 PCT/CA2013/000305
APPENDIX

10 Transformations of program components in general

We deseribe an approach to transform program components {see next section for
arithmetic operations and data arravs and permutation polynomials, mvertible
polvnomials and matrices as primary transformations ). Note that the approach
deseribed in this section is essentially the complexity extension of the data trans-
formation concept IRDETO/Cloakware data transformation technology,

10.1  Transformation process and configurations

Definition of a configuration. In this note, a configuration is defined as a state
of a set of variables { no operations) involved in the transformation process. In
most cases, the variable set includes

1. Vanables in program components;

2. Transformated variables of the program components:

3. Transformations represented by ther types;

1. Coeflicients and /or their values of transformations;

5. Coctlicients and /or their values of nverses of transformations:
6. Vartables representing the configuration tself

7. Other variables

The transtormation process comprises series of
{, Input configuration

2. Component transformation section
3. Output configuration

The management of configurations, which is the major part of the trans-
formation process, can be represented by a Finite State Machine, Note that
the transformation {encryption) of a program is much compicated than binary
strings for cryvptography purpose,

Example: existing data transformations

10.2  Complexity analysis of transformed program components and
program

1. Serach space of all possible compositions;
2, Complexity of propagation of dependencies of transformed program compo-
nents;

3. Swystemn of equations for each instance

11 Transformations of program components in
MARK 1/ Woodenman constructions

Basedon  the  Woodenman construction requirements, we have the following
prograin component transformations.,
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11.1  Transformation of addition
Let 2= x4+ y he the addition to be transformed. The basic process is

L. Decode the input configurations to find out input expressions of hoth » and
@

2. Transform the two operands by permutation polynomials in PP{2%) and
ENETALS BEW eXpPressions;

4. Create a vector with the encoded operands and other terins as its entries;

{. Transform the vector by o matrix in £2;

5. Compose the decoding of the matrix and the two operands with the encoding
of the addition operation by a polynomial in PP{27 1, and/or a matrix i £2

6. Apply 2 permutation polynomial to transform z and save the results i a

vector;

Save formation about the encoding in the final vector for the consumer of

the addition

-

The interfaces between those steps are an array of variables with speci.
fiedd/ different configurations.

11.2  Transformation of multiplication

Stmnilar steps above just replacing addition by multiplication.

11.3  Transformation of vectors/arrays

Stntlar to steps of addition without the addition coding.

11.4  Transformation of addition, multiplication and vector

Uniform the three transformations by selections of matnx transformations.

13 Attacks

For permutation polynomials — - simplified representation

Proposition 8. Passible attacks: f oll permutation polynomials can be vepre-
sented by low degree permutation polynomiels then there are (simplification) at-
tacks HINT: count number of low degree permutations over Finite field to show
these s no such atteck

Proposition 9. Possible attacks: Using value set flayi 0,1, n 4 1 to rep-
resent polynonmels and compositions to compute the probabdity ..
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14 Remarks

Java code implementation of the algorithms  tested.

15 The concept of dynamic permutation transformations

In the existing data transformation techniques in Irdeto/Cloakware patents
pertoutations are used to transform operands of an operation. For example,
operands u, v, and w of an addition operation w = u 4 v can be transformed by
a lnear funetion g = a « 5 + b, where g and b are constants (4 must be odd to he
a pernutation. In the computation of transformed code, variables are related to
u and v only becanse transformed operations have fixed constants as coefficients
of the newly transformed operations, such as those for add operation. Therefore
we will refer these transformations as static permutation transformations. Note
that data transformations used in standard public key ervptosystem such as
RSA can also be regarded as statie permutation trausformations, becanse the
private and public key pair becomes fixed constants at the time an entity uses
them to enerypt or deervpt data.

In contrast, dynamic permmtation transformations are permutations that
have new wariables which can be introduced into the computation context of
transformations. For example, a liner function ¢y = a « r + b can be used to
transform an operand x. But in this dynamic case, coefficients a and b are vari-
ables {with one bit restriction on variable a). In this way, the transformed add
operation will have three sets of new variables {total 6 in this case).

Static permutation transformations are designed to transform operands of
cach mdividual operation. These micro vransformations alwavs have small code
size. Although dynanie permutation transformations can be used as micro trans-
formations, its main goal = to introduce connections between variables for code
mtegrity. Therefore the code size can be and should be bigger than most mivro
transformations, Note that these large size transformations are still within the
boundary of polynomial time computational complexity in terms of original size.

