

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
30 November 2006 (30.11.2006)

PCT

(10) International Publication Number
WO 2006/127913 A3

(51) International Patent Classification:

A61K 31/70 (2006.01)

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2006/020272

(22) International Filing Date:

24 May 2006 (24.05.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/684,400	24 May 2005 (24.05.2005)	US
60/742,207	1 December 2005 (01.12.2005)	US

(71) **Applicant** (for all designated States except US): **ISIS PHARMACEUTICALS, INC.**; 1896 Rutherford Road, Carlsbad, CA 92008 (US).

(72) Inventors; and

(75) **Inventors/Applicants** (for US only): **PANDEY, Sanjay, K.** [CA/US]; 1190 Encinitas Blvd., Apt. 243-J, Encinitas, CA 92024 (US). **MCKAY, Robert** [US/US]; 12467 Golden Eye Lane, Poway, CA 92064 (US). **BHANOT, Sanjay** [CA/US]; 8094 Paseo Arrayan, Carlsbad, CA 92009 (US). **YU, Xing-Xian** [CH/US]; 12605-F El Camino Real, San Diego, CA 92130 (US).

(74) **Agents:** **ELMORE, Carolyn** et al.; ELMORE PATENT LAW GROUP, 209 Main Street, Chelmsford, MA 01863 (US).

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) **Date of publication of the international search report:**

12 April 2007

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/127913 A3

(54) **Title:** MODULATION OF LMW-PTPASE EXPRESSION

(57) **Abstract:** Disclosed herein are compounds, compositions and methods for modulating the expression of LMW-PTPase in a cell, tissue or animal. Also provided are methods of target validation. Also provided are uses of disclosed compounds and compositions in the manufacture of a medicament for treatment of diseases and disorders. Also provided are methods for the prevention, amelioration and/or treatment of diabetes, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, and hyperfattyacidemia. In some embodiments, the diabetes is type II diabetes by administration of antisense compounds targeted to LMW-PTPase.

MODULATION OF LMW-PTPase EXPRESSION

FIELD OF THE INVENTION

Disclosed herein are compounds, compositions and methods for modulating the expression of LMW-PTPase in a cell, tissue or animal.

5

BACKGROUND OF THE INVENTION

Considerable attention has been devoted to the characterization of tyrosine kinases and tyrosine phosphatases and their associations with disease states (Zhang, Crit. Rev. Biochem. Mol. Biol., 1998, 33, 1-52). LMW-PTPase [also known ACP1; Acid phosphatase 1, soluble; B_f isoform; B_s isoform; HAAP; HCPTP; Cytoplasmic Phosphotyrosyl Protein Phosphatase; MGC3499; RCAP; Red cell acid phosphatase 1, isozyme F; Red cell acid phosphatase 1, isozyme S; acid phosphatase of erythrocyte; adipocyte acid phosphatase; low molecular weight phosphotyrosine protein phosphatase; red cell acid phosphatase 1] was originally isolated as an acid phosphatase from red blood cells and was subsequently found to be expressed in many additional tissues, including placenta, brain, kidney, liver, and leukocytes (Bryson et al., Genomics, 1995, 30, 133-140; Dissing and Svensmark, Biochim. Biophys. Acta., 1990, 1041, 232-242; Hopkinson et al., Nature, 1963, 199, 969-971; Wo et al., J. Biol. Chem., 1992, 267, 10856-10865). The LMW-PTPase locus was mapped to chromosome 2 at 2p23-p25 (Bryson et al., Genomics, 1995, 30, 133-140; Magenis et al., Birth. Defects Orig. Artic. Ser., 1976, 12, 326-327; Wakita et al., Hum. Genet., 1985, 71, 259-260) and found to contain seven exons spanning 18 kilobases (Emanuel et al., Am. J. Med. Genet., 1979, 4, 167-172; Junien et al., Hum. Genet., 1979, 48, 17-21).

10 LMW-PTPase interacts directly with insulin stimulated insulin receptors, and negatively modulates metabolic and mitogenic insulin signaling (Chiarugi et al., Biochem. Biophys. Res. Commun., 1997, 238, 676-682). A recombinant form of one LMW-PTPase isoform, HAAP β , dephosphorylates the adipocyte lipid binding protein (ALBP), which may be a substrate for insulin receptor kinase (Shekels et al., Protein Sci., 1992, 1, 710-721). Together, these findings suggest a role for LMW-PTPase in regulating insulin signaling. LMW-PTPase also modulates flavin mononucleotide (FMN) levels, and

15 dephosphorylates Band 3, the erythrocyte anion transporter. These functions regulate red blood cell metabolism and integrity and account for the association between LMW-PTPase and diseases such as hemolytic favism, a disease characterized by an acute idiosyncratic hemolytic response to molecules derived from fava beans (Bottni et al., Arch. Immunol. Ther. Exp. (Warsz), 2002, 50, 95-104).

20 The most common genetic polymorphisms of LMW-PTPase (also known as ACP1) result in the occurrence of three alleles (ACP1**A*, ACP1**B* and ACP1**C*) and account for six different genotypes, each of which exhibits strong variations in total enzymatic activity (Golden and Sensabaugh, Hum. Genet., 1986, 72, 340-343; Hopkinson et al., Nature, 1963, 199, 969-971). Numerous rare alleles have been reported, including ACP1**D*, *E*, *F*, *G*, *H*, *I*, *K*, *M*, *R*, TIC1, GUA, and a silent allele, ACP1**Q0*

25 (Miller et al., Hum. Hered., 1987, 37, 371-375). Alternative splicing accounts for two isoforms which have been labeled fast (F) and slow (S), based on their electrophoretic mobility (Dissing, Biochem. Genet., 1987, 25, 901-918). The F and S isoforms exhibit different enzymatic properties, which, coupled

with differences in the ratios of these isozymes, results in variations in activity modulation (Bottini et al., Hum. Genet., 1995, 96, 629-637).

Protein tyrosine phosphatases are signaling molecules that regulate a variety of cellular processes, including cell growth and differentiation, cell cycle progression and growth factor signaling. For example, a number of protein tyrosine phosphatases have been implicated as negative regulators of insulin signaling (Zhang, Crit. Rev. Biochem. Mol. Biol., 1998, 33, 1-52). LMW-PTPase is a phosphotyrosine phosphatase that is involved in multiple signal transduction pathways. For example, LMW-PTPase interacts directly with insulin stimulated insulin receptors, and negatively modulates metabolic and mitogenic insulin signaling (Chiarugi et al., Biochem. Biophys. Res. Commun., 1997, 238, 676-682). A recombinant form of one LMW-PTPase isoform, HAAP β , dephosphorylates the adipocyte lipid binding protein (ALBP), which may be a substrate for insulin receptor kinase (Shekels et al., Protein Sci., 1992, 1, 710-721). Together, these findings suggest a role for LMW-PTPase in regulating insulin signaling. LMW-PTPase also modulates flavin mononucleotide (FMN) levels, and dephosphorylates Band 3, the erythrocyte anion transporter. These functions regulate red blood cell metabolism and integrity and account for the association between LMW-PTPase and diseases such as hemolytic favism, a disease characterized by an acute idiosyncratic hemolytic response to molecules derived from fava beans (Bottini et al., Arch. Immunol. Ther. Exp. (Warsz), 2002, 50, 95-104).

The most common genetic polymorphisms of LMW-PTPase (also known as ACP1) result in the occurrence of three alleles (ACP1*A, ACP1*B and ACP1*C) and account for six different genotypes, each of which exhibits strong variations in total enzymatic activity (Golden and Sensabaugh, Hum. Genet., 1986, 72, 340-343; Hopkinson et al., Nature, 1963, 199, 969-971). Numerous rare alleles have been reported, including ACP1*D, E, F, G, H, I, K, M, R, TIC1, GUA, and a silent allele, ACP1*Q0 (Miller et al., Hum. Hered., 1987, 37, 371-375). Alternative splicing accounts for two isoforms which have been labeled fast (F) and slow (S), based on their electrophoretic mobility (Dissing, Biochem. Genet., 1987, 25, 901-918). The F and S isoforms exhibit different enzymatic properties, which, coupled with differences in the ratios of these isozymes, results in variations in activity modulation (Bottini et al., Hum. Genet., 1995, 96, 629-637). LMW-PTPase genotypes, and consequently isoform levels and total enzymatic activity, show correlation to a number of disease states. (See, e.g., Bottini et al., Arch. Immunol. Ther. Exp. (Warsz), 2002, 50, 95-104). These findings, together with the evidence that LMW-PTPase participates in insulin signaling, support a role for LMW-PTPase in metabolic disorders such as diabetes.

Given the genetic evidence for the involvement of LMW-PTPase in human disease, pharmacological modulation of LMW-PTPase activity and/or expression is an appropriate point of therapeutic intervention in these and other pathological conditions. Currently, there are no known therapeutic agents which effectively inhibit the synthesis of LMW-PTPase. Consequently, there remains a long felt need for agents capable of effectively inhibiting LMW-PTPase function.

Antisense technology is an effective means for reducing the expression of LMW-PTPase and is uniquely useful in a number of therapeutic, diagnostic, and research applications. Generally, the

principle behind antisense technology is that an antisense compound hybridizes to a target nucleic acid and effects the modulation of gene expression activity, or function, such as transcription or translation. The modulation of gene expression can be achieved by, for example, target RNA degradation or occupancy-based inhibition. An example of modulation of target RNA function by degradation is RNase H-based degradation of the target RNA upon hybridization with a DNA-like antisense compound. Another example of modulation of gene expression by target degradation is RNA interference (RNAi) using small interfering RNAs (siRNAs). RNAi is a form of antisense-mediated gene silencing involving the introduction of double stranded (ds)RNA-like oligonucleotides leading to the sequence-specific reduction of targeted endogenous mRNA levels. This sequence-specificity makes antisense compounds extremely attractive as tools for target validation and gene functionalization, as well as therapeutics to selectively modulate the expression of genes involved in diseases.

SUMMARY OF THE INVENTION

Disclosed herein are antisense compounds targeted to and hybridizable with a nucleic acid molecule encoding LMW-PTPase and which modulate the expression of LMW-PTPase. In a preferred embodiment the nucleic acid molecule encoding LMW-PTPase has a nucleotide sequence that is substantially similar to one or more of GenBank Accession Nos.: NM_004300.2, NM_007099.2, NM_177554.1, and NT_022327.13 (SEQ ID NOS: 3-6, respectively), presented in table 1, below and incorporated herein by reference. In a further aspect, the antisense compounds are targeted to and hybridizable with a region of a nucleic acid molecule encoding LMW-PTPase. Still further, the antisense compounds are targeted to and hybridizable with a segment of a nucleic acid molecule encoding LMW-PTPase. Still further the antisense compounds are targeted to and hybridizable with a site of a nucleic acid molecule encoding LMW-PTPase.

Further disclosed herein are active target segments comprising segments of a nucleic acid molecule encoding LMW-PTPase, the active target segments being accessible to antisense hybridization, and so, suitable for antisense modulation. In one embodiment, the active target segments have been discovered herein using empirical data that is presented below, wherein at least two chimeric oligonucleotides are shown to hybridize within the active target segment and reduce expression of the target nucleic acid (hereinafter, "active antisense compound"). The at least two active antisense compounds are preferably separated by about 60 nucleobases on the nucleic acid molecule encoding LMW-PTPase. In another embodiment, antisense compounds are designed to target the active target segments and modulate expression of the nucleic acid molecule encoding LMW-PTPase.

In one aspect there are herein provided antisense compounds comprising sequences 12 to 35 nucleotides in length comprising at least two chemical modifications selected from a modified internucleoside linkage, a modified nucleobase or a modified sugar. Provided herein are chimeric oligonucleotides comprising a deoxynucleotide mid-region flanked on each of the 5' and 3' ends by wing regions, each wing region comprising at least one high affinity nucleotide.

In one embodiment there is herein provided chimeric oligonucleotides comprising ten deoxynucleotide mid-regions flanked on each of the 5' and 3' ends with wing regions comprising five 2'-

O-(2-methoxyethyl) nucleotides and wherein each internucleoside linkage of the chimeric oligonucleotid is a phosphorothioate. In another embodiment there is herein provided chimeric oligonucleotides comprising fourteen deoxynucleotide mid-regions flanked on each of the 5' and 3' ends with wing regions comprising three locked nucleic acid nucleotides and wherein each internucleoside linkage of the chimeric oligonucleotide is a phosphorothioate. In a further embodiment there are hererin provided chimeric oligonucleotides comprising fourteen deoxynucleotide mid-regions flanked on each of the 5' and 3' ends by wing regions comprising two 2'-O-(2-methoxyethyl) nucleotides and wherein each internucleoside linkage of the chimeric oligonucleotide is a phosphorothioate. In a further embodiment, the antisense compounds may comprise at least one 5-methylcytosine.

Further provided are methods of modulating the expression of LMW-PTPase in cells, tissues or animals comprising contacting said cells, tissues or animals with one or more of the compounds or compositions of the present invention. For example, in one embodiment, the compounds can be used to inhibit the expression of LMW-PTPase in cells, tissues or animals. In this aspect of the invention cells are analyzed for indicators of a decrease in expression of LMW-PTPase mRNA and/or protein by direct measurement of mRNA and/or protein levels, and/or indicators of a disease or condition, such as glucose levels, lipid levels, weight, or a combination thereof.

One embodiment provides methods of lowering glucose and triglycerides. Glucose may be blood, plasma or serum glucose. Triglycerides may be blood, plasma, or serum triglycerides. Another embodiment provides methods of improving insulin sensitivity. Another embodiment provides methods of lowering cholesterol. In some embodiments, cholesterol is LDL or VLDL cholesterol. An embodiment provides methods of improving glucose tolerance.

Other embodiments are directed to methods of ameliorating or lessening the severity of a condition in an animal comprising contacting said animal with an effective amount of an antisense compound so that expression of LMW-PTPase is inhibited and measurement of one or more physical indicator of said condition indicates a lessening of the severity of said condition. In some embodiments, the conditions include, but are not limited to, diabetes, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, and hyperfattyacidemia. In some embodiments, the diabetes is type II diabetes. In another embodiment, the condition is metabolic syndrome. In another embodiment, the condition is prediabetes. In another embodiment the condition is steatosis. In one embodiment, the steatosis is steatohepatitis. In another embodiment, the steatosis is NASH. In another embodiment, the condition is a cardiovascular disease. In another embodiment, the cardiovascular disease is coronary heart disease. In another embodiment, the condition is a cardiovascular risk factor.

In another embodiment, there is provided a method of decreasing hepatic glucose output in an animal comprising administering an oligomeric compound of the invention. In one embodiment, the present invention provides a method of decreasing hepatic glucose-6-phosphatase expression comprising administering an oligomeric compound of the invention. Another aspect of the present invention is a method of reducing LMW-PTPase expression in liver, fat, or in both tissues.

Also provided are methods of ameliorating or lessening the severity of a condition in an animal comprising contacting said animal with an oligomeric compound of the invention in combination with a glucose-lowering, lipid-lowering, or anti-obesity agent to achieve an additive therapeutic effect.

Also provided are methods for the prevention, amelioration, and/or treatment of diabetes, type II diabetes, prediabetes, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, metabolic syndrome, hyperfattyacidemia, steatosis, steatohepatitis, NASH, cardiovascular disease, coronary heart disease, a cardiovascular risk factor or combinations thereof comprising administering at least one compound of the instant invention to an individual in need of such intervention.

The invention also provides a method of use of the compositions of the instant invention for the preparation of a medicament for the prevention, amelioration, and/or treatment disease, especially a disease associated with and including at least one indicator of diabetes, type II diabetes, prediabetes, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, metabolic syndrome, hyperfattyacidemia, steatosis, steatohepatitis, NASH, cardiovascular disease, coronary heart disease, a cardiovascular risk factor or combinations thereof.

DETAILED DESCRIPTION OF THE INVENTION

LMW-PTPase is shown to effect *in vivo* glucose levels, triglyceride levels, cholesterol levels, insulin sensitivity and glucose tolerance, therefore, LMW-PTPase is indicated in diseases and conditions related thereto and including, but not limited to, diabetes, type II diabetes, obesity, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, hyperlipidemia, hypertriglyceridemia, hyperfattyacidemia, liver steatosis, steatohepatitis, non-alcoholic steatohepatitis, metabolic syndrome, cardiovascular disease and coronary heart disease. Provided herein are antisense compounds for the prevention, amelioration, and /or treatment of diseases and conditions relating to LMW-PTPase function. As used herein, the term "prevention" means to delay or forestall onset or development of a condition or disease for a period of time from hours to days, preferably weeks to months. As used herein, the term "amelioration" means a lessening of at least one indicator of the severity of a condition or disease. The severity of indicators may be determined by subjective or objective measures which are known to those skilled in the art. As used herein, "treatment" means to administer a composition of the invention to effect an alteration or improvement of the disease or condition. Prevention, amelioration, and/or treatment may require administration of multiple doses at regular intervals, or prior to exposure to an agent to alter the course of the condition or disease.

Disclosed herein are antisense compounds, including antisense oligonucleotides and other antisense compounds for use in modulating the expression of nucleic acid molecules encoding LMW-PTPase. This is accomplished by providing antisense compounds that hybridize with one or more target nucleic acid molecules encoding LMW-PTPase. As used herein, the terms "target nucleic acid" and "nucleic acid molecule encoding LMW-PTPase" have been used for convenience to encompass RNA (including pre-mRNA and mRNA or portions thereof) transcribed from DNA encoding LMW-PTPase,

and also cDNA derived from such RNA. In a preferred embodiment, the target nucleic acid is an mRNA encoding LMW-PTPase.

Target Nucleic Acids

“Targeting” an antisense compound to a particular target nucleic acid molecule can be a multistep process. The process usually begins with the identification of a target nucleic acid whose expression is to be modulated. For example, the target nucleic acid can be a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. As disclosed herein, the target nucleic acid encodes LMW-PTPase and has a polynucleotide sequence that is substantially similar to one or more of SEQ ID NOS: 1-4.

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as “variants.” More specifically, “pre-mRNA variants” are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence. Variants can result in mRNA variants including, but not limited to, those with alternate splice junctions, or alternate initiation and termination codons. Variants in genomic and mRNA sequences can result in disease. Antisense compounds targeted to such variants are within the scope of the instant invention.

In accordance with the present invention are compositions and methods for modulating the expression of LMW-PTPase. Table 1 lists the GenBank accession numbers of sequences corresponding to nucleic acid molecules encoding LMW-PTPase (nt = nucleotide), the date the version of the sequence was entered in GenBank, and the corresponding SEQ ID NO in the instant application, when assigned, each of which is incorporated herein by reference.

Table 1
Gene Targets

Species	Genbank #	Genbank Date	SEQ ID NO
Human	M83653.1	Apr 27 1993	1
Human	M83654.1	Apr 27 1993	2
Human	NM_004300.2	Apr 24 2003	3
Human	NM_007099.2	Apr 24 2003	4
Human	NM_177554.1	Apr 24 2003*	5
Human	nucleotides 254496 to 268683 of NT_022327.13	Oct 7 2003	6
Human	U25847.1	Jan 5 1996	7
Human	U25848.1	Jan 5 1996	8
Human	U25849.1	Jan 5 1996	9
Human	Y16846.1	Jun 16 1998	10
Mouse	BF167197.1	Oct 27 2000	11
Mouse	NM_021330.1	Oct 23 2000	12
Mouse	the complement of nucleotides 6757610 to 6776640 of NT_039548.2	Oct 30 2003	13
Mouse	Y17343.1	Jul 8 1998	14
Mouse	Y17344.1	Jul 8 1998	355
Mouse	Y17345.1	Jul 8 1998	15

Species	Genbank #	Genbank Date	SEQ ID NO
Rat	NM_021262.2	Jan 1 2004	16
Rat	the complement of nucleotides 905000 to 921000 of NW_047759.1	Sep 22 2003	17
Rat	XM_343044.1	Sep 22 2003	18

*NM_177554.1 was permanently suppressed because it is a nonsense-mediated mRNA decay (NMD) candidate.

Modulation of Target Expression

Modulation of expression of a target nucleic acid can be achieved through alteration of any number of nucleic acid (DNA or RNA) functions. "Modulation" means a perturbation of function, for example, either an increase (stimulation or induction) or a decrease (inhibition or reduction) in expression. As another example, modulation of expression can include perturbing splice site selection of pre-mRNA processing. "Expression" includes all the functions by which a gene's coded information is converted into structures present and operating in a cell. These structures include the products of transcription and translation. "Modulation of expression" means the perturbation of such functions. The functions of RNA to be modulated can include translocation functions, which include, but are not limited to, translocation of the RNA to a site of protein translation, translocation of the RNA to sites within the cell which are distant from the site of RNA synthesis, and translation of protein from the RNA. RNA processing functions that can be modulated include, but are not limited to, splicing of the RNA to yield one or more RNA species, capping of the RNA, 3' maturation of the RNA and catalytic activity or complex formation involving the RNA which may be engaged in or facilitated by the RNA. Modulation of expression can result in the increased level of one or more nucleic acid species or the decreased level of one or more nucleic acid species, either temporally or by net steady state level. One result of such interference with target nucleic acid function is modulation of the expression of LMW-PTPase. Thus, in one embodiment modulation of expression can mean increase or decrease in target RNA or protein levels. In another embodiment modulation of expression can mean an increase or decrease of one or more RNA splice products, or a change in the ratio of two or more splice products.

The effect of antisense compounds of the present invention on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. The effect of antisense compounds of the present invention on target nucleic acid expression can be routinely determined using, for example, PCR or Northern blot analysis. Cell lines are derived from both normal tissues and cell types and from cells associated with various disorders (e.g. hyperproliferative disorders). Cell lines derived from multiple tissues and species can be obtained from American Type Culture Collection (ATCC, Manassas, VA) and other public sources, and are well known to those skilled in the art. Primary cells, or those cells which are isolated from an animal and not subjected to continuous culture, can be prepared according to methods known in the art, or obtained from various commercial suppliers. Additionally, primary cells include those obtained from donor human subjects in a clinical setting (i.e. blood donors, surgical patients). Primary cells prepared by methods

known in the art.

Assaying Modulation of Expression

Modulation of LMW-PTPase expression can be assayed in a variety of ways known in the art. LMW-PTPase mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA by methods known in the art. Methods of RNA isolation are taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993.

Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. The method of analysis of modulation of RNA levels is not a limitation of the instant invention.

Levels of a protein encoded by LMW-PTPase can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to a protein encoded by LMW-PTPase can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., *Current Protocols in Molecular Biology*, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997.

Active Target Segments

The locations on the target nucleic acid defined by having at least two active antisense compounds targeted thereto are referred to as "active target segments." An active target segment is defined by one of the at least two active antisense compounds hybridizing at the 5' end of the active target segment and the other hybridizing at the 3' end of the active target segment. Additional active antisense compounds may hybridize within this defined active target segment. The compounds are preferably separated by no more than about 60 nucleotides on the target sequence, more preferably no more than about 30 nucleotides on the target sequence, even more preferably the compounds are contiguous, most preferably the compounds are overlapping. There may be substantial variation in activity (e.g., as defined by percent inhibition) of the antisense compounds within an active target segment. Active antisense

compounds are those that modulate the expression of their target RNA. In one of the assays provided herein, active antisense compounds inhibit expression of their target RNA at least 10%, preferably 20%. In a preferred embodiment, at least about 50%, preferably about 70% of the oligonucleotides targeted to the active target segment modulate expression of their target RNA at least 40%. In a more preferred embodiment, the level of inhibition required to define an active antisense compound is defined based on the results from the screen used to define the active target segments. One ordinarily skilled in the art will readily understand that values received from any single assay will vary in comparison to other similar assays due to assay-to-assay conditions.

Hybridization

As used herein, "hybridization" means the pairing of complementary strands of antisense compounds to their target sequence. While not limited to a particular mechanism, the most common mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases (nucleobases). For example, the natural base adenine is complementary to the natural nucleobases thymidine and uracil which pair through the formation of hydrogen bonds. The natural base guanine is complementary to the natural base 5-methyl cytosine and the artificial base known as a G-clamp. Hybridization can occur under varying circumstances.

An antisense compound is specifically hybridizable when there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of *in vivo* assays or therapeutic treatment, and under conditions in which assays are performed in the case of *in vitro* assays.

As used herein, "stringent hybridization conditions" or "stringent conditions" refers to conditions under which an antisense compound will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances, and "stringent conditions" under which antisense compounds hybridize to a target sequence are determined by the nature and composition of the antisense compounds and the assays in which they are being investigated.

Complementarity

"Complementarity," as used herein, refers to the capacity for precise pairing between two nucleobases on either two oligomeric compound strands or an antisense compound with its target nucleic acid. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The antisense compound and the further DNA or RNA are complementary to each other when a sufficient number of complementary positions in each molecule are occupied by nucleobases which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of

nucleobases such that stable and specific binding occurs between the antisense compound and a target nucleic acid.

Those in the art understand that for an antisense compound to be active it need not be 100% complementary to the target nucleic acid site wherein it hybridizes. Often, once an antisense compound has been identified as an active antisense compound, the compounds are routinely modified to include mismatched nucleobases compared to the sequence of the target nucleic acid site. The art teaches methods for introducing mismatches into an antisense compound without substantially altering its activity. Antisense compounds may be able to tolerate up to about 20% mismatches without significant alteration of activity, particularly so when a high affinity modification accompanies the mismatches.

Identity

Antisense compounds, or a portion thereof, may have a defined percent identity to a SEQ ID NO, or a compound having a specific compound number. As used herein, a sequence is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in the disclosed sequences of the instant invention would be considered identical as they both pair with adenine. Similarly, a G-clamp modified heterocyclic base would be considered identical to a cytosine or a 5-Me cytosine in the sequences of the instant application as it pairs with a guanine. This identity may be over the entire length of the oligomeric compound, or in a portion of the antisense compound (e.g., nucleobases 1-20 of a 27-mer may be compared to a 20-mer to determine percent identity of the oligomeric compound to the SEQ ID NO.) It is understood by those skilled in the art that an antisense compound need not have an identical sequence to those described herein to function similarly to the antisense compound described herein. Shortened versions of antisense compound taught herein, or non-identical versions of the antisense compound taught herein fall within the scope of the invention. Non-identical versions are those wherein each base does not have the same pairing activity as the antisense compounds disclosed herein. Bases do not have the same pairing activity by being shorter or having at least one abasic site. Alternatively, a non-identical version can include at least one base replaced with a different base with different pairing activity (e.g., G can be replaced by C, A, or T). Percent identity is calculated according to the number of bases that have identical base pairing corresponding to the SEQ ID NO or antisense compound to which it is being compared. The non-identical bases may be adjacent to each other, dispersed throughout the oligonucleotide, or both.

For example, a 16-mer having the same sequence as nucleobases 2-17 of a 20-mer is 80% identical to the 20-mer. Alternatively, a 20-mer containing four nucleobases not identical to the 20-mer is also 80% identical to the 20-mer. A 14-mer having the same sequence as nucleobases 1-14 of an 18-mer is 78% identical to the 18-mer. Such calculations are well within the ability of those skilled in the art.

The percent identity is based on the percent of nucleobases in the original sequence present in a portion of the modified sequence. Therefore, a 30 nucleobase antisense compound comprising the full sequence of the complement of a 20 nucleobase active target segment would have a portion of 100% identity with the complement of the 20 nucleobase active target segment, while further comprising an additional 10 nucleobase portion. In the context of the invention, the complement of an active target

segment may constitute a single portion. In a preferred embodiment, the oligonucleotides of the instant invention are at least about 80%, more preferably at least about 85%, even more preferably at least about 90%, most prefereably at least 95% identical to at least a portion of the complement of the active target segments presented herein.

It is well known by those skilled in the art that it is possible to increase or decrease the length of an antisense compound and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992, incorporated herein by reference), a series of ASOs 13-25 nucleobases in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. ASOs 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the ASOs were able to direct specific cleavage of the target mRNA, albeit to a lesser extent than the ASOs that contained no mismatches. Similarly, target specific cleavage was achieved using a 13 nucleobase ASOs, including those with 1 or 3 mismatches. Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988, incorporated herein by reference) tested a series of tandem 14 nucleobase ASOs, and a 28 and 42 nucleobase ASOs comprised of the sequence of two or three of the tandem ASOs, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase ASOs alone were able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase ASOs.

Therapeutics

Antisense compounds of the invention can be used to modulate the expression of LMW-PTPase in an animal, such as a human. In one non-limiting embodiment, the methods comprise the step of administering to said animal in need of therapy for a disease or condition associated with LMW-PTPase an effective amount of an antisense compound that inhibits expression of LMW-PTPase. A disease or condition associated with LMW-PTPase includes, but is not limited to, diabetes, type II diabetes, obesity, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, hyperlipidemia, hypertriglyceridemia, hyperfattyacidemia, liver steatosis, steatohepatitis, non-alcoholic steatohepatitis, metabolic syndrome, cardiovascular disease and coronary heart disease. The diseases or conditions are associated with clinical indicators that include, but are not limited to blood glucose levels, blood lipid levels, hepatic lipid levels, insulin levels, cholesterol levels, transaminase levels, electrocardiogram, glucose uptake, gluconeogenesis, insulin sensitivity, body weight and combinations thereof. In one embodiment, the antisense compounds of the present invention effectively inhibit the levels or function of LMW-PTPase RNA. Because reduction in LMW-PTPase mRNA levels can lead to alteration in LMW-PTPase protein products of expression as well, such resultant alterations can also be measured. Antisense compounds of the present invention that effectively inhibit the level or function of LMW-PTPase RNA or protein products of expression are considered an active antisense compounds. In one embodiment, the antisense compounds of the invention inhibit the expression of LMW-PTPase causing a reduction of RNA by at least 30%, by at least 40%, by at least 50%, by at least 60%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 98%, by at least 99%, or by 100%.

For example, the reduction of the expression of LMW-PTPase can be measured in a bodily fluid, tissue or organ of the animal. Methods of obtaining samples for analysis, such as body fluids (e.g., blood), tissues (e.g., biopsy), or organs, and methods of preparation of the samples to allow for analysis are well known to those skilled in the art. Methods for analysis of RNA and protein levels are discussed above and are well known to those skilled in the art. The effects of treatment can be assessed by measuring biomarkers associated with the LMW-PTPase expression in the aforementioned fluids, tissues or organs, collected from an animal contacted with one or more compounds of the invention, by routine clinical methods known in the art. These biomarkers include but are not limited to: liver transaminases, bilirubin, albumin, blood urea nitrogen, creatine and other markers of kidney and liver function; glucose levels, triglyceride levels, insulin levels, fatty acid levels, cholesterol levels, electrocardiogram, glucose uptake, gluconeogenesis, insulin sensitivity and body weight, and other markers of diabetes, type II diabetes, obesity, insulin resistance, insulin deficiency, hypercholesterolemia, hyperglycemia, hyperlipidemia, hypertriglyceridemia, hyperfattyacidemia, liver steatosis, steatohepatitis, non-alcoholic steatohepatitis, metabolic syndrome, cardiovascular disease and coronary heart disease. Additionally, the effects of treatment can be assessed using non-invasive indicators of improved disease state or condition, such as electrocardiogram, body weight, and the like.

The antisense compounds of the present invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Acceptable carriers and dilutents are well known to those skilled in the art. Selection of a dilutent or carrier is based on a number of factors, including, but not limited to, the solubility of the compound and the route of administration. Such considerations are well understood by those skilled in the art. In one aspect, the compounds of the present invention inhibit the expression of LMW-PTPase. The compounds of the invention can also be used in the manufacture of a medicament for the treatment of diseases and disorders related to LMW-PTPase expression by restoring glucose levels, triglyceride levels, insulin levels, fatty acid levels, cholesterol levels, glucose uptake, gluconeogenesis and insulin sensitivity to non-disease state profiles.

Methods whereby bodily fluids, organs or tissues are contacted with an effective amount of one or more of the antisense compounds or compositions of the invention are also contemplated. Bodily fluids, organs or tissues can be contacted with one or more of the compounds of the invention resulting in modulation of LMW-PTPase expression in the cells of bodily fluids, organs or tissues.

Kits, Research Reagents, and Diagnostics

The antisense compounds of the present invention can be utilized for diagnostics, and as research reagents and kits. Furthermore, antisense compounds, which are able to inhibit gene expression with specificity, are often used by those of ordinary skill to elucidate the function of particular genes or to distinguish between functions of various members of a biological pathway.

For use in kits and diagnostics, the antisense compounds of the present invention, either alone or in combination with other compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes

expressed within cells and tissues. Methods of gene expression analysis are well known to those skilled in the art.

Antisense Compounds

The term "antisense compound" refers to a polymeric structure capable of hybridizing to a region of a nucleic acid molecule. As is used herein, the term "active antisense compound" is an antisense compound that has been shown to hybridize with the target nucleic acid and modulate its expression. Generally, antisense compounds comprise a plurality of monomeric subunits linked together by internucleoside linking groups and/or internucleoside linkage mimetics. Each of the monomeric subunits comprises a sugar, abasic sugar, modified sugar, or a sugar mimetic, and except for the abasic sugar includes a nucleobase, modified nucleobase or a nucleobase mimetic. Preferred monomeric subunits comprise nucleosides and modified nucleosides. An antisense compound is at least partially complementary to the region of a target nucleic acid molecule to which it hybridizes and which modulates (increases or decreases) its expression. This term includes oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, antisense oligomeric compounds, and chimeric combinations of these. An "antisense oligonucleotide" is an antisense compound that is a nucleic acid-based oligomer. An antisense oligonucleotide can, in some cases, include one or more chemical modifications to the sugar, base, and/or internucleoside linkages. Nonlimiting examples of antisense compounds include antisense compounds, antisense oligonucleotides, external guide sequence (EGS) oligonucleotides, alternate splicers, and siRNAs. As such, these compounds can be introduced in the form of single-stranded, double-stranded, circular, branched or hairpins and can contain structural elements such as internal or terminal bulges or loops. In some embodiments it is desirous to take advantage of alternate antisense mechanisms (such as RNAi). Antisense compounds that use these alternate mechanisms may optionally comprise a second compound which is complementary to the antisense compound. In other words, antisense double-stranded compounds can be two strands hybridized to form double-stranded compounds or a single strand with sufficient self complementarity to allow for hybridization and formation of a fully or partially double-stranded compound. The compounds of the instant invention are not auto-catalytic. As used herein, "auto-catalytic" means a compound has the ability to promote cleavage of the target RNA in the absence of accessory factors, e.g. proteins.

In one embodiment of the invention, double-stranded antisense compounds encompass short interfering RNAs (siRNAs). As used herein, the term "siRNA" is defined as a double-stranded compound having a first and second strand, each strand having a central portion and two independent terminal portions. The central portion of the first strand is complementary to the central portion of the second strand, allowing hybridization of the strands. The terminal portions are independently, optionally complementary to the corresponding terminal portion of the complementary strand. The ends of the strands may be modified by the addition of one or more natural or modified nucleobases to form an overhang.

