Title: N-(HETERO)ARYL PYRROLIDINE DERIVATIVES OF PYRAZOL-4-YL PYRROLO[2,3-D]PYRIMIDINES AND PYRROL-3-YL PYRROLO[2,3-D]PYRIMIDINES AS JANUS KINASE INHIBITORS

Abstract: The present invention relates to N-(hetero)aryl-pyrrolidine derivatives of Formula (I) which are JAK inhibitors, useful in the treatment of JAK-associated autoimmune disorders, as well as cancer.
N-(HETERO)ARYL-PYRROLIDINE DERIVATIVES OF PYRAZOL-4-YL-PYRROLO[2,3-d]PYRIMIDINES AND PYRROL-3-YL-PYRROLO[2,3-d]PYRIMIDINES AS JANUS KINASE INHIBITORS

TECHNICAL FIELD

The present invention relates to N-(hetero)aryl-pyrrolidine derivatives of Formula I, as well as their compositions and methods of use, which are JAK inhibitors, such as selective JAK1 inhibitors, useful in the treatment of JAK-associated diseases including, for example, inflammatory and autoimmune disorders, as well as cancer.

BACKGROUND

Protein kinases (PKs) are a group of enzymes that regulate diverse, important biological processes including cell growth, survival and differentiation, organ formation and morphogenesis, neovascularization, tissue repair and regeneration, among others. Protein kinases exert their physiological functions through catalyzing the phosphorylation of proteins (or substrates) and thereby modulating the cellular activities of the substrates in various biological contexts. In addition to the functions in normal tissues/organs, many protein kinases also play more specialized roles in a host of human diseases including cancer. A subset of protein kinases (also referred to as oncogenic protein kinases), when dysregulated, can cause tumor formation and growth, and further contribute to tumor maintenance and progression. Thus far, oncogenic protein kinases represent one of the largest and most attractive groups of protein targets for cancer intervention and drug development.

The Janus Kinase (JAK) family plays a role in the cytokine-dependent regulation of proliferation and function of cells involved in immune response. Currently, there are four known mammalian JAK family members: JAK1 (also known as Janus kinase-1), JAK2 (also known as Janus kinase-2), JAK3 (also known as Janus kinase, leukocyte; JAKL; L-JAK and Janus kinase-3) and TYK2 (also known as protein-tyrosine kinase 2). The JAK proteins range in size from 120 to 140 kDa and comprise seven conserved JAK homology (JH) domains; one of these is a functional catalytic kinase domain, and another is a pseudokinase domain potentially serving a regulatory function and/or serving as a docking site for STATs.

Blocking signal transduction at the level of the JAK kinases holds promise for developing treatments for inflammatory diseases, autoimmune diseases, myeloproliferative diseases, and human cancers, to name a few. Inhibition of the JAK kinases is also envisioned to have therapeutic benefits in patients suffering from skin immune disorders such as psoriasis, and skin

sensitization. Accordingly, inhibitors of Janus kinases or related kinases are widely sought and several publications report effective classes of compounds. For example, certain JAK inhibitors, including pyrrolopyridine and pyrrolopyrimidines, are reported in U.S. Application Pub. No. 2007/0135461, filed December 12, 2006.

Thus, new or improved agents which inhibit kinases such as Janus kinases are continually needed for developing new and more effective pharmaceuticals to treat cancer and other diseases. The compositions and methods described herein are directed toward these needs and other ends.

SUMMARY

The present invention provides, *inter alia*, compounds of Formula I:

![Formula I](image)

or pharmaceutically acceptable salts or N-oxides thereof; wherein:

- X is cyano or halogen;
- Y is CH or N;
- Z is hydrogen, C₁₋₄ alkyl, C₁₋₄ fluorinated alkyl, or fluoro;
- Ar is C₆₋₁₄ aryl, C₆₋₁₄ heteroaryl, C₇₋₁₄ fused cycloalkylaryl, C₆₋₁₄ fused heterocycloalkylaryl, C₂₋₄₄ fused cycloalkylheteroaryl, or C₂₋₄₄ fused heterocycloalkylheteroaryl, each of which is optionally substituted by 1, 2, 3, 4, 5, or 6 independently selected R¹ groups;
- each R¹ is independently selected from halogen, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₄₄ cycloalkyl, C₃₋₄₄ cycloalkyl-C₁₋₄ alkyl, C₂₋₄₄ heterocycloalkyl, C₂₋₄₄ heterocycloalkyl-C₁₋₄ alkyl, C₆₋₄₄ aryl, C₆₋₄₄ aryl-C₁₋₄ alkyl, C₄₋₁₃ heteroaryl, C₄₋₁₃ heteroaryl-C₁₋₄ alkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)₂R^b, -S(=O)NR¹R^b, -C(=O)R^b, -C(=O)NR¹R^b, -OC(=O)R^b, -OC(=O)NR¹R^b, -NR¹NC(=O)R^d, -NR¹NC(=O)OR^d, -NR¹NC(=O)NR^d, -NR¹NC(=O)OR^d, and wherein said C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, and C₂₋₆ alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^{1a} groups; and wherein said C₃₋₄₄ cycloalkyl, C₃₋₄₄ cycloalkyl-C₁₋₄ alkyl, C₂₋₄₄ heterocycloalkyl, C₂₋₄₄ heterocycloalkyl-C₁₋₄ alkyl, C₆₋₄₄ aryl, C₆₋₄₄ aryl-C₁₋₄ alkyl, C₄₋₁₃ heteroaryl,
and Ci-1, heteroaryl-Ci-4-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^2a groups;

 each R^1a is independently selected from halogen, cyano, nitro, hydroxyl, Ci-4 alkoxy, Ci-4 haloalkoxy, Ci-4 alkylthio, Ci-4 alkylsulfanyl, Ci-4 alkylsulfonyl, amino, Ci-4 alkylamino, di-Ci-4-alkylamino, Ci-4 alkylcarbonyl, carboxy, Ci-4 alkoxy carbonyl, Ci-4 alkylcarbonylaminoo, di-Ci-4 alkylcarbonylamino, Ci-4 alkoxy carbonyl(Ci-4 alkyl)amino, carboxy, Ci-4 alkyl carbamyl, and di-Ci-4 alkyl carbamyl;

 each R^2a is independently selected from halogen, cyano, nitro, hydroxyl, Ci-4 alkyl, Ci-4 haloalkyl, Ci-4 alkenyl, Ci-4 alkynyl, Ci-4 alkoxy, Ci-4 haloalkoxy, Ci-4 alkylthio, Ci-4 alkoxy carbonylaminoo, Ci-4 alkyl carbamyl, and di-Ci-4 alkyl carbamyl;

 R^3, R^4, R^5, and R^6 is independently selected from H, Ci-6 alkyl, Ci-6 haloalkyl, Ci-6 alkenyl, Ci-6 alkynyl, Ci-6 alkoxy, Ci-6 haloalkoxy, Ci-6 alkyl thio, Ci-6 alkoxy carbonylaminoo, Ci-6 alkyl carbamyl, and di-Ci-6 alkyl carbamyl;

 or any R^2 and R^4, together with the moiety to which they are attached, can form a 3-, 4-, 5-, 6-, or 7-membered heterocycloalkyl ring, wherein said heterocycloalkyl ring is optionally substituted by 1, 2, 3, or 4 independently selected from hydroxyl, Ci-4 alkyl, Ci-4 haloalkyl, Ci-4 alkoxy, Ci-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4 alkylamino;

 or any R^5 and R^6, together with the nitrogen atom to which they are attached, can form a 3-, 4-, 5-, 6- or 7-membered heterocycloalkyl ring or heteroaryl ring, wherein said heterocycloalkyl or heteroaryl ring is optionally substituted from hydroxyl, Ci-4 alkyl, Ci-4 haloalkyl, d-alkoxy, Ci-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4 alkylamino;
provided that the valency of each atom in the optionally substituted moieties is not exceeded.

The present invention further provides pharmaceutical compositions, comprising a compound of Formula I as described herein, or a pharmaceutically acceptable salt or N-oxide thereof, and a pharmaceutically acceptable carrier.

The present invention also provides methods of modulating an activity of JAKI comprising contacting JAKI with a compound of Formula I as described herein, or a pharmaceutically acceptable salt or N-oxide thereof.

The present invention further provides methods of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, or organ transplant rejection in a patient in need thereof, comprising administering to said patient a therapeutically effective amount of a compound of Formula I as described herein, or a pharmaceutically acceptable salt or N-oxide thereof.

The present invention also provides compounds of Formula I, or pharmaceutically acceptable salts or N-oxides thereof, as described herein for use in methods of treating autoimmune diseases, cancer, myeloproliferative disorders, inflammatory diseases, or organ transplant rejection.

The present invention further provides compounds of Formula I as described herein, or pharmaceutically acceptable salts or N-oxides thereof, for use in methods of modulating a JAKI.

The present invention also provides uses of compounds of Formula I as described herein, or pharmaceutically acceptable salts or N-oxides thereof, for the preparation of medicaments for use in methods of modulating a JAKI.

This application claims the benefit of U.S. Provisional Patent Applications Serial No. 61/180,622, filed May 22, 2009 and Serial No. 61/225,092, filed July 13, 2009 both of which are incorporated herein by reference in their entirety.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DETAILED DESCRIPTION

At various places in the present specification, substituents of compounds of the invention are disclosed in groups or in ranges. It is specifically intended that the invention include each and every individual subcombination of the members of such groups and ranges. For example, the
term "C_{1-6} alkyl" is specifically intended to individually disclose methyl, ethyl, C_{3} alkyl, C_{4} alkyl, C_{5} alkyl, and C_{6} alkyl.

It is further intended that the compounds of the invention are stable. As used herein "stable" refers to a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and preferably capable of formulation into an efficacious therapeutic agent.

It is further appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable subcombination.

The term "n-membered" where n is an integer typically describes the number of ring-forming atoms in a moiety where the number of ring-forming atoms is n. For example, piperidinyl is an example of a 6-membered heterocycloalkyl ring and 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.

For compounds of the invention in which a variable appears more than once, each variable can be a different moiety independently selected from the group defining the variable. For example, where a structure is described having two R groups that are simultaneously present on the same compound, the two R groups can represent different moieties independently selected from the group defined for R. In another example, when an optionally multiple substituent is designated in the form:

\[
\begin{array}{c}
Q \\
(\text{CH}_2)_n \\
(\text{R})_p
\end{array}
\]

then it is understood that substituent R can occur p number of times on the ring, and R can be a different moiety at each occurrence. It is understood that each R group may replace any hydrogen atom attached to a ring atom, including one or both of the (\text{CH}_2)_n hydrogen atoms. Further, in the above example, should the variable Q be defined to include hydrogens, such as when Q is said to be CH_2, NH, etc., any floating substituent such as R in the above example, can replace a hydrogen of the Q variable as well as a hydrogen in any other non-variable component of the ring.

For compounds of the invention in which a variable appears more than once, each variable can be a different moiety independently selected from the group defining the variable. For example, where a structure is described having two R groups that are simultaneously present
on the same compound, the two R groups can represent different moieties independently selected from the group defined for R.

As used herein, the phrase "optionally substituted" means unsubstituted or substituted. As used herein, the term "substituted" means that a hydrogen atom is removed and replaced by a substituent. As used herein, the phrase "substituted with oxo" means that two hydrogen atoms are removed from a carbon atom and replaced by an oxygen bound by a double bond to the carbon atom. It is understood that substitution at a given atom is limited by valency.

As used herein, the term "C\textsubscript{m-n} alkyl", employed alone or in combination with other terms, refers to a saturated hydrocarbon group that may be straight-chain or branched, having n to m carbon atoms. In some embodiments, the alkyl group contains 1 to 12, 1 to 8, 1 to 6, or 1 to 4 carbon atoms. Examples of alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, isobutyl, sec-butyl, 2-methyl-1-butyl, n-pentyl, 3-pentyl, n-hexyl, 1,2,2-trimethylpropyl, n-heptyl, n-octyl, and the like.

As used herein, the term "C\textsubscript{m-n} alkenylene", employed alone or in combination with other terms, refers to a divalent alkyl linking group having n to m carbon atoms. In some embodiments, the alkenylene moiety contains 2 to 6, or 2 to 4 carbon atoms. Examples of alkenylene groups include, but are not limited to, ethenyl, α-propenyl, isopropenyl, n-butenyl, sec-butenyl, and the like.

As used herein, "C\textsubscript{n-m} alkenyl", employed alone or in combination with other terms, refers to an alkyl group having one or more double carbon-carbon bonds and n to m carbon atoms. In some embodiments, the alkenyl moiety contains 2 to 6, or 2 to 4 carbon atoms. Example alkenyl groups include, but are not limited to, ethenyl, α-propynyl, isopropynyl, n-butenyl, sec-butenyl, and the like.

As used herein, "C\textsubscript{n-m} alkenylene", employed alone or in combination with other terms, refers to a divalent alkenyl group. In some embodiments, the alkenylene moiety contains 2 to 6, or 2 to 4 carbon atoms.

As used herein, "C\textsubscript{n-m} alkynyl", employed alone or in combination with other terms, refers to an alkyl group having one or more triple carbon-carbon bonds and n to m carbon atoms. Example alkynyl groups include, but are not limited to, ethynyl, propyn-1-yl, propyn-2-yl, and the like. In some embodiments, the alkynyl moiety contains 2 to 6 or 2 to 4 carbon atoms.

As used herein, "C\textsubscript{n-m} alkynylene", employed alone or in combination with other terms, refers to a divalent alkynyl group. In some embodiments, the alkynylene moiety contains 2 to 6, or 2 to 4 carbon atoms.
As used herein, the term "C_{n:m} alkoxy", employed alone or in combination with other terms, refers to a group of formula -O-alkyl, wherein the alkyl group has n to m carbon atoms. Example alkoxy groups include methoxy, ethoxy, propoxy (e.g., n-propoxy and isopropoxy), t-butoxy, and the like. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "carboxy", employed alone or in combination with other terms, refers to a group of formula -C(=O)OH.

As used herein, the term "C_{n:m} alkoxy carbonyl-(C_{n:m} alkyl)amino", employed alone or in combination with other terms, refers to a group of formula -N(alkyl)-C(=O)O(alkyl), wherein each alkyl independently has n to m carbon atoms.

As used herein, the term "C_{n:m} alkoxy carbonylamino", employed alone or in combination with other terms, refers to a group of formula -NH-C(=O)O(alkyl), wherein the alkyl has n to m carbon atoms.

As used herein, the term "C_{n:m} alkoxy carbonyl", employed alone or in combination with other terms, refers to a group of formula -C(=O)O-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "C_{n:m} alkyl carbonyl", employed alone or in combination with other terms, refers to a group of formula -C(=O)-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "C_{n:m} alkyl carbonylamino", employed alone or in combination with other terms, refers to a group of formula -NH-C(=O)-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "di-C_{n:m} alkyl carbonylamino", employed alone or in combination with other terms, refers to a group of formula -N(alkyl)C(=O)-alkyl, wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "amino" refers to a group of formula -NH₂.

As used herein, the term "C_{n:m} alkyl ammino", employed alone or in combination with other terms, refers to a group of formula -NH(alkyl), wherein the alkyl group has n to m carbon atoms.

As used herein, the term "di-C_{n:m} alkyl ammino", employed alone or in combination with other terms, refers to a group of formula -N(alkyl)₂, wherein each alkyl groups each has independently n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "carbamyl", employed alone or in combination with other terms, refers to a group of formula -C(=O)NH₂.

As used herein, the term "C_{n−m}alkylcarbamyl", employed alone or in combination with other terms, refers to a group of formula -C(=O)-NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "di-C_{n−m}-alkylcarbamyl", employed alone or in combination with other terms, refers to a group of formula -C(=O)-N(alkyl)₂, wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "C_{n−m}-alkylthio", employed alone or in combination with other terms, refers to a group of formula -S-alkyl, wherein the alkyl has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "C_{n−m}-alkylsulfinyl", employed alone or in combination with other terms, refers to a group of formula -S(=O)-alkyl, wherein the alkyl has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "C_{n−m}-alkylsulfonyl", employed alone or in combination with other terms, refers to a group of formula -S(=O)₂-alkyl, wherein the alkyl has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

As used herein, the term "carbonyl", employed alone or in combination with other terms, refers to a -C(=O)- group, which is a divalent one-carbon moiety further bonded to an oxygen atom with a double bond.

As used herein, the term "cyano", employed alone or in combination with other terms, refers to a group of formula -CN, wherein the carbon and nitrogen atoms are bound together by a triple bond.

As used herein, the terms "halo" and "halogen", employed alone or in combination with other terms, refer to fluoro, chloro, bromo, and iodo.

As used herein, "C_{n−m}-haloalkoxy", employed alone or in combination with other terms, refers to a group of formula -O-haloalkyl, wherein the haloalkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms. An example haloalkoxy group is -OCF₃.

As used herein, the term "C_{n−m}-haloalkyl", employed alone or in combination with other terms, refers to an alkyl group having from n to m carbon atoms and one halogen atom to 2x+1 halogen atoms which may be the same or different, where "x" is the number of carbon atoms in the alkyl group. In some embodiments, the halogen atoms are fluoro atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms. An example of a haloalkyl group is -CF₃.
As used herein, the term "C_{n-m} fluorinated alkyl", employed alone or in combination with other terms, refers to a C_{n-m} haloalkyl wherein the halogen atoms are selected from fluorine. In some embodiments, fluorinated C_{n-m} haloalkyl is fluoromethyl, difluoromethyl, or trifluoromethyl.

As used herein, the term "C_{n-m} cycloalkyl", employed alone or in combination with other terms, refers to a non-aromatic cyclic hydrocarbon moiety, which may optionally contain one or more alkenylene groups as part of the ring structure, and which has n to m ring member carbon atoms. Cycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3, or 4 fused, bridged, or spiro rings) ring systems. Also included in the definition of cycloalkyl are moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the cycloalkyl ring, for example, benzo derivatives of cyclopentane, cyclopentene, cyclohexane, and the like. The term "cycloalkyl" also includes bridgehead cycloalkyl groups and spirocycloalkyl groups. As used herein, "bridgehead cycloalkyl groups" refers to non-aromatic cyclic hydrocarbon moieties containing at least one bridgehead carbon, such as adamantan-1-yl. As used herein, "spirocycloalkyl groups" refers to non-aromatic hydrocarbon moieties containing at least two rings fused at a single carbon atom, such as spiro[2.5]octane and the like. In some embodiments, the cycloalkyl group has 3 to 14 ring members, 3 to 10 ring members, or 3 to 7 ring members. In some embodiments, the cycloalkyl group is monocyclic or bicyclic. In some embodiments, the cycloalkyl group is monocyclic. In some embodiments, the cycloalkyl group is a C₃₋₇ monocyclic cycloalkyl group. One or more ring-forming carbon atoms of a cycloalkyl group can be oxidized to form carbonyl linkages. Example cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cycloentenyl, cyclohexenyl, cyclohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcarnyl, adamantyl, and the like. In some embodiments, the cycloalkyl group is adamantan-1-yl.

As used herein, the term "C_{n-m} cycloalkyl-C_{0-p} alkyl", employed alone or in combination with other terms, refers to a group of formula -alkylene-cycloalkyl, wherein the cycloalkyl portion has n to m carbon atoms and the alkenylene portion has o to p carbon atoms. In some embodiments, the alkenylene portion has 1 to 4, 1 to 3, 1 to 2, or 1 carbon atom(s). In some embodiments, the alkenylene portion is methylene. In some embodiments, the cycloalkyl portion has 3 to 14 ring members, 3 to 10 ring members, or 3 to 7 ring members. In some embodiments, the cycloalkyl group is monocyclic or bicyclic. In some embodiments, the cycloalkyl group is monocyclic. In some embodiments, the cycloalkyl group is a C₃₋₇ monocyclic cycloalkyl group.

As used herein, the term "C_{n-m} heterocycloalkyl", "C_{n-m} heterocycloalkyl ring", or "C_{n-m} heterocycloalkyl group", employed alone or in combination with other terms, refers to non-
aromatic ring or ring system, which may optionally contain one or more alkenylene groups as part of the ring structure, which has at least one heteroatom ring member independently selected from nitrogen, sulfur and oxygen, and which has n to m ring member carbon atoms. Heterocycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3 or 4 fused, bridged, or spiro rings) ring systems. In some embodiments, the heterocycloalkyl group is a monocyclic or bicyclic group having 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, sulfur and oxygen. Also included in the definition of heterocycloalkyl are moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the non-aromatic ring, for example, 1,2,3,4-tetrahydro-quinoline and the like. Heterocycloalkyl groups can also include bridgehead heterocycloalkyl groups and spiroheterocycloalkyl groups. As used herein, "bridgehead heterocycloalkyl group" refers to a heterocycloalkyl moiety containing at least one bridgehead atom, such as azadamantan-1-yl and the like. As used herein, "spiroheterocycloalkyl group" refers to a heterocycloalkyl moiety containing at least two rings fused at a single atom, such as [1,4-dioxo-8-aza-spiro[4.5]decan-N-yl] and the like. In some embodiments, the heterocycloalkyl group has 3 to 20 ring-forming atoms, 3 to 10 ring-forming atoms, or about 3 to 8 ring forming atoms. The carbon atoms or heteroatoms in the ring(s) of the heterocycloalkyl group can be oxidized to form a carbonyl, or sulfonyl group (or other oxidized linkage) or a nitrogen atom can be quaternized. In some embodiments, the heterocycloalkyl portion is a C_{2-7} monocyclic heterocycloalkyl group.

As used herein, the term "C_{n-m} heterocycloalkyl-C_{0-p} alkyl", employed alone or in combination with other terms, refers to a group of formula -alkylene-heterocycloalkyl, wherein the heterocycloalkyl portion has n to m carbon atoms and the alkylene portion has 0 to p carbon atoms. In some embodiments, the alkylene portion has 1 to 4, 1 to 3, 1 to 2, or 1 carbon atom(s). In some embodiments, the alkylene portion is methylene. In some embodiments, the heterocycloalkyl portion has 3 to 14 ring members, 3 to 10 ring members, or 3 to 7 ring members.

In some embodiments, the heterocycloalkyl group is monocyclic or bicyclic. In some embodiments, the heterocycloalkyl portion is monocyclic. In some embodiments, the heterocycloalkyl portion is a C_{2-7} monocyclic heterocycloalkyl group.

As used herein, the term "C_{n-m} aryl", employed alone or in combination with other terms, refers to a monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbon moiety having n to m ring member carbon atoms, such as, but not limited to, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenanthrenyl, and the like. In some embodiments, aryl groups have from 6 to 14 carbon atoms, about 6 to 10 carbon atoms, or about 6 carbons atoms. In some embodiments, the aryl group is a monocyclic or bicyclic group.
As used herein, the term "C_{n-m} aryl-C_{op}-alkyl", employed alone or in combination with other terms, refers to a group of formula -alkylene-aryl, wherein the aryl portion has n to m ring member carbon atoms and the alkylene portion has o to p carbon atoms. In some embodiments, the alkylene portion has 1 to 4, 1 to 3, 1 to 2, or 1 carbon atom(s). In some embodiments, the alkylene portion is methylene. In some embodiments, the aryl portion is phenyl. In some embodiments, the aryl group is a monocyclic or bicyclic group. In some embodiments, the arylalkyl group is benzyl.

As used herein, the term "C_{n-m} heteroaryl", "C_{n-m} heteroaryl ring", or "C_{n-m} heteroaryl group", employed alone or in combination with other terms, refers to a monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbon moiety, having one or more heteroatom ring members independently selected from nitrogen, sulfur and oxygen and having n to m ring member carbon atoms. In some embodiments, the heteroaryl group is a monocyclic or bicyclic group having 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, sulfur and oxygen. Example heteroaryl groups include, but are not limited to, pyrrolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furyl, thienyl, quinolinyl, isoquinolinyl, indolyl, benzothienyl, benzofuranyl, benzisoxazolyl, imidazo[1,2-b]thiazolyl or the like. The carbon atoms or heteroatoms in the ring(s) of the heteroaryl group can be oxidized to form a carbonyl, or sulfonfonyl group (or other oxidized linkage) or a nitrogen atom can be quaternized, provided the aromatic nature of the ring is preserved. In some embodiments, the heteroaryl group has 5 to 10 carbon atoms.

As used herein, the term "C_{n-m} heteroaryl-C_{op}-alkyl", employed alone or in combination with other terms, refers to a group of formula -alkylene-heteroaryl, wherein the heteroaryl portion has n to m ring member carbon atoms and the alkylene portion has o to p carbon atoms. In some embodiments, the alkylene portion has 1 to 4, 1 to 3, 1 to 2, or 1 carbon atom(s). In some embodiments, the alkylene portion is methylene. In some embodiments, the heteroaryl portion is a monocyclic or bicyclic group having 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl portion has 5 to 10 carbon atoms.

As used herein, the term "C_{n+m} fused heterocycloalkylheteroaryl" refers to a moiety having a heteroaryl group fused to a heterocycloalkyl group, with n to m ring member carbon atoms in the moiety, wherein the moiety is attached to the nitrogen atom of the pyrrolidine ring of Formula I through the heteroaryl group. In some embodiments, the C_{n+m} fused heterocycloalkylheteroaryl has 2-14, 3-14, 4-14, 5-14, 5-12, 5-10, or 6-9 carbon atoms. In some embodiments, the C_{n+m} fused heterocycloalkylheteroaryl is 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, 2,3-
dihydrofuro[2,3-b]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-
dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, or the like.

As used herein, the term "C_{n-m}fused cycloalkylheteroaryl" refers to a moiety having a
heteroaryl group fused to a cycloalkyl group, with n to m ring member carbon atoms in the
moiety, wherein the moiety is attached to the nitrogen atom of the pyrrolidine ring of Formula I
through the heteroaryl group. In some embodiments, the C_{n-m}fused cycloalkylheteroaryl has 2-
14, 3-14, 4-14, 5-14, 5-12, or 5-10 carbon atoms. In some embodiments, the C_{n-m}fused
cycloalkylheteroaryl is 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl or the like.

As used herein, the term "C_{n-m}fused cycloalkylaryl" refers to a moiety having an aryl
group fused to a cycloalkyl group, with n to m ring member carbon atoms in the moiety, wherein
the moiety is attached to the nitrogen atom of the pyrrolidine ring of Formula I through the aryl
group. In some embodiments, the C_{n-m}fused cycloalkylaryl has 6-16, 6-15, 6-14, 6-13, 6-12, or
6-10 carbon atoms.

As used herein, the term "C_{n-m}fused heterocycloalkylaryl" refers to a moiety having an
aryl group fused to a heterocycloalkyl group, with n to m ring member carbon atoms in the
moiety, wherein the moiety is attached to the nitrogen atom of the pyrrolidine ring of Formula I
through the aryl group. In some embodiments, the C_{n-m}fused heterocycloalkylaryl has 6-16, 6-15,
6-14, 6-13, 6-12, or 6-10 carbon atoms.

As used herein, the appearance of the term "bicyclic" before the name of a moiety
indicates that the moiety has two fused rings.

As used herein, the appearance of the term "monocyclic" before the name of a moiety
indicates that the moiety has a single ring.

Unless otherwise indicated herein, the point of attachment of a substituent is generally in
the last portion of the name (e.g., arylalkyl is attached through the alkylene portion of the group).

As used herein, wherein Ar is indicated as "a thiazole ring", "a pyridine ring", "a
pyridimine ring", etc., the ring can be attached at any position of the ring, provided that the
valency of the atom at the point of attachment is not exceeded. By contrast, in some
embodiments, the exact point of attachment is clearly indicated in the name (e.g., "thiazol-2-yl",
"pyridin-2-yl", "pyridin-3-yl", "pyridin-4-yl", "pyridimin-2-yl" and "pyrimidin-4-yl"). For
example, the point of attachment for "thiazol-2-yl" is the 2-position of the ring.

As used herein, the phrase "pharmaceutically acceptable" is employed herein to refer to
those compounds, materials, compositions, and/or dosage forms which are, within the scope of
sound medical judgment, suitable for use in contact with the tissues of human beings and animals
without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

As used herein, the expressions, "ambient temperature" and "room temperature," as used herein, are understood in the art, and refer generally to a temperature, e.g. a reaction temperature, that is about the temperature of the room in which the reaction is carried out, for example, a temperature from about 20 °C to about 30 °C.

As used herein, the term "contacting" refers to the bringing together of indicated moieties in an in vitro system or an in vivo system. For example, "contacting" a JAK with a compound of the invention includes the administration of a compound of the present invention to an individual or patient, such as a human, having a JAK, as well as, for example, introducing a compound of the invention into a sample containing a cellular or purified preparation containing the JAK.

As used herein, the term "individual" or "patient," used interchangeably, refers to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.

As used herein, the phrase "therapeutically effective amount" refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician.

As used herein, the term "treating" or "treatment" refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder; and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of disease.

The present invention provides, inter alia, a compound of Formula I:

![Chemical Structure](https://via.placeholder.com/150)
or a pharmaceutically acceptable salt or N-oxide thereof; wherein:

X is cyano or halogen;
Y is CH or N;
Z is hydrogen, C\textsubscript{1-4} alkyl, C\textsubscript{1-4} fluorinated alkyl, or fluoro;
Ar is C\textsubscript{6-14} aryl, C\textsubscript{1-4} heteroaryl, C\textsubscript{7-14} fused cycloalkylaryl, C\textsubscript{6-14} fused heterocycloalkylaryl, C\textsubscript{2-14} fused cycloalkylheteroaryl, or C\textsubscript{2-14} fused heterocycloalkylheteroaryl, each of which is optionally substituted by 1, 2, 3, 4, 5, or 6 independently selected R1i groups;
each R1i is independently selected from halogen, cyano, nitro, C\textsubscript{1-6} alkyl, C\textsubscript{1-6} haloalkyl, C\textsubscript{2-6} alkenyl, C\textsubscript{2-6} alkynyl, C\textsubscript{3-4} cycloalkyl, C\textsubscript{3-4} cycloalkyl-C\textsubscript{1-4} alkyl, C\textsubscript{2-4} heterocycloalkyl, C\textsubscript{2-4} heterocycloalkyl-C\textsubscript{1-4} alkyl, C\textsubscript{6-14} aryl, C\textsubscript{6-14} alkyl-C\textsubscript{1-4} alkyl, C\textsubscript{1-4} heteroaryl, C\textsubscript{1-4} heteroaryl-C\textsubscript{6-14} alkyl, -ORa, -SRa, -S(O)=ORb, -S(O)=SRb, -S(O)NRb, -C(O)ORb, -C(=O)ORb, -C(O)=ORb, -C(O)=SRb, -O(C-O)=ORb, -O(C-O)=SRb, -NRbC(O)=ORb, -NRbC(O)=SRb, -NRbC(O)NRb, -NRbC(O)S(O)b, and -NRbO=C(=O)NRb; wherein said C\textsubscript{1-6} alkyl, C\textsubscript{1-6} haloalkyl, C\textsubscript{2-6} alkenyl, and C\textsubscript{2-6} alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R1a groups; and wherein said C\textsubscript{3-4} cycloalkyl, C\textsubscript{3-4} cycloalkyl-C\textsubscript{1-4} alkyl, C\textsubscript{2-4} heterocycloalkyl, C\textsubscript{2-4} heterocycloalkyl-C\textsubscript{1-4} alkyl, C\textsubscript{6-14} aryl, C\textsubscript{6-14} alkyl-C\textsubscript{1-4} alkyl, C\textsubscript{1-4} heteroaryl, and C\textsubscript{1-4} heteroaryl-C\textsubscript{1-4} alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R2a groups; each R1a is independently selected from halogen, cyano, nitro, hydroxyl, C\textsubscript{1-4} alkoxy, C\textsubscript{1-4} haloalkoxy, C\textsubscript{1-4} alkythio, C\textsubscript{1-4} alkylsulfinyl, C\textsubscript{1-4} alkylsulfonyl, amino, C\textsubscript{1-4} alkylamino, di-C\textsubscript{1-4} alkylamino, C\textsubscript{1-4} alkylcarbonyl, C\textsubscript{1-4} alkoxy carbonyl, C\textsubscript{1-4} alkylcarbonylamino, di-C\textsubscript{1-4} alkylcarbonylamino, C\textsubscript{1-4} alkoxy carbonylaminocarbonyl, C\textsubscript{1-4} alkoxy carbonyl-(C\textsubscript{1-4} alkyl)amino, carbamyl, C\textsubscript{1-4} alkylicarbamyl, and di-C\textsubscript{1-4} alkylicarbamyl; each R2a is independently selected from halogen, cyano, nitro, hydroxyl, C\textsubscript{1-4} alkenyl, C\textsubscript{2-4} alkynyl, C\textsubscript{3-4} cycloalkyl, C\textsubscript{3-7} cycloalkyl-C\textsubscript{1-4} alkyl, C\textsubscript{2-7} heterocycloalkyl, C\textsubscript{2-7} heterocycloalkyl-C\textsubscript{1-4} alkyl, phenyl, phenyl-C\textsubscript{1-4} alkyl, C\textsubscript{1-4} heteroaryl, and C\textsubscript{1-7} heteroaryl-C\textsubscript{1-4} alkyl; wherein said C\textsubscript{1-6} alkyl, C\textsubscript{1-6} haloalkyl, C\textsubscript{2-6} alkenyl, and C\textsubscript{2-6} alkynyl are
each optionally substituted by 1, 2, 3, or 4 independently selected R^x groups; and wherein said C_3-
7cycloalkyl, C_3,-7 cycloalkyl-C_i,-4 alkyl, C_2,-7 heterocycloalkyl, C_2,-7 heterocycloalkyl-C_i,-4 alkyl,
phenyl, phenyl-C_i,-4 alkyl, C_i,-7 heteroaryl, and C_i,-7 heteroaryl-C_i,-4 alkyl are each optionally
substituted by 1, 2, 3, or 4 independently selected R^y groups;

or any R^x and R^y, together with the moiety to which they are attached, can form
da 3-, 4-, 5-, 6-, or 7-membered heterocycloalkyl ring, wherein said heterocycloalkyl ring is
optionally substituted with 1, 2, 3, or 4 groups independently selected from hydroxyl, C_i,-4 alkyl,
Cl_i,-4 haloalkyl, C_i,-4 alkoxy, C_i,-4 haloalkoxy, amino, C_i,-4 alkylamino, and di-C_i,-4 alkylamino;

or any R^x and R^y, together with the nitrogen atom to which they are attached, can
form a 3-, 4-, 5-, 6- or 7-membered heterocycloalkyl ring or heteroaryl ring, wherein said
heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 groups independently selected from hydroxyl, C_i,-4 alkyl, C_i,-4 haloalkyl, C_i,-4 alkoxy, C_i,-4 haloalkoxy, amino, C_i,-4 alkylamino, and di-C_i,-4 alkylamino;

each R^x is independently selected from hydroxyl, C_i,-4 alkoxy, Q^6 haloalkoxy,

amino, C_i,-4 alkylamino, and di-C_i,-4 alkylamino; and

each R^y is independently selected from hydroxyl, halogen, cyano, nitro, C_i,-4 alkyl, C_i,-4 haloalkyl, C_i,-4 alkoxy, C_i,-4 haloalkoxy, amino, C_i,-4 alkylamino, and di-C_i,-4 alkylamino.

It is understood that the valency of each atom in the optionally substituted moieties is not
exceeded.

In some embodiments, Y is N. In some embodiments, Y is CH.

In some embodiments, X is cyano, fluoro, or chloro. In some embodiments, X is cyano or
fluoro. In some embodiments, X is cyano. In some embodiments, X is chloro or fluoro. In
some embodiments, X is fluoro.

In some embodiments, Z is hydrogen or fluoro. In some embodiments, Z is hydrogen. In
some embodiments, Z is fluoro.

In some embodiments, Ar is selected from phenyl, C_i,-6 monocyclic heteroaryl, d._9
bicyclic heteroaryl, bicyclic C_7,-14 fused cycloalkylaryl, bicyclic C_6,-14 fused heterocycloalkylaryl,
bicyclic C_2,-14 fused cycloalkylheteroaryl, and bicyclic C_2,-14 fused heterocycloalkylheteroaryl; each
of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In
some embodiments, Ar is selected from phenyl, C_i,-6 monocyclic heteroaryl, C_i,-9 bicyclic
heteroaryl, and bicyclic C_2,-14 fused heterocycloalkylheteroaryl; each of which is optionally
substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is
phenyl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups.
In some embodiments, Ar is C_i,-6 monocyclic heteroaryl, which is optionally substituted with 1, 2,
3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is C_{1-8} bicyclic hetereoaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is bicyclic C_{2-14} fused heterocycloalkylhetereoaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is bicyclic C_{2-14} fused cycloalkylhetereoaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyridimine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinolin-2-yl, quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyridimine ring, a pyrazine ring, a thiazole ring, a pyridine ring, a pyridimine ring, a pyrazine ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups. In some embodiments, Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinolin-2-yl, quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups.
b) pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrolo[2,3-b]pyridine ring, an oxazolo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, a quinoxaline ring, a oxazolo[5,4-d]pyrimidine ring, a thieno[3,2-b]pyridine ring, a thieno[2,3-c]pyridine ring, a thiophene ring, a thiazolo[5,4-d]pyrimidine ring, a thieno[2,3-b]pyridine ring, a 2,3-dihydrofuro[2,3-b]pyridine ring, a 6,7-dihydro-5H-cyclopenta[b]pyridine ring, a furo[3,2-c]pyridine ring, a 2,3-dihydrothieno[3,2-c]pyridine ring, a S-oxo-2,3-dihydrothieno[3,2-c]pyridine ring, a thieno[3,2-c]pyridine ring, and a 1H-pyrrolo[3,2-c]pyridine ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R¹ groups. In some embodiments, Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzodioxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiazolo[5,4-d]pyrimidin-5-yl, thieno[2,3-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and IH-pyrrolo[3,2-c]pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R¹ groups.

In some embodiments, each R¹ is independently selected from halogen, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-C₁₋₄-alkyl, C₂₋₆ heterocyclocycloalkyl, C₂₋₆ heterocyclocycloalkyl-C₁₋₄-alkyl, phenyl, phenyl-C₁₋₄-alkyl, C₁₋₆ heteroaryl, C₁₋₆ heteroaryl-C₁₋₄-alkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)COR^b, -S(=O)NR¹R¹, -NR²R², -C(=O)R^b, -C(=O)OR^b, -C(=O)NR¹R¹, -NR²C(=O)R^d, and -NR²C(=O)OR^d, wherein the C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, and C₂₋₆ alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^{1a} groups; wherein the C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-C₁₋₄-alkyl, C₂₋₆ heterocyclocycloalkyl-C₁₋₄-alkyl, phenyl, phenyl-C₁₋₄-alkyl, C₁₋₆ heteroaryl, and C₁₋₆ heteroaryl-C₁₋₄-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^{2b} groups. In some embodiments, each R¹ is independently selected from halogen, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)COR^b, -S(=O)NR¹R¹, -NR²R², -C(=O)R^b,
-C(=O)OR^b, -C(=O)NR^eR^f, and -NR^cC(=O)R^d. In some embodiments, each R^1 is independently selected from Ci_6 alkyl, Ci_6 haloalkyl, -0R^a, -SR^a, -S(=O)R^b, -S(=O)_2R^b, and -NR^cR^f. In some embodiments, each R^1 is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfinyl, and methylsulfonyl.

In some embodiments, each R^a, R^b, R^c, R^d, R^e, and R^f is independently selected from H, Ci_6 alkyl, Ci_6 haloalkyl, C_3 heterocycloalkyl, C_3 cycloalkyl-Ci_4 alkyl, C_2 heterocycloalkyl-Ci_4 alkyl, phenyl, phenyl-Ci_4 alkyl, Ci_7 heteroaryl, and Ci_7 heteroaryl-Ci_4 alkyl. In some embodiments, each R^a, R^b, R^c, R^d, R^e, and R^f is independently selected from H, Ci_6 alkyl, Ci_6 haloalkyl, C_3 fused bicyclic heterocycloalkyl, phenyl, and Ci_7 heteroaryl. In some embodiments, each R^a, R^b, R^c, R^d, R^e, and R^f is independently selected from H, d fused alkyl, and Ci_6 haloalkyl. In some embodiments, each R^a, R^b, R^c, R^d, R^e, and R^f is independently selected from H and methyl.

In some embodiments:

- each R^1 is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C_1 alkoxycarbonyl, Ci_4 alkoxy, Ci_4 alkylthio, Ci_4 alkylsulfinyl, Ci_4 alkylsulfonyl, amino, Ci_4 alkylamino, and di-Ci_4 alkylamino; and
- each R^2 is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C_1 alkoxycarbonyl, Ci_4 haloalkoxy, Ci_4 alkoxy, Ci_4 haloalkoxy, Ci_4 alkoxy, Ci_4 alkylthio, Ci_4 alkylthio, Ci_4 alkylsulfinyl, Ci_4 alkylsulfonyl, amino, Ci_4 alkylamino, and di-Ci_4 alkylamino.

In some embodiments:

- X is cyano or fluoro
- Y is CH or N;
- Z is hydrogen or fluoro;
- Ar is selected from phenyl, Ci_6 monocyclic heteroaryl, Ci_6 bicyclic heteroaryl, bicyclic C_7 fused cycloalkyl, bicyclic C_6 fused heterocycloalkyl, bicyclic C_2 fused cycloalkyl heteroaryl, and bicyclic C_2 fused heterocycloalkyl heteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;
- each R^1 is independently selected from halogen, cyano, nitro, Ci_6 alkyl, Ci_6 haloalkyl, C_2 alkynyl, C_2 alkenyl, C_2 alkynyl, C_2 cycloalkyl, C_2 cycloalkyl-Ci_4 alkyl, C_2 heterocycloalkyl, C_2 heterocycloalkyl-Ci_4 alkyl, phenyl, phenyl-Ci_4 alkyl, Ci_7 heteroaryl, Ci_7 heteroaryl-Ci_4 alkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)_2R^b, -S(=O)NR^eR^f, -NR^cR^f, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR^eR^f, -NR^cC(=O)R^d, and -NR^cC(=O)OR^d; wherein the Ci_6 alkyl, Ci_6
haloalkyl, C₂₋₆ alkenyl, and C₂₋₆ alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R¹ groups; wherein the C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-Ci₋₄-alkyl, C₂₋₆ heterocycloalkyl, C₂₋₆ heterocycloalkyl-Ci₋₄-alkyl, phenyl, phenyl-Ci₋₄-alkyl, d₋₄ heteroaryl, and Ci₋₆ heteroaryl-Ci₋₄-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R² groups;

each R¹ is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C₁₋₄ alkoxy, Ci₋₄ haloalkoxy, Ci₋₄ alkylthio, Ci₋₄ alkylsulfanyl, Ci₋₄ alkylsulfonyl, amino, Ci₋₄ alkylamino, and di-Ci₋₄-alkylamino;

each R² is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C₁₋₄ alkyl, Ci₋₄ haloalkyl, C₂₋₆ alkenyl, Ci₋₄ alkoxy, Ci₋₄ haloalkoxy, Ci₋₄ alkylthio, Ci₋₄ alkylsulfanyl, d₋₄ alkylsulfonyl, amino, Ci₋₄ alkylamino, and di-Ci₋₄-alkylamino;

each R³, R⁵, R⁶, R⁷, and R¹ is independently selected from H, Ci₋₆ alkyl, Ci₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-Ci₋₄-alkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-Ci₋₄-alkyl, phenyl, phenyl-Ci₋₄-alkyl, Ci₋₇ heteroaryl, and Ci₋₇ heteroaryl-Ci₋₄-alkyl; wherein the Ci₋₆ alkyl, Ci₋₆ haloalkyl, C₂₋₆ alkenyl, and C₂₋₆ alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R⁸ groups; and wherein the C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-Ci₋₄-alkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-Ci₋₄-alkyl, phenyl, phenyl-Ci₋₄-alkyl, Ci₋₇ heteroaryl, and Ci₋₇ heteroaryl-Ci₋₄-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R⁸ groups;

each R⁸ is independently selected from hydroxyl, Ci₋₄ alkoxy, amino, Ci₋₄ alkylamino, and di-Ci₋₄-alkylamino; and

each R⁹ is independently selected from hydroxyl, halogen, cyano, nitro, Ci₋₄ alkyl, Ci₋₄ haloalkyl, d₋₄ alkoxy, Ci₋₄ haloalkoxy, amino, Ci₋₄ alkylamino, and di-Ci₋₄-alkylamino.

In some embodiments:

X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, Ci₋₆ monocyclic heteroaryl, Ci₋₆ bicyclic heteroaryl, bicyclic C₇₋₁₄ fused cycloalkylarly, bicyclic C₆₋₁₄ fused heterocycloalkylarly, bicyclic C₂₋₁₄ fused cycloalkylheteroaryl, bicyclic C₂₋₄₄ fused cycloalkylheteroaryl, and bicyclic C₂₋₄₄ fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R¹ groups;

each R¹ is independently selected from halogen, cyano, nitro, Ci₋₆ alkyl, Ci₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-Ci₋₄-alkyl, C₂₋₆ heterocycloalkyl, C₂₋₆ heterocycloalkyl-Ci₋₄-alkyl, C₂₋₆ heterocycloalkyl-Ci₋₄-alkyl-Ci₋₄-alkyl, C₂₋₆ heterocycloalkyl-Ci₋₄-alkyl-Ci₋₄-alkyl-Ci₋₄-alkyl, and Ci₋₆ heteroaryl-Ci₋₄-alkyl-Ci₋₄-alkyl-Ci₋₄-alkyl.
heterocycloalkyl-C_{1-4}-alkyl, phenyl, phenyl-C_{1-4}-alkyl, C_{1-6} heteroaryl, C_{1-6} heteroaryl-C_{1-4}-alkyl,
-OR_R, -SR_R, -S(=O)R, -S(O)NR, -NR, -R, -C(=O)OR, -C(=O)OR, -C(=O)NR, -NR, -O, -OR, -SR,

some of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R_1 groups;

wherein said C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} heteroaryl, and C_{2-6} alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R_1^a groups; wherein

said C_{3-7} cycloalkyl, C_{3-7} cycloalkyl-C_{1-4}-alkyl, C_{2-6} heterocycloalkyl, C_{2-6} heterocycloalkyl-C_{1-4}-alkyl, phenyl, phenyl-C_{1-4}-alkyl, C_{1-6} heteroaryl, and C_{1-6} heteroaryl-C_{1-4}-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R_1^a groups;

each R_1^a is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxy, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} alkylthio, C_{1-4} alkysulfinyl, C_{1-4} alkyloxysulfanyl, amino, C_{1-4} alkylamino, and di-C_{1-4} alkylamino;

each R_2^a is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxy, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{2-6} alkynyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} alkylthio, C_{1-4} alkysulfinyl, C_{1-4} alkyloxysulfanyl, amino, C_{1-4} alkylamino, and di-C_{1-4} alkylamino;

each R_3, R_4, R_5, R_6, R_7, and R_8 is independently selected from H, d, 6-alkyl, C_{1-6}
haloalkyl, C_{2-6} alkynyl, C_{2-6} alkynyl, C_{1-7} cycloalkyl, C_{1-7} cycloalkyl-C_{1-4}-alkyl, C_{2-7}
heterocycloalkyl, C_{2-7} heterocycloalkyl-C_{1-4}-alkyl, phenyl, phenyl-C_{1-4}-alkyl, C_{1-7} heteroaryl, and
C_{1-7} heteroaryl-C_{1-4}-alkyl; wherein said C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkynyl, and C_{2-6} alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R_3 groups; and wherein said C_{3-7} cycloalkyl, C_{3-7} cycloalkyl-C_{1-4}-alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl-C_{1-4}-alkyl,
phenyl, phenyl-C_{1-4}-alkyl, C_{1-7} heteroaryl, and C_{1-7} heteroaryl-C_{1-4}-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R_8 groups;

each R_3 is independently selected from hydroxy, C_{1-4} alkoxy, amino, C_{1-4}
alkylamino, and di-C_{1-4} alkylamino; and

each R_4 is independently selected from hydroxy, halogen, cyano, nitro,
C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, amino, C_{1-4} alkylamino, and di-C_{1-4}
alkylamino.

In some embodiments:

X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, C_{1-6} monocyclic heteroaryl, C_{1-6} bicyclic heteroaryl, and bicyclic C_{2-4} fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R_1 groups;
each R is independently selected from halogen, cyano, nitro, C alkyl, Ci-6 haloalkyl, C alkynyl, C cycloalkyl, C cycloalkyl-Ci-4-alkyl, C heterocycloalkyl, C heterocycloalkyl-Ci-4-alkyl, phenyl, phenyl-Ci-4-alkyl, Ci-6 heteroaryl, C heteroaryl-Ci-4-alkyl, -OR, -SR, -S(=O)R, -S(=O)NR, -NR, -C(=O)R, -C(=O)OR, -C(=O)NR, -C(=O)OR, and -NR-C(=O)OR; wherein the Ci-6 alkyl, Ci-6 haloalkyl, Ci-6 alkenyl, and Ci-6 alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R groups; wherein the C cycloalkyl, C cycloalkyl-Ci-4-alkyl, C heterocycloalkyl, C heterocycloalkyl-Ci-4-alkyl, phenyl, phenyl-Ci-4-alkyl, Ci-6 heteroaryl, and Ci-6 heteroaryl-Ci-4-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R groups; each R is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C alkoxyc, Ci-4 haloalkoxyc, Ci-4 alkylthioc, Ci-4 alkylsulfynyl, Ci-4 alkylsulfonyl, amino, Ci-4 alkylamino, and di-Ci-4-alkylamino; each R is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C alkyl, Ci-4 haloalkyl, C alkynyl, Ci-4 alkoxy, Q haloalkoxy, Ci-4 alkylthio, Ci-4 alkylsulfynyl, Ci-4 alkylsulfonyl, amino, Ci-4 alkylamino, and di-Ci-4-alkylamino; each R is independently selected from H, Ci-6 alkyl, Ci-6 haloalkyl, C alkynyl, C cycloalkyl, C cycloalkyl-Ci-4-alkyl, C heterocycloalkyl, C heterocycloalkyl-Ci-4-alkyl, phenyl, phenyl-Ci-4-alkyl, Ci-7 heteroaryl, and Ci-7 heteroaryl-Ci-4-alkyl; wherein the Ci-6 alkyl, Ci-6 haloalkyl, C alkynyl, and C alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R groups; and wherein the C cycloalkyl, C cycloalkyl-Ci-4-alkyl, C heterocycloalkyl, C heterocycloalkyl-Ci-4-alkyl, phenyl, phenyl-Ci-4-alkyl, Ci-7 heteroaryl, and Ci-7 heteroaryl-Ci-4-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R groups; each R is independently selected from hydroxyl, Ci-4 alkoxy, amino, Ci-4 alkylamino, and di-Ci-4-alkylamino; and each R is independently selected from hydroxyl, halogen, cyano, nitro, Ci-4 alkyl, C haloalkyl, d alkoxy, Ci-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4-alkylamino. In some embodiments:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, Ci\textsubscript{6} monocyclic heteroaryl, Ci\textsubscript{c>bicyclic heteroaryl, bicyclic C\textsubscript{2-i4} fused cycloalkylheteroaryl, and bicyclic C\textsubscript{2-i4} fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;

each R1 is independently selected from halogen, cyano, nitro, Ci\textsubscript{-alkyl, Ci\textsubscript{-haloalkyl, Ci\textsubscript{-pyrazine, 2,3-dihydrothieno[2,3-b]pyridine ring,}

haloalkyl, -ORa, -SRa, -S(=O)aRb, -S(=O)b, -S(=O)NRf, -NRf, -C(=O)Rb, -C(=O)ORb, -C(=O)NRf, and -NRfC(=O)Rd;

each Ra, Rb, Rc, Rd, Re, and Rf is independently selected from H, Ci\textsubscript{-alkyl, Ci\textsubscript{-haloalkyl, Ci\textsubscript{-C_3\textsubscript{3}} cycloalkyl, C_3\textsubscript{3} cycloalkyl-Ci\textsubscript{-alkyl, C_2\textsubscript{2}} heterocycloalkyl, C_2\textsubscript{2} heterocycloalkyl-Ci\textsubscript{-alkyl, phenyl, phenyl-Ci\textsubscript{-alkyl, Ci\textsubscript{-heteroaryl, and Ci\textsubscript{-heteroaryl-Ci\textsubscript{-alkyl.}

In some embodiments:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, Ci\textsubscript{-alkyl, Ci\textsubscript{-haloalkyl, Ci\textsubscript{-phenyl, phenyl-Ci\textsubscript{-alkyl, Ci\textsubscript{-heteroaryl, and Ci\textsubscript{-heteroaryl-Ci\textsubscript{-alkyl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;

each R1 is independently selected from halogen, cyano, nitro, Ci\textsubscript{-alkyl, Ci\textsubscript{-haloalkyl, Ci\textsubscript{-haloalkyl, Ci\textsubscript{-pyrazine, 2,3-dihydrothieno[2,3-b]pyridine ring,}

haloalkyl, -ORa, -SRa, -S(=O)aRb, -S(=O)b, -S(=O)NRf, -NRf, -C(=O)Rb, -C(=O)ORb, -C(=O)NRf, and -NRfC(=O)Rd;

each Ra, Rb, Rc, Rd, Re, and Rf is independently selected from H, Ci\textsubscript{-alkyl, Ci\textsubscript{-haloalkyl, Ci\textsubscript{-C_3\textsubscript{3}} cycloalkyl, C_3\textsubscript{3} cycloalkyl-Ci\textsubscript{-alkyl, C_2\textsubscript{2}} heterocycloalkyl, C_2\textsubscript{2} heterocycloalkyl-Ci\textsubscript{-alkyl, phenyl, phenyl-Ci\textsubscript{-alkyl, Ci\textsubscript{-heteroaryl, and Ci\textsubscript{-heteroaryl-Ci\textsubscript{-alkyl.}

In some embodiments:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;
each \(R^1 \) is independently selected from halogen, cyano, nitro, \(\text{Ci}_6 \) haloalkyl, -OR, -SR, -S(=O)R, -S(=O)NR, -NR\(^2\)R, -C(=O)R, -C(=O)OR, -C(=O)NR, \(\text{C}(=O)\text{NR}^2 \), and -NR\(^2\)C(=O)R; and

each \(R^2, R^3, R^4, R^5 \) and \(R^6 \) is independently selected from \(\text{H}, \text{Ci}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, \(\text{C}_{3-7} \) cycloalkyl, \(\text{C}_{2-7} \) heterocycloalkyl, phenyl, and \(\text{Ci}_{7} \) heteroaryl.

In some embodiments:

\(X \) is cyano or fluoro;

\(Y \) is CH or N;

\(Z \) is hydrogen or fluoro;

\(\text{Ar} \) is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, \(\text{7H-pyrrolo}[2,3-d] \text{pyrimidin-2-yl}, \) 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

\(\text{each } R^1 \) is independently selected from halogen, cyano, nitro, \(\text{Ci}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, -OR, -SR, -S(=O)R, -S(=O)\(^2\)R, and -NR\(^2\)R; and

\(\text{each } R^2, R^3, R^4, R^5 \) and \(R^6 \) is independently selected from \(\text{H}, \text{Ci}_6 \) alkyl, and \(\text{Ci}_6 \) haloalkyl.

In some embodiments:

\(X \) is cyano or fluoro;

\(Y \) is CH or N;

\(Z \) is hydrogen or fluoro;

\(\text{Ar} \) is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, \(\text{7H-pyrrolo}[2,3-d] \text{pyrimidin-2-yl}, \) 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

\(\text{each } R^1 \) is independently selected from halogen, \(\text{d}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, -OR, -SR, -S(=O)R, -S(=O)\(^2\)R, and -NR\(^2\)R; and

\(\text{each } R^2, R^3, R^4, R^5 \) and \(R^6 \) is independently selected from \(\text{H} \) and \(\text{Ci}_6 \) alkyl.

In some embodiments:

\(X \) is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[4,5-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;
each R1 is independently selected from halogen, d6 alkyl, C16 haloalkyl, -ORa, -SRa, -S(=O)Rb, -S(=O)2Rb, and -NRerf; and
each Ra, Rb, Re, and Rf is independently selected from H and methyl.

In some embodiments:
X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, thiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridin-2-yl, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrolo[2,3-b]pyridine ring, an oxazolo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, and a
quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

\[
each R^1 \text{ is independently selected from halogen, cyano, nitro, } C_{1-6} \text{ alkyl, } C_{1-6} \hbox{ haloalkyl, } -OR^a, -SR^a, -S(=O)R^b, -S(=O)_2R^b, -S(=O)NR^f, -NR^f, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR^e R^f, \text{ and } -NR^c C(=O)R^d; \text{ and }
\]

\[
each R^a, R^b, R^c, R^d, \text{ and } R^f \text{ is independently selected from } H, C_{1-6} \text{ alkyl, } C_{1-6} \hbox{ haloalkyl, } C_3 \hbox{ cycloalkyl, } C_{2-7} \hbox{ heterocycloalkyl, } \text{ phenyl, and } C_{1-7} \hbox{ heteroaryl.}
\]

In some embodiments:

\[
\begin{align*}
X \text{ is cyano or fluoro;} \\
Y \text{ is CH or N;} \\
Z \text{ is hydrogen or fluoro;} \\
A \text{ is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups; \\
each R^1 \text{ is independently selected from halogen, cyano, nitro, } C_{1-6} \text{ alkyl, } C_{1-6} \hbox{ haloalkyl, } -OR^a, -SR^a, -S(=O)R^b, \text{ and } -NR^f; \text{ and }
\end{align*}
\]

\[
each R^a, R^b, R^c, \text{ and } R^f \text{ is independently selected from } H, C_{1-6} \text{ alkyl, and } C_{1-6} \hbox{ haloalkyl.}
\]

In some embodiments:

\[
\begin{align*}
X \text{ is cyano or fluoro;} \\
Y \text{ is CH or N;} \\
Z \text{ is hydrogen or fluoro;} \\
A \text{ is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;
\end{align*}
\]
each R^1 is independently selected from halogen, d_6 alkyl, Cl_6 haloalkyl, -OR^a, -SR^a, -$S(=O)R^b$, -$S(=O)_2R^b$, and -NR^eR^f; and

each R^a, R^b, R^c, and R^d is independently selected from H and Cl_6 alkyl.

In some embodiments:

5 X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

10 each R^1 is independently selected from halogen, Cl_6 alkyl, Cl_6 haloalkyl, -OR^a, -SR^a, -$S(=O)R^b$, -$S(=O)_2R^b$, and -NR^eR^f; and

each R^a, R^b, R^c, and R^d is independently selected from H and methyl.

In some embodiments:

X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

15 each R^1 is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfinyl, and methylsulfonyl.

In some embodiments:

X is cyano or fluoro;

Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazololo[5,4-b]pyridine ring, an oxazololo[5,4-d]pyrimidine ring, a 7H-pyrrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrrolo[2,3-b]pyridine ring, an oxazololo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, a quinoxaline ring, a oxazololo[5,4-d]pyrimidine ring, a thieno[3,2-b]pyridine ring, a thieno[3,2-c]pyridine ring, a thiophene ring, a thiazolo[5,4-d]pyrimidine ring, a thieno[2,3-b]pyridine ring, a 2,3-dihydrofuro[2,3-b]pyridine ring, a 6,7-dihydro-5H-cyclopenta[b]pyridine ring, a furo[3,2-c]pyridine ring, a 2,3-dihydrothieno[3,2-c]pyridine ring, a S-oxo-2,3-dihydrothieno[3,2-c]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridine ring, athieno[3,2-c]pyridine ring, and a 1H-pyrrolo[3,2-c]pyridine ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from halogen, cyano, nitro, Cl_{1-6} alkyl, Ci_{1-6} haloalkyl, $-OR^1$, $-SR^a$, $-S(=O)R^b$, $-S(=O)NR^f$, $-NR^f$, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^f$, and $-NR^fC(=O)R^d$; and

each R^a, R^b, R^c, R^d, R^e, and R^f is independently selected from H, Ci_{1-6} alkyl, Cl_{1-6} haloalkyl, C_{3-7} cycloalkyl, C_{2-7} heterocycloalkyl, phenyl, and Cl_{1-7} heteroaryl.

In some embodiments:

X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinolin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, pyrimidin-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-5-yl, thieno[2,3-c]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiazolo[5,4-d]pyrimidin-5-yl, thieno[2,3-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, and 1H-pyrrolo[3,2-c]pyridin-6-yl.
c) pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

- each \(R^1 \) is independently selected from halogen, cyano, nitro, \(\text{C}_1\text{C}_6 \) alkyl, \(\text{C}_1\text{C}_6 \) haloalkyl, -OR\(^a \), -SR\(^a \), -S(=O)\(^b \), -S(=O)\(^b \)\(^b \), and \(\text{N}-\text{R}^c \); and
- each \(R^a, R^b, R^c, \) and \(R^f \) is independently selected from H, \(\text{C}_1\text{C}_6 \) alkyl, and \(\text{C}_1\text{C}_6 \) haloalkyl.

In some embodiments:

- \(X \) is cyano or fluoro;
- \(Y \) is \(\text{CH} \) or \(\text{N} \);
- \(Z \) is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benz[\text{d}]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinolin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-5-yl, thieno[2,3-c]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiophen-5-yl, thiophen-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furan[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and \(\text{H}-\text{pyrrolo}[3,2-c]\text{pyridin-6-yl}; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

- each \(R^1 \) is independently selected from halogen, d \(\text{C}_6 \) alkyl, d \(\text{C}_6 \) haloalkyl, -OR\(^a \), -SR\(^a \), -S(=O)\(^b \), -S(=O)\(^b \)\(^b \), and \(\text{N}-\text{R}^c \); and
- each \(R^a, R^b, R^c, \) and \(R^f \) is independently selected from H and \(\text{C}_1\text{C}_6 \) alkyl.

In some embodiments:

- \(X \) is cyano or fluoro;
- \(Y \) is \(\text{CH} \) or \(\text{N} \);
- \(Z \) is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benz[\text{d}]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinolin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-5-yl, thieno[2,3-c]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiophen-5-yl, thiophen-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furan[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and \(\text{H}-\text{pyrrolo}[3,2-c]\text{pyridin-6-yl}; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;
dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinolin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, pyrimidin-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[2,3-c]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiazolo[5,4-d]pyrimidin-5-yl, thieno[2,3-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and lH-pyrrolo[3,2-c]pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from halogen, C_{1-6} alkyl, C_{1-6} haloalkyl, -OR, -SR, -S(O)R, -S(O)_2R, and -NR^eR^f; and each R^a, R^b, R^e, and R^f is independently selected from H and methyl.

In some embodiments:
X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidine-4-yl, pyrazin-2-yl, benz[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, pyrimidin-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-5-yl, thieno[2,3-c]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiazolo[5,4-d]pyrimidin-5-yl, thieno[2,3-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[2,3-c]pyridin-6-yl, and lH-pyrrolo[3,2-c]pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfinyl, and methylsulfonyl.

In some embodiments, the compound is a compound having formula Ia:
or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound having formula Ia:

or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound having formula Ib:

or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound having formula Ic:

or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound having Formula Id:
or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound having Formula Ie:

\[
\begin{array}{c}
\text{Ie} \\
\end{array}
\]

or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound having formula If:

\[
\begin{array}{c}
\text{If} \\
\end{array}
\]

or a pharmaceutically acceptable salt or N-oxide thereof.

In some embodiments, the compound is a compound of Formula Ha, lib, Hc, Hd, He, Hf, Hg, Hh, Hi, Hj, Hm, Hn, or Ho:
or a pharmaceutically acceptable salt or N-oxide thereof, wherein each \(n \) is an integer selected from 0 to 5; and \(m \) is an integer selected from 0 to 2; provided that the valency of each atom in the optionally substituted moieties is not exceeded. Each of the preceding formulas can represent an individual embodiment. In some of the preceding embodiments, \(Z \) is hydrogen. In some of the preceding embodiments, \(Z \) is fluoro. In some of the preceding embodiments, \(X \) is cyano. In some of the preceding embodiments, \(X \) is fluoro. In some of the preceding embodiments, \(Z \) is hydrogen and \(X \) is cyano. In some of the preceding embodiments, \(Z \) is hydrogen and \(X \) is fluoro. In some of the preceding embodiments, \(Z \) is fluoro and \(X \) is cyano.

In some embodiments, the compound is a compound of Formula Up, Hq, or Hr:
or a pharmaceutically acceptable salt or N-oxide thereof, wherein each n is an integer selected from 0 to 5; provided that the valency of each atom in the optionally substituted moieties is not exceeded. Each of the preceding formulas can represent an individual embodiment. In some of the preceding embodiments, Z is hydrogen. In some of the preceding embodiments, Z is fluoro.

In some of the preceding embodiments, X is cyano. In some of the preceding embodiments, X is fluoro. In some of the preceding embodiments, Z is hydrogen and X is cyano. In some of the preceding embodiments, Z is hydrogen and X is fluoro. In some of the preceding embodiments, Z is fluoro and X is cyano.

In some embodiments, the compound is a compound of Formula IIia or IIib:

```
IIIa
```

```
IIIb
```

or a pharmaceutically acceptable salt or N-oxide thereof, wherein each n is an integer selected from 0 to 5; and m is an integer selected from 0 to 2; provided that the valency of each atom in the optionally substituted moieties is not exceeded. Each of the preceding formulas can represent an individual embodiment. In some of the preceding embodiments, m is 1 or 2. In some of the preceding embodiments, Z is hydrogen. In some of the preceding embodiments, Z is fluoro. In some of the preceding embodiments, X is cyano. In some of the preceding embodiments, X is fluoro. In some of the preceding embodiments, Z is hydrogen and X is cyano. In some of the preceding embodiments, Z is hydrogen and X is fluoro. In some of the preceding embodiments, Z is fluoro and X is cyano.

In some embodiments, Ar is optionally substituted with 1, 2, 3, or 4 independently selected R1 groups. In some embodiments, Ar is optionally substituted with 1, 2, or 3 independently selected R1 groups. In some embodiments, Ar is optionally substituted with 1 or 2 independently selected R1 groups.

In some embodiments, the compound is selected from:

- 3-[1-(6-chloropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
- 3-[1-(6-chloropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
- 3-[1-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(4-chloropyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(4-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-[4-(dimethylamino)pyrimidin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-[4-(isopropylamino)pyrimidin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(5-chloro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-[1,3]oxazolo[4,5-c]pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-[1,3]oxazolo[4,5-b]pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(6-methyl[1,3]oxazolo[5,4-b]pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(5-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(4-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(7-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
S-Cl-CSJ-difluoro-l^a-benzoxazol^a-yPyrrolidin-S-y-S-
[4-CTH-pyrroloP^d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-[2-(methylthio)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-[2-(methylsulfinyl)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-[2-(methylsulfonyl)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(l-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(2,3-dihydrothieno[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(6-chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(l,l-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(l-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(l,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(6-chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-{{1-(4-methyl-3-oxo-3,4-dihydropyrazin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-chloro-2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl]pyrrolidin-1-yl]isonicotinonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-

35
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(methylthio)benzonitrile;
3-[1-(8-chloroquinolin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(8-chloroquinazolin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(6-chloro-1-oxidopyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(5-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)pyrazine-2-carbonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)benzonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)-3-fluorobenzonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)isosphthalonitrile;
6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)-2,3-difluorobenzonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)-3,5,6-trifluorobenzonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)nicotinonitrile;
3-chloro-5-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)isonicotinonitrile;
3-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)pyridine-2-carbonitrile;
2-chloro-6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)nicotinonitrile;
2-(3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)oxazolo[5,4-b]pyridine;
3-[3-fluoro-4-(trifluoromethyl)pyridin-2-yl]pyrrolidin-3-yl)
3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-[1-
(3,5,6-trifluoropyridin-2-yl)pyrrolidin-3-yl]propanenitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)pyridine-2-carbonitrile;
1H-pyrazol-1-yl)ethyl]pyrrolidin-1-yl)nicotinonitrile;
2-(3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
yl]ethyl}pyrrolidin-1-yl)]1,3]oxazolo[5,4-b]pyridine;
2-(3-{1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-
fluoroethyl]pyrrolidin-1-yl)oxazolo[5,4-b]pyridine; and
3-[1-(4H-pyrrolo[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile,
or a pharmaceutically acceptable salt or N-oxide thereof.
In some embodiments, the compound is selected from:
5-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-
5-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[2,3-c]pyridine-4-carbonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)4-hydroxythiophene-3-carbonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile;
4-bromo-2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile;
4-chloro-2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile;
2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3,4-dicarbonitrile;
2-(3-{(1R)-2-fluoro-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile;
2-(3-{2-cyano-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3,4-dicarbonitrile;
4-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)3,1,3-thiazole-5-carbonitrile;
5-(3-{2-fluoro-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl}pyrrolidin-1-yl)3,1,3-thiazole-4-carbonitrile;
4-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyrimidine-5-carbonitrile;
4-(1-{2-fluoro-1-[1-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]ethyl}-1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine;
4-(1-{2-fluoro-1-[1-(5-fluoro-1,1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]ethyl}-1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine;
3-[l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[l-(6-bromo-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[l-(5,6-difluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[l-(6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
fluoropyridin-2-yl)pyrrolidin-3-yl)propanenitrile;
N-(2-(3-(1-(4-(7H-pyrrolo [2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-chloro-5-fluoropyridin-3-yl)formamide;
3-[(I-[6-(ethylsulfonyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
2-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethy1)pyrrolidin-1-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile;
2-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethy1)pyrrolidin-1-yl)-4-(methoxymethyl)nicotinonitrile;
4-(3-[(I-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-methoxypyrimidine-5-carbonitrile;
3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-[1-(6-(ethylsulfonyl)-3-fluoropyridin-2-yl)pyrrolidin-3-yl]propanenitrile;
2-(3-[(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-4-methylnicotinonitrile;
3-[(I-[3,5-difluoro-4-(methoxymethyl)pyridin-2-yl]pyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-[1-[1,3]thiazolo[5,4-d]pyrimidin-5-yl]pyrrolidin-3-yl)propanenitrile;
2-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-4-(difluoromethyl)nicotinonitrile;
3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-[1-(3-amino-6-chloropyridin-2-yl)pyrrolidin-3-yl)propanenitrile;
4-(3-[(I-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile;
6-(3-[(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile;
2-(3-([1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile;
2-(3-[(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile;
1-yl)-5-methyl nicotinonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(difluoromethyl)benzonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(methoxymethyl)benzonitrile;
4-(3-(3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)nicotinonitrile;
3-(3-(3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)pyridine-3-carbonitrile;
3-(3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)ethyl)pyrrolidin-1-yl)pyridine-2-carbonitrile;
4-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)nicotinonitrile;
4-(1-(1-(1,1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl)-2-fluoroethyl)-7H-pyrrozol-4-yl)pyrrolidin-1-yl)pyrrole 3,4-dicarbonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)phthalonitrile;
1,3-thiazole-4-carbonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)4-(methyldio)nicotinonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-4-(methylsulfonyl)nicotinonitrile;
3-{l-[3,5-difluoro-6-(methyldio)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile;
3-{1-[3,5-difluoro-6-(methylsulfonyl)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile;
3-{l-[3,5-difluoro-6-pol(2,2,2-trifluoroethyl)-sulfonyl]pyridin-2-yl]pyrrolidin-3-yl}-3-[4-
(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile;
4-[l-{1-[3,5-difluoro-6-(methylsulfonyl)pyridin-2-yl]pyrrolidin-3-yl}2-fluoroethyl]-
1H-pyrazol-4-yl]-7H-pyrrolo-[2,3-d]pyrimidine;
3-{1-[3-fluoro-6-(methylsulfonyl)pyridin-2-yl]pyrrolidin-3-yl}3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile;
3-{1-[2,5-difluoro-6-(methylsulfonyl)pyridin-3-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-4-(l-fluoroethyl)nicotinonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-(difluoromethyl)pyrazine-2-carbonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-(2,2-difluoroethyl)pyrazine-2-carbonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-(hydroxymethyl)pyrazine-2-carbonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-(methoxymethyl)pyrazine-2-carbonitrile;
6-bromo-3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-
yl]ethyl}pyrrolidin-1-yl)pyrazine-2-carbonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-ethynylpyrazine-2-carbonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-ethylpyrazine-2-carbonitrile;
3-{3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-ethylpyrazine-2-carbonitrile;
1-yl)-6-methylpyrazine-2-carbonitrile;
3-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-6-methylpyrazine-2-carbonitrile;
3-fluoro-5-(3-[2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)pyridine-2-carbonitrile;
3-[1-[2-(ethylsulfonyl)pyridin-4-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]pyridine-2-carbonitrile;
N-[4-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)pyrimidin-2-yl]-N,N-dimethylsulfonamide;
4-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-N-methylpyridine-2-carboxamide;
4-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl]pyrrolidin-1-yl)-N,N-dimethylpyridine-2-carboxamide;
4-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl]pyrrolidin-1-yl)-N-phenylpyridine-2-carboxamide;
3-[1-(2,3-dihydrofuro[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile;
3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-(7,7-difluoro-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile;
3-[1-(7-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile;
3-[1-(7-bromo-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile;
2-[3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-1,3-benzoxazole-7-carbonitrile;
3-[1-(7-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile;
3-[1-(7-methoxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile;
4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-(1-(7-ethoxybenzo[d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile;
3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-(1-(7-(difluoromethoxy)benzo[d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile;
3-[l-(4-hydroxy-1,3-benzoaxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[1-[7-(hydroxymethyl)-1,3-benzoaxazol-2-yl]pyrrolhidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
6-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile;
The present invention includes pharmaceutically acceptable salts and N-oxides of the compounds described herein. As used herein, "pharmaceutically acceptable salts" refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts of the present invention include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile (ACN) are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418 and Journal of Pharmaceutical Science, 66, 2 (1977), each of which is incorporated herein by reference in its entirety.

The compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated. Compounds described herein that contain asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms. Methods on how to prepare optically active forms from optically active starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds described herein may be isolated as a mixture of isomers or as separated isomeric forms. Where a compound capable of stereoisomerism or geometric isomerism is designated in its structure or name without reference to specific R/S or cis/trans configurations, it is intended that all such isomers are contemplated.

Resolution of racemic mixtures of compounds can be carried out by any of numerous methods known in the art. An example method includes fractional recrystallization using a chiral resolving acid which is an optically active, salt-forming organic acid. Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyl tartaric acid, dibenzoyl tartaric acid, mandelic acid, malic acid,
lactic acid or the various optically active camphorsulfonic acids such as β-camphorsulfonic acid. Other resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of α-methylbenzylamine (e.g., S and R forms, or diastereomerically pure forms), 2-phenylglycinol, norephedrine, ephedrine, N-methylephedrine, cyclohexylethylamine, 1,2-diaminocyclohexane, and the like.

Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine). Suitable elution solvent composition can be determined by one skilled in the art.

Compounds described herein also include tautomeric forms. Tautomeric forms result from the swapping of a single bond with an adjacent double bond together with the concomitant migration of a proton. Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge. Example prototropic tautomers include ketone - enol pairs, amide - imidic acid pairs, lactam - lactim pairs, amide - imidic acid pairs, enamine - imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, for example, 1H- and 3H-imidazole, 1H-, 2H- and 4H-1,2,4-triazole, 1H- and 2H- isoindole, and 1H- and 2H-pyrazole. Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.

Compounds described herein can also include all isotopes of their constituent atoms. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include tritium and deuterium.

The term, "compound" as used herein is meant to include all stereoisomers, tautomers, and isotopes of the structures depicted or chemical names provided, unless otherwise indicated.

All compounds, and pharmaceutically acceptable salts thereof, can be found together with other substances such as water and solvents (e.g. hydrates and solvates) or can be isolated.

In some embodiments, the compounds of the invention, and salts thereof, are substantially isolated. By "substantially isolated" is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected. Partial separation can include, for example, a composition enriched in the compound of the invention. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compound of the invention, or salt, or N-oxide thereof.
Methods

Compounds of the invention are JAK inhibitors, and the majority of the compounds of the invention are JAK1 selective inhibitors. A JAK1 selective inhibitor is a compound that inhibits JAK1 activity preferentially over other Janus kinases. For example, the compounds of the invention preferentially inhibit JAK1 over one or more of JAK2, JAK3, and TYK2. In some embodiments, the compounds inhibit JAK1 preferentially over JAK2 (e.g., have a JAK1/JAK2 IC50 ratio >1).