Dynanic and static permontation transformations can work together to achieve
a level of code obfuseation and code protections with reasonable code size vx-
PANSIONS,

16 Dynamic permutation transformations

A permmtation polvnomials f{r) = gosbyaz by o™ over Z/{23%) can be nsed
as dyvnamic permutation transformations, where yo, 4y, - -+ . yn are variables with
conditions that y, s odd, gy 4 gy 4 - and yy + ¥, 4+ are odd munbers. As in
the static data transformation case, permutation inverses have to be computed.

Besides the general permutation polynomials over Z/(2%), special dyvnamic
b » ; H »

permutation polynomials, such as those with nilpotent coefficients can reduce
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the size of trausforined code. Formnlas of computing their inverses are known,

in |7, where all coefficients are variables in this dynamic case, The special prop-
erties of coefficient variables, such as the nilpotent properties can also be used
for mterlocking.

Note that nothing prevents the coefficients variables in dyvnamic permuta-
tion transformations have some coustant coefficients as 3&}'};}; as the permmtation
conditions are satisfied. They will facilitate the composition with existing static
pernnitation transfonnations,

17 Properties of dynamic permutation transformations
and interlocking

In dynamic permutation transformation, there are two kinds of coeficient vari-
ables: conditional ones, such as ¢ iy = a « r + b . and unconditional ones such
as b in example above, For code obfuscation purpose, unconditional coeflicient
variables can be any variables from original computation context, or variables in
any transformation formula, ete. The conditions ones are more interesting: the

protection. The code can be protected so because the conditions of cocfficient
variables are exactly the conditions for the transformation to be a permutation.
Therefore breaking the conditions implies a non-permmtation transformation for
an operand of an operation, resulting in a fanlty computation which is the way
we want 1t happen when tampering oceurs,

Because dynamic permutation conditions are represented by a property of a
set of variables it becomes hard to distinguish these properties from original code
properties, It is also hard to figure out coefficient variable set from all variables
m the transformed code,

Besides properties of coefficient variables, conditions of the correctness of
formula can also be composed with integrity verification properties: it will break
the flgle)) = r identity if the condition is broken!

ermutation polynomials are also fully determined by its roots, In addition
to the normal coeflicient representation, root representation format can also be
used. Special root structures and value properties can also reduce the code size
for more cfficient computations. Note that in this dynamic context, roots are
variables, not fixed values. Conditions for the correctness of root computation
process can alse be composed with vertfication properties.

Other dynamic properties in the process of compnting the inverse can also be
usedd to compose with integrity properties. For instance, the algorithm based on
Newton iteration algorithm to compute modular inverse over the ring Z/(2™)
works correctly only for odd variables, a nice property.

17.1  Identities and dynamic equations

An equation that nvolves multiple variables inherently has a dynamic property:
the identity itself. Mixed Boolean arithmetic identities are examples of these
equations: breaking of MBA identities implies the oconrrence of tampering,
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Multiplicatively invertible dynamic polynomials fiz) over ring Z/{2%) also

polynomials, conditions on the coefficient variables also provide a property to
compose with integrity verification properties, Polvnomials with special coethi-
cient variables provide implementations of flexible code size,

Dynamic permmtation transformations composed with MBA identitios. This
can be done either by transforming variables in the equations or transformation
of the equations themselves.

17.2  Permutation T-functions

In general any permutation T-functions from Boolean arithmetic algebraic svs-
tem can also be used as dynamic permutation transformations. The computation
of their inverses can be achieved through bit by bit computations. One example
15 the generalized permutation polynomials, The computations of their inverses
are still efficient computer programs,

NOTE: Not all program compenents are nocessary to obfuscate: Not trans
formation of data variables but integrity code: just composed with variables and
OPETALIONS,

18 Block data protection

Block data vanables, such as merbers in a data structure or fields in a olass
can be (11 transformed using dynamie permutation polynomials: coefficients can
be individual data variables, (2) composed with individual static permutation
transformations of each data variables,
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D. An Example of transformations of 2-dimensional
vector

Here is a very simple example about transformation of 2-dimensional vectors
car oy eyt g _ .
(X, Ve (B¥E The code context, we assume, is

%

3;{‘; = ‘é{}“ g §;}‘ ur. l‘hié»:?;%%ﬁ

The first step is to pick up two permmtation polynomials 39 r 442,67« r 2051
1o transformn X and Y
XNy =392 X + 12,

and

The next step is to pick up a matrix whose determinant is a multipheatively
invertible polynomial (1335 4 2860 « 2 + 1657 » r# (o — 1) (65389 + N268 « 1}