Each strand of the siRNA duplex may be from about 12 to about 35 nucleobases. In a preferred embodiment, each strand of the siRNA duplex is about 17 to about 25 nucleobases. The two

strands may be fully complementary (i.e., form a blunt ended compound), or include a 5' or 3' overhang on one or both strands. Double-stranded compounds can be made to include chemical modifications as discussed herein.

In one embodiment of the invention, the antisense compound comprises a single stranded oligonucleotide. In some embodiments of the invention the antisense compound contains chemical modifications. In a preferred embodiment, the antisense compound is a single stranded, chimeric oligonucleotide wherein the modifications of sugars, bases, and internucleoside linkages are independently selected.

The antisense compounds may comprise a length from about 12 to about 35 nucleobases (i.e. from about 12 to about 35 linked nucleosides). In other words, a single-stranded compound of the invention comprises from about 12 to about 35 nucleobases, and a double-stranded antisense compound of the invention (such as a siRNA, for example) comprises two strands, each of which is independently from about 12 to about 35 nucleobases. This includes oligonucleotides 15 to 35 and 16 to 35 nucleobases in length. Contained within the antisense compounds of the invention (whether single or double stranded and on at least one strand) are antisense portions. The "antisense portion" is that part of the antisense compound that is designed to work by one of the aforementioned antisense mechanisms. One of ordinary skill in the art will appreciate that about 12 to about 35 nucleobases includes 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 nucleobases. For convenience we describe antisense compounds, but one ordinarily skilled in the art will understand that analogues and mimetics can have a length within this same range.

Antisense compounds about 12 to 35 nucleobases in length, preferably about 15 to 35 nucleobases in length, comprising a stretch of at least eight (8), preferably at least 12, more preferably at least 15 consecutive nucleobases selected from within the active target regions are considered to be suitable antisense compounds as well.

Modifications can be made to the antisense compounds of the instant invention and may include conjugate groups attached to one of the termini, selected nucleobase positions, sugar positions or to one of the internucleoside linkages. Possible modifications include, but are not limited to, 2'-fluoro (2'-F), 2'-OMethyl (2'-OMe), 2'-Methoxy ethoxy (2'-MOE) sugar modifications, inverted abasic caps, deoxynucleobases, and bicyclic nucleobase analogs such as locked nucleic acids (LNA.sup.TM) and ENA.

Chemical Modifications

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base (sometimes referred to as a "nucleobase" or simply a "base"). The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. Within

oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage. It is often preferable to include chemical modifications in oligonucleotides to alter their activity. Chemical modifications can alter oligonucleotide activity by, for example: increasing affinity of an antisense oligonucleotide for its target RNA, increasing nuclease resistance, and/or altering the pharmacokinetics of the oligonucleotide. The use of chemistries that increase the affinity of an oligonucleotide for its target can allow for the use of shorter oligonucleotide compounds.

The term "nucleobase" or "heterocyclic base moiety" as used herein, refers to the heterocyclic base portion of a nucleoside. In general, a nucleobase is any group that contains one or more atom or groups of atoms capable of hydrogen bonding to a base of another nucleic acid. In addition to "unmodified" or "natural" nucleobases such as the purine nucleobases adenine (A) and guanine (G), and the pyrimidine nucleobases thymine (T), cytosine (C) and uracil (U), many modified nucleobases or nucleobase mimetics known to those skilled in the art are amenable to the present invention. The terms modified nucleobase and nucleobase mimetic can overlap but generally a modified nucleobase refers to a nucleobase that is fairly similar in structure to the parent nucleobase, such as for example a 7-deaza purine or a 5-methyl cytosine, whereas a nucleobase mimetic would include more complicated structures, such as for example a tricyclic phenoxazine nucleobase mimetic. Methods for preparation of the above noted modified nucleobases are well known to those skilled in the art.

Antisense compounds may also contain one or more nucleosides having modified sugar moieties. The furanosyl sugar ring of a nucleoside can be modified in a number of ways including, but not limited to, addition of a substituent group, bridging of two non-geminal ring atoms to form a bicyclic nucleic acid (BNA) and substitution of an atom or group such as -S-, -N(R)- or -C(R₁)(R₂) for the ring oxygen at the 4'-position. Modified sugar moieties are well known and can be used to alter, typically increase, the affinity of the antisense compound for its target and/or increase nuclease resistance. A representative list of preferred modified sugars includes but is not limited to bicyclic modified sugars (BNA's), including LNA and ENA (4'-(CH₂)₂-O-2' bridge); and substituted sugars, especially 2'-substituted sugars having a 2'-F, 2'-OCH₂ or a 2'-O(CH₂)₂-OCH₃ substituent group. Sugars can also be replaced with sugar mimetic groups among others. Methods for the preparations of modified sugars are well known to those skilled in the art.

Internucleoside linking groups link the nucleosides or otherwise modified monomer units together thereby forming an antisense compound. The two main classes of internucleoside linking groups are defined by the presence or absence of a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Representative non-phosphorus containing internucleoside linking groups include, but are not limited to, methylenemethylimino (-CH₂-N(CH₂)₂-O-CH₂-), thiodiester (-O-C(O)-S-), thionocarbamate (-O-C(O)(NH)-S-); siloxane (-O-Si(H)₂-O-); and N,N'-dimethylhydrazine (-CH₂-N(CH₂)₂-N(CH₂)₂-). Antisense compounds having non-phosphorus internucleoside linking groups are referred to as

oligonucleosides. Modified internucleoside linkages, compared to natural phosphodiester linkages, can be used to alter, typically increase, nuclease resistance of the antisense compound. Internucleoside linkages having a chiral atom can be prepared racemic, chiral, or as a mixture. Representative chiral internucleoside linkages include, but are not limited to, alkylphosphonates and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known to those skilled in the art.

As used herein the term "mimetic" refers to groups that are substituted for a sugar, a nucleobase, and/ or internucleoside linkage. Generally, a mimetic is used in place of the sugar or sugar-internucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target. Representative examples of a sugar mimetic include, but are not limited to, cyclohexenyl or morpholino. Representative examples of a mimetic for a sugar-internucleoside linkage combination include, but are not limited to, peptide nucleic acids (PNA) and morpholino groups linked by uncharged achiral linkages. In some instances a mimetic is used in place of the nucleobase. Representative nucleobase mimetics are well known in the art and include, but are not limited to, tricyclic phenoxazine analogs and universal bases (Berger et al., Nuc Acid Res. 2000, 28:2911-14, incorporated herein by reference). Methods of synthesis of sugar, nucleoside and nucleobase mimetics are well known to those skilled in the art.

As used herein the term "nucleoside" includes, nucleosides, abasic nucleosides, modified nucleosides, and nucleosides having mimetic bases and/or sugar groups.

In the context of this disclosure, the term "oligonucleotide" refers to an oligomeric compound which is an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). This term includes oligonucleotides composed of naturally- and non-naturally-occurring nucleobases, sugars and covalent internucleoside linkages, possibly further including non-nucleic acid conjugates.

Provided are compounds having reactive phosphorus groups useful for forming internucleoside linkages including for example phosphodiester and phosphorothioate internucleoside linkages. Methods of preparation and/or purification of precursors or antisense compounds of the instant invention are not a limitation of the compositions or methods of the invention. Methods for synthesis and purification of DNA, RNA, and the antisense compounds are well known to those skilled in the art.

As used herein the term "chimeric antisense compound" refers to an antisense compound, having at least one sugar, nucleobase and/or internucleoside linkage that is differentially modified as compared to the other sugars, nucleobases and internucleoside linkages within the same oligomeric compound. The remainder of the sugars, nucleobases and internucleoside linkages can be independently modified or unmodified. In general a chimeric oligomeric compound will have modified nucleosides that can be in isolated positions or grouped together in regions that will define a particular motif. Any combination of modifications and or mimetic groups can comprise a chimeric oligomeric compound.

Chimeric antisense compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligomeric compound may serve as a

substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease that cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of inhibition of gene expression. Consequently, comparable results can often be obtained with shorter antisense compounds when chimeras are used, compared to for example phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Certain chimeric as well as non-chimeric antisense compounds can be further described as having a particular motif. As used herein, the term "motif" refers to the orientation of modified sugar moieties and/or sugar mimetic groups in an antisense compound relative to like or differentially modified or unmodified nucleosides. As used herein, the terms "sugars", "sugar moieties" and "sugar mimetic groups" are used interchangeably. Such motifs include, but are not limited to, gapped motifs, alternating motifs, fully modified motifs, hemimer motifs, blockmer motifs, and positionally modified motifs. The sequence and the structure of the nucleobases and type of internucleoside linkage is not a factor in determining the motif of an antisense compound.

As used herein, the term "gapped motif" refers to an antisense compound comprising a contiguous sequence of nucleosides that is divided into 3 regions, an internal region (gap) flanked by two external regions (wings). The regions are differentiated from each other at least by having differentially modified sugar groups that comprise the nucleosides. In some embodiments, each modified region is uniformly modified (e.g. the modified sugar groups in a given region are identical); however, other motifs can be applied to regions. For example, the wings in a gapmer could have an alternating motif. The nucleosides located in the gap of a gapped antisense compound have sugar moieties that are different than the modified sugar moieties in each of the wings.

As used herein, the term "alternating motif" refers to an antisense compound comprising a contiguous sequence of nucleosides comprising two differentially sugar modified nucleosides that alternate for essentially the entire sequence of the antisense compound, or for essentially the entire sequence of a region of an antisense compound.

As used herein, the term "fully modified motif" refers to an antisense compound comprising a contiguous sequence of nucleosides wherein essentially each nucleoside is a sugar modified nucleoside having uniform modification.

As used herein, the term "hemimer motif" refers to a sequence of nucleosides that have uniform sugar moieties (identical sugars, modified or unmodified) and wherein one of the 5'-end or the 3'-end has a sequence of from 2 to 12 nucleosides that are sugar modified nucleosides that are different from the other nucleosides in the hemimer modified antisense compound.

As used herein, the term "blockmer motif" refers to a sequence of nucleosides that have uniform sugars (identical sugars, modified or unmodified) that is internally interrupted by a block of sugar modified nucleosides that are uniformly modified and wherein the modification is different from the other

nucleosides. Methods of preparation of chimeric oligonucleotide compounds are well known to those skilled in the art.

As used herein, the term "positionally modified motif" comprises all other motifs. Methods of preparation of positionally modified oligonucleotide compounds are well known to those skilled in the art.

The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations that may be defined, in terms of absolute stereochemistry, as (R) or (S), .alpha. or .beta., or as (D) or (L) such as for amino acids et al. This is meant to include all such possible isomers, as well as their racemic and optically pure forms.

In one aspect, antisense compounds are modified by covalent attachment of one or more conjugate groups. Conjugate groups may be attached by reversible or irreversible attachments. Conjugate groups may be attached directly to antisense compounds or by use of a linker. Linkers may be mono- or bifunctional linkers. Such attachment methods and linkers are well known to those skilled in the art. In general, conjugate groups are attached to antisense compounds to modify one or more properties. Such considerations are well known to those skilled in the art.

Oligomer Synthesis

Oligomerization of modified and unmodified nucleosides can be routinely performed according to literature procedures for DNA (Protocols for Oligonucleotides and Analogs, Ed. Agrawal (1993), Humana Press) and/or RNA (Scaringe, Methods (2001), 23, 206-217. Gait et al., Applications of Chemically synthesized RNA in RNA: Protein Interactions, Ed. Smith (1998), 1-36. Gallo et al., Tetrahedron (2001), 57, 5707-5713).

Antisense compounds can be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. The invention is not limited by the method of antisense compound synthesis.

Oligomer Purification and Analysis

Methods of oligonucleotide purification and analysis are known to those skilled in the art. Analysis methods include capillary electrophoresis (CE) and electrospray-mass spectroscopy. Such synthesis and analysis methods can be performed in multi-well plates. The compositions and methods disclosed herein not limited by the method of oligomer purification.

Salts, prodrugs and bioequivalents

The antisense compounds may comprise any pharmaceutically acceptable salts, esters, or salts of such esters, or any other functional chemical equivalent which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically

acceptable salts of the antisense compounds, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive or less active form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes, chemicals, and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE ((S-acetyl-2-thioethyl) phosphate) derivatives according to the methods disclosed in WO 93/24510 or WO 94/26764. Prodrugs can also include antisense compounds wherein one or both ends comprise nucleobases that are cleaved (e.g., phosphodiester backbone linkages) to produce the smaller active compound.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the antisense compounds: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. Sodium salts of antisense oligonucleotides are useful and are well accepted for therapeutic administration to humans. In another embodiment, sodium salts of dsRNA compounds are also provided.

Formulations

The antisense compounds may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds.

The antisense compounds may also include pharmaceutical compositions and formulations. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated.

The pharmaceutical formulations, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, finely divided solid carriers, or both, and then, if necessary, shaping the product (e.g., into a specific particle size for delivery).

A "pharmaceutical carrier" or "excipient" can be a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal and are known in the art. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition.

Combinations

Compositions provided herein can contain two or more antisense compounds. In another related embodiment, compositions can contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Alternatively, compositions can contain two or more antisense compounds

targeted to different regions of the same nucleic acid target. Two or more combined compounds may be used together or sequentially. Compositions of the instant invention can also be combined with other non-antisense compound therapeutic agents.

Nonlimiting disclosure and incorporation by reference

While certain compounds, compositions and methods have been described with specificity in accordance with certain embodiments, the following examples serve only as illustrations of the compounds and methods and are not intended to limit the claims of the invention. Each of the references, GenBank accession numbers, and the like recited in the present application is incorporated herein by reference in its entirety.

Example 1: Cell Types and Transfection Methods

Cell types- The effect of oligomeric compounds on target nucleic acid expression was tested in one or more of the following cell types.

A549: The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (Manassas, VA). A549 cells were routinely cultured in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum, 100 units per ml penicillin, and 100 micrograms per ml streptomycin (Invitrogen Life Technologies, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached approximately 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of approximately 5000 cells/well for use in oligomeric compound transfection experiments.

b.END: The mouse brain endothelial cell line b.END was obtained from Dr. Werner Risau at the Max Plank Institute (Bad Nauheim, Germany). b.END cells were routinely cultured in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached approximately 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #353872, BD Biosciences, Bedford, MA) at a density of approximately 3000 cells/well for use in oligomeric compound transfection experiments.

A10: The rat aortic smooth muscle cell line A10 was obtained from the American Type Culture Collection (Manassas, VA). A10 cells were routinely cultured in DMEM, high glucose (American Type Culture Collection, Manassas, VA) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, CA). Cells were routinely passaged by trypsinization and dilution when they reached approximately 80% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of approximately 2500 cells/well for use in oligomeric compound transfection experiments.

Primary Mouse Hepatocytes: Primary mouse hepatocytes were prepared from CD-1 mice purchased from Charles River Labs. Primary mouse hepatocytes were routinely cultured in Hepatocyte Attachment Media supplemented with 10% fetal bovine serum, 1% penicillin/ streptomycin, 1% antibiotic-antimitotic (Invitrogen Life Technologies, Carlsbad, CA) and 10nM bovine insulin (Sigma-Aldrich, St. Louis, MO). Cells were seeded into 96-well plates (Falcon-Primaria #353872, BD

Biosciences, Bedford, MA) coated with 0.1mg/ml collagen at a density of approximately 10,000 cells/well for use in oligomeric compound transfection experiments.

Primary Rat Hepatocytes: Primary rat hepatocytes are prepared from Sprague-Dawley rats purchased from Charles River Labs (Wilmington, MA) and are routinely cultured in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, CA), 100 units per mL penicillin, and 100 .micro.g/mL streptomycin (Invitrogen Life Technologies, Carlsbad, CA). Cells are seeded into 96-well plates (Falcon-Primaria #353872, BD Biosciences, Bedford, MA) at a density of 4000-6000 cells/well treatment with the oligomeric compounds of the invention.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Treatment with oligomeric compounds: When cells reach appropriate confluency, they are treated with oligonucleotide using a transfection method as described.

*Lipofectin*TM When cells reached 65-75% confluency, they were treated with oligonucleotide. Oligonucleotide was mixed with LIPOFECTINTM Invitrogen Life Technologies, Carlsbad, CA) in Opti-MEMTM-1 reduced serum medium (Invitrogen Life Technologies, Carlsbad, CA) to achieve the desired concentration of oligonucleotide and a LIPOFECTINTM concentration of 2.5 or 3 μ g/mL per 100 nM oligonucleotide. This transfection mixture was incubated at room temperature for approximately 0.5 hours. For cells grown in 96-well plates, wells were washed once with 100 μ L OPTI-MEMTM-1 and then treated with 130 μ L of the transfection mixture. Cells grown in 24-well plates or other standard tissue culture plates are treated similarly, using appropriate volumes of medium and oligonucleotide. Cells are treated and data are obtained in duplicate or triplicate. After approximately 4-7 hours of treatment at 37°C, the medium containing the transfection mixture was replaced with fresh culture medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

CYTOFECTINTM: When cells reached 65-75% confluency, they were treated with oligonucleotide. Oligonucleotide was mixed with CYTOFECTINTM (Gene Therapy Systems, San Diego, CA) in OPTI-MEM-1.sup.TM reduced serum medium (Invitrogen Life Technologies, Carlsbad, CA) to achieve the desired concentration of oligonucleotide and a CYTOFECTINTM concentration of 2 or 4 .micro.g/mL per 100 nM oligonucleotide. This transfection mixture was incubated at room temperature for approximately 0.5 hours. For cells grown in 96-well plates, wells were washed once with 100 .micro.L OPTI-MEM-1.sup.TM and then treated with 130 .micro.L of the transfection mixture. Cells grown in 24-well plates or other standard tissue culture plates are treated similarly, using appropriate volumes of medium and oligonucleotide. Cells are treated and data are obtained in duplicate or triplicate. After approximately 4-7 hours of treatment at 37°C, the medium containing the transfection mixture was replaced with fresh culture medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

Control oligonucleotides

Control oligonucleotides are used to determine the optimal oligomeric compound concentration for a particular cell line. Furthermore, when oligomeric compounds of the invention are tested in oligomeric compound screening experiments or phenotypic assays, control oligonucleotides are tested in parallel with compounds of the invention.

Table 2

Control oligonucleotides for cell line testing, oligomeric compound screening and phenotypic assays

Compound No.	Target Name	Species of Target	Sequence (5' to 3')	Motif	SEQ ID NO
113131	CD86	Human	CGTGTGTCTGTGCTAGTCCC	5-10-5	19
289865	forkhead box O1A (rhabdo-myosarcoma)	Human	GGCAACGTGAACAGGTCCAA	5-10-5	20
25237	integrin beta 3	Human	GCCCATTGCTGGACATGC	4-10-4	21
196103	integrin beta 3	Human	AGCCCATTGCTGGACATGCA	5-10-5	22
148715	Jagged 2	Human; Mouse; Rat	TTGTCCCAGTCCCAGGCCTC	5-10-5	23
18076	Jun N-Terminal Kinase - 1	Human	CTTTC ^u CGTTGG ^u C ^u CCCTGGG	5-9-6	24
18078	Jun N-Terminal Kinase - 2	Human	GTGCG ^u CG ^u CGAG ^u C ^u C ^u CGAAATC	5-9-6	25
183881	kinesin-like 1	Human	ATCCAAGTGCTACTGTAGTA	5-10-5	26
29848	none	none	NNNNNNNNNNNNNNNNNNNNNNNN	5-10-5	27
226844	Notch (Drosophila) homolog 1	Human; Mouse	GCCCTCCATGCTGGCACAGG	5-10-5	28
105990	Peroxisome proliferator-activated receptor gamma	Human	AGCAAAAGATCAATCCGTTA	5-10-5	29
336806	Raf kinase C	Human	TACAGAAAGGCTGGCCTTGA	5-10-5	30
15770	Raf kinase C	Mouse; Murine sarcoma virus; Rat	ATGCATT ^u CTG ^u C ^u C ^u CAAGGA	5-10-5	31

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. Positive controls are shown in Table 2. For human and non-human primate cells, the positive control oligonucleotide is selected from Compound No. 13650,

Compound No. 336806, or Compound No. 18078. For mouse or rat cells the positive control oligonucleotide is Compound No. 15770 or Compound No. 15346. The concentration of positive control oligonucleotide that results in 80% inhibition of the target mRNA, for example, human Raf kinase C for Compound No. 13650, is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of the target mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments. The concentrations of antisense oligonucleotides used herein are from 50 nM to 300 nM when the antisense oligonucleotide is transfected using a liposome reagent and 1 .micro.M to 40 .micro.M when the antisense oligonucleotide is transfected by electroporation.

Example 2: Real-time Quantitative PCR Analysis of LMW-PTPase mRNA Levels

Quantitation of LMW-PTPase mRNA levels was accomplished by real-time quantitative PCR using the ABI PRISM™ 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions.

Prior to quantitative PCR analysis, primer-probe sets specific to the LMW-PTPase being measured were evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction. After isolation the RNA is subjected to sequential reverse transcriptase (RT) reaction and real-time PCR, both of which are performed in the same well. RT and PCR reagents were obtained from Invitrogen Life Technologies (Carlsbad, CA). RT, real-time PCR was carried out in the same by adding 20 .micro.L PCR cocktail (2.5x PCR buffer minus MgCl₂, 6.6 mM MgCl₂, 375 .micro.M each of dATP, dCTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNase inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV reverse transcriptase, and 2.5x ROX dye) to 96-well plates containing 30 .micro.L total RNA solution (20-200 ng). The RT reaction was carried out by incubation for 30 minutes at 48.deg.C. Following a 10 minute incubation at 95.deg.C to activate the PLATINUM® Taq, 40 cycles of a two-step PCR protocol were carried out: 95.deg.C for 15 seconds (denaturation) followed by 60.deg.C for 1.5 minutes (annealing/extension).

Gene target quantities obtained by RT, real-time PCR were normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, OR). GAPDH expression was quantified by RT, real-time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA was quantified using RiboGreen™ RNA quantification reagent (Molecular Probes, Inc. Eugene, OR).

170 .micro.L of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:350 in 10mM Tris-HCl, 1 mM EDTA, pH 7.5) was pipetted into a 96-well plate containing 30 .micro.L purified cellular RNA. The plate was read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 485nm and emission at 530nm.

The GAPDH PCR probes have JOE covalently linked to the 5' end and TAMRA or MGB covalently linked to the 3' end, where JOE is the fluorescent reporter dye and TAMRA or MGB is

the quencher dye. In some cell types, primers and probe designed to a GAPDH sequence from a different species are used to measure GAPDH expression. For example, a human GAPDH primer and probe set is used to measure GAPDH expression in monkey-derived cells and cell lines.

Probes and primers for use in real-time PCR were designed to hybridize to target-specific sequences. The primers and probes and the target nucleic acid sequences to which they hybridize are presented in Table 3. The target-specific PCR probes have FAM covalently linked to the 5' end and TAMRA or MGB covalently linked to the 3' end, where FAM is the fluorescent dye and TAMRA or MGB is the quencher dye.

Table 3
LMW-PTPase-specific primers and probes for use in real-time PCR

Target Name	Species	Sequence Description	Sequence (5' to 3')	SEQ ID NO
GAPDH	Human	Forward Primer	CAACGGATTTGGTCGTATTGG	32
GAPDH	Human	Reverse Primer	GGCAACAAATATCCACTTACCAAGAGT	33
GAPDH	Human	Probe	CGCCTGGTCACCAGGGCTGCT	34
GAPDH	Human	Forward Primer	GAAGGTGAAGGTCGGAGTC	35
GAPDH	Human	Reverse Primer	GAAGATGGTATGGGATTTC	36
GAPDH	Human	Probe	CAAGCTCCCGTTCTCAGCC	37
GAPDH	Human	Forward Primer	GAAGGTGAAGGTCGGAGTC	35
GAPDH	Human	Reverse Primer	GAAGATGGTATGGGATTTC	36
GAPDH	Human	Probe	TGGAATCATATTGGAACATG	38
GAPDH	Mouse	Forward Primer	GGCAAATTCAACGGCACAGT	39
GAPDH	Mouse	Reverse Primer	GGGTCTCGCTCCTGGAAGAT	40
GAPDH	Mouse	Probe	AAGGCCGAGAATGGGAAGCTTGTCA	41
GAPDH	Rat	Forward Primer	TGTTCTAGAGACAGCCGCATCTT	42
GAPDH	Rat	Reverse Primer	CACCGACCTTCACCATCTTGT	43
GAPDH	Rat	Probe	TTGTGCAGTGCCAGCCTCGTCTCA	44

Example 3: Antisense inhibition of human LMW-PTPase expression by oligomeric compounds

A series of antisense compounds was designed to target different regions of human LMW-PTPase RNA, using published sequences or portions of published sequences as cited in Table 1. The designed antisense compounds are complementary to one or more of the target nucleic acids in Table 1. The start and stop sites on the target nucleic acids for each antisense compound are presented in Tables 4a, b, c and d.

Table 4a

SEQ ID NO: 3

Compound #	Start Site	Stop Site
356739	65	84
356740	73	92
356741	78	97
356742	87	106
356743	103	122
356744	117	136
288247	127	146
356745	132	151

Table 4b

SEQ ID NO: 4

Compound #	Start Site	Stop Site
356739	65	84
356740	73	92
356741	78	97
356742	87	106
356743	103	122
356744	117	136
288247	127	146
356745	132	151

356746	148	167
356747	170	189
356748	190	209
356801	291	310
356755	312	331
288270	328	347
288271	333	352
288273	338	357
288274	340	359
288275	343	362
288276	345	364
356756	353	372
356757	381	400
356758	415	434
356759	441	460
356760	451	470
356761	459	478
356762	464	483
356763	473	492
356764	489	508
356765	524	543
356766	536	555
356767	547	566
356768	567	586
356769	591	610
356770	601	620
356771	619	638
356772	637	656
356773	668	687
356774	727	746
356775	746	765
356776	751	770
356777	757	776
356778	840	859
356779	860	879
356780	873	892
356781	888	907
356782	905	924
356783	961	980
356784	1022	1041
356785	1030	1049
356786	1050	1069
356787	1058	1077
356788	1093	1112
356789	1111	1130
356790	1118	1137
356791	1125	1144
356792	1170	1189
356793	1184	1203
356794	1227	1246
356795	1259	1278
356796	1288	1307
356797	1387	1406

356746	148	167
356747	170	189
356800	177	196
356750	201	220
356751	242	261
356752	253	272
356753	272	291
356754	277	296
356755	312	331
288270	328	347
288271	333	352
288273	338	357
288274	340	359
288275	343	362
288276	345	364
356756	353	372
356757	381	400
356758	415	434
356759	441	460
356760	451	470
356761	459	478
356762	464	483
356763	473	492
356764	489	508
356765	524	543
356766	536	555
356767	547	566
356768	567	586
356769	591	610
356770	601	620
356771	619	638
356772	637	656
356773	668	687
356774	727	746
356775	746	765
356776	751	770
356777	757	776
356778	840	859
356779	860	879
356780	873	892
356781	888	907
356782	905	924
356783	961	980
356784	1022	1041
356785	1030	1049
356786	1050	1069
356787	1058	1077
356788	1093	1112
356789	1111	1130
356790	1118	1137
356791	1125	1144
356792	1170	1189
356793	1184	1203

356798	1414	1433
356799	1478	1497

356794	1227	1246
356795	1259	1278
356796	1288	1307
356797	1387	1406
356798	1414	1433
356799	1478	1497

Table 4c

SEQ ID NO: 5

Compound #	Start Site	Stop Site
356739	65	84
356740	73	92
356741	78	97
356742	87	106
356743	103	122
356744	117	136
288247	127	146
356745	132	151
356746	148	167
356747	170	189
356748	190	209
356749	204	223
356750	230	249
356751	271	290
356752	282	301
356753	301	320
356754	306	325
356755	341	360
288270	357	376
288271	362	381
288273	367	386
288274	369	388
288275	372	391
288276	374	393
356756	382	401
356757	410	429
356758	444	463
356759	470	489
356760	480	499
356761	488	507
356762	493	512
356763	502	521
356764	518	537
356765	553	572
356766	565	584
356767	576	595
356768	596	615
356769	620	639
356770	630	649
356771	648	667
356772	666	685

Table 4d

SEQ ID NO: 6

Compound #	Start Site	Stop Site
356739	465	484
356740	473	492
356741	478	497
356742	487	506
356731	1499	1518
356732	2753	2772
356733	7057	7076
356744	7375	7394
288247	7385	7404
356745	7390	7409
356746	7406	7425
356734	7435	7454
356748	7545	7564
356750	7711	7730
356751	7752	7771
356752	7763	7782
356753	7782	7801
356754	7787	7806
356735	10635	10654
356755	10656	10675
288270	10672	10691
288271	10677	10696
288273	10682	10701
288274	10684	10703
288275	10687	10706
356736	10697	10716
356737	10721	10740
356738	12475	12494
356757	12503	12522
356758	12537	12556
356759	12563	12582
356763	12736	12755
356764	12752	12771
356765	12787	12806
356766	12799	12818
356767	12810	12829
356768	12830	12849
356769	12854	12873
356770	12864	12883
356771	12882	12901
356772	12900	12919

356773	697	716
356774	756	775
356775	775	794
356776	780	799
356777	786	805
356778	869	888
356779	889	908
356780	902	921
356781	917	936
356782	934	953
356783	990	1009
356784	1051	1070
356785	1059	1078
356786	1079	1098
356787	1087	1106
356788	1122	1141
356789	1140	1159
356790	1147	1166
356791	1154	1173
356792	1199	1218
356793	1213	1232
356794	1256	1275
356795	1288	1307
356796	1317	1336
356797	1416	1435
356798	1443	1462
356799	1507	1526

356773	12931	12950
356774	12990	13009
356775	13009	13028
356776	13014	13033
356777	13020	13039
356778	13103	13122
356779	13123	13142
356780	13136	13155
356781	13151	13170
356782	13168	13187
356783	13224	13243
356784	13285	13304
356785	13293	13312
356786	13313	13332
356787	13321	13340
356788	13356	13375
356789	13374	13393
356790	13381	13400
356791	13388	13407
356792	13433	13452
356793	13447	13466
356794	13490	13509
356795	13522	13541
356796	13551	13570
356797	13650	13669
356798	13677	13696
356799	13741	13760

As stated above, antisense oligonucleotides directed to a target or more preferably to an active target segment can be from about 13 to about 80 linked nucleobases. The following Table 4e provides a non-limiting example of such antisense oligonucleotides targeting SEQ ID NO 1.

5

Table 4e
Antisense Oligonucleotides from about 13 to about 35 Nucleobases

Sequence	Length
CCATGATTCTTAGGCAGCT	20 nucleobases (SEQ ID NO: 76)
AATGCCATGATTCT	15 nucleobases (SEQ ID NO: 356)
CCCATGATTTCTTAG	15 nucleobases (SEQ ID NO: 357)
ATGCCATGATTTTC	13 nucleobases (SEQ ID NO: 358)
AATGCCATGATTCTTAGGCAGCTC	24 nucleobases (SEQ ID NO: 359)
TTTCTTAGGCAGCT	14 nucleobases (SEQ ID NO: 360)
TGTGAATGCCATGATTCTTAGGCAGCTCACAGCT	35 nucleobases (SEQ ID NO: 361)
CCATGATTCTTAGGCAGCTCACAGCT	27 nucleobases (SEQ ID NO: 362)
GATTCTTAGGCAGCTCACAGCT	22 nucleobases (SEQ ID NO: 363)

Antisense oligonucleotides directed to a target or more preferably to an active target segment can also contain mismatched nucleobases when compared to the target sequence. The following Table 4f

provides a non-limiting example of such antisense oligonucleotides targeting nucleobases 282 to 301 of SEQ ID NO 5. Mismatched nucleobases are underlined. One ordinarily skilled in the art understands that antisense compounds can tolerate mismatches yet still retain their ability to hybridize with a target site and modulate the target nucleic acid through antisense mechanisms.

Table 4f

Antisense Oligonucleotides from about 1-3 Nucleobases Mismatched to the Target Sequence

Sequence	Number of mismatches to SEQ ID NO: 5
CCATGATTTCTTAGGCAGCT (SEQ ID NO: 76)	None
CCATGATTTCTTAGGC <u>A</u> TCT (SEQ ID NO: 364)	One mismatch
CCATGAT <u>C</u> TCTTAGGCAGCT (SEQ ID NO: 365)	One mismatch
CCATGATTTCTTAGGC <u>A</u> CAT (SEQ ID NO: 366)	Two mismatches
<u>G</u> CATGATTTCTTAGGC <u>C</u> GCT (SEQ ID NO: 367)	Two mismatches
<u>C</u> CTTGATA <u>A</u> CTTAGGCAGCT (SEQ ID NO: 368)	Three mismatches

Antisense compounds were designed against one or more of the human LMW-PTPase target nucleic acids sequences published in table 1 and were screened *in vitro* to determine the compound's ability to modulate expression of a target nucleic acid that encodes LMW-PTPase. The compounds shown in Table 5 are all chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of 10 2'-deoxynucleotides, which is flanked on both sides (5' and 3') by five-nucleotide "wings". The wings are composed of 2'-O-(2-methoxyethyl) nucleotides, also known as 2'-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on gene target mRNA levels by quantitative real-time PCR as described in other examples herein, using the primer-probe set designed to hybridize to human LMW-PTPase (Table 2). Data are averages from two experiments in which A549 cells were treated with 65 nM of the disclosed oligomeric compounds using LIPOFECTINT™. A reduction in expression is expressed as percent inhibition in Table 5. If present, "N.D." indicates "not determined". The control oligomeric compound used was SEQ ID NO: 25.