JAK1 plays a central role in a number of cytokine and growth factor signaling pathways that, when dysregulated, can result in or contribute to disease states. For example, IL-6 levels are elevated in rheumatoid arthritis, a disease in which it has been suggested to have detrimental effects (Fonesca, J.E. et al., Autoimmunity Reviews, 8:538-42, 2009). Because IL-6 signals, at least in part, through JAK1, antagonizing IL-6 directly or indirectly through JAK1 inhibition is expected to provide clinical benefit (Guschin, D., N., et al Embo J 14: 1421, 1995; Smolen, J. S., et al. Lancet 371 :987, 2008). Moreover, in some cancers JAK1 is mutated resulting in constitutive undesirable tumor cell growth and survival (Mullighan CG, Proc Natl Acad Sci U S A.106:9414-8, 2009; Flex E., et al.J Exp Med. 205:751-8, 2008). In other autoimmune diseases and cancers elevated systemic levels of inflammatory cytokines that activate JAK1 may also contribute to the disease and/or associated symptoms. Therefore, patients with such diseases may benefit from JAK1 inhibition. Selective inhibitors of JAK1 may be efficacious while avoiding unnecessary and potentially undesirable effects of inhibiting other JAK kinases.

Selective inhibitors of JAK1, relative to other JAK kinases, may have multiple therapeutic advantages over less selective inhibitors. With respect to selectivity against JAK2, a number of important cytokines and growth factors signal through JAK2 including, for example, erythropoietin (Epo) and thrombopoietin (Tpo) (Parganas E, et al. Cell. 93:385-95, 1998). Epo is a key growth factor for red blood cells production; hence a paucity of Epo-dependent signaling can result in reduced numbers of red blood cells and anemia (Kaushansky K, NEJM 354:2034-45, 2006). Tpo, another example of a JAK2-dependent growth factor, plays a central role in controlling the proliferation and maturation of megakaryocytes - the cells from which platelets are produced (Kaushansky K, NEJM 354:2034-45, 2006). As such, reduced Tpo signaling would decrease megakaryocyte numbers (megakaryocytopenia) and lower circulating platelet counts (thrombocytopenia). This can result in undesirable and/or uncontrollable bleeding. Reduced inhibition of other JAKs, such as JAK3 and Tyk2, may also be desirable as humans lacking functional version of these kinases have been shown to suffer from numerous maladies such as severe-combined immunodeficiency or hyperimmunoglobulin E syndrome (Minegishi, Y, et al.
Therefore a JAK1 inhibitor with reduced affinity for other JAKs would have significant advantages over a less-selective inhibitor with respect to reduced side effects involving immune suppression, anemia and thrombocytopenia.

Another aspect of the present invention pertains to methods of treating a JAK-associated disease or disorder in an individual (e.g., patient) by administering to the individual in need of such treatment a therapeutically effective amount or dose of a compound, salt thereof, or N-oxide thereof, of the present invention or a pharmaceutical composition of any of the aforementioned. A JAK-associated disease can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the JAK, including overexpression and/or abnormal activity levels. A JAK-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating JAK activity. In some embodiments, the JAK-associated disease is a JAK1-associated disease.

Examples of JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g., allograft rejection and graft versus host disease).

Further examples of JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, type I diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn’s disease, myasthenia gravis, immunoglobulin nephropathies, autoimmune thyroid disorders, chronic obstructive pulmonary disease (COPD), and the like. In some embodiments, the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).

Further examples of JAK-associated diseases include allergic conditions such as asthma, food allergies, eszematous dermatitis, contact dermatitis, atopic dermatitis and rhinitis. Further examples of JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).

Further examples of JAK-associated disease include diseases associated with cartilage turnover, for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
Further examples of JAK-associated disease include congenital cartilage malformations, including hereditary chrondrolysis, chondrodysplasias, and pseudochondrodysplasias (e.g., microtia, enotia, and metaphyseal chondrodysplasia).

Further examples of JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis). For example, certain substances including some pharmaceuticals when topically applied can cause skin sensitization. In some embodiments, co-administration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis. In some embodiments, the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.

In further embodiments, the JAK-associated disease is cancer including those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, uterine leiomyosarcoma, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia, acute myelogenous leukemia (AML) or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma. Example CTCLs include Sezary syndrome and mycosis fungoides.

In some embodiments, the JAK inhibitors described herein, as well as other JAK inhibitors, such as those reported in U.S. Ser. No. 11/637,545, can be used to treat inflammation-associated cancers. In some embodiments, the cancer is associated with inflammatory bowel disease. In some embodiments, the inflammatory bowel disease is ulcerative colitis. In some embodiments, the inflammatory bowel disease is Crohn's disease. In some embodiments, the inflammation-associated cancer is colitis-associated cancer. In some embodiments, the inflammation-associated cancer is colon cancer or colorectal cancer. In some embodiments, the cancer is gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), adenocarcinoma, small intestine cancer, or rectal cancer.

JAK-associated diseases can further include those characterized by expression of a mutant JAK2 such as those having at least one mutation in the pseudo-kinase domain (e.g., JAK2V617F).

JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis with myeloid metaplasia (MMM), primary myelofibrosis (PMF), chronic myelogenous leukemia (CML), chronic
myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell
disease (SMCD), and the like. In some embodiments, the myeloproliferative disorder is primary
myelofibrosis (PMF) or post polycythemia vera/essential thrombocythemia myelofibrosis (Post-
PV/ET MF).

The present invention further provides methods of treating psoriasis or other skin
disorders by administration of a topical formulation containing a compound of the invention.

The present invention further provides a method of treating dermatological side effects of
other pharmaceuticals by administration of the compound of the invention. For example,
numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as
acneiform rash or related dermatitis. Example pharmaceutical agents that have such undesirable
side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like. The
compounds of the invention can be administered systemically or topically (e.g., localized to the
vicinity of the dermatitis) in combination with (e.g., simultaneously or sequentially) the
pharmaceutical agent having the undesirable dermatological side effect. In some embodiments,
the compound of the invention can be administered topically together with one or more other
pharmaceuticals, where the other pharmaceuticals when topically applied in the absence of a
compound of the invention cause contact dermatitis, allergic contact sensitization, or similar skin
disorder. Accordingly, compositions of the invention include topical formulations containing the
compound of the invention and a further pharmaceutical agent which can cause dermatitis, skin
disorders, or related side effects.

Further JAK-associated diseases include inflammation and inflammatory diseases. Example
inflammatory diseases include inflammatory diseases of the eye (e.g., iritis, uveitis,
scleritis, conjunctivitis, or related disease), inflammatory diseases of the respiratory tract (e.g.,
the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower
respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like),
inflammatory myopathy such as myocarditis, and other inflammatory diseases.

The JAK inhibitors described herein can further be used to treat ischemia reperfusion
injuries or a disease or condition related to an inflammatory ischemic event such as stroke or
cardiac arrest. The JAK inhibitors described herein can further be used to treat endotoxin-driven
disease state (e.g., complications after bypass surgery or chronic endotoxin states contributing to
chronic cardiac failure). The JAK inhibitors described herein can further be used to treat
anorexia, cachexia, or fatigue such as that resulting from or associated with cancer. The JAK
inhibitors described herein can further be used to treat restenosis, sclerodermitis, or fibrosis. The
JAK inhibitors described herein can further be used to treat conditions associated with hypoxia or

The JAK inhibitors described herein can further be used to treat other inflammatory diseases such as systemic inflammatory response syndrome (SIRS) and septic shock.

The JAK inhibitors described herein can further be used to treat gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia.

In some embodiments, JAK inhibitors described herein can further be used to treat a dry eye disorder. As used herein, "dry eye disorder" is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolality of the tear film and inflammation of the ocular surface."

Lemp, "The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop", The Ocular Surface, 5(2), 75-92 April 2007. In some embodiments, the dry eye disorder is selected from aqueous tear-deficient dry eye (ADDE) or evaporative dry eye disorder, or appropriate combinations thereof.

In a further aspect, the present invention provides a method of treating conjunctivitis, uveitis (including chronic uveitis), chorioditis, retinitis, cyclitis, scleritis, episcleritis, or iritis; treating inflammation or pain related to corneal transplant, LASIK (laser assisted in situ keratomileusis), photorefractive keratectomy, or LASEK (laser assisted sub-epithelial keratomileusis); inhibiting loss of visual acuity related to corneal transplant, LASIK, photorefractive keratectomy, or LASEK; or inhibiting transplant rejection in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of the compound of the invention, or a pharmaceutically acceptable salt thereof.

Additionally, the compound of the invention, as well as other JAK inhibitors such as those reported in U.S. Ser. No. 11/637,545, can be used to treat respiratory dysfunction or failure associated with viral infection, such as influenza and SARS.

In some embodiments, the present invention provides a compound of Formula I, pharmaceutically acceptable salt thereof, or N-oxide thereof, as described in any of the embodiments herein, for use in a method of treating any of the diseases or disorders described herein. In some embodiments, the present invention provides the use of a compound of Formula I
as described in any of the embodiments herein, for the preparation of a medicament for use in a method of treating any of the diseases or disorders described herein.

In some embodiments, the present invention provides a compound of Formula I as described herein, or a pharmaceutically acceptable salt or N-oxide thereof, for use in a method of modulating a JAK1. In some embodiments, the present invention also provides use of a compound of Formula I as described herein, or a pharmaceutically acceptable salt or N-oxide thereof, for the preparation of a medicament for use in a method of modulating a JAK1.

Combination Therapies

One or more additional pharmaceutical agents such as, for example, chemotherapeutics, anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, or other agents can be used in combination with the compounds described herein for treatment of JAK-associated diseases, disorders or conditions. The one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.

Example chemotherapeutic include proteosome inhibitors (e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.

Example steroids include corticosteroids such as dexamethasone or prednisone.

Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521,184, WO 04/005281, and U.S. Ser. No. 60/578,491.

Example suitable Flt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120.

Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444.

Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402.

In some embodiments, one or more of the compounds of the invention can be used in combination with one or more other kinase inhibitors including imatinib, particularly for treating patients resistant to imatinib or other kinase inhibitors.

In some embodiments, one or more JAK inhibitors of the invention can be used in combination with a chemotherapeutic in the treatment of cancer, such as multiple myeloma, and
may improve the treatment response as compared to the response to the chemotherapeutic agent alone, without exacerbation of its toxic effects. Examples of additional pharmaceutical agents used in the treatment of multiple myeloma, for example, can include, without limitation, melphalan, melphalan plus prednisone [MP], doxorubicin, dexamethasone, and Velcade (bortezomib). Further additional agents used in the treatment of multiple myeloma include Ber-AbI, Flt-3, RAF and FAK kinase inhibitors. Additive or synergistic effects are desirable outcomes of combining a JAK inhibitor of the present invention with an additional agent. Furthermore, resistance of multiple myeloma cells to agents such as dexamethasone may be reversible upon treatment with a JAK inhibitor of the present invention. The agents can be combined with the present compounds in a single or continuous dosage form, or the agents can be administered simultaneously or sequentially as separate dosage forms.

In some embodiments, a corticosteroid such as dexamethasone is administered to a patient in combination with at least one JAK inhibitor where the dexamethasone is administered intermittently as opposed to continuously.

In some further embodiments, combinations of one or more JAK inhibitors of the invention with other therapeutic agents can be administered to a patient prior to, during, and/or after a bone marrow transplant or stem cell transplant.

In some embodiments, the additional therapeutic agent is fluocinolone acetonide (Retisert®), or rimexolone (AL-2178, Vexol, Alcon).

In some embodiments, the additional therapeutic agent is cyclosporine (Restasis®).

In some embodiments, the additional therapeutic agent is a corticosteroid. In some embodiments, the corticosteroid is triamcinolone, dexamethasone, fluocinolone, cortisone, prednisolone, or flumetholone.

In some embodiments, the additional therapeutic agent is selected from Dehydrex™ (Holies Labs), Civamide (Opko), sodium hyaluronate (Vismed, Lantibio/TRB Chemedia), cyclosporine (ST-603, Sirion Therapeutics), ARGIOI(T) (testosterone, Argentis), AGR1012(P) (Argentis), ecabat sodium (Senju-Ista), gefarnate (Santen), 15-(s)-hydroxyeicosatetraenoic acid (15(S)-HETE), cevilemine, doxycycline (ALTY-0501, Alacritiv), minocycline, iDestrin™ (NP50301, Nascent Pharmaceuticals), cyclosporine A (Nova22007, Novagali), oxytetracycline (Duramycin, MOLII 901, Lantibio), CFI01 (2S,3S,4R,5R)-3,4-dihydroxy-5-{1-[3-iodophenyl)methylamino][purin-9-yl]-N-methyl-oxolane-2-carbamyl, Can-Fite Biopharma), voclosporin (LX212 or LX214, Lux Biosciences), ARG 103 (Agentis), RX-10045 (synthetic resolvin analog, Resolvyx), DYN 15 (Dyanmis Therapeutics), rivoglitazone (DEOl 1, Daiichi Sanko), TB4 (RegeneRx), OPH-01 (Ophtalmis Monaco), PCSIOI (Pericor Science), REV 1-31
(Evolutec), Lacritin (Senju), rebamipide (Otsuka-Novartis), OT-551 (Othera), PAI-2 (University of Pennsylvania and Temple University), pilocarpine, tacrolimus, pimecrolimus (AMS981, Novartis), loteprednol etabonate, rituximab, diquafosol tetrasodium (INS365, Inspire), KLS-061 1 (Kissei Pharmaceuticals), dehydroepiandrosterone, anakinra, efalizumab, mycophenolate sodium, etanercept (Embrel®), hydroxychloroquine, NGX267 (TorreyPines Therapeutics), or thalidomide.

In some embodiments, the additional therapeutic agent is an anti-angiogenic agent, cholinergic agonist, TRP-1 receptor modulator, a calcium channel blocker, a mucin secretagogue, MUC1 stimulant, a calcineurin inhibitor, a corticosteroid, a P2Y2 receptor agonist, a muscarinic receptor agonist, another JAK inhibitor, Bcr-Abl kinase inhibitor, Flt-3 kinase inhibitor, RAF kinase inhibitor, and FAK kinase inhibitor such as, for example, those described in WO 2006/056399. In some embodiments, the additional therapeutic agent is a tetracycline derivative (e.g., minocycline or doxycycline).

In some embodiments, the additional therapeutic agent(s) are demulcent eye drops (also known as "artificial tears"), which include, but are not limited to, compositions containing polyvinylalcohol, hydroxypropyl methylcellulose, glycerin, polyethylene glycol (e.g. PEG400), or carboxymethyl cellulose. Artificial tears can help in the treatment of dry eye by compensating for reduced moistening and lubricating capacity of the tear film. In some embodiments, the additional therapeutic agent is a mucolytic drug, such as N-acetyl-cysteine, which can interact with the mucoproteins and, therefore, to decrease the viscosity of the tear film.

In some embodiments, the additional therapeutic agent includes an antibiotic, antiviral, antifungal, anesthetic, anti-inflammatory agents including steroidal and non-steroidal anti-inflammatories, and anti-allergic agents. Examples of suitable medicaments include aminoglycosides such as amikacin, gentamycin, tobramycin, streptomycin, netilmicin, and kanamycin; fluoroquinolones such as ciprofloxacin, norfloxacin, ofloxacin, trovafloxacin, lomefloxacin, levofloxacin, and enoxacin; naphthryidine; sulfonamides; polymyxin; chloramphenicol; neomycin; paramomycin; colistimethate; bacitracin; vancomycin; tetracyclines; rifampin and its derivatives ("rifampins"); cycloserine; beta-lactams; cephalosporins; amphotericins; fluconazole; flucytosine; natamycin; miconazole; ketoconazole; corticosteroids; diclofenac; flurbiprofen; ketorolac; suprofen; cromolyn; lodoxamide; levocabastin; naphazoline; antazoline; pheniramine; or azalide antibiotic.
Pharmaceutical Formulations and Dosage Forms

When employed as pharmaceuticals, the compounds of the invention can be administered in the form of pharmaceutical compositions. These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal intramuscular or injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. In some embodiments, the composition is for oral delivery. In further embodiments, the composition is for topical application.

This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the compounds of the invention above in combination with one or more pharmaceutically acceptable carriers (excipients). In making the compositions of the invention, the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, sachet, paper, or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.

In preparing a formulation, the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
The compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types. Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art, for example see International Patent Application No. WO 2002/000196.

Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.

The compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1000 mg (1 g), more usually about 100 to about 500 mg, of the active ingredient. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.

The active compound can be effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.

For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, about 0.1 to about 1000 mg of the active ingredient of the present invention.
The tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.

The liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.

Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.

The amount of compound or composition administered to a patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration, and the like. In therapeutic applications, compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.

The compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to
administration. The pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.

The therapeutic dosage of the compounds described herein can vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician. The proportion or concentration of a compound of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration. For example, the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 μg/kg to about 1 g/kg of body weight per day. In some embodiments, the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day. The dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.

The compositions of the invention can further include one or more additional pharmaceutical agents such as a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.

In some embodiments, the compound, or pharmaceutically acceptable salt or N-oxide thereof, is administered as an ophthalmic composition. Accordingly, in some embodiments, the methods comprise administration of the compound, or pharmaceutically acceptable salt or N-oxide thereof, and an ophthalmically acceptable carrier. In some embodiments, the ophthalmic composition is a liquid composition, semi-solid composition, insert, film, microparticles or nanoparticles.

In some embodiments, the ophthalmic composition is a liquid composition. In some embodiments, the ophthalmic composition is a semi-solid composition. In some embodiments, the ophthalmic composition is an topical composition. The topical compositions include, but are not limited to liquid and semi-solid compositions. In some embodiments, the ophthalmic composition is a topical composition. In some embodiments, the topical composition comprises aqueous solution, an aqueous suspension, an ointment or a gel. In some embodiments, the ophthalmic composition is topically applied to the front of the eye, under the upper eyelid, on the
lower eyelid and in the cul-de-sac. In some embodiments, the ophthalmic composition is sterilized. The sterilization can be accomplished by known techniques like sterilizing filtration of the solution or by heating of the solution in the ampoule ready for use. The ophthalmic compositions of the invention can further contain pharmaceutical excipients suitable for the preparation of ophthalmic formulations. Examples of such excipients are preserving agents, buffering agents, chelating agents, antioxidant agents and salts for regulating the osmotic pressure.

As used herein, the term “ophthalmically acceptable carrier” refers to any material that can contain and release the compound, or pharmaceutically acceptable salt or N-oxide thereof, and that is compatible with the eye. In some embodiments, the ophthalmically acceptable carrier is water or an aqueous solution or suspension, but also includes oils such as those used to make ointments and polymer matrices such as used in ocular inserts. In some embodiments, the composition may be an aqueous suspension comprising the compound, or pharmaceutically acceptable salt or N-oxide thereof. Liquid ophthalmic compositions, including both ointments and suspensions, may have a viscosity that is suited for the selected route of administration. In some embodiments, the ophthalmic composition has a viscosity in the range of from about 1,000 to about 30,000 centipoise.

In some embodiments, the ophthalmic compositions may further comprise one or more of surfactants, adjuvants, buffers, antioxidants, tonicity adjusters, preservatives (e.g., EDTA, BAK (benzalkonium chloride), sodium chlorite, sodium perborate, polyquaterium-1), thickeners or viscosity modifiers (e.g., carboxymethyl cellulose, hydroxymethyl cellulose, polyvinyl alcohol, polyethylene glycol, glycol 400, propylene glycol hydroxymethyl cellulose, hydroxpropyl-guar, hyaluronic acid, and hydroxypropyl cellulose) and the like. Additives in the formulation may include, but are not limited to, sodium chloride, sodium bicarbonate, sorbic acid, methyl paraben, propyl paraben, chlorhexidine, castor oil, and sodium perborate.

Aqueous ophthalmic compositions (solutions or suspensions) generally do not contain physiologically or ophthalmically harmful constituents. In some embodiments, purified or deionized water is used in the composition. The pH may be adjusted by adding any physiologically and ophthalmically acceptable pH adjusting acids, bases or buffers to within the range of about 5.0 to 8.5. Ophthalmically acceptable examples of acids include acetic, boric, citric, lactic, phosphoric, hydrochloric, and the like, and examples of bases include sodium hydroxide, sodium phosphate, sodium borate, sodium citrate, sodium acetate, sodium lactate, tromethamine, trishydroxymethylamino-methane, and the like. Salts and buffers include
citrate/dextrose, sodium bicarbonate, ammonium chloride and mixtures of the aforementioned acids and bases.

In some embodiments, the methods involve forming or supplying a depot of the therapeutic agent in contact with the external surface of the eye. A depot refers to a source of therapeutic agent that is not rapidly removed by tears or other eye clearance mechanisms. This allows for continued, sustained high concentrations of therapeutic agent to be present in the fluid on the external surface of the eye by a single application. Without wishing to be bound by any theory, it is believed that absorption and penetration may be dependent on both the dissolved drug concentration and the contact duration of the external tissue with the drug containing fluid. As the drug is removed by clearance of the ocular fluid and/or absorption into the eye tissue, more drug is provided, e.g. dissolved, into the replenished ocular fluid from the depot. Accordingly, the use of a depot may more easily facilitate loading of the ocular tissue for more insoluble therapeutic agents. In some embodiments, the depot can remain for up to eight hours or more. In some embodiments, the ophthalmic depot forms includes, but is not limited to, aqueous polymeric suspensions, ointments, and solid inserts.

In some embodiments, the ophthalmic composition is an ointment or gel. In some embodiment, the ophthalmic composition is an oil-based delivery vehicle. In some embodiments, the composition comprises a petroleum or lanolin base to which is added the active ingredient, usually as 0.1 to 2%, and excipients. Common bases may include, but are not limited to, mineral oil, petrolatum and combinations thereof. In some embodiments, the ointment is applied as a ribbon onto the lower eyelid.

In some embodiment, the ophthalmic composition is an ophthalmic insert. In some embodiments, the ophthalmic insert is biologically inert, soft, bio-erodible, viscoelastic, stable to sterilization after exposure to therapeutic agents, resistant to infections from airborne bacteria, bio-erodible, biocompatible, and/or viscoelastic. In some embodiments, the insert comprises an ophthalmically acceptable matrix, e.g., a polymer matrix. The matrix is typically a polymer and the therapeutic agent is generally dispersed therein or bonded to the polymer matrix. In some embodiments, the therapeutic agent may be slowly released from the matrix through dissolution or hydrolysis of the covalent bond. In some embodiments, the polymer is bioerodible (soluble) and the dissolution rate thereof can control the release rate of the therapeutic agent dispersed therein. In another form, the polymer matrix is a biodegradable polymer that breaks down such as by hydrolysis to thereby release the therapeutic agent bonded thereto or dispersed therein. In further embodiments, the matrix and therapeutic agent can be surrounded with an additional polymeric coating to further control release. In some embodiments, the insert comprises a
biodegradable polymer such as polycaprolactone (PCL), an ethylene/vinyl acetate copolymer (EVA), polyalkyl cyanoacrylate, polyurethane, a nylon, or poly (dl-lactide-co-glycolide) (PLGA), or a copolymer of any of these. In some embodiments, the therapeutic agent is dispersed into the matrix material or dispersed amongst the monomer composition used to make the matrix material prior to polymerization. In some embodiments, the amount of therapeutic agent is from about 0.1 to about 50%, or from about 2 to about 20%. In further embodiments, the biodegradable or bioerodible polymer matrix is used so that the spent insert does not have to be removed. As the biodegradable or bioerodible polymer is degraded or dissolved, the therapeutic agent is released.

In further embodiments, the ophthalmic insert comprises a polymer, including, but are not limited to, those described in Wagh, et al., "Polymers used in ocular dosage form and drug delivery systems", *Asian J. Pharm.*, pages 12-17 (Jan. 2008), which is incorporated herein by reference in its entirety. In some embodiments, the insert comprises a polymer selected from polyvinylpyrrolidone (PVP), an acrylate or methacrylate polymer or copolymer (e.g., Eudragit® family of polymers from Rohm and Degussa), hydroxymethyl cellulose, polyacrylic acid, poly(amidoamine) dendrimers, poly(dimethyl siloxane), polyethylene oxide, poly(lactide-co-glycolide), poly(2-hydroxyethylmethacrylate), poly(vinyl alcohol), or poly(propylene fumarate). In some embodiments, the insert comprises Gel foam®. In some embodiments, the insert is a polyacrylic acid of 450 kDa-cysteine conjugate.

In some embodiments, the ophthalmic composition is a ophthalmic film. Polymers suitable for such films include, but are not limited to, those described in Wagh, et al., "Polymers used in ocular dosage form and drug delivery systems", *Asian J. Pharm.*, pages 12-17 (Jan. 2008). In some embodiments, the film is a soft-contact lens, such as ones made from copolymers of N,N-diethylacrylamide and methacrylic acid crosslinked with ethyleneglycol dimethacrylate.

In some embodiments, the ophthalmic composition comprises microspheres or nanoparticles. In some embodiment, the microspheres comprise gelatin. In some embodiments, the microspheres are injected to the posterior segment of the eye, in the choroidal space, in the sclera, intravitreally or sub-retinally. In some embodiments, the microspheres or nanoparticles comprises a polymer including, but not limited to, those described in Wagh, et al., "Polymers used in ocular dosage form and drug delivery systems", *Asian J. Pharm.*, pages 12-17 (Jan. 2008), which is incorporated herein by reference in its entirety. In some embodiments, the polymer is chitosan, a polycarboxylic acid such as polyacrylic acid, albumin particles, hyaluronic acid esters, polyitaconic acid, poly(butyl)cyanoacrylate, polycaprolactone, poly(isobutyl)caprolactone, poly(lactic acid-co-glycolic acid), or poly(lactic acid). In some embodiments, the microspheres or nanoparticles comprise solid lipid particles.
In some embodiments, the ophthalmic composition comprises an ion-exchange resin. In some embodiments, the ion-exchange resin is an inorganic zeolite or synthetic organic resin. In some embodiments, the ion-exchange resin includes, but is not limited to, those described in Wagh, et al., "Polymers used in ocular dosage form and drug delivery systems", Asian J. Pharm., pages 12-17 (Jan. 2008), which is incorporated herein by reference in its entirety. In some embodiments, the ion-exchange resin is a partially neutralized polyacrylic acid.

In some embodiments, the ophthalmic composition is an aqueous polymeric suspension. In some embodiments, the therapeutic agent or a polymeric suspending agent is suspended in an aqueous medium. In some embodiments, the aqueous polymeric suspensions may be formulated so that they retain the same or substantially the same viscosity in the eye that they had prior to administration to the eye. In some embodiments, they may be formulated so that there is increased gelation upon contact with tear fluid.

The invention further provides a pharmaceutical formulation for topical skin application, comprising a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof.

In some embodiments, the pharmaceutical formulation comprises:
an oil-in-water emulsion; and
a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof.

In some embodiments, the emulsion comprises water, an oil component, and an emulsifier component.

As used herein, the term "emulsifier component" refers, in one aspect, to a substance, or mixtures of substances that maintains an element or particle in suspension within a fluid medium. In some embodiments, the emulsifier component allows an oil phase to form an emulsion when combined with water. In some embodiments, the emulsifier component refers to one or more non-ionic surfactants.

In some embodiments, the oil component is present in an amount of about 10% to about 40% by weight of the formulation.

In some embodiments, the oil component comprises one or more substances independently selected from petrolatums, fatty alcohols, mineral oils, triglycerides, and silicone oils.

In some embodiments, the oil component comprises one or more substances independently selected from white petrolatum, cetyl alcohol, stearyl alcohol, light mineral oil, medium chain triglycerides, and dimethicone.
In some embodiments, the oil component comprises an occlusive agent component. In some embodiments, the occlusive agent component is present in an amount of about 2% to about 15% by weight of the formulation.

As used herein, the term "occlusive agent component" refers to a hydrophobic agent or mixtures of hydrophobic agents that form an occlusive film on skin that reduces transepidermal water loss (TEWL) by preventing evaporation of water from the stratum corneum.

In some embodiments, the occlusive agent component comprises one or more substances selected from fatty acids (e.g., lanolin acid), fatty alcohols (e.g., lanolin alcohol), hydrocarbon oils & waxes (e.g., petrolatum), polyhydric alcohols (e.g., propylene glycol), silicones (e.g., dimethicone), sterols (e.g., cholesterol), vegetable or animal fat (e.g., cocoa butter), vegetable wax (e.g., Carnauba wax), and wax ester (e.g., bees wax).

In some embodiments, the occlusive agent component comprises one or more substances selected from lanolin acid fatty alcohols, lanolin alcohol, petrolatum, propylene glycol, dimethicone, cholesterol, cocoa butter, Carnauba wax, and bees wax.

In some embodiments, the oil component comprises a stiffening agent component.

In some embodiments, the stiffening agent component is present in an amount of about 2% to about 8% by weight of the formulation.

As used herein, the term "stiffening agent component" refers to a substance or mixture of substances that increases the viscosity and/or consistency of the formulation or improves the rheology of the formulation.

In some embodiments, the stiffening agent component comprises one or more substances independently selected from fatty alcohols.

In some embodiments, the stiffening agent component comprises one or more substances independently selected from C_{12-20} fatty alcohols.

In some embodiments, the stiffening agent component comprises one or more substances independently selected from C_{6-18} fatty alcohols.

In some embodiments, the stiffening agent component comprises one or more substances independently selected from cetyl alcohol and stearyl alcohol.

In some embodiments, the oil component comprises an emollient component.

In some embodiments, the emollient component is present in an amount of about 5% to about 15% by weight of the formulation.
As used herein, the term "emollient component" refers to an agent that softens or soothes the skin or soothes an irritated internal surface.

In some embodiments, the emollient component comprises one or more substances independently selected from mineral oils and triglycerides.

In some embodiments, the emollient component comprises one or more substances independently selected from light mineral oil and medium chain triglycerides.

In some embodiments, the emollient component comprises one or more substances independently selected from light mineral oil, medium chain triglycerides, and dimethicone.

In some embodiments, the water is present in an amount of about 35% to about 65% by weight of the formulation.

In some embodiments, the emulsifier component is present in an amount of about 1% to about 9% by weight of the formulation.

In some embodiments, the emulsifier component comprises one or more substances independently selected from glyceryl fatty esters and sorbitan fatty esters.

In some embodiments, the emulsifier component comprises one or more substances independently selected from glyceryl stearate, and polysorbate 20.

In some embodiments, the pharmaceutical formulation further comprises a stabilizing agent component.

In some embodiments, the stabilizing agent component is present in an amount of about 0.05% to about 5% by weight of the formulation.

As used herein, the term "stabilizing agent component" refers to a substance or mixture of substances that improves the stability of the pharmaceutical formulation and/or the compatibility of the components in the formulation. In some embodiments, the stabilizing agent component prevents agglomeration of the emulsion and stabilizes the droplets in the oil-in-water emulsion.

In some embodiments, the stabilizing agent component comprises one or more substances independently selected from polysaccharides.

In some embodiments, the stabilizing agent component comprises xanthan gum.

In some embodiments, the pharmaceutical formulation further comprises a solvent component.

In some embodiments, the solvent component is present in an amount of about 10% to about 35% by weight of the formulation.

As used herein, the term "solvent component" is a liquid substance or mixture of liquid substances capable of dissolving a compound of the invention or other substances in the...
formulation. In some embodiments, the solvent component is a liquid substance or mixture of liquid substances in which a compound of the invention, or a pharmaceutically acceptable salt thereof, has reasonable solubility.

In some embodiments, the solvent component comprises one or more substances independently selected from alkylene glycols and polyalkylene glycols.

In some embodiments, the solvent component comprises one or more substances independently selected from propylene glycol and polyethylene glycol.

In some embodiments, the compound of the invention is present in an amount of about 0.5% to about 2.0% by weight of the formulation on a free base basis.

In some embodiments, the compound of the invention is present in an amount of about 0.5% by weight of the formulation on a free base basis.

In some embodiments, the compound of the invention is present in an amount of about 1% by weight of the formulation on a free base basis.

In some embodiments, the compound of the invention is present in an amount of about 1.5% by weight of the formulation on a free base basis.

In some embodiments, the compound of the invention is present in an amount selected from about 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0% by weight of the formulation on a free base basis.

In some embodiments, the pharmaceutical formulation comprises: water; an oil component; an emulsifier component; a solvent component; a stabilizing agent component; and from about 0.5% to about 2.0% of a compound of the invention, or a pharmaceutically acceptable salt thereof, by weight of the formulation on a free base basis.

In some embodiments, the pharmaceutical formulation comprises:

- from about 35% to about 65% of water by weight of the formulation;
- from about 10% to about 40% of an oil component by weight of the formulation;
- from about 1% to about 9% of an emulsifier component by weight of the formulation;
- from about 10% to about 35% of a solvent component by weight of the formulation;
- from about 0.05% to about 5% of a stabilizing agent component by weight of the formulation; and
- from about 0.5% to about 2.0% of a compound of the invention, or a pharmaceutically acceptable salt thereof, by weight of the formulation on a free base basis.

In some embodiments:

the oil component comprises one or more substances independently selected from petrolatums, fatty alcohols, mineral oils, triglycerides, and dimethicones;
the emulsifier component comprises one or more substances independently selected from glycercy fatty esters and sorbitan fatty esters;
the solvent component comprises one or more substances independently selected from alkylene glycols and polyalkylene glycols; and

the stabilizing agent component comprises one or more substances independently selected from polysaccharides.

In some embodiments:
the oil component comprises one or more substances independently selected from white petrolatum, cetyl alcohol, stearyl alcohol, light mineral oil, medium chain triglycerides, and dimethicone;
the emulsifier component comprises one or more substances independently selected from glycercy stearate and polysorbate 20;
the solvent component comprises one or more substances independently selected from propylene glycol and polyethylene glycol; and

the stabilizing agent component comprises xanthan gum.

In some embodiments, the pharmaceutical formulation comprises:
from about 35% to about 65% of water by weight of the formulation;
from about 2% to about 15% of an occlusive agent component by weight of the formulation;
from about 2% to about 8% of a stiffening agent component by weight of the formulation;
from about 5% to about 15% of an emollient component by weight of the formulation;
from about 1% to about 9% of an emulsifier component by weight of the formulation;
from about 0.05% to about 5% of a stabilizing agent component by weight of the formulation;
from about 10% to about 35% of a solvent component by weight of the formulation; and
from about 0.5% to about 2.0% of a compound of the invention, or a pharmaceutically acceptable salt thereof, by weight of the formulation on a free base basis.

In some embodiments:
the occlusive agent component comprises a petrolatum;
the stiffening agent component comprises one or more substances independently selected from one or more fatty alcohols;
the emollient component comprises one or more substances independently selected from mineral oils and triglycerides;
the emulsifier component comprises one or more substances independently selected from
glyceryl fatty esters and sorbitan fatty esters;

the stabilizing agent component comprises one or more substances independently selected from polysaccharides; and

the solvent component comprises one or more substances independently selected from alkylene glycols and polyalkylene glycols.

In some embodiments:

the occlusive agent component comprises white petrolatum;

the stiffening agent component comprises one or more substances independently selected from cetyl alcohol and stearyl alcohol;

the emollient component comprises one or more substances independently selected from light mineral oil, medium chain triglycerides, and dimethicone;

the emulsifier component comprises one or more substances independently selected from glycercyl stearate and polysorbate 20;

the stabilizing agent component comprises xanthan gum; and

the solvent component comprises one or more substances independently selected from propylene glycol and polyethylene glycol.

In some embodiments, the pharmaceutical formulation further comprises an antimicrobial preservative component.

In some embodiments, the antimicrobial preservative component is present in an amount of about 0.05% to about 3% by weight of the formulation.

As used herein, the phrase "antimicrobial preservative component" is a substance or mixtures of substances which inhibits microbial growth in the formulation.

In some embodiments, the antimicrobial preservative component comprises one or more substances independently selected from alkyl parabens and phenoxyethanol.

In some embodiments, the antimicrobial preservative component comprises one or more substances independently selected from methyl paraben, propyl paraben, and phenoxyethanol.

In some embodiments, the pharmaceutical formulation further comprises a chelating agent component.

As used herein, the phrase "chelating agent component" refers to a compound or mixtures of compounds that has the ability to bind strongly with metal ions.

In some embodiments, the chelating agent component comprises edetate disodium.
As used herein, "% by weight of the formulation" means the percent concentration of the component in the formulation is on weight/weight basis. For example, 1% w/w of component A = [(mass of component A) / (total mass of the formulation)] x 100.

As used herein, "% by weight of the formulation on a free base basis" of a compound of the invention, or a pharmaceutically acceptable salt thereof means that the % w/w is calculated based on the weight of the free base of the compound of the invention in the total formulation.

In some embodiments, the components are present in exactly the ranges specified (e.g., the term "about" is not present). In some embodiments, "about" means plus or minus 10% of the value.

As will be appreciated, some components of the pharmaceutical formulations described herein can possess multiple functions. For example, a given substance may act as both an emulsifying agent component and a stabilizing agent. In some such cases, the function of a given component can be considered singular, even though its properties may allow multiple functionality. In some embodiments, each component of the formulation comprises a different substance or mixture of substances.

As used herein, the term "component" can mean one substance or a mixture of substances.

As used herein, the term "fatty acid" refers to an aliphatic acid that is saturated or unsaturated. In some embodiments, the fatty acid is a mixture of different fatty acids. In some embodiments, the fatty acid has between about eight to about thirty carbons on average. In some embodiments, the fatty acid has about 12 to 20, 14-20, or 16-18 carbons on average. Suitable fatty acids include, but are not limited to, cetyl acid, stearic acid, lauric acid, myristic acid, erucic acid, palmitic acid, palmitoleic acid, capric acid, caprylic acid, oleic acid, linoleic acid, linolenic acid, hydroxystearic acid, 12-hydroxystearic acid, cetostearic acid, isostearic acid, sesquioleic acid, sesqui-9-octadecanoic acid, sesquiooctadecanoic acid, behenic acid, isobehenic acid, and arachidonic acid, or mixtures thereof.

As used herein, the term "fatty alcohol" refers to an aliphatic alcohol that is saturated or unsaturated. In some embodiments, the fatty alcohol is a mixture of different fatty alcohols. In some embodiments, the fatty alcohol has between about 12 to about 20, about 14 to about 20, or about 16 to about 18 carbons on average. Suitable fatty alcohols include, but are not limited to, stearyl alcohol, lauryl alcohol, palmityl alcohol, cetyl alcohol, capryl alcohol, caprylyl alcohol, oleyl alcohol, linolenyl alcohol, arachidonic alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol, and linoleyl alcohol, or mixtures thereof.
As used herein, the term "polyalkylene glycol", employed alone or in combination with other terms, refers to a polymer containing oxyalkylene monomer units, or copolymer of different oxyalkylene monomer units, wherein the alkylene group has 2 to 6, 2 to 4, or 2 to 3 carbon atoms. As used herein, the term "oxyalkylene", employed alone or in combination with other terms, refers to a group of formula -O-alkylene-. In some embodiments, the polyalkylene glycol is polyethylene glycol.

As used herein, the term "sorbitan fatty ester" includes products derived from sorbitan or sorbitol and fatty acids and, optionally, poly(ethylene glycol) units, including sorbitan esters and polyethoxylated sorbitan esters. In some embodiments, the sorbitan fatty ester is a polyethoxylated sorbitan ester.

As used herein, the term "sorbitan ester" refers to a compound, or mixture of compounds, derived from the esterification of sorbitol and at least one fatty acid. Fatty acids useful for deriving the sorbitan esters include, but are not limited to, those described herein. Suitable sorbitan esters include, but are not limited to, the Span series (available from Uniqema), which includes Span 20 (sorbitan monolaurate), 40 (sorbitan monopalmitate), 60 (sorbitan monostearate), 65 (sorbitan tristearate), 80 (sorbitan monooleate), and 85 (sorbitan trioleate). Other suitable sorbitan esters include those listed in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.

As used herein, the term "polyethoxylated sorbitan ester" refers to a compound, or mixture thereof, derived from the ethoxylation of a sorbitan ester. The polyoxyethylene portion of the compound can be between the fatty ester and the sorbitan moiety. As used herein, the term "sorbitan ester" refers to a compound, or mixture of compounds, derived from the esterification of sorbitol and at least one fatty acid. Fatty acids useful for deriving the polyethoxylated sorbitan esters include, but are not limited to, those described herein. In some embodiments, the polyoxyethylene portion of the compound or mixture has about 2 to about 200 oxyethylene units. In some embodiments, the polyoxyethylene portion of the compound or mixture has about 2 to about 100 oxyethylene units. In some embodiments, the polyoxyethylene portion of the compound or mixture has about 4 to about 80 oxyethylene units. In some embodiments, the polyoxyethylene portion of the compound or mixture has about 4 to about 40 oxyethylene units. In some embodiments, the polyoxyethylene portion of the compound or mixture has about 4 to about 20 oxyethylene units. Suitable polyethoxylated sorbitan esters include, but are not limited to, the Tween™ series (available from Uniqema), which includes Tween 20 (POE(20) sorbitan monolaurate), 21 (POE(4) sorbitan monolaurate), 40 (POE(20) sorbitan monopalmitate), 60
(POE(20) sorbitan monostearate), 60K (POE(20) sorbitan monostearate), 61 (POE(4) sorbitan monostearate), 65 (POE(20) sorbitan tristearate), 80 (POE(20) sorbitan monooleate), 80K (POE(20) sorbitan monooleate), 81 (POE(5) sorbitan monooleate), and 85 (POE(20) sorbitan trioleate). As used herein, the abbreviation "POE" refers to polyoxyethylene. The number following the POE abbreviation refers to the number of oxyethylene repeat units in the compound. Other suitable polyethoxylated sorbitan esters include the polyoxyethylene sorbitan fatty acid esters listed in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety. In some embodiments, the polyethoxylated sorbitan ester is a polysorbate. In some embodiments, the polyethoxylated sorbitan ester is polysorbate 20.

As used herein, the term "glyceryl fatty esters" refers to mono-, di- or triglycerides of fatty acids. The glyceryl fatty esters may be optionally substituted with sulfonic acid groups, or pharmaceutically acceptable salts thereof. Suitable fatty acids for deriving glycerides of fatty acids include, but are not limited to, those described herein. In some embodiments, the glyceryl fatty ester is a mono-glyceride of a fatty acid having 12 to 18 carbon atoms. In some embodiments, the glyceryl fatty ester is glyceryl stearate.

As used herein, the term "triglycerides" refers to a triglyceride of a fatty acid. In some embodiments, the triglyceride is medium chain triglycerides.

As used herein, the term "alkylene glycol" refers to a group of formula -O-alkylene-, wherein the alkylene group has 2 to 6, 2 to 4, or 2 to 3 carbon atoms. In some embodiments, the alkylene glycol is propylene glycol (1,2-propanediol).

As used herein, the term "polyethylene glycol" refers to a polymer containing ethylene glycol monomer units of formula -O-CH₂-CH₂-. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group. Also suitable are derivatives of polyethylene glycols having esterifiable carboxy groups. Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 9000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400. Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400,
polyethylene glycol-600, and polyethylene glycol-900. The number following the dash in the name refers to the average molecular weight of the polymer.

The oil-in-water cream formulations can be synthesized according using an overhead mixer with high and low shear mixing blades. For example, in some embodiments, the formulation can be synthesized by the following procedure.

1. An antimicrobial preservative phase can be prepared by mixing at least a portion of the antimicrobial preservative component with a portion of a solvent component.

2. Next, a stabilizing agent phase is prepared by mixing a stabilizing agent component with a portion of the solvent component.

3. An oil phase is then prepared by mixing an emollient component, an emulsifier component, an occlusive agent component, and a stiffening agent component. The oil phase is heated to 70-80 °C to melt and form a uniform mixture.

4. An aqueous phase is next prepared by mixing purified water, the remainder of the solvent component, and a chelating agent component. The phase is heated to 70-80 °C.

5. The aqueous phase of step 4, antimicrobial preservative phase of step 1, and the compound of the invention, or a pharmaceutically acceptable salt thereof, are combined to form a mixture.

6. The stabilizing agent phase from step 2 was then added to the mixture from step 5.

7. The oil phase from step 3 is then combined under high shear mixing with the mixture from step 6 to form an emulsion.

8. Finally, additional antimicrobial preservative component may be then added to the emulsion from step 7. Mixing is continued, and then the product is cooled under low shear mixing.

Synthesis

Compounds of the invention, including salts and N-oxides thereof, can be prepared using known organic synthesis techniques and can be synthesized according to any of numerous possible synthetic routes.

The reactions for preparing compounds of the invention can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis. Suitable solvents can be substantially non-reactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, e.g., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction can be carried out in one solvent or a mixture of more than one
solvent. Depending on the particular reaction step, suitable solvents for a particular reaction step can be selected by the skilled artisan.

Preparation of compounds of the invention can involve the protection and deprotection of various chemical groups. The need for protection and deprotection, and the selection of appropriate protecting groups, can be readily determined by one skilled in the art. The chemistry of protecting groups can be found, for example, in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, (2007), which is incorporated herein by reference in its entirety.

Reactions can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., 1H or 13C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).

Compounds of Formula I, wherein X is cyano, can be made by methods analogous to that depicted in Scheme I. Accordingly, a protected pyrazol-4-yl-pyrrolo[2,3-d]pyrimidine or pyrrolo-3-yl-pyrrolo[2,3-d]pyrimidine of formula (a) is reacted with a protected alkene of formula (b) in a Michael addition in the presence of a coupling agent. The protecting groups, P_1 and R, can be any appropriate protecting group, including, but not limited to, the protecting groups for amines delineated in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, pages 696-887 (and, in particular, pages 872-887) (2007), which is incorporated herein by reference in its entirety. In some embodiments, P_1 is 2-(trimethylsilyl)ethoxymethyl (SEM). In some embodiments, the R protecting group is one that can be selectively removed in the presence of the P_1 protecting group. In some embodiments, the R protecting group is tert-butoxycarbonyl (BOC) or benzoyloxycarbonyl (Cbz). The coupling agent can be any appropriate coupling agent useful for Michael addition, including, but not limited to a tetraalkylammonium halide, tetraalkylammonium hydroxide, guanidine, amidine, hydroxide, alkoxide, silicate, alkali metal phosphate, oxide, tertiary amine, alkali metal carbonate, alkali metal bicarbonate, alkali metal hydrogen phosphate, phosphine, or alkali metal salt of a carboxylic acid. In some embodiments, the coupling agent is tetramethyl guanidine, 1,8-diazabicyclo[5.4.0]undec-7-ene, 1,5-diazabicyclo(4.3.0)non-5-ene, 1,4-diazabicyclo(2.2.2)octane, tert-butyl ammonium hydroxide, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, tripotassium phosphate, sodium silicate, calcium oxide, triethylamine, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, potassium hydrogen phosphate, triphenyl phosphine, triethyl phosphate, potassium acetate, or potassium acrylate. In
some embodiments, the coupling agent is 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The Michael addition of the compounds of formulas (a) and (b) can be conducted in an appropriate solvent (e.g., acetonitrile).

Scheme I

The Michael addition product (c) can then be deprotected to remove the R protecting group to form the pyrrolidine base (d). For example, when R is BOC, the protecting group can be removed through treatment with HCl in dioxane, while when R is Cbz, the protecting group can be removed under hydrogenation conditions (e.g., hydrogen gas in the presence of 10% palladium on carbon). The pyrrolidine base (d) can then be reacted with an aromatic moiety of formula Ar-X¹ to form the aryl-pyrrolidine of formula (e). Appropriate leaving groups for X¹, include, but are not limited to, chloro, bromo, fluoro, -OSO₂CF₃, and thio (SH). The reaction can be carried out in the presence of a base (such as a tertiary amine, e.g., diisopropylethylamine) in a solvent such as N-methylpyrrolidone (NMP), dioxane, or ethanol (EtOH) at an elevated temperature (e.g., 60 to 135°C). The compound of formula (e) can then be deprotected to give the compound of Formula I.

Compounds of formula (a) may be formed by methods analogous to that depicted in Scheme II. Accordingly, Suzuki-coupling of a protected 4-chloro-pyrrolo[2,3-d]pyrimidine of formula (f) (wherein R” is hydrogen, alkyl or two R” join together with the oxygen and boron atoms to form a optionally substituted heterocycloalkyl ring such as a pinacol ring) with a
protected or unprotected pyrrol-3-yl or pyrazol-4-yl boronic acid or ester of formula (g) (e.g., wherein R’ is H or a protecting group) in the presence of a palladium catalyst (e.g., tetrakis(triphenylphosphine)palladium(0) or tetrakis(tri(o-tolylphosphine))palladium(0)) and a base (e.g., potassium carbonate) gives the desired starting material of formula (a) (see, e.g., Example 65 of US 20070135461, which is incorporated herein by reference in its entirety). The pyrrol-3-yl or pyrazol-4-yl boronic ester or acid can be protected with any appropriate protecting group. Similarly, the P1 protecting group can be any appropriate protecting group (e.g., diethoxymethyl (DEM) or 2-(trimethylsilyl)ethoxymethyl (SEM)).

Scheme II

![Diagram](attachment:image.png)

The alkene of formula (b) can be formed by reaction of the pyrrolidine aldehyde of formula (h) with a Horner-Wadsworth-Emmons reagent as shown in Scheme III. The R protecting group can be any of the protecting groups summarized above (e.g., BOC or Cbz).

Scheme III

![Diagram](attachment:image.png)

The Ar-X1 compounds can be formed by methods known in the art. Compounds wherein Ar is a fused heterocycloalkyl(hetero)aryl group with a S-oxo or S,S-dioxo thioether moiety (v) or (vi) can be formed by methods analogous to those shown in Scheme IV. Accordingly, an appropriate di-chloro(hetero)arylaldehyde moiety (e.g., a compound of formula (i)) is reacted with a Wittig reagent to give an β-methoxyalkenyl moiety (e.g., a compound of formula (U)), which can then be hydrolyzed and reduced to give a β-hydroxyethane moiety (e.g., a compound of formula (Ui)). The hydroxyl group on the β-hydroxyethane moiety can then be converted to a
thio group (e.g., a compound of formula (iv) and cyclized to form a thioether. The thioether can then be oxidized using an appropriate oxidizing agent (e.g., m-chloroperbenzoic acid, mCPBA) to
give the S-oxothioether (e.g., a compound of formula (v)) and the S,S-dioxothioether (e.g., a
compound of formula (vi)).

Certain compounds of formula Ar-X¹ wherein Ar is a fused heteroaryl or aryloxazole
compound can be formed by methods analogous to that shown in Scheme V. Accordingly a 1-
nitro-2-hydroxylaryl or heteroaryl moiety of formula (i) is reduced to give a 1-amino-2-
hydroxylaryl or heteroaryl moiety of formula (ii), which can be cyclized to give the
benzo[d]oxazole-2(3H)-thione compound of formula (iii). Certain compounds of formula (iii)
can then be reacted to give the 2-chloro fused oxazole compound of formula (iv).

In some cases, the compound of formula (iii) can be reacted directly with the compound
of formula (d) of Scheme I by methods analogous to those depicted in Scheme VI. Accordingly,
the compound of formula (d) is reacted with the compound of formula (iii) in the presence of a
base such as a tertiary amine (e.g., diisopropylethylamine) and a solvent (e.g., dioxane) at an
elevated temperature (e.g., 70°C), followed by treatment with silver nitrate in the presence of
ammonium hydroxide and ethanol and deprotection to form the desired compound.
Alternatively, compounds of formula Ar-X\(^1\) wherein Ar is a fused heteroaryl- or aryl-oxazole compound can be formed by methods analogous to that shown in Scheme VII. Accordingly, the compound of formula (i) is reacted with phenyl chlorothionocarbonate and pyridine, followed by reaction with the pyrrolidine core structure of formula (ii) to give the compound of formula (iii). The compound of formula (iii) can then be cyclized and deprotected to give the desired compound of formula (iv).
Compound of Formula I, wherein X is fluoro, can be made by the methods shown in Scheme VIII. Accordingly, a protected 3-carboxypyrrolidine (R is a protecting group) of formula 1 is reduced to give a methylol derivative of formula 2. The methylol derivative can then be oxidized via a Swern oxidation procedure to give the aldehyde of formula 3. The aldehyde can then be reacted with fluormethylphenyl sulfone in the presence of lithium diisopropylamide (LDA) to give the compound of formula 4. The compound of formula 4 can then be reacted to remove the \(-\text{SO}_2\text{Ph}\) group to give the hydroxyl compound of formula 5. The hydroxyl group of the compound of formula 5 can be converted to a mesylate group (compound of formula 6), which can then be reacted with the protected pyrrolo[2,3-d]pyrimidine compound to give the compound of formula 7. The compound of formula 7 can then be deprotected to give a pyrrolidine base of formula 8. The compound of formula 8 can then be substituted for the compound of formula (d) in Scheme I, the compound of formula (d) in Scheme VI, or the compound of formula (ii) in Scheme VII to give the desired compound of Formula I.

Alternatively, the hydroxyl compound of formula 5 of Scheme VIII can be formed by the process shown in Scheme IX.
Other routes into the compounds of Formula I are set forth in the Examples. The examples are intended to describe the invention in greater detail. The examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of noncritical parameters which can be changed or modified to yield essentially the same results.

EXAMPLES

The following abbreviations are used throughout the text: NMP (N-methylpyrrolidone), EtOH (ethanol), HOAc (acetic acid), TFA (trifluoroacetic acid), DCM (methylen chloride or dichloromethane), MeOH (methanol), EDA (ethylenediamine), DIPEA (N,N-diisopropylethylamine), LDA (lithium diisopropylamide), MsCl (mesyl chloride), DMF (N,N-dimethylformamide), HATU ([Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate), THF (tetrahydrofuran), LCMS (liquid chromatography-mass spectrometry), MS (mass spectrometry), HPLC (high performance liquid chromatography), LC (liquid chromatography), TMS (trimethylsilyl), MeCN or ACN (acetonitrile), IPA (isopropanol), EtOAc (ethyl acetate), DMSO (dimethylsulfoxide), tBu (tert-butyl), SEM (2-(trimethylsilyl)ethoxymethyl), h (hour or hours), and min (minute or minutes).
Example 1. 3-[(6-chloropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (racemate of a single diastereomer)

Step 1. benzyl 3-[(2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl]pyrrolidine-1-carboxylate

Benzyl 3-[(2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl]pyrrolidine-1-carboxylate (4.3 g, 0.017 mol, mixture of E and Z isomers prepared as described in WO 2007/070514 Ex.742) was dissolved in acetonitrile (270 mL). 1,8-Diazabicyclo[5.4.0]undec-7-ene (5.02 mL, 0.0336 mol) was added, followed by 4-(1H-pyrazol-4-yl)-7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (5.6 g, 0.017 mol, prepared as described in WO 2007/070514, Ex.65). The mixture was stirred at RT overnight. The solvent was removed by rotary evaporation, and the residue was redissolved in ethyl acetate. The solution was washed successively with IN HCl, water, saturated sodium bicarbonate, and brine, dried over sodium sulfate and concentrated in vacuo. The product was purified by flash column chromatography on silica gel, eluting with a gradient of 0-100% ethyl acetate in hexanes to afford diastereomer 1 (first to elute) (3.5g, 36%) and diastereomer 2 (second to elute) (2.5g, 25%). LCMS (M+H)$^+$: 572.2.

Step 2. 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1 H-pyrazol-1-yl]propanenitrile

Benzyl 3-[(2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl]pyrrolidine-1-carboxylate (3.5 g, 6.1 mmol) (diastereomer 1 from Example 1, Step 1) was dissolved in 100 mL methanol, and a catalytic amount of 10% Pd-C was added. The mixture was shaken under 50 psi of hydrogen for 24 h. The mixture was then filtered and the solvent removed in vacuo. The product was used without further purification. LCMS (M+H)$^+$: 438.2.

Step 3. 3-[(6-chloropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile

A mixture of 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (racemate of a single diastereomer) was treated with 10% Pd-C and hydrogen. The mixture was filtered and the solvent removed in vacuo. The product was used without further purification.
pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (150 mg, 0.27 mmol) and 2,6-
dichloropyrazine (49.0 mg, 0.329 mmol) in ethanol (1.2 mL), and N,N-diisopropylethylamine (96 µL, 0.55 mmol) was heated in a sealed vial in an oil bath held at 85°C for one h. Flash column chromatography on silica gel, eluting with a gradient from 0-100% ethyl acetate in hexanes afforded product (49 mg, 27%). LCMS (M+H)+: 550.0.

**Step 4. 3-[l-(6-chloropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)-lH-pyrazol-l-yl]propanenitrile**

3-[l-(6-Chloropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-
7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (15 mg, 0.027 mmol) was
dissolved in DCM (1 mL), and 0.2 ml TFA was added. The mixture was stirred for 2 h, then
concentrated. The residue was dissolved in MeOH (1 mL), and 0.2 ml EDA was added.
Purification by preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O
containing 0.15% NH4OH) afforded product (7 mg, 61%). 1H NMR (400 MHz, CD3OD): δ 8.66
(s, 2H), 8.41 (s, IH), 7.77 (s, IH), 7.67 (s, IH), 7.50 (d, IH), 6.93 (d, IH), 4.85-4.76 (m, IH),
3.86 (dd, IH), 3.61-3.54 (m, IH), 3.43-3.16 (m, 4H), 3.11-2.99 (m, IH), 1.89-1.81 (m, 2H);
LCMS (M+H)+: 420.0.

**Example 2. 3-[l-(6-chloropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile** (two different enantiomers isolated)

A mixture of 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (150 mg, 0.27 mmol, from
Example 1, Step 2) and 2,6-dichloropyridine (48.7 mg, 0.329 mmol) in NMP (1.6 mL) andN,N-
diisopropylethylamine (96 microL, 0.55 mmol) was heated to 135°C for 20 min in the
microwave. Purification by flash column chromatography on silica gel, eluting with a gradient
from 0-80% ethyl acetate in hexanes, afforded the title product (28 mg, 18%). 1H NMR (400 MHz, CDCl₃): δ 8.85 (s, 1H), 8.36 (s, 1H), 8.36 (s, 1H), 7.41 (d, 1H), 7.37 (dd, 1H), 6.79 (d, 1H), 6.57 (d, 1H), 6.22 (d, 1H), 5.68 (s, 2H), 4.45 (dt, 1H), 3.91 (dd, 1H), 3.57-3.46 (m, 3H), 3.39-3.29 (m, 2H), 3.24 (dd, 1H), 3.13-3.01 (m, 1H), 3.01 (dd, 1H), 1.98-1.88 (m, 1H), 1.82-1.69 (m, 1H), 0.95-0.88 (m, 2H), -0.06 (s, 9H); LCMS (M+H)⁺: 419.1.

This racemic product was separated into its enantiomers by chiral HPLC (Chiral Technologies Chiralcel OJ-H, 5µ, 30 x 250mm, 45% EtOH/Hexanes, 20 mL/min) to afford enantiomer 1 (first to elute, retention time 40.7 min) and enantiomer 2 (second to elute, retention time 51.6 min), which were deprotected separately in Step 2.

Step 2a. 3-[1-(6-Chloropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (enantiomer 1)

3-[1-(6-Chloropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (enantiomer 1 from Step 1) was stirred in a solution containing 1:1 TFA/DCM (2 mL) for 2 h, and then concentrated. The residue was dissolved in 1 mL MeOH, and 0.2 mL EDA was added. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product. 1H NMR (400 MHz, CDCl₃): δ 9.44 (br s, 1H), 8.84 (s, 1H), 8.37 (s, 2H), 7.39 (dd, 1H), 7.38 (dd, 1H), 6.79 (dd, 1H), 6.58 (d, 1H), 6.22 (d, 1H), 4.46 (dt, 1H), 3.92 (dd, 1H), 3.55-3.48 (m, 1H), 3.39-3.31 (m, 2H), 3.25 (dd, 1H), 3.13-3.02 (m, 1H), 3.02 (dd, 1H), 2.00-1.88 (m, 1H), 1.84-1.71 (m, 1H); LCMS (M+H)⁺: 419.1.

Step 2b. 3-[1-(6-Chloropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (enantiomer 2)

Performed as in Step 2a, using enantiomer 2 from Step 1: 1H NMR (400 MHz, CDCl₃): δ 9.59 (br s, 1H), 8.84 (s, 1H), 8.37 (s, 2H), 7.40 (dd, 1H), 7.38 (dd, 1H), 6.79 (dd, 1H), 6.58 (d, 1H), 6.22 (d, 1H), 4.46 (dt, 1H), 3.92 (dd, 1H), 3.55-3.48 (m, 1H), 3.39-3.31 (m, 2H), 3.25 (dd, 1H), 3.14-3.02 (m, 1H), 3.02 (dd, 1H), 1.99-1.90 (m, 1H), 1.83-1.72 (m, 1H); LCMS (M+H)⁺: 419.1.
Example 3. 3-{1-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl]propanenitrile (two different enantiomers isolated)

Step 1. 3-{1-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl}-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl]propanenitrile and 3-{1-(4-chloropyrimidin-2-yl)pyrrolidin-3-yl}-3-(4-(7-{(2-(trimethylsilyl)ethoxy)methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl)propanenitrile

A mixture of 3-pyrrolidin-3-yl-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl]propanenitrile (181 mg, 0.331 mmol, prepared as in Example 1, Step 2) and 2,4-dichloropyrimidine (59 mg, 0.40 mmol) in 1,4-dioxane (1.1 mL) and N,N-diisopropylethylamine (115 microL) was heated to 70 °C for 110 min. The mixture was concentrated, then purified by flash column chromatography on silica gel, eluting with 0-5% methanol in DCM to afford two regioisomeric products. The reaction was repeated on the same scale, substituting ethanol (1.1 mL) for 1,4-dioxane and was heated to 80 °C for 1 h. The products of this run were chromatographed similarly and combined with the products of the previous run.

3-{1-(2-Chloropyrimidin-4-yl)pyrrolidin-3-yl}-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl]propanenitrile:

\[^{1} \text{H} \text{NMR} \ (500 \text{ MHz, } \text{d}_{6}-\text{DMSO, } 90^\circ \text{C}): \delta 8.81 \text{ (s, IH), } 8.76 \text{ (s, IH), } 8.40 \text{ (s, IH), } 8.02 \text{ (d, IH), } 7.71 \text{ (d, IH), } 7.04 \text{ (d, IH), } 6.45 \text{ (d, IH), } 5.65 \text{ (s, 2H), } 4.85 \text{ (dt, IH), } 3.80 \text{ (br s, IH), } 3.61-3.57 \text{ (m, 2H), } 3.53 \text{ (br s, IH), } 3.42-3.25 \text{ (m, 4H), } 3.03-2.90 \text{ (m, 2H), } 1.83-1.69 \text{ (m, 2H), } 0.89-0.84 \text{ (m, 2H), -0.07 (s, 9H); LCMS (M+H)^{+}: 550.1.} \]

Separation of 3-{1-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl}-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl]propanenitrile by chiral HPLC (Chiral Technologies Chiralpak IA, 5µ, 20 x 250mm, 40% EtOH/Hexanes, 10 mL/min) afforded enantiomer 1 (first to elute, retention time 26.5 min), 42 mg, 9%; and enantiomer 2 (second to elute, retention time 32.7 min), 37 mg, 8%.

Separation of the isomer [3-{1-(4-chloropyrimidin-2-yl)pyrrolidin-3-yl}-3-(4-(7-{(2-(trimethylsilyl)ethoxy)methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrozol-1-yl]propanenitrile] by chiral HPLC (Chiral Technologies Chiralcel OJ-H, 5µ, 30 x 250mm, 45% EtOH/Hexanes, 22
mL/min) afforded enantiomer 1 (first to elute, retention time 32.6 min), 12 mg, 2.6%; and enantiomer 2 (second to elute, retention time 39.6 min), 12 mg, 2.6%.

Step 2a. 3-[l-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (enantiomer 1)

3-[l-(2-Chloropyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (42 mg, 0.076 mmol, Example 3, Step 1, enantiomer 1) was dissolved in 3 mL of 20% TFA/DCM. The mixture was stirred for 2 h, then concentrated. The residue was dissolved in MeOH (2 mL), and 0.3 mL EDA was added. Following completion of the deprotection reaction, preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH) was used to purify the product (18 mg, 56%). 1H NMR (400 MHz, d6-DMSO): δ 12.13 (br s, 1H), 8.87 (s, 1H), 8.68 (s, 1H), 8.43 (s, 1H), 8.08 (d, 0.5 H), 8.02 (d, 0.5H), 7.61 (d, 1H), 6.99 (d, 1H), 6.51-6.45 (m, 1H), 4.86-4.78 (m, 1H), 3.90-2.81 (m, 7H), 1.79-1.58 (m, 2H); LCMS (M+H)+: 420.0.

Step 2b. 3-[l-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (enantiomer 2)

Enantiomer 2 of 3-[l-(2-chloropyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile from Example 3, Step 1 (37 mg) was deprotected and purified as described in step 2a (17 mg, 60%). 1H NMR (400 MHz, d6-DMSO): δ 12.13 (br s, 1H), 8.87 (s, 1H), 8.68 (s, 1H), 8.43 (s, 1H), 8.08 (d, 0.5 H), 8.02 (d, 0.5H), 7.61 (dd, 1H), 6.99 (d, 1H), 6.48 (dd, 1H), 4.87-4.78 (m, 1H), 3.88-2.78 (m, 7H), 1.79-1.56 (m, 2H); LCMS (M+H)+: 420.0.

Example 4a. 3-[l-(4-chloropyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)
(trimethylsilyl)ethoxy[methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-y]propanenitrile (12 mg, 0.022 mmol, enantiomer 1 from Example 3, Step 1) was dissolved in 20% TFA/DCM (2 mL). The mixture was stirred for 2 h, then concentrated. The residue was dissolved in MeOH (2 mL), and 0.3 mL EDA was added. Following complete reaction, preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH) was used to purify the product (6 mg, 65%). 1HNMR (400 MHz, CDCl3): δ 10.03 (br s, 1H), 8.85 (s, 1H), 8.39 (s, 1H), 8.38 (s, 1H), 8.18 (d, 1H), 7.41 (dd, 1H), 6.79 (dd, 1H), 6.56 (d, 1H), 4.47 (dt, 1H), 4.00 (dd, 1H), 3.81-3.73 (m, 1H), 3.52-3.44 (m, 1H), 3.38 (dd, 1H), 3.26 (dd, 1H), 3.10 (dq, 1H), 3.00 (dd, 1H), 1.97-1.89 (m, 1H), 1.82-1.70 (m, 1H); LCMS (M+H)+: 420.0.

Example 4b. 3-[l-(4-chloropyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-y]propanenitrile (one enantiomer isolated)

Enantiomer 2 of 3-[l-(4-chloropyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-y]propanenitrile from Example 3, Step 1 (12 mg) was deprotected and purified in the same manner as described for Example 4a (8 mg, 87%). 1H NMR (400 MHz, CDCl3): δ 10.24 (br s, 1H), 8.86 (s, 1H), 8.39 (s, 1H), 8.18 (d, 1H), 7.45-7.41 (m, 1H), 6.82-6.78 (m, 1H), 6.56 (d, 1H), 4.47 (dt, 1H), 4.00 (dd, 1H), 3.82-3.73 (m, 1H), 3.54-3.44 (m, 1H), 3.42-3.34 (m, 1H), 3.26 (dd, 1H), 3.16-3.05 (m, 1H), 3.04-2.96 (m, 1H), 1.98-1.88 (m, 1H), 1.82-1.70 (m, 1H); LCMS (M+H)+: 420.0.

Example 5. 3-[l-(4-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-y]propanenitrile trifluoroacetate

Step 1. 3-[l-(4-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-y]propanenitrile trifluoroacetate

A mixture of 3-pyrrolidin-3-yl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-y]propanenitrile (151 mg, 0.345 mmol, from
Example 1, Step 2) and 2,4-dibromo-1,3-thiazole (126 mg, 0.518 mmol) in NMP (0.50 mL), and N,N-diisopropylethylamine (0.12 mL) was heated to 135 °C in the microwave for 50 min. The product was purified by flash column chromatography on silica gel, eluting with a gradient from 0-60% ethyl acetate in hexanes to afford product as a white solid (66 mg, 32%). \(^1H \) NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.85 (s, 1H), 8.36 (s, 1H), 8.35 (s, 1H), 7.42 (d, 1H), 6.79 (d, 1H), 6.38 (s, 1H), 5.68 (s, 2H), 4.47 (dt, 1H), 3.89 (dd, 1H), 3.57-3.52 (m, 2H), 3.51-3.33 (m, 1H), 3.22 (dd, 1H), 3.20-3.10 (m, 1H), 2.96 (dd, 1H), 2.04-1.77 (m, 2H), -0.06 (s, 9H); LCMS (M+H)^+: 599.0, 601.0.

Step 2. 3-\[1-(4-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl\]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

3-\[1-(4-Bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl\]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate (10.0 mg, 0.0167 mmol) was dissolved in 20% TFA/DCM and stirred for 2 h. The solvents were evaporated. The residue was re-dissolved in 1 mL MeOH, and 0.2 mL of EDA was added. After the reaction was determined complete, preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H\(_2\)O containing 0.1% TFA) was used to purify the product, which was obtained as the trifluoroacetate salt (6 mg). \(^1H \) NMR (400 MHz, d\(_6\)-DMSO): \(\delta \) 12.63 (br s, 1H), 9.00 (br s, 1H), 8.84 (br s, 1H), 8.55 (br s, 1H), 7.91 (br s, 1H), 7.79 (br s, 1H), 7.15 (br s, 1H), 4.96-4.79 (m, 1H), 4.01-3.94 (m, 1H), 3.70-3.64 (m, 1H), 3.54-3.19 (m, 4H), 3.09-2.90 (m, 2H), 1.82-1.61 (m, 2H); LCMS (M+H)^+: 469.0, 470.9.

Example 6. 3-\[1-(4-(dimethylamino)pyrimidin-2-yl)pyrrolidin-3-yl\]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-\[1-(4-(Chloropyrimidin-2-yl)pyrrolidin-3-yl\]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (11 mg, 0.020 mmol, racemic, from Example 3, Step 1) was mixed with 2.0 M of dimethylamine
in THF (0.10 mL). The mixture was heated to 70°C for 1.5 h and then concentrated. The crude product was deprotected by stirring in a solution of 1:1 TFA/DCM for 1.5 h. After removal of the solvent in vacuo, the residue was dissolved in methanol, and 0.2 mL of EDA was added. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). ¹H NMR (400 MHz, CDCl₃): δ 9.72 (br s, 1H), 8.85 (s, 1H), 8.38 (s, 1H), 8.37 (s, 1H), 7.91 (d, 1H), 7.39 (dd, 1H), 6.80 (dd, 1H), 5.82 (d, 1H), 4.44 (dt, 1H), 3.96 (dd, 1H), 3.74 (ddd, 1H), 3.45 (dddd, 1H), 3.39 (dd, 1H), 3.25 (dd, 1H), 3.05 (s, 6H), 2.98 (dd, 1H), 1.91-1.82 (m, 1H), 1.74-1.63 (m, 1H); LCMS (M+H)+: 429.1.

Example 7. 3-[[1-[4-(isopropylamino)pyrimidin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

Example 9. 3-[[1-(1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (two different enantiomers isolated)
Step 1. Separation of enantiomers of diastereomer 1 of benzyl 3-\{2-cyano-1-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}ethyl\}pyrrolidine-l-carboxylate

Benzyl 3\{-2-cyano-1-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}ethyl\}pyrrolidine-l-carboxylate (4.2 g, 7.3 mmol, from Example 1, Step 1, diastereomer 1) was separated into its enantiomers via chiral HPLC (Chiral Technologies Chiralcel OJ-H, 5 µ, 30 x 250mm, 45% EtOH/Hexanes, 20 mL/min) to afford 1.6 g of enantiomer 1 (first to elute, retention time 46.1 min) and 1.6 g of enantiomer 2 (second to elute, retention time 57.5 min). Each was deprotected separately according to the following procedure in Step 2.

Step 2a. 3-pyrrolidin-3-yl-3-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}propenenitrile (enantiomer 1)

Benzyl 3\{-2-cyano-1-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}ethyl\}pyrrolidine-l-carboxylate (1.6 g, 2.8 mmol, enantiomer 1, from Step 1) was dissolved in methanol (60 mL), and a catalytic amount of 10% Pd-C was added. The mixture was shaken under hydrogen (50 psi) for 3.5 h. The mixture was filtered and the solvent removed by rotary evaporation to afford product (1 g, 80%). LCMS (M+H)^+: 438.2.

Step 2b. 3-pyrrolidin-3-yl-3-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}propenenitrile (enantiomer 2)

Deprotection of enantiomer 2 (from Step 1) of benzyl 3\{-2-cyano-1-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}ethyl\}pyrrolidine-l-carboxylate (1.6 g, 2.8 mmol) was performed as described in step 2a, except the hydrogenation proceeded for 4 h. LCMS (M+H)^+: 438.1.

Step 3a. 3-[l-l, 3-benzoazol-2-yl]pyrrolidin-3-yl\}3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl\}propenenitrile (enantiomer 1)
3-Pyrrolidin-3-yl-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (10.0 mg, 0.0228 mmol, enantiomer 1, from Step 2a) and 2-chlorobenzoxazole (4.2 mg, 0.027 mmol) were dissolved in 1,4-dioxane (0.20 mL), and N,N-Diisopropylethylamine (8.0 microL, 0.046 mmol) was added. The mixture was heated to 70 °C for 1.5 h. The solvent was removed in vacuo and the residue was sequentially stirred with 50% TFA/DCM for 1.5 h, concentrated, and stirred with 0.3 mL EDA in methanol for 30 min. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product. ³H NMR (400 MHz, d₆-DMSO): δ 12.13 (br s, IH), 8.89 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 7.61 (d, IH), 7.39 (d, IH), 7.26 (d, IH), 7.13 (t, IH), 7.02-6.95 (m, 2H), 4.86 (dt, IH), 3.87 (dd, IH), 3.68-3.61 (m, IH), 3.53-3.29 (m, 4H), 3.03-2.91 (m, IH), 1.78-1.64 (m, 2H); LCMS (M+H)⁺: 425.1.

Step 3b. 3-fl-(l,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (enantiomer 2)

3-Pyrrolidin-3-yl-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (10.0 mg, 0.0228 mmol; enantiomer 2, from step 2b) and 2-chlorobenzoxazole (4.2 mg, 0.027 mmol) were dissolved in 1,4-dioxane (0.20 mL) and N,N-diisopropylethylamine (8.0 microL, 0.046 mmol) was added. The mixture was heated to 70 °C for 1.5 h. The solvent was removed in vacuo and the residue was sequentially stirred with 50% TFA/DCM for 1.5 h, concentrated, and stirred with 0.3 mL EDA in methanol for 30 min. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product. ³H NMR (400 MHz, d₆-DMSO): δ 12.13 (br s, IH), 8.89 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 7.61 (d, IH), 7.39 (d, IH), 7.26 (d, IH), 7.13 (t, IH), 7.01-6.96 (m, 2H), 4.86 (dt, IH), 3.87 (dd, IH), 3.68-3.61 (m, IH), 3.53-3.28 (m, 4H), 3.03-2.91 (m, IH), 1.79-1.64 (m, 2H); LCMS (M+H)⁺: 425.0.

Example 10. 3-[l-(5-chloro-l,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)
To a solution of 5-chloro-1,3-benzoxazole-2-thiol (0.50 g, 2.7 mmol, Aldrich) in toluene (10 mL) was added thionyl chloride (0.59 mL, 8.1 mmol) followed by a drop of DMF. The reaction was heated to reflux for 30 min and the solvent removed in vacuo. A portion of this crude product (17 mg) and 3-pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (20.0 mg, 0.0457 mmol; enantiomer 2 from Example 9, Step 2b) were dissolved in 1,4-dioxane (0.40 mL) and N,N-diisopropylethylamine (16 microL, 0.091 mmol) was added. The mixture was heated to 70 °C for 1.5 h. The solvent was removed in vacuo and the residue was sequentially stirred with 50% TFA/DCM for 1.5 h, concentrated, then stirred with 0.3 mL EDA in methanol for 30 min. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH) afforded product. 1H NMR (400 MHz, d6-DMSO): δ 12.13 (br s, 1H), 8.88 (s, 1H), 8.68 (s, 1H), 8.43 (s, 1H), 7.60 (d, 1H), 7.41 (d, 1H), 7.31 (d, 1H), 7.02-6.97 (m, 2H), 4.86 (dt, 1H), 3.86 (dd, 1H), 3.68-3.59 (m, 1H), 3.54-3.28 (m, 4H), 3.03-2.90 (m, 1H), 1.77-1.67 (m, 2H); LCMS (M+H)+: 459.0, 461.0.