\ (1335 4 2860 w2 + 1B0T e r e (o~ 16T+ (2D y) + 8 ¥}
- y (6530 4 8268 » 1)

A cobumn operation

C = " 1 0
CENTIG e s + 038 (&g 1

onn A gives us
A A C = Matriz][1335 5 28600« x + 1657 s 7 s {x ~ 1) + (6T = {x Dy} +
So g o (TI6 2 4 03 (2&y) (6T » (r Tyl + 8oy (6039 4 R268 « r}» (7164
» 203w (r&oy )y, (6530 + 828 5 1))
Then a row operation
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0= 1 0
TG s {aky) §)
on A produces

A=RxA=Matrir[[1335 4 2860« r + 1657 s 2 (0~ 1)+ (6T 4 {xr Ty) 4+ 8

&

e {T16% 2493« -if&j};/«,iu #{ray)+8e gl 3 e (a&y) » (1330 4 2860« r +
5T era(r—1) 4 (6T« {rc y)+8ey®) o (7164 24 035 (x&y))) + (6530 + 8208 +
wpr (7160 + 03« (pkoy)), 3« (x&y) « (6T (r Tyl + 8o y?) + 6030 4 8268« 1)),

Applyving this invertible matrix A to immimm {X 1. Y5 we have the trans-
formed vector { X5, Y51 with

XNo= 32065+ X 50070+ 46017 ¢ 2o X 30020 e r + 64623 2 27« X
+ 60504« 2%+ ISTOOON « (x T y) 2« X + 2014824+ (x D y) » 2
+ 28009« (r o yle (xkyi e X 4 ‘%@E”i‘?‘} s{x oy {zky)
+ 223302 0 gt a2 0 X £ 20576 « 5 w2 + 20016 % 47« (2hoy) ¢ X
+ MUS ey phy) = M s (2 0yl a Y #8577 v (r )

s T g Fo gy g 3
+ 836 sy« Y 4+ TRA8 & 7,

Yo m XUT0008 & » 4 7505328 « (2§ ?;} eyt ez s X
+ 63610872 ¢ (a&eyi o {r Dy oo X + 220718 s (z @y » (o&y)
b 266832« y7 ¢ (2&ey) + IR2505036 « 2 « X + 503006 « £ o Y
+ 1062432 ¢ 7 » (&y)® + 248635296 « 1+ 2 + 20ARTI63 » (a&y) = X
+ 34012692 « (xly) » 1 + 2366106 = (x&y) « o + SROTRER » (£ D y) « (oky)”
+ NITOG84 « {x&%{é eyt e s 2 G8B04016 « (r&y) # { SN LS
18220 e g e (a&y) ¢ Y 4+ 102626« (2 Ty # %3‘&*5;} ¢ Y L 2WTH6A2 e re s 0 X
4+ 086541 « 4% & {J&‘gg}z « X 4 B262306G » (r & oyio» {z&y)* » X
+ 21097182 % (&) o 27« X 4 3I5R3210 o {akey) s 25 X
+ GAU4T50 + 2THTT I « (akey) + 10660808 » » 4 438113+ Y,
Then we can replace z, y and 2 by any expressions of any variables, including
X and Y, or constants in i‘h{* conde context to inject new dependencies into these
transformed code. Further code optimization could become necessary depending on
expressions chosen,
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E. Polynomial representation of carry bit values

Given a binary representation @ = 307, a,2" and b= 377 52" of two numbers
aand baswell as thesum e = a + b= 3" 2" to represent the carry bits by
bit values a;, 5,0 < ;7 < ¢ is an interesting problem. Recently the

formula was developed.

Co = g T by,

fort > 1.

N F Y ¢ pptet \
e = (g Db ) T gla - by E iy lay &5

Obviously, the second term above is a polynomial representation of a carry
bit value. Similar formula for multiplication can also e derived.
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CLAIMS

I. A method comprising:

selecting a word size w;

selecting a vector length N;

generating an invertible state-vector function configured to operate on an N-vector of
w-element words, the invertible state-vector function comprising a combination of a plurality
of invertible operations, wherein the state-vector function receives an input of at least 64 bits
and provides an output of at least 64 bits, and a first portion of steps in the state-vector
function perform linear or affine computations over Z/(2");

indexing a first portion of steps in the state-vector function using a first indexing
technique;

indexing a second portion of steps in the state-vector function using a second indexing
technique;

selecting at least one operation in an existing computer-executable program to modify;
and

modifying the existing computer program to execute the state-vector function instead

of the selected at least one operation.