Table 5

Inhibition of human LMW-PTPase mRNA levels by chimeric oligonucleotides having 2'-MOE wings and deoxy gap

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
356801	3	291	CTTGTTAATCTGCCGGCA	36	54
288247	4	127	ACTGCTCTGCAATGGGTGA	67	55
356800	4	177	CAATGACCCAATTCTGAG	16	56
288270	4	328	TCCATACATAGTATATAATC	39	57

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
288271	4	333	TTTCATCCATACATAGTATA	29	58
288273	4	338	ATTGCTTTCATCCATACATA	54	59
288274	4	340	AGATTGCTTTCATCCATACA	51	60
288275	4	343	CTCAGATTGCTTTCATCCAT	63	61
288276	4	345	CTCTCAGATTGCTTTCATCC	56	62
356739	5	65	AGCCTGTTCCGCCATCTTCC	74	63
356740	5	73	GACTTGGTAGCCTGTTCCGC	67	64
356741	5	78	GCACGGACTTGGTAGCCTGT	68	65
356742	5	87	ACACAAACAGCACGGACTTG	35	66
356743	5	103	CAAATGTTACCCAGACACAC	33	67
356744	5	117	CAATGGGTGATCGACAAATG	55	68
356745	5	132	TGAAAACGTCTGCAATG	54	69
356746	5	148	TCGGTTACAAGTTCCCTGAA	64	70
356747	5	170	CCAATTCTCTGAGATGTTT	68	71
356748	5	190	GTTGCCCGCGCTGCTTACCCCT	70	72
356749	5	204	ATGACCCACCGGAAGTTGCC	22	73
356750	5	230	TCCAGTCAGAAACAGCACCG	50	74
356751	5	271	TAGGCAGCTCACAGCTCTG	59	75
356752	5	282	CCATGATTCTTAGGCAGCT	76	76
356753	5	301	TTTATGGGCTGTGTGAATGC	56	77
356754	5	306	CTTGCTTATGGGCTGTGTG	70	78
356755	5	341	AATCAAATGTGGCAAAATCT	51	79
356756	5	382	ATTCAAATCTCTCAGATTGC	52	80
356757	5	410	TGCAGGTTTAACCTGATTA	57	81
356758	5	444	GGATCATAGCTCCAAGTAG	57	82
356759	5	470	GATCTTCAATAATAAGTTGT	55	83
356760	5	480	CCATAATAGGGATCTCAAT	26	84
356761	5	488	AGTCATTCCCATAATAGGGA	52	85
356762	5	493	GTCAGAGTCATTCCCATAAT	60	86
356763	5	502	CGTCTCAAAGTCAGAGTCAT	62	87
356764	5	518	CACACTGCTGGTACACCGTC	74	88
356765	5	553	GTGGGCCTCTCCAAGAACG	43	89
356766	5	565	GAACCTGCCTCAGTGGGCCT	74	90
356767	5	576	CAGCAGGGCACGAACCTGCC	38	91
356768	5	596	GGGTCTAGTCAGGCTGGCCG	67	92
356769	5	620	TGAGAAATGCAGGACCTCAG	80	93
356770	5	630	ACACACCGACTGAGAAATGC	64	94
356771	5	648	GGGCCCTGGAACGTGATTAC	55	95
356772	5	666	AACAAAGAGCTGGGCTTTGG	71	96
356773	5	697	CTTTTAAGGTAAGAAACAG	25	97
356774	5	756	TGAATCAAAGATTTTATTG	15	98
356775	5	775	AAATACCCATAAGCTGTCT	45	99
356776	5	780	GCTTAAAATACCCATAAGC	61	100
356777	5	786	AAGAATGCTAAAATACCCC	27	101
356778	5	869	CAAGTGAGGTTCTTCAT	67	102
356779	5	889	TAGATGTTGACCTGGGCCTT	61	103
356780	5	902	GTCTCAACAGGCTTAGATGT	53	104
356781	5	917	GACTCGATTATCTAAGTCTC	57	105
356782	5	934	AACCTACTGAAGAGGTAGAC	76	106
356783	5	990	AAGAGAGAGGTAGCACTGGG	45	107
356784	5	1051	CTAATCTAGACTGTGAGCTC	79	108

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
356785	5	1059	AAACACTTCTAAATCTAGACT	21	109
356786	5	1079	CTATGGGTGTGTAGAAATT	67	110
356787	5	1087	AGTGTGCACTATGGGTGTGT	51	111
356788	5	1122	AAATGTTCTCTCTCCCTA	31	112
356789	5	1140	GCCAACGACTGATTCCATAA	87	113
356790	5	1147	TGAAGGTGCCAACGACTGAT	79	114
356791	5	1154	GAAGTATTGAAGGTGCCAAC	80	115
356792	5	1199	GCCAATGGGCTGACCTCCTC	77	116
356793	5	1213	TGGTTCAGATGGGAGCCAAT	66	117
356794	5	1256	AAGTGTCTTCTTCTGGAT	67	118
356795	5	1288	CATATTCCCTCAACTGACCAT	31	119
356796	5	1317	TTTGGGTTACATGTGCATAT	73	120
356797	5	1416	TGATGAAGAATACTTATTCA	49	121
356798	5	1443	ACATCTGCCTATACATTAT	24	122
356799	5	1507	TCCCCAGTTTATTGAAAT	37	123
356731	6	1499	GGAAGCAACTCATGATCTGG	63	124
356732	6	2753	AATGCATGCCATATAGTAGA	43	125
356733	6	7057	CTAATGATCCAGGAGTGAAT	39	126
356734	6	7435	TGGTACTTACATTCTCTGAG	23	127
356735	6	10635	CTTTGGTAATCTAAAATTGA	15	128
356736	6	10697	ACAGGATTACCTCAGATTGC	53	129
356737	6	10721	GTTGAACAGAAATATTCTTC	13	130
356738	6	12475	ATTCAAATCTCTGTAAAATT	14	131

The screen identified active target segments within the human LMW-PTPase mRNA sequence, specifically SEQ ID NOS: 3, 4 and 5. Each active target segment was targeted by at least one active antisense oligonucleotide. These active target regions identified for SEQ ID NO: 3 include nucleotides 1111 to 1189 (Region A) with an average inhibition of 80.5%, nucleotides 489 to 656 (Region B) with an average inhibition of 62.8%, nucleotides 536 to 656 (Region C) with an average inhibition of 64.1%, nucleotides 489 to 610 (Region D) with an average inhibition of 62.6%, nucleotides 1111 to 1203 (Region E) with an average inhibition of 77.6%, nucleotides 840 to 924 (Region F) with an average inhibition of 62.8%, nucleotides 1022 to 1069 (Region G) with an average inhibition of 55.6%, nucleotides 65 to 209 (Region H) with an average inhibition of 59.5%, nucleotides 65 to 136 (Region I) with an average inhibition of 55.2%, nucleotides 117 to 209 (Region J) with an average inhibition of 63.0% and nucleotides 338 to 460 (Region K) with an average inhibition of 55.6%. Over half of the oligonucleotides tested in this region inhibited expression by greater than 63%. Identification of these regions allows for the design of antisense oligonucleotides that modulate the expression of LMW-PTPase.

The active target regions identified for SEQ ID NO: 4 include nucleotides nucleotides 65 to 189 (Region AA) with an average inhibition of 58.4%, nucleotides 65 to 146 (Region AB) with an average inhibition of 56.8%, nucleotides 127 to 189 (Region AC) with an average inhibition of 63.2%, nucleotides 338 to 460 (Region AD) with an average inhibition of 55.6%, nucleotides 489 to 610 (Region AE) with an average inhibition of 62.6%, nucleotides 536 to 656 (Region AF) with an average inhibition of 64.1%, nucleotides 489 to 656 (Region AG) with an average inhibition of 62.8%, nucleotides 840 to

924 (Region AH) with an average inhibition of 62.8%, nucleotides 1022 to 1069 (Region AI) with an average inhibition of 55.6%, nucleotides 1111 to 1189 (Region AJ) with an average inhibition of 80.5% and nucleotides 1111 to 1203 (Region AK) with an average inhibition of 77.6%..

Active target regions have also been identified for SEQ ID NO: 5. These active target regions include nucleotides 65 to 136 (Region BA) with an average inhibition of 55.2%, nucleotides 117 to 209 (Region BB) with an average inhibition of 63.0%, nucleotides 65 to 209 (Region BC) with an average inhibition of 59.5%, nucleotides 367 to 489 (Region BD) with an average inhibition of 55.6%, nucleotides 518 to 639 (Region BE) with an average inhibition of 62.6%, nucleotides 565 to 685 (Region BF) with an average inhibition of 64.1%, nucleotides 518 to 685 (Region BG) with an average inhibition of 62.8%, nucleotides 689 to 953 (Region BH) with an average inhibition of 62.8%, nucleotides 1051 to 1098 (Region BI) with an average inhibition of 55.6%, nucleotides 1140 to 1218 (Region BJ) with an average inhibition of 80.53% and nucleotides 1140 to 1232 (Region BK) with an average inhibition of 77.6%.

Example 4

Antisense inhibition of mouse LMW-PTPase expression by oligomeric compounds

Antisense compounds were designed against one or more of the mouse LMW-PTPase target nucleic acid sequences cited in Table 1 and were screened *in vitro* to determine the compound's ability to modulate expression of a target nucleic acid that encodes LMW-PTPase. The compounds shown in Table 6 are all chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of 10 2'-deoxynucleotides, which is flanked on both sides (5' and 3') by five-nucleotide "wings". The wings are composed of 2'-O-(2-methoxyethyl) nucleotides, also known as 2'-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on gene target mRNA levels by quantitative real-time PCR as described in other examples herein, using the primer-probe set designed to hybridize to mouse LMW-PTPase (Table 2). Data are averages from two experiments in which b.END cells were treated with 75 nM of the disclosed oligomeric compounds using LIPOFECTINT™. A reduction in expression is expressed as percent inhibition in Table 6. The control oligomeric compound used was SEQ ID NO: 25. If present, "N.D." indicates "not determined".

Table 6

Inhibition of mouse LMW-PTPase mRNA levels by chimeric oligonucleotides having 2'-MOE wings and deoxy gap

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
288290	11	207	CTGTCTGACTCAAATGCTTT	69	132
288291	11	252	GGTCAGAGGTTAGTTAGTC	80	133
288292	11	493	TCCGTCTGCGGTTTATGTA	4	134
288293	11	982	GTGGTGCTCTGTTGAGGTGT	0	135
288216	12	3	TTGCTTAGTCTATAACTGAC	0	136

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
288217	12	13	ATGATGGAGATTGCTTAGTC	0	137
288218	12	24	AAATATGCTAAATGATGGAG	0	138
288219	12	40	GCTTCCTGTGCACCAGAAAT	64	139
288220	12	48	CTCACGTTGCTTCCTGTGCA	0	140
288221	12	79	ACTTTGTAATGGGAGTAGAT	3	141
288222	12	90	TATAATGGTAGACCTTGAA	0	142
288223	12	114	TAGAGAATGCAAGCATATCA	0	143
288224	12	123	TTCAATTAATAGAGAAATGCA	0	144
288225	12	149	ACATATACACATGAGTTGTA	0	145
288226	12	159	CTTTGTAATGACATATACAC	0	146
288227	12	164	AAACTCTTGTAATGACATA	0	147
288228	12	179	TGCTTCATGAAGCAAAACT	0	148
288229	12	189	GATACTTCATGCTTCATG	0	149
288230	12	196	AATATGTTGATACTTTCATGC	0	150
288231	12	202	GCCATAAAATATGTGATACTT	0	151
288232	12	232	AGACCCCTCAATTCTCTAAT	14	152
288233	12	248	TGCCATGTTCGGTGCAGAC	75	153
288234	12	253	ACCTCTGCCATGTTCGGTG	64	154
288235	12	266	TGACTTGGACCCAACCTCTG	59	155
288236	12	273	ACAGCACTGACTTGGACCCA	75	156
288237	12	277	ACGAACAGCACTGACTTGGA	61	157
288238	12	281	ACACACGAACAGCACTGACT	62	158
288239	12	289	TTACCGAGACACACGAACAG	52	159
288240	12	293	AATGTTACCGAGACACACGA	53	160
288241	12	296	GCAAATGTTACCGAGACACA	56	161
288242	12	304	GGTGACCGGGCAAATGTTAC	68	162
288243	12	306	TGGGTGACCGGGCAAATGTTA	61	163
288244	12	309	CAATGGGTGACCGGGCAAATG	62	164
288245	12	310	GCAATGGGTGACCGGGCAAAT	81	165
288246	12	317	TGCTTCTGCAATGGGTGACC	77	166
288247	12	319	ACTGCTTCTGCAATGGGTGA	83	55
288248	12	321	ATACTGCTTCTGCAATGGGT	73	167
288249	12	323	GAATACTGCTTCTGCAATGG	76	168
288250	12	325	CTGAATACTGCTTCTGCAAT	59	169
288251	12	328	TTCCTGAATACTGCTTCTGC	73	170
288252	12	334	ACCAGTTCCCTGAATACTGC	79	171
288253	12	338	AGTTACCAGTTCCCTGAATA	63	172
288254	12	343	TCATCAGTTACCACTTTCC	57	173
288255	12	347	CTTTCATCAGTTACCACTT	63	174
288256	12	350	AACCTTTCATCAGTTACCA	67	175
288257	12	358	TTATCTGAAACCTTTCATC	48	176
288258	12	360	AATTATCTGAAACCTTTCA	49	177
288259	12	365	GGCCCAATTATCTGAAACCT	57	178
288260	12	367	ATGGCCCAATTATCTGAAAC	43	179
288261	12	375	TGCTGTCAATGGCCAATT	62	180
288262	12	379	GCGCTGCTGTCAATGGCCA	61	181
288263	12	406	GGCCGGCCCACGTTCCAGTC	65	182
288264	12	493	GCAAAGTCTTCTTGTAA	57	183
288265	12	499	AATGTGGCAAAGTCTTCTT	54	184
288266	12	505	TAATCGAATGTGGCAAAGTC	59	185
288267	12	510	GTATATAATCGAATGTGGCA	80	186

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
288268	12	511	AGTATATAATCGAATGTGGC	76	187
288269	12	518	CATACATAGTATATAATCGA	52	188
288270	12	520	TCCATACATAGTATATAATC	60	57
288271	12	525	TTTCATCCATACATAGTATA	57	58
288272	12	526	CTTTCATCCATACATAGTAT	57	189
288273	12	530	ATTGCTTTCATCCATACATA	71	59
288274	12	532	AGATTGCTTTCATCCATACA	70	60
288275	12	535	CTCAGATTGCTTTCATCCAT	73	61
288276	12	537	CTCTCAGATTGCTTTCATCC	78	62
288277	12	538	TCTCTCAGATTGCTTTCATC	66	190
288278	12	540	GATCTCTCAGATTGCTTTC	70	191
288279	12	545	ATTGAGATCTCTCAGATTGC	61	192
288280	12	549	TTCTATTGAGATCTCTCAGA	65	193
288281	12	572	GCAGTTTTAACATTGATTAC	61	194
288282	12	626	AATGATGAGCTTCAATGATG	53	195
288283	12	636	AGGGATCTCAATGATGAGC	59	196
288284	12	639	AATAGGGATCTTCATGATG	48	197
288285	12	663	CCTCGAAGTCAGAGTCATTG	82	198
288286	12	668	CACCAACCTCGAAGTCAGAGT	81	199
288287	12	673	TGGTACACCACCTCGAAGTC	74	200
288288	12	678	ATTGCTGGTACACCACCTCG	75	201

Example 5

Antisense inhibition of rat LMW-PTPase expression by oligomeric compounds

Antisense compounds were designed against one or more of the rat LMW-PTPase target nucleic acid sequences cited in Table 1 and were screened *in vitro* to determine the compound's ability to modulate expression of a target nucleic acid that encodes LMW-PTPase. The compounds shown in Table 7 are all chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of 10 2'-deoxynucleotides, which is flanked on both sides (5' and 3') by five-nucleotide "wings". The wings are composed of 2'-O-(2-methoxyethyl) nucleotides, also known as 2'-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on gene target mRNA levels by quantitative real-time PCR as described in other examples herein, using the primer-probe set designed to hybridize to rat LMW-PTPase (Table 2). Data are averages from two experiments in which A10 cells were treated with 50 nM of the disclosed oligomeric compounds using LIPOFECTINT™. A reduction in expression is expressed as percent inhibition in Table 7. The control oligomeric compound used was SEQ ID NO: 25. If present, "N.D." indicates "not determined".

Table 7

Inhibition of rat LMW-PTPase mRNA levels by chimeric oligonucleotides having 2'-MOE wings and deoxy gap

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
288289	15	403	ACCTCGAAGTCAGAGTCATT	70	202

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
288233	16	24	TGCCATGTTCGGTGCAGAC	74	153
288234	16	29	ACCTCTGCCATGTTCGGTG	83	154
355621	16	36	GGACCCAACCTCTGCCATGT	89	203
288235	16	42	TGACTTGGACCCAACCTCTG	73	155
288238	16	57	ACACACGAACAGCACTGACT	29	158
288239	16	65	TTACCGAGACACAGAACAG	34	159
288241	16	72	GCAAATGTTACCGAGACACA	50	161
288274	16	308	AGATTGCTTTCATCCATACA	54	60
288286	16	444	CACCACCTCGAAGTCAGAGT	69	199
288287	16	449	TGGTACACCACCTCGAAGTC	81	200
288288	16	454	ATTGCTGGTACACCACCTCG	69	201
355622	16	461	CTAAGGCATTGCTGGTACAC	72	204
355623	16	466	AGCACCTAAGGCATTGCTGG	74	205
355624	16	471	CTTGCAGCACCTAAGGCATT	74	206
355625	16	476	AAGGCCTTGCAGCACCTAAG	83	207
355626	16	481	CCAGGAAGGCCTTGCAGCAC	86	208
355627	16	486	CTTCTCCAGGAAGGCCTTGC	79	209
355628	16	492	GTGAGTCTTCTCCAGGAAGG	82	210
355629	16	504	TAGGACCAGCTAGTGAGTCT	74	211
355630	16	519	CTCAGTGGTGGTGGTTAGGA	55	212
355631	16	556	GCCACCACCCCTGGGCACAG	78	213
355632	16	567	GGCTAAGGACTGCCACCACC	78	214
355633	16	607	GATATACAGTAAGTCAGCTG	80	215
355634	16	625	ACCTACAATTATTTAAAGA	15	216
355635	16	633	TGATTTCACCTACAATTAT	52	217
355636	16	638	ATGCCTGATTTCACCTACA	91	218
355637	16	647	TCTGAACAAATGCCCTGATT	82	219
355638	16	674	AATGTCCTGCCCTCAAATGTT	73	220
355639	16	680	ACCTCAAATGTCTGCCCTAA	78	221
355640	16	687	GAGCCACACCTCAAATGTCT	89	222
355641	16	700	GTCTAAGAATACTGAGCCAC	87	223
355642	16	706	TTGTTAGTCTAAGAATACTG	52	224
355643	16	725	TATGGCGAGGCCAGAGCTTT	77	225
355644	16	735	ATTTTGTAAATTATGGCGAGG	60	226
355645	16	753	ACAGTTGCTCGTCCACTAT	92	227
355646	16	759	TGTTCCACAGTTGCTCGITC	95	228
355647	16	795	CCTTGTGGGTCAATTCTTACT	71	229
355648	16	819	GCTGGGCTCAAAGGCTGATC	67	230
355649	16	841	TTAGACCAGACTACCCAGGC	80	231
355650	16	853	CTCACACTCCAGTTAGACCA	63	232
355651	16	871	CACTGGGTGCTGGCCATGCT	70	233
355652	16	890	GTAAGGCAAGCAAACAGCAC	40	234
355653	16	924	TTGTCACAATAAGAGACAAT	55	235
355654	16	931	GGAGATATTGTCACAATAAG	85	236
355655	16	939	CCATGGATGGAGATATTGTC	82	237
355656	16	944	GGCTGCCATGGATGGAGATA	79	238
355657	16	952	AAATGGAAGGCTGCCATGGA	80	239
355658	16	958	AGTGTAAATGGAAGGCTGC	59	240
355659	16	970	TTAAACTCTCCCAGTGTAA	76	241
355660	16	976	CTGGGTTAAACTCTCCCAG	80	242
355661	16	1013	GGTTCTCCTCTCTCAAATAT	82	243

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	% Inhib	SEQ ID NO
355662	16	1038	AGTTCCAGGCCCATCATCAC	61	244
355663	16	1050	ATGGCCTGCTGGAGTTCCAG	67	245
355664	16	1089	TTTTATCTTCAGACAGGG	19	246
355665	16	1103	CCCATCTGTTAGCATTTTA	73	247
355666	16	1111	CTGTTGCTCCCATCTGTTAG	80	248
355667	16	1125	TTAACTTCACCAACCTGTTG	85	249
355668	16	1169	CCAAGCTCAAGAAACTACAC	69	250
355669	16	1187	AAGTGGCTCAAATAGGAACC	31	251
355670	16	1206	CTTTCTCTTAAAGAAGCAA	24	252
355671	16	1215	GCACACATTACTTTCTTTA	84	253
355672	16	1228	CACCACTATTAAAGCACACT	28	254
355673	16	1237	ACAAACGCACACCACTATT	62	255
355674	16	1255	GTTGATGAGAGAACACTTAC	79	256
355675	16	1270	GTAACCTTGAAATGTTGA	46	257
355676	16	1286	TTACTCATGCTTGCCTGTAA	90	258
355677	16	1312	GTCCCTTTCTGAAAATACA	78	259
355678	16	1323	ATAAAATTGAGGTCCCTTT	66	260
355679	16	1331	ATATCCACATAAATTGAGG	68	261
355680	16	1345	ATCTTTCTGACATATATCC	64	262
355613	17	3444	TCTCCAGTGGCAAAGACAAA	30	263
355614	17	5834	AAGCAAGAAACTATGCGGGA	45	264
355615	17	8275	CATACGGTACCTGCCGTGCA	53	265
355616	17	8312	CAATGGCCCCTGTAAACACA	70	266
355617	17	13156	GAGTACATTGAAAGTTAAA	45	267
355618	17	13309	CTCTTGTAAATCTACAATTAA	3	268
355619	17	13459	TATACCTGAGTTCAAGGTCA	57	269
355620	18	204	CTCTTGTAAATCTGTCTTGCC	27	270

Example 6

Inhibition of mouse LMW-PTPase mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap:dose response studies

In a further embodiment, six oligonucleotides were selected for dose-response studies:

Compound No. 288285, Compound No. 288276, Compound No. 288268, Compound No. 288286,

Compound No. 288267 and Compound No. 288291. Compound No. 129689

(GAGGTCTCGACTTACCCGCT, incorporated herein as SEQ ID NO: 271) and Compound No. 129695

(TTCTACCTCGCGCGATTAC, incorporated herein as SEQ ID NO: 272, which are not targeted to

LMW-PTPase, served as negative controls. Compound No. 129689 and Compound No. 129695 are

chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-O-(2-methoxyethyl) (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

Oligonucleotides were transfected into cells using the CYTOFECTINTTM Reagent (Gene Therapy Systems, San Diego, CA). b.END cells were treated with 12.5, 25, 50 or 100 nM of

oligonucleotide. Untreated control cells served as the control to which data were normalized.

Quantitative real-time PCR to measure LMW-PTPase levels was performed as described herein.

Data were averaged from 3 experiments and the results are shown in Table 8 as percent inhibition relative to untreated control. Neither control oligonucleotide (Compound No. 129689 or Compound No. 129695) inhibited LMW-PTPase mRNA expression in this experiment.

Table 8

Inhibition of mouse LMW-PTPase mRNA expression in mouse b.END cells: dose response

Compound No.	SEQ ID NO	% Inhibition			
		Dose of oligonucleotide (nM)			
		12.5	25	50	100
288267	186	60	74	88	93
288268	187	54	72	80	93
288276	62	23	47	68	85
288285	198	11	41	67	86
288286	199	50	69	86	96
288291	133	72	82	90	92

As demonstrated in Table 8, Compound No. 288267, Compound No. 288268, Compound No. 288276, Compound No. 288285, Compound No. 288286 and Compound No. 288291 inhibited mouse LMW-PTPase mRNA expression in a dose-dependent manner.

Example 7

Inhibition of rat LMW-PTPase mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap:dose response studies

In a further embodiment, seven oligonucleotides were selected for dose-response studies: Compound No. 355621, Compound No. 355636, Compound No. 355676, Compound No. 355626, Compound No. 355654, Compound No. 355640, and Compound No. 355641. Compound No. 15770, Compound No. 129690 (TTAGAATACGTCGCGTTATG, incorporated herein as SEQ ID NO: 273), and Compound No. 141923 (CCTTCCCTGAAGGTTCTCC, incorporated herein as SEQ ID NO: 274), which are not targeted to LMW-PTPase, served as controls. Compound No. 129690 and Compound No. 141923 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-O-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

Rat primary hepatocytes were treated with 12.5, 25, 50, 100 or 200 nM of oligonucleotide, using LIPOFECTINT™ as described herein. Untreated control cells served as the control to which data were normalized. Treatment with the transfection mixture and quantitative real-time PCR to measure rat LMW-PTPase levels were both performed as described herein.

Results of these studies are shown in Table 9. Data are averaged from four experiments and are expressed as percent inhibition relative untreated control. None of the control oligonucleotides

tested (Compound No. 141923, Compound No. 15770 or Compound No. 129690) resulted greater than 4% inhibition of rat LMW-PTPase; data from cells treated with Compound No. 15770 is shown in Table 8 and is representative of the control oligonucleotide treatments.

Table 9**Inhibition of rat LMW-PTPase mRNA expression in rat primary hepatocyte cells: dose response**

Compound No.	SEQ ID NO	% Inhibition				
		Dose of oligonucleotide (nM)				
		12.5	25	50	100	200
355621	203	17	29	52	70	82
355626	208	6	17	33	48	70
355636	218	17	27	43	64	80
355640	222	19	31	55	73	84
355641	223	14	31	46	65	80
355654	236	18	25	42	66	81
355676	258	15	24	49	62	77
15770	31	0	1	0	4	0

As demonstrated in Table 9, Compound No. 355621, Compound No. 355626 Compound No. 355636, Compound No. 355640, Compound No. 355641, Compound No. 355654 and Compound No. 355676 inhibited LMW-PTPase mRNA expression in a dose-dependent manner.

Example 8**Antisense inhibition of LMW-PTPase expression *in vivo*: ob/ob mice**

Leptin is a hormone produced by fat that regulates appetite. Deficiencies in this hormone in both humans and non-human animals leads to obesity. ob/ob mice have a mutation in the leptin gene which results in obesity and hyperglycemia. As such, these mice are a useful model for the investigation of obesity and diabetes and treatments designed to treat these conditions. ob/ob mice have higher circulating levels of insulin and are less hyperglycemic than db/db mice, which harbor a mutation in the leptin receptor. In accordance with the present invention, the oligomeric compounds of the invention are tested in the ob/ob model of obesity and diabetes.

C57Bl/6J-Lep ob/ob mice (Jackson Laboratory, Bar Harbor, ME) are subcutaneously injected with Compound No. 288267 (SEQ ID NO: 186) at a dose of 25 mg/kg two times per week for 4 weeks (n=5). Saline-injected animals serve as controls (n=4). After the treatment period, mice are sacrificed and target levels were evaluated in liver and in fat. RNA isolation and target mRNA expression level quantitation were performed as described by other examples herein. Animals treated with Compound No. 288267 on average showed 90% reduction in liver LMW-PTPase levels as compared to saline treated control animals. LMW-PTPase mRNA levels in epididymal fat were reduced 70% on average in animals treated with Compound No. 288267.

To assess the physiological effects resulting from inhibition of target mRNA, the ob/ob mice were evaluated at the end of the treatment period (day 28) for serum triglycerides and serum glucose levels. These parameters were measured by routine clinical analyzer instruments (e.g. Olympus Clinical

Analyzer, Melville, NY). At day 28, the average triglyceride levels measured for saline-treated control animals was 168 mg/dL, while the average for animals treated with Compound No. 288267 was 75 mg/dL. At day 28, glucose was 491 mg/dL for animals treated with saline alone and 258 mg/dL for animals treated with Compound No. 288267. Therefore, treatment with Compound No. 288267 caused substantial decreases in glucose and in triglyceride levels. Therefore, one embodiment of the present invention is a method of lowering glucose by administering an oligomeric compound of the invention, and another embodiment of the present invention is a method of lowering triglycerides by administering an oligomeric compound of the invention. In one embodiment, the triglycerides are blood, plasma, or serum triglycerides. Another embodiment of the current invention is a method of ameliorating or lessening the severity of a condition in an animal. In some embodiments, the condition is diabetes. In some embodiments, the diabetes is type II diabetes. In other embodiments, the condition is metabolic syndrome.

To further assess the effects of inhibition of target mRNA on glucose metabolism, fasted serum glucose was measured via routine clinical analysis. The average fasted serum glucose level for animals treated with Compound No. 288267 was 194 mg/dL, while the average fasted level measured for animals treated with saline alone was 330 mg/dL. Therefore, another embodiment of the present invention is a method of lowering serum glucose.

Insulin levels were also measured after four weeks of treatment using a commercially available kit (e.g. Alpco insulin-specific ELISA kit, Windham, NH). Treatment with Compound No. 288267 caused about a 45% reduction in circulating plasma insulin levels. Decreased insulin levels can indicate improvement in insulin sensitivity. In one embodiment, the present invention provides methods of improving insulin sensitivity. In a further embodiment, decreased insulin levels are indicative of improved insulin sensitivity.

At the end of the study, mice were sacrificed and tissues were weighed. The average liver and spleen weights were not substantially altered by treatment with Compound No. 288267 as compared to saline-treated controls. Epididymal white adipose tissue weight was reduced by about 10% in animals treated with Compound No. 288267. Therefore, another embodiment of the present invention is a method of reducing adiposity in an animal by administering an oligomeric compound of the invention.

Example 9

Effect of antisense inhibition of LMW-PTPase on insulin receptor phosphorylation in ob/ob mice

To assess the effects of inhibition of LMW-PTPase on receptor phosphorylation, a bolus of insulin (2U/kg) was administered about 8 to 9 minutes prior to sacrifice to a group of the ob/ob mice treated with Compound No. 288267 (SEQ ID NO: 186) or saline as described in Example 8. Liver samples were pooled and subjected to standard immunoprecipitation and Western blot procedures and analyses. Briefly, tissues were lysed in lysis buffer (150mM NaCl, 50 mM Tris, pH 7.5, 1% Triton X-100, 0.5% NP-40, 0.25% Nadeoxycholate, 1 mM EDTA, 1 mM EGTA, 1 mM NaOV, 1 mM NaF, and

protease inhibitor cocktail I (Calbiochem). The lysates were clarified by centrifugation for 15 min. at 12000 g. The clarified lysates were first incubated with protein agarose A/G beads (1:1 ratio) for 3-4 h at 4.deg.C followed by incubation with anti-phosphotyrosine antibody for another 3-4h at 4.deg.C. The immune complex was then washed with lysis buffer, boiled in Laemmli's sample buffer, and analyzed by Western blot. The membrane was blotted with a commercially available anti-insulin receptor beta (IR-beta) subunit antibody (Santa Cruz, CA). The signal was detected by using a commercially available HRP-conjugated goat anti-rabbit IgG antibody and ECL.

Quantitation of the resulting bands showed approximately a 4 to 6-fold increase in phosphorylation of the insulin receptor upon insulin stimulation in the samples from animals treated with Compound No. 288267 as compared to that measured for saline-treated controls. These data suggest improved insulin sensitivity upon treatment with antisense oligonucleotides targeted to LMW-PTPase.

Example 10

Effect of antisense inhibition of LMW-PTPase on PI3-K activity in ob/ob mice

To further assess the role of LMW-PTPase in the insulin receptor signaling pathway and to assess the effects of antisense inhibition of LMW-PTPase on insulin action, clarified lysates prepared as described in Example 11 from livers or fat tissue of ob/ob mice treated as described in Examples 8 and 9, and were subjected to further analyses.

Phosphatidyl inositol 3-kinase (PI3-K) is an enzyme activated downstream of insulin-receptor stimulation. PI3-kinase activity was measured using methods known in the art (Pandey et al., Biochemistry, 1998, 37, 7006-7014). Briefly, the clarified lysates were subjected to immunoprecipitation with IRS-1/2 antibody (1 ug) for 2 h at 4.deg.C, followed by incubation with protein A/G sepharose for an additional 2h. The immune complexes were washed and subjected to in vitro PI3-Kinase assay using L-alpha-phosphatidylinositol (PI) as an exogenous substrate. The phosphorylated lipid was isolated and separated by thin-layer chromatography (TLC). The TLC plate was exposed to Kodak film, and the radioactive spots associated with the product of PI3-K activity (PIP2) was scratched off of the TLC plates and counted in a scintillation counter. Average results from the scintillation counts are shown in Table 10 in arbitrary units for the livers from each treatment group with or without insulin. The antibody used for the immunoprecipitation is shown in the column designated "IP" (IRS-1 or IRS-2).

Table 10

Effects of antisense inhibition of LMW-PTPase on PI3-K activity in ob/ob mouse liver

Treatment group	IP	PI3-K activity (arbitrary units)	
		- Insulin	+ Insulin
Saline	IRS-1	260853	257907
Compound No. 288267	IRS-1	291982	674202
Saline	IRS-2	596	677
Compound No. 288267	IRS-2	679	1092

As shown in Table 10, Compound No. 288267 (SEQ ID NO: 186) caused increases in insulin-stimulated PI3-K activity above the increases observed for animals treated with saline.

Approximate results from the scintillation counts are shown in Table 11 as averages in arbitrary units for adipose tissue from each treatment group with or without insulin. The antibody used for the immunoprecipitation was IRS-1.

Table 11

Effects of antisense inhibition of LMW-PTPase on PI3-K activity in ob/ob mouse fat tissue

Treatment group	PI3-K activity (arbitrary units)	
	- Insulin	+ Insulin
Saline	319	365
Compound No. 288267	438	725

As shown in Table 11, Compound No. 288267 caused increases in insulin-stimulated PI3-K activity above the increases observed for animals treated with saline. Taken together, these results demonstrate a novel role for LMW-PTPase in insulin action and show that antisense inhibition of LMW-PTPase improves insulin signaling in ob/ob mice. Therefore another embodiment of the present invention is a method of improving insulin signaling in an animal by administering an oligomeric compound of the invention.

Example 11

Effect of antisense inhibition of LMW-PTPase on insulin signaling: *in vitro* studies

In accord with the present invention, the effects of antisense oligonucleotides targeted to LMW-PTPase on insulin-signaling were investigated in primary hepatocytes cultured from ob/ob mice using methods described herein. The ob/ob primary hepatocytes were treated with Compound No. 288267 (SEQ ID NO: 186) or the control oligonucleotide Compound No. 141923 (SEQ ID NO: 274) by transfection methods described herein. Treated cells were incubated for 10 minutes in the absence or presence of 100 nM insulin. Cells treated with transfection reagent alone served as controls.

Cell lysates were prepared and subjected to immunoprecipitation with anti-phosphotyrosine antibody followed by Western blot analysis using an anti-IR-.beta. antibody (Santa Cruz, CA) via standard methods. Cells treated with Compound No. 288267 showed a larger increase in insulin-stimulated IR-.beta. phosphorylation than was observed for control cells or cells treated with Compound No. 141923.

In a similar experiment using a commercially available antibody which recognizes phosphorylated Akt (Cell Signaling, Boston, MA), cells treated with Compound No. 288267 showed a larger increase in insulin-stimulated Akt phosphorylation than was observed for control cells or cells treated with Compound No. 141923. These data demonstrate that LMW-PTPase plays a role in the insulin signaling pathway.

Antisense compound modulation of LMW-PTPase expression levels was determined

using primary mouse hepatocytes by treating the cells with 100 ng of Compound No. 288267 or with vehicle as described above. Following incubation, the cells were lysed in RTL buffer and total RNA was isolated using QIAGEN RNA easy kits (Qiagen, Valencia, CA). RT-PCR was performed as described above. These data showed an approximate 90% reduction in LMW-PTPase mRNA levels compared to control. A corresponding reduction in LMW-PTPase protein levels was seen by western blot analysis of the LMW-PTPase protein. Interestingly, there was no significant reduction in PTP1b levels in the presence of Compound No. 288267 compared to control cells (antibody available from Upstate Cell Signaling Solutions).