Example 11. 3-(l-[1,3]oxazolo[4,5-c]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

A solution of 3-aminopyridin-4-ol (0.250 g, 2.27 mmol, Bosch Scientific) and potassium O-ethyl dithiocarbonate (0.400 g, 2.50 mmol) in ethanol (1 mL) was heated to reflux. When the reaction was determined complete, it was cooled to ambient temperature and partitioned between IN HCl and ethyl acetate. The organic layer was washed with water, dried over sodium sulfate,
decanted and concentrated. This crude product was dissolved in toluene (6 mL) and thionyl chloride (0.365 mL, 5.01 mmol) followed by DMF (3 microL) was added. The mixture was heated to reflux for 1 h, cooled and the solvent removed in vacuo. A portion of this crude product (14 mg) was dissolved in 1,4-dioxane (0.40 mL), along with 3-pyrrolidin-3-yl-3-[4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (20.0 mg, 0.0457 mmol, enantiomer 2 from Example 9, Step 2b), and N,N-diisopropylethylamine (16 microL, 0.091 mmol) was added. The mixture was heated to 70 °C for 1.5 h. The solvent was removed in vacuo and the residue was sequentially stirred with 50% TFA/DCM for 1.5 h, concentrated, and stirred with 0.3 mL EDA in methanol for 30 min. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product. ¹H NMR (400 MHz, d₆-DMSO): δ 8.89 (s, 1H), 8.68 (s, 1H), 8.44 (s, 1H), 8.11 (dd, 1H), 7.72 (dd, 1H), 7.60 (d, 1H), 6.99 (d, 1H), 6.96 (dd, 1H), 4.88 (dt, 1H), 3.90 (dd, 1H), 3.71-3.63 (m, 1H), 3.58-3.30 (m, 4H), 3.04-2.93 (m, 1H), 1.80-1.66 (m, 2H); LCMS (M+H)+: 426.1.

Example 12. 3-(1-[1,3]oxazolo[4,5-b]pyridin-2-yl)pyprolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

A solution of 2-aminopyridin-3-ol (0.250 g, 2.27 mmol, Aldrich) and potassium O-ethyl dithiocarbonate (0.400 g, 2.50 mmol) in ethanol (1 mL) was heated to 120 °C in the microwave for 10 min. The reaction mixture was partitioned between IN HCl and ethyl acetate. The organic layer was washed with water, dried over sodium sulfate, decanted and concentrated. This crude product was dissolved in toluene (6 mL) and thionyl chloride (0.365 mL, 5.01 mmol) followed by DMF (3 microL) was added. The mixture was heated to reflux for 1 h, cooled and the solvent removed in vacuo. A portion of this crude product (14 mg) and 3-pyrrolidin-3-yl-3-[4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (20.0 mg, 0.0457 mmol; enantiomer 2, from Example 9, Step 2b) were dissolved in 1,4-dioxane (0.40 mL), and N,N-diisopropylethylamine (16 microL, 0.091 mmol) was added. The mixture was heated to 70 °C for 1.5 h. The solvent was removed in vacuo and the residue was sequentially
stirred with 50% TFA/DCM for 1.5 h, concentrated, and stirred with 0.3 mL EDA in methanol for 30 min. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H$_2$O containing 0.15% NH$_4$OH) afforded product (5 mg, 25%). 1H NMR (400 MHz, d$_6$-DMSO): δ 12.08 (br s, IH), 8.89 (s, IH), 8.68 (s, IH), 8.44 (s, IH), 7.72 (dd, IH), 7.60 (d, IH), 6.99 (d, IH), 6.96 (dd, IH), 4.88 (dt, IH), 3.90 (dd, IH), 3.72-3.63 (m, IH), 3.58-3.31 (m, 4H), 3.04-2.92 (m, IH), 1.80-1.66 (m, 2H); LCMS (M+H)$^+$: 426.1.

Example 13a. 3-(l-[l,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-I-I-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

To a solution of 3-aminopyridin-2-ol (0.500 g, 4.54 mmol, 3B Scientific) in THF (4 mL) was added thiocarbonyldiimidazole (1.21 g, 6.81 mmol). After the reaction was determined complete, the THF was removed in vacuo. The product was partitioned between ethyl acetate and IN HCl sufficient to adjust the pH to 4-5. The aqueous portion was extracted two further times with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. A suspension of oxazolo[5,4-b]pyridine-2(IH)-thione (0.65 g, 4.3 mmol) prepared in this manner in toluene (13 mL) was treated with thionyl chloride (0.94 mL, 12.9 mmol) and a drop of DMF. The reaction was heated to reflux for 1 h, and the solvent was then removed by rotary evaporation. This crude product (0.018 g) and 3-pyrrolidin-3-yl-3-[4-(7-([2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-I-I-pyrazol-1-yl]propanenitrile (0.020 g, 0.046 mmol, enantiomer 2 from Example 9, Step 2b) in 1,4-dioxane (0.2 mL) containing N,N-diisopropylethylamine (32 microL, 0.183 mmol) was heated to 70 °C for 1.5 h. Upon cooling, the product was purified by applying to a plug of silica, first eluting with ethyl acetate, then with methanol. The methanol eluent was concentrated to afford about 30 mg of crude material with desired as the major component. The product was deprotected by sequentially stirring with 20% TFA in DCM for 2 h, evaporation of solvent, then stirring with EDA in methanol. Purification via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H$_2$O containing 0.15% NH$_4$OH) afforded product (5 mg, 25%). 1H NMR (400 MHz, d$_6$-
Example 13b. 3-(l-[1,3]oxazolo [5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3- [4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

To a solution of 3-aminopyridin-2-ol (0.500 g, 4.54 mmol, 3B Scientific) in THF (4 mL) was added thiocarbonyldiimidazole (1.21 g, 6.81 mmol). After the reaction was determined complete, the THF was removed in vacuo. The product was partitioned between ethyl acetate and IN HCl sufficient to adjust the pH to 4-5. The aqueous portion was extracted two further times with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. A suspension of oxazolo[5,4-b]pyridine-2(lH)-thione (0.65 g, 4.3 mmol) prepared in this manner in toluene (13 mL) was treated with thionyl chloride (0.94 mL, 12.9 mmol) and a drop of DMF. The reaction was heated to reflux for 1 h, and the solvent was then removed by rotary evaporation. This crude product (0.018 g) and 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile (0.020 g, 0.046 mmol, enantiomer 1 from Example 9, step 2a) in 1,4-dioxane (0.2 mL) containing N,N-diisopropylethylamine (32 microL, 0.183 mmol) was heated to 70 °C for 1.5 h and then solvent evaporated. Deprotected by stirring with 20% TFA/DCM for 2 h, followed by evaporation and stirring with EDA (0.3 mL) in methanol for 1 h. Purified by preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH) to afford product (5 mg, 25%). 1H NMR (400 MHz, d6-DMSO): δ 12.10 (br s, IH), 8.89 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 7.85 (dd, IH), 7.62-7.59 (m, 2H), 7.19 (dd, IH), 6.99 (dd, IH), 4.87 (dt, IH), 3.89 (dd, IH), 3.69-3.61 (m, IH), 3.57-3.30 (m, 4H), 3.03-2.91 (m, IH), 1.78-1.68 (m, 2H); LCMS (M+H)+: 426.1.

Example 13c. 3-(l-[l,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile
Step 1. S-(1-[1,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

Oxazolo[5,4-b]pyridine-2(1H)-thione (1.17 g, 7.68 mmol, prepared as in Example 33, Step 4) and 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (2.80 g, 6.40 mmol from Example 15, Step 3) in 1,4-dioxane (30 mL) was heated to 70 °C for 2 h. The solvent was removed in vacuo. The crude product was reconstituted in ethanol (40 mL) and treated with silver nitrate (3 g, 15 mmol) and aqueous ammonium hydroxide (6 mL) portionwise over the course of 20 h. Into the reaction was added water, IN NaOH and brine. Insoluble material was removed by filtration. The layers of the filtrate were separated. The aqueous portion was extracted with three portions of ethyl acetate. The extracts were dried over sodium sulfate, decanted and concentrated. The crude product was purified by flash column chromatography on silica gel, eluting with 10% MeOH/DCM to afford the product as an off-white foam (2.84 g, 80%). 1H NMR (300 MHz, CDCl3): δ 8.83 (s, IH), 8.37 (s, IH), 8.36 (s, IH), 7.92 (dd, IH), 7.57 (dd, IH), 7.40 (d, IH), 7.13 (dd, IH), 6.78 (d, IH), 5.67 (s, 2H), 4.52 (dt, IH), 4.05 (dd, IH), 3.82 (ddd, IH), 3.67-3.44 (m, 4H), 3.25 (dd, IH), 3.24-3.09 (m, IH), 2.98 (dd, IH), 2.06-1.74 (m, 2H), 0.97-0.88 (m, 2H), -0.06 (s, 9H); LCMS (M+H)+: 556.1.

Step 2. S-(1-[1,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

3-(l-[1,3]Oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (5.35 g, 9.63 mmol, prepared by the method of Step 1) was stirred in a 2:1 mixture of DCM and TFA (60 mL) for 6 h. The solvents were removed by rotary evaporation. The crude residue was dissolved in methanol (50 mL) containing EDA (5.15 mL, 77.0 mmol) and was stirred overnight. After removal of solvent, the product was purified by flash column chromatography on silica gel,
eluting with a gradient from 0-15% MeOH/DCM (3.59 g, 88%).

\[1\text{H NMR (300 MHz, CDCl}_3\]: \(\delta\) 8.72 (s, 1H), 8.40 (s, 1H), 8.34 (s, 1H), 7.89 (dd, 1H), 7.54 (dd, 1H), 7.36 (d, 1H), 7.12 (dd, 1H), 6.75 (d, 1H), 4.56 (dt, 1H), 4.01 (dd, 1H), 3.80 (ddd, 1H), 3.60 (ddd, 1H), 3.48 (dd, 1H), 3.26 (dd, 1H), 3.21-3.06 (m, 1H), 3.02 (dd, 1H), 2.03-1.76 (m, 2H); LCMS (M+H): 426.1.

Example 14. 3-[(l-(6-methyl[1,3]oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

Step 1. 6-methyl[1,3]oxazolo[5,4-b]pyridine-2(IH)-thione

3-Amino-5-methylpyridin-2-ol (0.21 g, 1.7 mmol) was dissolved in THF (5 mL), and 1,1'-thiocarbonyldiimidazole (0.48 g, 2.7 mmol) was added. The mixture was stirred at RT for 20 min. The reaction was diluted with water, treated with IN HCl to adjust the pH to the range of 4-5. The product was then extracted with ethyl acetate, the extracts were washed with brine, and dried over sodium sulfate, filtered and concentrated to afford the product, used without further purification in the following step. LCMS (M+H)^+: m/z = 167.0.

Step 2. 2-chloro-6-methyl[1,3]oxazolo[5,4-b]pyridine

To a solution of 6-methyl[1,3]oxazolo[5,4-b]pyridine-2(IH)-thione (0.23 g, 1.4 mmol) in toluene (6.0 mL) was added thionyl chloride (0.36 mL, 5.0 mmol), followed by a catalytic drop of DMF. The mixture was then heated to reflux for 1 h. The reaction mixture was cooled and the solvent removed in vacuo. LCMS (M+H)^+: 168.9, 170.9.

Step 3. 3-[(l-(6-methyl[1,3]oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (20.0 mg, 0.0457 mmol, enantiomer 2, from Example 9, step 2b) and 2-chloro-6-methyl[1,3]oxazolo[5,4-b]pyridine (15.4 mg, 0.0914 mmol) were dissolved in 1,4-dioxane (0.40 mL), and N,N-diisopropylethylamine (16 microL, 0.091
mmol) was added. The mixture was heated to 70 °C for 1.5 h. The mixture was concentrated, then sequentially stirred with 50% TFA/DCM for 1.5 h, concentrated, and stirred with 0.3 mL EDA in methanol for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). ¹H NMR (400 MHz, d₆-DMSO):

δ 12.11 (br s, IH), 8.88 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 7.66 (dd, IH), 7.60 (d, IH), 7.42 (dd, IH), 6.98 (d, IH), 4.86 (dt, IH), 3.87 (dd, IH), 3.67-3.60 (m, IH), 3.55-3.30 (m, 4H), 3.02-2.90 (m, IH), 2.30 (s, 3H), 1.77-1.67 (m, 2H); LCMS (M+H)⁺: 440.1.

Example 15. 3-[l-(6-fluoro [1,3]oxazolo [5,4-b]pyridin-2-yl]pyrrolidin-3-yl] -3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\text{F} & \quad \text{N} \\
\end{align*}
\]

Step 1. tert-butyl 3-[2-cyanovinyl]pyrrolidine-l-carboxylate

To a solution of 1.00 M of potassium tert-butoxide in THF (190 mL, 0.19 mol) at 0 °C was added a solution of diethylcyanomethylphosphonate (30.0 mL, 0.185 mol) in THF (400 mL) drop-wise. The bath was removed and the reaction was warmed to RT over the course of approximately two h. The mixture was re-cooled to 0 °C and a solution of tert-butyl 3-formylpyrrolidine-1-carboxylate (35.00 g, 0.1757 mol, Adesis) in THF (300 mL) was added drop-wise. The bath was removed and the reaction was allowed to warm to ambient temperature and stir for 16 h. The mixture was then diluted with ethyl acetate and water, the aqueous solution was extracted with two further portions of ethyl acetate, the combined extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. The product was used without further purification in the following step (39 g, 100%). ¹H NMR (300 MHz, CDCl₃): δ 6.65 (dd, IH, trans), 6.38 (t, IH, cis), 5.41 (dd, IH, trans), 5.37 (dd, IH, cis), 4.30-2.68 (m, 10H), 2.21-2.00 (m, 2H), 1.84-1.65 (m, 2H), 1.45 (s, 9H), 1.45 (s, 9H).

Step 2. tert-butyl 3-[2-cyanovinyl]pyrrolidine-l-carboxylate

To a solution of tert-butyl 3-[2-cyanovinyl]pyrrolidine-l-carboxylate (39 g, 180 mmol) and 4-(lH-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (55
g, 180 mmol, prepared as described in WO 2007/070514, Ex.65) in acetonitrile (500 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (26 mL) and the reaction was stirred for three days. The majority of the solvent was removed by rotary evaporation prior to partition of the reaction mixture between saturated sodium bicarbonate solution and ethyl acetate. The product was extracted with a further two portions of ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography (on 2.5 Kg silica gel) using 7.5% isopropanol/25% ethyl acetate/67.5% hexanes as eluent afforded 27.73 g of pure diastereomer 1 (first to elute). Recolumn of mixed fractions, eluting with a gradient from 5% isopropanol/5% ethyl acetate/90% hexanes to 10% isopropanol/50% ethyl acetate/40% hexanes afforded 9.84 g additional product (diastereomer 1). The enantiomers were separated by chiral HPLC (Chiral Technologies Chiralcel OD-H, 5μ, 30x 250mm, 20% EtOH/Hexanes, 22 mL/min). Desired enantiomer 2 (second to elute, retention time 22.9 min) was collected (17.3 g, 18%). 1H NMR (300 MHz, CDCl₃): δ 8.84 (s, IH), 8.34 (s, IH), 8.33 (s, IH), 7.40 (d, IH), 6.78 (d, IH), 5.67 (s, 2H), 4.37 (dt, IH), 3.76-2.80 (m, 9H), 1.85-1.52 (m, 2H), 1.45 (s, 9H), 0.95-0.87 (m, 2H), -0.07 (s, 9H); LCMS (M+H)+: 538.1.

Step 3. 3-pyrrolidin-3-yl-3-[4-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1 H-pyrazol-1-yl|propanenitrile

To a solution of tert-butyl 3-[2-cyano-1-[4-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl|ethyl|pyrrolidine-1-carboxylate (8.9 g, 16 mmol) (from Step 2, diastereomer 1, enantiomer 2) in 1,4-dioxane (200 mL) was added 4 M of hydrogen chloride in 1,4-dioxane (32 mL, 130 mmol) and the reaction was stirred for 16 h. The solvent was removed in vacuo. The residue was partitioned between 500 mL IN NaOH and ethyl acetate. The layers were separated, and the aqueous layer was extracted with ethyl acetate four times. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated to afford product as a yellow solid (7.12 g, 98%). 1H NMR (300 MHz, CDCl₃): δ 8.84 (s, IH), 8.34 (s, IH), 8.33 (s, IH), 7.39 (d, IH), 6.79 (d, IH), 5.67 (s, 2H), 4.38 (dt, IH), 3.57-3.49 (m, 2H), 3.26 (dd, IH), 3.13 (dd, IH), 2.98-2.77 (m, 4H), 2.73 (dd, IH), 1.83-1.70 (m, 1H), 1.55-1.38 (m, IH), 0.95-0.87 (m, 2H), -0.07 (s, 9H); LCMS (M+H)+: 438.1.

Step 4. 3-amino-5-fluoropyridin-2-ol

A mixture of 5-fluoro-3-nitropyridin-2-ol (73 mg, 0.46 mmol; prepared according to procedure reported in WO 2006/114706) and iron (130 mg, 2.3 mmol), in ethanol (1.0 mL), acetic acid (0.76 mL), water (0.38 mL) and c. HCl (1 drop) was heated to 100 °C for 20 min. After
cooling to RT, the solution was diluted with water (10 mL), filtered, and the filtrate was concentrated. The residue was then treated with saturated sodium bicarbonate solution to near pH 7, and the product was extracted with 6 x 40 mL of 20% isopropanol/DCM. The extracts were dried over sodium sulfate, filtered and concentrated and the product was used without further purification in the following step. LCMS (M+H)+: 129.0.

Step 5. 3-[1-(6-fluoro[1, 3]oxazolo[5, 4-b]pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-Amino-5-fluoropyridin-2-ol (24 mg, 0.19 mmol) was dissolved in THF (0.66 mL), and carbonothioic dichloride (21 microL, 0.28 mmol) was added drop-wise. The mixture was stirred at RT for two h, then solvent was removed in vacuo to give a dark brown oil. 1,4-dioxane (0.50 mL) and N,N-diisopropylethylamine (98 microL, 0.56 mmol) was added, followed by 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (41 mg, 0.094 mmol, single enantiomer, from step 3). The mixture was stirred at 60 °C for 16 h to produce the desired pyridyl oxazole as well as thiourea. Solvent was removed in vacuo and the mixture was deprotected by stirring sequentially in a solution of 1:1 TFA/DCM for 1.5 h, evaporation of solvent, and stirring in a solution of 0.4 mL of EDA in 1.5 mL of methanol for 30 min. The product was purified by preparative-HPLC/MS (Cl 8 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). 1H NMR (400 MHz, d₆-DMSO): δ 12.11 (br s, IH), 8.88 (s, IH), 8.67 (s, IH), 8.43 (s, IH), 7.81 (dd, IH), 7.61-7.57 (m, 2H), 6.98 (d, IH), 4.87 (dt, IH), 3.88 (dd, IH), 3.67-3.29 (m, 5H), 3.03-2.91 (m, IH), 1.81-1.69 (m, 2H); LCMS (M+H)+: 444.0.

Example 16. 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-[1-(7H-pyrrolo[2,3-d]pyrimidin-2-yl]pyrrolidin-3-yl]propanenitrile (one enantiomer isolated)

3-Pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (21 mg, 0.048 mmol from Example 15, Step 3)
and 2-chloro-7H-pyrrolo[2,3-d]pyrimidine (16 mg, 0.058 mmol, prepared as reported in Bioorganic and Medicinal Chemistry Letters, 16(22), 5778-5783; 2006) were dissolved in NMP (0.1 mL), and N,N-diisopropylethylamine (41 microL, 0.23 mmol) was added. The mixture was heated to 135 °C for 40 min in the microwave. The mixture was concentrated, treated with 1:1 TFA/DCM for 2 h, concentrated again, and stirred in a solution of methanol (1 mL) containing 0.2 mL EDA for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH). 1H NMR (400 MHz, d6-DMSO): δ 12.12 (br s, 1H), 11.32 (s, 1H), 8.88 (s, 1H), 8.69 (s, 1H), 8.57 (s, 1H), 8.43 (s, 1H). LCMS (M+H)+: 425.1.

Example 17. 3-[1-(7-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

Step 1. 2-chloro-7-methyl-7H-pyrrolo[2,3-d]pyrimidine

To a solution of 2-chloro-7H-pyrrolo[2,3-d]pyrimidine (27 mg, 0.16 mmol, prepared as reported in Bioorganic and Medicinal Chemistry Letters, 16(22), 5778-5783 (2006)) in DMF (0.15 mL) was added potassium carbonate (67 mg, 0.48 mmol), followed by methyl iodide (10 microL, 0.16 mmol). The mixture was stirred in a sealed vial at RT for 3 h. The reaction was diluted with DCM and acetonitrile, filtered and concentrated. The product was purified by flash column chromatography on silica gel, eluting with 0-50% ethyl acetate in hexanes to afford product as a white solid (13 mg, 47%). LCMS (M+H)+: 167.9, 169.9.

Step 2. 3-[1-(7-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-[[2-trimethylsilyl]ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (26 mg, 0.060 mmol; from Example 15, Step 3) and 2-chloro-7-methyl-7H-pyrrolo[2,3-d]pyrimidine (12.0 mg, 0.0716 mmol) were dissolved in NMP (0.050 mL) and N,N-diisopropylethylamine (42 microL, 0.24 mmol) was added. The
mixture was heated to 135 °C for 60 min in the microwave. After removal of solvent, the residue was stirred sequentially in 1:1 TFA/DCM for 1.5 h, concentrated, then in a solution in 1.0 mL methanol containing 0.2 mL EDA for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH). H NMR (400 MHz, d6-DMSO): δ 12.13 (br s, 1H), 8.89 (s, 1H), 8.69 (s, 1H), 8.55 (s, 1H), 8.43 (s, 1H), 7.61 (d, 1H), 7.08 (d, 1H), 7.00 (d, 1H), 6.33 (d, 1H), 4.84 (dt, 1H), 3.91 (dd, 1H), 3.67 (dd, 1H), 3.62 (s, 3H), 3.46-3.27 (m, 4H), 2.96-2.84 (m, 1H), 1.77-1.59 (m, 2H); LCMS (M+H)+: 439.1.

Example 18. 3-(l-[l,3]oxazolo[5,4-d]pyrimidin-2-ylpyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (one enantiomer isolated)

Step 1. 5-aminopyrimidin-4-ol
To a degassed mixture of 5-amino-6-chloropyrimidin-4-ol (227 mg, 1.56 mmol, Matrix) and triethylamine (1.09 mL, 7.80 mmol) in ethanol (15.0 mL) was added 10% palladium on carbon (51 mg) and the mixture was shaken under 50 psi hydrogen for two h. The mixture was filtered and concentrated to give product. LCMS (M+H)+: 112.1.

Step 2. 3-(2-cyano-l-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl]ethyl)-N-(4-hydroxypyrimidin-5-yl)pyrrolidine-1-carbothioamide
5-Aminopyrimidin-4-ol (52.4 mg, 0.203 mmol) was dissolved in pyridine (0.55 mL) and phenyl chlorothionocarbonate (33 microL, 0.24 mmol) was added. The mixture was stirred at RT for one h. The reaction was diluted with DCM and washed with water and brine, the organic phase was dried over sodium sulfate and concentrated. The residue was dissolved in chloroform (1.7 mL), and triethylamine (141 microL, 1.01 mmol) and 3-pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl]propanenitrile (75 mg, 0.17 mmol; from Example 15, Step 3) were added. The mixture was stirred for 30 min at
70 °C. The solvents were removed in vacuo and the product was purified by preparative-
HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) (15 mg, 15%). LCMS (M+H)⁺: 591.1.

Step 3. 3-{1-[[1,3]oxazolo[5,4-d]pyrimidin-2-yl]pyrrolidin-3-yl}-3-{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}propanenitrile

A solution of 3- {2-cyano-1-{4-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl] -N-(4-hydroxypyrimidin-5-yl)pyrrolidine-1-carbothioamide (15 mg, 0.025 mmol) in ethanol (0.50 mL), was treated with silver nitrate (17.2 mg, 0.10 mmol) and ammonium hydroxide solution (24 microL). The mixture was then heated to 60 °C for one h. Following complete reaction, the mixture was diluted with acetonitrile, filtered and concentrated. The residue was stirred sequentially with 1:1 TFA/DCM for 1.5 h, concentrated, then with 1.0 mL MeOH containing 0.2 mL EDA for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). LCMS (M+H)⁺: 427.0.

Example 19. 3-[[5-fluoro-1,3-benzoxazol-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

2-Amino-4-fluorophenol (24 mg, 0.19 mmol, Matrix) was dissolved in THF (0.67 mL), and carbonothioic dichloride (21 microL, 0.28 mmol) was added. The mixture was stirred at RT for two h, then concentrated to give a dark brown oil. The residue was redissolved in 1,4-dioxane (0.50 mL) and N,N-diisopropylethylamine (98 microL, 0.56 mmol) was added, followed by 3-pyrrolidin-3-yl-3-[4-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (41.0 mg, 0.0937 mmol, from Example 15, Step 3). The mixture was stirred at 70 °C for 1.5 h, then at 80 °C for 2.5 h. The mixture was concentrated. The crude product was deprotected by stirring sequentially in a mixture of 1:1 TFA/DCM for 1.5 h, then concentrated and stirred with 0.3 mL EDA in 1.5 mL methanol for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). LCMS (M+H)⁺: 427.0.
Example 20. 3-[1-(4-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

Step 1. 2-amino-3-fluorophenol

Stannous chloride, dihydrate (0.724 g, 3.18 mmol) was added to a solution of 3-fluoro-2-nitrophenol (0.100 g, 0.636 mmol, SynQuest) in THF (5.0 mL), and water (5.0 mL) and the mixture was heated to 80 °C for 40 min. Upon cooling to RT, the reaction was diluted with ethyl acetate and saturated sodium bicarbonate solution. The mixture was then filtered to remove the insoluble material and the layers were separated. The aqueous layer was extracted with ethyl acetate three times. The extracts were washed with brine, dried over sodium sulfate, decanted and concentrated to afford product which was used without further purification (65 mg, 80%). LCMS (M+H)^+: 128.0.

Step 2. 3-[1-(4-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

A solution of 2-amino-3-fluorophenol (24 mg, 0.19 mmol) in THF (0.67 mL) was treated with carbonothioic dichloride (21 microL, 0.28 mmol). The mixture was stirred at RT for two h and the solvent was removed in vacuo. The residue was dissolved in 1,4-dioxane (0.50 mL) and N,N-diisopropylethylamine (98 microL, 0.56 mmol) was added, followed by 3-pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (41.0 mg, 0.0937 mmol; from Example 15, Step 3). The mixture was stirred at 60 °C overnight and then concentrated. The crude product was stirred sequentially in a solution of 1:1 TFA/DCM for 1.5 h, concentrated, and in a solution of 0.3 mL EDA in 1.5 mL of methanol for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a
gradient of ACN/H₂O containing 0.15% NH₄OH. ¹H NMR (400 MHz, d₆-DMSO): δ 12.13 (br s, IH), 8.89 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 7.61 (d, IH), 7.28 (dd, IH), 7.06-6.95 (m, 3H), 4.86 (dt, IH), 3.88 (dd, IH), 3.69-3.61 (m, IH), 3.56-3.31 (m, 4H), 3.03-2.91 (m, IH), 1.79-1.66 (m, 2H); LCMS (M+H)⁺: 443.1.

Example 21. 3-[l-(7-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (one enantiomer isolated)

![Chemical structure](image)

Step 1. 2-amino-6-fluorophenol

To 2-fluoro-6-nitrophenol (SynQuest) (2.4 g, 15 mmol) in THF (70 mL), and water (70 mL) was added tin dichloride (14.6 g, 76.4 mmol). The mixture was then heated at 80°C for 2 h. The THF was removed in vacuo. A solution of sat'd NaHC₃O₃ was added, followed by EtOAc. Insoluble material was removed by filtration. The layers of the filtrate were separated and the aqueous portion was extracted with ethyl acetate three times. The combined extracts were washed with brine, dried over sodium sulfate, filtered through a plug of silica gel and concentrated. The product was purified by silica gel chromatography, eluting with 0-60% ethyl acetate in hexanes (230 mg, 12%).

¹H NMR (300 MHz, CD₃OD): δ 6.56 (ddd, IH), 6.51 (ddd, IH), 6.41 (ddd, IH); ¹⁹F NMR (300 MHz, CD₃OD): δ-141.27 (dd, IF); LCMS (M+H)⁺: 128.1.
Step 2. 7-fluorobenzofdJoxazole-2(3H)-thione

To a solution of 2-amino-6-fluorophenol (8.2 g, 64 mmol) in THF (100 mL) at 0 °C was added carbonothioic dichloride (6.15 mL, 80.6 mmol) drop-wise. The reaction was warmed to RT and stirred for 16 h. The THF was evaporated in vacuo and the residue was partitioned between water and ethyl acetate. The extract was washed with brine, dried over sodium sulfate, decanted and concentrated. The product was used without further purification.

1H NMR (500 MHz, d$_6$-DMSO): δ 14.1 (br s, 1H), 7.28 (ddd, 1H), 7.17 (ddd, 1H), 7.06 (dd, 1H); 13C NMR (500 MHz, d$_6$-DMSO): δ 180.12 (s), 144.43 (d), 134.88 (d), 134.17 (d), 126.15 (d), 110.80 (d), 106.85 (d); LCMS (M+H)$^+$: 169.9.

Step 3. 3-[(1-(7-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl)-3-[4-(7-[(2-trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-(7-[(2-trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile (1.0 g, 2.3 mmol, prepared as in Example 15, Step 3) was added to a mixture of 7-fluorobenzo[<i]>i</i>oxazole-2(3<i>H</i>)-thione (0.773 g, 4.57 mmol) and N,N-diisopropylethylamine (1.59 mL, 9.14 mmol) in 1,4-dioxane (12 mL). The mixture was heated to 60 °C for 16 h, then to 80 °C for 1.5 h. The dioxane was removed in vacuo and replaced with ethanol (12 mL). Silver Nitrate (0.776 g, 4.57 mmol) and ammonium hydroxide solution (29% in water, 1.35 mL) were added, and the mixture was stirred for 16 h. The reaction was
diluted with water and ethyl acetate and filtered to remove insoluble material. The layers were separated and the organic was washed with water and brine, dried over sodium sulfate, filtered and concentrated. The product was purified by flash column chromatography, eluting first with 0-100% ethyl acetate/hexanes followed by a gradient from 0-5% methanol in ethyl acetate (1.0 g, 76%).

1HNMR (300 MHz, CDCl$_3$): 58.85 (s, IH), 8.37 (s, 2H), 7.41 (d, IH), 7.16-7.05 (m, 2H), 6.84-6.76 (m, 2H), 5.68 (s, 2H), 4.51 (dt, IH), 4.10-4.01 (m, IH), 3.87-3.78 (m, IH), 3.68-3.45 (m, 4H), 3.32-3.10 (m, 2H), 2.99 (dd, IH), 2.07-1.80 (m, 2H), 0.97-0.88 (m, 2H), -0.06 (s, 9H); LCMS (M+H$^+$): 573.1.

Step 4. 3-fl-(7-fluoro-3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-[1-(7-Fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7-[(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (1.0 g, 1.7 mmol) was dissolved in DCM (33 mL) and TFA (8.3 mL) was added. The mixture was stirred at RT for 5 h and the solvents were removed in vacuo. The residue was dissolved in methanol (33 mL), and EDA (2.2 mL, 0.033 mol) was added. After stirring for 1 h, the mixture was concentrated in vacuo. The product was purified by flash column chromatography eluting with 0-5% methanol in ethyl acetate (500 mg, 65%).

1HNMR (400 MHz, d$_6$-DMSO): δ 12.13 (br s, IH), 8.89 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 7.60 (d, IH), 7.16-7.09 (m, 2H), 6.99 (d, IH), 6.91 (ddd, IH), 4.86 (dt, IH), 3.89 (dd, IH), 3.70-3.62 (m, IH), 3.57-3.30 (m, 4H), 3.03-2.91 (m, IH), 1.79-1.66 (m, 2H); LCMS (M+H$^+$): 443.1.

Where desired, the final product can be purified further by HPLC/MS (C18 eluting with a gradient of ACN/H$_2$O containing 0.15% NH$_4$OH), frozen and lyophilized to afford the parent compound. Further, the compound can be converted to the phosphoric acid salt by the following procedure: the free base was dissolved in refluxing 3:1 MeOH:CH$_2$Cl$_2$ at a concentration of approximately 27 mg/mL. One equivalent of H$_3$PO$_4$ dissolved in a small amount of IPA was added. The heating was discontinued and the mixture cooled to RT, then the solvent volume was reduced by rotary evaporation until the mixture became cloudy. The mixture was then stirred at RT over 3 days. The solid was isolated by filtration and then dried under vacuum at 50-60 $^\circ$C overnight.

Example 22. 3-[1-(5,7-difluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile *(one enantiomer isolated)*

Prepared according to the method of Example 20, Step 2, starting with 2-amino-4,6-difluorophenol (Apollo Scientific), with the exception that the substitution was carried out at 60 °C overnight, then at 80 °C for 3 h: 1H NMR (400 MHz, d_6-DMSO): δ 8.88 (s, 1H), 8.67 (s, 1H), 8.43 (s, 1H), 7.60 (d, 1H), 7.00 (dd, 1H), 6.98 (d, 1H), 6.93 (dt, 1H), 4.86 (dt, 1H), 3.88 (dd, 1H), 3.68-3.60 (m, 1H), 3.58-3.30 (m, 4H), 3.03-2.90 (m, 1H), 1.80-1.67 (m, 2H); LCMS (M+H)^+: 461.0.

Example 23. 3-{l-[2-(methylthio)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile *(one enantiomer isolated)*

A solution of 3-pyrrolidin-3-yl-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (51 mg, 0.12 mmol; from Example 15, Step 3) and 4-chloro-2-(methylthio)pyrimidine (22.5 mg, 0.140 mmol, Aldrich) in 1,4-dioxane (0.20 mL), and containing N,N-diisopropylethylamine (40 microL, 0.233 mmol) was heated to 70 °C for one h. The mixture was concentrated and deprotected by stirring sequentially in 1:1 TFA/DCM for 1.5 h, concentrated, then with 0.3 mL EDA in 1.5 mL methanol for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of...
ACN/H₂O containing 0.15% NH₄OH. ¹H NMR (400 MHz, d₆-DMSO): δ 12.12 (br s, IH), 8.87 (s, IH), 8.69 (s, IH), 8.43 (s, IH), 8.00 (br s, IH), 7.61 (d, IH), 6.99 (d, IH), 6.19 (br s, IH), 4.81 (dt, IH), 3.94-2.32 (10H), 1.74-1.57 (m, 2H); LCMS (M+H)+: 432.0.

Example 24. 3-{l-[2-(methylsulfinyl)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

3- {l-[2-(Methylthio)pyrimidin-4-yl]pyrrolidin-3-yl} -3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (6.1 mg, 0.014 mmol, from Example 23) was dissolved in DCM (1.0 mL) and cooled to -10 °C. m-Chloroperbenzoic acid (3.2 mg, 0.014 mmol) in DCM was added drop-wise. The mixture was slowly warmed to RT over 3 h. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). ¹H NMR (400 MHz, d₆-DMSO): δ 12.13 (br s, IH), 8.87 (s, IH), 8.68 (s, IH), 8.43 (s, IH), 8.30 (d, 0.5H), 8.24 (dd, 0.5H), 7.61 (d, IH), 6.98 (d, IH), 6.54 (br t, IH), 4.88-4.80 (m, IH), 3.96-2.82 (m, 7H), 2.80 (s, 1.5H), 2.73 (d, 1.5H), 1.81-1.58 (m, 2H); LCMS (M+H)+: 448.0.

Example 25. 3-{l-[2-(methylsulfonyl)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

To a solution of m-chloroperbenzoic acid (8.2 mg, 0.036 mmol) in DCM (1.2 mL) at -5 °C was added 3-{l-[2-(methylthio)pyrimidin-4-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
Example 26. 3-{1-[6-(methylsulfonyl)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

Step 1. 2-chloro-6-(methylsulfonyl)pyridine

m-Chloroperbenzoic acid (326 mg, 1.46 mmol) in DCM (35 mL) was cooled to -5 \(^\circ\)C. 2-chloro-6-(methylthio)pyridine (101 mg, 0.633 mmol, prepared according to the method reported in J. Org. Chem., 67(1), 234-237; 2002) in DCM (5.0 mL) was added drop-wise. The mixture was allowed to warm to 0 \(^\circ\)C slowly, then the bath was removed and the mixture reached RT and was stirred for a further 2 h. The reaction solution was then washed with saturated NaHCO\(_3\), brine, dried over sodium sulfate, filtered and concentrated to afford product (120 mg, 99%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.03 (dd, IH), 7.94 (t, IH), 7.59 (dd, IH), 3.26 (s, 3H); LCMS (M+H\(^+\)): 191.9, 194.0.

Step 2. 3-[1-[6-(methylsulfonyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

A solution of 3-pyrrolidin-3-yl-3-[4-[(2-[(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (21 mg, 0.048 mmol; from Example 15, Step 3) and 2-chloro-6-(methylsulfonyl)pyridine (10 mg, 0.053 mmol) in ethanol (0.050 mL) and N,N-diisopropylethylamine (17 microL, 0.096 mmol) was heated in a sealed vial...
by means of an oil bath held at 120 °C for 4 h. The mixture was cooled and concentrated. The crude product was deprotected by stirring sequentially in 1:1 TFA/DCM for 1.5 h, then concentrated and stirred with 0.2 mL EDA in 1.5 mL methanol for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). ¹H NMR (400 MHz, d₆-DMSO): δ 12.10 (br s, 1H), 8.88 (s, 1H), 8.69 (s, 1H), 8.44 (s, 1H), 7.76 (dd, 1H), 7.61 (d, 1H), 7.13 (d, 1H), 6.99 (d, 1H), 6.74 (d, 1H), 4.84 (dt, 1H), 3.83-3.71 (m, 1H), 3.60-3.48 (m, 1H), 3.42 (dd, 1H), 3.38-3.24 (m, 3H), 3.21 (s, 3H), 3.00-2.87 (m, 1H), 1.75-1.61 (m, 2H); LCMS (M+H)+: 463.0.

Example 27. 3-[(2-(methylsulfonyl)pyridin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

Prepared according to the method of Example 26, using 4-chloro-2-(methylthio)pyridine (prepared according to the procedure reported in *Tetrahedron*, 62(26), 6166-6171, 2006) as starting material in Step 1 and the modification to Step 2 that the substitution reaction was carried out at 120 °C for 1 h. ¹H NMR (400 MHz, d₆-DMSO): δ 12.11 (br s, 1H), 8.88 (s, 1H), 8.69 (s, 1H), 8.44 (s, 1H), 8.24 (d, 1H), 7.61 (d, 1H), 7.04 (br s, 1H), 6.98 (d, 1H), 6.70-6.65 (m, 1H), 4.87-4.77 (m, 1H), 3.70-3.61 (m, 1H), 3.50-3.22 (m, 5H), 3.19 (s, 3H), 3.06-2.89 (m, 1H), 1.77-1.64 (m, 2H); LCMS (M+H)+: 463.1.

Example 28. 3-[(1-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)
Step 1. 2,6-dichloro-3-[2-methoxyvinyl]pyridine

To a solution of (methoxymethyl)(triphenyl)phosphonium chloride (9.97 g, 29.1 mmol) in THF (80 mL) at 0 °C under an atmosphere of nitrogen was added 1.0 M of potassium tert-butoxide in THF (29.1 mL, 29.1 mmol). After stirring for 30 min, a solution of 2,6-dichloronicotinaldehyde (3.01 g, 17.1 mmol, Aldrich) in THF (22 mL) was added drop-wise. The resulting solution was stirred at 0 °C for 20 min, then at RT for 1 h.

The reaction was quenched by the addition of water and the product was extracted with three portions of ethyl acetate. The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel, eluting with a gradient from 0–10% ethyl acetate in hexanes to afford the product as a mixture of olefin isomers (3.1 g, 80%). ¹H NMR, a 1:1 mixture of olefin isomers (300 MHz, CDCl₃): δ 8.34 (d, IH), 7.60 (d, IH), 7.19 (d, IH), 7.17 (d, IH), 7.04 (d, IH), 6.36 (d, IH), 5.94 (d, IH), 5.53 (d, IH), 3.83 (s, 3H), 3.75 (s, 3H); LCMS (M+H)⁺: 204.0.

Step 2. 2-(2,6-dichloropyridin-3-yl)ethanol

2,6-dichloro-3-[2-methoxyvinyl]pyridine (3.1 g, 14 mmol) was dissolved in THF (41 mL), and 4.0 M of hydrogen chloride in water (12 mL) was added. The mixture was heated at reflux for 3 h. The reaction was cooled to RT and the solvents were removed in vacuo. The residue was dissolved in ethyl acetate, washed with saturated NaHCO₃, brine, dried over sodium sulfate and concentrated to afford a light yellow oil. The crude product was dissolved in methanol (51 mL) and was cooled to 0 °C. Sodium borohydride (0.517 g, 13.7 mmol) was added and the reaction stirred for 30 min at this temperature. The mixture was quenched by the addition of saturated ammonium chloride, the methanol was removed by rotary evaporation, then the remaining aqueous solution was extracted with ethyl acetate three times. The combined extracts were dried over sodium sulfate and concentrated. The product was purified by flash column chromatography on silica gel, eluting with a gradient from 0–50% ethyl acetate in hexanes to afford a colorless oil (1.47 g, 56%). ¹H NMR (300 MHz, CDCl₃): δ 7.62 (d, IH), 7.23 (d, IH),
3.92 (q, 2H), 2.97 (t, 2H), 1.55 (t, IH); LCMS (M+H)^+: 192.0.

Step 3. 2-(2,6-dichloropyridin-3-yl)ethanethiol

To a solution of 2-(2,6-dichloropyridin-3-yl)ethanol (0.500 g, 2.60 mmol) and triphenylphosphine (1.02 g, 3.90 mmol) in THF (20 mL) at 0 °C was added diethyl azodicarboxylate (615 microL, 3.90 mmol). After 10 min, thioacetic acid (279 microL, 3.90 mmol) was added. The mixture was stirred for two h at RT. The reaction was diluted with hexanes and the white precipitate was filtered off. The filtrate was concentrated and the resulting crude thioacetate was purified by flash column chromatography on silica gel, eluting with a gradient from 0-10% ethyl acetate in hexanes. \[^1^H\]NMR (300 MHz, CDCl\(_3\)): δ 7.96 (d, IH), 7.24 (d, IH), 3.13 (dd, 2H), 2.98 (dd, 2H), 2.34 (s, 3H); LCMS (M+H)^+: 250.0.

The thioacetate was stirred overnight in a solution of acetyl chloride (4 eq.) in methanol (20 mL). The solvent was removed in vacuo to afford the product as a viscous oil (320 mg, 59%). \[^1^H\]NMR (300 MHz, CDCl\(_3\)): δ 7.57 (d, IH), 7.24 (d, IH), 3.01 (t, 2H), 2.82 (q, 2H), 1.39 (t, IH); LCMS (M+H)^+: 208.0.

Step 4. 6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1-oxide and 6-chloro-2,3-dihydrothieno[2,3-b]pyridine i,1-dioxide

2-(2,6-dichloropyridin-3-yl)ethanethiol (0.25 g, 0.85 mmol) was dissolved in DMF (8.7 mL). The solution was degassed by passing a stream of nitrogen through the solution for 15 min. The solution was then cooled to 0 °C and sodium hydride (60% in mineral oil, 68 mg, 1.7 mmol) was added and the reaction was stirred at this temperature for 1.5 h. The reaction was quenched by the addition of water (80 mL) and the product was extracted with ethyl acetate (100 mL). The organic layer was washed with water (3x), brine (1x), dried over sodium sulfate and concentrated. The product was purified by flash column chromatography on silica gel, eluting with a gradient from 0-30% ethyl acetate in hexanes to afford product as a light yellow oil (150 mg, 92%). LCMS (M+H)^+: 172.0.

m-Chloroperbenzoic acid (110 mg, 0.49 mmol) in DCM (5.0 mL) was added to a solution of 6-chloro-2,3-dihydrothieno[2,3-b]pyridine (71 mg, 0.38 mmol) in DCM (21 mL) at 0 °C. The clear solution was allowed to reach RT and stir for one h. The mixture was quenched with saturated Na\(_2\)S\(_2\)O\(_3\) solution followed by saturated NaHCO\(_3\) solution. The organic layer was washed with water, brine, dried over sodium sulfate and concentrated. The product was purified by flash column chromatography on silica gel, eluting with a gradient of 0-100% ethyl acetate in hexanes to afford sulfone (17 mg, 22% yield), followed by a change in eluent to 5% methanol in...
ethyl acetate to afford sulfoxide (29 mg, 41% yield).

6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1-oxide: 1H NMR (300 MHz, CDCl$_3$): δ 7.80 (d, IH), 7.45 (d, IH), 3.91-3.76 (m, IH), 3.46-3.28 (m, 3H); LCMS (M+H)$^+$: 188.1.

6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1,1-dioxide: 1H NMR (400 MHz, CDCl$_3$): δ 7.75 (d, IH), 7.53 (d, IH), 3.56 (t, 2H), 3.36 (t, 2H); LCMS (M+H)$^+$: 204.0.

Step 5. 3-[l-(l-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

3-pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (21 mg, 0.048 mmol; from Example 15, Step 3) and 6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1-oxide (10.0 mg, 0.0533 mmol) were dissolved in ethanol (0.050 mL) and N,N-Diisopropylethylamine (17 microL, 0.1 mmol). The mixture was heated in a sealed vial by means of an oil bath held at 120 °C for 5.5 h. The mixture was concentrated. The residue was dissolved in a mixture of 1:1 TFA/DCM, stirred for 1.5 h, then concentrated again. The residue was dissolved in 1.5 mL methanal containing 0.2 mL EDA and was stirred for 30 min. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H$_2$O containing 0.15% NH$_4$OH). 1H NMR (400 MHz, d$_6$-DMSO): δ 12.04 (br s, IH), 8.81 (s, IH), 8.62 (s, IH), 8.36 (s, IH), 7.63 (dd, IH), 7.53 (d, IH), 6.92 (d, IH), 6.56 (dd, IH), 4.81-4.76 (m, IH), 3.75-3.67 (m, IH), 3.49-2.78 (10H), 1.72-1.55 (m, 2H); LCMS (M+H)$^+$: 459.1.

Example 29. 3-[l-(2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

To a solution of 3-[l-(l-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (36 mg, 0.061 mmol, prepared as in Example 28) in isopropyl alcohol (1.0 mL) was added indium (21 mg, 0.18 mmol) and 2,2-dimethylpropanoyl chloride (45 microL, 0.37
mmol). The mixture was stirred at RT for 3 h. The reaction was diluted with saturated Na₂CO₃ solution, extracted thrice with DCM and the combined extracts were concentrated to dryness. The residue was dissolved in a mixture of 1:1 TFA/DCM and was stirred for 1.5 h, and then solvents were removed in vacuo. The residue was stirred in a mixture of 1.5 mL methanol and 0.2 mL EDA for 30 min. The product was purified via preparative-HPLC/MS (Cl 8 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). ¹H NMR (400 MHz, d₆-DMSO): δ 12.11 (br s, 1H), 8.87 (s, 1H), 8.69 (s, 1H), 8.42 (s, 1H), 7.61 (d, 1H), 7.29 (d, 1H), 6.99 (d, 1H), 6.04 (d, 1H), 4.79 (dt, 1H), 3.67 (dd, 1H), 3.44-3.25 (m, 5H), 3.23-3.14 (m, 2H), 3.13-3.06 (dd, 2H), 2.92-2.80 (m, 1H), 1.75-1.56 (m, 2H); LCMS (M+H)⁺: 443.2.

Example 30. 3-[1-(1,1-dioxido-2,3-dihydrothieno [2,3-b]pyridin-6-yl)pyrrolidin-3-yl] - 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (one enantiomer isolated)

Prepared as in Example 28, Step 5 using 3-pyrrolidin-3-yl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (21 mg, 0.048 mmol; from Example 15, Step 3) and 6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1,1-dioxide (10.7 mg, 0.0528 mmol, from Example 28, Step 4) in ethanol (0.050 mL) and N,N-diisopropylethylamine (17 microL, 0.1 mmol) with the exception that the substitution reaction time was 2.5 h. ¹H NMR (400 MHz, CDCl₃): δ 8.88 (s, 1H), 8.69 (s, 1H), 8.43 (s, 1H), 7.68 (d, 1H), 7.61 (d, 1H), 6.99 (d, 1H), 6.74 (d, 1H), 4.84 (dt, 1H), 3.78 (dd, 1H), 3.58-3.22 (m, 7H), 3.11 (dd, 2H), 2.98-2.86 (m, 1H), 1.78-1.61 (m, 2H); LCMS (M+H)⁺: 475.0.
Example 31. 3-(3-fluoro-l-[1,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[(4(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)propanenitrile (four stereoisomers isolated)

Step 1. tert-butyl 3-[2-cyanovinyl]-3-fluoropyrrolidine-l-carboxylate

To a solution of 1.00 M of potassium tert-butoxide in THF (6.4 mL, 6.4 mmol) at 0 °C was added a solution of diethyl cyanomethylphosphonate (1.01 mL, 6.27 mmol) in THF (10 mL) drop-wise. The bath was removed and the reaction was warmed to RT and stirred for 30 min. The mixture was re-cooled to 0 °C and a solution of tert-butyl 3-fluoro-3-formylpyrrolidine-l-carboxylate (1.29 g, 5.94 mmol, prepared as described in US2007/0037853) in THF (10 mL) was added drop-wise. The reaction was stirred overnight with warming to RT. The reaction mixture was diluted with ethyl acetate and water, the aqueous solution was extracted with ethyl acetate three times and the combined extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. Flash column chromatography, eluting with a gradient from 0-60% ethyl acetate in hexanes afforded cis- and trans- olefins, combined and used in the subsequent step (950 mg, 66%).

\[^1\text{H NMR } \text{trans- olefin (300 MHz, CDCl}_3\text{)}: \delta 6.66 (dd, 1H), 5.78 (d, 1H), 3.81-3.30 (m, 4H), 2.27-1.94 (m, 2H), 1.43 (s, 9H). \]

\[^1\text{H NMR } \text{cis- olefin (300 MHz, CDCl}_3\text{)}: \delta 6.45 (ddd, 1H), 5.56 (dd, 1H), 3.92-3.34 (m, 4H), 2.44-2.02 (m, 2H), 1.44 (s, 9H). \]

\[^1\text{H NMR } \text{cis- olefin (300 MHz, CDCl}_3\text{)}: \delta -151.9 (m, IF). \]

Step 2. tert-butyl 3-[2-cyanovinyl]-3-fluoropyrrolidine-l-carboxylate

tert-Butyl 3-[2-cyanovinyl]-3-fluoropyrrolidine-l-carboxylate (0.95 g, 4.0 mmol) (as a mixture of olefin isomers) and 4-(lH-pyrazol-4-yl)-7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (1.2 g, 4.0 mmol, prepared as described in WO 2007/070514, Ex.65, or US2007/135461) in acetonitrile (10 mL) were treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (0.59 mL, 4.0 mmol) and stirred at RT for 30 min. Solvent was removed in vacuo and the residue
was purified by flash column chromatography on silica gel, eluting with a gradient of 5% IPA/5%
ethyl acetate/90% hexanes to 10% IPA/50% ethyl acetate/40% hexanes. Diastereomer 1 (first to
elute) (0.92 g, 42%), and diastereomer 2 (second to elute) (0.91 g, 41%). 1H NMR diastereomer 1
(400 MHz, CDCl₃): δ 8.86 (s, IH), 8.39 (s, IH), 8.34 (s, IH), 7.42 (d, IH), 6.81-6.78 (m, IH),
5.68 (s, 2H), 4.93-4.81 (m, IH), 3.84-3.34 (m, 7H), 3.08 (dt, IH), 2.37-2.13 (m, IH), 1.93 (dt,
IH), 1.45 (s, 9H), 0.95-0.89 (m, 2H), -0.06 (s, 9H); 19F NMR diastereomer 1 (400 MHz, CDCl₃):
-157.8 (m, IF); LCMS (M+H)+: 556.2. 1H NMR diastereomer 2 (400 MHz, CDCl₃): δ 8.86 (s,
0.5H), 8.85 (s, 0.5H), 8.39 (s, 0.5H), 8.37 (s, 0.5H), 8.35 (s, 0.5H), 8.30 (s, 0.5H), 7.44-7.40 (m,
IH), 6.81-6.77 (m, IH), 5.68 (s, 2H), 4.87 (ddd, IH), 3.83-3.38 (m, 6H), 3.34 (dd, IH), 3.17 (dd,
IH), 2.34-2.18 (m, IH), 2.07-1.79 (m, IH), 1.42 (s, 9H), 0.96-0.88 (m, 2H), -0.06 (s, 9H); 19F
NMR diastereomer 2 (400 MHz, CDCl₃): δ -157.6 (m, IF); LCMS (M+H)+: 556.2.

Step 3a. 3-(3-fluoropyrrolidin-3-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile
To a solution of tert-butyl 3-[2-cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl]-3-fluoropyrrolidine-1-carboxylate (0.200
g, 0.360 mmol) (diastereomer 1 from Step 2) in 1,4-dioxane (10 mL) was added 4.0 M of
Hydrogen chloride in 1,4-dioxane (0.70 mL, 2.8 mmol) and stirred at RT until the reaction was
complete. The solvent was removed in vacuo. The residue was partitioned between IN NaOH and
ethyl acetate, the layers were separated and the aqueous portion was extracted with an additional
three portions of ethyl acetate. The combined extracts were washed with brine, dried over sodium
sulfate, decanted and concentrated. The product was used without further purification. LCMS
(M+H)+: 456.0.

Step 3b. 3-(3-fluoropyrrolidin-3-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile
The procedure described for Step 3a was followed, using tert-butyl 3-[2-cyano-l-[4-(7-
{[2-(trimethylsilyl)ethoxy]methyl} -7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl]-3-fluoropyrrolidine-1-carboxylate (0.480 g, 0.864 mmol) (diastereomer 2 from Step 2). LCMS
(M+H)+: 456.0.

Step 4a. 3-(3-fluoro-l-fl, 3)oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile
A solution of oxazolo[5,4-b]pyridine-2(1H)-thione (0.042 g, 0.27 mmol, from Example
33, Step 4) and 3-(3-fluoropyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile (0.100 g, 0.219 mmol, from Step 3a) in 1,4-dioxane (2 mL) containing N,N-diisopropylethylamine (153 microL, 0.878 mmol) was heated to 70 °C for 2 h. The cooled reaction mixture was concentrated in vacuo. The residue was reconstituted in ethanol (2 mL) and the resulting suspension was treated with silver nitrate (0.149 g, 0.878 mmol) and aqueous ammonium hydroxide (0.5 mL) and stirred at RT overnight. Water and IN NaOH were added into the reaction which was then stirred for 15 min and subsequently filtered. The filtrate was extracted with ethyl acetate thrice and the combined extracts were washed with brine, dried over sodium sulfate, filtered and concentrated. The product was deprotected by stirring with 25% TFA/DCM for 3 h, followed by evaporation of the solvents and stirring the residue with excess EDA in methanol. When the deprotection step was complete, the product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₃OH) to afford the purified racemate (20 mg, 20%), a portion of which was separated into its enantiomers by chiral HPLC (Phenomenex Lux-cellulose-1 column, 5µ, 20 x 250 mm, 70% EtOH/Hexanes, 8 mL/min) to afford enantiomer 1 (first to elute, retention time 26.9 min) and enantiomer 2 (second to elute, retention time 31.7 min). ¹H NMR (300 MHz, d₆-DMSO): δ 12.11 (br s, IH), 8.90 (s, IH), 8.70 (s, IH), 8.46 (s, IH), 7.90 (dd, IH), 7.66 (dd, IH), 7.63 (d, IH), 7.22 (dd, IH), 7.02 (d, IH), 5.43 (ddd, IH), 4.14-3.55 (m, 5H), 3.50 (dd, IH), 2.50-2.25 (m, IH), 1.88-1.73 (m, IH); ¹⁹F NMR (300 MHz, d₆-DMSO): δ -159.6; LCMS (M+H)⁺: 444.0.

Step 4b. 3-(3-fluoro-l-fl, 3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile

The procedure described for Step 4a was followed, using the product of Step 3b. The product was subjected to chiral HPLC to separate the enantiomers (Phenomenex Lux-cellulose-1 column, 5µ, 20 x 250 mm, 60% EtOH/Hexanes, 10 mL/min) to afford enantiomer 1 (first to elute, retention time 18.0 min) and enantiomer 2 (second to elute, retention time 25.7 min). ¹H NMR (300 MHz, d₆-DMSO): δ 12.12 (br s, IH), 8.92 (s, IH), 8.72 (s, IH), 8.49 (s, IH), 7.87 (dd, IH), 7.63 (d, IH), 7.61 (dd, IH), 7.19 (dd, IH), 7.03 (d, IH), 5.44 (ddd, IH), 4.12-3.30 (m, 6H), 2.54-2.26 (m, 2H); ¹⁹F NMR (300 MHz, d₆-DMSO): δ -160.2; LCMS (M+H)⁺: 444.0.
Example 32. 3-(l-[1,3]oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl)-3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl)propanenitrile (two enantiomers and one diasteromer isolated)

\[
\begin{align*}
&\text{Step 1. tert-butyl 3-(2-cyano-l-[3-[7-(diethoxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-1-yl]ethyl)pyrrolidine-1-carboxylate} \\
&\text{A solution of tert-butyl 3-[2-cyanovinyl]pyrrolidine-1-carboxylate (0.480 g, 2.16 mmol, prepared as in Example 15, Step 1) and 7-(diethoxymethyl)-4-(lH-pyrrol-3-yl)-7H-pyrrolo[2,3-d]pyrimidine (0.72 g, 2.2 mmol, prepared as in WO 2007/070514 Ex.500) in acetonitrile (5 mL) was treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (0.323 mL, 2.16 mmol) and stirred for 5 days. The solvent was removed by rotary evaporation and the product was purified by flash column chromatography on silica gel, eluting with a gradient from 50-90% ethyl acetate in hexanes to afford separated diastereomers. Diastereomer 1 (first to elute): 279 mg, 25%. Diastereomer 2 (second to elute): 352 mg, 32%.
\end{align*}
\]

\[
\begin{align*}
&\text{1HNMR (300 MHz, CDCl\textsubscript{3}) diastereomer 1: } \delta 8.78 (s, 1H), 7.68 (t, 1H), 7.53 (d, 1H), 6.98 (dd, 1H), 6.91 (t, 1H), 6.83 (d, 1H), 6.77 (s, 1H), 4.12-4.03 (m, 1H), 3.80-3.63 (m, 3H), 3.60-3.38 (m, 3H), 3.34-2.20 (m, 4H), 2.89 (d, 2H), 2.91-2.78 (m, 1H), 1.89-1.76 (m, 1H), 1.68-1.52 (m, 1H), 1.47 (s, 9H), 1.23 (t, 6H); LCMS (M+H)+: 509.1.
\end{align*}
\]

\[
\begin{align*}
&\text{1H NMR (300 MHz, CDCl\textsubscript{3}) diastereomer 2: } \delta 8.78 (s, 1H), 7.65 (br s, 1H), 7.53 (br d, 1H), 7.00-6.79 (m, 3H), 6.77 (s, 1H), 4.17-4.05 (m, 1H), 3.79-3.28 (m, 7H), 3.09-2.80 (m, 4H), 2.27-2.13 (m, 1H), 1.79-1.60 (m, 1H), 1.44-1.34 (m, 9H), 1.23 (t, 6H); LCMS (M+H)+: 509.1.
\end{align*}
\]

\[
\begin{align*}
&\text{Step 2a. 3-(l-[1,3]oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl)-3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl)propanenitrile} \\
&\text{To a solution of tert-butyl 3-(2-cyano-l-[3-[7-(diethoxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-1-yl]ethyl)pyrrolidine-1-carboxylate (0.060 g, 0.12 mmol, diastereomer 1 from Step 1) in 1,4-dioxane (2 mL) was added 4.00 M of hydrogen chloride in 1,4-dioxane (0.24 mL, 0.94 mmol). The reaction was stirred for 16 h. The solvent was removed by rotary evaporation and the globally deprotected product, 3-pyrrolidin-3-yl-3-[3-(7H-
\end{align*}
\]
pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile, was used without further purification. LCMS (M+H)+: 307.1.

To a solution of 3-aminopyridin-2-ol (2.00 g, 18.2 mmol, 3B Scientific) in THF (40 mL) was added thiophosgene (1.52 mL, 20 mmol). Water was added and the pH adjusted to 4-5. The product was extracted with ethyl acetate, dried over sodium sulfate and concentrated. The solid material was triturated with ether overnight, and the product was filtered off and air dried. (6.25 g, 41.1 mmol) of oxazolo[5,4-b]pyridine-2(1H)-thione prepared in this manner was mixed with toluene (100 mL) and was treated with thionyl chloride (9.0 mL, 120 mmol) and a few drops of DMF. The reaction was heated to reflux for 1 h. Upon cooling to RT and standing overnight, a precipitate formed which was isolated by filtration and air dried. This crude product (23 mg) and 3-pyrrolidin-3-yl-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile (0.036 g) in 1,4-dioxane (0.6 mL) containing N,N-diisopropylethylamine (82 microL, 0.47 mmol) was heated to 70 °C for 2 h. Solvent was removed in vacuo. The residue was reconstituted in ethanol (0.8 mL) and the resulting suspension was treated with silver nitrate (0.040 g, 0.23 mmol) and ammonium hydroxide solution (36 microL). After stirring for 16 h, the reaction was worked up by partition between water and ethyl acetate. The layers were separated and the aqueous portion was extracted with ethyl acetate three times. The combined extracts were dried over sodium sulfate, filtered and concentrated. The product was purified via preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₃OH). A portion of this product was purified by chiral HPLC (Chiral Technologies Chiralpak IA, 5μ, 20 x 250 mm, eluted with 45% EtOH/Hexanes) to afford enantiomer 1 (first to elute, retention time 47.0 min) and enantiomer 2 (second to elute, retention time 53.4 min).

¹H NMR (300 MHz, d₅-DMSO) enantiomer 1: δ 11.97 (br s, IH), 8.61 (s, IH), 8.01 (dd, IH), 7.87 (dd, IH), 7.62 (dd, IH), 7.51 (d, IH), 7.20 (dd, IH), 7.16 (dd, IH), 6.96-6.90 (m, 2H), 4.57 (dt, IH), 3.85 (dd, IH), 3.71-3.60 (m, IH), 3.53-3.23 (m, 4H), 2.99-2.83 (m, IH), 1.76-1.56 (m, 2H); LCMS (M+H)+: 425.1.

¹H NMR (300 MHz, d₅-DMSO) enantiomer 2: δ 11.97 (br s, IH), 8.61 (s, IH), 8.01 (dd, IH), 7.87 (dd, IH), 7.62 (dd, IH), 7.51 (d, IH), 7.20 (dd, IH), 7.16 (dd, IH), 6.97-6.93 (m, 2H), 4.59 (dt, IH), 3.86 (dd, IH), 3.73-3.62 (m, IH), 3.56-3.24 (m, 4H), 3.01-2.85 (m, IH), 1.75-1.61 (m, 2H); LCMS (M+H)+: 425.1.

Step 2b. 3-(l-[l, 3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile

The procedure for Step 2a was followed, using diastereomer 2 from Step 1 as starting
material to afford product as the racemate. 1H NMR (400 MHz, d_6-DMSO): δ 11.97 (br s, IH), 8.61 (s, IH), 8.00 (dd, IH), 7.81 (dd, IH), 7.53 (dd, IH), 7.50 (dd, IH), 7.17-7.13 (m, 2H), 6.96 (dd, IH), 6.93 (dd, IH), 4.60 (dt, IH), 3.80-3.73 (m, IH), 3.65-3.56 (m, IH), 3.47 (dd, IH), 3.39-3.23 (m, 3H), 3.05-2.94 (m, IH), 2.31-2.20 (m, IH), 1.98-1.88 (m, IH); LCMS (M+H)$^+$: 425.0.

Example 33. 3-([1,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile phosphate (one enantiomer converted to the salt form)

H_3PO_4

Step 1. 4-([IH-pyrrol-3-yl]-7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine

A mixture of 4-chloro-7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (12.9 g, 45.4 mmol) (prepared as in WO 2007/070514, Example 65) and [l-(triisopropylsilyl)-IH-pyrrol-3-yl]boronic acid (Frontier Scientific) (10.4 g, 38.9 mmol) and sodium carbonate (4.36 g, 41.2 mmol) in 1,2-dimethoxyethane (100 mL) and water (35 mL) was degassed by purging with a stream of nitrogen for 20 min. Tetrakis(triphenylphosphine)palladium(0) (2.25 g, 1.94 mmol) was then added and the reaction was heated to reflux for 9 h. As the coupling reaction proceeded, the TIPS protecting group was also slowly removed. At the time the reaction was stopped, starting materials were nearly consumed, however the TIPS deprotection was not complete. The solvent was removed by rotary evaporation and the product was purified by flash column chromatography on silica gel, eluting with a gradient from 10-50% ethyl acetate in hexanes. TIPS protected material was also collected (3.8 g, 21%), in addition to the desired 4-([IH-pyrrol-3-yl]-7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (7 g, 57%).

1H NMR (300 MHz, CDCl$_3$): δ 8.93 (br s, IH), 8.84 (s, IH), 7.73-7.69 (m, IH), 7.33 (d, IH),
7.04-7.00 (m, IH), 6.94 (dd, IH), 6.85 (d, IH), 5.66 (s, 2H), 3.55 (m, 2H), 0.92 (m, 2H), -0.06 (s, 9H). LCMS (M+H)^+ : 315.2.

Step 2. tert-butyl 3-[2-cyano-1-{3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl}-1H-pyrrol-1-yl]ethyl]pyrrolidine-1-carboxylate

To a mixture of 4-(IH-pyrrol-3-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (7.69 g, 24.4 mmol) and tert-butyl 3-[2-cyanovinyl]pyrrolidine-1-carboxylate as a mixture of olefin isomers (5.70 g, 25.7 mmol, prepared as in Example 15, Step 1) in acetonitrile (70 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (3.66 mL, 24.4 mmol) and the reaction was stirred overnight. The volume was then reduced by half in vacuo and the reaction was heated to 60°C for 4.5 h. The solvent was removed by rotary evaporation. The product was purified by flash column chromatography on silica gel, eluting with a gradient initially from 0-65% B in A, (A: 5% isopropanol/5% ethyl acetate/90% hexanes, B: 10% isopropanol/50% ethyl acetate/40% hexanes), until second diastereomer started eluting, then quickly raised to 90% B in A. The first diastereomer to elute (diastereomer 1) was collected (4.45 g, 34%). ^1H NMR (400 MHz, CDCl₃) diastereomer 1: δ 8.82 (s, IH), 7.70-7.68 (m, IH), 7.35 (d, IH), 7.00 (dd, IH), 6.92 (t, IH), 6.84 (d, IH), 5.66 (s, 2H), 4.13-4.04 (m, IH), 3.80-3.65 (m, IH), 3.57-3.38 (m, 3H), 3.33-3.20 (m, IH), 3.16-3.05 (m, IH), 2.93-2.80 (m, 3H), 1.89-1.78 (m, IH), 1.63-1.52 (m, IH), 1.47 (s, 9H), 0.92 (m, 2H), -0.06 (s, 9H); LCMS (M+H)^+ : 537.3. ^1H NMR (500 MHz, d₆-DMSO, 90°C) diastereomer 1: δ 8.69 (s, IH), 7.92 (t, IH), 7.62 (d, IH), 7.09 (t, IH), 6.99 (d, IH), 6.94 (dd, IH), 5.63 (s, 2H), 4.47 (dt, IH), 3.58 (m, 2H), 3.43 (ddd, IH), 3.30 (dd, IH), 3.28-3.22 (m, IH), 3.19 (dd, IH), 3.11 (dd, IH), 2.94 (dd, IH), 2.87-2.77 (m, IH), 2.13-2.04 (m, IH), 1.73 (dq, IH), 1.34 (s, 9H), 0.86 (m, 2H), -0.07 (s, 9H); LCMS (M+H)^+ : 537.3.

Step 3. 3-pyrrolidin-3-yl-3-{3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl}-1H-pyrrol-1-yl]propanenitrile

To a solution of tert-butyl 3-[2-cyano-1-{3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl}-1H-pyrrol-1-yl]ethyl]pyrrolidine-1-carboxylate (4.45 g, 8.29 mmol) (diastereomer 1 from Step 2) in 1,4-dioxane (50 mL) was added 4 M of hydrogen chloride in 1,4-dioxane (31 mL). The reaction was stirred for 16 h. The product was filtered off and rinsed with a small amount of dioxane. The wet solid was dissolved in and partitioned between IN NaOH and ethyl acetate. The aqueous portion was extracted an additional two times with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated (3.6 g, 99%). ^1HNMR (300 MHz, CDCl₃): δ 8.81 (s, IH), 7.69 (dd, IH), 7.34 (d,
IH), 6.98 (dd, IH), 6.92 (dd, IH), 6.85 (d, IH), 5.66 (s, 2H), 4.15-4.03 (m, IH), 3.53 (m, 2H), 3.28 (dd, IH), 2.95 (t, 2H), 2.86 (d, 2H), 2.82-2.61 (m, 2H), 1.89-1.73 (m, IH), 1.50-1.35 (m, IH), 0.91 (m, 2H), -0.06 (s, 9H); (M+H)+: 437.3.

Step 4. oxazolo[5,4-b]pyridine-2(1H)-thione
Preparation similar to that referenced in J. Org. Chem. 1995, 60(17), 5721-5725. To a mixture of 3-aminopyridin-2-ol (3B Scientific Corporation) (10.12 g, 91.9 mmol) in THF (200 mL) at 0°C in an ice bath was added carbonothioic dichloride (7.71 mL, 101 mmol) drop-wise. The reaction was stirred at RT for 3 h. Water was added and the pH was adjusted to the range of 4-5. The product was obtained by extraction with ethyl acetate. The extracts were dried over sodium sulfate, filtered and concentrated. The product was used without further purification. 1H NMR (300 MHz, d6-DMSO): δ 14.08 (br s, IH), 8.14 (d, IH), 7.67 (d, IH), 7.35 (dd, IH); (M+H)+: 152.9.

An mixture of 3-pyrrolidin-3-yl-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]pyrrol-l-yl]propanenitrile (1.2 g, 2.7 mmol, from Step 3) and oxazolo[5,4-b]pyridine-2(1H)-thione (0.50 g, 3.3 mmol) in 1,4-dioxane (20 mL) and N,N-diisopropylethylamine (0.96 mL, 5.5 mmol) was heated to 70 °C for 2 h. The solvent was evaporated and replaced with ethanol (20 mL) and silver nitrate (1.4 g, 8.2 mmol) and ammonium hydroxide solution (3.8 mL) were added. The reaction was stirred for 16 h. Water, IN NaOH and ethyl acetate were added into the reaction and the solids were filtered off, rinsing with ethyl acetate, and the layers of the filtrate were separated. The aqueous layer was extracted with three further portions of ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. The product was purified by flash column chromatography on silica gel, eluting with a gradient from 0-10% ethyl acetate in hexanes (930 mg, 61%). 1H NMR (300 MHz, CDCl3): δ 8.83 (s, IH), 7.96 (dd, IH), 7.73 (t, IH), 7.60 (dd, IH), 7.36 (d, IH), 7.15 (dd, IH), 7.03 (dd, IH), 6.96 (t, IH), 6.85 (d, IH), 5.67 (s, 2H), 4.27-4.17 (m, IH), 4.09 (dd, IH), 3.91-3.81 (m, IH), 3.70-3.60 (m, IH), 3.55 (m, 2H), 3.52-3.45 (m, IH), 3.17-3.04 (m, IH), 2.98 (d, 2H), 2.12-2.00 (m, IH), 1.91-1.74 (m, IH), 0.92 (m, 2H), -0.06 (s, 9H); LCMS (M+H)+: 555.2.

Step 6. S-(1-11, 3]oxazolo[5,4-b]pyridin-2-yl]pyrrolidin-3-yl)-3-[3-(7H-pyrrolo[2, 3-
3-Pyrrolidin-3-yl-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile Phosphate

A solution of racemic 3-[(1,3]oxazolo[5,4-b]pyridin-2-ylpyrrolidin-3-yl)-3-[3-(7-[2-ethylsilyl]ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile (0.93 g, 1.7 mmol, produced in Step 5) in DCM (30 mL) and TFA (10 mL) was stirred for 2.5 h. The solvents were evaporated and the residue was stirred with ammonium hydroxide solution in methanol for 16 h. The solvent was again evaporated. The residue was then partitioned between water and 10% IPA in CHCl₃. The layers were separated and the aqueous portion was extracted two further times with 10% IPA in CHCl₃. The extracts were dried over sodium sulfate, decanted and concentrated. The enantiomers were separated by chiral HPLC (Phenomenex Lux-cellulose-1, 5μ, 20 x 250 mm, 80% ethanol/hexanes, 10 mL/min), to provide enantiomer 1 (first to elute, retention time 19.3 min), and enantiomer 2 (second to elute, retention time 24.1 min). Enantiomer 1 was obtained by removal of solvent in vacuo, in the amount of 314 mg. This product was dissolved in hot isopropanol and one equivalent of phosphoric acid was added. There was immediate formation of a precipitate and the mixture was allowed to cool slowly to ambient temperature, with stirring. The product was isolated by filtration and was air-dried, then dried further at 60 °C under vacuum (289 mg, 33%). ¹H NMR (300 MHz, d₆-DMSO): δ 11.97 (s, IH), 8.61 (s, IH), 8.01 (t, IH), 7.87 (dd, IH), 7.62 (dd, IH), 7.52 (dd, IH), 7.20 (dd, IH), 7.16 (t, IH), 6.97-6.92 (m, 2H), 4.59 (dt, IH), 3.87 (dd, IH), 3.72-3.62 (m, IH), 3.56-3.40 (m, 3H), 3.30 (dd, IH), 3.00-2.85 (m, IH), 1.75-1.63 (m, 2H); LCMS (M+H)+: 425.1.

Example 34. 3-[1-(1,3-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl] -3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile (two enantiomers isolated)

![Chemical structure image]

3-Pyrrolidin-3-yl-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile (80 mg, 0.18 mmol, from Example 33, Step 3) and 6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1,1-dioxide (37 mg, 0.18 mmol, prepared as
described in Example 28, Step 4) were dissolved in ethanol (190 microL) and N,N-diisopropylethylamine (64 microL, 0.37 mmol). In a sealed vial, the mixture was heated in an oil bath held at 120 °C for 3 h. The mixture was then concentrated in vacuo. The product was purified by flash column chromatography, eluting with a gradient from 0-5% Methanol in Ethyl acetate to afford racemic product. This material was separated by chiral HPLC (Chiral Technologies Chiralpak AD-H, 5μ, 20 x 250 mm, eluting with 80% EtOH/Hexanes, 8 mL/min) to afford enantiomer 1 (first to elute, retention time 35.0 min) and enantiomer 2 (second to elute, retention time 55.6 min).

After removal of solvent in vacuo, each enantiomer was deprotected separately by stirring sequentially in a mixture of 1:1 TFA/DCM for 1 h, removal of solvent, then stirring in methanol (1.5 mL) containing EDA (0.2 mL) for 30 min. Preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH) was used to purify the products.

Enantiomer 1: (6 mg, 6%). 1H NMR (400 MHz, d6-DMSO): δ 11.96 (br s, IH), 8.61 (s, IH), 8.01 (t, IH), 7.69 (d, IH), 7.51 (d, IH), 7.16 (dd, IH), 6.96-6.93 (m, 2H), 6.75 (d, IH), 4.56 (dt, IH), 3.76 (dd, IH), 3.57-3.22 (m, 7H), 3.15-3.08 (m, 2H), 2.94-2.81 (m, IH), 1.71-1.63 (m, 2H); LCMS (M+H)+: 474.1.

Enantiomer 2: (4 mg, 4%). 1H NMR (400 MHz, d6-DMSO): δ 11.96 (br s, IH), 8.61 (s, IH), 8.01 (t, IH), 7.69 (d, IH), 7.51 (d, IH), 7.16 (dd, IH), 6.96-6.93 (m, 2H), 6.75 (d, IH), 4.56 (dt, IH), 3.76 (dd, IH), 3.57-3.22 (m, 7H), 3.15-3.08 (m, 2H), 2.94-2.81 (m, IH), 1.71-1.63 (m, 2H); LCMS (M+H)+: 474.1.