2. The method of claim 1, wherein each of the first and second indexing techniques
controls an operation type independently selected from the group consisting of: an if-then-else
construct; a switch construct, an element-permutation selection, an iteration count, an element

rotation count, and a function-indexed key index.
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3. The method of any one of claims 1 or 2, wherein each step in a third portion of steps in

the state-vector function comprises a non-T-function operation.

4, The method of claim 3, wherein each of the steps in the third portion of steps is an
operation type selected from the group consisting of: a function-indexed keyed element-wise

rotation, and a function-indexed keyed sub-vector permutation.

5. The method of any previous claim, wherein the invertible state-vector function

comprises a concatenation of the plurality of invertible operations.

6. The method of claim any previous claim, wherein w is selected from the group

consisting of: 16 bits, 32 bits, and 64 bits.

7. The method of claim any previous claim, wherein w is selected as a default integer size

of a host computing platform.

8. The method of claim any previous claim, wherein the word size w is twice the internal

word size of the N-vector.

9. The method of claim any previous claim, further comprising:
generating an inverse of the invertible state-vector function, the inverse of the
invertible state-vector function comprising a concatenation of an inverse of each of the

plurality of invertible operations.

10.  The method of claim any previous claim, further comprising:
selecting a key type for the invertible state-vector function from the group consisting

of: a run-time key, a generation-time key, and a function-indexed key.
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11. The method of claim 10, wherein the selected key type is a run-time key, said method
further comprising:

modifying the state-vector function to accept a run-time input providing a key k.

12. The method of claim 10, wherein the selected key type is a generation-time key, said
method further comprising partially evaluating the state-vector function with respect to a key

K.

13. The method of claim 10, wherein the selected key type is a function-indexed key, said
method further comprising, for each of the plurality of invertible operations 4, providing a key

R4 for the associated inverse of the invertible operation.

14.  The method of claim any previous claim, wherein the state-vector function is

implemented at least in part by a plurality of matrix operations.

15.  The method of claim any previous claim, wherein at least one of the first and second
indexing techniques controls a plurality of operations comprising random swaps performed

according to a sorting-network topology.

16. The method of claim 15, wherein the sorting-network topology is selected from the
group consisting of: a Batcher network, a Banyan network, a perfect-shuffle network, and an

Omega network.

17. The method of claim any previous claim, further comprising:
encoding an input to the state-vector function with a first encoding mechanism;

wherein each operation in the state-vector function is adapted and configured to operate when
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the input to the state-vector function encoded with a second encoding mechanism different

from the first encoding mechanism.

18.  The method of claim 17, wherein the first encoding mechanism encodes the input as

aM + b, wherein a and b are constants.

19. The method of claim 18, wherein M is an invertible matrix.

20.  The method of any one of claims 18 or 19, wherein the second encoding mechanism,
when applied to the input, encodes the input as ¢cN + d, wherein ¢ and d are constants different

than a and b, respectively.

21.  The method of claim 20, wherein N is an invertible matrix.

22. The method of any previous claim, wherein the at least one operation in the existing
computer-executable program and the state-vector function use computationally-similar

operations.

23. The method of any previous claim, wherein the step of modifying the existing
computer program further comprises applying, to a combination of the state-vector function
and the existing computer program, at least one technique selected from the group consisting

of: a fracture, variable-dependent coding, dynamic data mangling, and cross-linking.

24. The method of claim 23, wherein each of the state-vector function and code
implementing the at least one technique uses operations computationally similar to those

present in the existing computer program.

25. A method comprising:
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receiving an input having a word size w;

applying an invertible state-vector function configured to operate on N-vectors of w-
element words to the input, the invertible state-vector function comprising a combination of a
plurality of invertible operations, wherein a first portion of steps in the state-vector function
perform linear or affine computations over Z/(2");

applying, to the output of the invertible state-vector function, a first operation from
among a first plurality of operations, the first operation being selected based upon first
indexing technique;

applying, to the output of the first operation, a second operation from among a second
plurality of operations, the second operation being selected based upon a second indexing
technique different from the first indexing technique; and

providing an output of the second operation.

26.  The method of claim 25, wherein the second operation is selected from the second

plurality of operations based upon an index derived from execution of the first operation.

27.  The method of any one of claims 25 or 26, wherein each of the first and second
indexing techniques controls an operation type independently selected from the group
consisting of: an if-then-else construct; a switch construct, an element-permutation selection,

an iteration count, an element rotation count, and a function-indexed key index.