To further determine the action of LMW-PTPase antisense compounds on the insulin signaling pathway duplicate cell culture well comprising primary mouse hepatocytes were treated with 100 ng of either Compound No. 288267, Compound No. 288291, control Compound No. 141923, an antisense inhibitor of PTP1b or a combination of Control No. 288291 and the antisense inhibitor of PTP1b. A saline treated control was used as well. For each treatment group, one of the wells was incubated with 5nM of insulin for 10 minutes. Following incubation the cell were analyzed for levels of phosphorylated IR-.beta., phosphoAkt, unphosphorylated Akt, PTP1b or LMW-PTPase using western blot techniques. These data show that IR-.beta. is phosphorylated in the presence of LMW-PTPase antisense compounds, but not in the presence of PTP-1b antisense compounds either alone or combined with the LMW-PTPase antisense compound. Western blot techniques are well known to those of ordinary skill in the art and antibodies are readily available from a number of commercial vendors (e.g., Upstate Cell Signaling Solutions, Charlottesville, VA). (Harlow, E and Lane, D., *Antibodies: A Laboratory Manual*, (1988) Cold Spring Harbor Press).

Example 12

Design of oligomeric compounds targeting human LMW-PTPase

A series of oligomeric compounds was designed to target different regions of human LMW-PTPase, using published sequences cited in Table 1. The compounds are shown in Table 12. All compounds in Table 12 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of 10 2’-deoxynucleotides, which is flanked on both sides (5’ and 3’) by five-nucleotide “wings”. The wings are composed of 2’-O-(2-methoxyethyl) nucleotides, also known as 2’-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

Table 12

Chimeric oligonucleotides having 2’-MOE wings and deoxy gap targeting human LMW-PTPase

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	SEQ ID NO
105809	1	1	ACCCCGTTCCGCACGCC	279
105811	1	41	TAGCCTGTTCCGCCATCTTC	280
105812	1	241	GCTCATGGGAATGCCGTGCC	281
105813	1	271	ATCTTCTTGGTAATCTGCC	282
105814	1	421	ATAGGGATCTTCAATAATAA	283

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	SEQ ID NO
105815	1	451	CACCGTCTCAAAGTCAGAGT	284
105816	1	571	CCGACTGAGAAATGCAGGAC	285
105817	1	611	AACAAAGAGCTGGCTTGGG	286
105818	1	671	CAAACACAACGTGATTCCAT	287
105819	1	701	TGAATCAAACATTTTATTG	288
105820	1	781	TTGTTCTACTATTTTGTAA	289
105821	1	811	GTGAGGTTTCCTTCATTGT	290
105822	1	961	ACTACTGTCAATCCACAAAA	291
105823	1	1051	TCTTCCTATCTTTCAATA	292
105824	1	1091	GTATTGAAGGTGCCAACGAC	293
105825	1	1171	TAAGTTTCAGAGGAAAGTG	294
105826	1	1201	CATACAAGTGTCCCTCTTC	295
105827	1	1291	TTATTTAAAAAATAAGCCA	296
105828	1	1321	AAATAATAACACTTTCCCA	297

Example 13

Design of oligomeric compounds targeting mouse LMW-PTPase

A series of oligomeric compounds was designed to target different regions of mouse LMW-PTPase, using published sequences cited in Table 1. The compounds are shown in Table 13. All compounds in Table 13 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of 10 2'-deoxynucleotides, which is flanked on both sides (5' and 3') by five-nucleotide “wings”. The wings are composed of 2'-O-(2-methoxyethyl) nucleotides, also known as 2'-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

Table 13

Chimeric oligonucleotides having 2'-MOE wings and deoxy gap targeting mouse LMW-PTPase

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	SEQ ID NO
349037	11	246	AGGTTTAGTTAGTCTAAGAA	298
349038	11	248	AGAGGTTAGTTAGTCTAAG	299
349039	11	250	TCAGAGGTTAGTTAGTCTA	300
349040	11	254	AAGGTTCAGAGGTTAGTTAG	301
349041	11	256	GCAAGGTTCAGAGGTTAGTT	302
349042	11	258	CCGCAAGGTTCAGAGGTTAG	303
349043	11	296	TTTGTCCATATTGCTTGT	304
349044	12	307	ATGGGTGACCGGCAAATGTT	305
349045	12	308	AATGGGTGACCGGCAAATGT	306
349046	12	311	TGCAATGGGTGACCGGCAA	307
349047	12	312	CTGCAATGGGTGACCGGCAA	308
349048	12	313	TCTGCAATGGGTGACCGGCA	309
349049	12	314	TTCTGCAATGGGTGACCGGC	310
349050	12	315	CTTCTGCAATGGGTGACCGG	311
349051	12	316	GCTTCTGCAATGGGTGACCG	312
349052	12	318	CTGCTTCTGCAATGGGTGAC	313
349053	12	320	TACTGCTTCTGCAATGGGTG	314

Compound No.	Target SEQ ID NO	Target Site	Sequence (5' to 3')	SEQ ID NO
349054	12	322	AATACTGCTTCTGCAATGGG	315
349055	12	327	TCCTGAATACTGCTTCTGCA	316
349056	12	330	GTTCCTGAATACTGCTTCT	317
349057	12	332	CAGTTTCCTGAATACTGCTT	318
349058	12	335	TACCAAGTTCCCTGAATACTG	319
349059	12	337	GTTACCAAGTTCCCTGAATAC	320
349060	12	339	CAGTTACCAAGTTCCCTGAAT	321
349061	11	477	TGTATGCTCGCTCCTCCTCT	322
349062	12	503	ATCGAATGTGGCAAAGTCTT	323
349063	11	506	CCGGCGCGCTCGCTCCGTCT	324
349064	12	507	TATAATCGAATGTGGCAAAG	325
349065	12	509	TATATAATCGAATGTGGCAA	326
349066	12	512	TAGTATATAATCGAATGTGG	327
349067	12	513	ATAGTATATAATCGAATGTG	328
349068	12	515	ACATAGTATATAATCGAATG	329
349069	12	517	ATACATAGTATATAATCGAA	330
349070	12	531	GATTGCTTCATCCATACAT	331
349071	12	533	CAGATTGCTTCATCCATAC	332
349072	12	536	TCTCAGATTGCTTCATCCA	333
349073	11	537	TTGTCGCCTCCCGCGTCGTG	334
349074	12	539	ATCTCTCAGATTGCTTCAT	335
349075	12	541	AGATCTCTCAGATTGCTTC	336
349076	12	543	TGAGATCTCTCAGATTGCTT	337
349077	11	574	CTCCTGCCACATGTAGTCG	338
349078	11	643	CTGCTCGGCCCTTATTTC	339
349079	12	665	CACCTCGAAGTCAGAGTCAT	340
349080	12	667	ACCACCTCGAAGTCAGAGTC	341
349081	12	669	ACACCACCTCGAAGTCAGAG	342
349082	12	670	TACACCACCTCGAAGTCAGA	343
349083	12	671	GTACACCACCTCGAAGTCAG	344
349084	12	672	GGTACACCACCTCGAAGTCA	345
349085	12	674	CTGGTACACCACCTCGAAGT	346
349086	12	675	GCTGGTACACCACCTCGAAG	347
349087	12	676	TGCTGGTACACCACCTCGAA	348
349088	11	676	TACGACCGCGACGGCCCGGT	349
349089	12	677	TTGCTGGTACACCACCTCGA	350
349090	11	745	CGAAGGTTCGTGTACTC	351
349091	11	824	GCGTTGGCGCGTCGCTGCTG	352
349092	11	876	GGGTGGTAGTGGCGGGTGGG	353
349093	11	931	GTGGCTGGGTGGTTCGTGT	354

Example 14

Antisense inhibition of LMW-PTPase expression *in vivo*: mouse model of diet-induced obesity

The C57BL/6 mouse strain is reported to be susceptible to hyperlipidemia-induced atherosclerotic plaque formation. When these mice are fed a high-fat diet, they develop diet-induced obesity. Accordingly these mice are a useful model for the investigation of obesity and treatments designed to treat this conditions. In a further embodiment of the present invention, the oligomeric compounds of the invention are tested in a model of diet-induced obesity.

Male C57BL/6 mice received a 60% fat diet for about 12-13 weeks, after which mice were subcutaneously injected with Compound No. 288267 (SEQ ID NO: 186), an antisense oligonucleotide targeted to LMW-PTPase, or the control compound Compound No. 141923 (SEQ ID NO: 274) at a dose of 25 mg/kg two times per week for 6 weeks. Each treatment group was comprised of about 8 to 10 animals. Saline-injected high-fat fed animals serve as a control. As an additional control, mice fed a normal chow diet were treated with saline alone.

Body weight and accumulated food intake were measured throughout the study for each treatment group. No significant alterations in accumulated food intake were observed for the animals fed a high-fat diet, regardless of the treatment. At the end of the study, body composition was assayed by MRI. Treatment with Compound No. 288267 caused about a 12% decrease in fat content of the high-fat fed mice over the treatment period. The fat content of high-fat fed animals treated with saline alone or with the control compound Compound No. 141923 did not decrease over the course of the study. Therefore, another embodiment of the present invention is a method of reducing adiposity in an animal by administering an oligomeric compound targeted to LMW-PTPase.

To assess the physiological effects resulting from inhibition of target mRNA, the diet-induced obese mice that received treatment were further evaluated at beginning of the study (week 0), during the 3rd week of treatment (week 3.5), and at the end of the treatment period (week 6) for plasma triglyceride and plasma cholesterol levels. Triglycerides and cholesterol are measured by routine clinical analyzer instruments (e.g. Olympus Clinical Analyzer, Melville, NY). Average results for each treatment group are shown in Table 14 in mg/dL.

Table 14
Effects of antisense inhibition of LMW-PTPase on plasma lipid levels

Treatment	Cholesterol			Triglycerides		
	Week 0	Week 3.5	Week 6	Week 0	Week 3.5	Week 6
Saline, high-fat fed	176	175	184	83	65	76
Compound No. 141923	182	174	181	78	70	59
Compound No. 288267	176	157	136	79	60	56
Saline, normal diet	82	68	68	74	76	61

As shown in Table 14, Treatment with Compound No. 288267 caused a decrease in plasma cholesterol in diet-induced obese mice. Therefore embodiments of the present invention include methods of lowering cholesterol in an animal by administering an oligomeric compound of the invention.

The effects of target inhibition on glucose and insulin metabolism were also evaluated in the diet-induced obese mice treated with the oligomeric compounds of the invention. Plasma glucose was measured at beginning of the study (week 0), during the 3rd week of treatment (week 3.5), and at the end of the treatment period (week 6). Plasma insulin was similarly measured at beginning of the study (week 0), during the 3rd week of treatment (week 3.5), and at the end of the treatment period (week 6). Glucose levels were measured using standard methods (for example, with a YSI glucose analyzer, YSI Scientific,

Yellow Springs, OH) and insulin levels were measured using a commercially available kit (for example, an Alpco insulin-specific ELISA kit, Windham, NH). Hypoglycemia was not observed in animals treated with Compound No. 288267. Insulin levels are shown in Table 15 as a percentage of insulin levels measured for high-fat fed animals treated with saline alone.

Table 15

Effects of antisense inhibition of LMW-PTPase on blood glucose and insulin levels

Treatment	Insulin		
	Week 0	Week 3.5	Week 6
Saline, high-fat fed	100	114	179
Compound No. 141923	100	107	164
Compound No. 288267	100	86	100
Saline, normal diet	21	86	79

As shown in Table 15, treatment with Compound No. 288267 prevented the increase in insulin levels over the course of the study observed in high-fat fed animals treated with saline or with the control compound Compound No. 141923. Therefore, another embodiment of the present invention is a method of improving insulin sensitivity in an animal by administering an oligomeric compound targeted to LMW-PTPase. In one embodiment, improved insulin sensitivity is indicated by a reduction in circulating insulin levels.

Glucose tolerance tests were also administered in fasted mice. During the fifth week of treatment, mice were fasted overnight and then received intraperitoneal injections of glucose at a dose of 1g/kg, and the blood glucose were measured before the glucose challenge and at 30 minute intervals for up to 2 hours. Results are shown in Table 16 for each treatment group.

Table 16

Effects of antisense inhibition of LMW-PTPase on glucose tolerance

Treatment	Glucose (mg/dL)				
	0 min.	30 min.	60 min.	90 min.	120 min.
Saline, high-fat fed	110	346	264	219	194
Compound No. 141923	112	317	243	210	185
Compound No. 288267	118	277	210	188	168
Saline, normal diet	100	249	184	151	133

A plot of the data in Table 16 as glucose level as a function of time allows for comparison of the area under the curve for each treatment group. These data reveal improved glucose tolerance in high-fat fed animals treated with Compound No. 288267. Therefore, another aspect of the

present invention is a method of improving glucose tolerance in an animal by administering an oligomeric compound of the invention.

Insulin tolerance tests were also administered in fasted mice. During the fourth week of treatment, mice were fasted for approximately 4 to 5 hours, and then received intraperitoneal injections of insulin at a dose of 0.5U/kg. Glucose levels were measured before the insulin challenge and at 30 minute intervals for up to 2 hours. Results are shown in Table 17.

Table 17

Effects of antisense inhibition of LMW-PTPase on insulin tolerance

Treatment	Glucose (mg/dL)				
	0 min.	30 min.	60 min.	90 min.	120 min.
Saline, high-fat fed	218	122	123	129	154
Compound No. 141923	208	127	108	116	145
Compound No. 288267	172	104	87	88	117

) A plot of the data in Table 17 as glucose level as a function of time allows for comparison of the area under the curve for each treatment group. These data reveal improved insulin tolerance in high-fat fed animals treated with Compound No. 288267. Therefore, another aspect of the present invention is a method of improving insulin tolerance in an animal by administering an oligomeric compound of the invention.

Example 15

Antisense inhibition of LMW-PTPase expression in a mouse model of diet-induced obesity

Liver and fat tissues from C57BL/6 mice fed a high fat diet and treated as described in Example 14 were further evaluated at the end of the study for target reduction. Analysis of target reduction in tissues was performed as described herein. Treatment with Compound No. 288267 reduced LMW-PTPase gene expression by about 90% in liver and about 75% in fat (white adipose tissue), whereas treatment with Compound No. 141923 did not reduce LMW-PTPase expression in either tissue. Treatment with Compound No. 288267 also caused a significant reduction in hepatic glucose-6-phosphatase expression, suggesting a suppression of hepatic glucose output. Treatment with Compound No. 288267 did not have an effect on the expression of SHP2, SHPTP2 or PTEN expression. Similar results are seen with ob/ob mice. Therefore, another embodiment of the present invention is a method of reducing hepatic glucose output in an animal by administering an oligomeric compound of the invention. Another embodiment of the present invention is a method of modulating genes involved in glucose metabolism by administering an oligomeric compound of the invention. In one embodiment, the modulated gene is glucose-6-phosphatase.

Liver triglyceride levels were also assessed, using a commercially available kit (for example, using the Triglyceride GPO Assay from Roche Diagnostics, Indianapolis, IN). Liver

triglyceride content was reduced with Compound No. 288267 treatment as compared to treatment with Compound No. 141923 (about 35 mg/g vs. about 56 mg/g tissue, respectively).

Hepatic steatosis may also be assessed by routine histological analysis of frozen liver tissue sections stained with oil red O stain, which is commonly used to visualize lipid deposits, and counterstained with hematoxylin and eosin, to visualize nuclei and cytoplasm, respectively.

Therefore, another embodiment of the present invention is a method of decreasing hepatic triglyceride accumulation in an animal by administering an oligomeric compound of the invention. Another embodiment of the present invention is a method of treating steatosis in an animal by administering an oligomeric compound of the invention. In one embodiment, the steatosis is steatohepatitis. In one embodiment, the steatosis is NASH.

Another embodiment of the present invention is a method of treating diabetes or metabolic syndrome comprising administering an oligomeric compound of the invention. In some embodiments, the oligomeric compound inhibits LMW-PTPase expression in the liver, in fat, or in both tissues.

CLAIMS

What is claimed is:

1. A chimeric antisense compound of 15 to 35 nucleobases comprising at least two chemical modifications and targeted to at least a 12 nucleobase portion of an active target segment of SEQ ID NO: 5, wherein the active target segment is selected from the group consisting of Region BA, Region BB, Region BC, Region BD, Region BE, Region BF, Region BG, Region BH, Region BI, Region BJ and Region BK.
2. The compound of claim 1, wherein the compound is targeted to at least a 20 nucleobase portion of an active target segment of SEQ ID NO: 5, wherein the active target segment is selected from the group consisting of Region BA, Region BB, Region BC, Region BD, Region BE, Region BF, Region BG, Region BH, Region BI, Region BJ and Region BK.
3. The compound of claim 1, comprising 15 to 30 nucleobases in length.
4. The compound of claim 1, comprising 18 to 22 nucleobases in length.
5. The compound of claim 1 comprising less than 4 mismatches to the target nucleic acid.
6. The compound of claim 1 wherein the chemical modification is selected from a group consisting of at least one modified internucleoside linkage, at least one modified nucleobase, at least one modified sugar and a combination thereof.
7. The compound of claim 6 wherein the modified internucleoside linkage comprises a phosphorothioate linkage.
8. The compound of claim 6 wherein the modified sugar moiety comprises a high affinity modification comprising a 2'-O-(2-methoxyethyl), a 2-O-methyl, an LNA, an ENA or a combination thereof.
9. The compound of claim 1 wherein the chimeric antisense compound comprises deoxynucleotides in a first region, at least one high affinity modified sugar in each of a second region and a third region, which flank the first region on the 5' end and the 3' end, respectively, and at least one phosphorothioate modified internucleoside linkage.
10. The compound of claim 9 wherein the first region is ten deoxynucleotides in length, the

second and third regions are each five nucleotides in length and comprise five 2'-O-(2-methoxyethyl) nucleotides, and each internucleoside linkage in the chimeric oligonucleotide is a phosphorothioate.

11. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable penetration enhancer, carrier, or diluent.

12. A method of lowering triglyceride levels in an animal comprising the step of administering an oligomeric compound of any one of claims 1-11.

13. The method of claim 12 wherein the triglyceride levels are blood, plasma, or serum triglyceride levels.

14. A method of improving insulin sensitivity in an animal comprising the step of administering an oligomeric compound of any one of claims 1-11.

15. A method of improving insulin sensitivity in an animal comprising the step of administering an oligomeric compound of any one of claims 1-11, wherein improvement of insulin sensitivity is measured as a reduction in insulin levels.

16. A method of lowering blood glucose levels in an animal comprising the step of administering an oligomeric compound of any one of claims 1-11.

17. A method of lowering cholesterol in an animal comprising the step of administering an oligomeric compound of any one of claims 1-11.

18. The method of claim 17 wherein cholesterol is LDL cholesterol.

19. The method of claim 17 wherein cholesterol is VLDL cholesterol.

20. A method of improving glucose tolerance in an animal comprising the step of administering an oligomeric compound of any one of claims 1-11.

21. A method of ameliorating or lessening the severity of a condition in an animal comprising contacting said animal with an effective amount of the compound of any one of claims 1-11 so that expression of LMW-PTPase is inhibited and measurement of one or more physical indicator of said condition indicates a lessening of the severity of said condition.

22. The method of claim 21 wherein the condition is diabetes.

23. The method of claim 22 wherein the diabetes is type II.
24. The method of claim 21 wherein the condition is obesity.
25. The method of claim 24 wherein the obesity is diet-induced.
26. The method of claim 21 wherein the condition is obesity and the physical indicator is reduced body fat.
27. The method of claim 21 wherein the condition is insulin resistance.
28. The method of claim 21 wherein the condition is insulin deficiency.
29. The method of claim 21 wherein the condition is hypercholesterolemia.
30. A method for the prevention, amelioration, or treatment of a disease or condition associated with reduced insulin sensitivity comprising administration of the compound of any of claims 1-11 to an individual in need of such intervention.
31. A method for designing and synthesizing an antisense compound for inhibiting a nucleic molecule encoding LMW-PTPase, comprising:
 - (a) identifying a nucleotide sequence within an active target region to which an to target an antisense compound and
 - (b) synthesizing an antisense compound having a complementary nucleotide sequence to the identified nucleotide sequence and with less than 4 mismatched nucleobases.
32. The method of claim 31 wherein the active target segment is selected from the group consisting of Region BA, Region BB, Region BC, Region BD, Region BE, Region BF, Region BG, Region BH, Region BI, Region BJ and Region BK of SEQ ID NO: 5.
33. The method of claim 31 wherein the active target segment is selected from the group consisting of Region AA, Region AB, Region AC, Region AD, Region AE, Region AF, Region AG, Region AH, Region AI, Region AJ and Region AK of SEQ ID NO: 4.
34. The method of claim 31 wherein the active target segment is selected from the group consisting of Region A, Region B, Region C, Region D, Region E, Region F, Region G, Region H, Region I, Region J and Region K of SEQ ID NO: 3.

35. The method of claim 31 wherein antisense compound is a chimeric compound 15 to 35 nucleobases in length and comprising at least one chemical modification.

36. The method of claim 35 wherein the chemical modification comprises at least one modified internucleoside linkage, at least one modified nucleobase, at least one modified sugar or a combination thereof.

37. The method of claim 36 wherein the modified internucleoside linkage comprises a phosphorothioate linkage.

38. The method of claim 36 wherein the modified sugar moiety comprises a high affinity modification comprising a 2'-O-(2-methoxyethyl), a 2-O-methyl, an LNA, an ENA or a combination thereof.

39. The method of claim 36 wherein the modified nucleobase comprises a 5-methyl cytosine.

40. The method of claim 35 wherein the chimeric antisense compound comprises deoxynucleotides in a first region, at least one high affinity modified sugar in each of a second region and a third region, which flank the first region on the 5' end and the 3' end, respectively, and at least one phosphorothioate modified internucleoside linkage.

41. The method of claim 40 wherein the first region is ten deoxynucleotides in length, the second and third regions are each five nucleotides in length and comprise five 2'-O-(2-methoxyethyl) nucleotides, and each internucleoside linkage in the chimeric oligonucleotide is a phosphorothioate.

RTS0753WOSEQ.txt

SEQUENCE LISTING

<110> Sanjay K. Pandey
 Robert McKay
 Sanjay Bhanot
 Xing-Xian Yu

<120> COMPOSITIONS AND THEIR USES DIRECTED TO
 LMW-PTPase

<130> RTS-0753WO

<150> 60/684,400
 <151> 2005-05-24

<150> 60/742,207
 <151> 2005-12-01

<160> 363

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1521

<212> DNA

<213> Homo sapiens

<400> 1

gggggcgtgc	ggaacgggt	gtctcgccgc	ctctgcgcgg	gaagatggcg	gaacaggcta	60
ccaaagtccgt	gctgtttgtg	tgtctgggta	acatttgcg	atcacccatt	gcagaagcgag	120
ttttcagggaa	acttgtaacc	gatcaaaaaca	tctcagagaa	ttggagggta	gacagcgcgg	180
caacttcggg	gtatgagata	gggaaaccccc	ctgactaccg	agggcagagc	tgcataaga	240
ggcacggcat	tcccattgagc	cacgttgcgc	ggcagattac	caaagaagat	tttgcacat	300
ttgatttatat	actatgtatg	gatgaaagca	atctgagaga	tttgaataga	aaaagtaatc	360
aagttaaaac	ctgcaaaagct	aaaattgaac	tacttggag	ctatgatcca	aaaaaacaac	420
ttatttatga	agatccctat	tatggaaatg	actctgactt	tgagacgggt	taccacgt	480
gtgtcaggtg	ctgcagagcg	ttcttgagaa	aggcccactg	aggcagggtc	gtgcctgtct	540
gcggccagcc	tgactagacc	ccaccctgag	gtcctgcatt	tctcagtcgg	tgtgtatca	600
cgttccaggg	ccccaaagcca	gctctttgtt	cagttgactt	actgtttctt	accttaaaaa	660
gtaatttgtt	atggaaatca	gttggatgtt	cgaggagaat	caataaaaaa	ttttgattca	720
gacagcttat	ggggattttt	aagcattttt	agactatgtt	aacatctcac	tttgcacccag	780
ttacaaaaat	agttagaacaa	gcaacataaa	acaatgaagg	aaaacctcac	ttgaaggccc	840
aggtcaacat	ctaagcctgt	tgagacttag	ataatcgagt	ctacctcttc	agttagtttg	900
tgtggatggc	ctggaggcag	tgcttgctc	cccagtgcata	cctctcttt	ccctaggccc	960
ttttgttgat	tgacagtagt	cccctccgt	gagctcacag	tctagattag	aagtgtttta	1020
atttctacac	accatagtg	cacacttgt	tattggaaag	atagggaaga	gagaaacatt	1080
tatggaaatca	gtcggtggca	ccttcaatac	ttcatgattt	ttgtcgagg	tacttcatga	1140
ggaggtcagc	ccattggctc	ccatctgaac	cacttgcct	ctgaaaactt	attacatcca	1200
gaaagaagga	cacttgtatg	ctagtctatg	gtcagttgag	gaatatgact	ttttttatat	1260
gcacatgtaa	cccaaatgtc	caatataaaat	tggcttattt	ttttaaaaataa	ttttaaaagt	1320
tggaaaagt	gttatttttt	ggcatgccta	aatattgaat	aagtattctt	catcagcatt	1380
taataaaatgt	ataggcagat	gtaaggtaat	ttctgtgtat	tttgagataa	tgtcaaaatc	1440
atgaatattt	caaaaataaac	tggggagttt	taaaaaataca	actagagata	taaaaaaaaaa	1500
aaaaaaaaaa	aaaaaaaaacc	c				1521

<210> 2

<211> 1468

<212> DNA

<213> Homo sapiens

<400> 2

caggctacca	agtccgtct	gtttgtgtgt	ctgggtaaca	tttgcgatc	acccattgca	60
gaagcagttt	tcagggaaact	tgttaaccgt	caaaacatct	cagagaattt	ggtcattgac	120
agcgggtctg	tttctgactg	gaacgtgggc	cggtccccag	acccaagagc	tgtgagctgc	180
ctaagaaatc	atggcattca	cacagccat	aaagcaagac	agattaccaa	agaagatttt	240
gccacatttt	attatatact	atgtatggat	gaaagcaatc	tgagagattt	gaatagaaaa	300

RTS0753WOSEQ.txt

agtaatcaag	ttaaaacctg	caaagctaaa	attgaactac	ttgggagcta	tgatccacaa	360
aaacaactta	ttattgaaga	tccctattat	ggaaatgact	ctgacttgc	gacggtgtac	420
cagcagtgtg	tcaggtgctg	cagagcggtc	ttggagaagg	cccactgagg	caggttcgtg	480
ccctgctcg	gccagcctga	ctagacccca	ccctgagggtc	ctgcatttc	cagtcgggt	540
gtaatcacgt	tccaggccc	aaagccagct	cttgcattcg	ttgacttact	gtttcttacc	600
ttaaaaagta	attgttagatg	gaaatcagg	gtgttggca	ggagaatcaa	aaaaaatgtt	660
tgattcagac	agcttatggg	gtatTTtaag	catttttaga	ctagttgaac	atctcacttt	720
gcccaggtt	caaaaatagt	agaacaagca	acataaaaaca	atgaaggaaa	acctcacttg	780
aaggcccagg	tcaacatcta	agcctgttga	gacttagata	atcgagtcta	cctcttcagt	840
aggTTTgtt	ggatggcctg	gaggcagggt	cttgcctccc	agtgcac	ctctcttccc	900
tagggcctt	tgtggattga	cagtgtccc	ctccgttagag	ctcacagtct	agattagaag	960
tgtTTtaatt	tctacacacc	catagtgcac	acttgcata	tgaaaagata	gggaagagag	1020
aaacatttat	ggaatcagtc	gttggcacct	tcaactacttc	atgatTTTtg	tcgagttac	1080
ttcatgagga	ggtcagccca	ttggctccca	tctgaaccac	tttgcctctg	aaacttaatt	1140
acatccggaa	agaaggacac	ttgtatggc	gtctatggc	agtggagaa	tatgactgtt	1200
tttatatgca	catgtaccc	aaatgtccaa	tataattgg	cttattttt	aaaataattt	1260
taaaagtgg	gaaaagtgtt	attatTTggc	atgcattaaat	attgaataag	tattttcat	1320
cagcatttaa	taaatgtata	ggcagatgta	aggtaatttc	tgtgtatTTt	gagataatgt	1380
caaaatcatg	aatatTTcaa	aataaaactgg	ggagttataa	aaatacaact	agagatataa	1440
aaaaaaaaaa	aaaaaaaaaa	aaaaaacc				1468

<210> 3

<211> 1549

<212> DNA

<213> Homo sapiens

<400> 3

tggcagtgcg	cctgcgccgc	gtcggcgtgc	ggaacgcccgc	ggtgtctcg	cgcctctgcg	60
cgcgggaaga	tggcggaaaca	ggctaccaag	tccgtgctgt	ttgtgtgtct	gggtaacatt	120
tgtcgatcac	ccattgcaga	agcagtttc	aggaaacttg	taaccgatca	aaacatctca	180
gagaatttgg	gggttagacag	cgcggcaact	tccgggtatg	agatagggaa	ccccctgcac	240
taccggggc	agagctgcac	gaagaggc	ggcattccca	ttggccacgt	tgccggcag	300
attaccaag	aagattttgc	cacatttgat	tatatactat	gtatggatga	aagcaatctg	360
agagatttga	atagaaaaag	taatcaagtt	aaaacctgca	aagctaaaat	tgaactactt	420
gggagctatg	atccacaaaa	acaacttatt	attgaagatc	cctattatgg	gaatgactct	480
gactttgaga	cggtgtacca	gcagtgtgc	agggtgtcga	gagcgttctt	ggagaaggcc	540
cactgaggca	ggttcgtgcc	ctgctgcgc	cagcctgact	agaccccacc	ctgaggtcct	600
gcatttc	gtcggtgtgt	aatcagttc	cagggcccaa	agcccagctc	tttggtcagt	660
tgacttactg	tttcttacct	taaaaagtaa	ttgttagatgg	aaatcagttg	ttttggcag	720
gagaatcaat	aaaaatctt	gattcagaca	gcttatgggg	tatTTtaagc	atttttagac	780
tagttgaaca	tctcatttg	ccccagttac	aaaaatagta	gaacaagcaa	cataaaacaa	840
tgaaggaaaa	cctcacttga	aggcccagg	caacatctaa	gcctgttgag	acttagataa	900
tcgagtctac	ctcttcagta	ggtttgcgtg	gatggcctgg	agggcagggt	ccctctgctc	960
cccagtgc	cctctctt	ccctaggggc	ttttgtggat	tgacagtagt	cccccggta	1020
ggagctcaca	gtctagatta	gaagtgttt	aatttctaca	cacccatagt	gcacacttgt	1080
atattgaaaa	gatagggaaag	agagaaacat	ttatggatc	agtcgttggc	accttcaata	1140
cttcatgatt	tttgcgttgt	ttacttcatg	aggaggtcag	cccattggc	cccatctgaa	1200
ccactttgc	tctgaaactt	aattacatcc	agaaagaagg	acacttgc	gctagtctat	1260
ggtcagttga	ggatgtatgc	tgtttttata	tgcacatgt	acccaaatgt	ccaatataaa	1320
ttggcttt	ttttaaaata	atttttaaaag	ttggaaaaag	tgtttatTTt	tggcatgctt	1380
aaatattgaa	taagtattct	tcatcagat	ttaataatgt	tataggcaga	tgttaggtaa	1440
tttctgtgt	ttttgagata	atgtcaaaat	catgaatatt	tcaaaataaa	ctggggagtt	1500
ataaaaaatac	aactagagat	ataaaaaaaa	aaaaaaa	aaaaaaa		1549

<210> 4

<211> 1549

<212> DNA

<213> Homo sapiens

<400> 4

tggcagtgcg	cctgcgccgc	gtcggcgtgc	ggaacgcccgc	ggtgtctcg	cgcctctgcg	60
cgcgggaaga	tggcggaaaca	ggctaccaag	tccgtgctgt	ttgtgtgtct	gggtaacatt	120
tgtcgatcac	ccattgcaga	agcagtttc	aggaaacttg	taaccgatca	aaacatctca	180
gagaatttgg	tcattgcac	cggcgtcttt	tctgacttgc	acgtggggcc	gtcccccagac	240
ccaagagctg	tgagctgcct	aagaaatcat	ggcattcaca	cagcccataa	agcaagacag	300
attaccaag	aagattttgc	cacatttgat	tatatactat	gtatggatga	aagcaatctg	360
agagatttga	atagaaaaag	taatcaagtt	aaaacctgca	aagctaaaat	tgaactactt	420

RTS0753WOSEQ.txt

gggagctatg	atccacaaaa	acaacttatt	attgaagatc	cctattatgg	aatgactct	480
gactttgaga	cgggtacca	gcagtgtgc	agggtctgca	gagcgttctt	ggagaaggcc	540
cactgaggca	gggtcggtcc	ctgctgcggc	cagcctgact	agaccccccacc	ctgaggtcct	600
gcatttctca	gtcgggtgt	aatcacgttc	cagggcccaa	agcccagctc	tttggtcagt	660
tgacttactg	tttcttacct	taaaaagtaa	tttagatgg	aaatcgttg	tgtttgcag	720
gagaatcaat	aaaaatcttt	gattcagaca	gcttatgggg	tatTTTAAGC	attcttagac	780
tagttgaaca	tctcactttt	ccccagttac	aaaaatagta	gaacaagcaa	cataaaacaa	840
tgaaggaaaa	cctcacttga	aggcccaggt	caacatctaa	gcctgtttag	acttagataa	900
tcgagtctac	ctcttcagta	ggttgtgt	gatggcctgg	aggcaggtg	ccctctgctc	960
cccagtgcta	cctctcttctt	ccctaggggcc	ttttgtggat	tgacagtagt	cccctccgt	1020
ggagctcaca	gtctagatta	gaagtgtttt	aatttctaca	cacccatagt	gcacacttgt	1080
atattgaaaa	gatagggaaag	agagaaaacat	ttatggaaatc	agtcttggc	accttcaata	1140
cttcatgatt	tttgcgttgt	ttacttcatg	aggaggtcag	cccatggct	cccatctgaa	1200
ccactttgcc	tctgaactt	aattacatcc	agaaaagaagg	acacttgtat	gctagtctat	1260
ggtcgttgta	ggaatattgac	tgtttttata	tgcacatgt	acccaaatgt	ccaatataaa	1320
ttggcttatt	ttttaaaata	atittaaaag	ttggggaaaag	tgttattatt	tggcatgctt	1380
aaatattgaa	taagtattct	tcatcagcat	ttaataaaatg	tataggcaga	tgtaaaggtaa	1440
tttctgtgt	ttttgagata	atgtcaaaat	catgaatatt	tcaaaataaa	ctggggagtt	1500
ataaaaatac	aactagagat	ataaaaaaaa	aaaaaaa	aaaaaaa		1549