Example 35. 3-[(1-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile

A mixture of 3-pyrrolidin-3-yl-3-[3-{7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrrol-1-yl]propanenitrile (26 mg, 0.053 mmol, from Example 33, Step 3) and 6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1-oxide (10.0 mg, 0.0533 mmol,
prepared as described in Example 28, Step 4) in ethanol (56 microL) and N,N-diisopropylethylamine (19 microL) was heated to 120 °C for 1.5 h in the microwave. The mixture was concentrated in vacuo. The crude mixture was dissolved in 1:1 TFA/DCM, stirred for 1.5 h, and then concentrated again. The residue was then dissolved in methanol (1.5 mL) and EDA (0.2 mL) was added. After stirring for 30 min, preparative-HPLC/MS (C18 column eluting with a gradient of ACN/H2O containing 0.15% NH4OH) was used to purify the product (3 mg, 12%). 1H NMR (400 MHz, d6-DMSO): δ 11.96 (br s, IH), 8.61 (s, IH), 8.02-8.00 (m, IH), 7.71 (d, IH), 7.51 (d, IH), 7.16 (t, IH), 6.96-6.92 (m, 2H), 6.64 (d, IH), 4.56 (tt, IH), 3.75 (dd, IH), 3.56-2.98 (m, 9H), 2.94-2.82 (m, IH), 1.73-1.61 (m, 2H); LCMS (M+H)+: 458.1.

Example 36. ±3-[1-(6-chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

Step 1. 3,5-dichloro-l-methylpyrazin-2(lH)-one

(Methylamino)acetonitrile hydrochloride (2.55 g, 23.9 mmol) was dissolved in chloroform in a 1-neck round-bottom flask (38.93 mL, 486.5 mmol) and oxalyl chloride (6.07 mL, 71.8 mmol) was added. The reaction was heated to reflux overnight and was transferred into a different flask, and the solvent removed by rotary evaporation. The reaction was chromatographed on silica gel using 1:1 EtOAc/hexanes to give the product. Mass spec: [M+l]: 179. 1H NMR(CDCl3): 7.25 (s, IH), 3.60 (s, 3H).

Step 2. ±3-fl-(6-chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (50.00 mg, 0.1142 mmol, prepared as in
Example 15. Steps 1-3, omitting the chiral separation performed in Step 2) was mixed with 3,5-dichloro-1-methylpyrazin-2(H)-one (32.00 mg, 0.1788 mmol) and was dissolved in 1,4-dioxane (0.5 mL). The reaction was heated at 100 °C for 2 h at which time LCMS analysis showed mainly product. The residues were chromatographed on silica gel using EtOAc and 5% MeOH/EtOAc to give the product. Mass spec: [M+I]: 580.

Step 3. ±3-[1-(6-chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

The product from step 2 was dissolved in DCM (0.50 mL) in a 1-neck round-bottom flask, and TFA (0.30 mL, 3.9 mmol) was added. The reaction was stirred at 25 °C for 1 h, and the solvent removed by rotary evaporation. The residue was dissolved in methanol (2.00 mL) and 16 M of ammonia in water (0.30 mL, 4.9 mmol) was added. The mixture was stirred for 1 h, and the solvent removed by rotary evaporation. The product was isolated by preparative HPLC-MS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; eluting with a gradient of ACN/H₂O (0.1%TFA), 30 mL/min; Mass spec: [M+I]: 450. ¹H NMR(CD₃OD): δ 8.95 (s, 1H), 8.87 (s, 1H), 8.54 (s, 1H), 7.83 (d, 1H), 7.25 (d, 1H), 6.77 (s, 1H), 4.83 (m, 1H), 3.60-4.2 (m, 4H), 3.35 (s, 3H), 3.40 (m, 1H), 3.20 (m, 1H), 2.94 (m, 1H), 1.76 (m, 2H).

Example 37. ±3-[1-(4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

Step 1. ±3-[1-(4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-[1-(6-Chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (from Example 36, 27 mg, 0.046 mmol) was dissolved in isopropyl alcohol (1.00 mL) and
methanol (1.00 mL) with sodium bicarbonate (12 mg, 0.14 mmol) in a 1-neck round-bottom flask. 10% Palladium on carbon (10:90, palladium:carbon black, 15.0 mg, 0.0141 mmol) was added. The reaction was stirred under an atmosphere of hydrogen overnight at which time LCMS analysis showed a 1:1 mixture of starting material and product. Into the reaction was added an additional 10% palladium on carbon (10:90, palladium:carbon black, 15.0 mg, 0.0141 mmol) and was stirred under an atmosphere of hydrogen for 48 h at which time LCMS analysis showed no starting material present. The reaction was filtered, and the solvent removed by rotary evaporation. The residue was used in the next reaction without purification. Mass spec: [M+1]: 546

Step 2. ±3-[l-(4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile trifluoroacetate

The product from step 1 was dissolved in DCM (0.50 mL) in a 1-neck round-bottom flask, and TFA (0.30 mL, 3.9 mmol) was added. The reaction was stirred at 25 °C for 2 h, and the solvent removed by rotary evaporation. The residue was dissolved in methanol (2.00 mL) and 16 M of ammonia in water (0.30 mL, 4.9 mmol) was added and was stirred for 2 h. The solvent was then removed by rotary evaporation. The product was isolated by preparative HPLC-MS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; eluting with a gradient of ACN/H₂O (0.1% TFA), 30 mL/min; detector set at m/z 415; to give the product as the TFA salt. Mass spec: [M+1]: 416; ¹HNMR(CD₃OD): δ 8.94 (s, 1H), 8.86 (s, 1H), 8.54 (s, 1H), 7.82 (d, 1H), 7.23 (d, 1H), 6.88 (d, 1H), 6.68 (d, 1H), 4.90 (m, 1H), 3.70-4.5 (m, 4H), 3.43 (s, 3H), 3.40 (m, 1H), 3.20 (m, 1H), 3.10 (m, 1H), 1.88 (m, 2H).

Example 38. ±3-chloro-2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)isonicotinonitrile trifluoroacetate
Step 1. 2,3-dichloroisocinotinaldehyde

N,N-Diisopropylamine (1.14 mL, 8.11 mmol) was dissolved in THF in a 1-neck round-bottom flask (15.00 mL, 184.9 mmol). The solution was then cooled at -78 °C and 1.60 M of n-butyllithium in hexane (4.64 mL, 7.43 mmol) was added. The reaction was allowed to warm to 0 °C and was re-cooled to -78 °C. Into the reaction was added 2,3-dichloropyridine (1.00 g, 6.76 mmol) in THF (5.00 mL, 61.6 mmol). The reaction was then stirred at -78 °C for 2 h and DMF (1.046 mL, 13.51 mmol) was added and was stirred at -78 °C for 30 min and was allowed to warm to 0 °C. TLC analysis (20% EtOAc/hexanes) showed no starting material present. LCMS analysis showed M+1 +CH₃OH peak. NMR analysis showed an aldehyde proton, although most of the product had solidified and the NMR is more indicative of the composition of the non-crystallized material. The reaction was chromatographed on silica gel using 25% EtOAc/hexanes to give the product. ¹H NMR(CDCl₃): δ 10.49 (s, IH), 8.49 (d, IH), 7.67 (d, IH).

Step 2. 2,3-dichloroisocinotinaldehyde oxime

2,3-Dichloroisocinotinaldehyde (0.50 g, 2.8 mmol) was dissolved in methanol (10.0 mL, 247 mmol) with Potassium bicarbonate (0.35 g, 3.5 mmol) in a 1-neck round-bottom flask, and hydroxylamine hydrochloride (0.22 g, 3.2 mmol) was added. The reaction was stirred at 25 °C for 2 days. LCMS analysis showed no starting material and the two oxime isomers mainly. The reaction mixture was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo. The product was used in the next reaction without further purification. Mass spec: [M+1]: 191;

Step 3. 2,3-dichloroisocinotinonitrile

2,3-Dichloroisocinotinaldehyde oxime (0.617 g, 0.00323 mol) was dissolved in pyridine (6.0 mL, 0.074 mol) in a 1-neck round-bottom flask. Methanesulfonyl chloride (1.0 mL, 0.013 mol) was added drop-wise, and the reaction was heated at 60 °C for 2 h. After cooling, the reaction was extracted with ethyl acetate and the organic extracts were washed with water, 0.5 N HCl, saturated NaCl solution, dried (MgSO₄) and stripped in vacuo. The residue was chromatographed on silica gel using 20% EtOAc/hexanes to give the product. ¹H NMR(CDCl₃): δ 8.48 (d, IH), 7.53 (d, IH).

Step 4. ±3-chloro-2-(3-[2-cyano-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)isonicotinonitrile

3-Pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-
(100.00 mg, 0.22851 mmol, prepared as in Example 15, Steps 1-3, omitting the chiral separation performed in Step 2) was mixed with 2,3-dichloroisonicotinonitrile (57.99 mg, 0.3352 mmol) and then was dissolved in NMP (0.60 mL, 6.2 mmol). The reaction was heated at 130 °C for 2 h at which time LCMS analysis showed mainly product. The residues were chromatographed on silica gel using EtOAc and 5% MeOH/EtOAc to give the product. Mass spec: [M+H]: 574.

Step 5. \(\pm 3\)-chloro-2-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)isonicotinonitrile trifluoroacetate

3-Chloro-2-(3-[2-cyano-1-[4-[7-([(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)isonicotinonitrile (25.00 g, 43.54 mmol) was dissolved in DCM (0.50 mL, 7.8 mmol) in a 1-neck round-bottom flask, and TFA (0.30 mL, 3.9 mmol) was added. The reaction was stirred at 25 °C for 1 h, and the solvent was removed by rotary evaporation. The residue was dissolved in methanol (2.00 mL, 49.4 mmol) and 16 M of ammonia in water (0.30 mL, 4.9 mmol) was added. The mixture was stirred for 1 h, and the solvent was removed by rotary evaporation. The product was isolated by preparative HPLC-MS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; eluting with a gradient of ACN/H₂O (0.1% TFA), 30 mL/min; detector set at m/z 443 to give the product as the TFA salt. Mass spec: [M+H]: 444; \(^1\)H NMR(CD₃OD): 8.96 (s, 1H), 8.87 (s, 1H), 8.54 (s, 1H), 8.16 (d, 1H), 7.84 (d, 1H), 7.25 (d, 1H), 6.96 (d, 1H), 4.83 (m, 1H), 3.70-4.00 (m, 4H), 3.40 (m, 1H), 3.20 (m, 1H), 3.00 (m, 1H), 1.80 (m, 2H).

Example 39. \(\pm 2\)-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)pyridine-3,4-dicarbonitrile trifluoroacetate
Step 1. ±2-(3-{2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)pyridine-3,4-dicarbonitrile

3-Chloro-2-(3-{2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)isonicotinonitrile (65.0 mg, 0.113 mmol, from Example 38, Step 4) was dissolved in NMP (0.8 mL, 8 mmol) in a 1-neck round-bottom flask, and zinc cyanide (39.9 mg, 0.340 mmol) and zinc (22.2 mg, 0.340 mmol) was added. The reaction was degassed and bis(tri-t-butylphosphine)palladium (28.9 mg, 0.0566 mmol) was added and the reaction was heated at 130 °C for 100 min at which time LCMS analysis showed that it was mainly a 1:1 mixture of product and dechlorinated starting material. The reaction was filtered and the product was isolated by preparative HPLC-MS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; eluting with a gradient of ACN/H₂O (0.1%TFA), 30 mL/min; detector set at m/z 564; Mass spec: [M+] m/z: 565.

Step 2. ±2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)pyridine-3,4-dicarbonitrile trifluoroacetate

The product from step 1 was dissolved in DCM (0.50 mL, 7.8 mmol) in a 1-neck round-bottom flask, and TFA (0.30 mL, 3.9 mmol) was added. The reaction was stirred at 25 °C for 2 h, and the solvent was removed by rotary evaporation. The residue was dissolved in methanol (2.00 mL, 49.4 mmol) and 16 M of ammonia in water (0.30 mL, 4.9 mmol) was added. The mixture was then stirred for 2 h, and the solvent was removed by rotary evaporation. The residue was purified by prep. The product was isolated by preparative HPLC-MS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; eluting with a gradient of ACN/H₂O (0.1%TFA), 30 mL/min; detector set at m/z 434; to give the product as the TFA salt. Mass spec: [M+] 435; ¹H NMR (CD₃OD): δ 9.00 (s, 1H), 8.90 (s, 1H), 8.56 (s, 1H), 8.44 (d, 1H), 7.90 (d, 1H), 7.29 (d, 1H), 6.99 (d, 1H), 4.91 (m, 1H), 4.11 (m, 1H), 3.9 (m, 1H), 3.75 (m, 2H), 3.40 (m, 1H), 3.30 (m, 1H), 3.05 (m, 1H), 1.89 (m, 2H).
Example 40. ± 2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-6-(methylthio)benzonitrile

Step 1. 2-fluoro-6-(methylthio)benzonitrile

To a 0 °C solution of 2,6-difluorobenzonitrile (0.20 g, 1.4 mmol) in DMF (2 mL, 20 mmol) was added sodium methyl mercaptoide (0.13 g, 1.7 mmol). The reaction was allowed to warm to RT and was stirred overnight. It was then filtered and purified by LCMS (Cl 8 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH at 5 mL/min) to give 41 mg pale yellow solid (17% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (IH, m); 7.07 (IH, m); 6.96 (IH, t); 2.59 (3H, s). LCMS (M+l): 168.

Step 2. 2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-6-(methylthio)benzonitrile

A solution of 3-pyrrolidin-3-yl-3-[4-({2-(trimethylsilyl)ethoxy}methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-ylpropanenitrile (0.075 g, 0.17 mmol, prepared as in Example 15, Steps 1-3, omitting the chiral separation performed in Step 2), 2-fluoro-6-(methylthio)benzonitrile (0.040 g, 0.24 mmol) and N,N-diisopropylethylamine (60 microL, 0.3 mmol) in 1-butyl-3-methyl-lH-imidazol-3-ium fluoride/trifluoroborane (1:1) (0.15 g, 0.66 mmol) was heated at 120 °C for 3.2 h, then at 150 °C for 2 h. It was purified by LCMS (Cl 8 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH at 5 mL/min) to give 30 mg 2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-6-(methylthio)benzonitrile (A, 30% yield). LCMS (M+l):
5 mg A was stirred in ImL DCE and 1 mL TFA for 1 h. It was concentrated and the residue was stirred in 50 μL EDA and 1 mL MeOH for 1 h. The reaction was purified by LCMS (C18 column eluting with a gradient ACN/H₂O containing 0.15% NH₄OH at 5 mL/min) gave 3.5 mg white solid. ¹H NMR (400 MHz, DMSO): δ 12.1 (IH, br); 8.85 (IH, s); 8.65 (IH, s); 8.0 (IH, s); 7.6 (IH, m); 7.18 (IH, m); 6.98 (IH, m); 6.6 (2H, m); 4.81 (IH, m); 3.68 (IH, m); 3.6-3.2 (5H, m); 2.9 (IH, m); 2.5 (3H, s); 1.62 (2H, br). LCMS (M+1): 455.

Example 41. ± 2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(methylsulfonyl)benzonitrile

![Chemical structure]

A solution of 15 mg A (from Example 40, step 2, 26 mmol) and m-chloroperbenzoic acid (0.018 g, 0.080 mmol) in DCM (1 mL, 20 mmol) was stirred for 1.5 h. MeOH and DMF were added. The mixture was purified by LCMS to give 5 mg white solid. The compound was then deprotected to remove the SEM group. It was stirred in ImL DCE and 1 mL TFA for 1 h. It was concentrated and the residue was stirred in 50 μL EDA and 1 mL MeOH for 1 h. The reaction was purified by LCMS (C18 column eluting with a gradient ACN/H₂O containing 0.15% NH₄OH at 5 mL/min) and gave 4.1 mg white solid. ¹H NMR (400 MHz, DMSO): δ 12.13 (IH, s); 8.88 (IH, s); 8.68 (IH, s); 8.41 (IH, s); 7.61 (1H, m); 7.6 (IH, m); 7.35 (IH, m); 7.19 (IH, m); 6.98 (IH, m); 4.82 (IH, m); 3.67 (IH, m); 3.6-3.2 (5H, m); 2.92 (IH, m); 2.5 (3H, s); 1.63 (2H, m). LCMS (M+1): 487.
Example 42. ± 3-[1-(8-chloroquinolin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

A solution of 3-pyrrolidin-3-yl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (0.020 g, 0.000046 mol, prepared as in Example 15, Steps 1-3, omitting the chiral separation performed in Step 2) and 2,8-dichloroquinoline (0.020 g, 0.00010 mol) in ethanol (0.020 mL, 0.00034 mol) and N,N-diisopropylethylamine (20.0 microL, 0.00015 mol) was heated at 120 °C for 1.3 h. The crude was purified by LCMS (C18 column eluting with a gradient ACN/H2O containing 0.15% NH4OH at 5 mL/min) to give 16 mg. LCMS (M+): 599.

The compound was then deprotected to remove the SEM group. It was stirred in 1 mL DCE and 1 mL TFA for 1 h. It was concentrated and the residue was stirred in 50 µL EDA and 1 mL MeOH for 1 h. The reaction was purified by LCMS (C18 column eluting with a gradient ACN/H2O containing 0.15% NH4OH at 5 mL/min) to give 9.7 mg (45% yield). 1H NMR (400 MHz, DMSO): δ 12.1 (IH, br); 8.9 (IH, s); 8.68 (IH, s); 8.42 (IH, s); 8.15 (IH, d); 7.65 (2H, m); 7.6 (IH, m); 7.15 (IH, t); 7.0 (IH, m); 6.95 (IH, d); 4.85 (IH, m); 3.85 (IH, br); 3.75 (IH, br); 3.45 (2H, m); 3.40-3.26 (2H, m); 2.98 (IH, m); 1.7 (2H, br). LCMS (M+): 469.

Examples 43-46 in the table below were prepared by the general method of Example 42, with the exception that for Example 45, the starting material used was a single enantiomer of 3-pyrrolidin-3-yl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile, prepared by the method of Example 15, Steps 1-3. Additionally, for Examples 43 and 44, the final product was purified by LCMS (C18 column eluting with a gradient of ACN/H2O containing 0.1% TFA) to afford the trifluoroacetate salt of the parent compound.
<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>Name</th>
<th>Salt form</th>
<th>MS (M+H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td></td>
<td>3-[[1-(3-hydroxyquinoxalin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate salt</td>
<td>2TFA</td>
<td>452</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>3-[[1-(8-chloroquinoxalin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate salt</td>
<td>2TFA</td>
<td>470</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>3-[[1-(6-chloro-1-oxidopyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile</td>
<td>-</td>
<td>435</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>3-[[1-(8-fluoroquinoxalin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile</td>
<td>-</td>
<td>454</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>1H NMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>(DMS0-d6): δ 8.9 (IH, s); 8.68 (IH, s); 8.60 (IH, s); 7.95 (IH, m); 7.6 (IH, m); 7.29 (IH, br); 7.06 (IH, m); 7.00 (IH, m); 7.0 (2H, br); 4.80 (IH, m); 3.4-2.8 (7H, br); 1.6 (2H, br)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>(DMSO-d6): δ 12.2 (IH, br); 9.23 (IH, m); 9.01 (IH, s); 8.82 (IH, s); 8.55 (IH, s); 7.87 (IH, m); 7.79 (2H, m); 7.20 (H, m); 7.19 (IH, m); 4.95 (IH, m); 4.0 (IH, m); 3.79 (IH, m); 3.6-3.3 (4H, br); 2.97 (IH, m); 1.75 (2H, br)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>(DMSO-d6): δ 12.1 (IH, br); 8.90 (IH, s); 8.68 (IH, s); 8.41 (IH, s); 7.60 (IH, m); 7.18 (2H, m); 7.0 (IH, m); 6.81 (IH, m); 4.79 (IH, m); 3.7 (2H, m); 3.50 (2H, m); 3.25 (2H, m); 2.81 (IH, m); 1.6 (2H, br)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>(DMSO-d6): δ 12.1 (IH, br); 9.23 (IH, br); 8.89 (IH, s); 8.65 (IH, s); 8.41 (IH, s); 7.64 (IH, m); 7.58 (2H, m); 7.18 (IH, m); 6.99 (IH, m); 4.87 (IH, m); 4.0 (IH, m); 3.77 (IH, m); 3.5-3.3 (4H, br); 2.95 (IH, m); 1.7 (2H, br)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 47. (3S)-3-{[(3S)-1-(5-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

![Chemical Structure](image)

(3S)-3-[(3S)-pyrrolidin-3-yl]-3-[4-{7-[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (175 mg, 0.400 mmol; from Example 15, step 3) (free base) and 2,5-dibromo-1,3-thiazole (290 mg, 1.2 mmol) were mixed in isopropyl alcohol (2.2 mL, 29 mmol). 4-Methylmorpholine (130 microL, 1.2 mmol) was then added. The mixture was heated at 80°C. After 16 h, LCMS showed reaction, M+H 599/601. The intermediate was isolated by prep HPLC-MS using a Waters Fraction-Linx instrument and a 30 mm x 100 mm Sunfire C18 column; 37% CH$_3$CN-H$_2$O (0.1%TFA), 0.5 min, 6 min gradient to 54%; 60 mL/min; retention time 5.6 min. The compound was then freeze dried to give 101 mg. The compound was then deprotected using TFA followed by NH$_4$OH. The deprotection generally involved the following: The compound was dissolved in DCM (1 mL) at 21°C, and TFA (1 mL) was added.
The reaction mixture was then stirred for 1 h. The solution was concentrated to remove TFA. The residue was dissolved in acetonitrile or methanol (1 mL), and 15.0 M of ammonium hydroxide in water (0.25 mL) added. The solution was stirred at 21°C for 2-18 h. After LCMS showed the deprotection was complete, the solution was concentrated by rotary evaporation. The product was isolated by prep HPLCMS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; 30 mL/min; 12% CH₃CN-H₂O (0.1% TFA), 0.5 min, gradient to 30% at 6 min; detector set at m/z 471; retention time, 5.5 min (3 runs). The compound was then freeze-dried to give the TFA salt (47 mg). ¹H NMR (400 MHz, DMSO-D₆): δ 12.8 (s, IH); 9.03 (s, IH); 8.87 (s, IH); 8.56 (s, IH); 7.84 (s, IH); 7.18 (s, IH); 7.17 (s, IH); 4.88 (m, IH); 3.64 (m, IH); 3.22-3.42 (m, 5H); 2.96 (m, IH); 1.71 (m, 2H); LCMS (M+H)⁺: 469.

Example 48. 2-chloro-6-((3S)-3-((1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl][ethyl]pyrrolidin-1-yl)benzonitrile trifluoroacetate

A solution of (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (92 mg, 0.21 mmol; from Example 15, step 3), NMP (1.5 mL, 16 mmol), 4-methylmorpholine (69 microL, 0.63 mmol) and 2-chloro-6-fluorobenzonitrile (65 mg, 0.42 mmol) was heated at 90°C for 50 min in a microwave reactor. LCMS showed about 80% complete reaction, and showed the expected, [M+H] 573. The intermediate was isolated by preparative HPLCMS using a Waters Fraction-Linx instrument and a 30 mm x 100 mm Sunfire C18 column; 49% CH₃CN-H₂O (0.1% TFA), 0.5 min, to 67% at 6 min; 60 mL/min; retention time 5.3 min. The solvent was then removed by rotary evaporation. The compound was then deprotected using using TFA followed by NH₄OH (see general procedure for Example 47). The product was isolated by prep LCMS using a Waters Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; 30 mL/min; 29% CH₃CN-H₂O (0.1% TFA), 0.5 min, gradient to 47% at 6 min; retention time 5.1 min. The compound was freeze-dried to give the TFA salt, 24 mg, a white solid. ¹H NMR (400 MHz, DMSO-D6): δ 12.8 (s, IH); 8.99 (s, IH); 8.82 (s, IH); 8.53 (s, IH); 7.77 (s, IH); 7.37 (t, IH); 7.12 (s, IH); 6.86 (d, IH); 6.74 (d, IH); 4.87 (m, IH);
Example 49. 3-((3S)-3-{(lS)-2-cyano-l-[4K7H^yrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)phthalonitrile trifluoroacetate

2-Bromo-6-((3S)-3-{(lS)-2-cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl}ethyl}pyrrolidin-1-yl)benzonitrile (20.0 mg, 0.0324 mmol, prepared in a manner similar to that described in Example 48) was stirred in NMP (0.75 mL, 7.8 mmol). Zinc cyanide (57.0 mg, 0.486 mmol) was then added. Tetrakis(triphenylphosphine)palladium(0) (37.4 mg, 0.0324 mmol) was next added, and the solution was flushed with nitrogen (subsurface). The vial was then sealed and heated at 150°C for 20 min in a microwave reactor. The reaction was worked up with 5% NaHCO₃ and EtOAc and filtered. The intermediate was isolated by preparative LCMS using a Waters Fraction-Linx instrument and a 30 mm x 100 mm Sunfire C18 column; 46% CH₃CN-H₂O (0.1% TFA), 0.5 min, to 64% at 6 min; 60 mL/min; detector set at m/z 564; retention time 5.3 min. The solvent was then removed by rotary evaporation. The compound was then deprotected using using TFA followed by NH₄OH (see general procedure for Example 47). The product was isolated by prep LCMS using a Waters Fraction-Linx instrument and a 19mm x 100mm Sunfire C18 column; 24% CH₃CN-H₂O (0.1% TFA), 0.5 min, to 42% at 6 min; 30 mL/min; retention time 5.5 min. freeze-dried to give a white solid TFA salt. LCMS (M+H)⁺: 434. ¹H NMR (300 MHz, DMSO-d₆): δ 12.4 (s, IH); 8.93 (s, IH); 8.75 (s, IH); 8.48 (s, IH); 7.69 (s, IH); 7.55 (dd, IH); 7.25 (d, IH); 7.10 (d, IH); 7.05 (s, IH); 4.86 (m, IH); 3.2-3.8 (m, 6H); 2.93 (m, IH); 1.69 (m, 2H).
Example 50. 2K(3S)-3-{(1S)-2-cyano-l-[4K7H^yrrolo[2,3-d]pyrimidin-4-yl]-lH-
pyrazol-1-yl] ethyl}pyrrolidin-l-yl)-4-(trifluoromethyl)nicotinonitrile trifluoroacetate

6-Chloro-2-{(3S)-3-{(1S)-2-cyano-l-[4-(7{-[2-(trimethylsilyl)ethoxy]methyl}-7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-
(trifluoromethyl)nicotinonitrile (7.0 mg, 0.01 1 mmol, prepared in a manner similar to described in
Example 51) was dissolved in methanol (1.0 mL, 25 mmol), and 6 mg 10% Pd/C added. Stirred
at 21 C. A balloon containing hydrogen was attached to the flask for 0.5 h. LCMS showed the
desired [M+H] 608, amine byproduct, [M+H] 612, other over-reduction byproducts, and a trace
of remaining starting material. The product was isolated by preparative HPLC-MS using a Waters
Fraction-Linx instrument and a 19 mm x 100 mm Sunfire C18 column; 51% CH$_3$CN-H$_2$O
(0.1%TFA), to 69% at 6 min; 30 mL/min; detector set at m/z 608; retention time, 5.0 min. The
compound was then deprotected using TFA followed by NH$_4$OH (see general procedure for
Example 47). The product was isolated by preparative HPLC-MS using a Waters Fraction-Linx
instrument and a 19 mm x 100 mm Sunfire C18 column; 30% CH$_3$CN-H$_2$O (0.1%TFA), to 48%
at 6 min; 30 mL/min; retention time, 4.1 min. LCMS (M+H)$^+$: 478.

Example 51. 3-{3S)-3-{[lS)-2-cyano-l-[4K7H^yrrolo[2,3-d]pyrimidin-4-yl]-lH-
pyrazol-1-yl] ethyl}pyrrolidin-l-yl)pyrazine-2-carbonitrile trifluoroacetate

(3S)-3-[3S)-pyrrolidin-3-yl]-3-[4-(7{-[2-(trimethylsilyl)ethoxy]methyl}-7H-
pyrrolo[2,3-
d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (38 mg, 0.087 mmol; from Example 15, step 3)
was dissolved in NMP (0.7 mL, 7 mmol) and N,N-diisopropylethylamine (3.0El microL, 0.17
mmol). 3-chloropyrazine-2-carbonitrile (18 mg, 0.13 mmol) was added. The solution was stirred at 80°C for 20 min (or 2 l°C for 16h). LCMS showed fairly clean conversion to the expected intermediate, and showed [M+H]: 541. The intermediate was isolated by preparative HPLC-MS using a Waters Fraction-Linx instrument and a 30 mm x 100 mm Sunfire C18 column; 44% CH₃CN-H₂O (0.1%TFA), 0.5 min; 6 min gradient to 62%; 60 mL/min; retention time, 4.9 min. The solvent was then removed by rotary evaporation. The compound was then deprotected using TFA followed by NH₃OH (see general procedure for Example 47). The product was isolated by prep LCMS using a Waters Fraction-Linx instrument and a 19mmx100mm Sunfire C18 column; 30mL/min; 20% CH₃CN-H₂O (0.1%TFA), 0.5min, gradient to 38% at 6min. freeze-dried to give a yellow solid TFA salt. ¹HNM (400 MHz, DMSO-δ6): δ 12.7 (s, IH); 9.01 (s, IH); 8.83 (s, IH); 8.54 (s, IH); 8.36 (d, IH); 7.95 (d, IH); 7.79 (s, IH); 7.14 (s, IH); 4.89 (m, IH); 3.92 (m, IH); 3.80 (m, IH); 3.61 (m, 2H); 3.40 (m, IH); 3.29 (m, IH); 2.91 (m, IH); 1.71 (m, 2H); LCMS (M+H)^+: 411.

Examples 52-69.

The examples in the table below were made by procedures analogous to those for producing Examples 47-51.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>Name</th>
<th>M+H</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td></td>
<td>2-(3-‘{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)benzonitrile trifluoroacetate salt</td>
<td>409</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>2-({(3S)-3-‘{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methylbenzonitrile trifluoroacetate salt</td>
<td>423</td>
</tr>
<tr>
<td>Ex.</td>
<td>Structure</td>
<td>Name</td>
<td>M+H</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>2-((3S)-3-{1(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-fluorobenzonitrile trifluoroacetate salt</td>
<td>427</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>2-((3S)-3-{1(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methoxybenzonitrile trifluoroacetate salt</td>
<td>439</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>2-((3S)-3-{1(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(trifluoromethyl)benzonitrile trifluoroacetate salt</td>
<td>477</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>2-bromo-6-((3S)-3-{1(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)benzonitrile trifluoroacetate salt</td>
<td>487</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>2-((3S)-3-{1(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-3-fluorobenzonitrile trifluoroacetate salt</td>
<td>427</td>
</tr>
<tr>
<td>Ex.</td>
<td>Structure</td>
<td>Name</td>
<td>M+H</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)isophthalonitrile trifluoroacetate salt</td>
<td>434</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>6-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-difluorobenzonitrile trifluoroacetate salt</td>
<td>445</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-3,5,6-trifluorobenzonitrile trifluoroacetate salt</td>
<td>463</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)nicotinonitrile trifluoroacetate salt</td>
<td>410</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>6-((S)-3-{(S)-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-2-cyanoethyl}pyrrolidin-1-yl)-2-chloro-5-fluoronicotinonitrile trifluoroacetate salt</td>
<td>462</td>
</tr>
<tr>
<td>Ex.</td>
<td>Structure</td>
<td>Name</td>
<td>M+H</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>3-chloro-5-(((3S)-3-{(1S)-2-cyano-1-[4-{(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl}pyrrolidin-1-yl})isonicotinonitrile trifluoroacetate salt</td>
<td>444</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>3-(((3S)-3-{(1S)-2-cyano-1-[4-{(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl}pyrrolidin-1-yl})-2,5,6-trifluoroisonicotinonitrile trifluoroacetate salt</td>
<td>464</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>(3S)-3-{(3S)-1-[{3-fluoro-4-(trifluoromethyl)pyridin-2-yl}pyrrolidin-3-yl}-3-{4-{(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}propanenitrile trifluoroacetate salt</td>
<td>471</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>(3S)-3-{4-{(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}-3-{(3S)-1-(3,5,6-trifluoropyridin-2-yl)pyrrolidin-3-yl}propanenitrile trifluoroacetate salt</td>
<td>439</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>3-(((3S)-3-{(1S)-2-cyano-1-[4-{(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl}pyrrolidin-1-yl})pyridine-2-carbonitrile trifluoroacetate salt</td>
<td>410</td>
</tr>
<tr>
<td>Ex.</td>
<td>Structure</td>
<td>Name</td>
<td>M+H</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>2-chloro-6-((3S)-3-([1S]-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl)ethy</td>
<td>444</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex.</th>
<th>¹H NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.6 (s, 1H); 9.00 (s, 1H); 8.83 (s, 1H); 8.54 (s, 1H); 7.78 (s, 1H); 7.42 (m, 1H); 7.14 (s, 1H); 6.59 (m, 2H); 4.88 (m, 1H); 3.73 (m, 1H); 3.22-3.69 (m, 5H); 2.93 (m, 1H); 1.69 (m, 2H)</td>
</tr>
<tr>
<td>56</td>
<td>¹H NMR (400 MHz, DMSO-D6): δ 12.6 (s, 1H); 8.98 (s, 1H); 8.80 (s, 1H); 8.52 (s, 1H); 7.75 (s, 1H); 7.56 (t, 1H); 7.12 (m, 3H); 4.88 (m, 1H); 3.75 (m, 1H); 3.59 (m, 3H); 3.39 (m, 1H); 3.29 (m, 1H); 2.92 (m, 1H); 1.68 (m, 2H)</td>
</tr>
<tr>
<td>57</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.5 (s, 1H); 8.96 (s, 1H); 8.79 (s, 1H); 8.51 (s, 1H); 7.74 (s, 1H); 7.30 (t, 1H); 7.10 (s, 1H); 7.03 (d, 1H); 6.80 (d, 1H); 4.86 (m, 1H); 3.71 (m, 1H); 3.21-3.64 (m, 5H); 2.91 (m, 1H); 1.67 (m, 2H)</td>
</tr>
<tr>
<td>58</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.5 (s, 1H); 8.97 (s, 1H); 8.79 (s, 1H); 8.50 (s, 1H); 7.73 (s, 1H); 7.37 (m, 2H); 7.10 (s, 1H); 6.81 (td, 1H); 4.87 (m, 1H); 3.5-4.0 (m, 4H); 3.30 (m, 2H); 2.87 (m, 1H); 1.63 (m, 2H)</td>
</tr>
<tr>
<td>59</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.5 (s, 1H); 8.95 (s, 1H); 8.78 (s, 1H); 8.50 (s, 1H); 7.82 (d, 2H); 7.72 (s, 1H); 7.08 (s, 1H); 6.83 (t, 1H); 4.94 (m, 1H); 4.02 (m, 1H); 3.88 (m, 3H); 3.31 (m, 2H); 2.92 (m, 1H); 1.77 (m, 1H); 1.64 (m, 1H)</td>
</tr>
<tr>
<td>60</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.7 (s, 1H); 9.01 (s, 1H); 8.84 (s, 1H); 8.54 (s, 1H); 7.79 (s, 1H); 7.37 (m, 1H); 7.15 (s, 1H); 6.65 (m, 1H); 4.90 (m, 1H); 3.87 (m, 1H); 3.74 (m, 3H); 3.32 (m, 2H); 2.86 (m, 1H); 1.63 (m, 2H)</td>
</tr>
<tr>
<td>61</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.6 (s, 1H); 8.99 (s, 1H); 8.82 (s, 1H); 8.52 (s, 1H); 7.82 (m, 1H); 7.77 (s, 1H); 7.15 (s, 1H); 4.88 (m, 1H); 3.81 (m, 1H); 3.66 (m, 3H); 3.32 (m, 2H); 2.86 (m, 1H); 1.65 (m, 2H)</td>
</tr>
<tr>
<td>Ex.</td>
<td>¹H NMR</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>62</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.7 (s, 1H); 9.03 (s, 1H); 8.86 (s, 1H); 8.56 (s, 1H); 8.31 (dd, 1H); 7.94 (dd, 1H); 7.82 (s, 1H); 7.18 (s, 1H); 6.70 (dd, 1H); 4.90 (m, 1H); 3.91 (m, 1H); 3.78 (m, 1H); 3.60 (m, 2H); 3.35 (m, 2H); 2.89 (m, 1H); 1.70 (m, 2H)</td>
</tr>
<tr>
<td>63</td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.5 (s, 1H); 8.97 (s, 1H); 8.80 (s, 1H); 8.51 (s, 1H); 8.00 (d, 1H); 7.74 (s, 1H); 7.10 (s, 1H); 4.86 (m, 1H); 3.92 (m, 1H); 3.71 (m, 1H); 3.54 (m, 2H); 3.35 (m, 2H); 2.85 (m, 1H); 1.64 (m, 2H)</td>
</tr>
<tr>
<td>64</td>
<td>¹H NMR (400 MHz, DMSO-D6): δ 12.6 (s, 1H); 9.00 (s, 1H); 8.84 (s, 1H); 8.54 (s, 1H); 8.17 (s, 1H); 7.97 (s, 1H); 7.79 (s, 1H); 7.14 (s, 1H); 4.88 (m, 1H); 3.84 (m, 1H); 3.71 (m, 1H); 3.62 (m, 2H); 3.40 (m, 1H); 3.29 (m, 1H); 2.94 (m, 1H); 1.75 (m, 1H); 1.63 (m, 1H)</td>
</tr>
<tr>
<td>67</td>
<td>¹H NMR (400 MHz, DMSO-D6): δ 12.6 (s, 1H); 8.98 (s, 1H); 8.81 (s, 1H); 8.51 (s, 1H); 7.97 (m, 1H); 7.76 (s, 1H); 7.12 (s, 1H); 4.84 (m, 1H); 3.75 (m, 1H); 3.57 (m, 1H); 3.26 - 3.45 (m, 4H); 2.83 (m, 1H); 1.61 (m, 2H)</td>
</tr>
<tr>
<td>68</td>
<td>¹H NMR (400 MHz, DMSO-D6): δ 12.7 (s, 1H); 9.02 (s, 1H); 8.84 (s, 1H); 8.55 (s, 1H); 7.96 (d, 1H); 7.80 (s, 1H); 7.43 (dd, 1H); 7.23 (d, 1H); 7.15 (s, 1H); 4.88 (m, 1H); 3.72 (m, 1H); 3.45-3.65 (m, 3H); 3.40 (m, 1H); 3.28 (m, 1H); 2.93 (m, 1H); 1.68 (m, 2H)</td>
</tr>
<tr>
<td>69</td>
<td>¹H NMR of SEM protected intermediate (500 MHz, DMSO-D6, recorded at 90 C):δ 8.89 (s, 1H); 8.84 (s, 1H); 8.46 (s, 1H); 7.86 (d, 1H); 7.82 (d, 1H); 7.12 (d, 1H); 6.51 (d, 1H); 5.67 (s, 2H); 4.87 (m, 1H); 3.82 (m, 1H); 3.59 (t, 2H); 3.55 (br m, 1H); 3.42 (m, 1H); 3.38 (m, 1H); 3.36 (m, 1H); 3.29 (m, 1H); 2.98 (m, 1H); 1.78 (m, 2H); 0.86 (t, 2H); -0.07 (s, 9H)</td>
</tr>
<tr>
<td></td>
<td>¹H NMR (300 MHz, DMSO-D6): δ 12.6 (s, 1H); 8.99 (s, 1H); 8.83 (s, 1H); 8.53 (s, 1H); 7.90 (m, 1H); 7.78 (s, 1H); 7.13 (s, 1H); 6.51 (m, 1H); 4.87 (m, 1H); 3.22- 3.94 (m, 6H); 2.91 (m, 1H); 1.69 (m, 2H)</td>
</tr>
</tbody>
</table>
Example 70. 2-((3S)-3-{2-fluoro-l-[4-(7H-pyrrolo[2,3-d]pyrimidin- 4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-l-yl)[l,3]oxazolo[5, 4-b]pyridine phosphoric acid salt

![Chemical structure diagram]

Step 1. tert-butyl (3S)-3-(hydroxymethyl)pyrrolidine-l-carboxylate

A solution of (3S)-l-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (Chem-Impex; 2.5 g, 12 mmol) in THF (54 mL) was cooled to 0°C and 1.0 M OfBH₄ in THF (14 mL, 14 mmol) was slowly added. The reaction was allowed to warm to ambient temperature and was stirred for 4 h, at which time LCMS analysis showed complete reduction to alcohol. The solution was cooled to 0°C and quenched by careful addition of IN HCl. EtOAc was added and the phases were separated, the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with sat'd NaHCO₃, then sat'd NaCl, dried over MgSO₄ and reduced in vacuo to leave the crude product as a colorless oil, 2.15 g. ¹HNMR (300 MHz, CDCl₃): δ 3.7-3.2 (m, 5H), 3.1 (m, IH), 2.4 (m, IH), 1.95 (m, IH), 1.7 (s, 2H), 1.45 (s, 9H). MS (EI): 146.0 (M-tBu + 2H), 128.1 (M-OtBu).

Step 2: tert-butyl (3S)-3-formylpyrrolidine-l-carboxylate

Oxalyl chloride (1.4 mL, 16 mmol) was dissolved in DCM (28 mL) and this solution was cooled to -78°C, then DMSO (1.8 mL, 26 mmol) was added. To this was then added a solution of tert-butyl (3S)-3-(hydroxymethyl)pyrrolidine-l-carboxylate (2.15 g, 10.7 mmol) in DCM (28 mL), followed in 20 min by addition of 4-methylmorpholine (5.9 mL, 53 mmol). The reaction was held at -78°C for 20 min, then warmed to 0°C for 1h, at which time tic analysis showed complete oxidation to aldehyde. The reaction was quenched by addition of water and CHCl₃, the phases were separated and the aqueous phase was extracted with additional CHCl₃. The combined organic phase was washed with water, then IN HCl, then sat'd NaHCO₃, sat'd NaCl, dried over MgSO₄ and reduced in vacuo to leave the crude product which was used without further purification, 2.1 g. ¹HNMR (300 MHz, CDCl₃): δ 9.68 (s, IH), 3.68 (m, IH), 3.50 (m, IH), 3.37 (m, 2H), 3.0 (m, IH), 2.13 (m, 2H), 1.42 (s, 9H). MS (EI): 144.1 (M-tBu + 2H), 126.0 (M-OtBu).
Step 3: tert-butyl (3S)-3-{2-fluoro-1-hydroxy-2-(phenylsulfonyl)ethyl]pyrrolidine-1-carboxylate

N,N-Diisopropylamine (1.62 mL, 11.59 mmol) was added to THF (9.89 mL) and this solution was cooled to -78°C, then 1.60 M of n-butyllithium in hexane (6.59 mL, 10.54 mmol) was added. The reaction was held at -78°C for 5 min, then warmed to 0°C for 15 min, then cooled back to -78°C. To this was added a solution of fluoromethyl phenyl sulfone (2.02 g, 11.59 mol) in THF (14 mL), the reaction was held for 20 min, then a solution of tert-butyl (3S)-3-formylpyrrolidine-1-carboxylate (2.1 g, 10.0 mmol) in THF (14 mL) was added. The reaction was held at -78°C for 1.5 h, at which time LCMS analysis indicated complete reaction. The reaction was quenched at -78°C by addition of sat'd NH₄Cl solution and extracted into EtOAc. The phases were separated and the organic phase was washed with water, then sat'd NaCl, and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified (120 g prepacked SiO₂ cartridge, 85 mL/min, gradient from 0-65% EtOAc/hexanes over 25 min) to obtain the desired product, 2.96 g. ¹H NMR (300 MHz, CDCl₃): δ 7.91 (m, 2H), 7.75 (m, 1H), 7.66 (m, 2H), 5.06 (m, 0.5H), 4.91 (m, 0.5H), 4.31 (m, 1H), 3.51 (m, 2H), 3.24 (m, 2H), 2.99 (m, 1H), 2.54 (m, 1H), 1.92 (m, 2H), 1.42 (s, 9H). MS (EI): 318.1 (M-tBu + 2H), 300.0 (M-OtBu), 274.1 (M-BOC + H).

Step 4: tert-butyl (3S)-3-{2-fluoro-1-hydroxyethyl]pyrrolidine-1-carboxylate

tert-Butyl (3S)-3-{2-fluoro-1-hydroxy-2-(phenylsulfonyl)ethyl]pyrrolidine-1-carboxylate (2.96 g, 7.93 mmol) was dissolved in CH₃OH (290 mL) and Na₂HPO₄ (6.8 g, 48 mmol) was added, the reaction was cooled to -5°C and sodium-mercury amalgam (10% Na) (11 g, 48 mmol) was added. The reaction was held at -5°C for 1 to 3 h at which time LCMS analysis indicated complete reaction. Stirring was discontinued and the solids were allowed to settle. The supernatant methanolic phase was decanted and the solid residue was rinsed with methanol, the combined methanol phase was kept at 0°C. The pH was adjusted to neutral by careful addition of IN HCl, then the solution was reduced in vacuo, keeping the temperature below 15°C. The residue was partitioned between sat'd NaCl and EtOAc, the phases were separated and the aqueous phase was extracted again with EtOAc. The combined EtOAc phase was dried over MgSO₄ and reduced in vacuo to give the crude product, 1.8 g, which was carried forward without further purification. MS (EI): 178.0 (M-tBu + 2H), 160.0 (M-OtBu).

Step 5: tert-butyl (3S)-3-{2-fluoro-1-[(methylsulfonyl)oxy]ethyl]pyrrolidine-1-
A solution of tert-butyl (3S)-3-(2-fluoro-1-hydroxyethyl)pyrrolidine-1-carboxylate (1.80 g, 7.72 mmol) in DCM (35 mL) was cooled to 0°C and methanesulfonyl chloride (657 microL, 8.49 mmol) was added followed by Et3N (2.15 mL, 15.4 mmol), the reaction was held at 0°C for 1 h at which time LCMS analysis indicated complete reaction. The reaction mixture was partitioned between water and CHCl3, the phases were separated and the aqueous phase was extracted with additional CHCl3. The combined organic phase was washed with IN HCl, sat'd NaHC03, water, then sat'd NaCl, dried over MgSO4 and reduced in vacuo to leave the crude product, which was purified (120 g prepacked Si02 cartridge, 85 mL/min, hexanes for 2 min, then gradient from 0-70% EtOAc/hexanes over 12 min, held at 70% EtOAc/hexanes for 10 min, product was visualized on tic plate with KMn04 stain) to give the desired product, 1.6 g. 1H NMR (300 MHz, CDCl3): δ 4.9-4.4 (m, 3H), 3.50 (m, 2H), 3.22 (m, 2H), 3.09 (s, 3H), 2.50 (m, IH), 2.2-1.7 (m, 2H), 1.43 (s, 9H). 19F NMR (300 MHz, CDCl3): δ -226.39 (td, J = 49.5, 17.4 Hz), -227.34 (td, J = 47.3, 19.0 Hz), -227.59 (td, J = 47.3, 19.5 Hz). MS (EI): 256.0 (M-tBu + 2H), 238.0 (M-OtBu).

To 4-(lH-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (1.71 g, 5.41 mmol, prepared as described in WO 2007/070514) was added sodium hydride (60% in mineral oil, 60%, 247 mg, 6.17 mmol) followed by DMF (4.1 mL). After gas evolution ceased, a solution of tert-butyl (3S)-3-[2-fluoro-l-[(methylsulfonyl)oxy]ethyl]pyrrolidine-1-carboxylate (1.6 g, 5.1 mmol) in DMF (17.1 mL) was added and the reaction was heated to 60°C for 16 to 36 h. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then sat'd NaCl, dried over MgSO4 and reduced in vacuo to leave the crude product. The mixture was separated (120 g prepacked Si02 cartridge, 85 mL/min, solvent A = 92/5/3 hexanes/EtOAc/IPA, solvent B = 49/45/6 hexanes/EtOAc/IPA. Eluted with gradient from 0-40% B over 20 min, and held at 40% B for 10 min. Mixed fractions were recombined and purified by same manner to give the desired (first eluting) isomer, 0.8g. 1H NMR (300 MHz, CDCl3): δ 8.91 (s, IH), 8.374 (s, IH), 8.367 (s, IH), 7.46 (d, IH, J = 3.68 Hz), 6.86 (d, IH, J = 3.78 Hz), 5.74 (s, 2H), 5.0-4.6 (m, 2H), 4.4 (m, IH), 4.1 (m, IH), 3.76 (m, IH), 3.60 (m, 2H), 3.54 (m, IH), 3.25 (m, 2H), 2.92 (m, IH), 1.9-1.6 (m, IH), 1.52 (s, 9H), 0.97 (m, 2H). 19F NMR (300 MHz, CDCl3):
\[\delta -225.12 \text{ (td, } J = 49.5, 19.0 \text{ Hz), } -225.52 \text{ (td, } J = 49.5, 19.8 \text{ Hz).} \] MS (EI): 531.2 (M+H).

Step 7: 4-[(l-[2-fluoro-l-[(3S)-pyrrolidin-3-yl]ethyl]-lH-pyrazol-4-yl)-7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-4-yl]-lH-pyrazol-4-yl]-7H-pyrrolo[2,3-d]pyrimidine

Tert-Butyl (3S)-3-[2-fluoro-l-[4-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-4-yl]ethyl]pyrrolidine-1-carboxylate (800.0 mg, 1.507 mmol) was dissolved in THF (12.0 mL), then 12.0 M HCl (1.40 mL, 16.7 mmol) was added. The reaction was allowed to stir at ambient temperature for 16 h at which time LCMS analysis indicated complete BOC deprotection. The reaction was neutralized by addition of sat'd NaHCO\(_3\) followed by solid NaHCO\(_3\) until pH was basic. The reaction solution was extracted with EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, then sat'd NaCl, dried over MgSO\(_4\) and reduced in vacuo to leave the crude product. MS (EI): 431.2 (M+H).

Step 8: 2-((3S)-3-[2-fluoro-l-[(3S)-pyrrolidin-3-yl]ethyl]-lH-pyrazol-4-yl]-lH-pyrazol-4-yl]-lH-pyrazol-4-yl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-4-yl]-lH-pyrazol-4-yl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-4-yl]-7H-pyrrolo[2,3-d]pyrimidine

[1,3]oxazolo[5,4-b]pyridine-2(1H)-thione (233 mg, 1.53 mmol, prepared as in Example 33, Step 4) and 4-[(l-[2-fluoro-l-[(3S)-pyrrolidin-3-yl]ethyl]-lH-pyrazol-4-yl]-7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidine (550 mg, 1.3 mmol) were mixed in 1.4-dioxane (6.0 mL) and the reaction was heated to 70\(^\circ\)C for 2 h at which point LCMS analysis indicated complete reaction to the intermediate hydroxypyridinyl thiourea. The reaction was cooled to ambient temperature and was concentrated in vacuo, then EtOH (7.4 mL) was added and the mixture was stirred well until the thiourea was suspended freely in the solvent. This mixture was then treated with AgNO\(_3\) (434 mg, 2.55 mmol) and NH\(_3\)OH (790 microL, 11.5 mmol), and the reaction was stirred at ambient temperature for 16 h at which point LCMS analysis indicated complete conversion to the desired product. The reaction was filtered through a plug of Celite on a sintered glass funnel and rinsed with dioxane (20 mL) and EtOAc (20 mL). The filtrate was reduced in vacuo and the residue was partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then sat'd NaCl, dried over MgSO\(_4\) and reduced in vacuo to leave the crude product which was purified (40 g prepacked Silica cartridge, 40 mL/min, DCM for 3 min, then isocratic elution with 5% MeOH/DCM for 15 min) to recover the product, 592 mg. MS (EI): 549.2 (M+H).
Step 9: 2-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)[l, 3]oxazolo[5, 4-b]pyridine trifluoroacetate

To 2-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)[l,3]oxazolo[5,4-b]pyridine (592 mg, 1.07 mmol) was added DCM (5.0 mL) and TFA (5.0 mL). The reaction was stirred at ambient temperature for 1h, then the solvents were removed in vacuo and methanol (5.0 mL) and NH$_3$OH (5.0 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed in vacuo and the residual material was purified by reverse phase preparative LCMS on a Waters FractionLynx system using mass directed fractionation (column Waters SunFire C18, 5 µM particle size, 30x100 mm, mobile phase A : water (0.1% TFA), B : acetonitrile (0.1% TFA), gradient 17-37% B over 5 min, flow rate 60 mL/min), the product was isolated as a tris-TFA salt, 455 mg. 1H NMR (300 MHz, CD$_3$OD): δ 8.97 (s, 1H), 8.90 (s, 1H), 8.55 (s, 1H), 7.88 (d, IH, J = 3.88 Hz), 7.86 (dd, IH, J = 5.40, 1.45 Hz), 7.58 (dd, IH, J = 7.64, 1.38 Hz), 7.31 (d, IH, J = 3.58 Hz), 7.20 (dd, IH, J = 7.83, 4.90 Hz), 5.09 (m, IH), 5.0-4.8 (m, 2H), 4.02 (m, IH), 3.76 (m, IH), 3.61 (m, 2H), 3.15 (m, IH), 1.96 (m, 2H). MS (El): 419.1 (M+H).

Step 10: 2-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)[l, 3]oxazolo[5, 4-b]pyridine phosphate

2-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)[l,3]oxazolo[5, 4-b]pyridine tris-trifluoroacetate (455 mg, 0.60 mmol) was partitioned between sat’d NaHCO$_3$ and 3:1 CHCl$_3$/IPA, the phases were separated and the aqueous phase was extracted with additional solvent. The combined organic phase was washed with sat’d NaCl, dried over MgSO$_4$ and reduced in vacuo to leave the free base. To this material was added IPA (10 mL) and EtOH (3 mL) and the reaction was heated to 90°C under a reflux condenser until complete dissolution occurred. A solution of H$_3$PO$_4$ (61 mg, 0.63 mmol) in 200 microL IPA was then added, and the reaction was removed from the oil bath and allowed to stand and cool. Upon cooling a solid was precipitated, and this was collected by filtration. The solids were dried in vacuo to give the product as the phosphate salt, 204 mg. 1H NMR (300 MHz, DMSO-d$_6$): δ 12.1 (bs, IH), 8.80 (s, IH), 8.65 (s, IH), 8.38 (s, IH), 7.84 (dd, IH, J = 5.22, 1.32 Hz), 7.58 (m, 2H), 7.17 (dd, IH, J = 7.63, 5.15 Hz), 6.96 (m, IH), 5.00 (m, IH), 4.81 (m, 2H), 3.88 (m, IH), 3.65 (m, IH), 3.47 (m, 2H), 2.95 (m, IH), 1.72 (m, 2H). 19F NMR (300 MHz, DMSO-d$_6$): δ -223.176 (td, J = 46.1, 15.9 Hz). MS (El): 419.1 (M+H).
Scheme 1. The carboxylic acid 1 was reduced to alcohol 2 by action of borane, which was subsequently oxidized via a Swern oxidation to the corresponding aldehyde 3. The anion of fluoromethyl phenyl sulfone was added to 3 to give the intermediate 4, which was desulfonylated under reductive conditions using sodium amalgam to give the fluoroalcohol 5. This compound was then converted to mesylate 6, which was added to the anion of the pyrazole core, the resulting diastereomers were separated by silica gel chromatography to give the desired single isomer of the N-BOC pyrrolidine derivative 7. This was cleanly deprotected under acidic conditions to give the advanced intermediate 8, which underwent reaction with the indicated oxazolopyridine-2-thiol in a two-step procedure, followed by a two-step deprotection procedure to give the final product 9 in good yield and high diastereomeric excess.
Example 71. 2-((3R)-3-{2-fluoro-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-yl]ethyl}pyrrolidin-l-yl)[l,3]oxazolo[5, 4-b]pyridine phosphoric acid salt

This example can be prepared by following steps 1-10 for Example 70, substituting (3R)-1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid for the (S) isomer in step 1. All following steps are carried out analogously. 1H NMR (300 MHz, DMSO-d$_6$): δ 12.1 (bs, 1H), 8.80 (s, 1H), 8.65 (s, 1H), 8.38 (s, 1H), 7.84 (dd, J = 5.22, 1.32 Hz), 7.58 (m, 2H), 7.17 (dd, IH, J = 7.63, 5.15 Hz), 6.96 (m, 1H), 5.00 (m, 1H), 4.81 (m, 2H), 3.88 (m, 1H), 3.65 (m, 1H), 3.47 (m, 2H), 2.95 (m, 1H), 1.72 (m, 2H). 19F NMR (300 MHz, DMSO-d$_6$): δ -223.176 (td, J = 46.1, 15.9 Hz). MS (EI): 419.1 (M+H).

Example 72. 2-(3-(l-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-yl)-2-fluoroethyl)pyrrolidin-l-yl)oxazolo[5,4-b]pyridine trifluoroacetate

The racemic product above can be prepared by following steps 1-9 for Example 70, utilizing racemic l-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid in step 1. Alternatively, the following sequence may be used to access the racemic product.

Step 1: tert-butyl 3-[[methoxy(methyl)amino]carbonyl]pyrrolidine-1-carboxylate

To l-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (1.0 g, 4.6 mmol) was added DMF (26 mL) followed by N,N,N',N'-tetramethyl-O-(7-azabenzotriazol-1-yl)uronium hexafluorophosphate (2.6 g, 7.0 mmol) and N,N-diisopropylethylamine (3.9 mL, 22 mmol). N,O-Dimethylhydroxylamine HCl (910 mg, 9.3 mmol) was then added and the reaction was stirred at
ambient temperature for 16 h at which point LCMS and tic indicated complete conversion to the Weinreb amide. The reaction mixture was partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then sat’d NaCl, dried over MgSO$_4$ and reduced in vacuo to leave the crude product, which was then purified by column chromatography (40g prepacked Si$_2$O$_2$ cartridge, 40 mL/min, gradient from 0-90% EtOAc/hexanes over 20 min) to give the desired product, 1.05 g. 1H NMR (300 MHz, CDCl$_3$): δ 3.71 (s, 3H), 3.7-3.3 (m, 5H), 3.20 (s, 3H), 2.1 (m, 2H), 1.45 (s, 9H). MS (EI): 203.1 (M-tBu + 2H), 185.1 (M-OtBu).

Step 2: tert-butyl 3-acetylpyrrolidine-l-carboxylate

A solution of tert-butyl 3-[[methoxy(methyl)amino]carbonyl]pyrrolidine-l-carboxylate (1.00 g, 3.87 mmol) in THF (11 mL) was cooled to -78°C, then 3.0 M CH$_3$MgBr in ether (3.87 mL, 11.6 mmol) was added. The reaction was held at -78°C for 1.5 h, then warmed to 0°C for 1 h, at which point thin layer chromatography analysis indicated complete conversion to ketone. The reaction was quenched with sat’d NH$_4$Cl and extracted with EtOAc. The phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with sat’d NaCl, dried over MgSO$_4$ and reduced in vacuo to leave the crude product, which was used directly in the next reaction. 1H NMR (300 MHz, CDCl$_3$): δ 3.6-3.4 (m, 3H), 3.33 (s, IH), 3.12 (m, IH), 2.20 (s, 3H), 2.06 (m, 2H), 1.45 (s, 9H). MS (EI): 158.1 (M-tBu + 2H), 140.1 (M-OtBu).

N,N-Diisopropylamine (63 l microL, 4.50 mmol) was added to THF (4.2 mL) and this solution was cooled to -78°C, then 1.60 M n-butyllithium in hexane (2.81 mL, 4.50 mmol) was added. The reaction was held at -78°C for 5 min, then warmed to 0°C for 15 min, then cooled back to -78°C. To this was added a solution of tert-butyl 3-acetylpyrrolidine-l-carboxylate (800 mg, 3.75 mmol) in THF (10 mL). This was held at -40°C for 20 min, then TMSCl (714 microL, 5.63 mmol) was added. The reaction was warmed from -40°C to -10°C over 1.5 h, then the reaction was cooled back to -40°C, quenched by addition of sat’d NaHCO$_3$ and extracted into EtOAc. The phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water followed by 0.1N HCl solution until pH of aqueous wash is acidic. The organic phase was then washed twice with water, then sat’d NaCl, dried over MgSO$_4$ and reduced in vacuo to leave the crude product, 1.01 g. 1H NMR (300 MHz,
CDCl$_3$: δ 3.95 (s, 1H), 3.91 (s, 1H), 3.40 (m, 2H), 3.20 (m, 2H), 2.72 (m, 1H), 1.90 (m, 2H), 1.30 (s, 9H), 0.05 (m, 9H). MS (El): 230.1 (M-tBu + 2H).

Step 4: tert-butyl 3-(fluoroacetyl)pyrrolidine-1-carboxylate

To a solution of tert-butyl 3-[(trimethylsilyl)oxy]vinyl]pyrrolidine-1-carboxylate (847 mg, 2.97 mmol) in CH$_3$CN (26 mL) was added Selectfluor® (1.38 g, 3.88 mmol). The mixture was stirred at ambient temperature for 1.5 h at which point LCMS analysis indicated conversion to fluoromethyl ketone. The reaction mixture was partitioned between sat'd NaHCO$_3$ and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then sat'd NaCl, dried over MgSO$_4$ and reduced in vacuo to leave the crude product. The product was purified (40g prepacked SiO$_2$ cartridge, 40 mL/min, gradient from 0-80% EtOAc/hexanes over 20 min) to recover the fluoromethyl ketone, 351 mg. 1H NMR (300 MHz, CDCl$_3$): δ 4.89 (d, 2H, $J = 47.4$ Hz), 3.35-3.15 (m, 5H), 2.10 (m, 2H), 1.45 (s, 9H). MS (El): 176.0 (M-tBu + 2H), 158.1 (M-OtBu).

Step 5: tert-butyl 3-(2-fluoro-1-hydroxyethyl)pyrrolidine-1-carboxylate

A solution of tert-butyl 3-(fluoroacetyl)pyrrolidine-1-carboxylate (245 mg, 1.06 mmol) in CH$_3$OH (0.61 mL) was cooled to 0°C, and NaBH$_4$ (28 mg, 0.74 mmol) was added. The reaction was stirred at 0°C for 30 min, then a sample was withdrawn and quenched into 0.1N HCl/EtOAc and subsequent tic analysis indicated complete reduction of ketone. The reaction was quenched by addition of 0.1N HCl and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with sat'd NaHCO$_3$, then sat'd NaCl, dried over MgSO$_4$ and reduced in vacuo to leave the crude product, 240 mg, which was carried forward without further purification. MS (El): 178.0 (M-tBu + 2H), 160.0 (M-OtBu).

The synthesis is completed by following the remaining steps shown for Example 70.

Scheme 2. The carboxylic acid 1 was converted to the Weinreb amide 2, which then was treated with methyl Grignard to give a good yield of methyl ketone 3. The ketone was converted to the silyl enol ether 4, which then reacted with Selectfluor® to give fluoromethyl ketone 5. Reduction of 5 with sodium borohydride gave the fluoroalcohol 6, which was subsequently taken on to form the racemic fluoromethyl pyrrolidine compounds by procedures illustrated in Scheme 1.
Example 73. 3-(1-(1H-pyrrolo[2,3-b]pyridin-6-yl)pyrrolidin-3-yl) -3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile trifluoroacetate

Step 1: 3-(1-(1H-pyrrolo[2,3-b]pyridin-6-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile

IH-Pyrrolo[2,3-b]pyridine-7-oxide hemihydrate (31 mg, 0.22 mmol, Sigma-Aldrich) was suspended in CH$_2$CN (0.4 mL) and dimethyl sulfate (25 microL, 0.27 mmol) was added. The reaction was heated to 55°C at which point the solution became homogeneous. The reaction was held at 55°C for 16 h. To the solution was then added 3-pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl)propanenitrile (98 mg, 0.22 mmol, prepared as in Example 15, Steps 1-3, omitting the chiral separation performed in Step 2) and 2,2,6,6-tetramethylpiperidine (75 microL, 0.45 mmol). The reaction was then heated to 50°C for 4 h at which point LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then sat'd NaCl, dried over MgSO$_4$ and reduced in vacuo to
leave the crude product. This was purified (4 g prepacked Siθ2 cartridge, 20 mL/min, gradient from 0-100% EtOAc/hexanes over 16 min) to recover the product, 31 mg. MS (EI): 554.2 (M+H).

Step 2: 3-[l-(lH-pyrrolo[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-l H-pyrazol-l-yl]propanenitrile trifluoroacetate

To S-l-ClH-pyrroloP^-blpyridin- l'-Opyrrolidin-S-yll-S- [4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (31 mg, 0.056 mmol) was added DCM (500 microL) and TFA (500 microL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed and methanol (500 microL) and NH₄OH (500 microL) were added. After 30 min, LCMS analysis indicated complete removal of SEM group. The solvents were removed in vacuo and the residual material was purified by reverse phase preparative LCMS on a Waters FractionLynx system using mass directed fractionation (column Waters SunFire C18, 5 microM particle size, 19 x 100 mm, mobile phase A: water (0.1% TFA), B: acetonitrile (0.1% TFA), flow rate 30 mL/min, to afford the product as a TFA salt. ¹H NMR (300 MHz, DMSOd₆): δ 12.61 (bs, IH), 11.10 (bs, IH), 8.97 (s, IH), 8.78 (s, IH), 8.50 (s, IH), 7.79 (d, IH, J = 8.2 Hz), 7.73 (m, IH), 7.10 (m, IH), 6.97 (m, IH), 6.31 (d, IH, J = 8.8 Hz), 6.24 (m, IH), 4.84 (m, IH), 3.72 (m, IH), 3.48 (m, IH), 3.4-3.2 (m, 4H), 2.90 (m, IH), 1.67 (m, 2H). MS (EI): 424.0 (M+H).

Scheme 3. Pyrrolopyridine 1 was treated with dimethyl sulfate to form the intermediate 7-methoxy pyrrolopyridine 2, which was not isolated, but directly reacted with the pyrrolidine core 3 to give the advanced intermediate 4. The SEM protecting group was removed in a two-step procedure to give the desired target 5.
Example 74. 5-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[2,3-c]pyridine-4-carbonitrile

Step 1. 5-chlorothieno[2,3-c]pyridine-4-carbonitrile

To a mixture of 3-thienylacetonitrile (1.16 g, 9.42 mmol), phosphoryl chloride (10.1 g, 65.9 mmol) was added DMF (2.2 mL, 28 mmol). The resulting mixture was heated at 100 °C for 2.5 h. Hydroxylamine hydrochloride (1.28 g, 18.4 mmol) was added portion-wise and stirred for another 20 min. The reaction solution was cooled to RT and the resulting precipitate was filtered and washed with acetone to give the desired product as white solid (26% yield). LCMS (M+H)^+: 194.9.

Step 2. 5-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[2,3-c]pyridine-4-carbonitrile
A mixture of (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile (from Example 15, step 3; 18 mg, 0.041 mmol), 5-chlorothieno[2,3-c]pyridine-4-carbonitrile (18 mg, 0.095 mmol) and DIPEA (20 µL, 0.1 mmol) in ethanol (0.09 mL) was heated to reflux for 2.5 h. It was purified by LCMS (Sunfire C18 column 19x100 mm), eluting with a gradient of acetonitrile/water containing 0.1% TFA, at flow rate 30 mL/min) to give 7 mg pale yellow solid (30% yield). LCMS (M+I): 596.0.

The above pale yellow solid (7 mg) was stirred in 0.5 mL DCM and 0.5 mL TFA for 1 h. The mixture was concentrated and the residue was stirred in 50 µL EDA and 1 mL MeOH for 1 h. The reaction solution was purified by LCMS (C18 column 19x100 mm) eluting with ACN/H2O containing 0.15% NH4OH at 30 mL/min) to give the desired product as white solid (1.6 mg, 8% yield). LCMS (M+H)+: 466.1.

Example 75. 5-((3S)-3-{(lS)-2-cyano-l-[4K7H^yrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)thieno[3,2-b]pyridine-6-carbonitrile

Step 1. 3-acetylthiophene oxime
To a solution of 1-(3-thienyl)ethanone (1.49 g, 11.8 mmol) in ethanol (43 mL) and water (13 mL), N-hydroxyamine hydrochloride (1.96 g, 28.2 mmol) and sodium acetate (2.32 g, 28.3 mmol) were added sequentially. The resulting solution was refluxed for 1 h, then 100 mL cold water was added and resultant precipitate was collected to yield the desired product as white powder (816 mg, 49%). LCMS (M+H)+: 142.0.

Step 2. 5-chlorothieno[3,2-b]pyridine-6-carbonitrile
To a solution of 3-acetylthiophene oxime (0.816 g, 5.78 mmol) in ether (20 mL) was added phosphoryl chloride (5.2 mL, 56 mmol) drop-wise at 0°C over 20 min. The resulting mixture was stirred at 0°C for 2 h. DMF (1.1 mL, 14.5 mmol) was then added drop-wise and the mixture was heated to boil off the ether. Heating was continued until all the ether had been removed and temperature of the reaction mixture reached 110°C. The reaction mixture was
heated at 110 °C for 1 h. Hydroxylamine hydrochloride (0.800 g, 11.5 mmol) was added portion-wise over 15 min and stirred for another 20 min. The reaction solution was cooled to RT and the resulting mixture was poured into a mixture of 40 g of ice and 60 g of water with stirring. The yellow precipitate which formed was collected by filtration and dried to give the desired product (449 mg, 40%). LCMS (M+H)+: 195.0.

Step 3. 5-((3S)-3-\{(lS)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl\}pyrrolidin-1-yl)thieno[3,2-b]pyridine-6-carbonitrile

A mixture of (3S)-3-\{(3S)-pyrrolidin-3-yl\}-3-\{4-\{7\{[2-(trimethylsilyl)ethoxy]methyl\}-7H-pyrrolo[2,3-d]pyrimidin-4-yl\}-1H-pyrazol-1-yl\}propanenitrile (18 mg, 0.041 mmol; from Example 15, step 3), 5-chlorothieno[3,2-b]pyridine-6-carbonitrile (18 mg, 0.095 mmol) and DIPEA (20 µL, 0.1 mmol) in ethanol (0.1 mL) was heated to reflux for 2.5 h. It was purified by LCMS (Sunfire C18 column 19x100 mm), eluting with a gradient of acetonitrile/water containing 0.1% TFA, at flow rate 30 mL/min) to give 7 mg yellow solid (30% yield). LCMS (M+H)+: 596.2.

The yellow solid (7 mg) was stirred in 1 mL DCM and 1 mL TFA for 1 h. It was concentrated and the residue was stirred in 50 µL EDA and 1 mL MeOH for 1 h. The reaction solution was purified by LCMS (C18 column 19x100 mm) eluting with a gradient ACN/H₂O containing 0.15% NH₄OH at 30 mL/min) to give the desired product as white solid (2.0 mg, 10% yield). LCMS (M+H)+: 466.0.

Example 76. 2-((3S)-3-\{(lS)-2-cyano-1-[4K7H\^pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl)ethyl\}pyrrolidin-1-yl)-4-hydroxythiophene-3-carbonitrile

Step 1. 2,4-dibromo-3-methylthiophene

A suspension of zinc (1.94 g, 29.7 mmol) in acetic acid (5.20 mL, 91.4 mmol), water (14.0 mL) and THF (2.0 mL) was brought to a gentle reflux, and then the heat was removed.

2,3,5-tribromo-4-methylthiophene (from TCI; 10.0 g, 29.9 mmol) in THF (1.0 mL) was then
added drop-wise at such a rate that the reaction mixture kept refluxing. After the addition was complete, the mixture was refluxed overnight, and then cooled to RT and extracted with ethyl acetate. The organic extract was washed with water, saturated NaHCO₃, and brine, dried over Na₂SO₄ and concentrated. Distillation of the crude product under high vacuum gave the desired product as colorless liquid (4 g, 52%). ¹H NMR (300 MHz, CDCl₃): δ 7.22 (s, 1H), 2.20 (s, 3H).

Step 2. 2,4-dibromo-3-(bromomethyl)thiophene

A suspension of 2,4-dibromo-3-methylthiophene (1.89 g, 7.38 mmol) and N-bromosuccinimide (1.42 g, 7.98 mmol) and 2,2’-azobis(isobutyronitrile) (from Aldrich 10.3 mg, 0.0626 mmol) in carbon tetrachloride (15.4 mL) was heated to 80 °C for 2 h. The reaction suspension was cooled to RT. The precipitate was filtered and washed with small amount of DCM. The filtrate was concentrated to give a solid. The crude material was used in the next step without purification.

Step 3. (2,4-dibromo-3-thienyl)methyl acetate

To a solution of 2,4-dibromo-3-(bromomethyl)thiophene (2.47 g, 7.38 mmol) in DMF (20 mL) was added sodium acetate (3.02 g, 36.9 mmol). The mixture was heated at 110 °C for 3 h. The reaction solution was cooled to RT and diluted with ethyl acetate and water. The aqueous layer was extracted with ethyl acetate once. The combined organic extracts were washed with water, brine and dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column (0% to 10% ethyl acetate/hexanes) to give the desired product as clear oil (1.89 g, 81%). ¹H NMR (300 MHz, CD₃OD): δ 7.57 (s, 1H), 5.06 (s, 2H), 2.05 (s, 3H); LCMS (M+Na): 336.7.

Step 4. (2,4-dibromo-3-thienyl)methanol

To a solution of (2,4-dibromo-3-thienyl)methyl acetate (1.89 g, 6.02 mmol) in acetonitrile (10 mL) and water (10 mL) was added 50% NaOH in water (50:50, water:sodium hydroxide, 0.651 mL, 18.0 mmol). The resulting solution was stirred at RT overnight. The reaction solution was diluted with 2 N H₂SO₄ and ethyl acetate. The aqueous layer was extracted with ethyl acetate once. The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified on a silica gel column (0% to 15% ethyl acetate/hexanes) to give the desired product as a white solid (1.46 g, 89%). LCMS (M+H-H₂O): 254.9.
Step 5. 2,4-dibromothiophene-3-carbaldehyde

To a solution of (2,4-dibromo-3-thienyl)methanol (1.46 g, 5.37 mmol) in DCM (50 mL) was added Dess-Martin periodinane (2.5 g, 5.9 mmol). The reaction solution was stirred at RT for 2 h. The reaction solution was diluted with ether and saturated NaHCO₃. After stirring for 1 h, the reaction mixture was filtered through a pad of Celite. The aqueous layer was extracted with ethyl acetate once. The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give the desired product (1.45 g, 100%). The crude product was used in the next step without further purification.

Step 6. 2,4-dibromothiophene-3-carbaldehyde oxime

To a solution of 2,4-dibromothiophene-3-carbaldehyde (1.45 g, 5.37 mmol) in ethanol (19.5 mL) and water (5.9 mL) was added *N*-hydroxylamine hydrochloride (0.410 g, 5.91 mmol) and sodium acetate (0.617 g, 7.52 mmol) sequentially. The resultant solution was refluxed for 1 h. The organic solvent was removed *in vacuo* and the solution was diluted with water. The resultant precipitate was collected and dried under vacuum to give the desired product as white solid (1.38 g, 90%). LCMS (M+H)⁺: 285.8.

Step 7. 2,4-dibromothiophene-3-carbonitrile

To a solution of 2,4-dibromothiophene-3-carbaldehyde oxime (1.37 g, 4.81 mmol) in pyridine (15 mL) was added methanesulfonyl chloride (1.5 mL, 19 mmol). It was heated at 60 °C for 2 h. The reaction solution was diluted with ethyl acetate and saturated CUSO₄ solution. The organic layer was washed with CUSO₄ twice, followed by 1N HCl solution and brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel column (0-10% ethyl acetate/hexanes) to give the desired product as white solid (1.18 g, 92%). ¹H NMR (300 MHz, CD₃OD): δ 7.73 (s, IH).

Step 8. 4-bromo-2-([3S]-{[1S]-2-cyano-[14-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl[ethyl]pyrrolidin-1-yl]thiophene-3-carbonitrile

A mixture of (3S)-3-([3S]-pyrrolidin-3-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl)propanenitrile (122 mg, 0.279 mmol; from Example 15, step 3), 2,4-dibromothiophene-3-carbonitrile (83.0 mg, 0.311 mmol) and DIPEA (53.4 µL, 0.307 mmol) in 1-butyl-3-methyl-1H-imidazol-3-ium tetrafluoroborate (315 mg) was heated at 120 °C for 2 h. The reaction solution was cooled to RT and diluted with ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The extracts were washed with
brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel column to give the desired product as a yellow solid (88 mg, 50%). LCMS (M+H)⁺: 623.0, 625.1.