28.  The method of any one of claims 25-27, wherein each step in a third portion of steps in

the state-vector function comprises a non-T-function operation.
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29.  The method of claim 28, wherein each of the steps in the third portion of steps is an
operation type selected from the group consisting of: a function-indexed keyed element-wise

rotation, and a function-indexed keyed sub-vector permutation.

30.  The method of any one of claims 25-29, wherein the invertible state-vector function

comprises a concatenation of the plurality of invertible operations.

31.  The method of claim any one of claims 25-30, wherein w is selected from the group

consisting of: 16 bits, 32 bits, and 64 bits.

32. A method of executing a first operation by performing a second operation, the method
comprising:
performing the second operation by:
receiving an input X encoded as 4(X) with a first encoding 4;
performing a first plurality of computer-executable operations on the input
using the value of B”(X), where B is the inverse of a second encoding mechanism B, the
second encoding B being different from the first encoding 4; and

providing an output based upon B (X).

33. The method of claim 32, wherein the first operation is performed on the value B

loa(x).

34. The method of claim 33, wherein an output of the first operation is not provided

external to executable code with which the first operation is integrated.

35.  The method of any one of claims 32-34, wherein the first encoding mechanism

encodes the input as aM + b, wherein a and b are constants.
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36. The method of claim 35, wherein M is an invertible matrix.

37.  The method of any one of claims 35 or 36, wherein the second encoding mechanism, if
applied to the input, encodes the input as ¢cN + d, wherein ¢ and d are constants different than a

and b, respectively.

38. The method of claim 37, wherein N is an invertible matrix.

39. A method comprising:
for a matrix operation configured to receive an input and provide an output, prior to
performing the operation, permuting the input according to a sorting-network topology;
executing the matrix operation using the permuted input to generate the output;
permuting the output according to the sorting-network topology; and

providing the permuted output as the output of the matrix operation.

40.  The method of claim 39, wherein the sorting-network topology is selected from the
group consisting of: a Batcher network, a Banyan network, a perfect-shuffle network, and an

Omega network.

41. The method of any one of claims 39 or 40, wherein, for each of a plurality of
subsequent operations, an input for the subsequent operation is permuted according to the

sorting-network topology.

42. A method comprising:

receiving a first input;

applying a function-indexed interleaved first function to the first input to generate a
first output having a left portion and a right portion;
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applying a function-index interleaved second function to the first output to generate a
second output, wherein the left portion of the first output is used as a right input to the second

function and the right portion of the first output is used as a left input to the second function;

and

providing the secdnd output as an encoding of the first input.
43.  The method of claim 42, wherein the first input is encoded with a first encoding,
further comprising:

applying the function-index interleaved first function and the function-index

interleaved second function based upon a second encoding different from the first encoding.

44.  The method of claim 42, further comprising:

encoding the input with a first encoding; and

performing each other recited step using operations that are adapted and configured to
operate on the input when the first input is encoded with a second encoding mechanism

different from the first encoding mechanism.

45.  The method of claim 44, wherein the first encoding mechanism encodes the first input

as aM + b, wherein a and b are constants.

46. The method of claim 45, wherein M is an invertible matrix.

47.  The method of claim 45, wherein the second encoding mechanism, if applied to the
first input, encodes the input as ¢N + d, wherein ¢ and d are constants different than @ and b,

respectively.

48. The method of claim 47, wherein A is an invertible matrix.
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49. A method comprising:
generating a key K;
generating a pair of base functions fx, fx” based upon the generated key K and a
randomization information R;
5 applying the base function fx to a first end of a communication pipe;
applying the base function inverse fx” to a second end of the communication pipe; and

discarding the key K.

50.  The method of claim 50, wherein the key K is generated using a random or pseudo-

random process.

10 51.  The method of any one of claims 49-50, wherein the first end of the communication

pipe is accessed by a first application on a first platform.

52. The method of any one of claims 49-51, wherein the second end of the communication

pipe is accessed by a second application on the first platform.

53. The method of any one of claims 49-51, wherein the second end of the communication

15 pipe is accessed by a second application on a second platform.

54. A method comprising:
receiving at least one base function;
receiving application code for an existing computer program; and
blending the at least one base function and the application code for the existing
20 computer program by replacing at least one operation in the application code with the at least

one base function.
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55. The method of claim 54, further comprising:
applying at least one blending technique to the at least one base function and the
application code, the at least one blending technique selected from the group consisting of: a

fracture, variable dependent coding, dynamic data mangling, and cross-linking.

56. A computer system comprising:
a processor; and

a computer-readable storage medium storing instructions which cause the processor to

perform a method as recited in any previous claim.
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