<210> 5

<211> 1578

<212> DNA

<213> Homo sapiens

<400> 5

tggcagtgcg	cctgcgccgc	gtcggcgtgc	ggaacgccgc	ggtgtctcgg	cgcctctgcg	60
cgcgggaaga	tggcggaaaca	ggctaccaag	tccgtctgt	ttgtgtgtct	gggtaacatt	120
tgtcgatcac	ccattgcaga	agcagtttc	aggaaacttg	taaccgtatca	aaacatctca	180
gagaattgga	gggttagacag	cgccggcaact	tccgtgtgg	cattgacagc	ggtgtgttt	240
ctgacttggaa	cgtggggccgg	tcccccagacc	caagagctg	gagctgccta	agaaatcatg	300
gcattcacac	agccccataaa	gcaagacaga	ttaccaaga	agattttgc	acatttgatt	360
atatactatg	tatggatgaa	agaatctga	gagatttga	tagaaaaagt	aatcaagtt	420
aaacctgcaa	agctaaaatt	gaactacttg	ggagctatga	tccacaaaaaa	caacttatta	480
ttgaagatcc	ctattatggg	aatgactctg	actttgagac	ggtgttaccag	cagtgtgtca	540
ggtcgttgta	agcgttcttgc	gagaaggccc	actgaggcag	gtcgtgc	tgctgcggcc	600
agcctacta	gaccccccaccc	tgaggtctgt	catttctcag	tcgggtgt	atcacgttcc	660
agggcccaaa	gcccagctct	ttgttcagtt	gacttactgt	ttcttacctt	aaaaagtaat	720
tgtatgttgc	aatcagtgttgc	gtttggcagg	agaatcaata	aaaatctttg	attcagacag	780
cttatggggat	attttaagca	ttcttagact	agttgaacat	ctcacttgc	cccagtatca	840
aaaatagtag	aacaagcaac	ataaaacaaat	gaaggaaaac	ctcacttgc	ggcccaggtc	900
aacatctaag	cctgttgcgaa	cttagataat	cgagtctacc	ctttcgttag	gtttgtgtgg	960
atggccttgcgaa	gggcagggtgc	cctctgctcc	ccagtgtctac	ctctctcttc	cctagggcct	1020
tttgcgttgcgaa	gacagtagtc	ccctccgtag	gagctcacag	tctagattag	aagtgtttt	1080
atttctacac	accatagtg	cacacttgc	tattgaaaag	atagggaaga	gagaaacatt	1140
tatggaaatca	gtcgttgcgaa	ccttcaatac	ttcatgattt	ttgtcgagtt	tacttcatga	1200
ggaggtcgc	ccattggctc	ccatctgaac	cacttgcct	ctgaaaactta	attacatcca	1260
gaaagaaagg	cacttgcgtat	ctagtctatg	gtcagttgag	gaatatgact	gtttttat	1320
gcacatgttgc	ccccaaatgtc	caataataat	tggcttattt	tttaaaataaa	ttttaaaatgt	1380
tggggaaaatgtt	gttatttttgc	ggcatgttta	aatattgaat	aagtatttctt	catcagcatt	1440
taataaaatgtt	ataggcagat	gtaaaggtaat	ttctgtgtat	tttgagataa	tgtcaaaatc	1500
atgaatatttttgc	caaaaataaac	tggggagtttgc	taaaaataca	actagagata	taaaaaaaa	1560
aaaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa		1578

<210> 6

<211> 14188

<212> DNA

<213> Homo sapiens

<220>

<223> Oligomeric Compound

<400> 6

caggtacccc	tctcctgcgg	ccccgtcccc	tataggttac	ctttacctcc	cgcggctcct	60
tccctccaa	gcgacccgca	gccccgcccc	ctccagggt	ctcccccccg	ccaacccccc	120
ccaccacaca	cacacacccccc	ctcgccttcc	gcggccctac	tccctccagg	tgaccccccacc	180
cccgcagctc	ctcctccctcc	ggacaacctg	cagccccggc	cctgcagggt	aacggcggcc	240

RTS0753WOSEQ.txt

cagtccctgc	aggtgacccg	cggaccctcc	ccgcccgtcc	tactaccgtc	ataggaccgc	300
ctccgcaggc	gcaactggagc	cgattgcgc	ggcgtggctc	tcacacgcgc	tgcctgtt	360
gcgttggtgc	gggactgcgc	aggcgcgcgg	ggcaagaggg	tggcagtgcg	cctgcgcgc	420
gtcggcgtgc	ggaacgcgc	ggtgtctcg	cgcctctgc	cgcggaaaga	tggcgaaca	480
ggctaccaag	tccgtctgt	ttgtgtgtc	ggtaagagg	gcccgcactt	actcatgtt	540
tgacgtcc	tgagaggtt	gatcggtt	gtgcgtgt	ggttgcgc	ccggcctagg	600
aaccatgagg	gggaggaggg	cagggactgg	gaggcctagg	gtgttctagg	agtgtgcgc	660
agcgc	ttccccatcc	gccccgtgc	ccgcgc	ctgccccta	aacctgggtc	720
ccctcgcc	tgcataat	ccgggctct	tggcatctgc	agccacagcc	cctacaagcc	780
aaggtaactt	cttgcgact	actagaatcc	ctctcg	cctccaaatgg	gcccaggtag	840
gcctggaggt	tgtcgact	atgtgtctc	ttaggggc	cctgagtcct	atgacaacat	900
tgtttgtt	gttagtttc	ttagccat	cttagatagg	gatctgagg	aaaggagat	960
gaagtttac	ggttccgggt	ttctgtt	taaaagccaa	gcaaaaggaga	cctggagg	1020
cctatataac	tttggccat	aaaaatgaa	agtgtat	attatggct	tttcaggaa	1080
tttccagctt	aaattat	cactcctaga	atttcaacac	ttagctg	ttacttcaa	1140
cataatttat	tttccgtt	gtcttcagg	atttcc	ggtgtac	tacaagg	1200
tattcctcg	tgcctccacc	ctgagaggaa	ggcctaaatt	gtcagtagt	cgttactt	1260
aaacccctcg	ttagttgc	tttgcgtc	tttctgtt	tttttacaga	ctccctcactt	1320
tatctcctgt	acccttcc	gctcacaccc	tcgggacact	gccttc	acc	1380
gttcgttagc	acttcacat	cttactgagc	cttcac	gggtgc	cat	1440
gcctgaaag	ccttttatt	ttataaagt	aaacctaatt	atttcc	ttgctt	1500
agatcatgag	ttgcttcc	atgcacatct	tttattacac	aaatttact	ataattt	1560
taatataat	aaagatgtaa	tacagaaaag	gtgtgatt	ttatc	gacat	1620
acaatattt	ctataattat	ttgatagt	gttgaat	cagctg	at	1680
gatggcaata	actgtggctt	attttcatt	ttgtttcag	ttttagg	atata	1740
aacgc	tttttgc	gaagtt	tctgtgaa	acgaatt	aggctt	1800
tgtttc	ttgtgttgg	catcattt	ttttaagac	tcattg	ctgaa	1860
aaatcaataa	gtttattt	cagtagttt	gtttaggat	gttactt	aatattt	1920
tccctgtat	agttttgg	gttattgtc	attatgc	cataat	cat	1980
gttaatgggg	aagtgtat	ttgcata	agtagtcc	tttagt	aggggat	2040
ttccaagact	ccccagtgg	tcccgaaact	gttggtagt	ccaaacc	ttgctgt	2100
ttggacat	tgtctgtc	tttcttacac	ccacaatgt	aatacc	ccac	2160
taagcattt	aaactgtgg	cgcaactt	gcagttt	gcaagac	agac	2220
gaatttctt	ttccgtt	acatttt	gataga	tttgc	ctgt	2280
tagtaac	ggtataat	ttttttt	ttccataa	agtcaaa	tttca	2340
ttactt	gtatgtctt	tggctt	ttgcgtat	tgaatt	gttca	2400
tctttagt	tcggg	attagtaa	taagggt	tcgaat	gcact	2460
agcatc	ttgatgtat	aagctag	gcaatagg	gatagac	atggat	2520
tggac	cgtttt	ttctgg	ggacggaa	ggatgc	agaattt	2580
ctg	ctactca	gaacagtgc	caattt	cttag	attt	2640
aatat	actgaagct	gaccatggg	taaccat	aagcaaa	ttggaa	2700
ggggactt	gtat	acaattc	gat	ttgtt	cat	2760
atggc	atgc	ttc	ttgtt	ttgtt	act	2820
ggag	ctc	ttc	ttgtt	ttgtt	ct	2880
gaag	at	at	ttgtt	ttgtt	gtgt	2940
atgg	tgg	ttt	ttgtt	ttgtt	ttgtt	3000
gaag	caag	ttt	ttgtt	ttgtt	ttgtt	3060
ttt	ttt	ttt	ttgtt	ttgtt	ttgtt	3120
atgg	ttt	ttt	ttgtt	ttgtt	ttgtt	3180
aat	ttt	ttt	ttgtt	ttgtt	ttgtt	3240
ttat	ttt	ttt	ttgtt	ttgtt	ttgtt	3300
ataat	ttt	ttt	ttgtt	ttgtt	ttgtt	3360
ccat	ttt	ttt	ttgtt	ttgtt	ttgtt	3420
gga	ttt	ttt	ttgtt	ttgtt	ttgtt	3480
ctca	ttt	ttt	ttgtt	ttgtt	ttgtt	3540
agcc	ttt	ttt	ttgtt	ttgtt	ttgtt	3600
ttt	ttt	ttt	ttgtt	ttgtt	ttgtt	3660
ttaaaa	ttt	ttt	ttgtt	ttgtt	ttgtt	3720
actgg	ttt	ttt	ttgtt	ttgtt	ttgtt	3780
aggac	ttt	ttt	ttgtt	ttgtt	ttgtt	3840
ttt	ttt	ttt	ttgtt	ttgtt	ttgtt	3900
aat	ttt	ttt	ttgtt	ttgtt	ttgtt	3960
ttg	ttt	ttt	ttgtt	ttgtt	ttgtt	4020
gtgg	ttt	ttt	ttgtt	ttgtt	ttgtt	4080
tgg	ttt	ttt	ttgtt	ttgtt	ttgtt	4140
atg	ttt	ttt	ttgtt	ttgtt	ttgtt	4200
tgg	ttt	ttt	ttgtt	ttgtt	ttgtt	4260

RTS0753WOSEQ.txt									
agtctaataa	agtacaatac	aaattctgca	atttcaattg	aagataacct	tgtctttata	8340			
ttatgaatta	gaagctaaag	ttgatttttc	taagagttct	ttattnaaat	gaagtactct	8400			
gggactgacc	tttcggaaa	tggaaatcttc	attggtcagg	tgattcaaca	tttttataca	8460			
atttatccat	cctcatctct	tcaggatttg	cataccctgc	cagtttctac	tggccattgt	8520			
tgaaaataca	tttatttgg	gaagtccaa	gccaaggggc	tcatgggct	gtgaagtcc	8580			
tcttgctgca	tcgtccctgt	gtagaaggt	gaggagtcaa	gagagtccc	cagagtgagt	8640			
gagagcggaga	actagaaaaaa	cgggaaggagg	gaaacagagg	agagagagag	agaggacc	8700			
tcagtgtcag	gaggccactc	ccaaagatgt	ggcattaacaa	aagatcttc	gtctcaact	8760			
tgttgatttgc	gggatgaagt	ttccaacaaa	ggaactttgg	gggacacatc	caaaccataa	8820			
cataggattt	aaataatttt	acagagttca	agagttctgc	tactgaaccg	ttttagatcc	8880			
ctgttcttag	gtctcatcac	tttccagttt	tagcaggaag	agaagtggca	agtggcagga	8940			
gtctgcagat	tggggcctgc	acctttttt	gaggcacctt	ttttatgaac	agtgttgtt	9000			
ggaacacagc	cagactca	cattcacctg	tagttcgcgg	ctgctttgt	gctagagcag	9060			
cacagccaga	gcggcctgtt	ggccacaaag	cccgactgtc	tctgcagcac	tggttttta	9120			
tatggcgttt	ctatgtgttt	tttagtagtag	gggtgatttg	ccacaagctg	tttattttat	9180			
agctgaagtt	ggaatccctt	tattgtcat	ttgttacata	agttagatact	gtttttttct	9240			
caattatgtt	aacatctaaa	aattatgtaa	caggtaactaa	gtctttttt	atggaaaatt	9300			
tacaattatgt	ccagaattta	aaacaagttt	agtattaaat	ccttagggaa	ttctcacata	9360			
actaatttgg	agaaataata	taatactgtt	caggcatggt	ggctcacact	tataatccct	9420			
ataacacttt	gggaggctca	acattgtctg	agcttaggg	gtcaagacca	gcctgagca	9480			
catagtgaga	cccatctcta	ccaaaaaaat	tttaaaaatt	agctgggtc	tatgacatata	9540			
gcctgttagt	ccagctgttt	gggaggctga	ggttaggaggt	tggttgaac	tcaagaagtt	9600			
gaggctgcag	tgagctatga	tcacaccact	gtaccccagt	gttggtgaca	gagtgagacc	9660			
ttttctctaa	aaacaaaaaaag	aaaaaattca	gtattgtact	tattctcaat	tttggaaataa	9720			
gtcaatgtca	tggaggtttt	gacgaaatac	agtctttct	agctactgg	agtgcatact	9780			
aaaagccaaa	gtttcttcat	ttttagaaga	acaggatatac	acttccacc	tttttccgc	9840			
agtacgtatg	tttatgtttc	ttttctgtcc	attattttata	gttagtgc	ttcacaaaat	9900			
aatcttttca	tttgatatttt	aagttaggtt	gttttagat	tatatcagaa	aacaatcata	9960			
agctttcagg	ttacaatctag	tagaaataact	gagttggcatt	ctcttctgt	tgaggtttaa	10020			
attatggata	gtcaatcaaa	ataaaaggagg	actgtcagtt	atcactctg	tgtttcttc	10080			
tttagtgcac	cctctgacca	cccaacttaa	tactttact	cctccctgtcc	ccaaagctgt	10140			
atgtatctcc	tctctgttt	atttccctca	ggcatactgt	gcctccctgt	tgttgcctgc	10200			
ccccatgtgg	aagggcagct	ccatgggacg	cggtctgtc	cacttagctt	ggtgtttgtt	10260			
actggggcc	aggatgttca	gtgcttgcgg	aatggaaaat	agagtagaaat	aatgaagggg	10320			
attaaatatg	tgacatcttt	gtatgttgc	tgttattatac	actgtctacta	aggaaattgtaa	10380			
gccgtatgt	aaacattgtt	tctcacatt	atactatttt	atgattattt	tatggaactt	10440			
tataatacaa	aatttctttt	cagtagcaatt	ttgagaaata	ggttaactct	attttaactt	10500			
aaaagtaccc	taaaaaattat	ttaattgttt	attagttagt	aacaggctca	aatacagcag	10560			
ttttttttt	cttttagtat	tgctttgcatt	cctctaggct	tgaatgttat	aaacactgtg	10620			
ttttgacttc	ttattcaatt	tttagattacc	aaagaagatt	ttgcccacatt	tgatttatata	10680			
ctatgtatgg	atgaaagcaa	tctgaggtaa	tcctgttttt	gaagaatatt	tctgttcaac	10740			
tctcagttca	gcagtgggccc	aagtaatttt	ttgtccagat	ttactttttc	tattttaaag	10800			
gtttaataag	tcagtgtatgg	tcaccatatg	ttagaatttt	tttatttagaa	cagaaaaaaa	10860			
cttagtaatc	tagaattgtc	tcttaggtat	ttacaaggaa	atacaccca	gaaaaggggaa	10920			
agtcttagtg	ttaatagcat	gatttaattt	gaaaacttagc	ttggctgttt	tagttttgtt	10980			
tcaagcatat	tgttctgtca	gagaacgttt	ttgtatattt	tgctgtatgt	attctgggc	11040			
agggcagtgt	tttatttgatt	ctcagggttt	agctctgc	ccataggttc	ctatttattat	11100			
cccatcttgt	aaaagaaggg	agtggaaaac	ggtatgttta	ggttatgtcc	ccgagttcac	11160			
acagctagca	tgtgttggtt	gtcatgggat	ttaaagcttag	gctcagtgag	gaagggccct	11220			
gctgtatgca	ccccctgcctc	agtcaccacc	ctccgtaccc	gcccagttcc	catgttcaag	11280			
gcgtcatcg	gaacggatca	taattttatg	tcactccagg	attctgactt	gcatcaactac	11340			
ttattctataa	atatctcatg	tttttgatga	agataaaacta	tttggctttt	taatttacttt	11400			
tgtacaatgt	aacagatagg	gtatgttgc	ttttttatata	ttttttataa	tttggacttt	11460			
cattaaaatgt	catgttatttt	ttaattttta	tttttcgttc	cttattctgt	tctcattgtt	11520			
tttgctgaca	ccatagccca	taggtatgt	aaaaacacatc	tttttaggaga	ccccatttgc	11580			
tttactggc	actgagcacc	gtgtttcttt	gcgtgtgggg	caagtggagt	tcctgcagcc	11640			
tcacatttgc	acgtgtcttt	cctctgcctt	gaagctcctc	tttgcttctt	gggtcatttc	11700			
gctcttattt	ccccctcg	ggtcagctt	aattcatttc	ttgatagagg	tattctgt	11760			
ccctgtcattt	aggccagatt	gtgcattaga	cttggccctg	cctgcagttc	tcattcctgc	11820			
acctaattctt	gagctgtaaa	acttcgtca	tggagctct	tggctgttcc	gttcccacat	11880			
aaagcactgt	cctgactcat	caactcatct	gtcgcagggt	ctcagtcgaa	atttgttaaa	11940			
taaatgggg	cgtttagtt	agtttgctt	ttttttttgt	agcaatgtg	aagctaaggg	12000			
tggaaagtct	gagtgttttt	ttttttttgt	ttttttttgt	ggcttaagg	ataaaagatg	12060			
gaagagtaat	taagggttgg	gtctgtctgt	ggggaaagtct	gtgtcaagac	acctggaggat	12120			
ggaattgtt	gcccctgttt	ttggggactgg	ttcagatgtt	gtttttgggtt	ccttctatgt	12180			
acctttatct	ctgaaaacttg	attgtcttaa	aatgttatttt	ttttttttgt	ttttttttgt	12240			
tgtatatttt	gtgttaacaga	atcagtgtata	ataaqctqct	gtcqaact	qtcttqccta	12300			

RTS0753WOSEQ.txt

gagagagggc	agtggcatac	agctgcagaa	ggggccacac	gggcctgctg	agtgttccgt	12360
ttcaittcaa	attaggtcat	tctgtcttga	ttttgatatg	gatgtttcag	aacaccctag	12420
cagatgtccc	tgtttaactt	gaaaccatag	atcagaaaac	taagttcata	tttcaatttt	12480
acagagattt	gaatagaaaa	agtaatcaag	ttaaaacctg	caaagctaa	attgaactac	12540
ttggggagcta	tgatccacaa	aaacaactta	ttattgaaga	tccctattat	gtaagtacag	12600
ttcacgyttt	agggctaata	tgaagaccca	acacatttg	atccctccat	attaaataac	12660
agatgagatt	gtgttaagga	tgtttttgtt	atgcagggtt	tgccattttc	ttcttttcc	12720
tgtccattta	ggggaatgac	tctgactttt	agacgggtga	ccagcagtgt	gtcaggtgct	12780
gcagagcgtt	cttggagaag	gcccactgag	gcaggttcgt	gccctgctc	ggccagcctg	12840
actagacccc	accctgaggt	cctgcatttc	tcagtcggtg	tgtaatcacg	ttccaggggc	12900
caaagcccg	ctcttggtc	agttgactta	ctgttctta	ccttaaaaag	taattgtaga	12960
tggaaatcag	ttgtgtttgg	caggagaatc	aataaaaatc	tttgattcag	acagcttatg	13020
gggtatttta	agcattctta	gactagttg	acatctca	ttgccccagt	tacaaaata	13080
gtagaacaag	caacataaaa	caatgaagga	aaacctca	tgaaggccca	gtcaacatc	13140
taagcctgtt	gagacttaga	taatcgagtc	taccccttca	gtaggtttgt	gtggatggcc	13200
tggaggcag	gtgcctctg	ctccccagtg	ctacccctct	cttcccttagg	gcctttgtg	13260
gattgacagt	agtcccctcc	gttaggagtc	acagctttaga	tttagaagtgt	tttaatttct	13320
acacacccat	agtgcacact	tgtatattga	aaagataggg	aagagagaaa	catttatgga	13380
atcagtcttt	ggcaccttca	atacttcatg	attttgcg	agtttacttc	atgaggaggt	13440
cagcccatg	gctcccatct	gaaccactt	gcctctgaaa	cttaattaca	tccagaaaga	13500
aggacactt	tatgctagtc	tatggtcagt	tgaggaatat	gactgtttt	atatgcacat	13560
gtaacccaaa	tgtccaatat	aaattggctt	atttttaaa	ataattttaa	aagtgggaa	13620
aagtgttatt	atttggcatg	cttaaatatt	gaataagtat	tcttcatcag	catttaataa	13680
atgtataggc	agatgtttagg	taattttctgt	gtattttgag	ataatgtcaa	aatcatgaat	13740
atttcaaaat	aaactgggaa	gttataaaaa	tacaactaga	gatataaaatc	tgggtctgc	13800
ctgtttttt	attgacaggt	aaggaaagcat	ttgaaaacat	tgtattgtcc	tttttacatg	13860
atctgtgtat	ttagggtgtc	atattttatc	ttcaggataa	ggaagtaaaa	tgtataaaat	13920
aagcacattt	ctgccccatg	tcatcatgtc	tagttctga	aggaagttt	aggttctaca	13980
gctggaactg	tccttgcaca	gtaccatct	ctggacatgt	tgcctctacg	ctgtgccctc	14040
ctgtgcagtg	atgcacagct	gcctggccag	gacatctgca	ctccctgacct	cagtatcatg	14100
agggtcccg	gcagtgccat	ggggaggaga	cacgtttgat	ccttgactcc	ctagtatctg	14160
gaggataa	tggtgcaga	tgaaagt				14188

<210> 7
 <211> 10191
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 289
 <223> n = A,T,C or G

<400> 7
 aagctttctc tgctccctcg gaacagggaaa gcccatttatt tattcctgcc cttccctttc 60
 tccaaactgaa gagtgtgatc ttggtacaga gcagttccac acatgccaca ctggctctgat 120
 cttttagagt aaaaaatggg atcttctcag agaaaatttt tttaaaaact tcatgtgctt 180
 aggtctcaga gcagagaatt ttgctcttat catgacgcca ctcactggca aacaagctgg 240
 cgcacagggc ctttgaggc tctcagcaga gtcagggtag cagttatttc cttgactgtc 300
 caacttctat gttttgttg acatggccca tccttatttc tgccgaatga gaaatctctt 360
 gagaataaag ttttctaaa cagaacaaaa gtatcaaattc acttttgatg agcaaacatt 420
 attttaaact tttttttaac ttacaaaaga tgaggggtaa cattttactag ttttacagaa 480
 attttctta aacagaacat tagtgaacca aataaccaat tctccctaaa catgatagac 540
 taaacatcg tcgctgcaca agtattttaa taacaggcca gcccacggga gtaaacagca 600
 ccttagccctc gagacgttgc ctctcaactg tggcacaga ttttctaaatcgtt 660
 tcagatattc cctacatctc aaaaaaaaca cctaggagaa caagaaatca ggcacatgc 720
 ctccctgttgc cagaagagaa accgagcacc tgctcttttgc ggggggggca gcttcgtgtc 780
 actttccaaatc tccgccttca caggagcatg ggcattttgg ttcaaatgaa gtgtaaagga 840
 cacatctcg tccacagtgt aaatcttattccttcaagggtt ggtcaacccgatg 900
 ttccacactt ccttaaagaa gaaaaaaactc agcagccagc gccaaggccc agcgtatcaga 960
 gaggaccctgt gctccgcgcg accccgcctcg ccctgtggcc ccgcgcacccc ggcgcagggtg 1020
 ttggggggac ggccttccc ttccgggtgtt agggggctggc ttcttcttgc gttgggggct 1080
 ggcaaactcg aacccgcgcg gcgccctagca aaggcttccct ccccgccgccc ttcggccccc 1140
 gtttccaaacg cacattccaa gcgccgcgc tgcacccaaa cttcagagac gcttcgtgtgg 1200
 aacggaaacgg atggtcgtg acacccgcgc gttcaaatat caggaagtttaaaataaacac 1260
 gaccatcgatc atcattccaa acttcggaaat agcttctta aaaatggaaa agacgggtggc 1320

RTS0753WOSEQ.txt

taaaacttcaa	tcaaaaatcgc	tgtggtcaag	aaagtcctgg	aagtcgtct	atcttaactt	1380
tggcggttt	gcgggtaaca	gacgcgcgac	ctagaaaaccc	cagaggcattc	gccgggtttc	1440
ccgtcctcct	cctcccacca	ccgcccagct	ctttagaggg	gagggtgctg	ccggacaggt	1500
gggtccccgg	gtactcaactg	ctgcccgc	ggccgcggcg	ccccgtcccg	aggctgccc	1560
ggaagaggaa	ggcgcgcgtc	cccgcggcc	ggacaaggag	gccccagcga	gggcgtacct	1620
gcggcagggt	acgaaggagg	ccgcgcaaaa	caccgcgt	gtacgtttcg	cgggacaaaa	1680
accacgcgccc	cgccggccg	cgctcaggct	tcgcctcagg	atcccgaaac	cgcggcgcc	1740
tcaagatcga	aaaggcccaga	gcccgcgcgt	caagcacgt	tttgggggtg	gggtctcagg	1800
agcgccccagc	aaggcgcccc	tgtcgccgt	gaccgcggg	ctcaaaggca	gttccccgt	1860
gaccgcggcc	gcccccttat	gcgaactcga	acgacagcac	cacagccgc	cagcgtcgag	1920
actcgcgtcg	tgcccaacc	caggtggcg	ccgcggagcc	gcgagcctga	gcccgcctg	1980
caggtgaccc	gcggcccttc	tcctccagg	tacccttct	cctgcggccc	cgtcccttat	2040
aggtaacctt	taccccccgc	ggctccttcc	cctccaagcg	acccgcaggg	cccgccccct	2100
ccaggtgact	gcgcggccgc	caacccccgc	cccaccacac	acacacaccc	cctcgcccttc	2160
ttccggcccta	ctccctccag	gtgacccac	ccccgcgt	cctccctcct	cggacaaccc	2220
gcagccccgc	ccctgcagggt	gaacggcgcc	ccagtcctcg	caggtgaccc	gcgggaccctc	2280
cccgccccgtc	ctactaccgt	cataggacgc	ctccgcaggc	gcactggagc	cgattgcgca	2340
ggagccgatt	gcgcaggcgt	ggctctcaca	cgcgctgccc	tttggcgtt	ggtgccggac	2400
tgcgcaggcg	cgcgggggca	agactggcag	tgcgctcg	cgcgctggcg	tgcgaaacgc	2460
cgcgggtct	cgcgccctc	gchgccccga	agatggcgga	acaggctacc	agtcgtgc	2520
tgtttgtgt	tctgggtaaag	aggggcggca	cttactcata	tttctgacgt	cctctggaga	2580
gttggatcg	gttgggtcg	tgttaggttg	gcccggcgc	taggaaccat	gagggggagg	2640
aggccaggga	ctggaggcc	aggggtttct	aggagtgtgc	cgcagcgc	ctgtttccca	2700
tccggccctgt	gcacccggcc	agccctggcc	ctaaacctgg	gtccctcgc	gcctggccata	2760
tatccggggcc	tcttggcata	tgcagccaca	gcccctacaa	gccaaggatc	tttcttgcg	2820
actactagaa	tccctctcgt	tcccctccaa	tggggccagg	taggcgttga	ggttgcggaa	2880
ctgtatgtgt	ctcttagggg	cctcctgttgt	cctatgacaa	cattgttttg	tttgcgttgtt	2940
tccttagccc	atgccttagat	agggatctga	gttaaaggga	gatgaaaggt	ttaccgtttc	3000
gcggtttctt	gcattgtaaa	agccaaagcaa	aggagacctg	gaggctctat	ataactttgc	3060
ccatgaaaat	gaaagtgtat	ttatatgtctt	tcaggaactt	ccagcttaaa	ttattttcac	3120
tccttagaaat	tcaacactta	gcttgcctta	cttcaaaat	aatttatttt	cgtttggct	3180
tcagggtatct	tccttgggt	tagcactaca	agtttatatt	cctctgtcc	ccaccctgag	3240
aggaaggcct	aaatgtcag	tagtccgggt	actttaaacc	ttctgttgt	ttgcattttc	3300
tgcagtttct	gtttttttt	acagactcct	actttatctc	ctgtacctt	tcctgctcac	3360
accctcggya	caactgccttc	cagaaccttt	cgttgttcgg	tagcacttca	catgcctact	3420
gagccttcat	cgctgggtgc	ccattatgca	ttttgcctgg	aaagcctttt	tattttataa	3480
agtcaaacct	aaatatttcc	tcctttgc	tcccagatca	tgagttgtt	ttatcgc	3540
cttttattac	acaatatttac	tataattatt	tgatagtcgt	ttgaaatccc	agctgagttt	3600
aattttgtcg	atggcaataa	ctgtggctta	tttttcattt	ttttttcagc	tttaggacaa	3660
tatatgataa	acgtcgacta	gtttagttgt	aagttactt	ctgtgaaaga	cgaatttagaa	3720
ggcttacccct	gtttcacatt	gttagtggc	atcatttgat	ttttaaagat	cattgaaggc	3780
tgaatgatga	aatcaataag	tttattaaac	agtagtttg	ttaaggatgg	ttactaaata	3840
atattccatt	cccttgcata	gtttttgggt	gtatttgtc	ttatgctggc	ataattgc	3900
catgggtgt	gttaatgggg	aagtgtatcc	ttgcataatac	agtgtccca	ctttagctgt	3960
aggggataca	ttccaagact	ccccagtgaa	tcccggaaact	gtgggttagta	ccaaacccaa	4020
ttccctgtcaa	ttggaacatg	tgtctgctc	tttcttacac	ccacaaatgt	aataccgtt	4080
ccaccttaac	taacatttaa	aactgtggc	gcaactttt	cagtttgagg	caagacagca	4140
gacgcatacg	gaatttttt	cctgtttaca	ttttcatgga	tagaagattt	tttcgtactg	4200
tagatcttag	taacccctgtt	tacattttca	tggatagaag	atttggctgt	actgttagatc	4260
tttagtaaccc	cgttataaag	ttttttttt	ctttccatata	aaagtctgaaa	aatcggttac	4320
cttttattct	agggttagta	gtttatggct	tctcttgc	gtatctgtat	tgctagcttc	4380
actactctta	tgatttcggg	ccattattag	taaactaagg	gtgactcgaa	ctcaggcact	4440
gtgatagcat	cacaatggat	ctgataaagct	agagggcaat	aggtggatag	acagcatgga	4500
tatgtctggac	aaagacgtgt	ttcacttctg	gggcaggacg	gaatgggatg	gcatgagaat	4560
ttatccctgt	actcagaaca	gtgcacaatt	taaaacttag	gaatttattt	ttgaattctt	4620
catttaat	tttccaactg	aagctgacat	ggggtaacga	ttgaagcaaa	accttggaaa	4680
agaggggact	attgtatttc	aatacaatcc	agtgtttttt	ttttgttgtt	gagcatctac	4740
tatatggcat	gcattctct	aagtgggtgt	gtgaacccaa	cagacaaaaaa	tcccagcc	4800
tctggagctc	acgttctct	agtaccacagc	aagttaataat	tgatgtgtc	aatcggttga	4860
tgtgaaggat	aagaaaatag	agcagaaaagg	ggaatgggag	tggagtgcag	ttttgagtgg	4920
gatggtcagg	gaaggccccca	cctgatagat	gacttttgag	taaagactt	aaggaggtga	4980
ggaagaagcc	taggatattt	tggagaagca	tcctgaaccc	agagggaaagc	aggtaaaagt	5040
tttgaaggga	gaatactggc	catggtcatg	aaccgcagga	agctgcgt	gctgggctag	5100
tgcagcgtata	gtttttctca	gtcaggattc	ctcatctata	cctgaaaatt	tagcagataa	5160
tttgagcgtcc	tggtttctca	gtgcttccat	tgttagatgt	tagggagaag	ttaattccct	5220
atatacactg	gtccctttagg	gcaggagct	gcaaactt	tgtttaaaga	accagattat	5280
aattttttta	gattggcttc	acatgacata	cagaaagggt	gtagcaca	gtagccatcc	5340