Step 9. 2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-hydroxythiophene-3-carbonitrile

To a solution of 4-bromo-2-((3S)-3-{(1S)-2-cyano-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile (16.1 mg, 0.0258 mmol) in DCM (0.50 mL) was added TFA (0.50 mL). The reaction solution was stirred at RT for 2 h and the solvent was removed in vacuo. The residue was dissolved in methanol (1 mL) and treated with (100 µL, 1.50 mmol). The reaction solution was stirred for 1 h and diluted with EDA methanol and purified by LCMS (C18 column 19x100 mm) eluting with a gradient ACN/H₂O containing 0.15% NH₄OH at 30 mL/min to give the desired product as white solid (5.7 mg, 51%). LCMS (M+H)⁺: 431.1.

Example 77. 4-bromo-2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile

To a stirred suspension of 4-bromo-2-((3S)-3-{(1S)-2-cyano-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile (from example 76, step 8; 24.2 mg, 0.039 mmol) in acetonitrile (0.2 mL) at RT was added boron trifluoride etherate (12.3 µL, 0.097 mmol). The resulting clear brown solution was stirred for 2 h. The reaction solution was diluted with methanol (0.5 mL) and treated with EDA (50 µL, 0.75 mmol). The reaction solution was stirred for 1 h and diluted with methanol and purified with preparative LCMS (C18 column 19x100 mm eluting with a gradient ACN/H₂O containing 0.15% NH₄OH at 30 mL/min) to give the desired product (5.3 mg, 27%). ¹H NMR (300 MHz, DMSO-D₆): δ 12.1 (s, IH); 8.86 (s, IH); 8.67 (s,
Example 78. 4-chloro-2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile

\[
\begin{align*}
\text{Step 1. } & 4\text{-chloro-2-}((3S)-3-\{(1S)-2\text{-cyano-1-}\{4-(7-\{2-(\text{trimethylsilyl})\text{ethoxy}\text{methyl}\}-7H-pyrrolo[2,3-d]\text{pyrimidin-4-yl})-1H\text{-pyrazol-1-yl}\text{ethyl}\}\text{pyrrolidin-1-yl})\text{thiophene-3-carbonitrile}} \\
\text{To a solution of } & 4\text{-bromo-2-}((3S)-3-\{(1S)-2\text{-cyano-1-}\{4-(7-\{(2-}\text{trimethylsilyl})\text{ethoxy}\text{methyl}\}-7H-pyrrolo[2,3-d]\text{pyrimidin-4-yl})-1H\text{-pyrazol-1-yl}\text{ethyl}\}\text{pyrrolidin-1-yl})\text{thiophene-3-carbonitrile} \text{ (from example 76, step 8; 21 mg, 0.034 mmol) in pyridine (100 \mu L) was added cuprous monochloride (16.7 mg, 0.168 mmol). The resultant mixture was heated at 120 °C overnight. The reaction solution was diluted with methanol and purified with preparative LCMS (Sunfire C18 column 19x100 mm eluting with a gradient ACN/H2O containing 0.1% TFA at 30 mL/min) to give the desired product (3.2 mg, 16%). LCMS (M+H)+: 579.2.} \\
\text{Step 2. } & 4\text{-chloro-2-}((3S)-3-\{(1S)-2\text{-cyano-1-}\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl})-1H\text{-pyrazol-1-yl}\text{ethyl}\}\text{pyrrolidin-1-yl})\text{thiophene-3-carbonitrile} \\
\text{This compound was prepared according to the procedure of Example 77, using 4\text{-chloro-2-}((3S)-3-\{(1S)-2\text{-cyano-1-}\{4-(7-\{2-(\text{trimethylsilyl})\text{ethoxy}\text{methyl}\}-7H-pyrrolo[2,3-d]\text{pyrimidin-4-yl})-1H\text{-pyrazol-1-yl}\text{ethyl}\}\text{pyrrolidin-1-yl})\text{thiophene-3-carbonitrile} \text{ as the starting material. LCMS (M+H)+: 449.1.}
\end{align*}
\]
Example 79. 2-((3S)-3-((lS)-2-cyano-l-[4K7H^yrrolo[2,3-d]pyrimidin-4-yl]-IH-
pyrazol-l-yl)ethyl]pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile

Step 1. 2-((3S)-3-((lS)-2-cyano-l-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-l-yl)ethyl]pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile

To a solution of 4-bromo-2-((3S)-3-((lS)-2-cyano-l-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-l-yl)ethyl]pyrrolidin-l-yl)thiophene-3-carbonitrile (from example 76, step 8; 30.0 mg, 0.0481 mmol) in NMP (0.4 mL) was added zinc cyanide (28.2 mg, 0.240 mmol), tetrakis(triphenylphosphine)palladium(0) (13.9 mg, 0.012 mmol) and the solution was flushed with nitrogen. The solution was heated at 150°C for 15 min in a microwave reactor. The reaction solution was diluted with methanol and purified by preparative LCMS (Sunfire C18 column 19x100 mm eluting with a gradient ACN/H$_2$O containing 0.1% TFA at 30 mL/min) to give the desired product (8.3 mg, 30%). LCMS (M+H)$^+$: 570.2.

Step 2. 2-((3S)-3-((lS)-2-cyano-l-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-IH-pyrazol-l-
yl)ethyl]pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile

This compound was prepared according to the procedure of Example 77, using 2-((3S)-3-((lS)-2-cyano-l-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-l-yl)ethyl]pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile as the starting material. 1H NMR (300 MHz, DMSO-D$_6$): δ 12.06 (s, IH); 8.81 (s, IH); 8.62 (s, IH); 8.36 (s, IH); 7.59 (s, IH); 7.54 (d, IH); 6.92 (d, IH); 4.80 (m, IH); 3.69-3.16 (m, 6H); 2.96 (m, IH); 1.72 (m, 2H); LCMS (M+H)$^+$: 440.1.
Example 80. 2-((3S)-3-[(2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]thiophene-3,4-dicarbonitrile

Step 1. 4-bromo-2-((3S)-3-[(2-fluoro-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]thiophene-3-carbonitrile

This compound was prepared according to the procedure of Example 76, step 8, using 4-(1-[2-fluoro-1-(3S)-pyrrolidin-3-yl]ethyl)-1H-pyrazol-4-yl)-7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7) and 2,4-dibromothiophene-3-carbonitrile as the starting material. LCMS (M+H)+: 616.2, 618.2.

Step 2. 2-((3S)-3-[(2-fluoro-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]thiophene-3,4-dicarbonitrile

This compound was prepared according to the procedure of Example 79, step 1, using 4-bromo-2-((3S)-3-[(2-fluoro-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]thiophene-3-carbonitrile as the starting material. LCMS (M+H)+: 563.2.

Step 3. 2-((3S)-3-[(2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]thiophene-3,4-dicarbonitrile

This compound was prepared according to the procedure of Example 77, using 2-((3S)-3-[(2-fluoro-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]thiophene-3,4-dicarbonitrile as the starting material. 1H NMR (300 MHz, DMSO-D6): δ 8.73 (s, 1H); 8.61 (s, 1H); 8.33 (s, 1H); 7.61 (s, 1H); 7.53 (d, 1H); 6.91 (d, 1H); 4.97-4.69 (m, 3H); 3.73 (m, 1H); 3.55 (m, 1H), 3.45 (m, 2H), 2.94 (m, 1H); 1.72 (m, 2H)
LCMS (M+H)+: 433.1.
Example 81. 2-(3-fl-cyano-l-P-CTH-pyrrolo [2^dpyrimidin-yH-ylH- pyrrol-l-yl]ethyl)pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile (two enantiomers isolated)

Step 1. 4-bromo-2-(3-[2-cyano-l-[3-(7-[2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl)pyrrolidin-l-yl)thiophene-3-carbonitrile

This compound was prepared according to the procedure of Example 76, step 8, using 3-pyrrolidin-3-yl-3-[3-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-1-ylpropanenitrile (from Example 33, step 3) and 2,4-dibromothiophene-3-carbonitrile as the starting materials. LCMS calculated for C_{22}H_{33}BrN_{7}OSSi(NMe)_{2}+: m/z = 622.1, 624.1.

Step 2. 2-(3-[2-cyano-l-[3-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl)pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile

This compound was prepared according to the procedure of Example 79, step 1, using 4-bromo-2-(3-[2-cyano-l-[3-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl)pyrrolidin-l-yl)thiophene-3-carbonitrile as the starting material. This material was separated by chiral HPLC (Chiral Technologies Chiralpak AD-H, 5µ, 20 x 250 mm, eluting with 80% EtOH/Hexanes, 8 mL/min) to afford enantiomer 1 (first to elute) and enantiomer 2 (second to elute). LCMS (M+H)+: 569.2.

Step 3. 2-(3-[2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl)ethyl]pyrrolidin-l-yl)thiophene-3,4-dicarbonitrile (two enantiomers isolated)

Each enantiomer from last step was deprotected separately by stirring sequentially in a mixture of 1:1 TFA/DCM for 1 h, removal of solvent, then stirring in methanol (1.5 mL) containing EDA (0.2 mL) for 30 min. Preparative-HPLC/MS (C18 column (19x100 mm) eluting with a gradient of ACN/H_{2}O containing 0.15% NH_{3}OH) was used to purify the products. Enantiomer 1 LCMS (M+H)+: 439.0; Enantiomer 2 LCMS (M+H)+: 439.1.
Example 82. 4-((3S)-3-[(1S)-2-cyano-l-[4K7H^yrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-l-yl]ethyl]pyrrolidin-1-yl)-l,3-thiazole-5-carbonitrile

\[
\begin{align*}
\text{Step 1. 2,4-dichloro-l, 3-thiazole-5-carbaldehyde} \\
\text{To a suspension of 2,4-thiazolidinedione (10.0 g, 85.4 mmol) in phosphoryl chloride (48.0 mL, 515 mmol) at 0 °C was added DMF (7.3 mL, 94 mmol) drop-wise. The reaction mixture was allowed to warm to ambient temperature and stirred for 1 h. The mixture was then heated at 85 °C for 1 h before stirring at 115 °C for 3.5 h. After cooling to ambient temperature, the mixture was carefully poured onto ice with slow stirring. The aqueous layer was extracted with DCM three times. The combined organic extracts were washed with saturated NaHCO₃, dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel column (0% to 20% ethyl acetate/hexanes) to give the desired product as off white solid (8.1 g, 52%).} \\
\text{1HNMR (300 MHz, DMSO-d₆): } \delta 9.92 \text{ (s, IH); LCMS (M+H-CO)}⁺: 153.9
\end{align*}
\]

\[
\text{Step 2. 2,4-dichloro-5-(l, 3-dioxolan-2-yl)-l, 3-thiazole} \\
\text{To a mixture of 2,4-dichloro-1,3-thiazole-5-carbaldehyde (4.0 g, 22 mmol) and 1,2-ethanediol (3.6 mL, 64 mmol) in anhydrous toluene (50 mL) was added /\text{->toluenesulfonic acid monohydrate (0.3 g, 1.6 mmol). The flask was fitted with a Dean-Stark trap and the mixture heated to reflux for 3.5 h. After cooling to ambient temperature, the reaction was quenched with 10% Na₂CO₃ solution. The aqueous layer was extracted with ethyl acetate three times. The combined extracts were washed with brine, dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel column (0% to 30% ethyl acetate/hexanes) to give the desired product as yellow oil (4.17 g, 84\%), \text{1H NMR (300 MHz, CDCl₃): } \delta 6.03 \text{ (s, IH); 4.10 (m, 4H); LCMS (M+H)}⁺: 225.9.}
\]

\[
\text{Step 3. 4-chloro-5-(1,3-dioxolan-2-yl)-l, 3-thiazole}
\]

163
To a solution of 2,4-dichloro-5-(1,3-dioxolan-2-yl)-1,3-thiazole (1.0 g, 4.4 mmol) in THF (20 mL) at -78 °C was added 2.5 M of n-butyllithium in hexane (2.28 mL, 5.69 mmol) drop-wise. The resulting dark solution was stirred at -78 °C for 75 min. The reaction was quenched with water and then poured into brine. The aqueous layer was extracted with ethyl acetate three times. The combined extracts were dried over MgSO₄ filtered, and concentrated. The residue was purified by silica gel column (0% to 30% ethyl acetate/hexane) to give the desired product as a yellow oil (770 mg, 91%). ¹H NMR (300 MHz, CDCl₃): δ 8.74 (s, 1 H), 6.18 (s, 1H); 4.10 (m, 4H); LCMS (M+H)⁺: 191.9.

Step 4. 4-chloro-1,3-thiazole-5-carbaldehyde

To a solution of 4-chloro-5-(1,3-dioxolan-2-yl)-1,3-thiazole (0.75 g, 3.9 mmol) in THF (10 mL) was added 5.0 M of HCl solution in water (2 mL, 10 mmol). The resulting mixture was stirred at ambient temperature for 2 h. The reaction solution was poured into brine and extracted with ethyl acetate three times. The combined extracts were washed with saturated sodium bicarbonate, brine, dried over MgSO₄ filtered, and concentrated to give the desired product as an off-white solid (0.53 g, 92%). ¹H NMR (300 MHz, CDCl₃): δ 10.16 (s, 1 H), 9.03 (s, 1H).

Step 5. 4-chloro-1,3-thiazole-5-carbaldehyde oxime

To a stirred solution of sodium bicarbonate (0.17 g, 2.0 mmol) in water (6.4 mL) was added hydroxylamine hydrochloride (0.14 g, 2.0 mmol) in portions. To the mixture was added a solution of 4-chloro-1,3-thiazole-5-carbaldehyde (0.30 g, 2.0 mmol) in ethanol (2.0 mL). The mixture was stirred for 1 h at ambient temperature. The reaction solution was diluted with water. The resultant precipitate was collected and dried under vacuum to give the desired product as white solid (0.25 g, 76%). ¹H NMR (300 MHz, CD₃OD): δ 9.02 (s, 1 H), 7.83 (s, 1H); LCMS (M+H)⁺: 162.9.

Step 6. 4-chloro-1,3-thiazole-5-carbonitrile

A mixture of 4-chloro-1,3-thiazole-5-carbaldehyde oxime (0.24 g, 1.5 mmol) and acetic anhydride (1.2 mL, 13 mmol) was heated at 140 °C for 3 h. The mixture was concentrated in vacuo to give a brown solid (65 mg, 30%). The crude material was used in the next step without further purification.

Step 7. 4-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-1,3-thiazole-5-carbonitrile (single enantiomer)
This compound was prepared according to the procedure of Example 74, step 2, using (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (from Example 15, step 3) and 4-chloro-1,3-thiazole-5-carbonitrile as the starting materials. LCMS (M+H)+: 416.1.

Example 83. 5-(3-[2-fluoro-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl]pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile (single enantiomer)

Step 1. tert-butyl 3-[(E)-2-fluoro-2-(phenylsulfonyl)vinyl]pyrrolidine-1-carboxylate

To a mixture of tert-butyl 3-[2-fluoro-1-hydroxy-2-(phenylsulfonyl)ethyl]pyrrolidine-1-carboxylate (synthesized according to the procedure of Example 70 step 3, using tert-butyl-3-formylpyrrolidine-1-carboxylate as the starting material, 0.53 g, 1.4 mmol) and triethylamine (0.80 mL, 5.7 mmol) in DCM (7.0 mL) at 0 °C was added methanesulfonyl chloride (132 µL, 1.70 mmol). The mixture was stirred at 0 °C for 1 h then warmed to ambient temperature. After 4 h, another portion of triethylamine (2.0 eq) was added and stirred overnight. The reaction solution was diluted with brine and the aqueous layer was extracted with DCM three times. The combined extracts were dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel column (0% to 40% ethyl acetate/hexanes) to give the desired product (350 mg, 69%). LCMS (M+Na)+: 378.1.

Step 2 tert-butyl 3-[(E)-2-fluoro-2-(phenylsulfonyl)vinyl]pyrrolidine-1-carboxylate

To a mixture of 4-(1H-pyrrol-3-yl)-7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 33, Step 1; 0.33 g, 1.0 mmol) and tert-butyl 3-[(E)-2-fluoro-2-(phenylsulfonyl)vinyl]pyrrolidine-1-carboxylate (0.35 g, 0.98 mmol) in acetonitrile (6.0 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (180 µL, 1.2 mmol) and the reaction solution was...
stirred at 65 °C for 36 h. The solvent was removed in vacuo and the residue was purified by silica gel column (0% to 50% ethyl acetate/hexanes) to give the desired product as 1:1 two diastereomers (134 mg, 20%). LCMS (M+H)+: 670.3.

Step 3. tert-butyl 3-{2-fluoro-1-[3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl]pyrrolidine-l-carboxylate

This compound was prepared according to the procedure of Example 70, step 4, using tert-butyl 3-{2-fluoro-2-(phenylsulfonyl)-1-[3-{7- {[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl]pyrrolidine-l-carboxylate as the starting material. Two diastereomers were isolated using silica gel column eluting with 5-60% ethyl acetate/hexanes. LCMS (M+H)+: 530.1.

Step 4. 4-[l-(2-fluoro-l-pyrrolidin-3-yethyl)-lH-pyrrol-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrrolo[2,3-d]pyrimidine

To a solution of tert-butyl 3-{2-fluoro-l-[3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl}pyrrolidine-l-carboxylate (104 mg, 0.196 mmol) in DCM (0.5 mL) was added 4.0 M of hydrogen chloride in 1,4-dioxane (0.5 mL, 2.0 mmol). The reaction solution was stirred at RT for 90 min. The solvent was removed in vacuo and the residue was dissolved in ethyl acetate. The organic layer was washed with 1.0 N NaOH solution. The aqueous was extracted with ethyl acetate. The combined extracts were dried over MgSO₄, filtered, and concentrated to give the desired product as a brown sticky gum (86 mg, 100%). LCMS (M+H)+: 430.1.

Step 5. 5-{3-[2-fluoro-l-[3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl]pyrrolidin-l-yl]-l,3-thiazole-4-carbonitrile

To a mixture of 4-[l-(2-fluoro-1-pyrrolidin-3-yethyl)-lH-pyrrol-3-yl]-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrrolo[2,3-d]pyrimidine (diastereomer 2 from step 3) (54 mg, 0.12 mmol) and 5-bromo-l,3-thiazole-4-carbonitrile (29.5 mg, 0.156 mmol) was added 1-butyl-3-methyl-lH-imidazol-3-ium tetrafluoroborate (0.2 mL) and DIPEA (32.4 µL, 0.186 mmol). The resulting mixture was stirred at 120 °C for 3 h then cooled to ambient temperature. The reaction solution was diluted with ethyl acetate and washed with water. The organic layer was dried over MgSO₄, filtered, and concentrated. The residue was diluted with methanol and purified by preparative LCMS (C18 column (19x100 mm) eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) to give the desired product (20 mg, 28%). The enantiomers were
separated by chiral HPLC (Chiral Technologies Chiracel OD-H, 5µ, 20 x 250mm, 20% EtOH/Hexanes, 12 mL/min). Desired enantiomer 1 (first to elute) was collected (12.7 mg, 18%). LCMS (M+H)+: 538.2. Another enantiomer 2 (second to elute) was collected (6.2 mg, 9%). LCMS (M+H)+: 538.2

Step 6. 5-(3-{2-fluoro-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl}ethyl]pyrrolidin-l-yl)-l, 3-thiazole-4-carbonitrile (single enantiomer)

The desired enantiomer 1 (from step 5) was treated with 1:1 TFA/DCM for 1 h, concentrated again, and stirred in a solution of methanol (1 mL) containing 0.2 mL EDA for 30 min. The product was purified via preparative LCMS (C18 column (19 x 100 mm) eluting with a gradient of ACN/H2O containing 0.15% NH4OH) to give the desired product. LCMS (M+H)+: 408.1.

Example 84. 4-((S)-3-((S)-l-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl)-l-cyanoethyl]pyrrolidin-l-yl)pyrimidine-S-carbonitrile trifluoroacetate

Step 1: (3S)-3-{(3S)-l-(5-iodopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl}propanenitrile

(3S)-3-{(3S)-Pyrrolidin-3-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}]pyrimidine-5-carbonitrile

Into a 1-neck round-bottom flask 3-[l-(5-iodopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-
([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-
yl]propanenitrile (32.0 mg, 0.0499 mmol) was dissolved in DMF (0.3 mL) and zinc cyanide (17.6
mg, 0.150 mmol) was added. The reaction was degassed, tetrakis(triphenylphosphine)palladium(0) (11.5 mg, 0.0098 mmol) was added and heated at 100
°C for 4 h at which time LCMS analysis showed that there was mainly product. The reaction was filtered and the product was purified by preparative LC. MS (EI): 541 (M+H)

Step 3: 4-((S)-3-((S)-l-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)-2-
cyanoethyl)pyrrolidin-l-yl)pyrimidine-5-carbonitrile trifluoroacetate

The product from step 2 was deprotected (CH₂C₂/TFA; MeOH/NH₄OH) as in Example 1, and the product was purified by LC (ACN/water/TFA method as in Example 5). MS (EI): 411 (M+H).

Example 85. 4-(l-2-fluoro-l-[3S]-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-
yl)pyrrolidin-3-yl]ethyl)-IH-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine bis(trifluoroacetate)

Step 1: 3-[(E)-2-ethoxyvinyl]-2,5,6-trifluoropyridine

Into a 1-neck round-bottom flask 3-chloro-2,5,6-trifluoropyridine (from Lancaster
Synthesis Inc.; 1.0 g, 5.97 mmol) was dissolved in toluene (6.7 mL) with (2-ethoxyethenyl)tri-n-
butyltin (from Synthonix Corporation; 2.01 g, 5.57 mmol) and tetrakis(triphenylphosphine) palladium(O) (348.0 mg, 0.3012 mmol) and was degassed. The reaction was heated to reflux for
4 h after which time TLC analysis showed most of the starting material had been consumed. The reaction mixture was chromatographed using 3% EtOAc/hexanes to give 3-[(E)-2-ethoxyvinyl]-2,5,6-trifluoropyridine contaminated with some butyltin chloride. ¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, IH), 6.40 (dd, IHO, 5.35 (dd, IH), 4.10 (q, 2H), 1.30 (t, 3H).

Step 2: l-ethoxy-2-(2,5,6-trifluoropyridin-3-yl)ethanol

The 3-[(E)-2-ethoxyvinyl]-2,5,6-trifluoropyridine from step 1 in THF (26.6 mL) and 5.0
M of HCl in water (17 mL, 83 mmol) was added and stirred at 25 °C for 20 h at which time TLC analysis of a worked up sample (EtOAc/NaHCO₃) showed absence of starting material. The reaction was neutralized with NaHCO₃ and was partitioned between ether and water and the ether extract was washed with brine, dried (MgSO₄), and stripped in vacuo. NMR analysis showed no aldehyde peaks and was consistent with the ethyl hemiacetal 1-ethoxy-2-(2,5,6-trifluoropyridin-3-yl)ethanol. The product was purified by chromatography on silica gel using 30% ether/hexanes to give the product (0.75 g, 61% for the two steps). HPLC analysis showed one peak. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (m, 1H), 5.42 (m, 1H), 5.02 (m, 1H), 4.38 (m, 1H), 3.70-3.85 (m, 2H), 2.90 (m, 2H), 1.35 (m, 2H), 1.22 (m, 3H).

Step 3: 2-(2,5,6-trifluoropyridin-3-yl)ethanol

Into a 10 mL sealed tube 1-ethoxy-2-(2,5,6-trifluoropyridin-3-yl)ethanol (250.0 mg, 1.130 mmol) was dissolved in THF (10.0 mL) and 1.0 M of HCl in water (5.0 mL, 5.0 mmol) was added. The reaction was heated at 75 °C for 90 min. and was neutralized with NaHCO₃ and was extracted with ether. The reaction mixture was evaporated to dryness and NMR analysis of the crude indicated that it was the aldehyde hydrate 2-(2,5,6-trifluoropyridin-3-yl)ethane-1,1-diol.

Into a 10 mL sealed tube the crude 2-(2,5,6-trifluoropyridin-3-yl)ethane-1,1-diol (138.0 mg, 0.7146 mmol) was dissolved in isopropyl alcohol (6.0 mL) and sodium tetrahydroborate (16.22 mg, 0.4287 mmol) was added. The reaction was stirred at 0 °C for 2 h and was quenched with NH₄Cl and was extracted with ether. The product was purified by silica gel chromatography to give 2-(2,5,6-trifluoropyridin-3-yl)ethanol (80 mg). ¹H NMR (400 MHz, CD₃OD): δ 7.90 (m, 1H), 3.75 (m, 2H), 2.80 (m, 2H).

Step 4: S-[2-(2,5,6-trifluoropyridin-3-yl)ethyl] ethanethioate

Into a 1-neck round-bottom flask 2-(2,5,6-trifluoropyridin-3-yl)ethanol (0.520 g, 2.94 mmol) was dissolved in THF (13.0 mL) with triphenylphosphine (0.770 g, 2.94 mmol). The solution was cooled at 0 °C, diisopropyl azodicarboxylate (0.578 mL, 2.94 mmol) was added, and 10 min later, thioacetic acid (0.210 mL, 2.94 mmol) was added. The mixture was stirred at 0 °C for 60 min. TLC, LC and LCMS showed ~50% conversion to the product. The reaction was quenched with saturated NaHCO₃ and was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo. The reaction was chromatographed on silica gel using 2% EtOAc/hexanes to give the product contaminated with small amount of impurities (0.30g). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (m, 1H), 3.10 (m, 2H), 2.85 (m, 2H), 2.30 (s, 3H).
Step 5: 5,6-difluoro-2,3-dihydrothieno[2,3-b]pyridine

Into a 1-neck round-bottom flask S-[2-(2,5,6-trifluoropyridin-3-yl)ethyl] ethanethioate (190.0 mg, 0.80773 mmol) was dissolved in THF (30.0 mL) and water (30.0 mL) and was degassed. Into the reaction was added 1.0 M of sodium hydroxide in water (7.0 mL) and was stirred at 25 °C for 1 h at which time LCMS analysis showed mainly 2-(2,5,6-trifluoropyridin-3-yl)ethanethiol. The reaction was stirred for 2 days at which time LCMS analysis showed disulfide, and some product. The reaction mixture was partitioned between ether and water and ether extract was washed with brine, dried (MgSO₄), and stripped in vacuo. Then it was chromatographed on silica gel using 3% EtOAc/hexanes to give the product (13 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (m, 2H), 6.85 (m, 1H), 3.50 (m, 2H).

Step 6: 4-(l-{2-fluoro-l-[{(3S)-l-{(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl}pyrrolidin-3-yl}ethyl]-lH-pyrazol-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine

4-(l-{2-Fluoro-l-[{(3S)-pyrrolidin-3-yl}ethyl]-lH-pyrazol-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 31.58 mg, 0.07332 mmol) was mixed with 5,6-difluoro-2,3-dihydrothieno[2,3-b]pyridine (12.7 mg, 0.0733 mmol) and DIPEA (21.88 µL, 0.1256 mmol) and was dissolved in NMP (0.24 mL). The reaction was heated at 130 °C for 5 h at which time LCMS analysis showed some product present. The product was purified by LC (ACN/TFA/water method as in Example 5) to give the purified material. MS (EI): 584 (M+H).

Step 7: 4-(l-{2-fluoro-l-[{(3S)-l-{(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl}pyrrolidin-3-yl}ethyl]-lH-pyrazol-4-yl}-7H-pyrrolo[2,3-d]pyrimidine bis(trifluoroacetate)

4-(l-{2-Fluoro-l-[{(3S)-l-{(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl}pyrrolidin-3-yl}ethyl]-lH-pyrazol-4-yl}-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine was deprotected (TFA/CH₂Cl₂; MeOH/NH₄OH) as in Example 1, and the deprotected compound was purified on preparative LC (ACN/TFA method as in Example 5) to give the product. MS (EI): 454 (M+H). ¹H NMR(CDCl₃): δ 8.92 (m, 2H), 8.86 (m, 2H), 8.55 (m, 2H), 7.85 (m, 2H), 7.30 (m, 2H), 7.10 (m, 2H), 5.05 (m, 2H), 4.80 (m, 2H), 3.85 (m, 2H), 3.62 (m, 2H), 3.50 (m, 2H), 3.35 (m, 2H), 3.10 (m, 2H), 2.95 (m, 2H), 1.80 (m, 2H).

Example 86. 4-(l-{2-fluoro-l-[{(3S)-l-[5-fluoro-l|-dioxido-2,3-dihydrothieno[2,3-
b|pyridin-6-yl|pyrrolidin-3-yl|ethyl|-lH-pyrazol-4-yl|-7H-pyrrolo [2,3-d] pyrimidine tetrakis(trifluoroacetate)

Into a 1-neck round-bottom flask 4-(l-{2-fluoro-l-[(3S)-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]ethyl}-lH-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine bis(trifluoroacetate) (from Example 85; 3.0 mg, 0.0044 mmol) was dissolved in methanol (1.0 mL) and water (0.30 mL) was added. Into the reaction was added Oxone® (5.4 mg, 0.0088 mmol) and was stirred at 25 °C overnight at which time LCMS analysis showed mainly sulfone and over-oxidized sulfone. The reaction was filtered and the product was purified by preparative LC (ACN/TFA method as in Example 5) to give 4-(l-{2-fluoro-l-[(3S)-l-(5-fluoro-1,1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]ethyl}-lH-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine tetrakis(trifluoroacetate). MS(EI) 486 (M+). 1H NMR(DMSO-^d6): δ 12.2 (brs, 1H), 8.82 (s, 1H), 8.70 (s, 1H), 8.40 (s, 1H), 7.60 (m, 2H), 7.00 (m, 1H), 5.00 (m, 1H), 4.90 (m, 2H), 4.80 (m, 2H), 3.90 (m, 1H), 3.70 (m, 1H), 3.50 (m, 2H), 3.10 (m, 2H), 2.90 (m, 1H), 1.65 (m, 2H).

Example 87. (3S)-3-[(3S)-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile bis(trifluoroacetate)

Step 1: but-3-yn-1-yl methanesulfonate

In a 1-neck round-bottom flask 3-butyn-l-ol (0.50 mL, 6.6 mmol) was dissolved in DCM (7.0 mL) and DIPEA (1.6 mL, 9.2 mmol) was added and was cooled at 0 °C. Into the reaction
was added methanesulfonyl chloride (0.61 mL, 7.9 mmol) and was stirred at 0 °C for 1 h at which time TLC analysis showed absence of starting material. The reaction mixture was partitioned between EtOAc and water and EtOAc extract was washed with water, 1N HCl, NaHCO₃, brine, dried (MgSO₄), and stripped in vacuo. The resulting but-3-yn-1-yl methanesulphonate was used in the next reaction without purification. ¹H NMR (300 MHz, CDCl₃): δ 4.52 (m, 2H), 3.10 (s, 3H), 2.65 (m, 2H), 2.05 (M, IH).

Step 2: S-but-3-yn-1-yl ethanethioate

Into a 1-neck round-bottom flask cesium carbonate (0.57 g, 1.8 mmol) was dissolved in methanol (5.0 mL, 123 mmol) and thioacetic acid (0.241 mL, 3.37 mmol) was added. The reaction was stirred for 30 min. and but-3-yn-1-yl methanesulphonate (0.50 g, 3.4 mmol) in methanol (4.0 mL) was added and was stirred at 25 °C overnight at which time TLC analysis showed starting material and product. The reaction was evaporated to dryness and DMF (5.0 mL) was added and was stirred at 25 °C overnight at which time TLC analysis showed no starting material. The reaction mixture was partitioned between EtOAc and water and EtOAc extract was washed with water, brine, dried (MgSO₄), and stripped in vacuo. Used in the next reaction without purification. ¹H NMR (300 MHz, CDCl₃): δ 3.01 (m, 2H), 2.45 (s, 3H), 2.35 (m, 2H), 2.02 (M, IH).

Step 2a: 2-chloro-5-fluoro-4-[(4-methoxybenzyl)oxy]pyrimidine

Into a 1-neck round-bottom flask 2,4-dichloro-5-fluoropyrimidine (from Frontier Scientific, Inc.; 0.80 g, 4.8 mmol) was mixed with sodium hydride (60% in mineral oil, 0.23 g, 5.7 mmol) and was dried. The reaction was cooled at 0 °C and THF (9.0 mL) was added followed by 4-methoxybenzenemethanol (0.50 mL, 4.8 mmol). The reaction was stirred at 25 °C overnight. Then it was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo. The residue was chromatographed on silica gel using 5%EtOAc/hexanes to give the product (1.2 g). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, IH), 7.42 (d, 2H), 6.91 (d, 2H), 5.42 (s, 2H), 3.80 (s, 3H)

Step 3: 2-(but-3-yn-1-ylthio)-5-fluoropyrimidin-4-ol

Into a 1-neck round-bottom flask S-but-3-yn-1-yl ethanethioate (0.69 g, 5.4 mmol) was dissolved in DMF (4.0 mL) with 2-chloro-5-fluoro-4-[(4-methoxybenzyl)oxy]pyrimidine (1.4 g, 5.4 mmol) and lithium hydroxide (0.259 g, 10.8 mmol) and water (0.5 mL) was added and stirred at 60 °C overnight at which time HPLC analysis and LCMS analysis showed debenzylated
product and starting material. The reaction was continued for 24 h without much change. Then it was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo. The organic extract did not contain any product. The water layer was evaporated to dryness and was washed with methanol and was filtered. The methanol wash was evaporated and was chromatographed using 1:1 EtOAc/hexanes and EtOAc as eluent to give the product 2-((but-3-yn-1-ylthio)-5-fluoropyrimidin-4-ol (0.2 g). ¹H NMR (300 MHz, DMSO D₆): δ 7.90 (m, IH), 3.30 (m, 2H), 2.60 (m, 2H), 2.35 (m, IH).

Step 4: 5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-ol

Into a 10 mL sealed tube 2-(but-3-yn-1-ylthio)-5-fluoropyrimidin-4-ol (185 mg, 0.931 mmol) was dissolved in NMP (1.0 mL) and was heated at 200 °C for 3 h at which time LCMS analysis showed mainly product. The reaction mixture was purified by preparative LC to give 5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-ol (81 mg). LCMS: 172(M+1). ¹HNMR (300 MHz, DMSO D₆): δ 7.36 (d, IH), 3.55 (m, 2H), 3.16 (m, 2H).

Step 5: 5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl trifluoromethanesulfonate

5-Fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-ol (40.0 mg, 0.234 mmol) was dissolved in DCM (1.72 mL) and triethylamine (48.85 µL, 0.3505 mmol) was added, the solution was cooled to 0 °C and N-phenylbis(trifluoromethane-sulphonimide) (0.1043 g, 0.2921 mmol) was added. The reaction was stirred at 25 °C for 48 h, at which time LCMS analysis showed absence of starting material. The reaction was chromatographed on silica gel using 20% EtOAc/hexanes to give the product 5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl trifluoromethanesulfonate contaminated with a small amount of reagent. ¹H NMR (300 MHz, CDCl₃): δ 7.55 (m, IH), 3.50 (m, 2H), 3.30 (m, 2H).

Step 6: (3S)-3-[(3S)-l-(5-fluoro-2, 3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(4-(7-{[2-(trimethylsilyl)ethoxy|methyl]}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile

Into a 10 mL sealed tube (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[(4-{[2-(trimethylsilyl)ethoxy|methyl]}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (0.08246 g, 0.1884 mmol; from Example 15, step 3) was mixed with 5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl trifluoromethanesulfonate (0.067 g, 0.22 mmol) in NMP (0.24 mL) with DIPEA (21.88 µL, 0.1256 mmol) and was heated at 130 °C for 2 h at which time LCMS analysis showed mostly product. The product was purified by LC (ACN/TFA/water
method as in Example 5) to give (3S)-3-[(3S)-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile. MS(EI): 591 (M + 1)

5

Step 7: (3S)-3-[(3S)-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile bis(trifluoroacetate)

(3S)-3-[(3S)-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile was deprotected (TFA/CH$_2$C$_2$; MeOH/NH$_4$OH) as in Example 1, and the deprotected compound was purified on preparative LC (ACN/TFA/water method as in Example 5) to give the product (3S)-3-[(3S)-l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile bis(trifluoroacetate).

Mass spec (EI): 461 (M+1). 1HNMR (400 MHz CD$_3$OD): δ 9.00 (s, 1H), 8.90 (m, 1H), 8.55 (m, 1H), 7.85 (d, 1H), 7.26 (d, 1H), 7.08 (d, 1H), 4.85 (m, 1H), 3.85 (m, 1H), 3.40-3.60 (m, 2H), 3.20-3.40 (m, 4H), 3.10 (m, 2H), 2.95 (m, 1H), 1.80 (m, 2H).

Example 88. (3S)-3-[(3S)-l-(6-bromo-S-fluoropyridin-1-yl)pymrrolidin-3-yl]-S^-CTH-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile bis(trifluoroacetate) and

Example 89. (3S)-3-[(3S)-l-(S,6-dif uoropyridin-2-yl)pymrrolidin-3-yl]-3-[4-(7H-

Step 1: 2,3-difluoro-6-hydrazinopyridine

Into a 1-neck round-bottom flask 2,3,6-trifluoropyridine (from Alfa Aesar; 0.40 mL, 4.5 mmol) was dissolved in THF (5.0 mL) and hydrazine hydrate (0.44 mL, 9.012 mmol) was added and was stirred at 25 °C overnight and was heated to reflux for 2 h. The reaction mixture was evaporated to dryness to provide 2,3-difluoro-6-hydrazinopyridine which was used in the next reaction without purification.
Step 2: 6-bromo-2,3-difluoropyridine

Into a 1-neck round-bottom flask 2,3-difluoro-6-hydrazinopyridine (0.65 g, 4.5 mmol) was suspended in chloroform (5.0 mL) and bromine (0.46 mL, 9.0 mmol) was added drop-wise. The reaction was heated to reflux for 3 h with an acid trap and was quenched with NaHSO₃ and neutralized with NaHCO₃. Then it was partitioned between ether and water and ether extract was washed with brine, dried (MgSO₄), and stripped in vacuo. NMR analysis of the crude mixture indicated that it consisted of a 2:1 mixture of 6-bromo-2,3-difluoropyridine and 2,3-dibromo-5,6-difluoropyridine. The reaction mixture was chromatographed on silica gel using 5% ether/hexanes to give the product. ¹H NMR (300 MHz, CDCl₃): δ 7.55 (m, 1H), 6.90 (m, 1H).

Step 3: (3S)-3-[(3S)-l-(6-bromo-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate and (3S)-3-[(3S)-l-(5,6-difluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

(3S)-3-[(3S)-Pyrrolidin-3-yl]-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (100.0 mg, 0.2285 mmol; from Example 15, step 3) was mixed with 6-bromo-2,3-difluoropyridine (53.2 mg, 0.27421 mmol) and DIPEA (50.0 μL, 0.2870 mmol) and was dissolved in NMP (0.62 mL). The reaction was heated at 130 °C for 2 h at which time LCMS analysis showed mainly the two products (3S)-3-[(3S)-l-(6-bromo-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile. The reaction mixture was purified by preparative LC (ACN/TFA/water method as in Example 5) to give the two compounds: (3S)-3-[(3S)-l-(6-bromo-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile and (3S)-3-[(3S)-l-(5,6-difluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile which were deprotected (TFA/CH₂Cl₂; MeOH/NH₄OH) as in Example 1, and the deprotected compounds were purified on preparative LC (ACN/TFA method as in Example 5) to give (3S)-3-[(3S)-l-(5,6-difluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile as the TFA salt [m/z: 421 (M+)]. ¹H NMR(400 MHz CD₂OD): δ 8.95 (s, 1H), 8.85 (s, 1H), 8.55 (s, 1H), 7.80 (d, 1H), 7.35 (m, 1H), 7.20 (d, 1H), 6.04 (m, 1H), 4.85 (m, 1H), 3.93 (m, 1H), 3.70 (m, 1H), 3.51 (m, 2H), 3.40 (m, 1H), 2.95 (m, 1H), 1.80 (m, 2H) and (3S)-3-[(3S)-l-(6-bromo-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile as the TFA salt [m/z: 421 (M+)]. ¹H NMR(400 MHz CD₂OD): δ 8.95 (s, 1H), 8.85 (s, 1H), 8.55 (s, 1H), 7.80 (d, 1H), 7.35 (m, 1H), 7.20 (d, 1H), 6.04 (m, 1H), 4.85 (m, 1H), 3.93 (m, 1H), 3.70 (m, 1H), 3.51 (m, 2H), 3.40 (m, 1H), 2.95 (m, 1H), 1.80 (m, 2H)
Example 90. (3S)-3-[(3S)-1-[(6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-l-yl]propanenitrile trifluoroacetate

![Chemical Structure](image)

Step 1: (2,6-dichloro-5-fluoropyridin-3-yl)methanol

A solution of 2,6-dichloro-5-fluoronicotinic acid (from Aldrich; 0.50 g, 2.4 mmol) in THF (10.0 mL) was cooled to 0 °C and 1.0 M of borane in THF (2.8 mL) was added slowly, the reaction was allowed to warm at 25 °C and was stirred overnight. LCMS analysis of the reaction mixture showed starting material present and 1.0 M of borane in THF (1.50 mL) was added and was stirred at 25 °C overnight at which time LCMS analysis showed mainly product. The reaction was quenched with water and 1 N HCl and was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo to give (2,6-dichloro-5-fluoropyridin-3-yl)methanol. Used in the next reaction without purification, m/z 197 (M+1)

Step 2: (3S)-3-[(3S)-1-[6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-l-yl]propanenitrile

(3S)-3-[(3S)-Pyrrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-l-yl]propanenitrile (52.0 mg, 0.188 mmol; from Example 15, step 3) was mixed with (2,6-dichloro-5-fluoropyridin-3-yl)methanol (62.0 mg, 0.316 mmol) and DIPEA (25.0 μL, 0.1435 mmol) and was dissolved in NMP (0.31 mL). The reaction was heated at 130 °C for 2 h at which time LCMS analysis showed some product. This was purified by LC
Step 3: (3S)-3-((3S)-1-[(6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

(3S)-3-((3S)-1-[6-Chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl]pyrrolidin-3-yl)-3-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile was deprotected (TFA/CH$_2$Cl$_2$; MeOH/NH$_4$OH) as in Example 1, and the deprotected compound was purified on preparative LC (ACN/TFA method as in Example 5) to give (3S)-3-((3S)-1-[(6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate. MS(EI): 466(M+1). 1H NMR (500 MHz, CD$_3$OD): δ 8.95 (s, 1H), 8.85 (s, 1H), 8.55 (s, 1H), 7.80 (d, 1H), 7.40 (m, 1H), 7.20 (d, 1H), 4.85 (m, 1H), 4.46 (s, 2H), 2.90-4.00 (m, 7H), 1.80 (m, 2H)

Example 91. (S)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-((S)-1-(5-amino-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl)propanenitrile bis(trifluoroacetate)

Step 1: 2-chloro-6-((3S)-3-{(1S)-2-cyano-1-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]pyrrolidin-1-yl}ethyl)pyrrolidin-1-yl)-5-fluoronicotinic acid trifluoroacetate

(3S)-3-((3S)-Pyrrolidin-3-yl)-3-[4-((7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (250.0 mg, 0.57128 mmol; from Example 15, step 3) was mixed with 2,6-dichloro-5-fluoronicotinic acid (167.95 mg, 0.79979 mmol) and DIPEA (125.0 µL, 0.7176 mmol) and was dissolved in NMP (1.5 mL). The reaction was heated at 130 °C for 3 h at which time LCMS analysis showed mostly product in a ~5:1 regiomer mixture. Purified by preparative LC as in Example 5 to give the product 2-chloro-6-((3S)-3-{(1S)-2-cyano-1-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
Step 2: (3S)-3-[(3S)-l-(5-amino-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile bis(trifluoroacetate)

Into a 1-neck round-bottom flask 2-chloro-6-((3S)-3-{((S)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-5-fluoronicotinic acid (50.0 mg, 0.08181 mmol) was dissolved in THF (1.0 mL) and triethylamine (30.0 µL, 0.2152 mmol) was added, followed by diphenylphosphonic azide (19.39 µL, 0.090 mmol). The reaction was stirred at 25 0°C for 3 h at which time LCMS analysis showed mainly the isocyanate intermediate: (3S)-3-[(3S)-l-(6-chloro-3-fluoro-5-isocyanatopyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile. Into the reaction mixture was added water (150.0 µL, 8.3263 mmol) and was heated to reflux for 2 h at which time LCMS analysis showed mainly amine (3S)-3-[(3S)-l-(5-amino-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile. The product was purified by preparative LC (ACN/TFA/water as in Example 5) and was carried to the deprotection step. MS(EI): 582 (M+1)

Step 3: 3-[(3S)-l-(5-amino-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl] propanenitrile bis(trifluoroacetate).

(3S)-3-[(3S)-l-(5-Amino-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile was deprotected (TFA/CH₂C₁₂; MeOH/NH₄OH) as in Example 1, and the deprotected compound was purified on preparative LC (ACN/TFA method as in Example 5) to give the product 3-[(3S)-l-(5-amino-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile bis(trifluoroacetate) MS(EI): 452 (M+1). ¹H NMR(300 MHz CD₃OD): δ 9.00 (s, IH), 8.90 (s, IH), 8.55 (s, IH), 7.85 (m, IH), 7.30 (m, IH), 7.00 (m, IH), 4.85 (m, IH), 3.90 (m, IH), 3.20-3.50 (m, 5H), 3.00 (m, IH), 1.85 (m, 2H).

The isomeric amine (3S)-3-[(3S)-l-(3-amino-6-chloro-5-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile bis(trifluoroacetate) was also isolated MS(EI): 452 (M+1).

yO-l-cyanoethylJpyrrolidin-l-ylJ-ό-chloro-S-fluoropyridin-S-ylJformamide trifluoroacetate

Into a 1-neck round-bottom flask 2-chloro-6-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-5-fluoronicotinic acid (from example 91, step 1; 200.0 mg, 0.32726 mmol) was dissolved in THF (4.5 mL) and triethylamine (120.0 µL, 0.8610 mmol) was added, followed by diphenylphosphonic azide (77.58 µL, 0.36 mmol). The reaction was stirred at 25 °C for 3 h at which time LCMS analysis showed mainly the isocyanate intermediate.

The reaction was hydrogenated under an atmosphere of hydrogen (1 atm) for 30 min. at which time LCMS analysis showed mainly formamide and some dechlorinated by-product. This was purified by LC (ACN/TFA/water method as in Example 5) and deprotected as in Example 1, and purified by preparative LC (ACN/TFA/water method as in Example 5) to give both amide regioomers.

N-[2-Chloro-6-((3S)-3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-5-fluoropyridin-3-yl]formamide trifluoroacetate MS(EI): 481 (M+1), \(^1\)H NMR(300 MHz, CD\(_3\)OD): δ 8.95 (s, 1H), 8.85 (s, 1H), 8.55 (s, 1H), 7.80 (d, 1H), 7.58 (d, 1H), 7.20 (d, 1H), 4.85 (m, 1H), 4.46 (s, 2H), 2.90-4.00 (m, 7H), 1.80 (m, 2H); and N-[6-chloro-2-((3S)-3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-5-fluoropyridin-3-yl]formamide trifluoroacetate MS(EI): 481 (M+1)

Example 93. (3S)-3-[(3S)-l-[6-(ethylsulfonyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile trifluoroacetate
Step 1: 6-(ethylsulfonyl)-2,3-difluoropyridine

Into a vial, 2,3,6-trifluoropyridine (0.1 mL, 1.13 mmol) was dissolved in THF (2.0 mL) and sodium hydride (60% in mineral oil, 0.050 g, 1.2 mmol) was added and was cooled at 0 °C. Ethanethiol (0.077 g, 1.2 mmol) was added and was stirred at 25 °C for 16 h and evaporated to dryness to give 6-(ethylthio)-2,3-difluoropyridine. This was dissolved in methanol (10.0 mL) and water (5.0 mL) and Oxone® (1.38 g, 2.25 mmol) was added and was stirred at 25 °C for 16 h. Then the reaction mixture was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo. LCMS analysis showed mainly product MS(EI): 207 (M+1).

Step 2: (3S)-3-[(3S)-l-[6-(ethylsulfonyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

(3S)-3-[(3S)-Pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (50.0 mg, 0.142 mmol; from Example 15, step 3) was mixed with 6-(ethylsulfonyl)-2,3-difluoropyridine (33.143 mg, 0.15996 mmol) and DIPEA (25.0 µL, 0.1435 mmol) and was dissolved in NMP (0.3 mL). The reaction was heated at 130 °C for 2 h at which time LCMS analysis showed mostly product. This was purified by preparative LC as in Example 5 to give (3S)-3-[(3S)-l-[6-(ethylsulfanyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile. The SEM group was cleaved as in Example 1 and purified by preparative LC (ACN/TF/A/water method as in Example 5) to give (3S)-3-[(3S)-l-[6-(ethylsulfanyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate contaminated with ~10% of the regiorimer. MS(EI): 495 (M+1), ¹H NMR (500 MHz, CD₃OD): δ 8.95 (s, 1H), 8.85 (s, 1H), 8.55 (s, 1H), 7.82 (d, 1H), 7.58 (m, 1H), 7.20 (d, 1H), 6.75 (dd, 1H), 4.85 (m, 1H), 4.46 (s, 2H), 2.90-4.00 (m, 9H), 1.90 (m, 2H), 1.30 (t, 3H).
Example 94. (3S)-3-[(3S)-l-(6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

Into a 1-neck round-bottom flask (3S)-3-[(3S)-l-(5-ammo-6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile bistrifluoroacetate (Example 91; 60.02 mg, 0.08621 mmol) was dissolved in THF (2.0 mL) and tert-butyl nitrite (15.0 µL, 0.135 mmol) was added. The reaction was heated to reflux for 3 h at which time LCMS analysis showed (3S)-3-[(3S)-l-(6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile product and no starting material. The product was purified by preparative LC (ACN/TFA/water method as in Example 5) and was deprotected as in Example 1, and purified as in Example 5 to give (3S)-3-[(3S)-l-(6-chloro-3-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate. MS(EI): 437 (M+1).

Example 95. 2-((3S)-3-{(lS)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile bis(trifluoroacetate)

Step 1: 2,3-dibromo-5-fluoro-4-(methoxymethyl)pyridine

Into a 1-neck round-bottom flask N,N-diisopropylamine (0.09898 mL, 0.7062 mmol) was dissolved in THF (2.14 mL) and cooled at -78 °C. Into the reaction was added 1.6 M of n-butyl lithium in hexane (0.3825 mL, 0.6120 mmol) and was stirred at -78 °C for 30 min. and a solution
of 2,3-dibromo-5-fluoropyridine (from Matrix Scientific; 120.0 mg, 0.4708 mmol) in THF (2.0 mL) was added and was stirred at -78 °C for 2 h and bromomethyl methyl ether (0.079 mL, 0.96 mmol) was added and was stirred at -78 °C for 1 h. The reaction was quenched with saturated NH₄Cl and partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo. NMR analysis showed mostly product 2,3-dibromo-5-fluoro-4-(methoxymethyl)pyridine. Used in the next reaction without purification. ¹H NMR (400 MHz, CDCl₃): δ 8.24 (s, 1H), 4.65 (d, 2H), 3.02 (s, 3H).

Step 2: (3S)-3-((3S)-3-[3-bromo-5-fluoro-4-(methoxymethyl)pyridin-2-yl]pyrrolidin-3-yl)-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile

(3S)-3-(3S)-Pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile (80.0 mg, 0.1828 mmol; from Example 15, step 3) was mixed with 2,3-dibromo-5-fluoro-4-(methoxymethyl)pyridine (100.0 mg, 0.3345 mmol) and DIPEA (60.0 µL, 0.3445 mmol) and was dissolved in NMP (0.40 mL). The reaction was heated at 130 °C for 3 h. The residue was purified by preparative LC (ACN/TFA/water method as in Example 5) to give the product (3S)-3-((3S)-3-[3-bromo-5-fluoro-4-(methoxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile. This was evaporated and was partitioned between EtOAc and saturated NaHCO₃ and EtOAc extract was washed with brine, dried (MgSO₄), and stripped in vacuo (33 mg). LCMS(EI): 656 (M+1).

Step 3: 2-((3S)-3-((1S)-2-cyano-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile

Into a 1-neck round-bottom flask (3S)-3-((3S)-3-[3-bromo-5-fluoro-4-(methoxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile (33.0 mg, 0.0503 mmol) was dissolved in NMP (0.4 mL) and zinc cyanide (17.7 mg, 0.151 mmol) and zinc powder (9.87 mg, 0.151 mmol) were added. The reaction was degassed and bis(tri-t-butylphosphine)palladium (12.9 mg, 0.0252 mmol) was added, degassed and heated at 130 °C for 100 min. at which time LCMS analysis showed that it was consisted mainly of product. The reaction was filtered and the product was purified by preparative LC (ACN/TFA/water method as in Example 5) to give 2-((3S)-3-((1S)-2-cyano-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile.

182

Step 3: 2-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile bis(trifluoroacetate)

2-((3S)-3-{(lS)-2-Cyano-l-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]- lH-pyrazol- 1-yl]ethyl)pyrrolidin- 1-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile was deprotected as in Example 1. The deprotected product was purified by LC (ACN/TFA/water method as in Example 5) to give the titled product. MS(EI): 472 (M+1). 1H NMR (400 MHz, CDCl3): δ 8.95 (s, 1H), 8.86 (s, 1H), 8.55 (s, 1H), 8.22 (d, 1H), 7.83 (d, 1H), 7.23 (d, 1H), 4.85 (m, 1H), 4.00 (m, 1H), 3.70-3.80 (m, 3H), 3.40 (s, 3H), 3.00-3.40 (m, 5H).

Example 96: 2-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2^-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-4-(methoxymethyl)nicotinonitrile tris(trifluoroacetate)

Step 1: 2,3-dibromo-4-(methoxymethyl)pyridine

Into a 1-neck round-bottom flask N,N-diisopropylamine (3.550 mL, 25.33 mmol) was dissolved in THF (60.0 mL) and was cooled at -78 °C and 1.6 M of n-butyl lithium in hexane (14.51 mL, 23.22 mmol) was added and was stirred for 30 min. Into the reaction was added 2,3-dibromopyridine (5.0 g, 21.1 mmol) in THF (33 mL) and was stirred at -78 °C for 1 h and bromomethyl methyl ether (1.895 mL, 23.22 mmol) was added and was stirred for 30 min. at -78 °C. LCMS analysis showed a 3:1 mixture of 2,3-dibromo-4-(methoxymethyl)pyridine and 2,4-dibromo-3-(methoxymethyl)pyridine. The reaction was quenched with saturated NH4Cl and was partitioned between EtOAc and water and EtOAc extract was washed with brine, dried (MgSO4), and stripped in vacuo. The residue was chromatographed on silica gel using 5% EtOAc/hexanes to give the product 2,3-dibromo-4-(methoxymethyl)pyridine. MS: 282 (M+1). 1H NMR (400 MHz, CDCl3): δ 8.36 (d, 1H), 7.00 (d, 1H), 4.48 (s, 2H), 3.50 (s, 3H).
Step 2: (3S)-3-{(3S)-l-[3-bromo-4-(methoxymethyl)pyridin-2-yl]pyrroolidin-3-yl}-3-[4-(7-{
[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl}propanenitrile

(3S)-3-{(3S)-Pyrroolidin-3-yl}-3-[4-(7-{
[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl}propanenitrile (600.0 mg, 1.371 mmol; from Example 15, step 3) was mixed with 2,3-dibromo-4-(methoxymethyl)pyridine (610.0 mg, 2.17 mmol) and DIPEA (235 µL, 1.35 mmol) and was dissolved in NMP (1.6 mL). The reaction was heated at 140 °C for 3 h at which time LCMS analysis showed mainly product. The residue was purified by chromatography to give the product (3S)-3-{(3S)-l-[3-bromo-4-(methoxymethyl)pyridin-2-yl]pyrroolidin-3-yl}-3-[4-(7-{

Step 3: 2-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrroolidin-l-yl)-4-(methoxymethyl)nicotinonitrile

Into a 1-neck round-bottom flask (3S)-3-{(3S)-l-[3-bromo-4-(methoxymethyl)pyridin-2-yl]pyrroolidin-3-yl}-3-[4-(7-{
[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile (390.0 mg, 0.61 16 mmol) was dissolved in NMP (4.0 mL) and zinc cyanide (215 mg, 1.83 mmol) and zinc powder (120 mg, 1.83 mmol) was added. The reaction was degassed and bis(tri-t-butylphosphine)palladium (50.0 mg, 0.09784 mmol) was added and was heated at 130 °C for 100 min. at which time LCMS analysis showed that it was mainly starting material and some product in a ~3:1 ratio. Into the reaction was added bis(tri-t-butylphosphine)palladium (80.0 mg, 0.156 mmol) and was heated at 130 °C for 100 min. at which time LCMS analysis showed mainly product. The mixture was filtered and was purified by chromatography to give the product (190 mg). MS(EI): 584 (M+1).

Step 4: 2-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrroolidin-l-yl)-4-(methoxymethyl)nicotinonitrile tris(trifluoroacetate)

Into a 1-neck round-bottom flask 2-((3S)-3-{(lS)-2-cyano-l-[4-(7-{
[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrroolidin-l-yl)-4-(methoxymethyl)nicotinonitrile (0.380 g, 0.651 mmol) was dissolved in DCM (2.0 mL) and TFA (1.0 mL, 13.0 mmol) was added. The reaction was stirred at 25 °C for 2 h at which time LCMS analysis showed a ~3:1 product and starting material. Then an
additional amount of TFA (1.0 mL, 13.0 mmol) was added and was stirred for 1 h at which time LCMS analysis showed only product. The reaction mixture was evaporated to dryness and was dissolved in methanol (4.0 mL) and 16 M of ammonia in water (1.0 mL, 16.4 mmol) was added and was stirred at 25 °C for 1 h at which time LCMS analysis showed mainly product. The reaction mixture was evaporated and was purified by preparative LCMS as in Example 5 to give the product. MS(El): 454 (M+). 1HNMR(400 MHz CD$_3$OD): δ 9.00 (s, 1H), 8.90 (s, 1H), 8.57 (s, 1H), 8.22 (d, 1H), 7.85 (d, 1H), 7.25 (d, 1H), 6.80 (d, 1H), 4.90 (m, 1H), 4.50 (s, 2H), 4.02 (m, 1H), 3.82 (m, 2H), 3.75 (m, 2H), 3.42 (s, 3H), 3.40 (m, 1H), 3.22 (m, 1H), 3.03 (m, 1H), 1.86 (m, 2H).

The examples in the table below were made by procedures analogous to those for producing Examples 84-96.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>Name</th>
<th>M+H</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td></td>
<td>4-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-methoxypyrimidine-5-carbonitrile trifluoroacetate</td>
<td>441</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>(S)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-((S)-1-(6-(ethylsulfonyl)-3-fluoropyridin-2-yl)pyrrolidin-3-yl)propanenitrile trifluoroacetate</td>
<td>509</td>
</tr>
</tbody>
</table>
Example 102. (3S)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-[1,3]thiazolo[5,4-d]pyrimidin-5-yl]pyrrolidin-3-yl] propanenitrile bis (trifluoroacetate)

Step 1. 5-amino-2-chloropyrimidine-4-thiol

Sodium hydrogen sulfide (1.0 g, 18 mmol) was added to a solution of 2,4-dichloropyrimidin-5-amine (1 g, 6 mmol), in ethanol (40 mL), under N₂. Stirred at 60 °C for 2 h. LCMS showed almost complete reaction, and showed the expected product (M+H: 162), and also showed some disulfide (M+H: 321). The reaction mixture was evaporated, added water (25mL) followed by acetic acid (5 mL, 90 mmol) to adjust to pH 3. The mixture was stirred for 2 days, filtered, rinsed with water, air dried, then dried under high vacuum. The isolated product (0.6g, 60% yield) probably contains some sulfur. LCMS calculated for C₄H₅ClN₃S(M+H)⁺: m/z = 161.989.
Step 2. 5-chloro[1,3]thiazolo[5,4-d]pyrimidine

5-Amino-2-chloropyrimidine-4-thiol (0.3 g, 2 mmol) was stirred in ethyl orthoformate (3 mL, 20 mmol) for 2 h at 21 °C. LCMS showed nearly complete (very weak M+H 172). The reaction mixture was evaporated to dryness. The residue was extracted with ACN and filtered to remove sulfur, etc. The product was isolated by preparative HPLC using a Waters Fraction-Lynx instrument and a 30mm x 100mm Xbridge C18 column; 25% CH₃OH-H₂O (0.1%TFA), 0.6 min; 6 min gradient to 45%; 60 mL/min; detector set at 220 nm; retention time 3.7 min. The collected fractions were evaporated to dryness to give a yellow solid in 5% yield. HPLC showed product UVₘₚₙ 220 nm. LCMS calculated for C₁₁H₁₉N₁₀S(M+H)+: m/z = 443.151; found 443.

Step 3. (3S)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-[(3S)-1-[1,3]thiazolo[5,4-d]pyrimidin-5-yl]pyrrolidin-3-yl]propanenitrile bis (trifluoroacetate)

(3S)-3-[(3S)-Pyrrolidin-3-yl]-3-[4-(7-[12-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (38 mg, 0.087 mmol; from Example 15, step 3), was dissolved in NMP (0.41 mL) and 4-methylmorpholine (24 µL, 0.22 mmol). 5-chloro[1,3]thiazolo[5,4-d]pyrimidine (15 mg, 0.087 mmol) was added. Stirred at 120 °C in a microwave reactor for 10 min. LCMS showed nearly complete reaction to the expected intermediate (M+H, 573). The product was isolated by preparative HPLC/MS using a Waters Fraction-Lynx instrument and a 30mm x 100mm Sunfire C18 column; 30% ACN-H₂O (0.1%TFA), 2.0 min; 10 min gradient to 60%; 60 mL/min; retention time 10.9 min. The product fractions were freeze dried to give 20 mg (TFA salt).

Deprotection: The above residue was dissolved in CH₂Cl₂ (0.4 mL) at 21 °C, and TFA (0.34 mL, 4.4 mmol) was added and stirred for 1.2 h. The solution was concentrated to remove TFA. The residue was dissolved in acetonitrile (0.8 mL) and 15.0 M of ammonium hydroxide in water (0.20 mL, 2.9 mmol) was added. The solution was stirred at 21 °C for 3 h. LCMS showed the reaction to be complete. The reaction mixture was concentrated. The product was isolated by preparative HPLC/MS using a Waters Fraction-Lynx instrument and a 19 mm x 100 mm Sunfire C18 column; 9% ACN-H₂O (0.1%TFA), 2.5 min; 10 min gradient to 35%; 30 mL/min; retention time 11.8 min. The collected fractions were freeze-dried to give white solid (11 mg; presumed bis-TFA salt). HPLC showed UV max at 228, 268, 288, and 330 nm. ¹H NMR (300 MHz, DMSO-D₆): δ 12.5 (s, IH); 8.98 (s, IH); 8.95 (s, 2H); 8.77 (s, IH); 8.48 (s, IH); 7.72 (s, IH); 7.08 (s, IH); 4.84 (m, IH); 3.86 (m, IH); 3.61 (m, IH); 3.35 (m, 4H); 2.88 (m, IH); 1.64 (m, 2H); LCMS calculated for C₂₁H₁₉N₁₀S(M+H)+: m/z = 443.151; found 443.
Example 103. 2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(difluoromethyl)nicotinonitrile bis (trifluoroacetate)

Step 1. 2,3-dichloro-4-(difluoromethyl)pyridine

2,3-Dichloroisonicotinaldehyde (146 mg, 0.830 mmol), was stirred in 2-methoxy-N-(2-methoxyethyl)-N-(trifluoro-\((\lambda^4\))-sulfanyl)ethanamine (Aldrich; 0.30 mL, 1.6 mmol) at 21 °C. Ethanol (10 µL, 0.2 mmol) was added to provide HF catalyst. After 1.5 h, LCMS showed clean conversion to product (did not ionize). The reaction was quenched by pouring into 5% NaHCO₃ solution followed by extraction with EtOAc. The EtOAc layer was shaken with 5% citric acid to remove bis(methoxyethyl)amine. The organic extracts were evaporated to dryness to give 130 mg oil, which slowly crystallized. The product was clean enough to use without purification. HPLC gave \(\lambda_{1138} 216 \& 280\) nm. The FMR showed a doublet for the CHF₂ at -118.9 ppm. \(^1\)H NMR (300 MHz, CDCl₃): δ 8.46 (d, \(J = 4.9\) Hz, 1H); 7.53 (d, \(J = 4.9\) Hz, 1H); 6.90 (t, \(J = 53.8\) Hz, 1H); LCMS calculated for C₆H₄Cl₂F₂N(M+H)⁺: m/z = 197.969.

Step 2. (3S)-3-{(3S)-1-[3-chloro-4-(difluoromethyl)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

Into a vial was added (3S)-3-[3S]-pyrrolidin-3-yl]-3-[4-[(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (68 mg, 0.16 mmol; from Example 15, step 3), NMP (0.75 mL); 4-methylmorpholine (34 µL, 0.31 mmol), and 2,3-dichloro-4-(difluoromethyl)pyridine (46 mg, 0.23 mmol). Stirred at 150 °C for 15 min in a microwave reactor. LCMS & HPLC showed 80% reaction, with about 60% conversion to product (M+H 599). The product was isolated by preparative HPLC using a Waters Fraction-Lynx instrument and a 30mm x 100mm Xbridge C18 column; 67% CH₃OH-H₂O (0.1% TFA), 0.5 min; then 5 min gradient to 85%; 60 mL/min; detector set at 254 nm; retention time 5.6 min. The collected eluate was evaporated to dryness to give 40 mg (36% yield; probably TFA salt). HPLC gave \(\lambda_{1138} 208, 226, 260, \& 314\) nm. LCMS calculated for...
C_{28}H_{34}ClF_{2}N_{8}O_{7}Si(NHH) ^{+}: m/z = 599.228.

Step 3. 2-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(difluoromethyl)nicotinonitrile bis (trifluoroacetate)

(3S)-3-{(3S)-l-[3-Chloro-4-(difluoromethyl)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-{(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl}propanenitrile (34 mg, 0.057 mmol; 40mg TFA salt), was stirred in NMP (1.0 mL). Zinc cyanide (21 mg, 0.18 mmol) and tetrakis(triphenylphosphine)palladium(0) (14 mg, 0.012 mmol) were added and the solution was flushed with nitrogen (subsurface). The vial was sealed. The solution was heated at 180 °C for 15 min in a microwave reactor. LCMS showed about 50% reaction to give M+H 590.

The reaction mixture was diluted with MeOH and filtered. The product was isolated by preparative LCMS using a Waters Fraction-Lynx instrument and a 30mm x 100mm Sunfire C18 column; 40%ACN-H₂O (0.1%TFA), 2.0min; 10 min gradient to 65%; 60 mL/min; detector set at m/z 590 & 599; retention time, 10.5 & 11.8 min. The collected fractions were evaporated to dryness.

Deprotection: The above was dissolved in DCM (0.35 mL) and TFA (0.35 mL, 4.5 mmol) and was stirred for 1.1 h. The solution was concentrated to remove TFA. To the residue was added acetonitrile (0.8 mL) and 15.0 M of ammonium hydroxide in water (0.21 mL, 3.2 mmol). The reaction was stirred at 20 °C for 2 h. LCMS showed reaction to be complete. The reaction mixture was concentrated. The product was isolated by preparative HPLC/MS using a Waters Fraction-Lynx instrument and a 30mm x 100mm Sunfire C18 column; 18% ACN-H₂O (0.1%TFA), 2.5 min; 10 min gradient to 44%; 60 mL/min; detector set at m/z 460; retention time 11.8 min. The product fractions were collected and freeze-dried to give 6 mg white solid. HPLC: UV max 220, 266, 292, and 330nm. The FMR showed the product to be the di-TFA salt, and showed two doublets for the CHF₂ (at -116.8 ppm), from two rotamers. ^{1}H NMR (400 MHz, DMSO-D₆): δ 12.5 (s, IH); 8.98 (s, IH); 8.81 (s, IH); 8.52 (s, IH); 8.46 (d, J = 5.0 Hz, IH); 7.75 (s, IH); 7.13 (t, J = 53.8 Hz, IH); 7.11 (s, IH); 6.93 (d, J = 5.0 Hz, IH); 4.90 (m, IH); 3.95 (m, IH); 3.81 (m, IH); 3.66 (m, 2H); 3.35 (m, 2H); 2.90 (m, IH); 1.72 (m, 2H); LCMS calculated for C_{26}H_{20}F_{2}N_{7}(M+H)^{+}: m/z = 460.181; found 460.

Examples 104-116.

The examples in the table below were made by procedures analogous to those for producing Examples 47-50.
<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>Name</th>
<th>M+H</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td></td>
<td>(S)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-((S)-1-(5-fluoro-2-methoxypyrimidin-4-yl)pyrrolidin-3-yl)propanenitrile trifluoroacetate salt</td>
<td>434</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>(S)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-((S)-1-(3-amino-6-chloropyridin-2-yl)pyrrolidin-3-yl)propanenitrile trifluoroacetate salt</td>
<td>434</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>4-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile trifluoroacetate salt</td>
<td>411</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>6-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile trifluoroacetate salt</td>
<td>428</td>
</tr>
<tr>
<td>Ex.</td>
<td>Structure</td>
<td>Name</td>
<td>M+H</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>2-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile trifluoroacetate salt</td>
<td>428</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>2-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-methylnicotinonitrile trifluoroacetate salt</td>
<td>424</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>4-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(difluoromethyl)pyrimidine-5-carbonitrile trifluoroacetate salt</td>
<td>461</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>2-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(difluoromethyl)benzonitrile trifluoroacetate salt</td>
<td>459</td>
</tr>
<tr>
<td>Ex.</td>
<td>Structure</td>
<td>Name</td>
<td>M+H</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>2-((S)-3-((S)-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(methoxymethyl)benzonitrile</td>
<td>453</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>4-(3-(1-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile trifluoroacetate salt, racemate</td>
<td>410</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>2-(3-(1-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)nicotinonitrile trifluoroacetate salt, single enantiomer</td>
<td>409</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>3-(3-(1-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile trifluoroacetate salt, single enantiomer</td>
<td>410</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>4-((3S)-3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile trifluoroacetate salt, single enantiomer</td>
<td>404</td>
</tr>
<tr>
<td>Ex.</td>
<td>(^1)H NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>(^1)H NMR (400 MHz, DMSO-D6): (\delta) 12.8 (s, 1H); 9.01 (s, 1H); 8.84 (s, 1H); 8.53 (s, 1H); 7.80 (s, 1H); 7.16 (s, 1H); 6.94 (d, 1H); 6.63 (d, 1H); 4.79 (m, 1H); 3.49 (m, 1H); 3.29 (m, 5H); 2.77 (m, 1H); 1.52 (m, 2H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>(^1)H NMR (400 MHz, DMSO-D6): (\delta) 12.6 (s, 1H); 9.2 (br s, 1H); 8.98 (s, 1H); 8.86 (br s, 1H); 8.52 (s, 1H); 7.75 (s, 1H); 7.24 (br s, 1H); 7.12 (s, 1H); 4.86 (m, 1H); 3.76 (br s, 2H); 3.53 (br s, 2H); 3.40 (dd, 1H); 3.26 (dd, 1H); 2.91 (m, 1H); 1.77 (m, 1H); 1.62 (m, 1H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>(^1)H NMR (500 MHz, DMSO-D6): (\delta) 12.6 (s, 1H); 8.99 (s, 1H); 8.84 (s, 1H); 8.53 (s, 1H); 8.33 (t, 1H); 7.87 (dd, 1H); 7.78 (s, 1H); 7.13 (s, 1H); 4.88 (m, 1H); 3.95 (m, 1H); 3.76 (m, 1H); 3.56 (m, 2H); 3.41 (dd, 1H); 3.32 (dd, 1H); 2.88 (m, 1H); 1.68 (m, 2H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>(^1)H NMR (300 MHz, DMSO-D6): (\delta) 12.5 (s, 1H); 8.97 (s, 1H); 8.88 (s, 1H); 8.51 (s, 1H); 8.37 (d, 1H); 8.07 (dd, 1H); 7.75 (s, 1H); 7.11 (s, 1H); 4.87 (m, 1H); 3.86 (m, 1H); 3.72 (m, 1H); 3.67 (m, 2H); 3.40 (dd, 1H); 3.26 (dd, 1H); 2.87 (m, 1H); 1.69 (m, 2H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>(^1)H NMR (400 MHz, DMSO-D6): (\delta) 12.6 (s, 1H); 8.99 (s, 1H); 8.82 (s, 1H); 8.53 (s, 1H); 8.17 (s, 1H); 7.77 (s, 1H); 7.52 (t, 1H); 7.13 (s, 1H); 7.07 (t, J = 54 Hz, 1H); 6.98 (d, 2H); 4.88 (m, 1H); 3.73 (m, 1H); 3.60 (m, 2H); 3.53 (m, 1H); 3.40 (dd, 1H); 3.27 (dd, 1H); 2.92 (m, 1H); 1.68 (m, 2H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>(^1)H NMR (300 MHz, DMSO-D6): (\delta) 12.1 (s, 1H); 8.81 (s, 1H); 8.62 (s, 1H); 8.37 (s, 1H); 7.54 (s, 1H); 7.34 dd, 1H); 6.93 (s, 1H); 6.75 (d, 1H); 6.71 (d, 1H); 4.78 (m, 1H); 4.39 (s, 2H); 3.61 (m, 1H); 3.51 (m, 2H); 3.39 (m, 1H); 3.15-3.35 (m, 2H); 3.26 (s, 3H); 2.85 (m, 1H); 1.61 (m, 2H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>(^1)H NMR (300 MHz, DMSO-D6): (\delta) 13.2 (s, 1H); 8.90 (s, 1H); 8.41 (s, 1H); 8.31 (dd, 1H); 7.94 (m, 2H); 7.38 (m, 2H); 7.19 (s, 1H); 6.72 (dd, 1H); 4.68 (m, 1H); 3.90 (m, 1H); 3.78 (m, 1H); 3.64 (m, 1H); 3.51 (m, 2H); 3.29 (m, 1H); 2.87 (m, 1H); 1.67 (m, 2H)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ex. | 1H NMR
---|---
115 | 1H NMR (300 MHz, DMSO-D6): δ 12.9 (s, IH); 8.78 (s, IH); 8.33 (d, IH); 8.25 (s, IH); 7.93 (d, IH); 7.80 (s, IH); 7.28 (m, IH); 7.21 (s, IH); 7.08 (s, IH); 4.61 (m, IH); 3.86 (m, IH); 3.75 (m, IH); 3.35-3.69 (m, 3H); 3.23 (m, IH); 2.83 (m, IH); 1.64 (m, 2H)
116 | n/a

Example 117. 3-((3S)-3-[2-fluoro-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)pyridine-2-carbonitrile trifluoroacetate

A solution of 4-(1-{2-flouro-l-{(3S)-pyrrolidin-3-yl]ethyl]-IH-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 37 mg, 0.087 mmol), and DIPEA (30.0 µL, 0.17 mmol), in NMP (0.7 mL) with 3-fluoropyridine-2-carbonitrile (from Alfa Aesar; 16 mg, 0.13 mmol), was heated to 130 °C for 2 h. LCMS showed conversion to the expected intermediate. The reaction mixture was partitioned between water and EtOAc, the aqueous phase was extracted another 2x with EtOAc. The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude residue was dissolved in 5 mL of MeOH/ACN with a smaller amount of water and were purified by preparative LCMS as in Example 5 at pH 2 to recover the product. The purified product was concentrated in vacuo and taken on to deprotection.

To the residue was added DCM (0.5 mL) and TFA (0.5 mL), the reaction was stirred at ambient temperature for 1 h, evaporated to dryness, then added methanol (0.5 mL) and ammonium hydroxide (0.5 mL), after 45 min LCMS showed complete deprotection. The solvents were removed and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS as in Example 5 at pH 2, the product tubes were combined and lyophilized to dryness to give the product as a TFA salt. 1H NMR (300 MHz, DMSO-D₆): δ 12.8 (s, IH); 8.9 (s,
Example 118. 2-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)nicotinonitrile trifluoroacetate

A solution was prepared by dissolving 4-{1-[2-fluoro-1-[(3S)-pyrrolidin-3-yl]ethyl]-1H-pyrazol-4-yl}-7-{2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 37 mg, 0.087 mmol) and DIPEA (30 µL, 0.17 mmol) in NMP (0.7 mL) with 2-fluoronicotinonitrile (from Alfa Aesar; 16 mg, 0.13 mmol) was heated to 130 °C for 2 h. The reaction mixture was partitioned between water and EtOAc, the aqueous phase was extracted another 2× with EtOAc. The combined organic phase was washed with brine, dried over MgSO4, filtered and concentrated in vacuo and was purified by preparative LCMS as in Example 5 at pH 2 to recover the product. This was concentrated in vacuo and the SEM group was removed as in Example 1. The solvent was evaporated and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS as in Example 5 at pH 2, the product tubes were combined and lyophilized to dryness to give the product as a TFA salt. 1H NMR (300 MHz, DMSO-D6): δ 12.8 (s, IH); 8.95 (s, IH); 8.85 (s, IH); 8.5 (s, IH); 8.3 (m, IH); 7.9 (m, IH); 7.8 (s, IH); 7.2 (s, IH); 6.7 (m, IH); 4.9 (m, 3H); 3.9 (m, IH); 3.8 (m, IH); 3.6 (m, 2H); 2.9 (m, IH); 1.7 (m, 2H).