RTS0753WOSEQ.txt

atatgatgaa cctggctgtg ttcttagtgg tcttcatttg tggacatcg aattggatgg 5400
 aactctgtat aattttcaca tgtcacaagg tactctactt ttagatttt tccaaactact 5460
 caacaatgta aaaatttattc ttaccgctgt gggctgtaca taaaggcagt ggtccatgag 5520
 ccgattttca gaccctgtt taggttccag atcttggag gccatgtgaa gacttggct 5580
 tactctgaat aaacattggg ggggttggag cagaggtggg aagtgtatca atttaagtt 5640
 aaaaagaaga gtttcagctg ttgttttggag atgaaactgg aggtggagca tgccttact 5700
 ggttcatttc tgaggaaat tgagcggtaa atggcatttt acttggtagc catatagagg 5760
 acagtaagag ttgtatgctt ttgaaatgtt aaaaactttt ttcattcaaa gcatttgg 5820
 ggaccctgtt gagattgaag ttagaaaaag catcagaggt ttttcattgg tgaagctaat 5880
 gatggaaata taattgagct ccttactaca gcacaattat gaagggtgt ttatgtttt 5940
 gcaatagaga cttatttagt aagatgtgc aggagccatg acccagccag catgggtgg 6000
 ggagatagca catgtgggt gagtcactt acttctggag ctcacatact ggggtctggg 6060
 tctcttacca ggtatagcag acacagcccc accctcccg agccatctcg cctttatga 6120
 gtctccatcc ttgaattgaa gatgtgtt aagggttataa aatagtctgc ctaatttgg 6180
 aaagacaaac ttgagactt acagatggaa acattttta aggttcattt aagatggaaat 6240
 gttctgttt tagaacttgc ttgataggcg aaacctgaag tacatgcagt gtttcaactga 6300
 tgaccgggggt gctccatttt ttccataacaa aatttgggtt gcatcaactt tcgaaatcaa 6360
 cagggcaagc tagccattta gacagttaaat aatgcagttt ttcattattgt tggggggaaa 6420
 gtaagctgtt attttacagt taaagataat tatttggaaa gctgtggggc tagtctttat 6480
 tatatttttta gatgtgtt gactaggcat ctgttgc acagatccaa aataataatt 6540
 gtcttaattt ggaatacaat gtttgcgtt aaaaatattt ccagggtata tggtgacaag 6600
 taaaagaggt acacacccat ggaaggccctt caataattaa aatagtgcct gatgacaata 6660
 cctgtttaga aactaaacaa aattttagaaat gtcgaaagaa aacttcacaa cacaatttag 6720
 catatagagg tatttcacgtt atttgcgtt ttcccttata cggttgttagg tagattttta 6780
 ctgctgtgaa actacagtct ctgtgggaaa aaagtacgta atatgccttgc gtcttacaat 6840
 gtagaaactg aaggctgttag taaggcagtg agttggttt ctgaacttagg gaatttagctg 6900
 ttttacaaca ctagaaagatc cttcattgtt tttgtttatc ataaacagaa gaccctaata 6960
 gtgataaaaga gctaaactct tagtttagtgc tgcctattct cacagttcctt cttttcgtt 7020
 tctgttttct aaattcagct cctaattgtt ggactcagtg tgggtcttgc gcattaaagga 7080
 gactggaagg cctcagagca gccccagaag caaggctgtt gaaaccatca ttatcttcc 7140
 ccagcgcaga tcatagaaac tagaactctt ctcctgc gcaaggccata aaacctagaa 7200
 agatcactt ctccttttgc ccttcttgc aagacagcat ttcagagggg ccctgctcat 7260
 tcctgtggggta ggaatgtgc tggctctgtt gggttccctt cagtctgttgc ccattggatc 7320
 atttcctttt gtccagtgttcc atttctacac agtgcgttgc tggcatcttca agcatcaaaa 7380
 ccgtttccctt gggctttgggt gtcttcattt ctgaaggctt ttgttaaccc gtctttgtt 7440
 acaggaggtt cttccatgtac ctttgcgtt ggtgaggaaa gctgcccacac ctttccactc 7500
 tgacactgtc ttgtatttgc tccttcatac gacgccttca caaggctctt ccaattcagt 7560
 catgtgtctt tcttagtgc ctttgcgtt gccgttattt ttgttaacctt gtaggaagg 7620
 tctgtgtttt aaacaaactttt ctgttcttgc gttaggccatc agcttggcat agagtggca 7680
 tacaatataat gtttggaaat taaatgttcatat tttcccttttccataggactt ttctattttct 7740
 cctcatagtc ggctacgcaaa agtccaaatg ctggccctgtt gtttagggctt cctgtatacc 7800
 agccgtcgtt tttcagacac tggctctgtt tacatgttgc atcgcacgc caacccgtt 7860
 agtgccacaa tccctctgag tttaaatgcctt ttcccttccctt ctgtccattt agatcctgat 7920
 catcccttta atatcatctc taatcttctt ttttcttgc ttttttgc ttttttgc ttttttgc 7980
 gtttttgcgtt ttttttgcgtt ttcttttgcgtt gtttttgcgtt ttttttgcgtt ttttttgcgtt 8040
 tcattttttcc acttttattta taataatataat aataaataaaa gtttttgcgtt ttttttgcgtt 8100
 aatggccagg ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8160
 cactatgtc ctgttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8220
 gatgacagggta gatgtgttgc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8280
 gaaatggccctt ataggttgc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8340
 ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8400
 gggagtaattt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8460
 ttgttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8520
 ctgacccttgc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8580
 gctcgttgc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8640
 gtattttttt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8700
 tgacccttgc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8760
 caagcacaat ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8820
 acttttccat ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8880
 ttgttataact ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 8940
 cagaccactg ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9000
 cccacttcat ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9060
 ttgttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9120
 tcaaataact ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9180
 ggacaaaggc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9240
 cgtgtgtcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9300
 gttttcccttgc ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt ttttttgcgtt 9360

<210> 8
<211> 769
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> 43
<223> n = A,T,C or G
```

```

<400> 8
tatggatata taattatagt ctattgggcc acacttaagt ttnttgagaa tagtactcat 60
tactacagta ccctaaatta ttatgttatt agtgagtaac aggctcaata cagcagttt 120
ttttttcttt tagtatgctt tgcatccctc aggcttgaat ggtataaaca ctgtgttcc 180
acctcttatt caattttaga ttaccaaaga agattttgcc acatttgatt atatactatg 240
tatggatgaa agcaatctga ggttaatccctg tttttgaaga atatttctgt tcaactctca 300
gttcagcagt gggccaagta ttttgttgc agatttactt tttctatttt aaagggttta 360
atagtcagt atggtcacca tatgtagaat tattttttt agaacagcaa aaacttttaga 420
atctagaat gtcttcttagg tatttacaag gaaatacacc tttagaaaagg gaaagtcttag 480
ttgttaatag catgatttaa ttggaaaact agcttggctg ttatagttt gtatcaaagc 540
atattgtttc tgcatgagaa acgattttga tatttttgct gtaatgattc ctgggcaggg 600
cagtgtttta ttgattctca ggtcaaacgt ctgcaccata ggttcctatt attatcccat 660
cttgtaaaag aagaagtgaa gaaacggtaa tggtaggtta tgcggccgag ttcacacagc 720
tagccatgtq tggatgtcat gggatttaag ccctaggact tcagtagga 789

```

<210> 9
<211> 2053
<212> DNA
<213> Homo

<400> 9	ctttatctga	aacttgattg	tcttaaatgt	atttgtggag	aaatataatt	attgttatatt	60
ttgtgttaaca	gaatcagtga	gaataagctg	gtcgc当地	gtcttgccca	gagagaggc	120	
agtggcatac	agtcgc当地	gccc当地	gtgttccgtt	tcatttcaaa	180		
tttagtctatt	ctgtcttgat	tttgatata	atgtttcaga	agaccctagc	agatgtccct	240	
gtttaacttg	aaaccataga	tcagaaaat	aagtctat	ttcaattttt	cagagatttg	300	
aataaaaaaa	gtatcaagt	taaaacctgc	aaagctaaaa	ttgaactact	tgggagctat	360	
gatccacaaa	aacaacttat	tattgaagat	cccttattat	taagtagact	tcacgttta	420	
gggctaataat	gaagacccaa	cacatttga	tcctgcccata	ttaaataaaca	gatgagattg	480	
tguttaaggat	gtttttgtta	tgcagggttt	gccattttct	tctttttct	gtccattttag	540	
ggaaatgact	ctgactttga	gacgggtgtac	cagcagtgtg	tcaggtgtg	cagagcgttc	600	
ttggagaagg	cccactgagg	cagggtctgt	ccctgctcg	gccagcctga	ctagacccca	660	
ccctgagggtc	ctgcattttct	cagtccgtgt	gtaatcacgt	tccaggcccc	aaagccagct	720	
ctttgttcag	ttgacttact	gtttcttacc	ttaaaaagta	attgttagatg	gaaatcagtt	780	
gtgtttggca	ggagaatcaa	taaaaaatgtt	tgatccagac	agctttaggg	gtattttaag	840	
cattctttaga	ctatgttgaac	atctcactt	gccccagtt	caaaaatagt	agaacaagca	900	
acataaaaaca	atgaaggaaa	acctcactt	aaggcccagg	tcaacatcta	agcctgttga	960	
gacttagata	atcgagtcta	cctcttctgt	agggttgtt	ggatggcctg	gaggcagggt	1020	
cttgctcccc	agtgttacact	ctctcttccc	tagggcctt	tggtggattga	cagtagtccc	1080	
ctccgttagag	ctcacagtct	agattagaag	tgttttaatt	tctacacaccc	catagtgcac	1140	
acttgtatata	tgaaaagata	ggaaagagag	aaacattttat	ggaatcagtc	gttggcacct	1200	

RTS0753WOSEQ.txt

tcaataacttc	atgatttttg	tcgagttac	ttcatgagga	ggtcagccca	ttggctccca	1260
tctgaaccac	tttgccctcg	aaacttaatt	acatccagaa	agaaggacac	ttgtatgcta	1320
gtctatggtc	agttgaggaa	tatgactgtt	tttatatgca	catgtAACCC	aaatgtccaa	1380
tataaaattgg	cttattttt	aaaataattt	taaaagtgg	gaaaagtgtt	attatttggc	1440
atgcttaaat	attgaataag	tattcttcat	cagcattaa	taaatgtata	ggcagatgt	1500
aggtaatttc	tgtgtatttt	gagataatgt	caaataatcat	aatatttcaa	aataaactgg	1560
ggagttataaa	aaataacaact	agagatataa	atctgtgtct	gtcctgttgt	tgattgacag	1620
gttaggaagca	tttgcAAAC	attgtatttg	ccttttaca	tgatctgtga	tgtaggcgt	1680
gcgtgcata	tttttagtctt	caggggat	ggaagtaaga	catgtatgaaa	agtcacgcac	1740
actgctgccc	catgtcatca	tgtctagtt	ctgaaggaag	tttgagggtt	tacagctgga	1800
actgtccctg	cccagtacca	tcctctggac	atgtgcctc	tacgtgtgc	cctccgtgtc	1860
agtgatcgac	tgcctggca	ggacatctgc	actccgtacc	tcagtatcat	gagggtccca	1920
ggcagtgcac	ggggaggagac	acgtttgatc	ctttgactcc	ctagtatctt	tgaggataag	1980
cttggggcc	cagatgaaaa	gtgagtagtt	tcccactgt	cccatgtgaa	agtgcCcagg	2040
gctgtcttca	tag					2053

<210> 10

<211> 577

<212> DNA

<213> Homo sapiens

<400> 10

atggcggaaac	aggctaccaa	gtccgtgtcg	tttgggtgtc	tgggttaacat	ttgtcgatca	60
cccatgtcag	aaggcgtttt	caggaaactt	gttaaccgatc	aaaacatctc	agagaattgg	120
agggttagaca	gcgcggcaac	ttccgggtgg	tcatgtatag	cggtgtgtt	tctgactgga	180
acgtggggccg	gtcccccagac	caagagctgt	ggagctgcct	aagaaatcat	ggcattcaca	240
cagccccataa	agcaagacag	attaccaaag	aagatttgc	cacatttgat	tatatactat	300
gtatggatga	aagcaatctg	agagatttg	atagaaaaag	taatcaagtt	aaaacctgca	360
aagctaaaat	tgaactactt	gggagctatg	atccacaaaa	acaacttatt	attgaagatc	420
cctattatgg	gaatgactct	gactttgaga	cggtgtacca	gcagtgtgtc	aggtgctgca	480
gagcgttctt	ggagaaggcc	cactgaggca	ggttcgtgcc	ctgctgcggc	cagctgact	540
agaccccccacc	ctgagggtcct	gcatttctca	gtcggtg			577

<210> 11

<211> 1004

<212> DNA

<213> Mus musculus

<400> 11

cagcaatgcc	ttaggtgctg	caaggcccttc	ctggagaaga	cttactagct	ggtcctaagc	60
cccaccattg	agcagctcac	tcctcagtgc	tgtggcccaag	ggtggtggca	gtccttagcc	120
ccatccccca	cctctttttt	cactgtactt	actgtatatac	tttaaaataa	ttgttaggtgg	180
gaatttagcga	tatgttcaga	aggataaaaag	catttgagtc	agacagtttgc	aggtgtggct	240
aagcattttt	agactaacta	aacctctgac	cttgcgggtga	ttacaaaaca	gtgaaacaag	300
caaataatgg	acaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	360
aaaaaaaaaa	aaaaacaaaaaa	aaaaggggggg	ggggcccaa	aaccccccgg	ggaggagccg	420
ccccagataa	atctcaccccc	accccccatt	tttttgaaa	aaacggggcc	cccttaagag	480
gaggagcgag	catacataaa	accgcagacg	gaggcagcgc	gccggacaca	acacaacacg	540
acgcgggggg	cgacaaccaa	cgtcagtct	agccggacta	catgtggcag	gagcacccca	600
catgcggggc	cggggaaaca	actggcgca	acccctccca	cagaaaataa	gggcccgg	660
agaatacaca	cacgcacgcg	gccgtcgcg	tcgttaccacc	cccgccgcatt	ttacgggggc	720
gcgaaaacat	ttggcccccc	gacggagtaa	cacgaacacc	ttcggggccgc	gccgtgaaca	780
aacaaccccc	caccaccccc	ccaccacgcg	accccccac	caccagcgac	gacgcgccaa	840
cggccacacac	gaccagccag	accgcacgc	acgacccac	ccgcccactac	cacccaaccc	900
acgacgcgac	ccccacccac	cgcacgcgg	acacgacacc	acccagccac	cccacccggc	960
ccccacccccc	ccccacccacc	cacaccaa	cagagcacca	caac		1004

<210> 12

<211> 738

<212> DNA

<213> Mus musculus

<400> 12

aggtcaggta	tagactaagc	aatctccatc	atttagcata	tttctgggtgc	acaggaagca	60
acgtgaggat	cactcttcat	ctactccat	tacaaagtct	accattataa	ttttgatatg	120
cttgcatct	ctattaattt	aaataatata	caactcatgt	gtatatgtca	ttacaaagag	180
ttttgttca	tggaaagcatg	aaagtatcac	atattatgg	cagagataag	aatttagagaa	240

RTS0753WOSEQ.txt

attgagggtc tgcaccgaaa catggcagag gttgggtcca agtcagtgtc gttcgtgtgt 300
 ctcggtaaca tttgccgtc acccattgca gaagcagtat tcaggaaact ggtaactgat 360
 gaaaagggtt cagataattg ggccattgac agcagcgtcc tttccgactg gaacgtggc 420
 cggccccccag acccaagagc tgtcagctg ctaagaaatc atggcatttag cacagccat 480
 aaggcaagac agattacaaa agaagactt gccacattcg attatatact atgtatggat 540
 gaaagcaatc tgagagatct caatagaaaa agtaatcaag taaaaactg caaagctaaa 600
 attgagctac ttggaggtca tgatccacag aaacagctca tcattgaaga tccctattat 660
 ggcaatgact ctgacttcga ggtgggtac cagaatgcc ttaggtgtc caaggcccttc 720
 ctggagaaga cttactag 738

<210> 13
 <211> 19031
 <212> DNA
 <213> Mus musculus

<400> 13

accgtggccc ggcctgggtt cggtggtcca aagggttaac ttagcttggaa agggcggtta 60
 gctccgatcg gaggagccac cctaggaggg tctgcaagcc gctatcctt agttcattgg 120
 ctgcccctggc acatccctaat cctccctgtc caacaccgtg ccaccccaagc tgctctgggg 180
 gtcgccccgc gttcaccctcg ccctcactcc ttagacgtgc gacctggca gagctcagag 240
 tgaacgctag cccgggctgc caaccgcac gcctaagccc gcctctctag gcgacttctg 300
 gccccgcctc tggccgcgtt cgaacgtggg gcggcggact ggcgtatgtcc acggtcagaa 360
 ccctggcagt ggcgcattgcgc ctgtcccgaa cgccgtttct gggcgccagg gtctgcaccg 420
 aaacatggca gagggtgggtt ccaagtcaat gctgttgcgt tgcgttgcgtt aggactcgcc 480
 gacttaaggg tctttttctt tgggaccctt aagtgcctc cctgttgcgtt ttccgaacaa 540
 gagcgcgtggg cggaggaaagc agatcagaag gccttggctt gggccgcgtc tgagcacata 600
 ctcgtttgtc tgccttttttcc atatgcattt cccatcatct ggtacttctc tgagcccgag 660
 atctgtgtaa tttttgtcccc agattatgcc cttccaaagc ccatgtcacc cttccgatgt 720
 cccttcaacc acaaattttt gtcgcaggatc tctctctcaa gcccgttagac ccctctcact 780
 tgctcctctt cttaaagtc tgagagtgc ccatcatctg ctttggcagt tacttccaaa 840
 tctctgtgtc gaaaaatatc caacccaaac aactttaggg agaacagatt tgttttgact 900
 cagtttcaga ggttcaggcc ccttttgaat ggtttagat tctgggtctg tggtgaggca 960
 aggcatcatg gtcccttcaag gtggccaggatc catgagtgcg ggtacttgcgtt ctcctgtgg 1020
 cggaaatcac agaagggggag agtagagagc aagacaagcg tttagcccaa gagcacgcatt 1080
 cgggatgtat tttcttctgc tcagccacat ttgtatctt cattacccctt agtcatttcc 1140
 tcataattttt aatctactgg gttaaaccat tgacttagtc agtgccttta tgatcacatc 1200
 ctcgggggat aagccatcac cgacgtccgt agagttgtct tttctaattc agttaaggc 1260
 tcgatgacga ttaatcatca tccctgttat tccctcatgc tttgtccgtt caccataact 1320
 gcttttcttc cttaaaccctt tctcacctgc taactggccc aggtggcttc atatctgtag 1380
 tgtgactctc taagctggcc ccttcttataa gaacagctgg agttcttgc gggaaaccccc 1440
 acccccaccc ctgttcccaat ttgtgcacac gtgagccatg ttacaggaaa gaccattctg 1500
 tgacagggtt gtttgcgttcc atccctgggtt cacagttgtt atgggttca gccagttct 1560
 tttctttagg tctctctgaa accttgggtt tcagtcctt ctttcttataa cttttaacttca 1620
 taaaaaaccat tttgttttta aatgaataat cttaaacttca ttttcttataa cttttaacttca 1680
 accttgattt tccttttacat aatatgcattt ttttcttataa cttttaacttca ttttcttataa 1740
 gactccaccc tgaggggcaat gggttaaattt gtcaacagtc cagtttttttgcgttcc 1800
 tctgcttttc ctacagatgtt acactccctt ttaggcttaga agtctgcctt gactttctgt 1860
 ctacctcgct ttatctttcc caccacccctg tggggactgtc ctttaagaaa ctgttgcgtt 1920
 cctatgcctt gatgtatgg ttaacttttac tggggacccctt aatgtctgggt tttgttgc 1980
 aagccatctg ttttataaaatg tcaaaatgtt gaaaaaaaatg tcaaggatttt ttttataccca 2040
 gaccattgtt accccccccccc cggatattttt ttttataaaatg tcaaggatttt ttttgc 2100
 cctgtggagc tcttaggaag agttatctgtt cttgtggca atagttttt tcccttttatt 2160
 attccactt tcagttacaag gtactgtgtt tgatagttgc agatatctg tactagttaa 2220
 tttctatgaa gaacaaagttt aactctgtt cttttaatttca ttttcttataa cttttaacttca 2280
 gtgctggcat attgttacaa tatgactttt aaaggaaatgtt ttttcttataa cttttaacttca 2340
 gtcaatataa ttcaatgtttt ttttttttgcacttggggatgtt cttttaacttca ttttcttataa 2400
 agatgaagt cagcttttctt gaaaggccgtt ctttgcgttcc accatcatgtt aaggaaatgc 2460
 agtggcttca tacatgttgcgtt gagggtttca ctatgttgcgttcc aagcagatgtt ggaggcagggt 2520
 gttaggtgtt gtcaggactt atctgttgcgtt gaggatgttcc aatgttgcgttcc ttttcttataa 2580
 gtctctactt caaaacccatgtt gtttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 2640
 tgggttttgcgtt gaccaggccatgtt ctttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 2700
 ttggatcatt ttttcttataa ctttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 2760
 gatctacatc ctctgttgcgtt gtttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 2820
 gtgttagccat agcttgcgttcc ttttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 2880
 tgataggtt ttccatgttcc accatcatgtt aaggaaatgtt ttttcttataa 2940
 aactaaaaat ttgggttacc ctttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 3000
 tttctggggcc ctttgcgttcc accatcatgtt aaggaaatgtt ttttcttataa 3060

RTS0753WOSEQ.txt

ctctgaggta gataagccat
ccacctgcat tgtggagatt
aagttagatg tggtagtc
ttctcccaag agccccttg
tgttccctca gaaccttct
agaggagcgt ttgtctgt
ccctagtcac agtggtcata
agtcaaacc aaaaatgttt
tggttttatt tattcattt
aataacatta ataacataaa
ttcttattat cttgttaggt
ctataccatc atacctttaa
aatgtgaaa tggcccacag
aattttctt atatagatgt
taacttctaa acttccagaa
tttgccttga tatgtgtgt
tggctttac aaaaacaaaa
tcttacccct taaacatgag
gaaaaaaaaac aataacaaca
ccacactagg tagatagaag
gcctactaag gttactctt
cttctgagga atatcacctt
acatagaaaaa accagacaga
catatggagg acatttaaaa
gttattgtct taaaacatac
acacacacac acacagtctc
acacacacac aaaaacacac
tgtcagtc tggcaggaac
aatgtctgg ttagtcatca
ttgctttttt ttttttttt
cagtgtttt tttgtctgt
tcttgcctt taagccaagc
gtttccctgtt agaaatctga
cagactcgat cccacacaaa
gttccctcgc atttgccttca
cttagtcata aaaaactgtt
tccaactaa atttctgt
tggtaaagc ataggactca
ccagagtgc actgtctcc
ttgtatcttta aacagctttc
ggcataacaag ataaatgtgt
atgcaccaag tacagacttg
tgtctagacg agtaccgcct
ggacatcgc tcaagcttag
ttctctggc tcataccatc
tatctgtgt cttagtctt
agctaaggta tcattgtct
ctcttagaaa gccatcctt
acacctggag gccccatagt
actaggagct ctgaatatca
gcatattgtc aacgacagga
ttccccccaga atacattttc
tgtactata ctgcttatct
ttgtggaaag ggaaggcaga
atgtcagaag ttggggcagg
taactcgtgg ggaccatagg
cttgtatgtt atgccttgt
tacttaaaca tagctattt
ttactttgtt gattcaaga
ttacatgtct tctgtctgtt
ctctcaggga attctgtact
gggagtagtc cactcaatct
taacccttat atgtcttctc
gaagcgttat tcggaaaact
cagtagtgc acgagtcag
ttctctctgt cagtgagga
tcctgactat cgaggcaga

gggagggtctg gacgagaaat
aggctacagg aggcctgga
agttgtctagc ctggaaaat
gagcacagtg aaagctctt
tcaactttt taagattgaa
gaagctggat gggaccacagc
agagaaataa ggcctgttt
ttcttatggc cagtgaactc
tgtatgggtc agaggtctaa
ttggcaagct agaggcaagt
gtatgattt tagtctctgt
atacagctat ctggggcag
tttacaaag aaacaagact
cttgcctttt atttttacat
taataatgtt tttcttaacc
tgcctccagaa gccttttgg
caaaacaaaa cagggtctagg
ggacctgggt ttatttccaa
acaacaaaaa attgtacatg
ttgtgggtt cctgagcctc
aactcgtaag aaaccccttc
tcttctctgt atacatctgc
aatttagatg tggaaaggaa
tgagttctgt tcttagcttt
acacacacat agtctcttc
tctctcttc tctctcttc
acaagaagc caagtacata
tggtccaggg accagagcat
gaagccagga aattttgacc
tctttcttta atgtaaggc
taccttaaac aaagtctctc
acagctcccc tgagaggaca
aacctaaaaa tattatccct
gaggaaagtg tgagacacag
ttaggtcaga ctgtttgtt
tgctaaacctt gatttgacag
ctttctcat ataaacctgc
caccttagac catttcccat
accctgagct tttctgacct
tatctgcagg cttaccatag
ttggtaaagcc acattgccc
gcgtgggatt agggctccat
tcaggtcctc ccacgggtct
gttccctggc attcacatc
acagcactag tttatcagca
ttcagtgat gaggctgtct
ttcttgggtt agcaaggaat
atttccctgg tattttctt
ttgtgtttt gggggactca
gtactctgt gaggctccta
gggcttaggt tccccaggg
ccttcttccg cctcttccca
gaattctatg gtcattttta
ttgttagcca actatgtgg
tggggccgac aagaggaaac
cttcttggg cagggcttta
gttttggttt gaagtattac
tgttcttta tattttgttt
tttggtctt gttcattgt
tagttacctc agccattctg
gtcttgccaa ccttagatgc
ttggcccgaa aatctgtatc
cctcttcttta taaggtaca
ggttaactgt gaaaagggtt
actgaatccc tttgggcagc
tagacagtgc ggctacatcc
actgcgtatc aaaacatggc

ggggagggtat ataatttgtt
agaagcaggat atagcttcag
ttgaggatgg tacagatgaa
tgtttgaat gaaaaagttt
gttggttttag aaagatgagg
aaaggcaggat gtatcttcag
acatttcaggat gacttgtgga
actcttaatg tatatatgt
cctagccctg tttttttct
tatttagatt gagagttccc
agagataggg tacttttaat
gttggagatg aatatgctca
gtttcttcgtt attaatatgt
gctaaaatat tacactttgg
tgctcaccac tattggctgt
tagtgaaaaca gtgtgtatgg
aagatcttaa tcagtgaaat
gaacctatgc taaaataaaa
gtaacatact tttatcatcc
ctggccagcc agcctatct
tcaaaaaaca aagtggacaa
acgcttacac ccacacaaag
actttcaca ccgggactat
aatgtttaat tgatgaaact
tctctcttc tctctcttc
tgtcacacac acacacacac
gttttgtaga tattgaaggaa
ccatgttca tcacatctt
tctcacatc agttcttgc
ttaggtgata caccacaata
ttagcccatg cttcccaacc
tagaacctaa aactccctta
cttcttaaaa gcctgtgtgg
acccacagag cctctccag
cagttcagt tcttacatc
atggcagtag gatagtttt
ttatcagagc tgcttgggg
tggcttttc atgtacaccc
tcccacatc taagaggagg
tatttggctc aaaagtagta
aaccttcagg ttctcccaagg
gtcccaggcc ctgccttctg
atttaaactt tttatctgt
gttttgcga atgtttacgt
ttcatgttg ttgttgttat
ctttgtttat ctgttgcag
ttggttctt atcagatggg
gagtgtatgaa gtatctgtt
tttgggttct ctcacatttt
gcttggcagt aatactctca
caagaagact tcgtattcgg
atctgtatc tttatgagt
ggaatccca aaccgcacag
gactccgtac ctatctgtt
tccctgttcc tccagctggc
cgtatgatta ctcaataaaag
tagtctttat tatgtatgt
taaatgttagc tgattgcaac
agtggaaaatt gatttgttt
tcaggaccat gaatctgtt
aggcactggg catccacttt
tgcccatctg ccacagctaa
tttgcggcgt acccattgca
cagataatgt gagtaccatt
aaggtggcag aacacttctt
acctatgaaag tggggacccc
atccacatgc agcacattgc

RTS0753WOSEQ.txt

acggcaggta	ccgtactgga	gcttgacata	tgttttgtt	tacagtggc	cattgacagc	7140
agccccgtt	ccgactgaa	cgtggccgg	cccccagacc	caagagctgt	cagctgccta	7200
agaaatcatg	gcattagac	agccataag	gcaagacagg	tagaaaatag	ctcgtttaat	7260
ttctactaca	tagaatccca	ttacttgaga	gtctgaccac	cctgtgtgtt	gcagcatgt	7320
tttgggtggg	ggcactgac	ttgctgcctg	tgttagttgt	gaagatttgg	atggccttgg	7380
gtaacgttt	aaagtacaga	taaaagacat	aagccatagt	gatacaatgt	ttgctgtgag	7440
ccagacttgg	ctgtggtctt	cattttgtta	ccatgtacag	actctctggc	tagacatttc	7500
tgctttagct	actagttgt	tagtacacat	gtcttttct	actttaaagt	accttaaaca	7560
tacagctcta	gtgcctgtt	aacacttgtc	tgtctggaaag	actggaatta	aaaacaaacc	7620
cttagttac	agacaaaagat	agttttgtat	ccatattacc	agaagatggc	agccctgatgt	7680
atttcttga	gttccttatt	gaaattaatgt	tgttcttttta	tgttcttttt	acaaaacccgt	7740
tctcaactt	tgtttttttt	attatttttt	ggcttttttag	ttccaaagca	ctagtaaaga	7800
atactttgt	cgtcagtgtc	acattttctt	tatgttcttt	ctcttacca	attgccacac	7860
tttatgcaaa	taactatttt	agtacagttc	ttaacatgtt	attttctaa	tctrtcaact	7920
tagttgtaa	atggcatatg	gttaggggtgc	tagctcttga	actcaaagca	atgtcttggg	7980
ataggaactt	ttagcatggc	cgactggaga	accggccctg	ctggtcaagt	tgcttcacgt	8040
gtccccgtt	tcagtgtcat	cagcttctcc	atggactgag	tccatcatca	aggttgcttg	8100
gccgcttctc	ccctctgtg	cagtgtccc	tcccaaagtt	tcactgtgcg	ttctaaacatt	8160
gttaggatgt	aatcatctt	cttgcgttgc	tgagtcaagg	tcacactggc	acttgaggca	8220
gtccctgtgg	ttcagccctt	tcagggcttgc	attgcagggtc	tgcccccattgt	ccctggcaca	8280
gcagtggagt	gcacgcaccc	gtagcatgc	ttccatgtgc	ctgctggagg	ttacagcagt	8340
ttgcccctggg	cagggttaag	tgctgtattt	ttccctttgt	acctctgtgc	gacgtgtggg	8400
tggcttctgt	tgtgagaatc	tgtgggcagt	ggcaccccaag	atggagccat	ctaattgggtt	8460
catagccagc	atctgtaccc	ataccctacc	aaatgcacag	agcatgtctt	cttgcctttt	8520
aagaagtgt	tgtgtctatt	gcatatgcca	gcaagatttt	gctgacagaa	ccctgacata	8580
gctctctctt	gtgaggctat	gccagtgcct	ggcaaaatact	aaagtggatg	ctcacagtc	8640
tttatttagt	ggaacacagg	gcccccaatg	aagaagctag	agaaagtacc	caaggagctg	8700
aagggtctg	caaccctata	ggaggaacaa	caatatgac	taaccagttc	ccccagagct	8760
tgtgtctcta	gtgcgtggc	agaggatggc	ctagtagggc	atcaatggg	ggagaggcac	8820
ctggcttctgt	gaagattata	tgccccaaat	acaggggaaat	gccaggggca	ggaagcggga	8880
gtgggtgggt	tggggagcag	cgaagggggg	ggggggaaagg	tatagggaaat	tttcgggata	8940
gcacttaaaa	tgtaaatgaa	gaaaataatct	aattaaaaaa	aagaagtgt	tgtaaaaaat	9000
tgatggtata	tctatttgt	ttggaaaatt	gatctgattt	attgtttttt	ctgatttttt	9060
tttaattttt	ttaccaattt	attgacattt	atattttatgt	ttccataactt	taaaaaaattt	9120
tttaaaattc	attcatttt	ttatttacac	cccacatttt	attcccttcc	tagtccaccc	9180
tttactgtt	ccacatctca	taccccttcc	ccgcccattt	gtctccatga	ggatgtcccc	9240
attcccaccc	cctcaccctt	cctgaccctt	aaactccctt	gtcccccattgt	ctcttggggg	9300
ttatttgcgt	catccctgtat	tgaacctaga	aaactccctt	ctctgtatca	tatgtgtttt	9360
gggcctcaga	tcaagctggt	tatgtctgca	ggttgggtgtt	ctagtgtttt	agagatctcc	9420
agggtctagg	ttaattgaga	ctgtggctt	tcctacagg	ttgccttccct	cctcagcttc	9480
tttcagcttt	tccctaattt	aactacttgg	gtcaacagtt	tctgtcttca	ttgggtttagt	9540
gcaaataatct	gcatctgact	ctttcagctg	cttgggggt	ctttctgagg	gcagtcatgc	9600
tagttccctt	tttgcgttac	ctccatagcc	tcagtaatag	tgtcagacct	tgggtccctcc	9660
cctttagctg	gatcccactt	tgggctgtt	gctggacctt	ctttccctca	ggctccctctc	9720
cctttccatc	tctgcgtttt	ttttagacga	gattaattat	gggtcagaga	tgtgtctgt	9780
ggatggcaac	tccatccctt	acttgcattt	ctgtttttt	ctggaggatgg	gtctacaag	9840
ttccctctcc	cctctgttag	gcatttcattt	taagggtccat	ccctttaatgt	ccttagagtc	9900
tcaccccttca	ggtctctgtt	acattcttgg	ggatcttgc	acctccctgtc	tcctgagggtc	9960
caagggttgc	tgtttccatt	ctttctgtt	accctcagg	cttcagtttcc	tttcccttca	10020
cccaacacca	catcatgatt	cccccccccc	catgtccact	ttccctctca	gtccctccct	10080
ctgcccctgt	gattgtttt	ttctcttcc	ctagtaggg	tgaggtgtcc	tcacttggc	10140
ccttcagctt	tttgacccctt	tttggttctt	aggactgtat	cttgggttatt	ctgtactttt	10200
ttttctcttc	tttttctttt	tggctaatat	ccacttattt	gtgagttacgt	accatgtatg	10260
tcctttttgg	actgagttac	atcatttcagg	ataatatttt	ctagttccat	ccatttgttt	10320
gcaaaaactca	tgtatgtttt	gttcttaata	gctggatgt	tatccactt	gtttaaatgt	10380
taaatacgtt	ttctgtatcc	attttcttgt	tgtggatat	ctgggtcggt	tccagcttct	10440
ggctatcaca	aataaggctg	ctatgaacat	agtggaaacac	atgcccctgt	ggcatgggtt	10500
ggcatctttt	gggtatattt	ctaagattgg	tattgtctgg	tgttaaggta	gatcttattac	10560
agtttccctga	ggaaccttca	aaagtttcca	gaacttttga	cttccagagt	gtttgtacta	10620
gttttcaatc	ccactagcaa	tggaggatgt	tgataatata	tctttttttt	ctggctgtt	10680
gttttctctc	tggtctccag	ttcatcagct	ttgctgtgg	agaccaacgc	atgccttttt	10740
aactgggact	tgtatgtttt	taaccagttt	tttggaaattt	aggctttttt	ttttgtttt	10800
tttgggtttt	ttttggagag	gcagcttca	tatataatttt	acataaaaaat	ctttctgtt	10860
tttcattccg	ccgagtttta	tttagcattt	tttcatgcctt	cctatgtatgt	ggggctgttt	10920
gctggacagt	aggttaactt	ccatggccag	ggaagaaaaaa	ttatcccttc	acataccctc	10980
cctcattctc	accagaattt	tgagggtctt	atgttttta	gagaacaaaa	gctgtttagt	11040
atttacaagt	gaacatattt	tttgatattt	aagtaaggtt	tgctaatgca	tttctgggtt	11100

attttctgagc ctgctcttc ctctttttg gagaactggg aattacaccc taggtagagc 11160
 ctggtagcag cttatattgc atgtgatctg ctactgagct gtttcccgag cagattttag 11220
 tttttatgg gacagttca ccctagccgt agctagccgt agctagccgt agctagccgt 11280
 agcttagcctg agctagccctt gaacatgatt cctgcttctc tttcataagg agctgagatt 11340
 acaggccagt atcaactaggg cttggcaagtt ggcttcttc ttgattttc tttgatgg 11400
 cttttgggtg ctgtgttaat aatcatgtt ccttggaaag atcacattt ttttgggtg 11460
 gctgtgagga tgctgtttaga tggtgtcaga tacagggtct cttttgggtg cttttgggtg 11520
 agtacccctg agtacccctt tgctgtcttt cttggaggatg gcatggactg cttttgggtg 11580
 gggcaggagc aggtcacagc atagaatgtg ggcttcttc ttggtaggtc ttttgggtg 11640
 tcattgtct cttgagcttt acctacactt tctgggcctt tgcccttcca ttttgggtg 11700
 cctaaaccca gtttcttctc cattgtccca ggcattccagg ctttgggtg cttttgggtg 11760
 caccatggtc tttgcctggc gccccttggc ttttgggtg ctttgggtg cttttgggtg 11820
 ttggcgctc catctctggg tagtcccttc ctactcagat gttggcttagt atcaagact 11880
 gggcccttgg gaagcattcc taaattgcac atagttcac ctttgggtg cttttgggtg 11940
 ataaccaggc acagaggcaa gtaaaaaat atgtggggc tagagcgatg tcacagtggc 12000
 aattaaaaat atctgtggc tagagcgatg tcacagtggc 12060
 taggacaaga gttccacacat acaatacaca cacacacaca 12120
 gagagagaga gagagaatga gaaaaaaaataaaacatctt atgtatgtatg 12180
 aatggatttt ttttttaaaa ttttgggtt gttttttttt 12240
 caagcatgca taccacatggc gttttttttt 12300
 agacatctgt tggtgtctgg tttttttttt 12360
 taaccactga gtcatcttc atttttttttt 12420
 atttttttttt agtttttagca gttttttttt 12480
 gaatgcctcg ggggttaaag gttttttttt 12540
 gtccaggcag ggctcaactca gttttttttt 12600
 tgattgttat ctgtggctgt tttttttttt 12660
 tcttggagaa gaatcttggt gttttttttt 12720
 agtttcaact gtgcattttt tttttttttt 12780
 tattttatgtt tttttttttt 12840
 gggtagtaga gaaagggggaa gttttttttt 12900
 agccatgagc atgtggagag tttttttttt 12960
 caagagctag agaaagcaaa tttttttttt 13020
 ctgtgtgtt tgactctgtt tttttttttt 13080
 ataagccaaa attaatgtca agtattttt tttttttttt 13140
 gatagtattt gtttaatgtc tttttttttt 13200
 acagtagt cttttgtat tttttttttt 13260
 aaaagctaaa atgtcttatt tttttttttt 13320
 taatttaata taataattttt tttttttttt 13380
 agtcatttgtt ctttttaccc tttttttttt 13440
 ttcaactaca ttttaaggggag tttttttttt 13500
 atgaagaccc ccaggatctt tttttttttt 13560
 ccctctgaga atcgttattt tttttttttt 13620
 ctccctggaga gtattttactc tttttttttt 13680
 ttaatttaatc ttttattttt tttttttttt 13740
 gactttatga tgccaatttga tttttttttt 13800
 ttttatgtcc atgttttata tttttttttt 13860
 caataaaagg tttgacttga tttttttttt 13920
 ataagtgaac atagactttt tttttttttt 13980
 ctacagtttt gtatggatatt tttttttttt 14040
 aagactttgc cacattcgat tttttttttt 14100
 atatattttgt tttttttttt 14160
 tggccttggaa ctccgggtctt tttttttttt 14220
 taccatgtcc agtgtatgtc tttttttttt 14280
 tttgttcttag gcccagcaag tttttttttt 14340
 ttcttcttcc atttttttttt 14400
 gtccccccata cccacccacc tttttttttt 14460
 cattccccctg tactggggca tttttttttt 14520
 tatggcagag gttgataaca tttttttttt 14580
 cttatctctg agctctgttt tttttttttt 14640
 atgaatggcc atggagacca tttttttttt 14700
 actgatttctt ttactgtctg tttttttttt 14760
 gctgcactcc atagaataaa tttttttttt 14820
 ctaagcaaca ctgatgggtt tttttttttt 14880
 ggtctgcagg tccataccccc tttttttttt 14940
 gaactatggc tttaaaatcac tttttttttt 15000
 ttaccaagga aatgggtttttt 15060
 ttcccttaggc tcatgggacg tttttttttt 15120

RTS0753WOSEQ.txt

agctgctgcc	actgtggcct	gcatgctctc	cactaaactt	acttgcctcg	ccacacttgg	15180
tcctggcctc	gctcagctgt	cctgtactga	gtccatcttc	ctccgtctt	cacttgcct	15240
gaacattgtc	cagcctgcct	tgggatgtgg	tacacatgg	cttttgcgtt	cttttctggc	15300
atttttatgg	atctgaagtg	ttatcatttt	tgtcatatca	aaatacattt	tttttttttt	15360
tttggttttt	tgagacaggg	tttctctgtg	tagccctggc	tgtcctgaa	ctgactttgt	15420
agactatgtc	ggcctcgaac	tcagaaatcc	gcctgcctct	gcctcccaag	tgctgggatt	15480
aaaggcgtgc	gccacatttc	acagaagaaa	acttattat	ttgagttaaa	gatacacatt	15540
ttgagtatca	gaatcagtagc	actgtggcat	acatacagct	gcaggactcc	cataggtctg	15600
cagatgttc	tgttcattt	caaatacggt	tgcaactgtt	taatttgata	ggatatttca	15660
taaaccctga	gcagatgtcc	ctgtttaact	taaaaccata	gatcagaaat	ctaagttcat	15720
gtttcgattt	tacagagatc	tcaatagaaa	aagtaatcaa	gttaaaaact	gcaaaagctaa	15780
aattgagcta	cttggggact	atgatccaca	gaaacagctc	atcattgaag	atccctattt	15840
tgtaagtccc	tgtcagggtt	ggagcctctg	ttaagatggg	caggatgtat	tcgggtgtat	15900
taaatgaaca	ggatggattc	tgttgttata	aatctgtt	tgggtcttcg	gaggacactg	15960
tcatcataaa	ccattgctgg	tttttctttt	tctgtccttg	cagggcaatg	actctgactt	16020
cgaggtgggt	taccagcaat	gccttaggtg	ctgcaaggcc	ttcctggaga	agacttacta	16080
gctgttctta	agcccccacca	ttgagcagct	cactctatcg	tgcgtgccc	aagggtggtg	16140
gcagtcctta	gccccatacc	ccacctctct	tttcagctga	ccttacgtat	atctttaaaa	16200
taattgttagg	tgggaattag	gcatatgttc	agaaggataa	aagcatttga	gtcagacagt	16260
ttgaggtgtg	gctaaagcatt	cttagactaa	ctaaacctct	gaccttgccg	tgattacaaa	16320
acagtggAAC	aagcaaataat	ggaacaaaag	aaaacaaaaa	caaaaacaaa	aaccagaaaa	16380
gtaagagtga	cctagaaggt	ccatatcagc	ctctgagctc	ggcaagctg	ggtcgtctgg	16440
tctaagtgg	gtgtgtgcatt	gaccgcacc	cagtgtgccc	tttgcgtcc	gtgtactctc	16500
ttctcttaggc	tctcggtgtg	acaatagctc	cattcacggc	agccttcag	ttaacactgg	16560
cagtttaagc	tcagacacac	tgaggggttt	gaggatttg	agagaggaga	cgctggatgt	16620
gctgtatggc	ctgggactcc	agcaggccgt	cctgggctgg	acagtgcac	cctgtctaaa	16680
aggggaacaa	aaataacaac	ggatgggagc	agcagatgg	taaagttaac	atcttcagtc	16740
ttacttggtt	tttgtctact	ttcctgagct	ttgttcttg	tttagccact	ttgctttaaa	16800
aaaaaagtta	gtgtgcttaa	atactggat	gtgtttgtaa	gtgtctctc	atggcaatt	16860
tacaaagtta	taggcaagca	agagtaattt	ttgtgttattt	tcagaaaaga	gacctcaaatt	16920
ttatataaat	gtatgtcaga	aaggAACat	aattcaactg	ggaagttatc	aaatacaact	16980
gagatacaaa	tccagtgtct	gcctgctct	tactgacaag	tgaacaagat	acctaaatgt	17040
tgccctccat	tgcctttta	tttgcgttgg	tgtgaagttt	gggctctcag	cctctgtgtt	17100
agaaaagtaa	gtgtgatggat	ggatacacac	aatgtgtgt	tggatggcga	tgggtgtcta	17160
attgagagac	tccaggcact	atccctatcc	ttgggcttc	ttcatgtac	tggtgctccc	17220
tacccgcctc	ccagctgaaa	agggtgttac	tgcgtgtt	agcctgtct	agctcaggc	17280
actactgttg	agctccagtc	acgcagaact	tgttagtt	agagccatcc	tgacgtctga	17340
aaggaaggaa	gccccggggc	ctaggaatat	gcagtcctt	cttggccagg	gctctctct	17400
cgaaggagga	aagcttacac	ctgactcttc	cagaagaaag	cagctatccc	agcacccctc	17460
cacagaaaagg	ccatgtatgc	ccagcaaaagg	cagacacttc	agctgcctt	ttgggctcct	17520
gtgggggttt	ggtcagatgc	ttcacaaaat	taaaaccgg	gaaggggagag	gacaggttagt	17580
cagccacaaag	gaggaaatgg	attaagtcaa	agcttcac	cctacttcag	tgctgtcttc	17640
agaatctcag	atttctcttc	caggcttata	gatccatgt	tttttgcgtt	attttacctg	17700
tgtatcttc	acgcagatcc	ttggaaatgtc	aggttctgt	ttgttctacg	gctgtctcaa	17760
acagcacagt	gtgtttataa	gggctcatga	acagagaaat	taactttta	cattcaatca	17820
aattacattt	gttaaaataa	cagccattaa	atttaaaac	tgttctcagg	gtgcttcttg	17880
gtttgacatt	ctcttacaat	caggtagaga	ttgttagatgt	ggagtattga	tggctaaatg	17940
agaccaagcg	atcaggagtt	tatgttattt	agtacttagt	cacatctaca	cacacacaca	18000
cgcacacgt	tatataatata	gtgaacaatg	tgtatgtatg	tttatataat	cataatttct	18060
gaggcttgc	attttttttt	aaggtcatt	ctgaaagactg	ttcatttttc	caaacacttc	18120
atttttttcc	ttgttatttt	tcacagtatt	tatcatattgt	acaatacttg	gaatgtactt	18180
ttacattttc	agaggacaag	ttggacttgc	cttggcatag	ccacagatac	atatgccact	18240
gttttcaaca	caactgaggt	ttttttgtt	ttcattaaaa	tttttgcgtc	agttccaaac	18300
tataactttgg	gatttttaatt	gtagaataca	aaatgtcaaa	tcataactata	tgctctatga	18360
aaatacaagtt	taatgttctg	cctatgtt	taaagaaata	ttccttgcgg	ttccacctaa	18420
tcttaaaaag	aaaataccctc	attttacaga	acaatacatac	aaatgtggaa	tgttgcctgt	18480
ttttacaatc	ataagagtgg	caaatctcac	tgacagatac	actgatttcac	tgaatgcata	18540
tttgcataact	gtcagcaaca	tagaaaaatgc	aaaggaatta	tggaaagagt	aaaaataaaa	18600
tctctgtcca	cagaagtggg	gcatgaagat	ggttctgttc	tgttgcgtt	caaggcactt	18660
ttcaagggtt	ctgtgtgtgt	gctcccttgc	agctgaaaac	aattacattt	ggtgtcatat	18720
agctactcag	gtcttattac	taattctaga	tgatgtggta	caagtttagc	aatataacaa	18780
atttataaaac	aaggAACCTG	tattttctt	aacgttcaaa	gtcttaggtcc	ttccccccact	18840
cccacccgtaa	aacaaccccg	ttctatagtt	accatgtgt	cacgggcct	aagggtgaca	18900
gccaccatgc	acacccgtga	ataaaacactt	gctcaagtca	agtttgggtc	ttggctttag	18960
gtgtgatggg	gcactttggg	aatcctgtca	agagatgtag	tttgccttc	ctctggggaa	19020
gagtttgctt	g					19031

RTS0753WOSEQ.txt

<210> 14
<211> 477
<212> DNA
<213> *Mus musculus*

<400> 14
atggcagagg ttgggtccaa gtcagtgcgt ttcgtgtgtc tcggtaacat ttgccggta 60
cccatgcag aagcagtatt cagggaaactg gtaactgtatg aaaagggttc agataattgg 120
gccattgaca gcagcgccgt ttccgactgg aacgtggggc ggccccaga cccaagagct 180
gtcagctgcc taagaaatcg tggcatttgc acagcccata aggcaagaca gattacaaaa 240
gaagactttg ccacattcga ttatatacta tttatggatg aaagcaatct gagagatctc 300
aatagaaaaa gtaatcaagt taaaaactgc aaagctaaaa ttgagctact tggagctat 360
gatccacaga aacagctcat cattgaagat ccctattatg gcaatgactc tgacttcgag 420
gtgggttacc agcaatgcct taggtgtc aaggccttcc tggagaagcc ttactag 477

<210> 15
<211> 477
<212> DNA
<213> *Mus musculus*

<400> 15
atggcagagg ttgggtccaa gtcagtgcgt ttcgtgtgtc tcggtaacat ttgccggta 60
cccatgcag aagcagtatt cagggaaactg gtaactgtatg aaaagggttc agataattgg 120
aggatagaca gtgcggctac atccacctat gaatgtggggc accctctga ctatcgaggg 180
cagaactgca tgagaaaaaca tggcatccac atgcagcaca ttgcacggca gattacaaaa 240
gaagactttg ccacattcga ttatatacta tttatggatg aaagcaatct gagagatctc 300
aatagaaaaa gtaatcaagt taaaaactgc aaagctaaaa ttgagctact tggagctat 360
gatccacaga aacagctcat cattgaagat ccctattatg gcaatgactc tgacttcgag 420
gtgggttacc agcaatgcct taggtgtc aaggccttcc tggagaagac ttactag 477

<210> 16
<211> 1436
<212> DNA
<213> *Rattus norvegicus*

<400> 16
ggggcgggtt tctgggcgccc agggctctgca ccgaaacatg gcagaggtt ggtccaagtc 60
agtgcgttgc gtgtgtctcg gtaacatttgc ccggtcaccc attgcagaag cagtgttcag 120
aaaatggta actgtatggaa acgttttgcata taacttggggc atagacatgt cgcttacatc 180
cacctatggaa gtggggaaacc cccctgacta tcggggcgcg aactgtatgtg aaaaacatgg 240
catccacatg caacacatttgc cacggcgcata tacaagagaa gacttttgc catttcgat 300
tatactgtgt atggatgaaa gcaatctgatg agatctgtatg agaaaaagta atcaagttaa 360
aaactgcataa gctaaaatcg agctacttgg gagctatgtatg ccacagaagc agtcattat 420
tgaagatccc tattatggca atgactctgc ttctcgatgt gtgttccatc aatgccttag 480
gtgcgtcaag gccttcctgg agaagactca ctatgtgtc ctaaccacca ccactgagca 540
accacttcctt cagtgcgtgtt cccaaagggtt gtggcagtc ttatccatc accccacatc 600
tcttttcagc tgacttacttgc tatatcttta aataattgtt aggtggaaat caggcatttgc 660
ttcagaagggaa taaaacatttgc tgaggcgcata atttgggttgc tggctcgtatc ttcttagact 720
aacaacatgt ctggcctcgcc cataatttgcata aatagtggaa acggcaact gtggaaacaaa 780
agaaaaacccaa ataaatgttgc aatgacccatc aagggtccaga tcagcccttgc agcccgacgca 840
gcctgggttgc tctggtctaa ctggagttgtc agcatggccca gcacccatgt tgctgtttgc 900
ttgccttaca ctctcttatttgc tatattgtctt cttatgttgc caatatctcc atccatggca 960
gccttcatttgc taacacttggc agatgtttaa cccagacaca ccgagggttc agatatttgc 1020
gagaggagaa cctggatgttgc atgatggggcc tggacttccca gcaggccatc ctgggctgt 1080
cagtgcgttcc ctgtctgaaa gataaaaaatgc ctaacagatgttgc ggagcaacag gtgggtgaag 1140
ttAACACCTT taatcttgcacttgc tggttttgttgc tggatgttgc tggcttgc tggatgttgc 1200
ccacttgcgttcc tctttaaaga gaaagttgttgc tggcttgc tggatgttgc tggatgttgc 1260
gttctctcatc caacatttttgc caaaggatgttgc ggcacatgttgc tggatgttgc tggatgttgc 1320
agaaaaaggaa cctcaatttttgc atgtggatgttgc tggatgttgc tggatgttgc tggatgttgc 1380
atgttatcaa atacaactaa aaatacaacaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 1436

<210> 17
<211> 16001
<212> DNA
<213> *Rattus norvegicus*

RTS0753WOSEQ.txt

```

<220>
<221> misc_feature
<222> 10056, 10057, 10058, 10059, 10060, 10061, 10062, 10063, 10064,
10065, 10066, 10067, 10068, 10069, 10070, 10071, 10072,
10073, 10074, 10075, 10076, 10077, 10078, 10079, 10080,
10081, 10082, 10083, 10084, 10085, 10086, 10087, 10088
<223> n = A,T,C or G

<220>
<221> misc_feature
<222> 10089, 10090, 10091, 10092, 10093, 10094, 10095, 10096, 10097,
10098, 10099, 10100, 10101, 10102, 10103, 10104, 10105,
10106, 10107, 10108, 10109, 10110, 10111, 10112, 10113,
10114, 10115, 10116, 10117, 10118, 10119, 10120, 10121
<223> n = A,T,C or G

<220>
<221> misc_feature
<222> 10122, 10123, 10124, 10125, 10126, 10127, 10128, 10129, 10130,
10131, 10132, 10133, 10134, 10135, 10136, 10137, 10138,
10139, 10140, 10141, 10142, 10143, 10144, 10145, 10146,
10147, 10148, 10149, 10150, 10151, 10152, 10153, 10154
<223> n = A,T,C or G

<220>
<221> misc_feature
<222> 10155, 10156, 10157, 10158, 10159, 10160, 10161, 10162, 10163,
10164, 10165, 10166, 10167, 10168, 10169, 10170, 10171,
10172, 10173, 10174, 10175, 10176, 10177, 10178, 10179,
10180, 10181, 10182, 10183, 10184, 10185, 10186, 10187
<223> n = A,T,C or G

<220>
<221> misc_feature
<222> 10188, 10189, 10190, 10191, 10192, 10193, 10194, 10195, 10196,
10197, 10198, 10199, 10200, 10201, 10202, 10203, 10204,
10205, 10206, 10207, 10208, 10209, 10210, 10211, 10212,
10213, 10214, 10215, 10216, 10217, 10218, 10219, 10220
<223> n = A,T,C or G

<220>
<221> misc_feature
<222> 10221, 10222, 10223, 10224, 10225, 10226, 10227, 10228, 10229,
10230, 10231, 10232, 10233, 10234, 10235, 10236, 10237,
10238, 10239, 10240, 10241, 10242, 10243, 10244, 10245,
10246, 10247, 10248, 10249, 10250, 10251, 10252, 10253
<223> n = A,T,C or G