LCMS calculated for C21H20FN8(M+H)+: m/z = 403.179, observed 403.2.
Example 119. 4-(1-[(3S)-1-(1,1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-2-fluoroethyl)-1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine trifluoroacetate

A solution was prepared by dissolving 4-(1-[2-fluoro-1-(3S)-pyrrolidin-3-yl]ethyl)-1H-pyrazol-4-yl)-7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 25 mg, 0.058 mmol) and DIPEA (2.0 mL, 0.12 mmol) in NMP (0.2 mL). To this solution was added 6-chloro-2,3-dihydrothieno[2,3-b]pyridine 1,1-dioxide (from Example 28, Step 4; 18 mg, 0.087 mmol) and the reaction was heated to 100°C for 2 h, at which time LCMS analysis showed conversion to the desired product. The reaction was cooled to ambient temperature and partitioned between water and EtOAc. The phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to provide the crude product, which was then dissolved in ACN/MeOH and purified by preparative LCMS, at pH 2 MeOH/water method as in Example 5, to recover the product. The product tubes were evaporated to dryness, and the residue was treated with DCM (0.4 mL) and TFA (0.4 mL) for 30 min. The solvents were removed and ammonium hydroxide (0.4 mL) and methanol (0.4 mL) were added and the reaction was stirred at ambient temperature for 45 min. The solvents were evaporated to dryness, the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS as in Example 5 at pH 2. The product tubes were combined and lyophilized to dryness to give the product as a TFA salt. ¹H NMR (300 MHz, DMSO-D₆): ð 12.5 (s, IH); 8.95 (s, IH); 8.75 (s, IH); 7.5 (s, IH); 7.4 (d, IH); 7.1 (s, IH); 6.7 (d, IH); 4.95 (m, IH); 4.8 (m, 2H); 3.75 (m, IH); 3.5 (m, IH); 3.45 (t, 2H); 3.25 (m, 2H); 3.05 (t, 2H); 2.85 (m, IH); 1.65 (m, 2H). LCMS calculated for C₂₃H₂₅FN₇O₂S(M+H)⁺: m/z = 468.162, observed 468.15.
Example 120. 2-((3S)-3-[(4-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl]pyridine-3,4-dicarbonitrile trifluoroacetate

Step 1. 3-chloro-2-((3S)-3-{2-fluoro-l-[4-((7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)isonicotinonitrile

A solution was prepared by dissolving 4-(l-{2-fluoro-l-[3S]-pyrrolidin-3-yl}ethyl)-lH-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 60 mg, 0.1 mmol) and DIPEA (48 µL, 0.28 mmol) in NMP (0.5 mL). To this solution was added 2,3-dichloroisonicotinonitrile (36 mg, 0.21 mmol) and the reaction was heated to 130 °C for 1.5 h. LCMS showed clean conversion to the desired product, (m/z = 567/569). The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to provide the crude product. LCMS calculated for C₂₇H₃₃ClFN₈OSi (M+H)+: m/z = 567.222, observed 567.15.

Step 2. 2-(3-{2-fluoro-l-[4-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)pyridine-3,4-dicarbonitrile trifluoroacetate

Into a 1-neck round-bottom flask 3-chloro-2-(3-{2-fluoro-l-[4-((7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)isonicotinonitrile (35.7 mg, 0.0629 mmol) was dissolved in NMP (0.4 mL) and zinc cyanide (22.2 mg, 0.189 mmol) and zinc (12.3 mg, 0.189 mmol) were added. The reaction was degassed with vacuum/N₂ and bis(tri-t-butylphosphine)palladium (16.1 mg, 0.0315 mmol) was added. The reaction was degassed again and was then heated to 130 °C for 3 h. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄, filtered and concentrated in vacuo.
vacuo to provide the crude product, which was dissolved in MeOH/ACN and purified by preparative LCMS as in Example 5. The eluate was concentrated in vacuo and treated with DCM (0.5 mL) and TFA (0.2 mL), the reaction was stirred at ambient temperature for 1 h, evaporated to dryness, then added methanol (0.5 mL) and ammonium hydroxide (0.5 mL) and stirred for 1 h. The solvents were evaporated and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS at pH 2 as in Example 5. The product tubes were lyophilized to dryness to give the product as TFA salt. LCMS calculated for $\text{C}_{25}\text{H}_{34}\text{FN}_{7}\text{Si}^+ (\text{M}+\text{H}): m/z = 658.68$, observed 658.15.

Example 121. 3-((3S)-3-{2-fluoro-1-[4K7H\text{ynrolo}[2,3-d]\text{pyrimidin-4-yl]-1H-}
pyrazol-1-yl)ethyl]pyrrolidin-1-yl)phthalonitrile trifluoroacetate

\[\text{Step 1. } 2\text{-((3S)-3-} \{4\text{-} (\text{2-trimethylsilyl)ethoxy\text{]methyl\}-} \text{7H-} \text{pyrrolo}[2,3-}
\text{d}\text{pyrimidin-4-yl]-} \text{1H-} \text{pyrazol-1-yl)ethyl\text{]pyrrolidin-1-yl)}\text{phthalonitrile trifluoroacetate} \]

A solution was prepared by dissolving $4\text{-l-[2-fluoro-l-[} (3S)\text{]-pyrrolidin-3-yl]ethyl\text{-}1H-}$
pyrazol-4-yl)-7-(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example
70, Step 7; 45 mg, 0.10 mmol) and DIPEA (36 µL, 0.21 mmol) in NMP (0.4 mL). To this
solution was added 2-fluoro-6-iodobenzonitrile (39 mg, 0.16 mmol) and the solution was heated
to 100 °C for 2 h. The reaction was cooled to ambient temperature, partitioned between water
and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc.
The combined organic phase was washed with water, then brine, dried over MgSO$_4$, filtered and
concentrated in vacuo to provide the crude product, which was purified by silica gel
chromatography eluting with hexanes \rightarrow 5% MeOH/CH$_2$Cl$_2$. LCMS calculated for
$\text{C}_{25}\text{H}_{34}\text{FN}_{7}\text{OSi} (\text{M}+\text{H}): m/z = 658.68$, observed 658.15.
Step 2. 3-((3S)-3-{2-fluoro-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)phthalonitrile

To a solution of 2-((3S)-3-{2-fluoro-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)-6-iodobenzonitrile (22 mg, 0.033 mmol) in NMP (0.764 mL) was added zinc cyanide (58.1 mg, 0.495 mmol). The mixture was degassed with two vacuum/N₂ cycles, then tetrakis(triphenylphosphine) palladium(0) (38.1 mg, 0.0330 mmol) was added, the reaction was again degassed with two vacuum/N₂ cycles. The reaction was heated to 130 °C for 2 h, then LCMS showed formation of desired product. The reaction was cooled to ambient temperature and filtered to remove solids, then was partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄, filtered and concentrated in vacuo to provide the crude product. The crude product was purified by preparative LCMS as in Example 5, the product tubes were evaporated to dryness to give 3-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)phthalonitrile. LCMS calculated for C₂₉H₃₁FN₈OSi (M+H)⁺: m/z = 557.261, observed 557.25.

Step 3. 3-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)phthalonitrile trifluoroacetate

To the residue from step 3 was added DCM (0.5 mL) and TFA (0.5 mL), the reaction was stirred at ambient temperature for 1 h, evaporated to dryness, then added methanol (0.5 mL) and ammonium hydroxide (0.5 mL). After 30 min, LCMS shows complete deprotection. The solvents were removed and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS at pH 2 as in Example 5. The product tubes were combined and lyophilized to dryness to give the product 3-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)phthalonitrile as a TFA salt. LCMS calculated for C₂₉H₂₀FN₈ (M+H)⁺: m/z = 427.179, observed 427.05.
Example 122. \(2-\{(3S)-3\{-\{(lS)-2\text{-cyano-l-\[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl\]ethyl}pyrrolidin-1-yl\}-4\text{-iodonicotinonitrile}\text{ trifluoroacetate}\)

Step 1. 2-chloro-4-iodonicotinonitrile

To 2-chloro-4-iodonicotinaldehyde (1.0 g, 3.7 mmol) dissolved in THF (11 mL) was added ammonium hydroxide (11 mL, 280 mmol) followed by iodine (1040 mg, 4.11 mmol), the reaction was held at ambient temperature 3.5 h, color visibly lightens as reaction progresses until the end when it is nearly colorless. LCMS indicates reaction to be complete. Reaction was quenched by addition of saturated NaHSO₃, extracted into EtOAc. The organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to provide the crude product, 926 mg. Dissolved in CHCl₃/MeOH and applied to 120 g silica gel column, the product fractions were concentrated in vacuo to give 728 mg product. The purified material was taken directly to next step.

Step 2. 2-\{(3S)-3\{-\{(lS)-2\text{-cyano-l-\[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl\]ethyl}pyrrolidin-1-yl\}-4\text{-iodonicotinonitrile\ and}}

2-chloro-4-\{(3S)-3\{-\{(lS)-2\text{-cyano-l-\[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl\]ethyl}pyrrolidin-1-yl\}-4\text{-iodonicotinonitrile\}

To a solution of 2-chloro-4-iodonicotinonitrile (50.8 mg, 0.192 mmol) in NMP (0.12 mL) was added (3S)-3\{-\{(3S)-pyrrolidin-3-yl\}-3\{-\{(7\{-\{(2\text{-trimethylsilyl}ethoxy\}methyl\}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}ethyl\}pyrrolidin-1-yl\}propanenitrile (56.0 mg, 0.128 mmol; from Example 15, step 3) followed by DIPEA (31.9 µL, 0.183 mmol), the reaction was capped and heated to 100 °C in a heating block for 3 h. LCMS showed formation of product resulting from iodo displacement (major) with minor product from chloride displacement. The reaction was cooled to ambient temperature and diluted with ACN/MeOH and the products were separated by preparative LCMS as in Example 5 to recover the two products 2-chloro-4-\{(3S)-3\{-\{(lS)-2-
2-Chloro-4-((3S)-3-((1S)-2-cyano-1-[4-(7-\{(2-(trimethylsilyl)ethoxy)methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-l-yl]ethyl)pyrrolidin-l-yl)nicotinonitrile (from Example 122, step 2) was deprotected and purified as in Example 122, step 3, to provide the
product as TFA salt. 1H NMR (300 MHz, OMSO- d_6): δ 12.5 (s, IH); 8.95 (s, IH); 8.8 (s, IH); 8.5 (s, IH); 8.0 (d, IH); 7.75 (s, IH); 7.1 (s, IH); 6.65 (d, IH); 4.9 (m, IH); 3.8 (m, IH); 3.7 (m, IH); 3.6 (m, 2H); 3.3 (m, 2H); 2.9 (m, IH); 1.7 (m, IH); 1.6 (m, IH); LCMS calculated for C$_{22}$H$_{19}$ClN$_9$ (M+H)$^+$; m/z = 444.15, observed 443.90.

Example 124. 4-((3S)-3-[(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl]pyrrolidin-l-yl)pyridine-2,3-dicarbonitrile trifluoroacetate

To a solution of 2-chloro-4-((3S)-3-[(lS)-2-cyano-l-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl]pyrrolidin-l-yl)nicotinonitrile (Example 123; 32 mg, 0.056 mmol) in NMP (1.00 mL) was added zinc cyanide (26.2 mg, 0.223 mmol). The mixture was degassed with two vacuum/N$_2$ cycles, thentetradis(triphenylphosphine)palladium(0) (51.5 mg, 0.0446 mmol) was added, the reaction was again degassed with two vacuum/N$_2$ cycles. Reaction was heated to 120 °C for 16 h. LCMS showed nearly complete conversion to product. Rxn cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with EtOAc. The combined organic phase was washed with water, then brine, dried over M$_2$SO$_4$, filtered and concentrated in vacuo to provide the crude product. The crude product was purified by preparative LCMS as in Example 5. The product tubes were evaporated to dryness. The product was dissolved in DCM (800 µL) and TFA (800 µL); after evaporated to dryness and added methanol (800 µL) and ammonium hydroxide (800 µL). After 45 min, LCMS showed complete deprotection. The solvents were evaporated and the product purified by preparative LCMS at pH 2 as in Example 5. The product tubes were combined and lyophilized to dryness to give (4-((3S)-3-[(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl]pyrrolidin-l-yl)pyridine-2,3-dicarbonitrile as a TFA salt. 1H NMR (300 MHz, DMSO-
D$_6$): δ 12.5 (s, IH); 8.9 (s, IH); 8.8 (s, IH); 8.5 (s, IH); 7.75 (s, IH); 7.1 (s, IH); 6.9 (d, IH); 4.85 (m, IH); 3.8 (m, IH); 3.7 (m, IH); 3.6 (m, 2H); 3.3 (m, 2H); 2.95 (m, IH); 1.75 (m, IH); 1.6 (m, IH); LCMS calculated for C$_{23}$H$_{19}$N$_{10}$ (M+H)$^+$: m/z = 435.179, observed 434.90.

Example 125. (3S)-3-[(3S)-1-(2,6-dichloropyridin-3-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile trifluoroacetate

\[
\text{LCMS calculated for C}_{23}\text{H}_{19}\text{N}_{10} (\text{M+H})^+: m/z = 435.179, \text{observed 434.90.}
\]

Step 1. (3S)-3-[(3S)-1-(2,6-dichloropyridin-3-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

To a solution of (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (18.4 mg, 0.0422 mmol; from Example 15, step 3) and DIPEA (11.0 µL, 0.0633 mmol) in NMP (0.1 mL) was added 2,6-dichloro-3-fluoropyridine (1 equivalent) and the reaction was heated to 100 °C for 24 h. The reaction was diluted with MeOH/ACN/water and purified by preparative LCMS as in Example 5 to separate the two products (3S)-3-[(3S)-1-(6-chloro-5-fluoropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile and (3S)-3-[(3S)-1-(2,6-dichloropyridin-3-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile. The fractions were pooled and evaporated to dryness to provide the di-chloro product. LCMS calculated for C$_{27}$H$_{33}$Cl$_2$N$_8$OSi (M+H)$^+$: m/z = 583.192, observed 583.05.

Step 2. (3S)-3-[(3S)-1-(2,6-dichloropyridin-3-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile trifluoroacetate

To (3S)-3-[(3S)-1-(2,6-dichloropyridin-3-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile was added DCM (300 µL) and TFA (200 µL), the reaction was stirred at ambient temperature for 1 h, evaporated to dryness, then added methanol (300 µL) and ammonium hydroxide (300 µL).
After 45 min, LCMS showed complete deprotection. The solvents were evaporated and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS at pH 2 as in Example 5. The product tubes were combined and lyophilized to give the product as a TFA salt. LCMS calculated for C\textsubscript{22}H\textsubscript{19}ClN\textsubscript{9} (M+H)+: m/z = 453.1 11, observed 453.00.

Example 126. 5-((3S)-3-{2-fluoro-1-[4K7Hyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile trifluoroacetate

\textbf{Step 1. 5-bromo-1,3-thiazole-4-carbonitrile}

To a mixture of 5-bromo-1,3-thiazole-4-carboxamide (prepared according to the procedure reported in WO2008/057336 from 5-bromo-1,3-thiazole-4-carboxylic acid obtained from SynChem; 714 mg, 3.45 mmol) and triethylamine (7.21 mL, 51.7 mmol) in DCM (10 mL) was added trichloroacetic anhydride (6.30 mL, 34.5 mmol) drop-wise at 0 °C. The mixture was stirred at 0 °C for 1 h. The reaction was quenched with saturated aqueous NaHCO\textsubscript{3} solution, extracted with DCM, dried over MgSO\textsubscript{4}, filtered and concentrated in vacuo. Crude product was dissolved in CHCl\textsubscript{3} and applied to 120 g silica gel column, eluted to recover 593 mg product. 1H NMR (300 MHz, CDCl\textsubscript{3}): \(\delta\) 8.82 (s, 1H).

\textbf{Step 2. 5-((3S)-3-{2-fluoro-1-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile}

A mixture of 4-((1-[2-fluoro-1-{(3S)-pyrrolidin-3-yl}ethyl]-1H-pyrazol-4-yl)-7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 84.8 mg, 0.000197 mol), 5-bromo-1,3-thiazole-4-carbonitrile (66 mg, 0.00035 mol) and DIPEA (62 µL, 0.00035 mol) in 1-butyl-3-methyl-imidazol-3-ium tetrafluoroborate (350 µL, 0.0019 mol) was heated at 120 °C for 3 h. Cooled to ambient temperature, partitioned between water and
EtOAc, the phases were separated and the aqueous phase was extracted with EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄, filtered and concentrated in vacuo to provide the crude product. This was dissolves in CHCl₃/hexanes and applied to 4 g silica gel column; recovered 29.5 mg of 5-((3S)-3-{2-fluoro-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]ethyl}pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile. LCMS calculated for C₂₅H₃₂F₈N₈OSSi (M+H)^+ m/z = 539.217, observed 539.05.

Step 3. 5-((3S)-3-{2-fluoro-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl}pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile trifluoroacetate

To the chromatographed 5-((3S)-3-{2-fluoro-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile was added DCM (0.50 mL) and TFA (0.50 mL), the reaction was stirred at ambient temperature for 2 h, evaporated to dryness; then added methanol (1 mL) and ammonium hydroxide (1 mL). Allowed to stir overnight. The solvents were evaporated and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS at pH 2 as in Example 129 (MeOH/water/TFA). The product tubes were combined and lyophilized to dryness to give 5-((3S)-3-{2-fluoro-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile as the bis-TFA salt ^1H NMR (300 MHz, DMSO-D₆): δ 12.7 (s, IH); 8.95 (s, IH); 8.85 (s, IH); 8.55 (s, IH); 8.15 (s, IH); 7.2 (s, IH); 4.9 (m, 3H); 3.75 (m, IH); 3.6 (m, IH); 3.5 (m, 2H); 3.0 (m, IH); 1.75 (m, 2H); LCMS calculated for C₁₉H₁₉FN₂S (M+H)^+ m/z = 409.136, observed 409.00.

Example 127. 2-((3S)-3-[(1S)-2-cyano-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(methylthio)nicotinonitrile trifluoroacetate

Step 1. 2-chloro-4-(methylthio)nicotinonitrile
2-Chloro-4-iodonicotinonitrile (from Example 122, Step 1; 209.5 mg, 0.7922 mmol) was dissolved in 1,4-dioxane (1.85 mL) and sodium methyl mercaptide (61.0 mg, 0.871 mmol) was added. The reaction was stirred at ambient temperature. After 40 h the reaction mixture was partitioned between water and EtOAc, the phases were separated and the aqueous phase was extracted with EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄, filtered and concentrated in vacuo to provide 180 mg of the crude product. Dissolved in CHCVhexanes and applied to 40 g silica gel column; product recovered: 52 mg. LCMS calculated for C₁₇H₁₆ClN₄S (M+H): m/z = 294.994, observed 294.90.

Step 2. 2-((3S)-3-{{(1S)-2-cyano-1-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl}-4-(methylthio)nicotinonitrile trifluoroacetate

To a solution of (3S)-3-{{(1S)-2-cyano-1-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl}-4-(methylthio)nicotinonitrile (52 mg, 0.28 mmol) followed by DIPEA (35.1 µL, 0.202 mmol), the reaction was capped and heated to 130 °C in an oil bath for 3 h. LCMS showed nearly complete reaction to desired product. Isolated by preparative LCMS acteone/water/pH 2 method (Waters Fraction-Lynx instrument, 20 x 100 mm C18 column, acetone/water (0.1% TFA), 30 mL/min). The product tubes were evaporated to near dryness. Added NaHCO₃ then extracted with EtOAc.

The organic phase was washed with water, then brine, dried over MgSO₄, filtered and concentrated in vacuo to provide the 2-((3S)-3-{{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl}-4-(methylthio)nicotinonitrile.

To the residue was added DCM (400 µL) and TFA (400 µL), the reaction was stirred at ambient temperature for 1h, evaporated to dryness, then added methanol (600 µL) and ammonium hydroxide (600 µL), allowed to stir overnight. LCMS showed complete deprotection. The solvents were evaporated and the residue was dissolved in MeOH/ACN/water and purified by preparative LCMS as in Example 129 at pH 2, the product tubes were combined and lyophilized to dryness to give the product 2-((3S)-3-{{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl}-4-(methylthio)nicotinonitrile as a TFA salt. LCMS calculated for C₁₇H₁₆ClN₄S (M+H): m/z = 456.172, observed 456.00.
Example 128. 2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(methylsulfonyl)nicotinonitrile

2-((3S)-3-{(1S)-2-Cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(methylthio)nicotinonitrile (from Example 127; 30.0 mg, 0.0658 mmol) was dissolved in methanol (0.2 mL) and water (0.2 mL). Ozone® (81.0 mg, 0.132 mmol) was added and the solution was stirred at ambient temperature for 4 h. LCMS showed nearly complete oxidation to sulfone (some sulfoxide remained), and no evidence of over-oxidation. Reaction was concentrated in vacuo and residue was dissolved in DMSO/MeOH; insolubles were removed by filtration, then the filtrate was purified by preparative LCMS as in Example 5, ACN/water at pH 2 to recover the 2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(methylthio)nicotinonitrile. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)); \(\delta\) 12.5 (s, 1H); 8.95 (s, 1H); 8.8 (s, 1H); 8.55 (d, 1H); 8.5 (s, 1H); 7.7 (s, 1H); 7.2 (d, 1H); 7.1 (s, 1H); 4.9 (m, 1H); 4.0 (m, 1H); 3.8 (m, 1H); 3.7 (m, 2H); 3.4 (m, 1H); 3.35 (s, 3H); 3.3 (m, 1H); 2.9 (m, 1H); 1.7 (m, 2H); LCMS calculated for C\(_{23}\)H\(_{22}\)N\(_2\)O\(_2\)S (M+H\(^+\)): m/z = 488.162, observed 487.90.

Example 129. (3S)-3-{(3S)-1-[3,5-difluoro-6-(methylthio)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

Step 1. 2,3,5-trifluoro-6-(methylthio)pyridine

2,3,5,6-Tetrafluoropyridine (310 \(\mu\)L, 3.0 mmol) was dissolved in THF (2.0 mL) and
cooled to 0°C. To this solution was gradually added sodium methyl mercaptide (227.8 mg, 3.25 mmol) in MeOH (1 mL). The reaction was held at 0°C for 70 min at which time, HPLC analysis indicated complete reaction. The reaction mixture was partitioned between water and Et2O, the phases were separated and the aqueous phase was washed with additional Et2O. The combined organic phase was washed with water followed by brine, then dried over MgSO4 and concentrated in vacuo to provide the crude product, 424 mg. This material was used directly in the next step. 1H NMR (300 MHz, CDCl3): δ 7.29 (m, 1H), 2.53 (s, 3H).

Step 2. (3S)-3-{(3S)-l-[3,5-difluoro-6-(methylthio)pyridin-2-yl]pyrrolidin-3-yl}-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-1-yl]propanenitrile

To a solution of (3S)-3-{(3S)-pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-1-yl]propanenitrile (86 mg, 0.20 mmol; from Example 15, step 3) in NMP (0.32 mL) was added 2,3,5-trifluoro-6-(methylthio)pyridine (70.1 mg, 0.391 mmol) followed by DIPEA (48.8 µL, 0.280 mmol), the reaction was capped and heated to 100°C in an oil bath for 3.5 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and diluted with methanol and acetonitrile (total solvent added 2 mL) and purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 43 mg. LCMS calculated for C28H31F2N4O5Si (M+H)+: m/z = 597.239, observed 597.30.

Step 3. (3S)-3-{(3S)-l-[3,5-difluoro-6-(methylthio)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-1-yl]propanenitrile trifluoroacetate

To (3S)-3-[l-[3,5-Difluoro-6-(methylthio)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-1-yl]propanenitrile (43 mg, 0.072 mmol) was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH4OH (0.5 mL) were added. After 30 min, LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 18.9 mg.
1H NMR (300 MHz, DMSO-D$_6$): δ 12.58 (bs, 1H), 8.92 (s, 1H), 8.75 (s, 1H), 8.47 (s, 1H), 7.71 (s, 1H), 7.58 (m, 1H), 7.08 (m, 1H), 4.77 (m, 1H), 3.75 (m, 1H), 3.50 (m, 1H), 3.40 (m, 3H), 3.31 (m, 2H), 2.82 (m, 1H), 2.42 (s, 3H), 1.57 (m, 2H); LCMS calculated for C$_{22}$H$_2$F$_2$N$_8$O$_2$S (M+H)$^+$: m/z = 467.158, observed 466.95.

Example 130. (SSJ-S-JCSSJ-l-P$^+$-difluoro-o-CmethylsulfonyOpyridin-l-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrole[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl]propanenitrile triflhorioacetate

![Chemical structure]

(3S)-3-{(3S)-l-[3,5-Difluoro-6-(methylthio)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrole[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl]propanenitrile (from Example 129; 45 mg, 0.096 mmol) was dissolved in water (0.3 mL) and Oxone® (119 mg, 0.193 mmol) was added; the solution was stirred at ambient temperature for 3.5 h at which time LCMS analysis indicated presence of sulfoxide and sulfone overoxidized to N-oxide. The reaction mixture was partitioned between water and 3:1 CHCl$_3$/IPA. The organic phase was concentrated in vacuo and the residue was dissolved in MeOH and DMSO (~4 mL total). The mixture was filtered to remove insoluble solids and the filtrate was purified by reverse phase preparative HPLC to recover the product. The product was dissolved in EtOH (3.0 mL) and 10% Pd/C (15 mg) was added and the reaction was hydrogenated on a Parr shaker at 20 psi H$_2$ for 1 h at which time LCMS analysis indicated reduction of N-oxide. The reaction was filtered and concentrated in vacuo to provide the crude product, which was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), to recover the sulfone product as a TFA salt, 2.0 mg. LCMS calculated for C$_{22}$H$_2$F$_2$N$_8$O$_2$S (M+H)$^+$: m/z = 499.147, observed 499.20.

Examples 131-133.

The examples in the following table were made by procedures analogous to those used to prepare Example 130.
<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>Name</th>
<th>MS (M+H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td></td>
<td>(3S)-3-((3S)-1-{3,5-difluoro-6-[(2,2,2-trifluoroethyl)sulfonyl]pyridin-2-yl}pyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate</td>
<td>567</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>4-[1-(1-((3S)-1-[3,5-difluoro-6-(methylsulfonylethyl)sulfonyl]pyrrolidin-3-yl]-2-fluoroethyl)-1H-pyrazol-4-yl]-7H-pyrrolo [2,3-d]pyrimidine trifluoroacetate</td>
<td>492</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>(3S)-3-((3S)-1-[3-fluoro-6-(methylsulfonyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate</td>
<td>481</td>
</tr>
</tbody>
</table>

Example 134. (SSJ-S-JCSSJ-I-II^+-difluoro-o-CmethylsulfonylOpyridin-S-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoroacetate

5

Step 1. 2,3,5-trifluoro-6-(methylsulfonyl)pyridine

2,3,5-Trifluoro-6-(methylthio)pyridine (74 mg, 0.42 mmol) was dissolved in DCM (5 mL) and m-chloroperbenzoic acid (208 mg, 0.904 mmol) was added. The solution was stirred at

210
ambient temperature for 4 h at which time HPLC analysis indicated complete reaction. The reaction mixture was partitioned between water and Et$_2$O, the phases were separated and the aqueous phase was washed with additional Et$_2$O. The combined organic phase was washed with saturated NaHSO$_3$, saturated NaHCO$_3$, water, then brine, and was dried over MgSO$_4$ and concentrated in vacuo to provide the crude product as a white solid, 80 mg. The product was used in next step without further purification.

Step 2. (S)-3-[(S)-1-(2,5-difluoro-6-(methylsulfonyl)pyridin-3-yl)pyrrolidin-3-yl]-3-(4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)propanenitrile

To a solution of (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (26 mg, 0.059 mmol; from Example 15, step 3) in NMP (0.096 mL) was added 2,3,5-trifluoro-6-(methylsulfonyl)pyridine (25.1 mg, 0.19 mmol) followed by DIPEA (14.8 µL, 0.0851 mmol). The reaction was capped and heated to 100 °C in an oil bath for 1.5 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and diluted with methanol and acetonitrile (total solvent added: 2 mL) and purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), to give the product. LCMS calculated for C$_{28}$H$_{33}$F$_5$N$_8$O$_5$Si (M+H)$^+$: m/z = 629.229, observed 629.00.

Step 3. (S)-3-[(S)-1-(2,5-difluoro-6-(methylsulfonyl)pyridin-3-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile trifluoroacetate

To (S)-3-[(S)-1-(2,5-difluoro-6-(methylsulfonyl)pyridin-3-yl)pyrrolidin-3-yl]-3-(4-(7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)propanenitrile was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH$_3$OH (0.5 mL) were added. After 30 min, LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 14 mg. 1H NMR (300 MHz, DMSO-d_6): δ 12.60 (bs, IH), 8.98 (s, IH), 8.80 (s, IH), 8.52 (s, IH), 7.74 (s, IH), 7.11 (s, IH), 7.02 (s, IH).
Example 136. 2-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-4-(l-fluoroethyl)nicotinonitrile trifluoroacetate

\[
\begin{align*}
\text{Step 1. 2-chloro-4-(l-ethoxyvinyl)nicotinonitrile} \\
\text{A solution of 2-chloro-4-iodonicotinonitrile (from Example 122, Step 1; 240.0 mg, 0.9075 mmol) and tributyl(l-ethoxyvinyl)tin (398.58 µL, 1.1798 mmol) in toluene (3.2 mL) was degassed, and tetrakis(triphenylphosphine)palladium(0) (104.9 mg, 0.09075 mmol) was added. The reaction was degassed again and heated to 100 °C for 16 h. The reaction mixture was partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with brine, dried over MgSO}_4\text{ and filtered and concentrated in vacuo to provide the crude product, 195.6 mg. Crude product was chromatographed on 40 g column, recovered 143 mg product. }^1\text{H NMR (300 MHz CDCl}_3\text{): }\delta 8.51 (d, IH), 7.44 (d, IH), 4.85 (d, IH), 4.60 (d, IH), 3.97 (q, 2H), 1.42 (t, 3H).
\end{align*}
\]

\[
\begin{align*}
\text{Step 2. 4-acetyl-2-chloronicotinonitrile} \\
2-Chloro-4-(l-ethoxyvinyl)nicotinonitrile (143 mg, 0.685 mmol) was dissolved in THF (9.1 mL) and 3.0 M of hydrogen chloride in water (5.7 mL, 17 mmol) was added, the reaction was stirred at 25 °C for 20 h, at which time LCMS analysis showed hydrolysis progressing, but not complete. The reaction mixture was partitioned between water and EtOAc, and the aqueous phase was extracted with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO}_4\text{ and filtered and concentrated in vacuo to provide the crude product. This was then dissolved in CHCl}_3/hexanes and applied to 12 g ISCO column and chromatographed to give the purified product, 95.6 mg. }^1\text{H NMR (300 MHz CDCl}_3\text{): }\delta 8.76 (d, IH), 2.71 (s, 3H).
\end{align*}
\]

7.05 (m, IH), 4.82 (m, IH), 3.75 (m, IH), 3.56 (m, IH), 3.20 (m, 4H), 3.19 (s, 3H), 2.90 (m, IH), 1.65 (m, 2H); LCMS calculated for C_{22}H_{21}F_{2}N_{8}O_{2}S (M+H)^{+}: m/z = 499.148, observed 498.95.
Step 3. 4-acetyl-2-((3S)-3-{(1S)-2-cyano-1-[4-(7-H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)nicotinonitrile

To a solution of 4-acetyl-2-chloronicotinonitrile (95 mg, 0.53 mmol) in NMP (0.85 mL) was added (3S)-3-[(3S)-pyrrolidin-3-yl]-3-[4-(7-H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (230 mg, 0.53 mmol; from Example 15, step 3) followed by DIPEA (131 µL, 0.754 mmol), the reaction was capped and heated to 100 °C in an oil bath for 2 h. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄ and filtered and concentrated in vacuo to provide the crude product, 41.3 mg. Crude product was dissolved in MeOH/ACN and purified by preparative LCMS as in.

Step 4. 2-((3S)-3-{(1S)-2-cyano-1-[4-(7-H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-4-(1-fluoroethyl)nicotinonitrile

To 4-acetyl-2-((3S)-3-{(1S)-2-cyano-1-[4-(7-H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)nicotinonitrile (50.0 mg, 0.0859 mmol) in methanol (0.5 mL) cooled to 0 °C was added sodium tetrahydroborate (6.50 mg, 0.172 mmol), and was stirred for 10 min. The reaction was quenched with IN HCl to acidic pH (lots of off-gassing), then neutralized with solid NaHCO₃ to pH 8, extracted 2x with EtOAc. The EtOAc phase was washed with brine, dried over MgSO₄ and filtered. The EtOAc phase was evaporated to dryness to leave crude alcohol MS(EI): 582 (M+). To a mixture of 2-((3S)-3-{(1S)-2-cyano-1-[4-(7-H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)nicotinonitrile in DCM (0.89 mL) was added 2-methoxy-N-(2-methoxyethyl)-N-(trifluoro- λ(4)-sulfanyl)ethanamine (47.5 µL, 0.258 mmol) followed by one drop ethanol (9.4 µL, 0.16 mmol). The reaction was stirred at RT for 5.5 h and was partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄ and filtered and concentrated in vacuo to provide the crude product, 41.3 mg. Crude product was dissolved in MeOH/ACN and purified by preparative LCMS as in.
Example 129, to give 26.6 mg purified fluoride.

Step 5. 2-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(1-fluoroethyl)nicotinonitrile trifluoroacetate

To the purified 2-((3S)-3-{(1S)-2-cyano-1-[4-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-4-(1-fluoroethyl)nicotinonitrile was added DCM (1.0 mL) and TFA (1.0 mL, 0.02 mol), after 1 h solvent was removed and added methanol (1.0 mL) and ammonium hydroxide (1.0, 0.03 mol), and was stirred for 20 min, and the residue after solvent removal was dissolved in ACN/MeOH and purified by preparative LMCS to recover the product as a TFA salt. MS(EI): 456 M+1.

Example 138. 3-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(difluoromethyl)pyrazine-2-carbonitrile trifluoroacetate

Step 1. 3-amino-6-bromopyrazine-2-carbonitrile

A mixture of NaCN (140 mg, 2.85 mmol) and copper (I) cyanide (255 mg, 2.85 mmol) in anhydrous DMF (13 mL) was stirred at 120 °C for 20 min under an atmosphere of N₂. To the resulting clear solution was added drop-wise a solution of 3,5-dibromopyrazin-2-amine (from Aldrich; 800 mg, 3.16 mmol) in DMF (4.8 mL) and stirring was continued at 120 °C. The reaction was held at 120 °C for 40 h at which time LCMS analysis indicated complete conversion. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water followed by brine, then dried over MgSO₄.
and concentrated in vacuo to provide the crude product, 597.1 mg, which was used without any further purification.

Step 2. 6-bromo-3-chloropyrazine-2-carbonitrile

To a solution of 3-amino-6-bromopyrazine-2-carbonitrile (587 mg, 2.95 mmol) in acetonitrile (29.4 mL) was added copper(II) chloride (470 mg, 3.5 mmol). The reaction was heated to 60 °C for 10 min, then t-butyl nitrite (510 µL, 4.3 mmol) was added drop-wise. The reaction was held at 60 °C for 16 h at which point LCMS indicated complete reaction. The reaction was cooled to ambient temperature and partitioned between IN HCl and EtOAc and the phases were separated. The organic phase was washed 2× with water followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product which crystallized upon standing. The product was purified (120 g prepacked SiO₂ cartridge, 85 mL/min, gradient from 0-20% EtOAc/hexanes over 12 min) to recover the desired product, 442 mg. ¹H NMR (300 MHz, CDCl₃): δ 8.68 (s, IH).

Step 3. 3-chloro-6-[(E)-2-ethoxyvinyl]pyrazine-2-carbonitrile

A solution of 6-bromo-3-chloropyrazine-2-carbonitrile (220 mg, 1.01 mmol) and (2-ethoxyethenyl)tri-n-butyltin (434 µL, 1.31 mmol) in toluene (1.8 mL) was degassed with N₂ and tetrakis(triphenylphosphine)palladium(0) (67.8 mg, 0.0587 mmol) was added. The reaction was degassed again and heated to 100 °C for 16 h at which time LCMS indicated complete conversion to desired product. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product. This was purified (40 g prepacked SiO₂ cartridge, 40 mL/min, gradient from 0-50% EtOAc/hexanes over 20 min) to recover the product, 134 mg. ¹H NMR (300 MHz, CDCl₃): δ 9.19 (s, IH), 6.69 (d, IH), 5.52 (d, IH), 4.14 (m, 2H), 1.41 (t, 3H); LCMS calculated for C₉H₆ClN₃O(M+H⁺): m/z = 210.043, observed 209.9.

Step 4. 3-chloro-6-formylpyrazine-2-carbonitrile

To 3-chloro-6-[(E)-2-ethoxyvinyl]pyrazine-2-carbonitrile (70.5 mg, 0.303 mmol) was added 1,4-dioxane (8.8 mL), water (2.2 mL), and sodium periodate (190 mg, 0.91 mmol), followed by a 4% solution of osmium tetroxide in water (66.7 µL, 0.0105 mmol). The reaction was stirred at ambient temperature for 16 h at which time TLC analysis indicated complete
reaction. The reaction mixture was partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄ and concentrated in vacuo to provide the crude product. This was purified (12 g prepacked SiO₂ cartridge, 30 mL/min, gradient from 0-50% EtOAc/hexanes over 16 min) to recover the product as a crystalline solid, 43.2 mg. ¹H NMR (300 MHz, CDCl₃), δ 10.12 (s, 1H), 9.11 (s, 1H).

Step 5. 3-chloro-6-(difluoromethyl)pyrazine-2-carbonitrile

To 3-chloro-6-formylpyrazine-2-carbonitrile (31.0 mg, 0.185 mmol) in DCM (1.9 mL) was added 2-methoxy-N-(2-methoxyethyl)-N-(trifluoro-λ(4)-sulfanyl)ethanamine (100 μL, 0.55 mmol) followed by one drop of ethanol. The reaction was held at ambient temperature for 16 h at which time TLC analysis (3:1 hexanes:EtOAc) indicated complete reaction. The reaction mixture was partitioned between water and CHCl₃. The phases were separated and the aqueous phase was washed with additional CHCl₃. The combined organic phase was washed with brine, dried over MgSO₄ and concentrated in vacuo to provide the product, 43 mg. The product was used without further purification. ¹HNMR (400 MHz, CDCl₃); δ 8.92 (s, 1H), 6.73 (t, 1H).

Step 6. 3-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(difluoromethyl)pyrazine-2-carbonitrile

To a solution of 3-chloro-6-(difluoromethyl)pyrazine-2-carbonitrile (30.0 mg, 0.158 mmol) in NMP (257 μL) was added (3S)-3-{(3S)-pyrrolidin-3-yl}-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl[pyrrolidin-1-yl]-6-(difluoromethyl)pyrazine-2-carbonitrile (69 mg, 0.16 mmol; from Example 15, step 3) followed by DIPEA (39.5 μL, 0.227 mmol). The reaction was sealed and heated to 100 °C for 1 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, then brine, dried over MgSO₄ and concentrated in vacuo to provide the crude product. This was purified (4 g prepacked SiO₂ cartridge, 20 mL/min, gradient from 10-90% EtOAc/hexanes over 16 min) to recover the product, 49 mg. LCMS calculated for C₂₈H₃₅F₂N₁₀OSi (M+H)⁺: m/z = 591.257, observed 591.05.

Step 7. 3-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(difluoromethyl)pyrazine-2-carbonitrile trifluoroacetate
To 3-((3S)-3-[(lS)-2-cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-6-(difluoromethyl) pyrazine-2-carbonitrile (49 mg, 0.083 mmol) was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₄OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C₁₈, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 34 mg. ¹H NMR (400 MHz, CD₃OD): δ 9.00 (s, 1H), 8.89 (s, 1H), 8.57 (s, 1H), 8.51 (s, 1H), 7.86 (d, 1H), 7.28 (d, 1H), 6.63 (t, 1H), 4.90 (m, 2H), 4.15 (m, 1H), 3.97 (m, 1H), 3.75 (m, 2H), 3.22 (m, 1H), 3.12 (m, 1H), 3.09 (m, 1H), 1.91 (m, 2H). LCMS calculated for C₂₂H₂₈F₂N₁₀ (M+H)+: m/z = 461.18, observed 460.90.

Example 139. 3-((3S)-3-[(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-6-(2, 2-difluoroethyl)pyrazine-2-carbonitrile trifluoroacetate

Step 1. 3-chloro-6-(2-oxoethyl)pyrazine-2-carbonitrile

3-Chloro-6-[(E)-2-ethoxyvinyl]pyrazine-2-carbonitrile (from Example 138, Step 3; 395 mg, 1.88 mmol) was dissolved in THF (25 mL) and 3.0 M HCl (16 mL, 47 mmol) was added. The reaction was heated to 60 °C for 3.5 h at which time LCMS indicated complete reaction. The reaction mixture was partitioned between saturated aqueous NaHCO₃ and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product, 417 mg. This material was used directly in the next reaction as it was found to decompose upon standing. ¹H NMR (300 MHz, CDCl₃):
\[\delta \ 9.91 \ (s, \ IH), \ 8.53 \ (s, \ IH), \ 4.08 \ (s, \ 2H). \]

Step 2. 3-chloro-6-(2,2-difluoroethyl)pyrazine-2-carbonitrile

Freshly prepared 3-chloro-6-(2-oxoethyl)pyrazine-2-carbonitrile (90.0 mg, 0.496 mmol) was dissolved in DCM (5.1 mL) and 2-methoxy-N-(2-methoxyethyl)-N-(trifluoro-\(\lambda\)-(4)-sulfanyl)ethanamine (274 \(\mu\)L, 1.49 mmol) was added followed by one drop ethanol. The reaction was stirred at ambient temperature for 16 h at which time TLC and LCMS analysis indicated complete reaction. The reaction mixture was partitioned between water and CHCl\(_3\). The phases were separated and the aqueous phase was washed with additional CHCl\(_3\). The combined organic phase was washed with brine, dried over MgSO\(_4\) and concentrated in vacuo to provide the crude product, 109 mg. This material was used directly in the next step. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \ 8.49 \ (s, \ IH), \ 6.12 \ (tt, \ IH), \ 3.38 \ (m, \ 2H). \)

Step 3. 3-((3S)-3-\{(1S)-2-cyano-1-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}ethyl}pyrrolidin-1-yl)-6-(2,2-difluoroethyl)pyrazine-2-carbonitrile trifluoroacetate

To a solution of 3-chloro-6-(2,2-difluoroethyl)pyrazine-2-carbonitrile (100 mg, 0.49 mmol) in NMP (400 \(\mu\)L) was added (3S)-3-\{(3S)-pyrrolidin-3-yl\}-3-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (110 mg, 0.24 mmol; from Example 15, step 3) followed by DIPEA (61.3 \(\mu\)L, 0.352 mmol). The reaction was capped and heated to 100 °C in an oil bath for 1.5 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and diluted with methanol and acetonitrile (total solvent added: 2 mL) and purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 \(\mu\)m particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 19 mg. LCMS calculated for \(C_{29}H_{15}F_2N_{10}OSi\) (M+H): \(m/z = 605.273\), observed 605.00.
Example 140. 3-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(hydroxymethyl)pyrazine-2-carbonitrile trifluoroacetate

Step 1. chloro-6-(hydroxymethyl)pyrazine-2-carbonitrile

To S-chloro-6-formylpyrazine-carbonitrile (from Example 138, Step 4; 20.0 mg, 0.12 mmol) was added ether (0.79 mL). The mixture was cooled to -78 °C and 1.0 M of borane in THF (140 µL, 0.14 mmol) was added. The reaction was held at -78 °C for 1.5 h, and was then quenched by addition of 0.1N HCl at -78 °C. The solution was allowed to warm and EtOAc was added. The phases were separated and the aqueous phase was neutralized with NaHCO₃ and washed with additional EtOAc. The combined organic phase was washed with water followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product, 20 mg. This material was taken directly on to next reaction. ¹H NMR (300 MHz, CD₂OD): δ 8.78 (s, 1H), 4.77 (s, 2H).

Step 2. 3-((3S)-3-{(1S)-2-cyano-1-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(hydroxymethyl)pyrazine-2-carbonitrile

To a solution of 3-chloro-6-(hydroxymethyl)pyrazine-2-carbonitrile (20.0 mg, 0.106 mmol) in NMP (172 µL) was added (3S)-3-((3S)-pyrrolidin-3-yl)-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (46 mg, 0.11 mmol; from Example 15, step 3) followed by DIPEA (26.5 µL, 0.152 mmol), the reaction was capped and heated to 100 °C in an oil bath for 1 h at which time LCMS analysis indicated complete reaction. The crude reaction solution was diluted with MeOH/ACN (total solvent added 2 mL) and purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min).
The purified product was lyophilized to dryness to recover the product as a TFA salt, 34 mg. LCMS calculated for C_{28}H_{32}N_{10}O_{2}Si (M+H)^+: m/z = 571.271, observed 571.00.

Step 3. 3-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(hydroxymethyl)pyrazine-2-carbonitrile trifluoroacetate

To 3-((3S)-3-{(1S)-2-cyano-1-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(2,2-difluoroethyl) pyrazine-2-carbonitrile (12 mg, 0.02 mmol) was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₄OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 4.9 mg. LCMS calculated for C_{22}H_{21}N_{10}O (M+H)^+: m/z = 441.190, observed 441.00.

Example 141. 3-((3S)-3-{(1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(methoxymethyl)pyrazine-2-carbonitrile trifluoroacetate

3-((3S)-3-{(1S)-2-Cyano-1-[4-((2-trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-(hydroxymethyl)pyrazine-2-carbonitrile (Example 140; 24.3 mg, 0.0426 mmol) was combined with silver(II) oxide (52.7 mg, 0.426 mmol) and iodomethane (53.0 µL, 0.852 mmol) in THF (0.2 mL). The reaction was heated in sealed vessel for 3.5 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and filtered through a 0.45 µm Teflon filter. The filter was rinsed with methanol and the resulting organic filtrate was concentrated in vacuo to provide the crude product. To the crude product was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol.
(0.5 mL) and NH₄OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C₁₈, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 5.5 mg. LCMS calculated for C₂₃H₂₃N₁₀O (M+H)⁺: m/z = 455.206, observed 455.0.

Example 142. 6-bromo-3-((3S)-3-{(1S)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl][ethyl]pyrrolidin-l-yl]pyrazine-2-carbonitrile trifluoroacetate

![Chemical Structure](image)

Step 1. 6-bromo-3-((3S)-3-{(1S)-2-cyano-l-[4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl][ethyl]pyrrolidin-l-yl]pyrazine-2-carbonitrile**

To a solution of 6-bromo-3-chloropyrazine-2-carbonitrile (Example 138 Step 2; 29 mg, 0.13 mmol) in NMP (216 µL) was added (3S)-3-((3S)-pyrrolidin-3-yl)-3-(4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)propanenitrile (58 mg, 0.13 mmol; from Example 15, step 3) followed by DIPEA (33.1 µL, 0.190 mmol). The reaction was capped and heated to 100 °C in an oil bath for 1 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and was partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product. The product was purified (4 g prepacked SiO₂ cartridge, 20 mL/min, gradient from 0-75% EtOAc/hexanes over 18 min) to recover the desired product, 51 mg. LCMS calculated for C₂₇H₃₂BrN₁₀OSi (M+H)⁺: m/z = 619.17, observed 618.90.

Step 2. 6-bromo-3-((3S)-3-{(1S)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-
To 6-bromo-3-((3S)-3-((1S)-2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile (51 mg, 0.08 mmol) was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₂OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 34 mg. LCMS calculated for C₂iH₁₈BrN₁₀(M+H)⁺: m/z = 489.090, observed 489.10.

Example 143. 3-((3S)-3-((1S)-2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-ethynylpyrazine-2-carbonitrile trifluoroacetate

Step L 3-((3S)-3-((1S)-2-cyano-1-[4-7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-[(trimethylsilyl)ethynyl]pyrazine-2-carbonitrile

6-Bromo-3-((3S)-3-((1S)-2-cyano-1-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile (Example 142; 40.0 mg, 0.0646 mmol) was dissolved in DMF (0.323 mL), and CuI (0.969 mg, 0.00509 mmol) was added. The reaction mixture was degassed with three vacuum/N₂ purge cycles, then Et₃N (13.34 µL, 0.09568 mmol) and trimethylsilylacetylene (18.2 µL, 0.129 mmol) were added, followed by bis(triphenylphosphine)palladium(II) chloride (1.93 mg, 0.00276 mmol). The reaction was held at ambient temperature for 1.5 h at which time LCMS analysis indicated complete reaction. The reaction was treated with ether and a 9:1 solution of saturated aqueous NH₄C₁/NH₂OH and the phases were separated. The aqueous phase was extracted with additional ether, the combined ether solution was washed with H₂O followed by brine, then dried
over MgSO$_4$ and concentrated in vacuo provide the crude product. The product was purified (4 g prepacked SiO$_2$ cartridge, 20 mL/min, gradient from 0-75% EtOAc/hexanes over 18 min) to recover the desired product, 41 mg. LCMS calculated for C$_{23}$H$_{19}$N$_{10}$OSi$_2$((IVRH)$^+$: m/z = 637.300, observed 637.10.

Step 2. 3-((3S)-3-((lS)-2-cyano-l-[4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrido[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl)pyrrolidin-1-yl)-6-ethynylpyrazine-2-carbonitrile

3-((3S)-3-((lS)-2-Cyano-l-[4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrido[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-[(trimethylsilyl)ethynyl]pyrazine-2-carbonitrile (41 mg, 0.064 mmol) was dissolved in THF (51.0 µL), this solution was cooled to 0 °C, and water (3.4 µL) was added, followed by drop-wise addition of 1.0 M of TBAF in THF (75 µL, 0.075 mmol). The reaction was allowed to warm from 0 °C to 15 °C over 1 h at which time LCMS analysis indicated complete reaction. The reaction mixture was partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with 3X water, followed by brine, then dried over MgSO$_4$ and concentrated in vacuo to provide the crude product, 44 mg. LCMS calculated for C$_{29}$H$_{33}$N$_{10}$OSi(M+H)$^+$: m/z = 565.261, observed 565.00.

Step 3. 3-((3S)-3-((lS)-2-cyano-l-[4-(7H-pyrido[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl)pyrrolidin-1-yl)-6-ethynylpyrazine-2-carbonitrile trifluoroacetate

To 3-((3S)-3-((lS)-2-cyano-l-[4-(7-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrido[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-ethynylpyrazine-2-carbonitrile (10.8 mg, 0.0191 mmol) was added DCM (0.5 mL) and TFA (0.5 mL), the reaction was stirred at ambient temperature for 3 h. The reaction was evaporated to dryness, then methanol (0.5 mL) and NH$_4$OH (0.5 mL) were added. The reaction was stirred 30 min. at which time LCMS indicated complete deprotection. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 4.8 mg. 1H NMR (300 MHz, DMSO-<d>): δ 12.40 (bs, IH), 8.90 (s, IH), 8.73 (s, IH), 8.43 (m, 2H), 7.70 (s, IH), 7.03 (s, IH), 4.82 (m, IH), 3.89 (m, IH), 3.78 (m, IH), 3.60 (m, 2H), 3.29 (m, 3H), 2.85 (m, IH), 1.68 (m, 2H); LCMS calculated for C$_{23}$H$_{19}$N$_{10}$(M+H)$^+$: m/z = 435.179, observed 434.95.
Example 144. 3-((3S)-3-[(1S)-2-cyano-1-([4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-ethylypyrazine-2-carbonitrile trifluoroacetate

3-((3S)-3-[(1S)-2-Cyano-1-[4-([2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-ethynylpyrazine-2-carbonitrile (Example 143; 33 mg, 0.058 mmol) was dissolved in EtOH (2.3 mL) and 10% Pd/C (8.7 mg, 0.0082 mmol) was added. The mixture was hydrogenated at 29 psi in a Parr shaker for 3 h at which time LCMS analysis indicated complete reduction. The reaction was filtered through a 0.45 µm Teflon filter and the filter was rinsed with MeOH. The filtrate was concentrated in vacuo to provide the product. To the residue was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₄OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 9.8 mg. ¹H NMR (300 MHz, DMSO-D₆): δ 12.62 (bs, 1H), 8.99 (s, 1H), 8.82 (s, 1H), 8.53 (s, 1H), 8.29 (s, 1H), 7.76 (s, 1H), 7.12 (s, 1H), 4.90 (m, 1H), 3.74 (m, 1H), 3.59 (m, 2H), 3.36 (m, 3H), 2.90 (m, 1H), 2.61 (m, 2H), 1.70 (m, 2H), 1.11 (m, 3H); LCMS calculated for C₂₃H₂₃N₁₀(M+H)⁺: m/z = 439.21 l, observed 438.95.
Example 145. 3-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methylpyrazine-2-carbonitrile trifluoroacetate

Step 7. 3-((3S)-3-{(lS)-2-cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methylpyrazine-2-carbonitrile

6-Bromo-3-((3S)-3-{(lS)-2-cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methylpyrazine-2-carbonitrile (Example 142; 55.8 mg, 0.09 mmol) and tetrakis(triphenylphosphine)palladium(0) (4.16 mg, 0.00360 mmol) were dissolved in THF (0.28 mL) and 2.0 M of trimethylaluminum in toluene (90.0 µL, 0.180 mmol) was added drop-wise. The reaction was heated to 70 °C for 3.5 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and was diluted with toluene (0.28 mL) and MeOH (71 µL) was added drop-wise until reactivity subsided. The reaction was then reheated to 70 °C for 10 min, then 2 mL of saturated aqueous NH₄Cl was added, continued heating at 70 °C for 10 min. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water, followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product. The product was purified (4 g prepacked SiO₂ cartridge, 20 mL/min, gradient from 0-90% EtOAc/hexanes over 20 min) to recover the desired product, 44 mg. LCMS calculated for C₂₈H₃₅N₁₀OSi (M+H)+: m/z = 555.276, observed 555.05.

Step 2. 3-((3S)-3-{(lS)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methylpyrazine-2-carbonitrile trifluoroacetate

To 3-((3S)-3-{(lS)-2-cyano-l-[4-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-6-methylpyrazine-2-carbonitrile (44 mg, 0.08 mmol) was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₄OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM
The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 μm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 25.8 mg.

LCMS calculated for C_{22}H_{21}N_{10} (M+H)^+: m/z = 425.195, observed 425.20.

Example 146. 3-((3S)-3-{(1S)-2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-6-methylpyrazine-2-carbonitrile trifluoroacetate

Step 1. 3-chloro-6-(1-ethoxyvinyl)pyrazine-2-carbonitrile

A solution of 6-bromo-3-chloropyrazine-2-carbonitrile (Example 138 Step 2; 39.4 mg, 0.18 mmol) and tributyl(1-ethoxyvinyl)tin (79.2 µL, 0.23 mmol) in toluene (0.64 mL) was degassed with three vacuum/N₂ cycles, and tetrakis(triphenylphosphine)palladium(0) (20.84 mg, 0.01804 mmol) was added. The reaction was degassed again and heated to 100 °C for 3 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and was partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with brine, dried over MgSO₄ and concentrated in vacuo to provide the crude product, 119.4 mg. The product was purified (4 g prepacked SiO₂ cartridge, 20 mL/min, gradient from 0-20% EtOAc/hexanes over 10 min) to recover the desired product, 19 mg. ¹H NMR (300 MHz, CDCl₃): δ 8.87 (s, 1H), 5.54 (d, IH), 4.59 (d, IH), 4.01 (m, 2H), 1.48 (t, 3H); LCMS calculated for C_{9}H_{9}C_{1}N_{3}O (M+H)^+: m/z = 209.85; found 209.85.

Step 2. 6-acetyl-3-((3S)-3-{(1S)-2-cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-6-methylpyrazine-2-carbonitrile

To a solution of 3-chloro-6-(1-ethoxyvinyl)pyrazine-2-carbonitrile (9.0 mg, 0.043 mmol) in NMP (0.0806 mL) was added (3S)-3-{(3S)-pyrrolidin-3-yl}-3-[4-{7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-l-yl]propanenitrile
(22 mg, 0.050 mmol; from Example 15, step 3) followed by DIPEA (12.4 µL, 0.0710 mmol). The reaction was capped and heated to 100 °C in an oil bath for 2 h at which time LCMS analysis indicated complete reaction. The reaction was cooled to ambient temperature and partitioned between water and EtOAc, the phases were separated and the aqueous phase was washed with additional EtOAc. The combined organic phase was washed with water followed by brine, then dried over MgSO₄ and concentrated in vacuo to provide the crude product, 32.8 mg. This was purified (4g prepacked SiO₂ cartridge, 20 mL/min, gradient from 0-90% EtOAc/hexanes over 14 min) to recover the desired product, 22 mg. LCMS calculated for C_{29}H_{37}NiO_2Si(M+H)^+: m/z = 583.271, observed 583.05.

Step 3. 3-((3S)-3-((3S)-1-[(3H)-pyrrol-4-yl]-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-6-(1-hydroxyethyl)pyrazine-2-carbonitrile trifluoroacetate

A solution of 6-acetyl-3-((3S)-3-((3S)-1-[(3H)-pyrrol-4-yl]-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile (22 mg, 0.038 mmol) in MeOH (219.6 µL) was cooled to 0 °C and sodium tetrahydroborate (2.86 mg, 0.0755 mmol) was added. The reaction was held at 0 °C for 10 min. at which time TLC analysis indicated complete reduction of ketone. The reaction was quenched with drop-wise addition of IN HCl to give pH ~3, then the reaction was neutralized by gradual addition of solid NaHCO₃ to pH 8. The reaction was extracted 2x with EtOAc and the resulting organic solution was washed with brine, dried over MgSO₄ concentrated in vacuo to provide the crude product. LCMS calculated for C_{29}H_{37}NiO_2Si (M+H)^+: m/z = 585.287, observed 585.05. To this product was added DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₃·OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 5.2 mg. ¹H NMR (400 MHz, CDCl₃): δ NMR (300 MHz, CD₃OD): δ 8.98 (s, IH), 8.89 (s, IH), 8.57 (s, IH), 8.42 (s, IH), 7.85 (d, IH), 7.26 (d, IH), 4.77 (m, 2H), 4.08 (m, IH), 3.90 (m, IH), 3.71 (m, 2H), 3.40 (m, IH), 3.22 (m, 2H), 3.08 (m, IH), 1.90 (m, 2H), 1.42 (m, 3H); LCMS calculated for C_{21}H_{31}NiO(M+H)^+: m/z = 455.206, observed 454.95.
Example 147. 3-fluoro-5-((3S)-3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)pyridine-2-carbonitrile trifluoroacetate

To a solution of 4-(1-{2-fluoro-1-[(3S)-pyrrolidin-3-yl]ethyl}-1H-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 37 mg, 0.087 mmol) and DIPEA (3.0 equiv µL, 0.17 mmol) in NMP (0.7 mL) was added 3-chloropyrazine-2-carbonitrile and the reaction was heated to 130 °C for 2 h at which time LCMS analysis indicated complete reaction. The reaction mixture was partitioned between water and EtOAc, the aqueous phase was extracted another 2x with EtOAc. The combined organic phase was washed with brine, dried over MgSO₄ and concentrated in vacuo to provide the crude product. LCMS calculated for C₂₆H₁₇FN₉OSi (M+H)⁺: m/z = 534.256, observed 534.15. The crude product was treated with DCM (0.5 mL) and TFA (0.5 mL). The reaction was stirred at ambient temperature for 1 h, then the solvents were removed in vacuo and methanol (0.5 mL) and NH₄OH (0.5 mL) were added. After 30 min LCMS analysis indicated complete removal of SEM group. The solvents were removed and the residual material was purified by reverse phase preparative LCMS on a Waters Fraction-Lynx system using mass directed fractionation (column Waters SunFire C18, 5 µm particle size, 30 x 100 mm, mobile phase A: water (0.1% TFA), B: methanol (0.1% TFA), flow rate 60 mL/min), the product was isolated as a TFA salt, 13.4 mg. LCMS calculated for C₁₂H₁₀FN₈(M+H)⁺: m/z = 403.179, observed 404.10.
Example 148. 3-[1-[2-(ethylsulfonyl)pyridin-4-yl]pyrrolidin-3-yl]-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile (racemate)

\[
\text{Step 1. 4-chloro-2-(ethylsulfonyl)pyridine}
\]

To a solution of 2,4-dichloropyridine (0.20 mL, 1.8 mmol) and ethanethiol (0.14 mL, 1.8 mmol) in 1,4-dioxane (1 mL), was added sodium hydride (60% in mineral oil, 0.074 g, 1.8 mmol), in one portion. The mixture was stirred at RT for 3 days. Water was added into the reaction and the product was extracted with diethyl ether. The extracts were dried over sodium sulfate, decanted and the solvent removed by rotary evaporation. Flash column chromatography, eluting with a gradient of 0-10% ethyl acetate in hexanes, was used for partial purification of product. The product was dissolved in DCM (10 mL) and treated with m-chloroperbenzoic acid (0.28 g, 1.1 mmol) and stirred for 2 h. The mixture was washed with NaHC\textsubscript{3} solution and the DCM layer was dried over sodium sulfate, decanted and concentrated. Purification by flash column chromatography, eluting with a gradient of 0-50% ethyl acetate in hexanes afforded product (48 mg, 12%). 1H NMR (400 MHz, CDCl\textsubscript{3}) : \(\delta\) 8.65 (d, 1H), 8.11 (d, 1H), 7.56 (dd, 1H), 3.44 (q, 2H), 1.32 (t, 3H); LCMS (M+H)+: 206.0.

\[
\text{Step 2. 3-[1-[2-(ethylsulfonyl)pyridin-4-yl]pyrrolidin-3-yl]-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile}
\]

A solution of 4-chloro-2-(ethylsulfonyl)pyridine (15 mg, 0.073 mmol) and 3-pyrrolidin-3-yl-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile (32 mg, 0.073 mmol, from Example 33, Step 3) in NMP (0.20 mL) and 4-methylmorpholine (16 \(\mu\)L) was heated to 120 °C in the microwave for 15 min. The reaction mixture was partitioned between water and ethyl acetate. The layers were separated and the aqueous layer was extracted a total of three times with ethyl acetate. The extracts were dried over sodium sulfate, decanted and concentrated. The crude product was deprotected by stirring in 50% TFA/DCM for 1 h, evaporated and then stirred with excess EDA in methanol. The product was purified by preparative HPLC-MS, eluting with a gradient of ACN and H\textsubscript{2}O containing 0.15%
NH₄OH, frozen and lyophilized to afford the product as the free base (11 mg, 31%). ¹H NMR (400 MHz, DMSO-d₆): δ 11.96 (br s, 1H), 8.61 (s, 1H), 8.25 (d, 1H), 8.01 (t, 1H), 7.52 (d, 1H), 7.16 (t, 1H), 7.06 (br s, 1H), 6.95 (dd, 1H), 6.94 (d, 1H), 6.68 (dd, 1H), 4.54 (td, 1H), 3.63 (dd, 1H), 3.52-3.22 (m, 7H), 2.97-2.85 (m, 1H), 1.76-1.59 (m, 2H), 1.10 (t, 3H); LCMS (M+H)⁺: 476.1.

Example 149. S-[^-H]-cyano-l-P[^-H]-yrrolo[^-H]-pyrimidin[^-H]-pyrrol-l-yl]ethyl]pyrrolidin-l-yl-1,3-thiazole-4-carbonitrile (both racemic and single enantiomers isolated)

Step 1. 5-bromo-l,3-thiazole-4-carbonitrile

To a mix of 5-bromo-l,3-thiazole-4-carboxamide (prepared according to the procedure reported in WO2008/057336 from 5-bromo-l,3-thiazole-4-carboxylic acid obtained from SynChem; 2.75 g, 13.3 mmol) and triethylamine (9.26 mL, 66.4 mmol) in DCM (50 mL) was added trichloroacetic anhydride (7.28 mL, 39.8 mmol) drop-wise at 0°C. The mixture was stirred at 0°C for 1 h. The reaction was quenched by the addition of saturated aqueous NaHCO₃ solution, extracted with DCM, dried over MgSO₄, concentrated and purified on silica gel (eluting with a gradient from 0-20% EtOAc/Hexanes) to afford product (2.19 g, 87%). LCMS (M+H)⁺: 190.9/188.9.

Step 2. 5-(3-{2-cyano-1-[3-(7-{[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrrol-1-yl}pyrrolidin-1-yl}-1,3-thiazole-4-carbonitrile

5-Bromo-l,3-thiazole-4-carbonitrile (24 mg, 0.13 mmol) and 3-pyrrolidin-3-yl-1-[3-(7-({[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrrolo[2,3-d]pyrimidin-4-yl}-1H-pyrrol-1-yl]propanenitrile (51 mg, 0.12 mmol, from Example 33, Step 3) were mixed with 1-butyl-3-methyl-lH-imidazol-3-iumtetrafluoroborate (0.15 g, 0.66 mmol), and 4-methylmorpholine (14
µL, 0.13 mmol) was added. The mixture was heated at 120 °C for 2 h, then cooled to RT, partitioned between EtOAc and brine, and the brine layer was extracted with EtOAc three times. The combined organic extracts were dried over sodium sulfate and concentrated. Flash column chromatography, eluting with a gradient of 0-100% ethyl acetate in hexanes afforded product (27 mg, 42%). 1H NMR (300 MHz, CDCl₃): δ 8.82 (s, 1H), 7.91 (s, 1H), 7.72 (s, 1H), 7.36 (d, 1H), 7.04-6.99 (m, 1H), 6.94 (t, 1H), 6.84 (d, 1H), 5.66 (s, 2H), 4.28-4.16 (m, 1H), 3.96 (dd, 1H), 3.68-3.41 (m, 5H), 3.20-3.02 (m, 1H), 2.97 (m, 2H), 2.09-1.73 (m, 2H), 0.99-0.85 (m, 2H), -0.06 (s, 9H); LCMS (M+H)+: 545.2.

A portion of this material was deprotected to afford the racemate in the following procedure, Step 3.

A portion (20 mg) of this SEM-protected product was separated into its enantiomers by chiral chromatography (Chiral Technologies ChiralCel OD-H: 30 x 250 mm, 5µm, 45% EtOH/55% Hexanes at 15 mL/min; enantiomer 1: retention time 41.8 min; enantiomer 2: retention time 47.4 min). Each enantiomer was evaporated and deprotected separately according to the following procedures in Step 4 and Step 5.

Step 3. 5-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-l-yl]ethyl}pyrrolidin-l-yl)-l,3-thiazole-4-carbonitrile (racemic)

Racemic 5-(3-{2-cyano-l-[3-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl}pyrrolidin-l-yl)-l,3-thiazole-4-carbonitrile (7.0 mg, 0.013 mmol) was dissolved in a mixture of 1:1 DCM/TFA, stirred for 1 h, and concentrated. The residue was dissolved in MeOH (1 mL), and 0.2 mL EDA was added and the reaction was stirred for 15 min. Preparative HPLC-MS, eluting with a gradient of ACN and H₂O containing 0.15% NH₄OH, followed by lyophilization afforded the product as the free base (3.5 mg, 66%). 1H NMR (400 MHz, DMSO-d6): δ 11.97 (br s, 1H), 8.61 (s, 1H), 8.20 (s, 1H), 7.99 (t, 1H), 7.52 (d, 1H), 7.14 (t, 1H), 6.96-6.92 (m, 2H), 4.58 (td, 1H), 3.68 (dd, 1H), 3.66-3.59 (m, 1H), 3.54-3.37 (m, 3H), 3.22 (dd, 1H), 3.02-2.91 (m, 1H), 1.80-1.63, (m, 2H); LCMS (M+H)+: m/z = 415.0.

Step 4. 5-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-l-yl]ethyl}pyrrolidin-l-yl)-l,3-thiazole-4-carbonitrile (single enantiomer l)

5-(3-{2-Cyano-l-[3-(7-{2-(trimethylsilyl)ethoxy}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl]ethyl}pyrrolidin-l-yl)-l,3-thiazole-4-carbonitrile (6.0 mg, 0.011 mmol; Peak 1 from Step 2) was dissolved in a mixture of 1:1 DCM/TFA, the mixture was stirred for 1 h, then concentrated. The residue was redissolved in 1 mL MeOH, and 0.2 mL EDA was added.
Preparative HPLC-MS, eluting with a gradient of ACN and H₂O containing 0.15% NH₄OH, followed by lyophilization afforded the product as the free base (2.5 mg, 54%). ¹H NMR (400 MHz, DMSO-d₆): δ 11.97 (br s, IH), 8.61 (s, IH), 8.19 (s, IH), 7.99 (t, IH), 7.52 (dd, IH), 7.14 (dd, IH), 6.96-6.93 (m, 2H), 4.58 (td, IH), 3.68 (dd, IH), 3.66-3.59 (m, 2H), 3.54-3.36 (m, 3H), 3.22 (dd, IH), 3.03-2.90 (m, IH), 1.80-1.64 (m, 2H); LCMS (M+H)⁺: 415.0.

Step 5. 5-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]-pyrimidin-4-yl)]-lH-pyrrol-l-yl'ethyl}pyrrolidin-l-yl)-l,3-thiazole-4-carbonitrile (single enantiomer 2)

5-(3-{2-Cyano-l-[3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-lH-pyrrol-l-yl'l)pyrrolidin-l-yl)-l,3-thiazole-4-carbonitrile (6.0 mg, 0.011 mmol; Peak 2 from Step 2) was dissolved in a mixture of 1:1 DCM/TFA, the mixture was stirred for 1 h, then concentrated. The residue was redissolved in 1 mL MeOH, 0.2 mL EDA was added. Preparative HPLC-MS, eluting with a gradient of ACN and H₂O containing 0.15% NH₄OH, followed by lyophilization afforded the product as the free base (2.5 mg, 54%). ¹H NMR (400 MHz, DMSO-d₆): δ 11.97 (br s, IH), 8.61 (s, IH), 8.19 (s, IH), 7.99 (t, IH), 7.52 (dd, IH), 7.14 (t, IH), 6.96-6.93 (m, 2H), 4.58 (td, IH), 3.68 (dd, IH), 3.66-3.60 (m, 2H), 3.54-3.38 (m, 3H), 3.22 (dd, IH), 3.02-2.90 (m, IH), 1.81-1.62 (m, 2H); LCMS (M+H)⁺: 415.0.

Example 150. 3-[1-(2-mercaptopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-lH-pyrazol-l-yl]propanenitrile (single enantiomer)

![Chemical Structure](image_url)

Step 1. 3-[1-(2-mercaptopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-lH-pyrazol-l-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-lH-pyrazol-l-yl]propanenitrile (150 mg, 0.34 mmol; from Example 15, Step 3) and 2,4-dichloropyrimidine (61 mg, 0.41 mmol) were dissolved in 1,4-dioxane (0.30 mL) and DIPEA (119 µL, 0.686 mmol) was added. The solution was heated to 100 °C for 30 min. The mixture was concentrated, ethanol (1.0 mL) was added, followed by sodium hydrogen sulfide dihydrate (82 mg, 0.9 mmol). The suspension was then stirred at RT for 24 h. Additional sodium
hydrogen sulfide dihydrate (31 mg, 0.34 mmol) was added and stirred at RT for an additional 3 days. The mixture was diluted with acetonitrile and filtered. Preparative HPLC-MS, eluting with a gradient of ACN and H₂O containing 0.15% NH₄OH, followed by lyophilization afforded the product as the free base, 75 mg. LCMS (M+H)⁺: 548.1.

Step 2. 3-[l-(2-mercaptopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

3-[l-(2-Mercaptopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (19 mg, 0.024 mmol) was dissolved in a 1:1 mixture of TFA/DCM, stirred for 1 h at RT, then concentrated. The residue was dissolved in 1 mL methanol, and 0.2 mL EDA was added and the reaction stirred for 30 min. Preparative HPLC-MS, eluting with a gradient of ACN and H₂O containing 0.15% NH₄OH, followed by lyophilization afforded the product as the free base. ^1H NMR (400 MHz, DMSO-d6): δ 8.87 (s, 1H), 8.69 (s, 1H), 8.43 (s, 1H), 7.61 (d, 1H), 7.50 (br d, 1H), 6.99 (d, 1H), 6.01 (br d, 1H), 4.82 (br m, 1H), 4.00-2.73 (m, 7H), 1.79-1.47 (m, 2H); LCMS (M+H)⁺: 418.0.

Example 151. N-[4-(3-[2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)pyrimidin-2-yl]-N,N-dimethylsulfonamide (single enantiomer)

Step 1: 3-[l-(2-aminopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

A solution of 3-pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (0.100 g, 0.228 mmol, from Example 15, Step 3) and 4-chloropyrimidin-2-amine (0.031 g, 0.24 mmol, SynChem) in ethanol (0.1 mL) and DIPEA (0.1 mL, 0.6 mmol) was heated to 120 °C for 1.5 h. The reaction mixture was partitioned between water and ethyl acetate, and the aqueous phase was extracted three times. The extracts were dried over sodium sulfate, decanted and concentrated. The product was used
without further purification in the following step (120 mg, 99%). LCMS (M+H)^+: 531.2.

Step 2. 3-[1-(2-Ammopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (20 mg, 0.04 mmol) was dissolved in DCM (0.20 mL), and DIPEA (13 µL, 0.075 mmol) was added followed by dimethylsulfamoyl chloride (4.0 µL, 0.038 mmol). The reaction was stirred for 16 h. Additional dimethylsulfamoyl chloride (2.0 µL, 0.019 mmol) was added, stirred for a few h, then concentrated. The residue was stirred with 50% TFA/DCM for 1 h, concentrated, then redissolved in methanol and treated with excess EDA. Preparative HPLC-MS, eluting with a gradient of ACN and H₂O containing 0.15% NH₄OH, followed by lyophilization afforded the product as the free base. ¹H NMR (500 MHz, CD₃OD) (rotamers): δ 8.82 (s, 1H), 8.77 (s, 1H), 8.49-8.45 (m, 1H), 7.68 (d, 1H), 7.67 and 7.54 (each as d, together = 1H), 7.10 (d, 1H), 6.21 and 6.03 (each as d, together = 1H), 4.86 (td, 1H), 4.04-2.95 (m, 7H), 2.81-2.77 (br singlets, together 6H), 2.00-1.77 (m, 2H); LCMS (M+H)^+: 508.1.

Example 152. 4-(3-[2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-N-methylpyridine-2-carboxamide (single enantiomer)

![Chemical structure](image)

Step 1. 4-(3-[2-cyano-1-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl]pyridine-2-carboxylic acid

3-Pyrrolidin-3-yl-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (250 mg, 0.57 mmol; from Example 15, Step 3) and 4-chloropyridine-2-carboxylic acid (135 mg, 0.857 mmol) were combined in ethanol (1.2 mL) and DIPEA (0.20 mL, 1.14 mmol) and heated to 120 °C in a sealed vial for 2 h, with additional 4-chloropyridine-2-carboxylic acid (0.135 g, 0.857 mmol) added after 1 h to drive the reaction to completion. Preparative HPLC-MS (eluting with a gradient of MeOH/H₂O containing...
0.15% NH₄OH) was used to purify the product. The eluted fractions were evaporated to afford product as the ammonium carboxylate salt (150 mg, 47%). LCMS (M+H)^+: 559.2.

Step 2. 4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-N-methylpyridine-2-carboxamide

4-(3-{2-Cyano-l-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)pyridine-2-carboxylic acid (20 mg, 0.036 mmol) was dissolved in DCM (1 mL). DIPEA (20 µL, 0.1 mmol) followed by N,N,N',N'-tetramethyl-O-(7-azabenzotriazol-1-yl)uronium hexafluorophosphate (0.020 g, 0.054 mmol) were added, and stirred for 1 h. This was followed by addition of 2 M methylamine in THF (36 µL, 0.072 mmol). The reaction was continued for 16 h. Solvent was removed in vacuo. The crude product was deprotected by stirring in a mixture of 2:1 DCM/TFA for 3 h, evaporation, then stirring in a mixture of methanol (1.4 mL) and EDA (0.1 mL). Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) was used to purify the product. ^1^H NMR (300 MHz, DMSO-d₆): δ 12.10 (br s, IH), 8.88 (s, IH), 8.69 (s, IH), 8.66-8.59 (m, IH), 8.44 (s, IH), 8.14 (d, IH), 7.61 (d, IH), 7.17-7.14 (m, IH), 6.99 (d, IH), 6.58 (dd, IH), 4.88-4.76 (m, IH), 3.68-3.57 (m, IH), 3.48-3.19 (m, 5H), 3.01-2.87 (m, IH), 2.79 (d, 3H), 1.75-1.63 (m, 2H); LCMS (M+H)^+: 442.0.

Example 153. 4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-l-yl)-N,N-dimethylpyridine-2-carboxamide (single enantiomer)

Prepared as in Example 152, Step 2, substituting 2 M dimethylamine in THF (36 µL, 0.072 mmol) in place of methylamine. ^1^H NMR (300 MHz, DMSO-d₆): δ 12.05 (br s, IH), 8.80 (s, IH), 8.62 (s, IH), 8.36 (s, IH), 8.10-7.98 (m, IH), 7.54 (d, IH), 6.92 (d, IH), 6.54-6.46 (m, IH), 6.42 (dd, IH), 4.79-4.69 (m, IH), 3.61-2.78 (m, 7H), 2.89 (s, 3H), 2.82 (s, 3H), 1.67-1.56 (m, 2H); LCMS (M+H)^+: 456.0.
Example 154. 4-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-N-phenylpyridine-2-carboxamide (single enantiomer)

Prepared as in Example 152, Step 2, substituting aniline (6.5 µL, 0.072 mmol) in place of methylamine.

1H NMR (300 MHz, CD$_3$OD): δ 8.68 (s, 1H), 8.66 (s, 1H), 8.42 (s, 1H), 8.19 (d, 1H), 7.80-7.72 (m, 2H), 7.50 (d, 1H), 7.42-7.30 (m, 3H), 7.18-7.10 (m, 1H), 6.94 (d, 1H), 6.62 (dd, 1H), 4.89-4.76 (m, 1H), 3.73 (dd, 1H), 3.55-3.17 (m, 5H), 3.16-3.01 (m, 1H), 1.92-1.80 (m, 2H); LCMS (M+H)$^+$: 504.1.

Example 155. 3-[1-(2,3-dihydrofuro[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (single enantiomer)

Step 1. 3-[1-(2,3-dihydrofuro[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (86.6 mg, 0.198 mmol, from Example 15, Step 3) was mixed with NMP (0.20 mL, 2.1 mmol), DIPEA (53.0 µL, 0.305 mmol), and 2,3-dihydrofuro[2,3-b]pyridin-6-yl trifluoromethanesulfonate (prepared as described in Org. Lett. 2006, 8(17), 3777-3779; 50.0 mg, 0.152 mmol) was added. The mixture was heated in the microwave at 130 °C for a total of 1 h. The reaction mixture was diluted with EtOAc, washed with water and brine, dried over sodium sulfate and concentrated. The product was purified by
flash column chromatography, eluting with a gradient from 0-100% ethyl acetate in hexanes to provide the purified product (16 mg, 17%). 1H NMR (300 MHz, CDCl₃): δ 8.85 (s, 1H), 8.36 (s, 2H), 7.40 (d, 1H), 7.28 (d, 1H), 6.80 (d, 1H), 5.81 (d, 1H), 5.68 (s, 2H), 4.57 (t, 2H), 4.43 (td, 1H), 3.88 (dd, 2H), 3.55-3.38 (m, 1H), 3.38-3.26 (m, 2H), 3.22 (dd, 1H), 3.12 (t, 2H), 3.09-2.99 (m, 1H), 2.97 (dd, 1H), 1.98-1.85 (m, 1H), 1.82-1.64 (m, 1H), 0.92 (dd, 2H), -0.06 (s, 9H); LCMS (M+H)+: 557.2.

Step 2. 3-fl-(2,3-dihydrofuro[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-[l-(2,3-Dihydrofuro[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (8 mg, 0.01 mmol) was dissolved in a 1:1 mixture of DCM:TFA, stirred at RT for 1 h, then concentrated. The residue was dissolved in 1.5 mL MeOH, and 0.2 mL EDA was added. The mixture was stirred for 30 min at RT, then preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) was used to purify the product (3 mg, 49%). 1H NMR (400 MHz, DMSO-d6): δ 12.08 (br s, 1H), 8.86 (s, 1H), 8.68 (s, 1H), 8.42 (s, 1H), 7.60 (d, 1H), 7.35 (d, 1H), 6.98 (d, 1H), 5.85 (d, 1H), 4.79 (td, 1H), 4.46 (t, 2H), 3.64 (dd, 1H), 3.43-3.12 (m, 5H), 3.04 (t, 2H), 2.93-2.81 (m, 1H), 1.74-1.56 (m, 2H); LCMS (M+H)+: 427.2.

Example 156. 3-[4-(7H-pyrrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-(l-thieno[2,3-b]pyridin-6-ylpyrrolidin-3-yl)propanenitrile (single enantiomer)

Step 1. 3-[l-(l-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

3-Pyrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (0.140 g, 0.320 mmol; from Example 15, Step 3) and 6-chloro-2,3-dihydrothieno[2,3-b]pyridine-1-oxide (50.0 mg, 0.266 mmol, from Example 28, Step 4) was dissolved in ethanol (0.20 mL) and DIPEA (83.6 µL, 0.480 mmol) was added. The mixture was heated in the microwave at 125 °C for 100 min. LCMS showed more than 60%
conversion to the desired product. The mixture was concentrated and purified by flash column chromatography (eluting with a gradient first from 0-100% ethyl acetate in hexanes, followed by 5% MeOH in ethyl acetate) to afford the product as a light yellow solid. (46 mg, 29%). LCMS (M+H)+: 589.2.

5

Step 2. 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-(1-thieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl)propanenitrile

3-[1-(1-Oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (15.0 mg, 0.0255 mmol) was heated to 140 °C in acetic anhydride (0.50 mL, 5.3 mmol) for 3 h. The mixture was concentrated, the residue was dissolved in a mixture of 1:1 TFA/DCM, stirred for 1 h at RT, and was concentrated again. The residue was then stirred with 0.2 mL of EDA in 1.0 mL MeOH. Preparative HPLC-MS (eluting with a gradient of ACN/H2O containing 0.15% NH4OH) was used to purify the product (3 mg, 26%). 1H NMR (300 MHz, CDCl3): δ 9.16 (br s, IH), 8.84 (s, IH), 8.38 (s, 2H), 7.81 (d, IH), 7.37 (dd, IH), 7.06 (s, IH), 6.79 (dd, IH), 6.44 (d, IH), 4.49 (td, IH), 4.01 (dd, IH), 3.66-3.54 (m, IH), 3.51-3.38 (m, 2H), 3.27 (dd, IH), 3.18-3.03 (m, IH), 3.04 (dd, IH), 2.05-1.91 (m, IH), 1.88-1.72 (m, IH); LCMS (M+H)+: 441.1.

Example 157. 3-[1-(7,7-difluoro-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile bis(trifluoroacetate) (single enantiomer)

Step 1. 2-chloro-5,6-dihydro-7H-cyclopenta[b]pyridin-7-one

Dess-Martin periodinane (0.550 g, 1.30 mmol) was added to a solution of 2-chloro-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol (prepared as described in WO2006/103511; 0.200 g, 1.18 mmol) in DCM (5 mL). The solution was stirred for 2 h, then was washed with IN NaOH, dried over sodium sulfate, decanted and concentrated. The product was used without further purification (180 mg, 91%). 1H NMR (400 MHz, in CDCl3 and CD3OD): δ 7.64 (d, IH), 7.39 (d,
Step 2. 2-chloro-7, 7-difluoro-6, 7-dihydro-5H-cyclopenta[b]pyridine

2-Methoxy-N-(2-methoxyethyl)-N-(trifluoro-κ(4)-sulfanyl)ethanamine (0.3 mL, 1.5 mmol) was added to a solution of 2-chloro-5,6-dihydro-7H-cyclopenta[b]pyridin-7-one (0.071 g, 0.42 mmol) in DCM (0.8 mL) and ethanol (4 µL) and the reaction was stirred over 4 days. Ethyl acetate and water were added, the layers separated, and the aqueous phase was extracted with two further portions of ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography (eluting with a gradient from 10-50% ethyl acetate in hexanes) afforded product as a colorless crystalline solid (26 mg, 32%). \(^1\)H NMR (300 MHz, CDCl₃): \(\delta\) 7.64 (d, IH), 7.39 (d, IH), 3.05-2.96 (m, 2H), 2.74-2.58 (m, 2H); LCMS (M+H)\(^+\): 168.1.

Step 3. 3-fl-(7, 7-difluoro-6, 7-dihydro-5H-cyclopenta[b]pyridin-2-yl)pyrrolidin-3-yl|-3-[4-(7H-pyrrol|2, 3-d|pyrimidin-4-yl]-1H-pyrazol-1-yl|propanenitrile bis(trifluoroacetate)

A solution of 3-pyrrolidin-3-yl-3-[4-(7H|pyrrol|2, 3-d|pyrimidin-4-yl]-1H-pyrazol-1-yl|propanenitrile (0.050 g, 0.11 mmol, from Example 15, Step 3) and 2-chloro-7,7-difluoro-6,7-dihydro-5H-cyclopenta[b]pyridine (0.026 g, 0.14 mmol) in 1-butyl-3-methyl-1H-imidazol-3-ium tetrafluoroborate (0.3 mL) containing A-methylmorpholine (0.038 mL, 0.34 mmol) was heated to 120 °C for a total of 15 h. The reaction mixture was partitioned between water and ethyl acetate, and the aqueous phase was extracted a total of 3 times. The extracts were dried over sodium sulfate and concentrated. The residue was stirred with 1:1 TFA:DCM for 2 h and then concentrated. The mixture was reconstituted in methanol and excess of EDA was added. After stirring for 16 h, solid present in the reaction mixture was filtered off and the filtrate was purified by preparative HPLC-MS (eluting with a gradient of ACN and H₂O containing 0.1% TFA) to afford the product as the trifluoroacetate salt (2 mg, 2%). \(^1\)H NMR (400 MHz, DMSO-d₆): \(\delta\) 12.69 (br s, IH), 9.03 (s, IH), 8.86 (s, IH), 8.56 (s, IH), 7.81 (br s, IH), 7.56 (d, IH), 7.17 (br s, IH), 6.60 (d, IH), 4.88 (td, IH), 3.77 (dd, IH), 3.54-3.23 (m, 6H), 2.91 (dd, IH), 2.85-2.77 (m, 2H), 2.59-2.49 (m, IH), 1.78-1.60 (m, 2H); LCMS (M+H)\(^+\): 461.2.
Example 158. 3-[1-(7-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile (single enantiomers isolated)

A mixture of 7-fluorobenzo[d]oxazole-2(3H)-thione (0.076 g, 0.45 mmol, prepared as in Example 21), 3-pyrrolidin-3-yl-3-[3-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile (0.150 g, 0.240 mmol, from Example 33, Step 3) and DIPEA (250 µL, 1.4 mmol) in 1,4-Dioxane (1 mL) was heated to 80 °C for 3 h. The dioxane was removed in vacuo and was replaced with ethanol (1 mL). Silver nitrate (0.0817 g, 0.481 mmol) and ammonium hydroxide solution (0.2 mL) were added. After stirring overnight, the mixture was filtered and rinsed with methanol. After evaporation, the residue was purified by flash column chromatography, eluting with 0-10% MeOH/DCM. After evaporating the fractions containing product, the residue was dissolved in ethyl acetate and was washed with 1N NaOH, dried over sodium sulfate, and evaporated again. The product was deprotected by stirring in 25% TFA/DCM for 3 h, then evaporation and stirring with excess EDA in methanol overnight.

Preparative HPLC-MS (eluting with a gradient of MeOH and H₂O containing NH₄OH) was used to afford the product as the free base. ¹H NMR (300 MHz, CDCl₃): δ 9.37 (br s, 1H), 8.81 (s, 1H), 7.75 (t, 1H), 7.34 (d, 1H), 7.18-7.07 (m, 2H), 7.03 (dd, 1H), 6.97 (t, 1H), 6.84 (d, 1H), 6.82 (dd, 1H), 4.22 (td, 1H), 4.09 (dd, 1H), 3.85 (ddd, 1H), 3.65 (ddd, 1H), 3.49 (dd, 1H), 3.16-3.04 (m, 1H), 2.98 (app d, 2H), 2.13-1.99 (m, 1H), 1.91-1.74 (m, 1H); LCMS (M+H)⁺: 442.2. Chiral HPLC (Phenomenex Lux Cellulose-1 column, 21.2 x 250 mm, 5µm, eluting with 45% EtOH/55% Hexanes at a rate of 20 mL/min) was used to separate the racemic mixture into single enantiomers (enantiomer 1 retention time: 17.8 min; enantiomer 2 retention time: 20.1 min). Upon removal of solvent, the single enantiomer products were separately reconstituted in ACN/H₂O and lyophilized. Peak 1 (first to elute): ¹H NMR (500 MHz, DMSO-d₆, 90 °C): δ 11.71 (br s, 1H), 8.61 (s, 1H), 7.94 (t, 1H), 7.45 (dd, 1H), 7.17-7.09 (m, 3H), 6.94 (dd, 1H), 6.91-
6.86 (m, 2H), 4.59 (td, IH), 3.91 (dd, IH), 3.69 (ddd, IH), 3.57-3.49 (m, 2H), 3.40 (dd, IH), 3.26 (dd, IH), 3.03-2.94 (m, IH), 1.84-1.69 (m, 2H); LCMS (M+H)+: 442.2. Peak 2 (second to elute): 1H NMR (400 MHz, DMSO-d6): δ 11.96 (br s, IH), 8.61 (s, IH), 8.01 (t, IH), 7.51 (dd, IH), 7.18-7.10 (m, 3H), 6.96-6.89 (m, 3H), 4.58 (td, IH), 3.86 (dd, IH), 3.71-3.63 (m, IH), 3.54-3.10 (m, 4H), 2.99-2.87 (m, IH), 1.73-1.63 (m, 2H); LCMS (M+H)+: 442.2.

Example 159. 3-[1-(7-bromo-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile trifluoracetate (single enantiomer)

\[
\text{Step 1. 2-amino-6-bromophenol}
\]

2-Bromo-6-nitrophenol (Aldrich, 0.25 g, 1.1 mmol) was dissolved in THF (6.4 mL), water (6.4 mL) and stannous chloride dihydrate (1.3 g, 5.7 mmol) were added. The mixture was heated to 80 °C for 1 h. Upon cooling to RT, sat'd sodium bicarbonate was added, followed by ethyl acetate. Insoluble material was filtered off. The layers were separated and the aqueous phase was extracted with two further portions of ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate and concentrated to provide the desired product as an off-white crystalline solid, used without further purification (200 mg, 93%). LCMS (M+H)+: 188.0/190.0.

\[
\text{Step 2. 7-bromobenzo[d]oxazole-2(3H)-thione}
\]

Carbonothioic dichloride (0.122 mL, 1.60 mmol) was added drop-wise to a solution of 2-amino-6-bromophenol (0.20 g, 1.1 mmol) in THF (2.8 mL) at 0 °C. The mixture was allowed to warm to RT and stir for 2 h. Solvent was removed in vacuo, and the crude solid was used in the next step without further purification. LCMS (M+H)+: m/z = 229.9/231.9.

\[
\text{Step 3. 3-[1-(7-bromo-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7-[\{2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile}
\]
A mixture of 7-bromobenzo[d]oxazole-2(3H)-thione (0.105 g, 0.457 mmol), DIPEA (0.159 mL, 0.914 mmol), and 3-pyrrolidin-3-yl-3-[4-({7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}-IH-pyrazol-1-yl)propanenitrile (0.10 g, 0.23 mmol; from Example 15, Step 3) in 1,4-Dioxane (0.20 mL) was stirred at 80 °C for 3 h. The mixture was then concentrated. Flash column chromatography, eluting with a gradient from 0-100% ethyl acetate in hexanes afforded the product as a light yellow solid (47 mg, 32%).

1H NMR (300 MHz, CDCl₃): δ 8.86 (s, 1H), 8.46 (s, 1H), 8.36 (s, 1H), 7.43 (d, 1H), 7.26 (dd, 1H), 7.14 (dd, 1H), 7.04 (t, 1H), 6.81 (d, 1H), 5.68 (s, 2H), 4.55 (td, 1H), 4.05 (dd, 1H), 3.88-3.78 (m, 1H), 3.69-3.45 (m, 4H), 3.27 (dd, 1H), 3.25-3.09 (m, 1H), 3.00 (dd, 1H), 2.07-1.77 (m, 2H), 0.92 (dd, 2H), -0.06 (s, 9H); LCMS (M+H)+: m/z = 633.1/635.1.

Step 4. S-[I-(I-bromo-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile trifluoracetate

A solution of 3-[I-(7-bromo-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-({7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}-IH-pyrazol-1-yl)propanenitrile (10 mg, 0.016 mmol) in 1:1 TFA/DCM was stirred for 1 h at RT, concentrated, then stirred in 1 mL MeOH, containing 0.2 mL EDA until deprotection was complete. Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.1% TFA), followed by lyophilization afforded the product as the trifluoroacetate salt (5.8 mg, 59%). 1H NMR (300 MHz, DMSO-d6): δ 12.45 (br s, 1H), 8.98 (s, 1H), 8.78 (s, 1H), 8.51 (s, 1H), 7.77-7.68 (m, 1H), 7.24 (dd, 1H), 7.17 (dd, 1H), 7.13-7.04 (m, 2H), 4.90 (td, 1H), 3.89 (dd, 1H), 3.70-2.86 (m, 6H), 1.81-1.63 (m, 2H); LCMS (M+H)+: m/z = 503.0/505.1.

Example 160. 2-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-1,3-benzoxazole-7-carbonitrile (single enantiomer)

A mixture of 3-[I-(7-bromo-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-({7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}-IH-pyrazol-1-yl)propanenitrile (22 mg, 0.035 mmol, from Example 159, Step 3), zinc cyanide (8.2 mg, 0.069 mmol), and
tetrakis(triphenylphosphine)palladium(0) (8.0 mg, 0.0069 mmol) in DMF (0.3 mL) was heated in the microwave to 120 °C for 60 min. An additional portion of tetrakis(triphenylphosphine)palladium(0) (24 mg, 0.020 mmol) was added and was heated to 120 °C in an oil bath for 2 h. The mixture was then diluted with EtOAc, washed with water, brine, dried over sodium sulfate and concentrated. The crude product was stirred with 1:1 TFA/DCM for 1 h, concentrated, then stirred in 1 mL MeOH containing 0.2 mL EDA for 15 min. Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product as the free base (9 mg, 57%). ¹H NMR (300 MHz, DMSO-d₆): δ 8.89 (s, 1H), 8.67 (s, 1H), 8.43 (s, 1H), 7.60 (d, 1H), 7.57 (dd, 1H), 7.41 (dd, 1H), 7.28 (t, 1H), 6.98 (d, 1H), 4.87 (td, 1H), 3.91 (dd, 1H), 3.73-3.62 (m, 1H), 3.61-3.26 (m, 4H), 3.06-2.89 (m, 1H), 1.82-1.66 (m, 2H); LCMS (M+H)⁺: 450.1.

Example 161. 3-[1-(7-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (single enantiomer)

Step 1. 7-hydroxybenzo[d]oxazole-2(3H)-thione

A mixture of 3-aminobenzene-1,2-diol (prepared as described in WO2007/071434; 0.5 g, 4 mmol) and potassium O-ethyl dithiocarbonate (0.80 g, 5.0 mmol) in ethanol (5.2 mL) was heated to reflux for 1.5 h, then at RT over 3 days. Dilute HCl was added into the reaction, and the product was extracted with ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 0-100% ethyl acetate, was used to purify the product (80 mg, 12%). ¹H NMR (400 MHz, CD₃OD): δ 7.04 (t, 1H), 6.69 (dd, 1H), 6.64 (dd, 1H); LCMS (M+H)⁺: 167.9.

Step 2. 3-[1-(7-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile

7-Hydroxybenzo[d]oxazole-2(3H)-thione (0.080 g, 0.48 mmol) and 3-pyrrrolidin-3-yl-3-[4-(7-[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (0.17 g, 0.38 mmol, from Example 15, Step 3) in 1,4-dioxane (1 mL, 10 mmol)
were heated to 80 °C for several h until the starting materials were consumed. The solvent was removed *in vacuo* and replaced with ethanol (1 mL). Silver nitrate (0.065 g, 0.38 mmol) and ammonium hydroxide solution (0.12 mL) were added and the reaction was continued for 16 h. The reaction mixture was partitioned between water and ethyl acetate, layers separated and the aqueous phase extracted a total of 3 times with ethyl acetate. The extracts were filtered to remove insoluble residue, dried over sodium sulfate, decanted and concentrated. Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15 % NH₄OH) was used to purify the crude product before the deprotection step. The deprotection step was performed with 1:1 TFA:DCM for 2 h, followed by evaporation, then stirring with excess EDA in methanol for 1 h. Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15 % NH₄OH) afforded product as the free base (12 mg, 7%). ¡H NMR (400 MHz, DMSO-d6): δ 8.89 (s, 1H), 8.69 (s, 1H), 8.43 (s, 1H), 7.61 (d, 1H), 6.99 (d, 1H), 6.90 (t, 1H), 6.71 (dd, 1H), 6.50 (dd, 1H), 4.86 (td, 1H), 3.85 (dd, 1H), 3.67-3.60 (m, 1H), 3.51-3.19 (m, 4H), 3.02-2.91 (m, 1H), 1.79-1.63 (m, 2H); LCMS (M+H)⁺: 441.0.

Example 162. 3-[[1-(7-methoxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (single enantiomer)

![Chemical structure](image)

Step 1. 7-methoxy-1,3-benzoxazole-2(3H)-thione

A mixture of 2-amino-6-methoxyphenol (prepared as described in EP333176; 1.2 g, 8.6 mmol) and potassium O-ethyl dithiocarbonate (1.7 g, 11 mmol) in ethanol (11 mL) was heated to reflux for 3 h, then cooled to RT, followed by cooling in an ice bath. Dilute HCl was added to the reaction. The white precipitate was isolated by filtration and washed with water. The resulting sticky solid was azeotroped with benzene (700 mg, 45%). ¡H NMR (300 MHz, DMSO-d6): δ 13.86 (br s, 1H), 7.22 (t, 1H), 6.93 (dd, 1H), 6.82 (dd, 1H), 3.93 (s, 3H); LCMS (M+H)⁺: 182.0.
Step 2. 3-{1-(7-methoxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1 H-pyrazol-1-yl]propanenitrile

A mixture of 3-pyrrolidin-3-yl-3-[4-(7-\{2-(trimethylsilyl)ethoxy\}methyl\}-7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile (0.050 g, 0.11 mmol; from
Example 15, Step 3) and 4-methoxy-1,3-benzoxazole-2(3H)-thione (0.031 g, 0.17 mmol) in 1,4-
Dioxane (0.6 mL, 8 mmol) was heated to 80 °C for 3 h. Solvent was removed in vacuo and
replaced with ethanol (0.6 mL). Silver nitrate (0.019 g, 0.11 mmol) and ammonium hydroxide
solution (0.036 mL) were added and the reaction was stirred for 4 h. The mixture was filtered
through a PTFE filter syringe, rinsing with methanol. The methanol was evaporated in vacuo. The
residue was partitioned between ethyl acetate and water, layers separated and the aqueous phase
was extracted a further two times. The combined extracts were dried over sodium sulfate,
decanted and concentrated. The product was purified by preparative HPLC-MS, eluting with a
gradient of ACN/H₂O containing 0.15% NH₄OH. This product was deprotected by stirring with
1:1 TFA/DCM for 1 h, followed by removal of solvents, then stirring with excess EDA in
methanol until deprotection was complete. Purification via preparative HPLC-MS, eluting with a
gradient of ACN/H₂O containing 0.15% NH₄OH, afforded product as the free base (10 mg, 19%).

1H NMR (300 MHz, DMSO-d6): δ 8.89 (s, 1H), 8.68 (s, 1H), 8.43 (s, 1H), 7.60 (d, 1H), 7.06 (t,
IH), 6.99 (d, 1H), 6.88 (dd, 1H), 6.69 (dd, 1H), 4.85 (td, 1H), 3.89 (s, 3H), 3.86 (dd, 1H), 3.67-
3.59 (m, 1H), 3.52-3.29 (m, 4H), 3.02-2.90 (m, 1H), 1.79-1.63 (m, 2H); LCMS (M+H)+: 455.1.

Example 163. 3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-(1-(7-
ethoxybenzo[d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile (single enantiomer)

Step 1. 2-ethoxy-6-nitrophenol

Nitric acid (3.89 mL, 60 mmol) was added drop-wise to 2-ethoxy-phenol, (Aldrich, 5.00
mL, 39.4 mmol) in water (20 mL) and diethyl ether (49 mL). The resulting mixture became hot to
the point of the reflux of the ether, and then was allowed to cool to RT and stir for 3 h. The
reaction mixture was poured into water and was extracted three times with diethyl ether. The
extracts were dried over sodium sulfate, decanted and concentrated. The residue was dissolved in a small volume of DCM and hexanes, and what the undissolved material was excluded in loading the silica gel column for flash chromatography. The product was eluted with a gradient from 20-50% chloroform in hexanes, to afford the product as an orange solid (1.36 g, 19%). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 10.73 (br s, IH), 7.68 (dd, IH), 7.12 (dd, IH), 6.88 (dd, IH), 4.14 (q, 2H), 1.50 (t, 3H); LCMS (M+H\(^+\)): 183.9.

Step 2. 2-amino-6-ethoxyphenol

To a suspension of 2-ethoxy-6-nitrophenol (1.36 g, 7.42 mmol) in water (30 mL) and methanol (30 mL) was added sodium dithionite (-85%, 9.58 g, 46.8 mmol). The reaction was heated to 60 °C for 30 min, until it turned colorless. Upon cooling to RT, brine was added, and the product was extracted with ethyl acetate. The extracts were dried over sodium sulfate, decanted and concentrated (1.01 g, 89%). \(^1\)H NMR (400 MHz, CD\(_3\)OD): \(\delta\) 6.58 (t, IH), 6.40 (dd, IH), 6.38 (dd, IH), 4.04 (q, 2H), 1.39 (t, 3H); LCMS (M+H\(^+\)): 154.1.

Step 3. 7-ethoxy-1,3-benzoxazole-2(3H)-thione

Prepared from 2-amino-6-ethoxyphenol (1.01 g, 6.59 mmol) by the method of Example 162, Step 1 (1 g, 77%). \(^1\)HNMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 13.86 (br s, IH), 7.21 (t, IH), 6.93 (dd, IH), 6.81 (dd, IH), 4.21 (q, 2H), 1.38 (t, 3H); LCMS (M+H\(^+\)): 196.1.

Step 4. 3-(4-((7H-pyrrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)-3-(1-(7-ethoxybenzo[d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile

To 3-pyrrolidin-3-yl-3-[4-(7-([2-(trimethylsilyl]ethoxy)methyl]-7H-pyrrolo[2,3-d][pyrimidin-4-yl]-lH-pyrazol-yl]propanenitrile (0.070 g, 0.16 mmol, from Example 15, Step 3) in 1,4-Dioxane (1 mL) was added 7-ethoxy-1,3-benzoxazole-2(3H)-thione and the solution was heated to 80 °C for 3.5 h. Solvent was removed in vacuo and replaced with ethanol (1 mL). Silver nitrate (0.014 g, 0.080 mmol) and ammonium hydroxide solution (50 µL) were added and the reaction stirred for 16 h. Further silver nitrate (0.019 g, 0.1 mmol) and ammonium hydroxide solution (50 µL) were added and the reaction was continued for a further 7 h. IN NaOH was added into the reaction, followed by ethyl acetate. The biphasic mixture was filtered and the layers separated. The aqueous phase was extracted with two further portions of ethyl acetate. The combined extracts were dried over sodium sulfate, filtered through a short pad of silica, then concentrated. The product was deprotected by stirring with 1:1 TFA/DCM for 1 h, followed by evaporated and stirring with EDA (0.1 mL) in a small quantity of MeOH. Purification via
preparative HPLC-MS, eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH, afforded product as the free base. ¹H NMR (300 MHz, CD₃OD): δ 8.68 (s, 1H), 8.64 (d, 1H), 8.41 (s, 1H), 7.48 (dd, 1H), 7.03 (dt, 1H), 6.93 (dd, 1H), 6.83 (d, 1H), 6.64 (d, 1H), 4.91-4.79 (m, 1H), 4.18 (q, 2H), 3.96 (dd, 1H), 3.74-3.64 (m, 1H), 3.60-3.03 (m, 5H), 1.97-1.84 (m, 2H), 1.41 (t, 3H); LCMS (M+H)⁺: 469.2.

Example 164. 3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)-3-(l-(7-(difluoromethoxy)benzo [d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile (single enantiomer)

Step 1. 2-(difluoromethoxy)-6-nitrophenol

To a solution of 2-(difluoromethoxy)phenol (prepared as described in US Pat. 4,512,984; 0.90 g, 5.6 mmol) in acetic acid (1 mL) at 0 °C was added drop-wise white nitric acid (65%, 0.43 mL, 6.7 mmol). The reaction mixture was then poured into water and extracted with diethyl ether three times. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 20-50% CHCl₃ in hexanes afforded product as a yellow syrup (250 mg, 22%). ¹H NMR (300 MHz, CDCl₃): δ 10.77 (s, 1H), 8.03 (dd, 1H), 7.56-7.51 (m, 1H), 6.99 (t, 1H), 6.67 (t, 1H).

Step 2. 2-amino-6-(difluoromethoxy)phenol

Prepared from 2-(difluoromethoxy)-6-nitrophenol (0.25 g, 1.2 mmol) by the method described for Example 163, Step 2 (170 mg, 79%). ¹H NMR (400 MHz, CD₃OD): δ 6.67 (t, 1H), 6.63-6.60 (m, 2H), 6.50-6.47 (m, 1H); ¹⁹F NMR (400 MHz, CD₃OD): δ -83.03 (d); LCMS (M+H)⁺: 176.1.

Step 3. 7-(difluoromethoxy)-l,3-benzoxazole-2(3H)-thione

Prepared from 2-amino-6-(difluoromethoxy)phenol (0.17 g, 0.97 mmol) by the method described for Example 162, Step 1 (120 mg, 57%). ¹H NMR (400 MHz, DMSO-d₆): δ 14.14 (br s, 1H), 7.38 (t, 1H), 7.32 (t, 1H), 7.16-7.1 1 (m, 2H); ¹⁹F NMR (400 MHz, DMSO-d₆): δ -82.65
Step 4. 3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl)-3-(1-(7-(difluoromethoxy)benzo[d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile

Prepared from 7-(difluoromethoxy)-1,3-benzoxazole-2(3H)-thione (from step 3) by the method of Example 163, Step 4. 1HNMR (300 MHz, DMSO-d$_6$): δ 8.88 (s, 1H), 8.69 (s, 1H), 8.43 (s, 1H), 7.59 (d, 1H), 7.30 (t, 1H), 7.15-7.11 (m, 2H) 6.99 (d, 1H), 6.85 (t, 1H), 4.86 (td, 1H), 3.89 (dd, 1H), 3.71-3.60 (m, 1H), 3.57-3.26 (m, 4H), 3.04-2.91 (m, 1H), 1.80-1.66 (m, 2H); LCMS (M+H)$^+$: 491.2.

Example 165. 3-[1-(4-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile (single enantiomer)

Step 1. 2-aminobenzene-1,3-diol

1.0 M of Boron tribromide in DCM (12 mL, 12 mmol) was added slowly drop-wise to a solution of 2,6-dimethoxyaniline (Alfa Aesar, 0.5 g, 3 mmol) in DCM (5 mL) at -45 °C under nitrogen. The mixture was stirred, with warming to RT, for 3 days. The mixture was cooled in an ice bath and water was added drop-wise. Saturated sodium bicarbonate solution was added to adjust pH to 5-6 and the aqueous phase was extracted with DCM. The aqueous layer, which contained product, was evaporated to afford a solid mixture. The solid was slurried in ethanol and the solids were filtered off. The ethanol solution was used in the next step. 1H NMR (400 MHz, CD$_3$OD): δ 6.68 (t, 1H), 6.37 (d, 2H).

Step 2. 4-hydroxybenzo[d]oxazole-2(3H)-thione

A solution of 2-aminobenzene-1, 3-diol (0.37 g, 3.0 mmol) and Potassium O-ethyl dithiocarbonate (0.59 g, 3.7 mmol) in ethanol (3.8 mL) was heated to reflux for 3 h, then cooled to RT. Dilute HCl was added into the reaction, and the product was extracted with ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography (eluting with a gradient from 0-100% ethyl acetate-hexanes) afforded product
(300 mg, 60%). \(^{1}\)H NMR (400 MHz, CD\(_3\)OD): \(\delta\) 7.04 (t, 1H), 6.83 (dd, 1H), 6.70 (dd, 1H), 4.92 (br s, 2H); LCMS (M+H)\(^+\): 168.0.

Step 3. 3-[l-(4-hydroxy-l, 3-benzoxazol-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

A mixture of 3-pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrazol-1-yl]propanenitrile (0.080 g, 0.18 mmol, from Example 15, Step 3) and 4-hydroxybenzo[d]oxazole-2(3H)-thione (0.046 g, 0.27 mmol) in 1,4-Dioxane (1 mL, 10 mmol) and DIPEA (excess) was heated to 100 \(^\circ\)C for 3 h. Solvent was removed in vacuo and was replaced with ethanol (1 mL). Silver nitrate (0.031 g, 0.18 mmol) and ammonium hydroxide (0.057 mL, 1.5 mmol) were added and the reaction was stirred for 16 h. IN NaOH was added into the reaction, and the mixture was filtered through a PVDF filter syringe (Whatman), rinsing with methanol. The solvent was evaporated. The residue was partitioned between ethyl acetate and water, layers separated, and the aqueous phase extracted a total of three times. The combined extracts were dried over sodium sulfate, decanted and concentrated. The product was purified via preparative HPLC-MS, eluting with a gradient of ACN/H\(_2\)O containing 0.15% NH\(_4\)OH and the eluent was evaporated. The product was stirred with 1:1 TFA/DCM for 1 h, evaporated, then stirred with excess EDA in methanol until deprotection was complete. The product was isolated via preparative HPLC-MS, eluting with a gradient of ACN/H\(_2\)O containing 0.15% NH\(_4\)OH, to afford the product as the free base (5 mg, 6%). \(^{1}\)H NMR (400 MHz, DMSO-d6): \(\delta\) 8.89 (s, 1H), 8.69 (s, 1H), 8.44 (s, 1H), 7.61 (d, 1H), 6.99 (d, 1H), 6.86 (dd, 1H), 6.82-6.77 (m, 1H), 6.58 (dd, 1H), 4.86 (td, 1H), 3.85 (dd, 1H), 3.67-3.60 (m, 1H), 3.50-3.25 (m, 4H), 3.02-2.90 (m, 1H), 1.79-1.62 (m, 2H); LCMS (M+H)\(^+\): m/z = 441.1.

Example 166. 3-[l-[7-(hydroxymethyl)-l,3-benzoxazol-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile (single enantiomer)

\[\text{Step 1. methyl 2-thioxo-2,3-dihydro-l,3-benzoxazole-7-carboxylate}\]
Prepared from methyl 3-amino-2-hydroxybenzoate (Apollo, 1.0 g, 6.0 mmol) according to the method of Example 162, Step 1 (830 mg, 66%). 1H NMR (400 MHz, DMSO-d6): δ 7.73 (dd, IH), 7.49 (dd, IH), 7.40 (t, IH), 3.92 (s, 3H); LCMS (M+H)+: 210.0.

Step 2. 7-(hydroxymethyl)-l,3-benzoxazole-2(3H)-thione

1.0 M of Diisobutylaluminum hydride in hexane (4.1 mL, 4.1 mmol) was added to a solution of methyl 2-thioxo-2,3-dihydro-l,3-benzoxazole-7-carboxylate (0.430 g, 2.06 mmol) in THF (8 mL) at 0 °C. After 2 h, a further portion of 1.0 M of diisobutylaluminum hydride in hexane (4.1 mL, 4.1 mmol) was added, and the reaction was allowed to reach RT. A saturated solution of Rochelle’s salt and ethyl acetate were added and stirred until layers separated. The aqueous phase was extracted once further with ethyl acetate, and the combined organic extracts were dried over sodium sulfate, decanted and concentrated (320 mg, 86%). LCMS (M+H)+: 182.0.

Step 3. 3-{l-[7-(hydroxymethyl)-l,3-benzoxazol-2-yl]pyrrolidin-3-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]propanenitrile

A mixture of 7-(hydroxymethyl)-l,3-benzoxazole-2(3H)-thione (0.32 g, 1.8 mmol) and 3-pyrrolidin-3-yl-3-[4-{7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrazol-1-yl]propanenitrile (0.64 g, 1.5 mmol, from Example 15, Step 3) in 1,4-Dioxane (4 mL) was heated to 80 °C for 24 h. The desired SEM-protected product was isolated by preparative HPLC-MS (gradient of ACN/H₂O containing 0.1% TFA). The eluent containing desired product was basified using IN NaOH and the product was extracted with ethyl acetate. The product was deprotected by stirring in 1:1 TFA/DCM for 1 h, evaporation of solvents, and stirring with EDA (0.1 mL) in MeOH until deprotection was complete. Preparative HPLC-MS (gradient of ACN/H₂O containing 0.15% NH₄OH) was used to afford the purified product as the free base (10 mg, 2%). 1HNMR (300 MHz, CD₃OD): δ 8.68 (s, IH), 8.64 (s, IH), 8.42 (s, IH), 7.49 (d, IH), 7.19-7.08 (m, 2H), 7.06-7.01 (m, IH), 6.93 (d, IH), 4.93-4.79 (m, IH), 4.77 (s, 2H), 3.97 (dd, IH), 3.77-3.67 (m, IH), 3.62-3.49 (m, 2H), 3.40 (dd, IH), 3.22 (dd, IH), 3.15-3.04 (m, IH), 1.96-1.84 (m, 2H); LCMS (M+H)+: 455.2.
Example 169. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)furo[3,2-c]pyridine-7-carbonitrile (single enantiomer)

Step 1. 5-iodo-4-methoxy-2-oxo-1,2-dihydropyridine-3-carbonitrile

N-Iodosuccinimide (22 g, 0.10 mol) was added to a solution of 4-methoxy-2-oxo-1,2-dihydropyridine-3-carbonitrile (10.0 g, 0.0666 mol, Ryan Scientific) in 1,2-dichloroethane (200 mL). The mixture was heated to reflux overnight. To complete the reaction, additional N-iodosuccinimide (11.2 g, 0.0500 mol) was added and reflux continued for 5 h. Solvent was removed in vacuo. The residue was triturated with methanol to afford product as a white powder (16.4 g, 89%). ¹H NMR (400 MHz, DMSO- d₆): δ 12.29 (br s, IH), 8.01 (s, IH), 4.28 (s, 3H); LCMS (M+H)⁺: 277.0.

Step 2. 4-hydroxy-5-iodo-2-oxo-1,2-dihydropyridine-3-carbonitrile

Iodotrimethylsilane (2.1 mL, 14 mmol) was added to a solution of 5-iodo-4-methoxy-2-oxo-1,2-dihydropyridine-3-carbonitrile (2.0 g, 7.2 mmol) in acetonitrile (80 mL). The mixture was stirred at RT for 1.5 h. Solvent was removed in vacuo. The product was triturated with DCM overnight, then filtered and washed with ether to provide product (1.69 g, 89%). ¹H NMR (400 MHz, DMSO-d₆): δ 11.56 (br s, IH), 7.81 (s, IH); LCMS (M+H)⁺: 262.9.

Step 3. 4-hydroxy-2-oxo-5-[(trimethylsilyl)ethynyl]-1,2-dihydropyridine-3-carbonitrile

A solution of 4-hydroxy-5-iodo-2-oxo-1,2-dihydropyridine-3-carbonitrile (1.18 g, 4.50 mmol) in acetonitrile (15 mL), was degassed. Triethylamine (0.942 mL, 6.76 mmol) was added, followed by (trimethylsilyl)acetylene (0.955 mL, 6.76 mmol), bis(triphenylphosphine)palladium(II) chloride (0.190 g, 0.271 mmol) and copper(I) iodide (69 mg, 0.36 mmol). The mixture was degassed again, then was stirred at RT for 1 h. The mixture was adsorbed onto silica gel. Flash column chromatography, eluting with 0-15% methanol in DCM afforded product as the triethylamine salt (890 mg). ¹H NMR (400 MHz, DMSO-d₆): δ 10.01 (d, IH), 9.04 (br s, IH), 2.95 (dd, 6H), 1.03 (t, 9H), 0.14 (s, 9H); LCMS (M+H)⁺: 233.1.
Step 4. 6-oxo-5, 6-dihydrofuro[3,2-c]pyridine-7-carbonitrile

Methanesulfonic acid (0.64 mL, 9.9 mmol) was added to a solution of 4-hydroxy-2-oxo-5-[(trimethylsilyl)ethynyl]-1,2-dihydropyridine-3-carbonitrile •TEA (1.32 g, from Step 3) in THF (25 mL). The reaction was stirred at RT for 16 h, then was heated to 40 °C for 8 h followed by 35 °C for 16 h. The solvent was removed in vacuo. Purification by flash column chromatography, eluting with a gradient from 0-10% methanol in DCM afforded desired product (150 mg, 23%).

1HNMR (400 MHz, DMSO-d6): δ 12.77 (br s, IH), 8.29 (s, IH), 7.89 (d, IH), 6.90 (d, IH); LCMS (M+H)$^+$: 161.1.

Step 5. 7-cyanofuro[3,2-c]pyridin-6-yl trifluoromethanesulfonate

6-Oxo-5,6-dihydrofuro[3,2-c]pyridine-7-carbonitrile (10.0 mg, 0.062 mmol) and N-Phenylbis(trifluoromethanesulphonimide) (27.9 mg, 0.078 mmol) were dissolved in acetonitrile (0.35 mL), and triethylamine (17 µL, 0.12 mmol) was added. The mixture was heated to 50 °C for 40 min. The solvent was removed in vacuo, and the product was used directly in the next step.

LCMS (M+H)$^+$: 293.0.

Step 6. 6-(3-[2-cyano-l-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-IH-pyrazol-l-yl]ethyl]pyrrolidin-l-yl)furo[3,2-c]pyridine-7-carbonitrile

3-Pyrrolidin-3-yl-3-[4-(7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-l-yl]propanenitrile (40.0 mg, 0.092 mmol, from Example 15, Step 3), was dissolved in NMP (0.20 mL) and 4-methylmorpholine (14 µL, 0.12 mmol) and crude 7-cyanofuro[3,2-c]pyridin-6-yl trifluoromethanesulfonate (18 mg, 0.062 mmol, formed in Step 5) was added. The reaction mixture was heated to 90 °C for 1 h. Solvent was removed in vacuo. The residue was taken up in water and ethyl acetate. The layers were separated and the aqueous phase was extracted with ethyl acetate three times. The combined organic extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 0-100% ethyl acetate in hexanes afforded desired product. The product was treated with 1:1 DCM:TFA for 1.5 h, then concentrated. The residue was dissolved in 1.5 mL MeOH, and 0.2 mL EDA was added to complete the deprotection step. The product was purified via preparative HPLC-MS (eluting with a gradient of ACN/H$_2$O containing 0.15% NH$_4$OH) (5.9 mg, 21%).

1HNMR (400 MHz, DMSO-d6): δ 12.13 (br s, IH), 8.88 (s, IH), 8.68 (s, IH), 8.65 (s, IH), 8.43 (s, IH), 7.91 (d, IH), 7.60 (d, IH), 6.99 (d, IH), 6.98 (d, IH), 4.87 (td, IH), 3.98 (dd, IH), 3.86-3.79 (m, IH), 3.72-3.58 (m, 2H), 3.42 (dd, IH), 3.28 (dd, IH), 2.97-2.84 (m, IH), 1.79-1.67 (m, 2H); LCMS (M+H)$^+$: 450.2.
Example 170. 6-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-l-yl]ethyl}pyrrolidin-l-yl)furo[3,2-c]pyridine-7-carbonitrile (racemate)

To a solution of tert-butyl 3-(2-cyano-l-{3-[7-(diethoxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-lH-pyrrol-l-yl}ethyl)pyrrolidine-l-carboxylate (0.62 g, 0.98 mmol, racemic diastereomer 1 from Example 32, Step 1) in 1,4-dioxane (20 mL) was added 4 M of HCl in 1,4-dioxane (6.9 mL, 28 mmol) and the reaction was stirred overnight. The solvent was removed in vacuo. Purification via preparative HPLC-MS afforded product as a light yellow solid (0.17 g, 56%). LCMS (M+H): 307.1. A portion of this product (28 mg, 0.092 mmol), was dissolved in NMP (0.20 mL) and 4-methylmorpholine (14 µL, 0.12 mmol). Crude 7-cyanofuro[3,2-c]pyridin-6-yl trifluoromethanesulfonate (18 mg, 0.062 mmol, from Example 169, Step 5), was added. The reaction was heated to 60 °C for 1 h. Purification via preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product as the free base (5.5 mg, 20%). 1H NMR (400 MHz, DMSO-d6): δ 11.96 (br s, IH), 8.67 (s, IH), 8.61 (s, IH), 8.00 (t, IH), 7.93 (d, IH), 7.51 (d, IH), 7.15 (dd, IH), 7.01 (d, IH), 6.96-6.93 (m, 2H), 4.59 (td, IH), 3.96 (dd, IH), 3.89-3.81 (m, IH), 3.74-3.65 (m, IH), 3.56 (dd, IH), 3.47 (dd, IH), 3.23 (dd, IH), 2.93-2.81 (m, IH), 1.79-1.60 (m, 2H); LCMS (M+H): 449.2.

Example 171. 6-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-l-yl]ethyl}pyrrolidin-l-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide (racemic)
Step 1: 2-(benzyloxy)-5-iodo-4-methoxynicotinonitrile

A mixture of 5-iodo-4-methoxy-2-oxo-1,2-dihydropyridine-3-carbonitrile (3.7 g, 13 mmol, from Example 169, Step 1), silver(I) oxide (3.4 g, 15 mmol) and benzyl chloride (2.00 mL, 17.4 mmol) in toluene (74 mL) was heated to 107 °C for 4.5 h. Additional benzyl chloride (1.54 mL, 13.4 mmol) was added and the reaction was heated to 120 °C for 16 h. The mixture was cooled to RT, and filtered. The solvent was removed from the filtrate in vacuo, and the product was triturated with diethyl ether, azeotroped with toluene, then dried under high vacuum to afford product as a white solid (4.30 g, 87%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) : \(\delta\) 8.43 (s, 1H), 7.49-7.43 (m, 2H), 7.42-7.30 (m, 3H), 5.47 (s, 2H), 4.35 (s, 3H); LCMS (M+H)\(^+\): 367.0.

Step 2: 2-(benzyloxy)-5-(2-hydroxyethyl)-4-methoxynicotinonitrile

2.5 M of n-Butyllithium in hexane (4.85 mL, 12.1 mmol) was added drop-wise to a solution of 2-(benzyloxy)-5-iodo-4-methoxynicotinonitrile (3.7 g, 10 mmol) in THF (150 mL) at -78 °C. The reaction was held at -78 °C for 1.5 h, at which time 1,3,2-dioxathiolane 2,2-dioxide (1.25 g, 10.1 mmol, Aldrich) in THF (5.0 mL) was introduced drop-wise. The mixture was allowed to warm to RT and stir for 16 h. Cone. HCl was added (1.85 mL) and the mixture was stirred for 30 min. Saturated NaHCO\(_3\) solution was added to adjust the pH to 7. Some water was added and the product was extracted with three portions of EtOAc. The extracts were combined, dried over sodium sulfate and concentrated. Flash column chromatography, eluting with a gradient from 0-70% ethyl acetate in hexanes afforded product as a white solid (1.62 g, 56%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) : \(\delta\) 8.00 (s, 1H), 7.51-7.45 (m, 2H), 7.41-7.30 (m, 3H), 5.47 (s, 2H), 4.33 (s, 3H), 3.77 (dd, 2H), 2.77 (t, 2H); LCMS (M+H)\(^+\): 285.1.

Step 3: 2-[6-(benzyloxy)-5-cyano-4-methoxypyridin-3-yl]ethyl 4-methylbenzenesulfonate
To a solution of 2-(benzyloxy)-5-(2-hydroxyethyl)-4-methoxynicotinonitrile (1.21 g, 4.26 mmol) in DCM (50 mL) was added triethylamine (0.652 mL, 4.68 mmol) followed by p-toluenesulfonyl chloride (0.81 g, 4.26 mmol) and 4-dimethylaminopyridine (52 mg, 0.426 mmol). The reaction was stirred for 8 h. To drive the reaction to completion, additional p-toluenesulfonyl chloride (0.243 g, 1.28 mmol) was added and the reaction continued for 16 h. Solvent volume was reduced in vacuo and the product was purified by flash column chromatography, eluting with a gradient from 0-50% ethyl acetate in hexanes to afford product as a white solid (1.36 g, 73%). ¹H NMR (300 MHz, CDCl₃): δ 7.86 (s, 1H), 7.56 (d, 2H), 7.56-7.48 (m, 2H), 7.44-7.30 (m, 3H), 7.14 (d, 2H), 5.47 (s, 2H), 4.18 (s, 3H), 4.15 (t, 2H), 2.79 (t, 2H), 2.42 (s, 3H); LCMS (M+H)⁺: 438.9.

Step 4. S-{2-[6-(benzyloxy)-5-cyano-4-methoxypyridin-3-yl]ethyl} ethanethioate

A solution of 2-[6-(benzyloxy)-5-cyano-4-methoxypyridin-3-yl]ethyl 4-methylbenzenesulfonate (1.36 g, 3.10 mmol) in acetonitrile (30 mL) and DMF (30 mL) was treated with potassium thioacetate (0.50 g, 4.4 mmol) and stirred for 16 h. Water was added and the product was extracted with three portions of ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 0-50% ethyl acetate in hexanes, was used to purify the product (698 mg, 66%). ¹H NMR (300 MHz, CDCl₃): δ 7.93 (s, 1H), 7.51-7.27 (m, 5H), 5.46 (s, 2H), 4.36 (s, 3H), 3.03 (t, 2H), 2.75 (t, 2H), 2.30 (s, 3H); LCMS (M+H)⁺: 343.1.

Step 5. 6-(benzylxy)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile

To a solution of S-{2-[6-(benzyloxy)-5-cyano-4-methoxypyridin-3-yl]ethyl} ethanethioate (0.698 g, 2.04 mmol) in methanol (90 mL) was added ammonium hydroxide solution (30 mL, 400 mmol), and the reaction was stirred for 8 h. Solvent was removed in vacuo to afford a white solid. Theoretical yield assumed and used without further purification. ¹H NMR (400 MHz, CD₃OD): δ 7.98 (s, 1H), 7.48-7.25 (m, 5H), 5.43 (s, 2H), 3.56 (t, 2H), 3.36-3.27 (m, 2H); LCMS (M+H)⁺: 268.9.

Step 6. 6-hydroxy-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile

A solution of acetyl chloride (0.43 mL, 6.1 mmol) in methanol (90 mL) was stirred for 1.5 h, then this solution was added to 6-(benzyloxy)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (0.547 g, 2.04 mmol). The reaction was stirred for 3 days, and the solvent was removed in vacuo. Theoretical yield was assumed and the product was used without further
purification. 1H NMR (400 MHz, CD3OD): δ 7.37 (s, 1H), 7.19 (s, 1H), 3.49 (t, 2H), 3.18 (t, 2H); LCMS (M+H)+: 179.1.

Step 7. 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile

6-Hydroxy-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (70 mg, 0.39 mmol) was heated in phosphoryl chloride (2 mL, 20 mmol) to 110 °C for 1 h. Excess reagent was removed in vacuo. The residue was dissolved in DCM and washed with 0.1 N NaOH. The aqueous phase was extracted with ethyl acetate three times and these extracts were combined with the DCM layer. The combined organics were dried over sodium sulfate, decanted and concentrated to afford the product as a beige crystalline solid (34 mg, 44%). 1H NMR (300 MHz, CDCl3): δ 8.14 (s, 1H), 3.59 (dd, 2H), 3.41 (dd, 2H); LCMS (M+H)+: 197.0/199.0.

Step 8. 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide

To a solution of 6-chloro^N^-dihydrothieno^N^-pyridine^N^-carbonitrile (34 mg, 0.17 mmol) in DCM (2 mL) at 0 °C was added m-Chloroperbenzoic acid (88 mg, 0.38 mmol). The reaction was stirred with warming to RT overnight. The reaction was diluted with 0.2 N NaOH and ethyl acetate. Solid NaCl was added to aid in layer separation. The aqueous phase was extracted with ethyl acetate thrice and the extracts were dried over sodium sulfate, decanted and concentrated. The product was used without further purification in Step 9. 1H NMR (300 MHz, CD3OD): δ 8.78 (s, 1H), 3.71 (dd, 2H), 3.47 (dd, 2H); LCMS (M+H)+: 228.9/230.8.

Step 9. 6-(3-{2-cyano-1-[(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-lH-pyrrol-1-y]ethyl}pyrroloidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide (racemic)

3-Pyrroolidin-3-yl-3-[3-(7-[(2-(trimethylsilyl)ethoxy)methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrrol-1-yl]propanenitrile (66 mg, 0.11 mmol, from Example 33, Step 3) and 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide (from Step 8) were dissolved in DMF (0.5 mL). 4-Methylmorpholine (0.037 mL, 0.34 mmol) was added and the reaction was heated to 80 °C for 1 h. Upon cooling to RT, the reaction mixture was partitioned between water and ethyl acetate. The aqueous phase was extracted with ethyl acetate three times. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. The crude product was stirred with 1:1 TFA/DCM for 1 h, evaporated, then stirred with 0.4 mL EDA in methanol (4 mL) until deprotection was complete. Purification via preparative HPLC-MS (eluting with a gradient of ACN/H2O containing 0.15% NH4OH) afforded product as the free base (15 mg, 28%). 1H NMR (300 MHz, DMSO-d6): δ 11.96 (br s, 1H), 8.61
Example 172. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide (single enantiomer)

m-Chloroperbenzoic acid (4.74 mg, 0.0212 mmol) in DCM (0.14 mL) was added to a solution of 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (3.3 mg, 0.0070 mmol, from Example 173) in DCM (0.60 mL) at 0 °C. The reaction was stirred with warming to RT for 1.5 h, then the solvent was removed in vacuo. Purification via preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product as the free base (800 µg, 22%). ¹H NMR (500 MHz, DMSO-d₆): δ 12.09 (br s, IH), 8.85 (s, IH), 8.68 (s, IH), 8.54 (s, IH), 8.41 (s, IH), 7.59 (d, IH), 6.96 (d, IH), 4.87 (td, IH), 3.98 (dd, IH), 3.85-3.79 (m, IH), 3.72-3.63 (m, 4H), 3.41 (dd, IH), 3.33-3.23 (m, IH), 3.23-3.13 (m, 2H), 2.95-2.86 (m, IH), 1.80-1.67 (m, 2H); LCMS (M+H)+: 500.0.

Example 173. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (single enantiomer)

(800 µg, 22%). ¹H NMR (500 MHz, DMSO-d₆): δ 12.09 (br s, IH), 8.85 (s, IH), 8.68 (s, IH), 8.54 (s, IH), 8.41 (s, IH), 7.59 (d, IH), 6.96 (d, IH), 4.87 (td, IH), 3.98 (dd, IH), 3.85-3.79 (m, IH), 3.72-3.63 (m, 4H), 3.41 (dd, IH), 3.33-3.23 (m, IH), 3.23-3.13 (m, 2H), 2.95-2.86 (m, IH), 1.80-1.67 (m, 2H); LCMS (M+H)+: 500.0.
Step 1. 2,4-dichloro-5-iodonicotinamide

To 2,4-dichloro-5-iodonicotinic acid (prepared as described in European Journal of Organic Chemistry, 7, 1371-1376; 2001; 2.95 g, 7.33 mmol) in benzene (20 mL) was added oxalyl chloride (1.24 mL, 14.6 mmol), followed by a catalytic amount of DMF (10 µL). The mixture was stirred at RT for 2 h. The solvent was removed in vacuo. The residue was dissolved in THF (34 mL) and ammonia gas was bubbled through the mixture for 5 min. The suspension was stirred, well sealed, for a further 20 min. Solvent was then removed in vacuo. The solid was dissolved in DCM (200 mL) and water (75 mL). The layers were separated and the aqueous phase was extracted with a further portion of DCM. The combined extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 0-100% ethyl acetate in hexanes was used to purify the product (1.64 g, 70%). 1H NMR (300 MHz, CDCl₃ and CD₃OD): δ 8.67 (s, IH); LCMS (M+H)+: 316.9/318.9.

Step 2. 2,4-dichloro-5-iodonicotinonitrile

To a mixture of 2,4-dichloro-5-iodonicotinamide (2.43 g, 7.67 mmol) and DCM (122 mL) at 0 °C, was added triethylamine (10.7 mL, 76.7 mmol), followed by trichloroacetic anhydride (14.0 mL, 76.7 mmol). Following addition, the solution was stirred at 0 °C for 20 min. The mixture was quenched by the addition of water at this temperature, and was stirred for 30 min before being diluted with ethyl acetate. The biphasic mixture was separated. The organic layer was washed successively with saturated NaHCO₃, water, and brine, then dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 0-15% ethyl acetate in hexanes afforded product as a yellow solid (1.94 g, 84%). 1H NMR (300 MHz, CDCl₃): δ 8.88 (s, IH).

Step 3. 2,4-dichloro-5-[(Z)-2-ethoxyvinyl]nicotinonitrile

A mixture of 2,4-dichloro-5-iodonicotinonitrile (1.94 g, 6.49 mmol) and (2-ethoxyethenyl)tri-n-butyltin (2.58 g, 7.14 mmol) in toluene (16 mL) was degassed. Tetrakis(triphenylphosphine)palladium(0) (750 mg, 0.649 mmol) was added, and the reaction was heated to 110 °C for 5 h. The solvent was removed in vacuo. Flash column chromatography, eluting with a gradient from 0-20% ethyl acetate in hexanes was used to purify product (590 mg, 37%). 1H NMR (300 MHz, CDCl₃): δ 9.26 (s, IH), 6.55 (d, IH), 5.47 (d, IH), 4.09 (q, 2H), 1.37 (t, 3H).

Step 4. 2,4-dichloro-5-(2-oxoethyl)nicotinonitrile
A solution of 2,4-dichloro-5-[(Z)-2-ethoxyvinyl]nicotinonitrile (0.670 g, 2.76 mmol) in THF (10.0 mL) and 4.0 M of HCl in water (2.75 mL, 11.0 mmol) was heated to reflux for 1.5 h. The reaction was cooled to RT and poured into saturated sodium bicarbonate solution and the product was extracted with DCM. The organic extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient from 50-100% ethyl acetate in hexanes afforded product as an oil (500 mg, 84%). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 9.83 (brt, 1H), 8.39 (s, 1H), 4.00 (s, 2H).

Step 5. 2,4-dichloro-5-(2-hydroxyethyl)nicotinonitrile

1.0 M of diisobutylaluminum hydride was added portion-wise over the course of 30 min to a solution of 2,4-dichloro-5-(2-oxoethyl)nicotinonitrile (500 mg, 2.4 mmol) in DCM (30 mL) at -78 °C. When the reaction was considered complete by TLC and LCMS, it was quenched at -78 °C by the addition of water, then was allowed to warm to RT. A saturated solution of Rochelle’s salt was added and the mixture was stirred until layers separated. The product was extracted with DCM three times. The extracts were dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient of 50-100% ethyl acetate in hexanes, was used to purify the product (120 mg, 23%). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.49 (s, 1H), 3.93 (dd, 2H), 3.04 (t, 2H); LCMS (M+H): 216.9/218.9.

Step 6. 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile

2,4-Dichloro-5-(2-hydroxyethyl)nicotinonitrile (0.060 g, 0.28 mmol) and triphenylphosphine (0.109 g, 0.415 mmol) were dissolved in THF (2.12 mL). The solution was cooled at 0 °C, and diethyl azodicarboxylate (65.3 µL, 0.415 mmol) was added. After stirring for 10 min, thioacetic acid (29.6 µL, 0.415 mmol) was added. The reaction mixture was stirred for 2 h at 0 °C, then for 2 h at RT. Flash column chromatography, eluting with a gradient from 0-10% ethyl acetate in hexanes was used, to afford the product as an oil. A solution of this product in methanol (1.5 mL) was treated with acetyl chloride (59 µL, 0.829 mmol), stirred at RT for 7 h, then kept in the freezer for 3 days. Solvent was removed in vacuo. The residue was then stirred for 10 min in methanol (6.0 mL) and ammonium hydroxide solution (0.50 mL, 3.7 mmol). Solvent was removed in vacuo and the residue was partitioned between water and ethyl acetate. The aqueous layer was extracted with a further three portions of ethyl acetate. The extracts were dried over sodium sulfate and concentrated to afford product as a white solid, used directly in Step 7 (11 mg, 10%). LCMS (M+H): 196.9/199.0.
Step 7. 6-(3-{2-cyano-l-[4-(7-{2-(trimethylsilyl)ethoxy}-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile

A mixture of 3-pyrrolidin-3-yl-3-{4-(7-{2-(trimethylsilyl)ethoxy}methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)propanenitrile (24 mg, 0.056 mmol) and 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (11 mg, 0.028 mmol) in NMP (100 µL) and DIPEA (9.7 µL, 0.056 mmol) was heated in the microwave at 135 °C for 15 min. Additional 3-pyrrolidin-3-yl-3-{4-(7-{2-(trimethylsilyl)ethoxy}methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)propanenitrile (18 mg, 0.042 mmol) was added and the reaction microwaved at the same temperature for a further 10 min. The reaction mixture was then diluted with water, extracted with ethyl acetate four times, the extracts dried over sodium sulfate and concentrated. Flash column chromatography, first eluting with a gradient from 0-100% ethyl acetate in hexanes, then 0-5% methanol in ethyl acetate, was used to purify the product (10 mg, 60%). HNMR (300 MHz, CDCl₃): δ 8.85 (s, IH), 8.36 (s, IH), 8.356 (s, IH), 7.89 (s, IH), 7.41 (d, IH), 6.80 (d, IH), 5.68 (s, 2H), 4.45 (td, IH), 4.02 (dd, IH), 3.92-3.82 (m, IH), 3.81-3.68 (m, IH), 3.65-1.63 (m, 12H), 0.92 (dd, 2H), -0.06 (s, 9H); LCMS (M+H)^+; 598.2.

Step 8. 6-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)ethyl]pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile

6-(3-{2-Cyano-l-[4-(7-{2-(trimethylsilyl)ethoxy}methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)ethyl]pyrrolidin-l-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (10.0 mg, 0.0167 mmol) was dissolved in DCM (1.5 mL) and TFA (0.8 mL) was added. The mixture was stirred at RT for 1 h, then solvents were removed in vacuo. The residue was dissolved in methanol (1 mL) and EDA (0.2 mL) was added and stirred for 30 min. Purification via preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product as the base (5.4 mg, 69%). H NMR (300 MHz, CDCl₃): δ 9.42 (br s, IH), 8.85 (s, IH), 8.38 (s, IH), 8.37 (s, IH), 7.90 (s, IH), 7.39 (d, IH), 6.80 (d, IH), 4.46 (td, IH), 4.02 (dd, IH), 3.93-3.84 (m, IH), 3.81-3.70 (m, IH), 3.61 (dd, IH), 3.50-3.41 (m, 2H), 3.31-3.19 (m, 3H), 3.14-2.98 (m, IH), 2.99 (dd, IH), 1.98-1.85 (m, IH), 1.82-1.64 (m, IH); LCMS (M+H)^+; 468.0.

Example 174. 6-(3-L-cyano-l-P-CTH\(^{-}\))pyrrolo \[2^-d]pyrimidin\(^{-}\)-lH-pyrrol-l-yllethyl]pyrrolidin-l-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (single enantiomers isolated)
Step 1. 7-cyano-2,3-dihydrothieno[3,2-c]pyridin-6-yl trifluoromethanesulphonate

A solution of 6-hydroxy-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (24 mg, 0.13 mmol, from Example 171, Step 6) and N-phenylbis(trifluoromethanesulphonimide) (60 mg, 0.168 mmol) in acetonitrile (3 mL) and triethylamine (0.038 mL, 0.27 mmol) was heated to 50 °C for 3 h, then allowed to stir at RT overnight. Solvent was removed *in vacuo* and the product was used without further purification in the substitution step. LCMS (M+H)+: 311.0.

Step 2. 6-(3-{2-cyano-1-[3-(7H-pyrrolo[2,3-]d]pyrimidin-4-yl]-lH-pyrrol-l-yl}ethyl)pyrrolidin-l-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (single enantiomers isolated)

3-Pyrrolidin-3-yl-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-IH-pyrrol-l-yl]pyrrolidin-l-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile was added to a solution of 7-cyano-2,3-dihydrothieno[3,2-c]pyridine-6-yl trifluoromethanesulphonate (40 mg, 0.13 mmol) in 4-methylmorpholine (45 µL, 0.41 mmol) and DMF (2 mL). The solution was heated to 60 °C for 45 min. Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) was used to pre-purify the SEM-protected adduct. Eluent was removed *in vacuo*. The SEM protecting group was removed by stirring in 25% TFA in DCM, followed by evaporation and stirring with excess EDA in methanol. The deprotected product was purified via preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). Chiral HPLC was used to separate the racemic product into single enantiomers (Phenomenex Lux Cellulose-1 21.2 x 250 mm, 5µm, eluting with 30% EtOH/70% Hexanes at 16 mL/min). Peak 1, (first to elute, retention time 17.6 min), and Peak 2 (second to elute, retention time 37.1 min) were separately evaporated. Peak 1: (2.1 mg, 3%), Peak 2: (2.3 mg, 3%). Peak 1: ¹H NMR (500 MHz, CD₃OD): δ 8.59 (s, IH), 7.88 (br m, IH), 7.86 (t, IH),
7.44 (d, IH), 7.11 (t, IH), 7.01 (dd, IH), 6.94 (d, IH), 4.50 (td, IH), 3.99 (dd, IH), 3.81 (ddd, IH), 3.69 (m, IH), 3.60 (dd, IH), 3.49-3.44 (m, 2H), 3.28-3.23 (m, 3H), 2.97-2.88 (m, IH), 1.87 (pd, IH), 1.76 (dq, IH); LCMS (M+H)^+: 467.1.

Example 175. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile (single enantiomer)

![Chemical structure of the compound](image)

Step 1. 6-(3-{2-cyano-1-[4-(7-{2-(trimethylsilyl)ethoxy}methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile

A mixture of 3-pyrrolidin-3-yl-3-{4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}propanenitrile (56 mg, 0.13 mmol, from Example 15, Step 3), 7-cyano-2,3-dihydrothieno[3,2-c]pyridin-6-yl trifluoromethanesulfonate (40 mg, 0.13 mmol, from Example 174, Step 1) and 4-methylmorpholine (42 µL, 0.39 mmol) in DMF (2 mL) was heated to 60 °C for 3 h. Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) was used to afford purified product (33 mg, 43%). LCMS (M+H)^+: 598.2.

Step 2. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile

m-Chloroperbenzoic acid (0.017 g, 0.074 mmol) was added to a solution of 6-(3-{2-cyano-1-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}ethyl)pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile (33 mg, 0.055 mmol) in DCM (2 mL) at 0 °C. The reaction was stirred at this temperature for 2 h. The reaction was diluted with DCM and washed with 0.1 N NaOH. The organic layer was dried over sodium
sulfate, decanted and concentrated. The crude product was dissolved in acetic anhydride (0.5 mL, 5 mmol) and then heated to 140 °C for 24 h, to 150 °C for 2 h, then at 160 °C for 2 h, then in the microwave to 200 °C for 70 min. The solvent was then removed in vacuo. The crude reaction mixture was partitioned between 0.1 N NaOH and ethyl acetate. The aqueous portion was extracted with two further portions of ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. Deprotection of the SEM group was effected by stirring with 1:1 TFA in DCM followed by evaporation and stirring with excess EDA in methanol. Preparative HPLC-MS (gradient of ACN/H₂O containing 0.15% NH₄OH) was used to afford purified product (6 mg, 23%). 1H NMR (300 MHz, DMSO-d6): δ 12.03 (br s, 1H), 8.81 (s, 1H), 8.79 (s, 1H), 8.61 (s, 1H), 7.53 (d, 1H), 7.46 (d, 1H), 7.37 (d, 1H), 6.92 (d, 1H), 4.86-4.76 (m, 1H), 3.94 (dd, 1H), 3.85-3.72 (m, 1H), 3.69-3.52 (m, 2H), 3.42-3.16 (m, 2H), 2.93-2.79 (m, 1H), 1.74-1.60 (m, 2H); LCMS (M+H)+: 466.2.

Step 1. 6-chlorothieno[3,2-c]pyridine-7-carbonitrile

To a solution of 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile (72 mg, 0.37 mmol, prepared as in Example 171, Step 7) in DCM (10 mL) at 0 °C was added m-

Chloroperbenzoic acid (0. H g, 0.49 mmol) and the reaction was stirred for 2 h. The reaction was further diluted with DCM, and washed with 0.1 N NaOH. The aqueous phase was back extracted with three portions of ethyl acetate and these were combined with the DCM solution. The combined extracts were dried over sodium sulfate, decanted and concentrated. The crude product was dissolved in acetic anhydride (3 mL) and heated to 140 °C for 16 h. The mixture was concentrated and the residue was dissolved in acetone (2.0 mL), and 1.0 M of sodium carbonate
in water (2.0 mL) was added. The mixture was heated to 40 °C for 3.5 h. The acetone was removed \textit{in vacuo}, and the product was extracted from the aqueous phase with 3 portions of DCM. The extracts were dried over sodium sulfate and concentrated. Flash column chromatography, eluting with 0-30% ethyl acetate in hexanes, afforded product as a white solid which was used in the next step without further purification. 1H NMR (300 MHz, CDCl\textsubscript{3}); \(\delta \) 9.03 (s, 1H), 7.68 (d, 1H), 7.53 (d, 1H); LCMS (M+H+): 195.0.

\textit{Step 2. 6-(3-{2-cyano-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile1}

A mixture of 3-pyrrolidin-3-yl-3-[3-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl]propanenitrile (26 mg, 0.059 mmol; from Example 33, Step 3), 6-chlorothieno[3,2-c]pyridine-7-carbonitrile (23 mg, 0.059 mmol) and 4-methylmorpholine (0.019 mL, 0.18 mmol) in DMF (0.3 mL) was heated to 80 °C for 2 h. Upon cooling to RT, the reaction mixture was partitioned between water and ethyl acetate. The aqueous layer was extracted with two further portions of ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. The product was stirred with 1:1 TFA/DCM for 1 h, evaporated, then stirred with EDA (0.2 mL) in methanol (1.5 mL). When deprotection was complete, the product was purified by preparative HPLC-MS (gradient of ACN/H\textsubscript{2}O containing 0.15% NH\textsubscript{4}OH) (11 mg, 40%). 1H NMR (400 MHz, DMSO-d6); \(\delta \) 11.96 (br s, 1H), 8.88 (s, 1H), 8.61 (s, 1H), 8.01 (t, 1H), 7.54 (d, 1H), 7.51 (dd, 1H), 7.46 (d, 1H), 7.16 (t, 1H), 6.97-6.93 (m, 2H), 4.60 (td, 1H), 3.99 (dd, 1H), 3.91-3.83 (m, 1H), 3.77-3.68 (m, 1H), 3.60 (dd, 1H), 3.48 (dd, 1H), 3.25 (dd, 1H), 3.95-2.82 (m, 1H), 1.80-1.60 (m, 2H); LCMS (M+H+): 464.9.

\textbf{Example 177. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile (single enantiomer)}

\textit{Step 1. 5-(2-aminoethyl)-2-(benzyloxy)-4-methoxynicotinonitrile1}
Sodium azide (330 mg, 5.1 mmol) was added to a solution of 2-[6-(benzyloxy)-5-cyano-4-methoxypyridin-3-yl] ethyl 4-methylbenzenesulfonate (1.5 g, 3.4 mmol, prepared as in Example 171, Step 3) in DMF (15 mL). The mixture was heated to 60 °C for a total of 85 min. Upon cooling to RT, the reaction mixture was partitioned between EtOAc and water. The organic layer was washed with water twice, saturated NaHCO₃ twice, water again once, brine, dried over sodium sulfate and concentrated to afford a light yellow oil. The oil was dissolved in a mixture of THF (27 mL) and water (3.0 mL), and triphenylphosphine (0.99 g, 3.8 mmol) was added. The reaction was stirred for 16 h, and the solvent was then removed in vacuo. Flash column chromatography, eluting with a gradient of 0-10% methanol in DCM containing 1% triethylamine, afforded product as a light yellow oil (780 mg, 80%). ¹H NMR (300 MHz, CDCl₃): δ 7.96 (s, 1H), 7.50-7.45 (m, 2H), 7.41-7.27 (m, 3H), 5.46 (s, 2H), 4.32 (s, 3H), 2.86 (t, 2H), 2.63 (t, 2H); LCMS (M+H)⁺: 284.0.

Step 2. 6-(benzyloxy)-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile

A solution of 5-(2-aminomethyl)-2-(benzyloxy)-4-methoxynicotinonitrile (0.78 g, 2.8 mmol) in methanol (80 mL) was treated with ammonium hydroxide solution (40 mL, 600 mmol) and was stirred at RT for 6 days. Removal of solvent in vacuo afforded the product as a white solid (700 mg, 100%). LCMS (M+H)⁺: 252.1.

Step 3. 6-hydroxy-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile

A solution of acetyl chloride (0.50 mL, 7.0 mmol) in methanol (100 mL) was prepared and was stirred for 3 h. The solution was mixed with 6-(benzyloxy)-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile (0.59 g, 2.3 mmol), and was stirred at RT for 3 days. Solvent was removed in vacuo to afford product as a white powder, theoretical yield assumed. LCMS (M+H)⁺: 162.1.

Step 4. 6-chloro-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile

A solution of 6-hydroxy-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile (0.38 g, 2.4 mmol) in phosphoryl chloride (12 mL, 130 mmol) was heated to 110 °C for 2 h. The mixture was cooled to RT and poured onto crushed ice. Solid NaOH was added slowly to the cooled solution to achieve a pH between 6 and 7. The solution was extracted with DCM three times. The combined extracts were dried over sodium sulfate, decanted and concentrated. The crude product was adsorbed onto silica gel. Flash column chromatography, eluting with a gradient of 0-10% MeOH in DCM, afforded product as a light yellow solid (230 mg, 49%). ¹H NMR (300 MHz,
DMSO-d6): δ 8.31 (br s, IH), 7.76 (s, IH), 3.73 (t, 2H), 3.02 (dt, 2H); (M+H)+: 180.0/182.1.

Step 5. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile

3-Pyrrolidin-3-yl-3-[4-{2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]propanenitrile (0.14 g, 0.32 mmol, from Example 15, Step 3), 6-chloro-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile (0.045 g, 0.25 mmol) and 4-methylmorpholine (0.083 mL, 0.75 mmol) were combined in NMP (0.10 mL) and the reaction was heated at 90 °C for 15 h. Upon cooling to RT, the reaction mixture was partitioned between water and ethyl acetate. The aqueous phase was extracted with three additional portions of ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. Flash column chromatography, eluting with a gradient mixture of hexanes:EtOAc:MeOH (100:0:0) to (98:2), afforded the desired product (20 mg, 14%). LCMS (M+H)+: 581.1.