<400> 17
aaacatttat gatcaggagt gtagaaaacta atcttgagtt ctgaggattt gcaaaaaggagg 60
atccgagcag tatgatcttg gtagatgcgc ccagacaaac ccaggaactt cactatttct 120
ctcctctttc acaaacgcctc tcgcaagagg aagagttgcc ggggtaccga cacgccccgg 180
ctgctcagac ccttactcactc tggtgcgcgc ggctccgctc cgtgccaag ctccctcactc 240
cagtccagga agaggacgggt gttctcccttg gtccgcctcc ccgaccggac ccgcccagcg 300
ggcgcacacc tgaccccgagg gagggaatag gtgtgtgccccc tggttttgcc aatgagatca 360
ctggctcttat acaacttgctc agaacatagc tcaactgcgt ctaccgcctt cattccctttg 420
gaaccttgca aatcacccccc tcttcttaat cggggaaaacc caccgcgtat accgtggcg 480
ggcgttagggt cgggtggtcca actgggtaac tttagcttggaa agggagggtt gctccgatcg 540
gaggagccccc ccttaggagggt tctgcaagcc gctctctttt agctcattgg cagccctggc 600
acgttctgtc taacactgcgc ccacccaccc tgctctgggg gtcgcccgc gttcacccctg 660
ccctcgact tttagcggtgg gatcaaagca gagcccagag tgaacgcgt tag acccggttgc 720
caaccacaac tcccttagcccc agcccttttag gcagcttctg gccccgcctt gggcggagtg 780
cgaacgtggg gcggcgact ggcgcattgtcc gcggggcagaa cctggcagtgc cgcatgcgc 840
acgtctctac gcggtttctg ggcgcacggg tctgcaccga aacatggcag aggttgggtc 900
caagtcagtgc tctgttcgtgt gtctcggttaa ggaactcgccgc acttaagggt ctttttcttt 960
gggaccccgaa agtgctctcc ttgttaagct tctaaacaag agccctgggc ggagggaaga 1020
agagcagaag gccttggctg ggcggcgcc taaaaacatt cattgcctg gctttttcat 1080

```

RTS0753WOSEQ.txt									
acgcatcccc	cattttctgg	tactccccctg	aacctaaagg	ctgtgttagtt	ttgtccccaga	1140			
ttatgccccg	gttccttcc	tgcccttccg	aagcacgtgt	caccctccca	agtgccttc	1200			
caccacaaat	cttgcctcta	ctcccgctc	tctccaagc	ctgttaggccc	ttttcacttg	1260			
cttctcccaa	gtctgagagt	cgcccatcac	ctgctgttgt	agttactttc	atatctctgt	1320			
gctaacactg	tctaaccaga	acaactttag	ggagaacaga	tttgggttga	ttcagtttcg	1380			
gagggttcag	tctacttttgc	aatgattgca	gactctgggc	ttgtggtag	gcatcacgg	1440			
catcaggcgc	tccagagcat	gagtcaggct	acctgtccct	tgtggccgg	aatcacggaa	1500			
ggggagacat	ggaggttagag	aaacaagacaa	cgcggttagcc	ccaaagagcaa	gcacgtgtat	1560			
gtatattttt	tctctgtgt	agccccactt	gtgttttttc	atcacctccc	agtagtttg	1620			
ttatatttttct	aatctaattgg	agtaaaaccat	tgacttaggtc	agagtcctta	cgatcaaattc	1680			
ctctcaggct	atgcctttac	cgacgtcctg	aaagttgttt	tttctaaccat	gtcaagggtca	1740			
caatgaagat	aaatcatcat	ccctgtcatt	tcctcaagct	cttgccttc	accaacgtgc	1800			
ttttcttatt	ctgaaccgtc	tcacctgcta	actggcagggt	ggcttcatata	ttgttagtata	1860			
actctctaag	ctggccccc	ctattagaac	agctggagtt	cttgccttc	ccagaacccc	1920			
accccacacc	tcttcatttc	tgccaagggt	agcctcagtt	acaggaagac	cattctgtga	1980			
cagcagtttc	ccaaacaggt	ttgttcgatg	tcatctttgg	gtcccagg	ctgtggttct	2040			
caggcagtct	ctatTTTTT	tttaagttgt	tctttttttt	ttcttttctt	tttttatttg	2100			
atatttatct	acatttcaaa	tgctatcccc	tttcagttt	ttcccaccag	aaaccccccta	2160			
tccaatccca	ccatccccctg	cctctataag	ggtgctcccc	caccatata	cccacccact	2220			
tcttcctgcc	tttcgcccctg	gaattttctt	acacgggggc	atccagcctt	cacagaacca	2280			
agtgcctccc	ctcccattga	tgccgtacaa	ggccatccctc	ttctacatata	gcagctggag	2340			
ctataggc	caccatgtgt	actcttttgt	ttgtgggttt	gttcctggga	gctcgggg	2400			
ctgggtgggg	ggttgggggg	ttgggtgtga	tatctgttgt	gttgatattt	ttgtgtttcc	2460			
tatagggtgt	caaacccccct	cagccaccc	gggtcccttct	ctaaacttc	caccactggg	2520			
gaccctgttc	tcagacgaat	gggtgggtgc	gagcattttt	tagttcttc	ttagacactt	2580			
gttggtttca	atccctggga	caattactca	gttttgatc	atgaaaaata	gttttttttt	2640			
ttataagatg	aatagtcttt	caaataactt	ttacacagaa	ttttcatctt	tagaaattca	2700			
acattgattc	tcctttaagt	aatatgtat	tcttttctt	tttcagagtt	cttgcctcat	2760			
tgccctcggtt	cagcaatcat	ttgtcttttgc	gccttgcctt	ttcctacaga	gtagcgtctc	2820			
tcctttttcg	gctagaagatc	tgcccaagact	ttctgtccac	ctcactttat	cttcccacc	2880			
cacctgtggg	gaccgcctc	aagaaactgt	tgctgtcctt	tgcccttgat	tgtggtaat	2940			
tttactgggt	accatgtgtt	gtttttcttgc	aaaagccata	tattttataa	agacaaaata	3000			
aagaaaaaaa	agtcaagggtt	tttcatcccc	agactgttag	tcacttctt	ttatccccct	3060			
atagagatat	tttacgcat	aaattgcatt	tttatttgac	agcgttgt	gttcttaaga	3120			
agagctatct	tttctagtgg	caattgtttt	ttttttctt	tattttcca	tttcttagtac	3180			
aatgttagtgt	gggttttgc	aggatatctgt	actaggtat	ttctatgt	agaaaaagtaa	3240			
aactgtggcc	ttatttcat	ttatctgtgc	ttgcataattt	cacccacatg	actttttttt	3300			
ttatTTTTT	atttattttt	ttcagagcgg	gggaccgaac	ccagggcctc	gcttaccac	3360			
tgagctaaat	ccccaaacccc	cccacatgac	ttttaaaggg	aagtacatgc	ttgcttatgt	3420			
ttgacttcaa	tataattcag	cattttgtct	ttgccacttgg	agatgcatgt	ggtggtaac	3480			
accgcaggt	aagtccaaact	gttgtgaagc	ttgttctctg	ccggcttcca	tcagtcaagg	3540			
aacgcctgt	gcctcg	gtgggtgtga	tggtcagcc	aaacagagt	ggagctgggt	3600			
gtaatttgt	gtcaggact	tcttgaaggt	gagcagagac	aaagggtgc	agagacactgt	3660			
ctgtctggc	tcagaaggca	gagcatgagg	atttcaggta	aaagtgtttaa	ccggagaaat	3720			
cactattttg	gagatcaggc	agctttctga	accatggattt	cttgcctgt	gggtacaaa	3780			
cttggttcat	tctaaatacc	tgggggagaaa	ttgggtcctt	atatacagca	gatactgtat	3840			
ggcaggggatc	tgcatccctc	gtaaagagct	gggatgaatc	cttaaacttc	atgtggtgat	3900			
aacttagtgt	agccatagct	tggctctgtt	cagtagaaact	cgttcc	tgcagcatt	3960			
ggaacttgc	gcagttttca	catgtcacaa	gtttttctgt	atttgcatta	tttttaatga	4020			
gctaaaacta	aaaatttgg	taacccttta	gacagcatgt	ggatgtggta	gtccaggagt	4080			
ggtcattttct	ggaccctatt	tggagtctaa	atatcatagg	aggctgtat	aggattgggt	4140			
ttactctgc	tgagataaggc	cttggggaggt	ccagaacaga	aatgagatgg	acataatttgc	4200			
ttccatctgc	agtgtggaga	ttaggctgc	ggaggcccgt	ggagaagcag	ggatatactt	4260			
tgaagtaaga	tgtgttagat	tcaagg	gtccaggaaa	cttgaagat	gttatagat	4320			
cgttctacca	agagaccctt	tggaggacag	taaaagctgt	tgtgtttgaa	atgcacaagt	4380			
tttatttcctt	cagaacac	tttcgaacta	gttaagattt	aagtgtttt	agcaagatga	4440			
agaaaaggagc	attttgtctt	gtgttagct	aagggactcc	acaaaggcag	gtgtgatctc	4500			
agcttttagt	atagtgggtt	taagaaaacg	aggctatgtt	taagtttca	ggacttgtgg	4560			
aaatgaaaac	ctgaggctct	gtgttttct	catggccagt	gtactcactc	ttataatgt	4620			
gtgtatgtct	ttatTTTTCT	ttttgtatgg	ctcagagg	taacctc	tgtctatctt	4680			
taataacatt	aattttataa	acaatgtgtt	gagctagagg	caggttccc	tttatttgat	4740			
cttggtcggt	gtatgtat	tagtctccag	agataggata	cttgaatct	ataattacac	4800			
accttacttt	acatatggct	acctgggggt	ggggcatggg	tgaatgtct	aaaacgtatga	4860			
tatgtcttgc	gtttttcat	tctaaaagaa	acaagactgt	tacttc	ttaatgataa	4920			
gttttcttat	acagacgtct	tacattttac	ttttcacac	taagatatta	catttcggtt	4980			
acttctaaac	ttctagaata	atgggtctt	tcctaaactg	cccaccactg	ttacctcttt	5040			
tgtctggata	tgtgtgtat	tgcaaaaact	ataaaacagag	tgaatcgt	ccgagggttg	5100			

RTS0753WOSEQ.txt

cccttatgaa	acacatcagg	actaggaga	tcttcattgg	taaagttctt	gccttgtaga	5160
catcaggac	ctgggttttta	ctccaagaac	ctatgttaaa	ataaaagaaa	aacaaaacaa	5220
cactaacaac	acaagaatt	gtacatggta	acatactttt	ataatccctg	cactaggtag	5280
atagaggttg	ttgggtccct	gagcctcctg	gccagccagc	ctgtcctact	aaggttactt	5340
aaactagtaa	gaaactctct	caaaaataaa	gttgggcaac	ctctgagaaa	taccgccccaa	5400
tattgtcccc	tattctccat	ctgcacctgc	acgcttgcac	tcttgacccc	acatgtactc	5460
atagaaaaac	caaacaaaaa	ttagaatgta	gaaagggaaa	ccttcataac	caggactagc	5520
atatggagga	cattttaaaat	gaatttctgt	tttagcttta	atgattaatt	aataagacta	5580
ttattgtct	taatctttct	ttctctctct	ctctctctca	ctctctctca	cacacacaca	5640
cacacacaca	cacacacaca	cacacacaca	ttggggaggg	ggcgggagag	gaggggaaga	5700
agccaagtac	ttagttttgt	agatatggaa	ggatgcacag	tcatggcagg	aactggtcca	5760
gggaccagag	cattcatatt	tcatcacatc	ttagaatgta	tgggtgtca	tcagaaggcca	5820
ggagcttttgc	acctcccgca	tagttcttg	tttgcattaa	tttttcttaa	tgtttgggct	5880
tatgtgataa	cacccaaata	tgggtttttt	tcttcctgt	cacccagag	tctctcttat	5940
cccatgcctt	cccaccttctt	gctcctttagg	ccaagcataa	ctccctctaag	ataggacata	6000
gaacctataa	tttctctagt	ttcctgttaag	aaacctgaag	ccttagtaata	ttaccccccct	6060
tctccgtaa	aagcctgtgt	gccagagtga	gtccctataca	aggagggaaag	cgtgaggcac	6120
agaccaaccc	ccccaggctc	ttccaggctc	ccctgcattt	gtttcattag	gacggggctgc	6180
ttgggttcagt	tagattttctt	atcagatgta	ttgtttaaaac	tatataattac	gacgttcatt	6240
taacaaatgg	gaagtgggac	agtttttcca	gctcttgc	tcttcatact	gaaaattttc	6300
atgttagata	aactaattaa	gcctcgtgt	tttttctcg	ataaaacctgc	tcatcagagt	6360
tgtctggggt	gatttaaatg	ttgggtggggc	taggaatcag	accttagact	gtttccattt	6420
ggcttgcata	tgtatcctcc	cagagtctca	ctgtcttcta	ccctgagctc	ttctgaactc	6480
cccacctcgta	aagaggaagt	tgtatcttaa	atagctttct	atctgttaggc	cgaccataat	6540
acttggctca	aaagtaatag	ccatacaaaa	taaatgtgtt	tggtagccac	atggccttca	6600
ggttgttctc	cctgggttca	ctaagtaccg	acttggcggt	ggatttagggc	tccctgtccc	6660
aggccctgccc	ttctgtgtct	agactagttac	aggttctgc	ttaaagtcct	cccacagtgc	6720
tgcttaactt	tttatcttag	gaacatcagc	ttcaagcttag	gctccctggc	gtccccattt	6780
gctttgtgaa	atctttgtt	ctctggcttc	ataccattat	ggcacttgtt	tatcagcatt	6840
ctcccttc	tcctcatcta	cctccctcccc	cctcccttct	atccctcttct	tcctccatca	6900
tcatcatcat	catcatcatc	atcatcatca	tcatcatcat	cttctgtgt	tttgtgtctt	6960
gtgtttctc	agtgtatgag	tctgccttct	tttttatctg	tttgcagagc	taagggtgtca	7020
tttgccttgc	ttggatatagt	aaagaatttgg	ttcttgcc	agtggctct	taggaagtca	7080
tcctgtattt	ccctggattt	ttgatggagt	atctgttaac	acctggggc	cccatagttt	7140
gtgtttttgg	ggactcattt	ggatctgtgt	tcattatccc	ctcacattt	actaggaact	7200
ctggatatac	gtactatgt	gagcttccgt	tttggggcgt	agactctca	gcatattgtc	7260
agtcaatgac	aggagggttga	gggtgtcccc	aggacaagaaa	gacttattat	ttggttcccc	7320
agaataaaatt	ttctcttctt	ccatctccaa	tctatatctt	ttaatgagtt	acaatatattt	7380
acttatctga	attccatgtt	cattctaagg	aatcaccaag	cctgacggag	agggaaaggca	7440
gatgtgttagc	ctcttagatg	gagctctgt	cctatctgtt	gacataagaa	gttggggat	7500
gtgaggcagt	caagagaaac	ctctccctgc	tcctcttagt	ggctaactct	tggggaccac	7560
agtcttcttgc	ggacaaggt	ttacatatga	ttactcagta	aaggctgtgt	ggaattgcgt	7620
tgtgttttgc	tttgaagtt	tactagtctt	tattatgtat	ggtataactt	aaaatgccta	7680
tgtctgttct	attataacttt	attttaaatg	agctgtactg	caacttattt	cattgatttc	7740
aagacttgtc	cctgggttcat	tgcttagtga	tattgtattt	ggttttatttct	gtttccttga	7800
gctttagttt	cctcagccat	tctgtgggg	ccatgaatct	agtttgatttta	actgttctgt	7860
cagggatttgc	tgtactgctt	tgccaatctt	aggtgcgggg	actgggcattc	cgttttggga	7920
gtgggtccacc	cagtcttcgg	gccaggaattt	tgtacctacc	tttctgcac	agctaacgc	7980
ctctgtatgt	tttcttcctc	tcttttttaa	gttaacattt	gcccgtcacc	cattgcagaa	8040
gcagtgttca	aaaaatttgtt	aactgtatgaa	aacgtttcag	ataacgttag	taccattcag	8100
tagggtgaag	agtccaggt	gaataacctgt	gggcatcaag	gtgcacaaac	acttcttttc	8160
tctcccgag	ttggggatag	acagtgcggc	tacatccacc	tatgaagtgg	ggaacccccc	8220
tgactatcga	ggggcagaact	gcataaaaaa	acatggcatc	cacatgcac	acattgcac	8280
gcagggttacc	tatggggctt	gacatgttt	ttgtgttaca	gtggggcatt	gacagcagcg	8340
ccgtttccgt	cttggggatgt	ggccggcccc	cagacccaaag	agctgtcagg	tgcctaagaa	8400
atcatggcat	tagcacagcc	cataaggcaa	gacaggtaga	aaagatctcg	ttaattttct	8460
actacccatgt	attccatataac	tttgcggatct	gaccaccctg	tgttttgc	aatgttattag	8520
gttagggatcg	actaacttgc	tgcctgtgt	tttgcggatgt	atttggacctt	tgggttaactt	8580
gtttaaagtac	agatcccagg	tataagccgc	agtggggcag	tgtggctggg	agccaggcc	8640
ggcgggtggc	tccatatgtt	accatgtgca	gacagacttc	tgctcatgt	cctagcttgc	8700
tagtacatag	aatgtctttt	tctactttgt	agtatcttaa	acatacagag	gggcttttgg	8760
gttagcacat	gggggggtgt	gttagcacat	gtctcacatc	aagactatgg	aattaaaaca	8820
aactcttctg	ttacagatgt	agttgttttt	atttgcattat	tatcagaaaa	tggcagctgt	8880
tgtattttctt	ttggatccctt	attgaaattt	agttgttcat	tgaccattttt	taattgtgt	8940
tctcatttagg	cagaagatgt	aagagtgtat	atcattcgtt	cacttaggtc	gtttcaggct	9000
tttgcatatac	ttgtccatct	gccactgtct	ggagaacatg	gacttactttt	gagtgaccaa	9060
tcaaaactgt	aagacatgt	tttcttttaa	tttgcgtca	tgtatagcaa	aagcaaatac	9120

aataacaatga tttgtttta acttcaaatg tactctaaat tttgtgtttt tttttttttt 13200
aatttttagt gataagtgaa catagaattt agttaatgag ttaacatgtt attacatgg 13260
tttttcagct ataatgttgt atggatgtaa tcactgttt ttgatttctt aattgttagat 13320
tacaagagaa gactttgcca cattcgatta tatactgtgt atggatgaaa gcaatctgag 13380
gtaatcatat attttgttt taactcaact accttgaact caggataact tattccctgtc tcctgaggt 13440
taactcaact tttgatgtt taggttaaaa ggttaagact gccatgttca gttcatgcag taatcatact ttacacagta 13500
tttctttctt cctctcaatg ttgttatagg cccaaacaagt ttgcagaat gacttgctag 13560
tgtcttacag ttttgtgtt aggttgcagg tacaatctac agagtgttca ggagggcagg 13620
aggatcaagg tatgggttac tcagatctt acagaagtgt gtcttctgag agaccgttca 13680
gccactacag gaatggacag ggagagcagc tgggtcgggg ctccagggtgt ggaggtgatt 13800
gatgccttgg tcactgggtc ttttgcctt gtcacagatg aggaggcgt tgtatcctat 13860
ttccgtatag ttgtgtctct tagtgcgtt gtagagtaag tgacaagaca gaccgcactg ggtttatgg 13920
tttggctaa ccagcacggg tgggctcagg gttaaagatgt ttatcaaaga agaaatcaag ggcctgcagg tccacatccc 13980
tcatcaataa attgttttta ttcccttagt tcataggatg gatgggttggg ctataggag cataaaacca tagtgcgtc 14040
tcataggatg tggctttccac taaatggcc caaccacat tggctctgac ctcaactcagc 14100
cactgtggcc tgcttccac ttccctgcct cccatggctt tttgagttct ttctgcct 14160
tctcctacac tgagtccatc ttttgcctt tacatggctc ttttgcctt gaaacgttgc caaactgttt 14220
ctttgtcctg ggatatggta ttttgcctt ttttgcctt agagggaaac ttatgtatc 14280
tgaatgtta tcattttttt ttttgcctt ttttgcctt ttttgcctt agagggaaac ttatgtatc 14340
aaattaaaga tacacatgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt agctgcagaa 14400
gtcccataggt ctgcagagta ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ggttgcactg ttttgcctt 14460
atatttcata aaccctgagc ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt aaaccataga tcagaaatct 14520
aagttcatgt ttgcattttc aagctaaaaa ttttgcctt ttttgcctt ttttgcctt ttttgcctt gtaatcaagt taaaactgc 14580
aaagctaaaaa tcgacttact cccattttt ttttgcctt ttttgcctt ttttgcctt ttttgcctt agcgcctcat tattgaagat 14640
cccttattttt taatgtatg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt aagatgagca ggatgttattt 14700
attctgttga attaaatgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 14760
tctgaggaca ctgtcatcat ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 14820
atgactctga cttcgagggt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 14880
agaagactca cttagctggc ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 14940
cccaagggtg gtggcagtcc ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15000
tatatcttta aaataattgt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15060
tgagggcagac atttgagggt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15120
cataattaca aaatgtgg ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15180
aatgaccac aaggtccaga ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15240
ctggagtggt agcatggca ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15300
tatattgtct ctattgtga ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15360
agagtttaaa cccagacaca ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15420
atgatgggccc tggaaactccn ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15480
nnnnnnnnnn gcccagggt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15540
tgttcggtgt tctcggttaac ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15600
tggttaactga tgaaaacgtt cccggccccc ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15660
ggaacgtggg cccggccccc gccacagccca taaggcaaga ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15720
tggatgttga tgaaaagcaat ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15780
gcaaaagctt aatcgagctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15840
atcccttattt tggcaatgac ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15900
gcaaggcctt cttggagaag ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 15960
c

<210> 18
<211> 459
<212> DNA
<213> *Rattus norvegicus*

<400> 18	atggcagcct	tccatttaac	actggggag	tttaaacc	gacacacc	ggaagcag	60
	ttcagaaaat	tggtaactga	tgaaaacgtt	tcagataact	gggcattga	cagcagcgc	120
	gtttccgact	ggaacgtggg	ccggccccca	gactcaagag	ctgtcagctg	cctaagaaat	180
	catggcatta	gcacagcccc	taaggcaaga	cagattaca	gagaagactt	tgcacattc	240
	gattatacac	tgtgtatgg	tgaaaagcaat	ctgagagatc	tgaatagaaa	aagtaatcaa	300
	gttaaaaact	gcacaaactaa	aatcgagcta	cttggggagct	atgatccaca	gaagcagctc	360
	attattgaag	atcccttatta	tggcaatgac	tctgacttcg	agggtggtgta	ccagcaatgc	420
	cttaggtgct	gcaaggcctt	cctggagaag	actcactag			459

<210> 19
<211> 20

RTS0753WOSEQ.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 19
cgtgtgtctg tgcttagtccc 20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 20
ggcaacgtga acaggtccaa 20

<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 21
gcccaattgct ggacatgc 18

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 22
agcccaattgc tggacatgca 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 23
ttgtcccaagt cccaggcctc 20

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 24
cttcccggttg gaccgcgtgg 20

<210> 25
<211> 20
<212> DNA

RTS0753WOSEQ.txt

<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 25
gtgcgcgcga gccggaaatc 20
<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 26
atccaaagtgc tactgttagta 20
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<220>
<221> misc_feature
<222> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20
<223> n = A,T,C or G
<400> 27
nnnnnnnnnnnn nnnnnnnnnn 20
<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 28
gccctccatg ctggcacagg 20
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 29
agcaaaagat caatccgtta 20
<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 30

RTS0753WOSEQ.txt

tacagaaggc tgggccttga	20
<210> 31	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 31	20
atgcattctg cccccaagga	
<210> 32	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 32	21
caacggattt ggtcgtattt g	
<210> 33	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 33	26
ggcaacaata tccactttac cagagt	
<210> 34	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 34	21
cgcctggtca ccagggctgc t	
<210> 35	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 35	19
gaagggtgaag gtcggagtc	
<210> 36	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 36	20
gaagatggtg atgggatttc	

RTS0753WOSEQ.txt

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 37
caagcttccc gttctcagcc 20

<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 38
tggaaatcata ttggaacatg 20

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 39
ggcaaattca acggcacagt 20

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 40
gggtctcgct cctggaagat 20

<210> 41
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 41
aaggccgaga atggaaagct tgtcatc 27

<210> 42
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 42
tgttctagag acagccgcat ctt 23

RTS0753WOSEQ.txt

<210> 43
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 43
caccgaccc t caccatcttg t 21

<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 44
tttgtcagtg ccagcctcgt ctca 24

<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 45
tgcggccagc ctgactag 18

<210> 46
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 46
cgtgattaca caccgactga gaa 23

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 47
ccccacccctg aggtcctgca 20

<210> 48
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 48
gggtccaaagt cagtgctgtt c 21

RTS0753WOSEQ.txt

<210> 49
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 49
cctgaatact gcttctgcaa tgg

23

<210> 50
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 50
tgtgtctcggttaacatttgc cggta

26

<210> 51
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 51
ggcctcgcca taattacaaa ata

23

<210> 52
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 52
ggaccttgcgttgcattctt actt

24

<210> 53
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe

<400> 53
aacgagcaac tgtggaacaa aagaaaaccc

30

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 54
ctttggtaat ctgccggca

20

<210> 55

RTS0753WOSEQ.txt

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 55
actgcttctg caatgggtga 20

<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 56
caatgaccca attctctgag 20

<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 57
tccatacata gtatataatc 20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 58
tttcatccat acatagtata 20

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 59
attgcttca tccatacata 20

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 60
agattgcttt catccataca 20

<210> 61
<211> 20

RTS0753WOSEQ.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 61
ctcagattgc tttcatccat

20

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 62
ctctcagatt gccttcatcc

20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 63
agcctgttcc gccatcttcc

20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 64
gacttggtag cctgttccgc

20

<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 65
gcacggactt gtagcctgt

20

<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 66
acacaaaacag cacggacttg

20

<210> 67
<211> 20
<212> DNA

:213> Artificial Sequence **nTS0753WOSEQ.txt**

<220>

<223> oligomeric Compound

<400> 67
caaatgttac ccagacacac 20

<210> 68
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 68
caatgggtga tcgacaaaatg 20

<210> 69
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 69
tggaaaactgc ttctgcaatg 20

<210> 70
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 70
tcggttacaa gtttcctgaa 20

<210> 71
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 71
ccaatttctct gagatgtttt 20

<210> 72
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 72
gttgcgcgc tgcttaccct 20

<210> 73
<211> 20
<212> DNA

<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> Oligomeric Compound

<400> 73
atgaccacc ggaagttgcc 20

<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 74
tccagtcaga aacagcaccc 20

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 75
taggcagtc acagcttttgc 20

<210> 76
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 76
ccatgatttc tttaggcagct 20

<210> 77
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 77
tttatgggct gtgtgaatgc 20

<210> 78
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 78
cttgctttat gggctgtgtg 20

<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> oligomeric Compound

<400> 79
aatcaaatgt ggcaaaatct 20

<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 80
attcaaatct ctcagattgc 20

<210> 81
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 81
tgcaggtttt aacttgatta 20

<210> 82
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 82
ggatcatagc tcccaagtag 20

<210> 83
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 83
gatcttcaat aataagttgt 20

<210> 84
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 84
ccataatagg gatcttcaat 20

<210> 85
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

RTS0753WOSEQ.txt

<223> Oligomeric Compound

<400> 85
agtcatcccc ataataggga

20

<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence<220>
<223> Oligomeric Compound<400> 86
gtcagagtca ttcccataat

20

<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence<220>
<223> Oligomeric Compound<400> 87
cgtctcaaag tcagagtcat

20

<210> 88
<211> 20
<212> DNA
<213> Artificial Sequence<220>
<223> Oligomeric Compound<400> 88
cacactgctg gtacaccgtc

20

<210> 89
<211> 20
<212> DNA
<213> Artificial Sequence<220>
<223> Oligomeric Compound<400> 89
gtgggccttc tccaaagaacg

20

<210> 90
<211> 20
<212> DNA
<213> Artificial Sequence<220>
<223> Oligomeric Compound<400> 90
gaacctgcct cagtgggcct

20

<210> 91
<211> 20
<212> DNA
<213> Artificial Sequence<220>
<223> Oligomeric Compound

RTS0753WOSEQ.txt

<400> 91
cagcaggcca cgaacctgcc 20
<210> 92
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 92
gggtctagtc aggctggccg 20
<210> 93
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 93
tgagaaatgc aggacacctcag 20
<210> 94
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 94
acacaccgac tgagaaatgc 20
<210> 95
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 95
gggccttggc acgtgattac 20
<210> 96
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 96
aacaagagc tgggctttgg 20
<210> 97
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

RTS0753WOSEQ.txt

<400> 97
cttttaagg taagaaacag 20
<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 98
tgaatcaaag atttttattt 20
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 99
aaataccccca taagctgtct 20
<210> 100
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 100
gcttaaaata cccataagg 20
<210> 101
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 101
aagaatgctt aaaatacccc 20
<210> 102
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 102
caagtgggtttccttcat 20
<210> 103
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 103

RTS0753WOSEQ.txt 20

tagatgttga cctgggcctt
<210> 104
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 104
gtctcaacag gcttagatgt 20
<210> 105
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 105
gactcgatta tctaagtctc 20
<210> 106
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 106
aacctactga agaggtagac 20
<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 107
aagagagagg tagcactggg 20
<210> 108
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 108
ctaatctaga ctgtgagctc 20
<210> 109
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 109
aaacacttct aatctagact 20

RTS0753WOSEQ.txt

<210> 110
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 110
ctatgggtgt gtagaaat 20
ta

<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 111
agtgtgcact atgggtgtgt 20
at

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 112
aaatgtttct ctcttcccta 20
tt

<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 113
gccaaacgact gattccataa 20
tt

<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 114
tgaagggtgcc aacgactgat 20
tt

<210> 115
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 115
gaagtattga aggtgccaac 20
tt

RTS0753WOSEQ.txt

<210> 116
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 116
gccaatgggc tgacctcctc

20

<210> 117
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 117
tggttcagat gggagccat

20

<210> 118
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 118
aagtgtccctt ctttctggat

20

<210> 119
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 119
catattccctc aactgaccat

20

<210> 120
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 120
tttgggttac atgtgcata

20

<210> 121
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 121
tgatgaagaa tacttattca

20

<210> 122

RTS0753WOSEQ.txt

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 122
acatctgcct atacattttat

20

<210> 123
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 123
tccccagttt attttgaat

20

<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 124
ggaaggcaact catgatctgg

20

<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 125
aatgcatgcc atatagtaga

20

<210> 126
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 126
ctaatgatcc aggagtgaat

20

<210> 127
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 127
tggtacttac attctctgag

20

<210> 128
<211> 20

RTS0753WOSEQ.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 128
ctttggtaat ctaaaattga

20

<210> 129
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 129
acaggattac ctcagattgc

20

<210> 130
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 130
gttgaacaga aatattcttc

20

<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 131
attcaaatct ctgtaaaatt

20

<210> 132
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 132
ctgtctgact caaatgcttt

20

<210> 133
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 133
ggtcagaggt ttagttagtc

20

<210> 134
<211> 20
<212> DNA

RTS075WOSEQ.txt

<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 134
tccgtctgcg gttttatgtat 20

<210> 135
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 135
gtggtgctct gttgaggtgtat 20

<210> 136
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 136
ttgcttagtc tataactgacat 20

<210> 137
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 137
atgatggaga ttgcttagtcat 20

<210> 138
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 138
aaatatgcta aatgatggagat 20

<210> 139
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> oligomeric Compound
<400> 139
gcttcctgtg caccagaaat 20

<210> 140
<211> 20
<212> DNA
<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> oligomeric Compound

<400> 140
ctcacgttgc ttccctgtgca 20

<210> 141
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 141
actttgtaat gggagtagat 20

<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 142
tataatggta gactttgtaa 20

<210> 143
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 143
tagagaatgc aagcatatca 20

<210> 144
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 144
ttcaattaat agagaatgca 20

<210> 145
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 145
acatatacac atgagttgta 20

<210> 146
<211> 20
<212> DNA
<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> Oligomeric Compound

<400> 146
ctttgtaatg acatatacac
20

<210> 147
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 147
aaactctttg taatgacata
20

<210> 148
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 148
tgcttccatg aagcaaaact
20

<210> 149
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 149
gatactttca tgcttccatg
20

<210> 150
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 150
aatatgtatgat actttcatgc
20

<210> 151
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 151
gccataaaata tgtgatactt
20

<210> 152
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

RTS0753WOSEQ.txt

<223> oligomeric Compound
<400> 152
agaccctcaa tttctctaat 20
<210> 153
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound
<400> 153
tgccatgttt cggcgcagac 20
<210> 154
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound
<400> 154
acctctgcca tgtttcggtg 20
<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound
<400> 155
tgacttggac ccaacctctg 20
<210> 156
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound
<400> 156
acaggcactga cttggaccca 20
<210> 157
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound
<400> 157
acgaacagca ctgacttggaa 20
<210> 158
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

RTS0753WOSEQ.txt

<400> 158
acacacgaac agcactgact 20
<210> 159
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 159
ttaccgagac acacgaacag 20
<210> 160
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 160
aatgttaccg agacacacga 20
<210> 161
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 161
gcaaatgtta ccgagacaca 20
<210> 162
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 162
ggtgaccggc aaatgttacc 20
<210> 163
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 163
tgggtgaccg gcaaatgtta 20
<210> 164
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

RTS0753WOSEQ.txt

<400> 164		
caatgggtga ccggcaaatg		20
<210> 165		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligomeric Compound		
<400> 165		
gcaatgggtg accggcaaat		20
<210> 166		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligomeric Compound		
<400> 166		
tgcttctgca atgggtgacc		20
<210> 167		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligomeric Compound		
<400> 167		
atactgcttc tgcaatgggt		20
<210> 168		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligomeric Compound		
<400> 168		
gaatactgct tctgcaatgg		20
<210> 169		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligomeric Compound		
<400> 169		
ctgaatactg cttctgcaat		20
<210> 170		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligomeric Compound		
<400> 170		

RTS0753WOSEQ.txt

ttcctgaata ctgcttctgc	20
<210> 171	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 171	
accagtttcc tgaatactgc	20
<210> 172	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 172	
agttaccagt ttcctgaata	20
<210> 173	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 173	
tcatcagttt ccagtttccct	20
<210> 174	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 174	
cttttcatca gttaccagt	20
<210> 175	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 175	
aaccttttca tcagttacca	20
<210> 176	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligomeric Compound	
<400> 176	
ttatctaaaa ccttttcatc	20

RTS0753WOSEQ.txt

<210> 177
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 177
aattatctga aacctttca

20

<210> 178
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 178
ggcccaatta tctgaaacct

20

<210> 179
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 179
atggcccaat tatctgaaac

20

<210> 180
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 180
tgctgtcaat ggcccaatta

20

<210> 181
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 181
gcgctgctgt caatggccca

20

<210> 182
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 182
ggccggccca cgttccagtc

20

RTS0753WOSEQ.txt

<210> 183
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 183
gcaaagtctt cttttgtaat 20

<210> 184
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 184
aatgtggcaa agtcttcttt 20

<210> 185
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 185
taatcgaatg tggcaaagtc 20

<210> 186
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 186
gtatataatc gaatgtggca 20

<210> 187
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 187
agtatataatc cgaatgtggc 20

<210> 188
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 188
catacatatgc atataatcga 20

<210> 189

RTS0753WOSEQ.txt

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 189
ctttcatcca tacatagtagat 20

<210> 190
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 190
tctctcagat tgctttcatc 20

<210> 191
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 191
gatctctcag attgcttca 20

<210> 192
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 192
attgagatct ctcagattgc 20

<210> 193
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 193
ttctattttag atctctcaga 20

<210> 194
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 194
gcagtttta acttgattac 20

<210> 195
<211> 20

RTS0753WOSEQ.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 195
aatgatgagc tgtttctgtg 20

<210> 196
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 196
agggatcttc aatgatgagc 20

<210> 197
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 197
aatagggttc ttcaatgatg 20

<210> 198
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 198
cctcgaagtc agagtcattt 20

<210> 199
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 199
caccacctcg aagtcaagtt 20

<210> 200
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 200
tggtacacca cctcgaagtc 20

<210> 201
<211> 20
<212> DNA

RTS0753WOSEQ.txt

<213> Artificial Sequence	
<220>	
<223> oligomeric Compound	
<400> 201	
attgctggta caccacctcg	20
<210> 202	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> oligomeric Compound	
<400> 202	
acctcgaagt cagagtatt	20
<210> 203	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> oligomeric Compound	
<400> 203	
ggacccaaacc tctgccatgt	20
<210> 204	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> oligomeric Compound	
<400> 204	
ctaaggcatt gctggcacac	20
<210> 205	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> oligomeric Compound	
<400> 205	
agcacctaag gcattgctgg	20
<210> 206	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> oligomeric Compound	
<400> 206	
cttgcagcac ctaaggcatt	20
<210> 207	
<211> 20	
<212> DNA	
<213> Artificial sequence	

RTS0753WOSEQ.txt

<220>
<223> oligomeric Compound

<400> 207
aaggccttgc agcacctaag 20

<210> 208
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 208
ccaggaaggc cttgcagcac 20

<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 209
cttctccagg aaggcttgc 20

<210> 210
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 210
gtgagtccttc tccaggaagg 20

<210> 211
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 211
taggaccaggc tagtgagtct 20

<210> 212
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 212
ctcagtggtg gtggtagga 20

<210> 213
<211> 20
<212> DNA
<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> Oligomeric Compound

<400> 213
gccaccaccc ttgggcacag

20

<210> 214
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 214
ggcttaaggac tgccaccacc

20

<210> 215
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 215
gatatacagt aagttagctg

20

<210> 216
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 216
acctacaatt attttaaaga

20

<210> 217
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 217
tgatttccac ctacaattat

20

<210> 218
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 218
atgcctgatt tccacctaca

20

<210> 219
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

RTS0753WOSEQ.txt

<223> oligomeric Compound

<400> 219
tctgaacaaa tgcctgattt 20

<210> 220
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 220
aatgtctgcc tcaaatgttt 20

<210> 221
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 221
acctcaaatg tctgcctcaa 20

<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 222
gagccacacc tcaaatgtct 20

<210> 223
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 223
gtctaagaat actgagccac 20

<210> 224
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligomeric Compound

<400> 224
ttgttagtct aagaatactg 20

<210> 225
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> oligomeric Compound

RTS075WOSEQ.txt

<400> 225
tatggcgagg ccagagcttt 20
<210> 226
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 226
attttgaat tatggcgagg 20
<210> 227
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 227
acagttgctc gttccactat 20
<210> 228
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 228
tgttccacag ttgctcggtc 20
<210> 229
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 229
ccttggtgggt cattcttact 20
<210> 230
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 230
gctgggctca aaggctgatc 20
<210> 231
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

RTS0753WOSEQ.txt

<400> 231
tttagaccaga ctacccaggc 20
<210> 232
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 232
ctcacactcc agtttagacca 20
<210> 233
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 233
cactgggtgc tggccatgct 20
<210> 234
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 234
gtaaggcaag caaacagcac 20
<210> 235
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 235
ttgtcacaat aagagacaat 20
<210> 236
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 236
ggagatattg tcacaataag 20
<210> 237
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 237

RTS075WOSEQ.txt
ccatggatgg agatattgtc 20
<210> 238
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 238
ggctgccatg gatggagata 20
<210> 239
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 239
aatggaagg ctgccatgga 20
<210> 240
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 240
agtgttaaat ggaaggctgc 20
<210> 241
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 241
ttaaactctc ccagtgttaa 20
<210> 242
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 242
ctgggttaaa actctcccaag 20
<210> 243
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 243
ggttctccctc tctcaaataat 20

RTS0753WOSEQ.txt

<210> 244
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 244
agttccaggc ccatcatcac 20

<210> 245
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 245
atggcctgct ggagttccag 20

<210> 246
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 246
tttttatctt tcagacaggg 20

<210> 247
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 247
cccatctgtt agcattttta 20

<210> 248
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 248
ctgttgctcc catctgttag 20

<210> 249
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 249
ttaacttcac caacctgttg 20

RTS0753WOSEQ.txt

<210> 250
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 250
ccaagctcaa gaaaactacac 20

<210> 251
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 251
aagtggctca aataggaacc 20

<210> 252
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 252
ctttctcttt aaagaagcaa 20

<210> 253
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 253
gcacacttac tttctttta 20

<210> 254
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 254
caccactatt taagcacact 20

<210> 255
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 255
acaaacgcac accactattt 20

<210> 256

RTS0753WOSEQ.txt

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 256
gttgatgaga gaacacattac 20

<210> 257
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 257
gttaactttgt aaaatgttga 20

<210> 258
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 258
ttactcatgc ttgcctgtaa 20

<210> 259
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 259
gtcccctttc tgaaaataca 20

<210> 260
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 260
ataaaatttga ggtccctttt 20

<210> 261
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 261
atatccacat aaatttgagg 20

<210> 262
<211> 20

RTS0753WOSEQ.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 262
atctttctg acatatatcc 20

<210> 263
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 263
tctccagtgg caaagacaaa 20

<210> 264
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 264
aagcaagaaa ctatgcggga 20

<210> 265
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 265
catacggtagt ctgccgtgca 20

<210> 266
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 266
caatggccca ctgttaacaca 20

<210> 267
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 267
gagtacattt gaagttaaaa 20

<210> 268
<211> 20
<212> DNA

		RTS0753WOSEQ.txt
<213> Artificial Sequence		
<220>		
<223> oligomeric Compound		
<400> 268		
ctcttgtaat ctacaattaa		20
<210> 269		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligomeric Compound		
<400> 269		
tataacctgag ttcaagggtca		20
<210> 270		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligomeric Compound		
<400> 270		
ctcttgtaat ctgtcttgcc		20
<210> 271		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligomeric Compound		
<400> 271		
gagggtctcga cttacccgct		20
<210> 272		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligomeric Compound		
<400> 272		
ttctacacctg cgcgatttac		20
<210> 273		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligomeric Compound		
<400> 273		
ttagaataacg tcgcgtttagt		20
<210> 274		
<211> 20		
<212> DNA		
<213> Artificial Sequence		

RTS0753WOSEQ.txt

<220>
<223> Oligomeric Compound

<400> 274
ccttcctga aggttcctcc 20

<210> 275

<400> 275
000

<210> 276

<400> 276
000

<210> 277

<400> 277
000

<210> 278

<400> 278
000

<210> 279
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 279
accccggtcc gcacgcccc 20

<210> 280
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 280
tagcctgttc cgccatcttc 20

<210> 281
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 281
gctcatggga atgccgtgcc 20

<210> 282
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

RTS0753WOSEQ.txt

<400> 282
atcttccttg gtaatctgcc 20
<210> 283
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 283
ataggggatct tcaataataa 20
<210> 284
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 284
caccgtctca aagtcaaggt 20
<210> 285
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 285
ccgactgaga aatgcaggac 20
<210> 286
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 286
aacaaagagc tggcttggg 20
<210> 287
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 287
caaacacaac tgatttccat 20
<210> 288
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

RTS0753WOSEQ.txt

<400> 288
tgaatcaaac atttttattg 20
<210> 289
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 289
ttgttctact atttttgtaa 20
<210> 290
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 290
gtgagggtttt ccttcattgt 20
<210> 291
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 291
actactgtca atccacaaaa 20
<210> 292
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 292
tcttccttat cttttcaata 20
<210> 293
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 293
gtattgaagg tgccaaacgac 20
<210> 294
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 294

RTS0753WOSEQ.txt 20
taagtttcag aggcaaagtg
<210> 295
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 295
cataacaagtg tccttctttc 20
<210> 296
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 296
ttatTTTaaa aaataagcca 20
<210> 297
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 297
aaataataac acttttccca 20
<210> 298
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 298
aggTTTtagtt agtctaagaa 20
<210> 299
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 299
agaggTTtag tttagtctaag 20
<210> 300
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 300
tcagaggTTt agtttagtcta 20

RTS0753WOSEQ.txt

<210> 301
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 301
aaggtcagag gtttagttag 20

<210> 302
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 302
gcaaggtagc aggttagtt 20

<210> 303
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 303
ccgcaaggtc agaggtagtt 20

<210> 304
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 304
tttgccat atttgcttgc 20

<210> 305
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 305
atgggtgacc ggcaaatgtt 20

<210> 306
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 306
aatgggtgac cggcaaatgtt 20

RTS0753WOSEQ.txt

<210> 307
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligomeric Compound

<400> 307
 tgcaatgggt gaccggcaaa

20

<210> 308
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligomeric Compound

<400> 308
 ctgcaatggg tgaccggcaa

20

<210> 309
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligomeric Compound

<400> 309
 tctgcaatgg gtgaccggca

20

<210> 310
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligomeric Compound

<400> 310
 ttctgcaatg ggtgaccggc

20

<210> 311
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligomeric Compound

<400> 311
 cttctgcaat gggtgaccgg

20

<210> 312
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligomeric Compound

<400> 312
 gcttctgcaa tgggtgaccg

20

<210> 313

RTS0753WOSEQ.txt

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 313
ctgcttctgc aatgggtgac 20

<210> 314
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 314
tactgttct gcaatgggtg 20

<210> 315
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 315
aatactgctt ctgcaatgg 20

<210> 316
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 316
tcctgaatac tgcttctgca 20

<210> 317
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 317
gtttcctgaa tactgcttct 20

<210> 318
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 318
cagttcctg aatactgctt 20

<210> 319
<211> 20

RTS0753WOSEQ.txt

<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 319
taccagtttc ctgaatactg

20

<210> 320
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 320
gttaccagtt tcctgaatac

20

<210> 321
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 321
cagttaccag tttcctgaat

20

<210> 322
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 322
tgtatgctcg ctcctcctct

20

<210> 323
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 323
atcgaatgtg gcaaagtctt

20

<210> 324
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 324
ccggcgcgct cgctccgtct

20

<210> 325
<211> 20
<212> DNA

RTS0753WOSEQ.txt

<213> Artificial Sequence 20
<220>
<223> Oligomeric Compound
<400> 325
tataatcgaa tgtggcaaag
<210> 326
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligomeric Compound
<400> 326
tatataatcg aatgtggcaa
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligomeric Compound
<400> 327
tagtatataa tcgaatgtgg
<210> 328
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligomeric Compound
<400> 328
.atagtatata atcgaatgtg
<210> 329
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligomeric Compound
<400> 329
acatagtata taatcgaatg
<210> 330
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligomeric Compound
<400> 330
atacatagta tataatcgaa
<210> 331
<211> 20
<212> DNA
<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> oligomeric Compound

<400> 331
gattgcttgc atccatacat 20

<210> 332
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 332
cagattgctt tcatccataac 20

<210> 333
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 333
tctcagattg ctttcatcca 20

<210> 334
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 334
ttgtcgccctc ccgcgtcgtg 20

<210> 335
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 335
atctctcaga ttgctttcat 20

<210> 336
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligomeric Compound

<400> 336
agatctctca gattgcttgc 20

<210> 337
<211> 20
<212> DNA
<213> Artificial Sequence

RTS0753WOSEQ.txt

<220>
<223> Oligomeric Compound

<400> 337
tgagatctct cagattgctt 20

<210> 338
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 338
ctcctgccac atgttagtccg 20

<210> 339
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 339
ctgctcgggc ccttattttc 20

<210> 340
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 340
cacctcgaag tcagagtcat 20

<210> 341
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 341
accacacctga agtcagagtc 20

<210> 342
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 342
acaccacactc gaagtcagag 20

<210> 343
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

RTS0753WOSEQ.txt

<223> Oligomeric Compound

<400> 343

tacaccacct cgaagtcaga

20

<210> 344

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligomeric Compound

<400> 344

gtacaccacc tcgaagtcag

20

<210> 345

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligomeric Compound

<400> 345

ggtacaccac ctcgaagtca

20

<210> 346

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligomeric Compound

<400> 346

ctggcacacc acctcgaagt

20

<210> 347

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligomeric Compound

<400> 347

gctggcacac cacctcgaag

20

<210> 348

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligomeric Compound

<400> 348

tgctggtaca ccacctcgaa

20

<210> 349

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligomeric Compound

RTS0753WOSEQ.txt

<400> 349 tacgaccgcg acggccgcgt 20
<210> 350
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Oligomeric Compound

<400> 350 ttgctggtag accacacctcg 20
<210> 351
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Oligomeric Compound

<400> 351 cgaagggttt cgtgttactc 20
<210> 352
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Oligomeric Compound

<400> 352 gcgttggcgc gtcgtcgctg 20
<210> 353
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Oligomeric Compound

<400> 353 gggtggttagt ggccgggtggg 20
<210> 354
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Oligomeric Compound

<400> 354 gtggctgggt ggtgtcggt 20
<210> 355
<211> 738
<212> DNA
<213> Mus musculus

<400> 355 aggtcagtta tagactaaggc aatctccatc atttagcata tttctgggtgc acaggaagca 60
acgtgaggat cactcttcat ctactccat tacaaaagtct accattataa ttttgtatg 120

RTS0753WOSEQ.txt

cttgcatctt ctattaattt aaataatata caactcatgt gtatatgtca ttacaaagag 180
 ttttgcttca tggaaagcatg aaagtatcac atatttatgg cagagataag aatttagagaa 240
 attgagggtc tgcaccgaaa catggcagag gttgggtcca agtcagtgtc gtgcgtgtgt 300
 ctcggtaaca tttgccggtc acccattgca gaagcgttat tcagggaaact ggttaactgtat 360
 gaaaagggttt cagataattt ggccattgac agcagcgccg tttccgactg gaacgtggc 420
 cggcccccag accccaagagc tgcagctgc ctaagaaatc atggcattag cacagcccat 480
 aaggcaagac agattacaaa agaagacttt gccacattcg attatatact atgtatggat 540
 gaaagcaatc tgagagatct caatagaaaa agtaatcaag ttaaaaactg caaagctaaa 600
 attgagctac ttgggagctt tgatccacag aaacagctca tcattgaaga tccttattat 660
 ggcaatgact ctgacttcga ggtgggtac cagcaatgcc tttaggtgctg caaggccttc 720
 ctggagaaga cttaacttag 738

<210> 356
 <211> 15
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligomeric Compound

<400> 356
 aatgccccatga tttct 15

<210> 357
 <211> 15
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligomeric Compound

<400> 357
 gccatgattt cttag 15

<210> 358
 <211> 13
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligomeric Compound

<400> 358
 atgccccatgtat ttc 13

<210> 359
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligomeric Compound

<400> 359
 aatgccccatga tttcttaggc agctc 25

<210> 360
 <211> 14
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligomeric Compound

<400> 360
 tttcttaggc agctc 14

RTS0753WOSEQ.txt

<210> 361
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 361
tgtgaatgcc atgatttctt aggcagctca cagct

35

<210> 362
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 362
ccatgatttc ttaggcagct cacagct

27

<210> 363
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligomeric Compound

<400> 363
gatttccttag gcagctcaca gct

23