Step 6. 6-(3-{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile

6-(3-{2-Cyano-1-[4-{2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydro-1H-pyrrolo[3,2-c]pyridine-7-carbonitrile (12 mg, 0.021 mmol) was treated with manganese(IV) oxide (12 mg, 0.14 mmol) in THF (0.37 mL). The mixture was stirred at RT for 1 h, and then was heated at 68 °C for 16 h. Additional manganese(IV) oxide (18 mg, 0.21 mmol) was added and heating continued at this temperature for 24 h. Upon cooling, the reaction was filtered, rinsing with methanol. The filtrate was concentrated, and the residue was stirred with 1:1 TFA/DCM for 1 h. Solvents were again removed in vacuo, and the residue was stirred in MeOH (1 mL) containing EDA (0.2 mL). Preparative HPLC-MS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) was used to afford the product as the free base (2.2 mg, 24%). ¹H NMR (400 MHz, CD₃OD): δ 8.68 (d, IH), 8.65 (s, IH), 8.45 (s, IH), 8.42 (s, IH), 7.49 (d, IH), 7.08 (d, IH), 6.93 (d, IH), 6.48 (d, IH), 4.87-4.79 (m, IH), 4.05 (dd, IH), 3.87-3.69 (m, 3H), 3.39 (dd, IH), 3.18 (dd, IH), 3.08-2.96 (m, IH), 1.89-1.82 (m, 2H); LCMS (M+H)+: 449.1.

Example 178. 6-(3S)-3-[2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl]pyrrolidin-1-yl]^-dihydrothieno [3,2-c]pyridine-7-carbonitrile 1,1-
A solution of 6-chloro-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide (from Example 171, Step 8; 0.015 g, 0.065 mmol) and 4-(l-[2-fluoro-l-(3S)-pyrrolidin-3-yl]ethyl]-lH-pyrazol-4-yl)-7-[[2-(trimethylsilyl)ethoxy]methyl]-7H-pyrrolo[2,3-d]pyrimidine (from Example 70, Step 7; 0.020 g, 0.046 mmol) in DMF (1 mL) containing 4-methylmorpholine (15 µL, 0.14 mmol) was heated to 80 °C for 2 h. The crude reaction mixture was partitioned between ethyl acetate and water. The aqueous layer was extracted with three portions of ethyl acetate. The combined extracts were dried over sodium sulfate, decanted and concentrated. The product was deprotected by stirring in a solution of TFA and DCM (1:1) for one hour, followed by evaporation and stirring with excess ethylenediamine in methanol for 20 min. Preparative HPLC-MS, eluting with a gradient of ACN and H2O containing 0.15% NH4OH, followed by lyophilization afforded the product as the free base. ^1H NMR (300 MHz, CDCl3): δ 10.01 (br s, IH), 8.85 (s, IH), 8.38 (s, IH), 8.36 (s, IH), 8.34 (s, IH), 7.42 (d, IH), 6.81 (d, IH), 5.04-4.69 (m, 2H), 4.57-4.40 (m, IH), 4.15 (dd, IH), 4.04-3.94 (m, IH), 3.86-3.65 (m, 2H), 3.56 (t, 2H), 3.24 (t, 2H), 3.16-2.98 (m, IH), 2.03-1.72 (m, 2H); LCMS (M+H)^+: 493.2.

Example A: In vitro JAK Kinase Assay

Compounds herein were tested for inhibitory activity of JAK targets according to the following in vitro assay described in Park et al., Analytical Biochemistry 1999, 269, 94-104. The catalytic domains of human JAK1 (a.a. 837-1 142), Jak2 (a.a. 828-1 132) and Jak3 (a.a. 781-1 124) with an N-terminal His tag were expressed using baculovirus in insect cells and purified. The catalytic activity of JAK1, JAK2 or JAK3 was assayed by measuring the phosphorylation of a
biotinylated peptide. The phosphorylated peptide was detected by homogenous time resolved fluorescence (HTRF). IC$_{50}$s of compounds were measured for each kinase in the 40 microL reactions that contain the enzyme, ATP and 500 nM peptide in 50 mM Tris (pH 7.8) buffer with 100 mM NaCl, 5 mM DTT, and 0.1 mg/mL (0.01%) BSA. The ATP concentration in the reactions was 90 µM for Jak1, 30 µM for Jak2 and 3 µM for Jak3 for Km conditions. For the 1 mM IC$_{50}$ measurements, ATP concentration in the reactions was 1 mM. Reactions were carried out at RT for 1 h and then stopped with 20 µL 45 mM EDTA, 300 nM SA-APC, 6 nM Eu-Py20 in assay buffer (Perkin Elmer, Boston, MA). Binding to the Europium labeled antibody took place for 40 min and HTRF signal was measured on a Fusion plate reader (Perkin Elmer, Boston, MA).

Compounds herein were tested for inhibitory activity of JAK1 and JAK2 targets according to the assay of Example A (experiments run at Km or 1 mM as indicated). Data is shown in Tables A-E below. The symbol "+" indicates an IC$_{50}$ ≤ 50 nM; the symbol "++" indicates an IC$_{50}$ > 50 and ≤ 100 nM; and the symbol "+++" indicates an IC$_{50}$ > 100 and ≤ 500 nM.

Table A

<table>
<thead>
<tr>
<th>Example No.</th>
<th>R=</th>
<th>Salt Form</th>
<th>Assay Conditions</th>
<th>JAK1 IC$_{50}$ (nM)</th>
<th>JAK2 / JAK1 IC$_{50}$ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (rac)</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>2, Step 2a</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>7.3</td>
</tr>
<tr>
<td>2, Step 2b</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>3.7</td>
</tr>
<tr>
<td>3, Step 2a</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>2.3</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC$_{50}$ (nM)</td>
<td>JAK2 / JAK1 IC$_{50}$ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>3, Step 2b</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>8.5</td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>8.8</td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>TFA</td>
<td>Km</td>
<td>+</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>>5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>4.7</td>
</tr>
<tr>
<td>9, Step 3a</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>1.9</td>
</tr>
<tr>
<td>9, Step 3b</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>1.9</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>2.9</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>2.4</td>
</tr>
<tr>
<td>13a</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>13b</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>2.1</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>6.8</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>11.4</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+++</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>++</td>
<td>10.3</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>5.3</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>10.4</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>31.8</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>7</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>2.3</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>2.5</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>34</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>++</td>
<td>5.2</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>14</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>14.5</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>++</td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>8.7</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>++</td>
<td>3.3</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>15.5</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>7.1</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>11</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>6.0</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>2TFA</td>
<td>Km</td>
<td>+</td>
<td>2.5</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>2TFA</td>
<td>Km</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>-</td>
<td>Km</td>
<td>+</td>
<td>7.4</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>3.7</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.9</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>30</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>10.2</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>15.4</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.8</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>7.7</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.6</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>8</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>10</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>37</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.5</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.6</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.4</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>7.1</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>7.3</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>11</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>9.4</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>20</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.6</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>8.2</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.5</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC<sub>50</sub> (nM)</td>
<td>JAK2 / JAK1 IC<sub>50</sub> ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>1.7</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>6.2</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>4.6</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>51.1</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>39.1</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>32.1</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>20.0</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>6.7</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>11.5</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>8.1</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>40.0</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>3.1</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.3</td>
</tr>
<tr>
<td>91A</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.9</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>91B</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>7.0</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>12.5</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.3</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>17.9</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>16.4</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>3TFA</td>
<td>1 mM</td>
<td>+</td>
<td>16.3</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>9.1</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>7.6</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>7.4</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>1.5TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.0</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.9</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>3.0</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>12.6</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.8</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.7</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.0</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>12.8</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>37.6</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC$_{50}$ (nM)</td>
<td>JAK2 / JAK1 IC$_{50}$ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>35.7</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>6.0</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>188.0</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>16.7</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>10.5</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>132.5</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>11.0</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.7</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.9</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>14.8</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>8.1</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>++</td>
<td>3</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>17</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>5</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>17.5</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>10.7</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>17.4</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>16.2</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC₅₀ (nM)</td>
<td>JAK2 / JAK1 IC₅₀ ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>14.2</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>4.5</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>6.9</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>11.1</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>4.8</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>3.3</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>3.2</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>12.5</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>6.7</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>11.1</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>11.8</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC\textsubscript{50} (nM)</td>
<td>JAK2 / JAK1 IC\textsubscript{50} ratio</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>++</td>
<td>5.3</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>8.0</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>2 TFA</td>
<td>1 mM</td>
<td>+</td>
<td>>5.3</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>12.9</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>11.4</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>24.7</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>7.7</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>3.3</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>10.9</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>7.1</td>
</tr>
<tr>
<td>Example No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC_{50} (nM)</td>
<td>JAK2 / JAK1 IC_{50} ratio</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>8.7</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>13.3</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>20.0</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>27.3</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>15.4</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>>5.4</td>
</tr>
</tbody>
</table>

Table B

![Structure](image7.png)

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R=</th>
<th>Salt Form</th>
<th>Assay Conditions</th>
<th>JAK1 IC_{50} (nM)</th>
<th>JAK2 / JAK1 IC_{50} ratio</th>
</tr>
</thead>
</table>

282
<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R=</th>
<th>Salt Form</th>
<th>Assay Conditions</th>
<th>JAK1 IC₅₀ (nM)</th>
<th>JAK2 / JAK1 IC₅₀ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>31, Step 4a,</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>++</td>
<td>5.6</td>
</tr>
<tr>
<td>enantiomer 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31, Step 4a,</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>++</td>
<td>5.1</td>
</tr>
<tr>
<td>enantiomer 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31, Step 4b,</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+++</td>
<td>>2.5</td>
</tr>
<tr>
<td>enantiomer 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31, Step 4b,</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+++</td>
<td>0.8</td>
</tr>
<tr>
<td>enantiomer 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table C

Ex. No.	R=	Salt Form	Assay Conditions	JAK1 IC₅₀ (nM)	JAK2 / JAK1 IC₅₀ ratio
32, Step 2a, | | - | Km | + | 3.7 |
enantiomer 1 | | | | | |
32, Step 2a, | | - | Km | + | 5.7 |
enantiomer 2 | | | | | |
32, Step 2b | | - | Km | ++ | 0.2 |
(racemate) | | | | | |
33 | | H₃PO₄ | 1 mM | + | 34 |
<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R=</th>
<th>Salt Form</th>
<th>Assay Conditions</th>
<th>JAK1 IC₅₀ (nM)</th>
<th>JAK2 / JAK1 IC₅₀ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>34, enantiomer 1</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>5.6</td>
</tr>
<tr>
<td>34, enantiomer 2</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>13.8</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>4.2</td>
</tr>
<tr>
<td>81, enantiomer 1</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>40.0</td>
</tr>
<tr>
<td>81, enantiomer 2</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>8.1</td>
</tr>
<tr>
<td>114, enantiomer 1</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.9</td>
</tr>
<tr>
<td>115, enantiomer 1</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>9.3</td>
</tr>
<tr>
<td>113, (racemate)</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>8.7</td>
</tr>
<tr>
<td>148-rac</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>4.0</td>
</tr>
<tr>
<td>149-rac</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>14.5</td>
</tr>
<tr>
<td>149-1</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>9.9</td>
</tr>
<tr>
<td>149-2</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>4.5</td>
</tr>
<tr>
<td>Ex. No.</td>
<td>R=</td>
<td>Salt Form</td>
<td>Assay Conditions</td>
<td>JAK1 IC<sub>50</sub> (nM)</td>
<td>JAK2 / JAK1 IC<sub>50</sub> ratio</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>158-1</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>22.5</td>
</tr>
<tr>
<td>158-2</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>19.0</td>
</tr>
<tr>
<td>170-rac</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>4.5</td>
</tr>
<tr>
<td>171-rac</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>21.9</td>
</tr>
<tr>
<td>174-1</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>28.5</td>
</tr>
<tr>
<td>174-2</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>11.1</td>
</tr>
<tr>
<td>176-rac</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>53.3</td>
</tr>
</tbody>
</table>

Table D

```
Ex. No. | R=  | Salt Form | Assay Conditions | JAK1 IC<sub>50</sub> (nM) | JAK2 / JAK1 IC<sub>50</sub> ratio |
--------|-----|-----------|-----------------|----------------|-----------------------------|
70 (3S-enantiomer) | ![Structure](image8) | H<sub>3</sub>PO<sub>4</sub> | 1 mM | + | 15 |
```
<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>R=</th>
<th>Salt Form</th>
<th>Assay Conditions</th>
<th>JAK1 IC₅₀ (nM)</th>
<th>JAK2 / JAK1 IC₅₀ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 (3R-enantiomer)</td>
<td></td>
<td>H₃PO₄</td>
<td>1 mM</td>
<td>+</td>
<td>5.9</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>-</td>
<td>1 mM</td>
<td>+</td>
<td>12.1</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>2TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.3</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>4TFA</td>
<td>1 mM</td>
<td>+</td>
<td>13.0</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>8.9</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>3.7</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>2.8</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>7.6</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>3.5</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>4.4</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>TFA</td>
<td>1 mM</td>
<td>+</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Example B: Cellular Assays

Cancer cell lines dependent on cytokines and hence JAK/STAT signal transduction, for growth, can be plated at 6000 cells per well (96 well plate format) in RPMI 1640, 10% FBS, and 1 nG/mL of appropriate cytokine. Compounds can be added to the cells in DMSO/media (final concentration 0.2% DMSO) and incubated for 72 h at 37 °C, 5% CO₂. The effect of compound on cell viability is assessed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega) followed by TopCount (Perkin Elmer, Boston, MA) quantitation. Potential off-target effects of compounds are measured in parallel using a non-JAK driven cell line with the same assay readout. All experiments are typically performed in duplicate.

The above cell lines can also be used to examine the effects of compounds on phosphorylation of JAK kinases or potential downstream substrates such as STAT proteins, Akt, Shp2, or Erk. These experiments can be performed following an overnight cytokine starvation, followed by a brief preincubation with compound (2 h or less) and cytokine stimulation of approximately 1 h or less. Proteins are then extracted from cells and analyzed by techniques familiar to those schooled in the art including Western blotting or ELISAs using antibodies that
can differentiate between phosphorylated and total protein. These experiments can utilize normal or cancer cells to investigate the activity of compounds on tumor cell survival biology or on mediators of inflammatory disease. For example, with regards to the latter, cytokines such as IL-6, IL-12, IL-23, or IFN can be used to stimulate JAK activation resulting in phosphorylation of STAT protein(s) and potentially in transcriptional profiles (assessed by array or qPCR technology) or production and/or secretion of proteins, such as IL-17. The ability of compounds to inhibit these cytokine mediated effects can be measured using techniques common to those schooled in the art.

Compounds herein can also be tested in cellular models designed to evaluate their potency and activity against mutant JAKs, for example, the JAK2V617F mutation found in myeloid proliferative disorders. These experiments often utilize cytokine dependent cells of hematological lineage (e.g. BaF3) into which the wild-type or mutant JAK kinases are ectopically expressed (James, C., *et al*., *Nature* 434:1 144-1 148; Staerk, J., *et al*., *JBC* 280:41893-41899). Endpoints include the effects of compounds on cell survival, proliferation, and phosphorylated JAK, STAT, Akt, or Erk proteins.

Certain compounds herein have been or can be evaluated for their activity inhibiting T-cell proliferation. Such as assay can be considered a second cytokine (*i.e.* JAK) driven proliferation assay and also a simplistic assay of immune suppression or inhibition of immune activation. The following is a brief outline of how such experiments can be performed.

Peripheral blood mononuclear cells (PBMCs) are prepared from human whole blood samples using Ficoll Hypaque separation method and T-cells (fraction 2000) can be obtained from PBMCs by elutriation. Freshly isolated human T-cells can be maintained in culture medium (RPMI 1640 supplemented with 10% fetal bovine serum, 100 LVmL penicillin, 100 μg/mL streptomycin) at a density of 2 x 10^6 cells/mL at 37 °C for up to 2 days. For IL-2 stimulated cell proliferation analysis, T-cells are first treated with Phytohemagglutinin (PHA) at a final concentration of 10 μg/mL for 72h. After washing once with PBS, 6000 cells/well are plated in 96-well plates and treated with compounds at different concentrations in the culture medium in the presence of 100 LVmL human IL-2 (ProSpec-Tany TechnoGene; Rehovot, Israel). The plates are incubated at 37 °C for 72h and the proliferation index is assessed using CellTiter-Glo Luminescent reagents following the manufactory suggested protocol (Promega; Madison, WI).

Example C: In vivo anti-tumor efficacy

Compounds herein can be evaluated in human tumor xenograft models in immune compromised mice. For example, a tumorigenic variant of the INA-6 plasmacytoma cell line can
be used to inoculate SCID mice subcutaneously (Burger, R., et al. Hematol J. 2:42-53, 2001). Tumor bearing animals can then be randomized into drug or vehicle treatment groups and different doses of compounds can be administered by any number of the usual routes including oral, i.p., or continuous infusion using implantable pumps. Tumor growth is followed over time using calipers. Further, tumor samples can be harvested at any time after the initiation of treatment for analysis as described above (Example B) to evaluate compound effects on JAK activity and downstream signaling pathways. In addition, selectivity of the compound(s) can be assessed using xenograft tumor models that are driven by other known kinases (e.g. Bcr-Abl) such as the K562 tumor model.

Example D: Murine Skin Contact Delayed Hypersensitivity Response Test

Compounds herein can also be tested for their efficacies (of inhibiting JAK targets) in the T-cell driven murine delayed hypersensitivity test model. The murine skin contact delayed-type hypersensitivity (DTH) response is considered to be a valid model of clinical contact dermatitis, and other T-lymphocyte mediated immune disorders of the skin, such as psoriasis (Immunol Today. 1998 Jan;19(1):37-44). Murine DTH shares multiple characteristics with psoriasis, including the immune infiltrate, the accompanying increase in inflammatory cytokines, and keratinocyte hyperproliferation. Furthermore, many classes of agents that are efficacious in treating psoriasis in the clinic are also effective inhibitors of the DTH response in mice (Agents Actions. 1993 Jan;38(1-2): 116-21).

On Day 0 and 1, Balb/c mice are sensitized with a topical application, to their shaved abdomen with the antigen 2,4-dinitro-fluorobenzene (DNFB). On day 5, ears are measured for thickness using an engineer’s micrometer. This measurement is recorded and used as a baseline. Both of the animals’ ears are then challenged by a topical application of DNFB in a total of 20 µL (10 µL on the internal pinna and 10 µL on the external pinna) at a concentration of 0.2%. Twenty-four to seventy-two h after the challenge, ears are measured again. Treatment with the test compounds was given throughout the sensitization and challenge phases (day - 1 to day 7) or prior to and throughout the challenge phase (usually afternoon of day 4 to day 7). Treatment of the test compounds (in different concentration) was administered either systemically or topically (topical application of the treatment to the ears). Efficacies of the test compounds are indicated by a reduction in ear swelling comparing to the situation without the treatment. Compounds causing a reduction of 20% or more were considered efficacious. In some experiments, the mice are challenged but not sensitized (negative control).
The inhibitive effect (inhibiting activation of the JAK-STAT pathways) of the test compounds can be confirmed by immunohistochemical analysis. Activation of the JAK-STAT pathway(s) results in the formation and translocation of functional transcription factors. Further, the influx of immune cells and the increased proliferation of keratinocytes should also provide unique expression profile changes in the ear that can be investigated and quantified. Formalin fixed and paraffin embedded ear sections (harvested after the challenge phase in the DTH model) are subjected to immunohistochemical analysis using an antibody that specifically interacts with phosphorylated STAT3 (clone 58E12, Cell Signaling Technologies). The mouse ears are treated with test compounds, vehicle, or dexamethasone (a clinically efficacious treatment for psoriasis), or without any treatment, in the DTH model for comparisons. Test compounds and the dexamethasone can produce similar transcriptional changes both qualitatively and quantitatively, and both the test compounds and dexamethasone can reduce the number of infiltrating cells. Both systemically and topically administration of the test compounds can produce inhibitive effects, i.e., reduction in the number of infiltrating cells and inhibition of the transcriptional changes.

Example E: In vivo anti-inflammatory activity

Compounds herein can be evaluated in rodent or non-rodent models designed to replicate a single or complex inflammation response. For instance, rodent models of arthritis can be used to evaluate the therapeutic potential of compounds dosed preventatively or therapeutically. These models include but are not limited to mouse or rat collagen-induced arthritis, rat adjuvant-induced arthritis, and collagen antibody-induced arthritis. Autoimmune diseases including, but not limited to, multiple sclerosis, type I-diabetes mellitus, uveoretinitis, thyroiditis, myasthenia gravis, immunoglobulin nephropathies, myocarditis, airway sensitization (asthma), lupus, or colitis may also be used to evaluate the therapeutic potential of compounds herein. These models are well established in the research community and are familiar to those schooled in the art (Current Protocols in Immunology, Vol 3., Coligan, J.E. et al, Wiley Press.; Methods in Molecular Biology: Vol. 225, Inflammation Protocols., Winyard, P.G. and Willoughby, D.A., Humana Press, 2003.).

Example F: Animal Models for the Treatment of Dry Eye, Uveitis, and Conjunctivitis

Agents may be evaluated in one or more preclinical models of dry eye known to those schooled in the art including, but not limited to, the rabbit concanavalin A (ConA) lacrimal gland model, the scopolamine mouse model (subcutaneous or transdermal), the Botulinumn mouse lacrimal gland model, or any of a number of spontaneous rodent auto-immune models that result
in ocular gland dysfunction (e.g. NOD-SCID, MRL/lpr, or NZB/NZW) (Barabino et al., Experimental Eye Research 2004, 79, 613-621 and Schrader et al., Developmental Ophthalmology, Karger 2008, 41, 298-312, each of which is incorporated herein by reference in its entirety). Endpoints in these models may include histopathology of the ocular glands and eye (cornea, etc.) and possibly the classic Schirmer test or modified versions thereof (Barabino et al.) which measure tear production. Activity may be assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists.

Agents may be evaluated in one or more preclinical models of uveitis known to those schooled in the art. These include, but are not limited to, models of experimental autoimmune uveitis (EAU) and endotoxin induced uveitis (EIU). EAU experiements may be performed in the rabbit, rat, or mouse and may involve passive or activate immunization. For instance, any of a number or retinal antigens may be used to sensitize animals to a relevant immunogen after which animals may be challenged ocularly with the same antigen. The EIU model is more acute and involves local or systemic administration of lipopolysaccharide at sublethal doses. Endpoints for both the EIU and EAU models may include fundoscopic exam, histopathology amongst others. These models are reviewed by Smith et al. (Immunology and Cell Biology 1998, 76, 497-512, which is incorporated herein by reference in its entirety). Activity is assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Some models listed above may also develop scleritis/episcleritis, chorioiditis, cyclitis, or iritis and are therefore useful in investigating the potential activity of compounds for the therapeutic treatment of these diseases.

Agents may also be evaluated in one or more preclinical models of conjunctivitis known those schooled in the art. These include, but are not limited to, rodent models utilizing guinea-pig, rat, or mouse. The guinea-pig models include those utilizing active or passive immunization and/or immune challenge protocols with antigens such as ovalbumin or ragweed (reviewed in Groneberg, D.A., et al., Allergy 2003, 58, 1101-1113, which is incorporated herein by reference in its entirety). Rat and mouse models are similar in general design to those in the guinea-pig (also reviewed by Groneberg). Activity may be assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Endpoints for such studies may include, for example, histological, immunological, biochemical, or molecular analysis of ocular tissues such as the conjunctiva.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope
of the invention. Each of the references mentioned herein, including patent, patent application, and non-patent literature, is incorporated herein by reference in its entirety.
WHAT IS CLAIMED IS:

1. A compound of Formula 1:

\[
\text{I}
\]

or a pharmaceutically acceptable salt or N-oxide thereof; wherein:

- X is cyano or halogen;
- Y is CH or N;
- Z is hydrogen, C_{1-4} alkyl, C_{i-4} fluorinated alkyl, or fluoro;
- Ar is C_{6-14} aryl, C_{i-4} heteroaryl, C_{7-14} fused cycloalkylaryl, C_{6-14} fused heterocycloalkylaryl, C_{2-14} fused cycloalkylheteroaryl, or C_{2-14} fused heterocycloalkylheteroaryl, each of which is optionally substituted by 1, 2, 3, 4, 5, or 6 independently selected R^1 groups; each R^1 is independently selected from halogen, cyano, nitro, C_{1-6} alkyl, C_{i-6} haloalkyl, C_{2-6} alkenyl, C_{3-4} alkynyl, C_{3-4} cycloalkyl, C_{3-4} cycloalkyl-C_{i-6} alkyl, C_{2-14} heterocycloalkyl, C_{2-14} heterocycloalkyl-C_{1-6} alkyl, C_{6-14} aryl, C_{6-14} aryl-C_{1-6} alkyl, C_{i-4} heteroaryl, C_{i-4} heteroaryl-C_{i-4} alkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)_{2}R^b, -S(=O)NR^cR^d, -C(=0)OR, -C(=0)_{2}OR, -C(=0)NR^2, -OC(=O)R, -OC(=O)NR^2, -NR^2C(=O)OR, -NR^2C(=O)_{2}OR, -NR^2C(=O)NR^d, -NR^2C(=O)NR^d, and -NR^2S(=O)_{2}NR^2R^2, wherein said C_{i-6} alkyl, C_{i-6} haloalkyl, C_{2-6} alkenyl, and C_{3-4} alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^1a groups; and wherein said C_{3-4} cycloalkyl, C_{3-4} cycloalkyl-C_{i-6} alkyl, C_{2-14} heterocycloalkyl, C_{2-14} heterocycloalkyl-C_{1-6} alkyl, C_{6-14} aryl, C_{6-14} aryl-C_{1-6} alkyl, C_{i-4} heteroaryl, and C_{i-4} heteroaryl-C_{i-4} alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^2a groups; each R^1a is independently selected from halogen, cyano, nitro, hydroxyl, C_{i-4} alkoxy, C_{i-4} haloalkoxy, C_{i-4} alkylthio, C_{i-4} alkylsulfanyl, C_{i-4} alkylsulfonyl, amino, C_{i-4} alkylamino, di-C_{i-4} alkylamino, C_{i-4} alkylcarbonyl, carboxy, C_{i-4} alkoxy carbonyl, C_{i-4} alkoxy carbonylamino, di-C_{i-4} alkoxy carbonylamino, C_{i-4} alkoxy carbonyl-(C_{i-4} alkyl)amino, carbamyl, C_{i-4} alkyl carbamyl, and di-C_{i-4} alkyl carbamyl; each R^2a is independently selected from halogen, cyano, nitro, hydroxyl, C_{i-4} alkyl, C_{i-4} haloalkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{i-4} alkoxy, C_{i-4} haloalkoxy, C_{i-4} alkylthio, C_{i-4} alkylsulfanyl,
Cl-4 alkylsulfonyl, amino, Ci-4 alkylamino, di-Ci-4 alkylamino, Ci-4 alkylcarbonyl, carboxy, Ci-4 alkoxy carbonyl, Ci-4 alkylcarbonylamino, di-Ci-4 alkylcarbonylamino, Ci-4 alkoxy carbonylamino, Ci-4 alkoxy carbonyl-(Ci-4 alkyl)amino, carbamyl, Ci-4 alkylcarbamyl, and di-Ci-4 alkylcarbamyl;

each R³, R⁴, R⁵, and R⁶ is independently selected from H, Ci-6 alkyl, Ci-6 haloalkyl, C₂-6 alkenyl, C₂-6 alkynyl, C₃-7 cycloalkyl, C₃-7 cycloalkyl-Ci-4 alkyl, C₂-7 heterocycloalkyl, C₂-7 heterocycloalkyl-Ci-4 alkyl, phenyl, phenyl-Ci-4 alkyl, Ci-7 heteroaryl, and Ci-7 heteroaryl-Ci-4 alkyl; wherein each Ci-6 alkyl, Ci-6 haloalkyl, and C₂-6 alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R³ groups; and wherein each Ci-7 cycloalkyl, C₃-7 cycloalkyl-Ci-4 alkyl, C₂-7 heterocycloalkyl, C₂-7 heterocycloalkyl-Ci-4 alkyl, phenyl, phenyl-Ci-4 alkyl, Ci-7 heteroaryl, and Ci-7 heteroaryl-Ci-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R³ groups;

or any R³ and R⁴, together with the moiety to which they are attached, can form a 3-, 4-, 5-, 6-, or 7-membered heterocycloalkyl ring, wherein each heterocycloalkyl ring is optionally substituted with 1, 2, 3, or 4 groups independently selected from hydroxyl, Ci-4 alkyl, Ci-4 haloalkyl, Q⁴ alkoxy, Cl-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4 alkylamino;

or any R³ and R⁴, together with the nitrogen atom to which they are attached, can form a 3-, 4-, 5-, 6- or 7-membered heterocycloalkyl ring or heteroaryll ring, wherein each heterocycloalkyl or heteroaryl ring is optionally substituted with 1, 2, 3, or 4 groups independently selected from hydroxyl, Ci-4 alkyl, Ci-4 haloalkyl, Ci-4 alkoxy, Ci-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4 alkylamino;

each R³ is independently selected from hydroxyl, Ci-4 alkoxy, Ci-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4 alkylamino; and

each R⁴ is independently selected from hydroxyl, halogen, cyano, nitro, Ci-4 alkyl, Ci-4 haloalkyl, d⁴ alkoxy, Cl-4 haloalkoxy, amino, Ci-4 alkylamino, and di-Ci-4 alkylamino;

provided that the valency of each atom in the optionally substituted moieties is not exceeded.

2. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Y is N.

3. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Y is CH.
4. A compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt or N-oxide thereof, wherein X is cyano.

5. A compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt or N-oxide thereof, wherein X is chloro or fluoro.

6. A compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt or N-oxide thereof, wherein X is fluoro.

7. A compound according to any one of claims 1 to 6, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Z is hydrogen.

8. A compound according to any one of claims 1 to 6, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Z is fluoro.

9. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, Cl-6 monocyclic heteroaryl, d-9 bicyclic heteroaryl, bicyclic C7-14 fused cycloalkylaryl, bicyclic C6-14 fused heterocycloalkylaryl, bicyclic C2-14 fused cycloalkylheteroaryl, and bicyclic C2-14 fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

10. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, Cl-6 monocyclic heteroaryl, d-9 bicyclic heteroaryl, and bicyclic C2-14 fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

11. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is phenyl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

12. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is Cl-6 monocyclic heteroaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.
13. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is C$_i$9 bicyclic heteroaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

14. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is bicyclic C$_{2-14}$ fused heterocycloalkylheteroaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

15. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is bicyclic C$_{2-14}$ fused cycloalkylheteroaryl, which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

16. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyridimine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

17. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyridimine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrolo[2,3-b]pyridine ring, an oxazolo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups.

18. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, a thiazole ring, a pyridine ring, a...
pyridimine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrolo[2,3-b]pyridine ring, an oxazolo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, a quinoxalin ring, a oxazolo[5,4-d]pyrimidine ring, a thieno[3,2-b]pyridine ring, a thieno[2,3-c]pyridine ring, a thiophene ring, a thiazolo[5,4-d]pyrimidine ring, a thieno[2,3-b]pyridine ring, a 2,3-dihydrofuro[2,3-b]pyridine ring, a 6,7-dihydro-5H-cyclopenta[b]pyridine ring, a ruro[3,2-c]pyridine ring, a 2,3-dihydrothieno[3,2-c]pyridine ring, a S-oxo-2,3-dihydrothieno[3,2-c]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridine ring, a thieno[3,2-c]pyridine ring, and a 1H-pyrrolo[3,2-c]pyridine ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R¹ groups.

19. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R¹ groups.

20. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R¹ groups.

21. A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-
22. A compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R is independently selected from halogen, cyano, nitro, Q, alky, C, alkenyl, C, alkynyl, C, cycloalkyl, C, cycloalkyl-C, alkyl, C, heterocycloalkyl, C, heterocycloalkyl-C, phenyl, phenyl-C, alkynyl, C, heteroaryl-C, -OR, -SR, -S(=O)R, -S(=O)_{2}R, -S(=O)NR, -NR_{2}R, -C(=O)OR, -C(=O)NR, -S(=O)_{2}R, -S(=O)NR, -NR_{2}R, -C(=O)OR, -C(=O)NR, -S(=O)_{2}R, -S(=O)NR, -NR_{2}R, and N-oxide thereof, wherein said C, alky, C, alkenyl, C, alkynyl, and C, alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R groups; wherein said C, cycloalkyl, C, cycloalkyl-C, alkynyl, C, heterocycloalkyl-C, alkynyl, phenyl, phenyl-C, alkynyl, C, heteroaryl, and C, heteroaryl-C, alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R groups.

23. A compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R is independently selected from halogen, cyano, nitro, C, alky, C, halalkyl, -OR, -SR, -S(=O)R, -S(=O)_{2}R, -S(=O)NR, -NR_{2}R, -C(=O)OR, -C(=O)NR, -S(=O)_{2}R, -S(=O)NR, -NR_{2}R, and N-oxide thereof, wherein each R is independently selected from C, alky, C, halalkyl, -OR, -SR, -S(=O)R, -S(=O)_{2}R, and -NR_{2}R.

24. A compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R is independently selected from C, alky, C, halalkyl, -OR, -SR, -S(=O)R, -S(=O)_{2}R, and -NR_{2}R.
25. A compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R¹ is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfanyl, and methylsulfonyl.

26. A compound according to any one of claims 1 to 24, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R¹, R², R³, R⁴, R⁵, and R⁶ is independently selected from H, Ci₁₋₄ alkyl, Ci₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-Ci₁₋₄ alkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-Ci₁₋₄ alkyl, phenyl, phenyl-Ci₁₋₄ alkyl, Ci₋₇ heteroaryl, and Ci₋₇ heteroaryl-Ci₁₋₄ alkyl.

27. A compound according to any one of claims 1 to 24, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R¹, R², R³, R⁴, R⁵, and R⁶ is independently selected from H, Ci₁₋₄ alkyl, Ci₁₋₄ haloalkyl, C₃₋₂ cycloalkyl, C₂₋₇ heterocycloalkyl, phenyl, and Ci₋₇ heteroaryl.

28. A compound according to any one of claims 1 to 24, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R¹, R², R³, R⁴, R⁵, and R⁶ is independently selected from H, Ci₁₋₆ alkyl, and Ci₁₋₆ haloalkyl.

29. A compound according to any one of claims 1 to 24, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R¹, R², R³, R⁴, R⁵, and R⁶ is independently selected from H and Ci₁₋₆ alkyl.

30. A compound according to any one of claims 1 to 29, or a pharmaceutically acceptable salt or N-oxide thereof, wherein each R¹ is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, Ci₁₋₄ alkoxy, Ci₁₋₄ haloalkoxy, Ci₁₋₄ alkylthio, Ci₁₋₄ alkylsulfanyl, Ci₁₋₄ alkylsulfon, amino, Ci₁₋₄ alkylamino, and di-Ci₁₋₄ alkylamino; and each R² is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, Ci₁₋₄ alkyl, Ci₁₋₄ haloalkyl, Ci₂₋₄ alkylnyl, Ci₁₋₄ alkoxy, Ci₁₋₄ haloalkoxy, Ci₁₋₄ alkylthio, Ci₁₋₄ alkylsulfanyl, Ci₁₋₄ alkylsulfon, amino, Ci₁₋₄ alkylamino, and di-Ci₁₋₄ alkylamino.

31. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, C_{i-6} monocyclic heteroaryl, bicyclic C_{7,14} fused cycloalkylaryl, bicyclic C_{6,14} fused heterocycloalkylaryl, bicyclic C_{24} fused cycloalkylheteroaryl, and bicyclic C_{24} fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from halogen, cyano, nitro, C_{i-6} alkyl, C_{i-6} haloalkyl, C_{24} alkenyl, C_{24} alkynyl, C_{3,7} cycloalkyl, C_{3,7} cycloalkyl-C_{1-4}-alkyl, C_{24} heterocycloalkyl-C_{1-4}-alkyl, phenyl phenyl-C_{1-4}-alkyl, C_{i-6} heteroaryl, d_{i-6} heteroaryl-C_{i-4}-alkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)NR^c, -NR^cR^d, -C(=O)R^b, -C(=O)OR^d, -C(=O)NR^c, -NR^cC(=O)OR^d; wherein said C_{i-6} alkyl, C_{i-6} haloalkyl, C_{24} alkenyl, and C_{24} alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^{1a} groups; wherein said C_{3,7} cycloalkyl, C_{3,7} cycloalkyl-C_{i-4}-alkyl, C_{24} heterocycloalkyl, C_{24} heterocycloalkyl-C_{i-4}-alkyl, phenyl phenyl-C_{i-4}-alkyl, C_{i-6} heteroaryl, and C_{i-6} heteroaryl-C_{i-4}-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^{2a} groups;

each R^{1a} is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C_{i-4} alkoxy, C_{i-4} haloalkoxy, C_{i-4} alkylthio, C_{i-4} alkylsulfanyl, C_{i-4} alkylsulfonfyl, amino, C_{i-4} alkenylamino, and di-C_{i-4} alkenylamino;

each R^{2a} is independently selected from halogen, cyano, nitro, hydroxyl, C_{i-4} alkoxy, C_{i-4} haloalkoxy, C_{i-4} alkylthio, C_{i-4} alkenyl, C_{i-4} haloalkyl, C_{24} alkenyl, C_{24} alkynyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} alkylthio, C_{i-4} alkenylsulfanyl, C_{i-4} alkylsulfonfyl, amino, C_{i-4} alkenylamino, and di-C_{i-4} alkenylamino;

each R^b, R^c, R^d, R^e, and R^f is independently selected from H, C_{i-6} alkyl, C_{i-6} haloalkyl, C_{24} alkenyl, C_{24} alkynyl, C_{3,7} cycloalkyl, C_{3,7} cycloalkyl-C_{1-4}-alkyl, C_{24} heterocycloalkyl, C_{24} heterocycloalkyl-C_{1-4}-alkyl, phenyl phenyl-C_{1-4}-alkyl, C_{i-7} heteroaryl, and C_{i-7} heteroaryl-C_{1-4}-alkyl; wherein said C_{i-6} alkyl, C_{i-6} haloalkyl, C_{24} alkenyl, and C_{24} alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^3 groups; and wherein said C_{3,7} cycloalkyl, C_{3,7} cycloalkyl-C_{i-4}-alkyl, C_{24} heterocycloalkyl, C_{24} heterocycloalkyl-C_{1-4}-alkyl, phenyl phenyl-C_{1-4}-alkyl, C_{i-7} heteroaryl, and C_{i-7} heteroaryl-C_{1-4}-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^7 groups;

each R^3 is independently selected from hydroxyl, C_{i-4} alkoxy, amino, C_{i-4} alkenylamino, and di-C_{i-4} alkenylamino; and
each R_y is independently selected from hydroxyl, halogen, cyano, nitro, Ci_4 alkyl, Ci_4 haloalkyl, Ci_4 alkoxy, Ci_4 haloalkoxy, amino, Ci_4 alkylamino, and di-Ci_4-alkylamino.

32. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, Ci_6 monocyclic heteroaryl, Ci_9 tricyclic heteroaryl, bicyclic C_7_4 fused cycloalkylaryl, bicyclic C_6_4 fused heterocycloalkylaryl, bicyclic C_2_4 fused cycloalkylheteroaryl, bicyclic C_2_4 fused cycloalkylheteroaryl, and bicyclic C_2_4 fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from halogen, cyano, nitro, Ci_6 alkyl, Ci_6 haloalkyl, C_2_4 alkeny1, C_2_4 alkynyl, C_3_2 cycloalkyl, C_3_2 cycloalkyl-Ci_4 alkyl, C_2_4 heterocycloalkyl, C_2_6 heterocycloalkyl-Ci_4 alkyl, phenyl, phenyl-Ci_4 alkyl, Ci_6 heteroaryl, Ci_6 heteroaryl-Ci_4 alkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)_2R^b, -S(=O)NR_R'^1, -NR^1R'^1, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR_R'^1, -NR^1C(=O)R^d, and -NR^1C(=O)OR^d; wherein said Ci_6 alkyl, Ci_6 haloalkyl, C_2_6 alkenyl, and C_2_6 alkynyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^1a groups; wherein said C_3_2 cycloalkyl, C_3_2 cycloalkyl-Ci_4 alkyl, C_2_6 heterocycloalkyl, C_2_6 heterocycloalkyl-Ci_4 alkyl, phenyl, phenyl-Ci_4 alkyl, d_6 heteroaryl, and Ci_6 heteroaryl-Ci_4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^2a groups;

each R^1a is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C_1_4 alkoxy, C_1_4 haloalkoxy, Ci_4 alkythio, Ci_4 alkylsulfanyl, Ci_4 alkylsulfonyl, amino, C_1_4 alkylamino, and di-Ci_4-alkylamino;

each R^2a is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, C_1_4 alkyl, d_4 haloalkyl, C_2_4 alkynyl, C_1_4 alkoxy, C_1_4 haloalkoxy, C_1_4 alkythio, Ci_4 alkylsulfanyl, d_4 alkylsulfonyl, amino, Ci_4 alkylamino, and di-Ci_4-alkylamino;

each R^a, R^b, R^c, R^d, R^e, and R^f is independently selected from H, C_1_6 alkyl, C_1_6 haloalkyl, C_2_4 alkenyl, C_2_4 alkynyl, C_3_2 cycloalkyl, C_3_2 cycloalkyl-Ci_4 alkyl, C_2_4 heterocycloalkyl, C_2_4 heterocycloalkyl-Ci_4 alkyl, phenyl, phenyl-Ci_4 alkyl, Ci_7 heteroaryl, and Ci_7 heteroaryl-Ci_4 alkyl; wherein said Ci_6 alkyl, Ci_6 haloalkyl, C_2_4 alkenyl, and C_2_4 alkynyl are each
optionally substituted by 1, 2, 3, or 4 independently selected \(R^* \) groups; and wherein said \(C_{3-7} \) cycloalkyl, \(C_{3-7} \) cycloalkyl-\(C_{1-4} \)-alkyl, \(C_{7-7} \) heterocycloalkyl, \(C_{7-7} \) heterocycloalkyl-\(Q^* \)-alkyl, phenyl, phenyl-\(Q^* \)-alkyl, \(Q^* \)-heteroaryl, and \(Q^* \)-heteroaryl-\(C_{1-4} \)-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected \(R^* \) groups;

 each \(R^* \) is independently selected from hydroxyl, \(Q^* \) alkoxy, amino, \(C_{1-4} \) alkylamino, and \(di-C_{1-4} \)-alkylamino; and

 each \(R^* \) is independently selected from hydroxyl, halogen, cyano, nitro, \(C_{1-4} \) alkyl, \(Q^* \) haloalkyl, \(C_{1-4} \) alkoxy, \(C_{1-4} \) haloalkoxy, amino, \(C_{1-4} \) alkylamino, and \(di-Q^* \)-alkylamino.

33. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

 \(X \) is cyano or fluoro;
 \(Y \) is CH or N;
 \(Z \) is hydrogen or fluoro;

 \(Ar \) is selected from phenyl, \(C_{1-4} \) monocyclic heteroaryl, \(C_{1-4} \) bicyclic heteroaryl, and bicyclic \(C_{2-4} \) fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

 each \(R^1 \) is independently selected from halogen, cyano, nitro, \(Q^* \) alkyl, \(Q^* \) haloalkyl, \(C_{2-6} \) alkenyl, \(C_{2-6} \) alkenyl, \(C_{3-7} \) cycloalkyl, \(C_{3-7} \) cycloalkyl-\(Q^* \)-alkyl, \(C_{2-6} \) heterocycloalkyl, \(C_{2-6} \) heterocycloalkyl-\(Q^* \)-alkyl, \(\text{phenyl, phenyl-}Q^*\text{-alkyl, } \text{Q}^*-\text{heteroaryl, } C_{1-4}\text{-heteroaryl-}C_{1-4}\text{-alkyl, } \text{-OR}_x, \text{-SR}_a, \text{-S}=(\text{O})\text{R}_b, \text{-S}=(\text{O})\text{NR}_c\text{R}_d, \text{-NR}_c\text{R}_d, \text{-C}=(\text{O})\text{R}_b, \text{-C}=(\text{O})\text{OR}_b, \text{-C}=(\text{O})\text{NR}_c\text{R}_d, \text{-NR}_c\text{C}=(\text{O})\text{R}_d, \text{and -NR}_c\text{C}=(\text{O})\text{OR}_d; \) wherein said \(C_{1-6} \) alkyl, \(C_{1-6} \) haloalkyl, \(C_{2-6} \) alklenyl, and \(C_{2-6} \) alkenyl are each optionally substituted by 1, 2, 3, or 4 independently selected \(R^{1a} \) groups; wherein said \(C_{3-7} \) cycloalkyl, \(C_{3-7} \) cycloalkyl-\(C_{1-4} \)-alkyl, \(C_{2-6} \) heterocycloalkyl, \(C_{2-6} \) heterocycloalkyl-\(C_{1-4} \)-alkyl, \(\text{phenyl, phenyl-}C_{1-4}\text{-alkyl, } \text{Q}_4\text{heteroaryl, and } C_{1-6}\text{-heteroaryl-}C_{1-4}\text{-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected } R^{1a} \) groups;

 each \(R^{1a} \) is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, \(C_{1-4} \) alkoxy, \(C_{1-4} \) haloalkoxy, \(C_{1-4} \) alkylthio, \(C_{1-4} \) alkylsulfanyl, \(C_{1-4} \) alkylsulfonfonyl, amino, \(C_{1-4} \) alkylamino, and \(di-C_{1-4}\)-alkylamino;

 each \(R^{2a} \) is independently selected from fluoro, chloro, bromo, cyano, nitro, hydroxyl, \(Q^* \) alkyl, \(C_{1-4} \) haloalkyl, \(C_{2-6} \) alkenyl, \(Q^* \) alkoxy, \(C_{1-4} \) haloalkoxy, \(C_{1-4} \) alkylthio, \(Q^* \) alkylsulfanyl, \(C_{1-4} \) alkylsulfonfonyl, amino, \(Q^* \) alkylamino, and \(di-C_{1-4}\)-alkylamino;
each Rₘ, Rₙ, Rₚ, Rₗ, Rᵣ, and Rᵪ is independently selected from H, Ci₆ alkyl, Ci₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkylnyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-C₁₋₄ alkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-C₁₋₄ alkyl, phenyl, phenyl-C₆₋₇ alkyl, Ci₆ heteroaryl, and Ci₇ heteroaryl-Ci₄₋₇ alkyl; wherein said Ci₆ alkyl, d₆ haloalkyl, C₂₋₆ alkenyl, and C₂₋₆ alkylnyl are each optionally substituted by 1, 2, 3, or 4 independently selected Rₘ groups; and wherein said C₃₋₇ cycloalkyl, C₄₋₇ cycloalkyl-Ci₄₋₇ alkyl, C₇₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-C₁₋₄ alkyl, phenyl, phenyl-C₁₋₄ alkyl, Ci₇ heteroaryl, and Ci₇ heteroaryl-Ci₄₋₇ alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected Rₙ groups;

 each Rₘ is independently selected from hydroxyl, Ci₄ alkoxy, amino, Ci₄ alkylamino, and di-Ci₄ alkylamino; and

 each Rᵣ is independently selected from hydroxyl, haloalkyl, cyano, nitro, Ci₄ alkyl, Ci₄ haloalkyl, Ci₄ alkoxy, Ci₄ haloalkoxy, amino, Ci₄ alkylamino, and di-Ci₄ alkylamino.

34. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

 X is cyano or fluoro;

 Y is CH or N;

 Z is hydrogen or fluoro;

 Ar is selected from phenyl, Ci₆ monocyclic heteroaryl, Ci₆ bicyclic heteroaryl, bicyclic C₂₋₄ fused cycloalkylheteroaryl, and bicyclic C₇₋₁₄ fused heterocycloalkylheteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected Rᵪ groups;

 each Rᵪ is independently selected from halogen, cyano, nitro, Q₆ alkyl, Ci₆ haloalkyl, -ORᵪ, -SRᵪ, -S(=O)Rᵪ, -S(=O)NRᵪ, -NRᵪ₂Rᵪ, -C(=O)Rᵪ, -C(=O)ORᵪ, -C(=O)NRᵪ₂Rᵪ, and -NRᵪ₂C(=O)Rᵪ;

 each Rᵣ, Rᵩ, Rᵰ, and Rᵪ is independently selected from H, Ci₆ alkyl, Ci₆ haloalkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl-Ci₄₋₇ alkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-Ci₄₋₇ alkyl, phenyl, phenyl-Ci₄ alkyl, Ci₇ heteroaryl, and Ci₇ heteroaryl-Ci₄₋₇ alkyl.

35. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

 X is cyano or fluoro;

 Y is CH or N;

 Z is hydrogen or fluoro;
Ar is selected from phenyl, \(\text{Ci}_6 \) monocyclic heteroaryl, \(\text{Ci}_c>b \) bicyclic heteroaryl, and bicyclic \(C_{244} \) fused heterocycloalkyl/heteroaryl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

each \(R^1 \) is independently selected from halogen, cyano, nitro, \(\text{Ci}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, -OR \(^a\), -SR \(^a\), -S(=O)R \(^b\), -S(=O)NR \(\Phi \) \(R^f \), -NR \(\Phi \) \(R^f \), -C(=O)R \(^b\), -C(=O)OR \(^b\), -C(=O)NR \(\Phi \) \(R^f \), and -NR \(\Phi \) C(=O)R \(^d\);

each \(R^2, R^b, R^c, R^d, R^e, \) and \(R^f \) is independently selected from H, \(\text{Ci}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, \(C_{3-7} \) cycloalkyl, \(C_{3-7} \) cycloalkyl-\(\text{Ci}_6 \) alkyl, \(C_{2-7} \) heterocycloalkyl, \(C_{2-7} \) heterocycloalkyl-\(\text{Ci}_6 \) alkyl, phenyl, phenyl-\(\text{Ci}_6 \)-alkyl, \(\text{Ci}_7 \) heteroaryl, and \(\text{Ci}_7 \) heteroaryl-\(\text{Ci}_6 \)-alkyl.

36. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;

each \(R^1 \) is independently selected from halogen, cyano, nitro, \(\text{Ci}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, -OR \(^a\), -SR \(^a\), -S(=O)R \(^b\), -S(=O)NR \(\Phi \) \(R^f \), -NR \(\Phi \) \(R^f \), -C(=O)R \(^b\), -C(=O)OR \(^b\), -C(=O)NR \(\Phi \) \(R^f \), and -NR \(\Phi \) C(=O)R \(^d\);

each \(R^2, R^b, R^c, R^d, R^e, \) and \(R^f \) is independently selected from H, \(\text{Ci}_6 \) alkyl, \(\text{Ci}_6 \) haloalkyl, \(C_{3-7} \) cycloalkyl, \(C_{2-7} \) heterocycloalkyl, phenyl, and \(\text{Ci}_7 \) heteroaryl.

37. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;
oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrolo[2,3-b]pyridine ring, an oxazolo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, and a quinoxaline ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from halogen, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)NR^cR^d, -NR^cR^d, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR^cR^d, and -NR^cC(=O)R^d; and

each R^6, R^b, R^c, R^d, R^e, and R^f is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, C_{2-7} heterocycloalkyl, phenyl, and C_{1-7} heteroaryl.

38. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, a thiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzo[d]oxazole ring, an oxazolo[4,5-c]pyridine ring, an oxazolo[5,4-b]pyridine ring, an oxazolo[5,4-d]pyrimidine ring, a 7H-pyrrolo[2,3-d]pyrimidine ring, a 2,3-dihydrothieno[2,3-b]pyridine ring, a S-oxo-2,3-dihydrothieno[2,3-b]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridine ring, a quinazoline ring, a quinoline ring, a pyrrolo[2,3-b]pyridine ring, an oxazolo[4,5-b]pyridine ring, a 3-oxo-3,4-dihydropyrazine ring, a quinoxaline ring, a oxazolo[5,4-d]pyrimidine ring, a thieno[3,2-b]pyridine ring, a thieno[2,3-c]pyridine ring, a thiophene ring, a thiazolo[5,4-d]pyrimidine ring, a thieno[2,3-b]pyridine ring, a 2,3-dihydrofuro[2,3-b]pyridine ring, a 6,7-dihydro-5H-cyclopenta[b]pyridine ring, a furo[3,2-c]pyridine ring, a 2,3-dihydrothieno[3,2-c]pyridine ring, a S-oxo-2,3-dihydrothieno[3,2-c]pyridine ring, a S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridine ring, a thieno[3,2-c]pyridine ring, and a 1H-pyrrolo[3,2-c]pyridine ring; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R^1 groups;

each R^1 is independently selected from halogen, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, -OR^a, -SR^a, -S(=O)R^b, -S(=O)NR^cR^d, -NR^cR^d, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR^cR^d, and -NR^cC(=O)R^d; and

each R^6, R^b, R^c, R^d, R^e, and R^f is independently selected from H, d_{1-6} alkyl, C^a haloalkyl, C_{3-7} cycloalkyl, C_{2-7} heterocycloalkyl, phenyl, and C_{1-7} heteroaryl.
39. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
 X is cyano or fluoro;
 Y is CH or N;
 Z is hydrogen or fluoro;
 Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;
 each R1 is independently selected from halogen, cyano, nitro, C1-6 alkyl, C1-6 haloalkyl, -ORa, -SRa, -(=O)Rb, -(=O)2Rb, and -NRcRd; and
 each Rb, Rc, and Rd is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl.

40. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
 X is cyano or fluoro;
 Y is CH or N;
 Z is hydrogen or fluoro;
 Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;
 each R1 is independently selected from halogen, d6 alkyl, C1-6 haloalkyl, -ORa, -SRa, -(=O)Rb, -(=O)2Rb, and -NRcRd; and
 each Rb, Rc, and Rd is independently selected from H and C1-6 alkyl.

41. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
 X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quininol-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;
each R1 is independently selected from halogen, C1–6 alkyl, C1–6 haloalkyl, -ORa, -SRa, -S(O)Ra, -S(O)2Ra, and -NRaeRf; and
each Ra, Rb, Re, and Rf is independently selected from H and C1–6 alkyl.

42. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quininol-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;
each R1 is independently selected from halogen, C1–6 alkyl, C1–6 haloalkyl, -ORa, -SRa, -S(O)Ra, -S(O)2Ra, and -NRaeRf; and
each Ra, Rb, Re, and Rf is independently selected from H and methyl.

43. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;
Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinolin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, pyrimidin-5-yl, oxazolo[4,5-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, thieno[3,2-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and 1H-pyrrolo[3,2-c]pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R₁ groups;

Each R₁ is independently selected from halogen, cyano, nitro, Cl₆alkyl, Cl₆haloalkyl, -OR, -SR, -(S=O)R, -(S=O)₂R, and -NR₃R; and

Each R, R, R, and R is independently selected from H, Cl₆alkyl, and Cl₆haloalkyl.

44. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

X is cyano or fluoro;

Y is CH or N;

Z is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridimin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinolin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, pyrimidin-5-yl, oxazolo[4,5-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, thiophen-2-yl, thiphen-3-yl, thiophen-2-yl, oxazolo[5,4-d]pyrimidin-5-yl, thieno[2,3-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and 1H-pyrrolo[3,2-c]pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R₁ groups;
c) pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;
 each \(R^1 \) is independently selected from halogen, \(\text{d}_{\alpha} \) alkyl, \(\text{Ci}_{\alpha} \) haloalkyl, -OR\(^a\), -SR\(^a\), -S(=O)R\(^b\), -S(=O)\(^2\)R\(^b\), and -NR\(^e\)R\(^f\); and
 each \(R^a, R^b, R^e, \) and \(R^f \) is independently selected from H and \(\text{C}_{1-6} \) alkyl.

45. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
 X is cyano or fluoro;
 Y is CH or N;
 Z is hydrogen or fluoro;
 Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridinmin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;
 each \(R^1 \) is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfinyl, and methylsulfonyl.

46. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:
 X is cyano or fluoro;
 Y is CH or N;
 Z is hydrogen or fluoro;
 Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridinmin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, and quinoxalin-2-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected \(R^1 \) groups;
each R1 is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfinyl, and methylsulfonyl.

47. A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

X is cyano or fluoro;
Y is CH or N;
Z is hydrogen or fluoro;

Ar is selected from phenyl, thiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl, benzo[d]oxazol-2-yl, oxazolo[4,5-c]pyridin-2-yl, oxazolo[5,4-b]pyridin-2-yl, oxazolo[5,4-d]pyrimidin-2-yl, 7H-pyrrolo[2,3-d]pyrimidin-2-yl, 2,3-dihydrothieno[2,3-b]pyridin-6-yl, S-oxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[2,3-b]pyridin-6-yl, quinazolin-2-yl, quinolin-2-yl, pyrrolo[2,3-b]pyridin-6-yl, oxazolo[4,5-b]pyridin-2-yl, 3-oxo-3,4-dihydropyrazin-2-yl, quinoxalin-2-yl, thiazol-4-yl, thiazol-5-yl, pyrimidin-5-yl, oxazolo[5,4-d]pyrimidin-2-yl, thieno[3,2-b]pyridin-5-yl, thieno[2,3-c]pyridin-5-yl, thiophen-2-yl, thiophen-3-yl, thiazolo[5,4-d]pyrimidin-5-yl, thieno[2,3-b]pyridin-6-yl, 2,3-dihydrofuro[2,3-b]pyridin-6-yl, 6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl, furo[3,2-c]pyridin-6-yl, 2,3-dihydrothieno[3,2-c]pyridin-6-yl, S-oxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, S,S-dioxo-2,3-dihydrothieno[3,2-c]pyridin-6-yl, thieno[3,2-c]pyridin-6-yl, and lH-pyrrolo[3,2-c]pyridin-6-yl; each of which is optionally substituted with 1, 2, 3, 4, 5, or 6 independently selected R1 groups;

each R1 is independently selected from fluoro, bromo, chloro, cyano, hydroxyl, methyl, trifluoromethyl, methoxy, isopropylamino, dimethylamino, methylthio, methylsulfinyl, and methylsulfonyl.

48. A compound according to any one of claims 1 and 9-47, having formula Ia:
or a pharmaceutically acceptable salt or N-oxide thereof.

49. A compound according to any one of claims 1 and 9-47, having formula Ib:

\[
\begin{align*}
\text{Ib} & \quad \text{or a pharmaceutically acceptable salt or N-oxide thereof.}
\end{align*}
\]

50. A compound according to any one of claims 1 and 9-47, having formula Ic:

\[
\begin{align*}
\text{Ic} & \quad \text{or a pharmaceutically acceptable salt or N-oxide thereof.}
\end{align*}
\]

51. A compound according to any one of claims 1 and 9-47, having formula Id:

\[
\begin{align*}
\text{Id} & \quad \text{or a pharmaceutically acceptable salt or N-oxide thereof.}
\end{align*}
\]

52. A compound according to any one of claims 1 and 9-47, having formula Ie:
53. A compound according to any one of claims 1 and 9-47, having formula If:

![Chemical structure](image)

or a pharmaceutically acceptable salt or N-oxide thereof.

54. A compound according to any one of claims 1 to 53, or a pharmaceutically acceptable salt or N-oxide thereof, wherein said Ar is optionally substituted with 1, 2, 3, or 4 independently selected R₁ groups.

55. A compound according to any one of claims 1 to 53, or a pharmaceutically acceptable salt or N-oxide thereof, wherein said Ar is optionally substituted with 1, 2, or 3 independently selected R₁ groups.

56. A compound according to any one of claims 1 to 53, or a pharmaceutically acceptable salt or N-oxide thereof, wherein said Ar is optionally substituted with 1 or 2 independently selected R₁ groups.

57. A compound according to claim 1, wherein said compound is selected from:

- 3-[1-(6-chloropyrazin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[(6-chloropyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(2-chloropyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(4-chloropyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(4-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[[4-(dimethylamino)pyrimidin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[[4-(isopropylamino)pyrimidin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[[4-(5-chloro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(1,3-oxazolo[4,5-c]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(1,3-oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(5-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(6-methyl[1,3]oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(6-fluoro[1,3]oxazolo[5,4-b]pyridin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]pyrrolidin-3-yl]-3-[1-(7H-pyrrolo[2,3-d]pyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(7-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(1,3-oxazolo[5,4-d]pyrimidin-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(5-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-1H-pyrazol-1-yl]propanenitrile;
3-[(4-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(7-fluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(5,7-difluoro-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(2-(methylthio)pyrimidin-4-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(2-(methylsulfinyl)pyrimidin-4-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(2-(methylsulfonyl)pyrimidin-4-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(2-(methylsulfonyl)pyridin-4-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(2-(methylsulfonyl)pyridin-4-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(1-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(1-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(1-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(1-oxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(6-chloro-4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-[(4-methyl-3-oxo-3,4-dihydropyrazin-2-yl)pyrrolidin-3-yl]-3-[(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl]propanenitrile;
3-chloro-2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)isonicotinonitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)pyridine-3,4-dicarbonitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)6-(methylthio)benzonitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)6-(methylsulfonyl)benzonitrile;
3-\{1-(8-chloroquinolin-2-yl)pyrrolidin-3-yl\}-3-\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}propanenitrile;
3-\{1-(3-hydroxyquinoxalin-2-yl)pyrrolidin-3-yl\}-3-\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}propanenitrile;
3-\{1-(8-chloroquinazolin-2-yl)pyrrolidin-3-yl\}-3-\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}propanenitrile;
3-\{1-(6-chloro-1-oxidopyridin-2-yl)pyrrolidin-3-yl\}-3-\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}propanenitrile;
3-\{1-(8-fluoroquinazolin-2-yl)pyrrolidin-3-yl\}-3-\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}propanenitrile;
3-\{1-(5-bromo-1,3-thiazol-2-yl)pyrrolidin-3-yl\}-3-\{4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl\}propanenitrile;
2-chloro-6-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)benzonitrile;
3-\{3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl\}phenanthronitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)4-(trifluoromethyl)nicotinonitrile;
3-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)pyrazine-2-carbonitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)benzonitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)6-methylbenzonitrile;
2-(3-\{2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl\}pyrrolidin-1-yl)6-fluorobenzonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-1-yl)-6-methoxybenzonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-1-yl)-6-(trifluoromethyl)benzonitrile;
2-bromo-6-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-1-yl)benzonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-1-yl)-3-fluorobenzonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-1-yl)-3,5,6-trifluorobenzonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-1-yl)nicotinonitrile;
3-chloro-5-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-
1-yl]ethyl}pyrrolidin-3-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)pyrrolidin-
1-yl]propanenitrile;
3-[1-(3,5,6-trifluoropyridin-2-yl)pyrrolidin-3-yl]pyrrolidin-1-yl)
propanenitrile,
or a pharmaceutically acceptable salt or N-oxide thereof.

58. A compound according to claim 1, wherein said compound is selected from:
5-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thieno[2,3-c]pyridine-4-carbonitrile;
5-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-b]pyridine-6-carbonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)-4-hydroxythiophene-3-carbonitrile;
4-bromo-2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile;
4-chloro-2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thiophene-3-carbonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thiophene-3,4-dicarbonitrile;
2-(3-{(IR)-2-fluoro-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thiophene-3,4-dicarbonitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-1-yl)thiophene-3,4-dicarbonitrile;
4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-1,3-thiazole-5-carbonitrile;
5-(3-{2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile;
4-(3-{l-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl)-2-cyanoethyl}pyrrolidin-1-yl)pyrimidine-5-carbonitrile;
4-(l-{2-fluoro-1-[l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyrrolo-6-yl]pyrrolidin-3-yl]ethyl}-lH-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine;
4-(1-{2-fluoro-1-[1-(5-fluoro-1,1-dioxido-2,3-dihydrothieno[2,3-b]pyrrolo-6-yl]pyrrolidin-3-yl]ethyl}-lH-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine;
3-[l-(5-fluoro-2,3-dihydrothieno[2,3-b]pyrrolo-6-yl]pyrrolidin-3-yl]ethyl)-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile;
lH-pyrazol-1-yl]propanenitrile;
3- [1-(6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]propanenitrile;
3- [4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-3-(l-(5-amino-6-chloro-3-fluoropyridin-2-yl]pyrrolidin-3-yl)propanenitrile;
N-(2-[(l-[(6-chloro-3-fluoro-5-(hydroxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-6-chloro-5-fluoropyridin-3-yl)formamide;
3- [1-(6-(ethylsulfonyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]propanenitrile;
3- [l-(6-chloro-3-fluoropyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]propanenitrile;
2-(3- (2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-5-fluoro-4-(methoxymethyl)nicotinonitrile;
2-(3- [2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-4-(methoxymethyl)nicotinonitrile;
4-(3-(l-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-2-cyanoethyl]pyrrolidin-1-yl)-6-methoxypyrimidine-5-carbonitrile;
3- [4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-3-(l-(6-(ethylsulfonyl)-3-fluoropyridin-2-yl]pyrrolidin-3-yl)propanenitrile;
2-(3- (1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-2-cyanoethyl]pyrrolidin-1-yl)-4-methylnicotinonitrile;
3- [1-(3,5-difluoro-4-(methoxymethyl)pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]propanenitrile;
3- [4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-3-[l-[l,3]thiazolo[5,4-d]pyrimidin-5-yl]pyrrolidin-3-yl]propanenitrile;
2-(3- [2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl]ethyl]pyrrolidin-1-yl)-4-(difluoromethyl)nicotinonitrile;
3- (4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-3-(l-(5-fluoro-2-methoxypyrimidin-4-yl)pyrrolidin-3-yl]propanenitrile;
3- (4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-3-(l-(3-amino-6-chloropyridin-2-yl]pyrrolidin-3-yl]propanenitrile;
4-(3- (1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-2-cyanoethyl]pyrrolidin-1-yl)pyridazine-3-carbonitrile;
6-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]lH-pyrazol-1-yl)-2-cyanoethyl]pyrrolidin-1-yl)pyridazine-3-carbonitrile;
1-yl)-5-fluoronicotinonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-methylnicotinonitrile;
4-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(difluoromethyl)pyrimidine-5-carbonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(difluoromethyl)benzonitrile;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-6-(methoxymethyl)benzonitrile;
4-(3-(1-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile;
2-(3-(1-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)nicotinonitrile;
3-(3-(1-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrrol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile;
4-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)pyridazine-3-carbonitrile;
3-(3-(2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)nicotinonitrile;
2-(3-(2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)nicotinonitrile;
4-(1-[(1,1-dioxido-2,3-dihydrothieno[2,3-b]pyridin-6-yl)pyrrolidin-3-yl]-2-fluoroethyl)-lH-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine;
2-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-fluoroethyl)pyrrolidin-1-yl)pyridine-3,4-dicarbonitrile;
3-(3-[(2-fluoro-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]nicotinonitrile;
2-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-4-iodonicotinonitrile;
2-chloro-4-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl]nicotinonitrile;
4-(3-[(2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile;
2-(3-(1-4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-5-fluoronicotinonitrile;
l-yl)pyridine-2,3-dicarbonitrile;
3-[(l-(2,6-dichloropyridin-3-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile;
5-(3-((2-fluoro-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-1,3-thiazole-4-carbonitrile;
2-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-4-(methylthio)nicotinonitrile;
2-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-4-(methylsulfonyl)nicotinonitrile;
3-((1-(3,5-difluoro-6-(methylthio)pyridin-2-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile;
3-((1-(3,5-difluoro-6-(methylsulfonyl)pyridin-2-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile;
3-(1-(3,5-difluoro-6-(2,2,2-trifluoroethyl)sulfonyl)pyridin-2-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile;
4-[(1-(1-(1-(3,5-difluoro-6-(methylsulfonyl)pyridin-2-yl)pyrrolidin-3-yl)-2-fluoroethyl)-1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine;
3-(1-(3-fluoro-6-(methylsulfonyl)pyridin-2-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile;
3-(1-(2,5-difluoro-6-(methylsulfonyl)pyridin-3-yl)pyrrolidin-3-yl)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile;
2-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-4-(1-fluoroethyl)nicotinonitrile;
3-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-6-(difluoromethyl)pyrazine-2-carbonitrile;
3-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-6-(2,2-difluoroethyl)pyrazine-2-carbonitrile;
3-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-6-(hydroxymethyl)pyrazine-2-carbonitrile;
3-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)-6-(methoxymethyl)pyrazine-2-carbonitrile;
6-bromo-3-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile;
3-(3-((2-cyano-1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)ethyl)pyrrolidin-1-yl)pyrazine-2-carbonitrile;
l-yl)-6-ethynylpyrazine-2-carbonitrile;
3-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-ethylypazine-2-carbonitrile;
3-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-methylpyrazine-2-carbonitrile;
3-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-6-methylpyrazine-2-carbonitrile;
3-fluoro-5-(3-{2-fluoro-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-
yl]ethyl}pyrrolidin-1-yl)pyridin-2-carbonitrile;
3-(1-[2-(ethylsulfonyl)pyridin-4-yl]pyrrolidin-3-yl)-3-(3-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)-1H-pyrrol-1-yl)propanenitrile;
5-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]ethyl}pyrrolidin-
1-yl)-1,3-thiazole-4-carbonitrile;
3-[1-(2-mercaptopyrimidin-4-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
H-pyrazol-1-yl]propanenitrile;
N-[4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-
yl]ethyl}pyrrolidin-1-yl]pyrimidin-2-yl]-N,N-dimethylsulfonamide;
4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-N-methylpyridine-2-carboxamide;
4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-N,N-dimethylpyridine-2-carboxamide;
4-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-N-phenylpyridine-2-carboxamide;
3-[l-(2,3-dihydrofuro[2,3-b]pyridin-6-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-3-(l-thieno[2,3-b]pyridin-6-
ylpyrrolidin-3-yl)propanenitrile;
3-[l-(7,7-difluoro-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl]pyrrolidin-3-yl]-3-[4-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile;
3-[l-(7-fluoro-1,3-benzoxazol-2-yl]pyrrolidin-3-yl]-3-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)-1H-pyrazol-1-yl]propanenitrile;
3-[l-(7-bromo-1,3-benzoxazol-2-yl]pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)-1H-pyrazol-1-yl]propanenitrile;
2-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]ethyl}pyrrolidin-
1-yl)-1,3-benzoxazole-7-carbonitrile;
3-[l-(7-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-IH-pyrazol-1-yl]propanenitrile;
3-[l-(7-methoxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-IH-pyrazol-1-yl]propanenitrile;
3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-IH-pyrazol-1-yl)-3-(l-(7-ethoxybenzo[d]oxazol-2-yl)pyrrolidin-3-yl)propanenitrile;
3-[l-(7-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-IHpyrazol-1-yl]propanenitrile;
3-[l-(7-methoxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-IH-pyrazol-1-yl]propanenitrile;
3-[l-(4-hydroxy-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-IH-pyrazol-1-yl]propanenitrile;
3-[l-(7-(hydroxymethyl)-1,3-benzoxazol-2-yl)pyrrolidin-3-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)]-IH-pyrazol-1-yl]propanenitrile;
6-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)furo[3,2-c]pyridine-7-carbonitrile;
6-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyror-1-yl]ethyl}pyrrolidin-1-yl)furo[3,2-c]pyridine-7-carbonitrile;
6-(3-{2-cyano-l-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyror-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide;
6-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide;
6-(3-{2-cyano-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile;
6-(3- {2-cyano-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrro-1-yl]ethyl}pyrrolidin-1-yl)-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile;
6-(3- {2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile;
6-(3- {2-cyano-1-[3-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrro-1-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile;
6-(3- {2-cyano-1-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl)thieno[3,2-c]pyridine-7-carbonitrile; and
6-{(3S)-3-{2-fluoro-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-1-yl]ethyl}pyrrolidin-1-yl}-2,3-dihydrothieno[3,2-c]pyridine-7-carbonitrile 1,1-dioxide,
or a pharmaceutically acceptable salt or N-oxide thereof.
59. The compound according to claim 1, wherein the compound is 6-(3-(1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-2-cyanoethyl)pyrrolidin-1-yl)-2-chloro-5-fluoronicotinonitrile, or a pharmaceutically acceptable salt or N-oxide thereof.

60. A salt selected from a trifluoroacetic acid salt and a phosphoric acid salt of the compound according to any one of claims 57-59.

61. A pharmaceutical composition, comprising a compound according to any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof, and a pharmaceutically acceptable carrier.

62. A method of modulating an activity of JAK1 comprising contacting JAK1 with a compound according to any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof.

63. A method according to claim 62, wherein said compound, or pharmaceutically acceptable salt or N-oxide thereof, is selective for JAK1 over JAK2.

64. A method of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, or organ transplant rejection in a patient in need thereof, comprising administering to said patient a therapeutically effective amount of a compound of any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof.

65. A method according to claim 64, wherein said autoimmune disease is a skin disorder, multiple sclerosis, rheumatoid arthritis, psoriatic arthritis, juvenile arthritis, type I diabetes, lupus, inflammatory bowel disease, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, or autoimmune thyroid disorder.

66. A method according to claim 64, wherein said autoimmune disease is rheumatoid arthritis.

67. A method according to claim 64, wherein said autoimmune diseases is a skin disorder.
68. A method according to claim 67, wherein said skin disorder is atopic dermatitis, psoriasis, skin sensitization, skin irritation, skin rash, contact dermatitis or allergic contact sensitization.

69. A method according to claim 64, wherein said cancer is a solid tumor.

70. A method according to claim 64, wherein said cancer is prostate cancer, renal cancer, hepatic cancer, breast cancer, lung cancer, thyroid cancer, Kaposi’s sarcoma, Castleman’s disease or pancreatic cancer.

71. A method according to claim 64, wherein said cancer is lymphoma, leukemia, or multiple myeloma.

72. A method according to claim 64, wherein said myeloproliferative disorder (MPD) is polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM), primary myelofibrosis (PMF), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), idiopathic myelofibrosis (IMF), or systemic mast cell disease (SMCD).

73. A method according to claim 64, wherein said myeloproliferative disorder is myelofibrosis.

74. A method according to claim 64, wherein said myeloproliferative disorder is primary myelofibrosis (PMF).

75. A compound according to any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof, for use in a method of modulating a JAK1.

76. A compound according to any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof, for use in a method of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, or organ transplant rejection.

77. Use of a compound according to any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof, for the preparation of a medicament for use in a method of modulating a JAK1.
78. Use of a compound according to any one of claims 1 to 60, or a pharmaceutically acceptable salt or N-oxide thereof, for preparation of a medicament for use in a method of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, or organ transplant rejection.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61P35/00 A61K31/519 C07D487/04
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 99/65909 A1 (PFIZER PROD INC [US]; BLUMENKOPF TODD ANDREW [US]; FLANAGAN MARK EDWAR) 23 December 1999 (1999-12-23) claim 1</td>
<td>1-78</td>
</tr>
</tbody>
</table>

D. Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) or which is considered to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'Ip' document published posterior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents such combination being obvious to a person skilled in the art

'&' document member of the same patent family

Date of the actual completion of the international search

17 August 2010

Date of mailing of the international search report

23/08/2010

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
NL.- 2280 HV Rijswijk
Tel (+31-70) 345-2040
Fax (+31-70) 340-3016

Authorized officer

Lewis, Sara

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo 2007117494</td>
<td>18-10-2007</td>
<td>AU 2007235487</td>
<td>18-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2648250</td>
<td>18-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101460499</td>
<td>17-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2001884</td>
<td>17-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009532475</td>
<td>10-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090018895</td>
<td>24-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009227607</td>
<td>10-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009088445</td>
<td>02-04-2009</td>
</tr>
<tr>
<td>wo 2007070514</td>
<td>21-06-2007</td>
<td>AR 057995</td>
<td>09-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006326548</td>
<td>21-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2632466</td>
<td>21-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200870048</td>
<td>27-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP088540</td>
<td>30-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1966202</td>
<td>10-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009519340</td>
<td>14-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080079677</td>
<td>01-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010022522</td>
<td>28-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007135461</td>
<td>14-06-2007</td>
</tr>
<tr>
<td>wo 9965909</td>
<td>23-12-1999</td>
<td>AP 1157</td>
<td>30-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 270673</td>
<td>15-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 758427</td>
<td>20-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4054599</td>
<td>05-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 65063</td>
<td>31-01-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 105122</td>
<td>31-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9912171</td>
<td>10-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2335186</td>
<td>23-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1305479</td>
<td>25-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5320601</td>
<td>30-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20004726</td>
<td>13-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69918552</td>
<td>12-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69918552 T2</td>
<td>04-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1087971 T3</td>
<td>11-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG 23758</td>
<td>08-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1087971</td>
<td>04-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2223172 T3</td>
<td>16-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1036800</td>
<td>27-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 20000886 A2</td>
<td>31-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0103472 A2</td>
<td>28-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID 27595</td>
<td>12-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS 5721</td>
<td>21-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS 5722</td>
<td>21-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3497823 B2</td>
<td>16-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002518394 T</td>
<td>25-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 26653</td>
<td>20-12-2004</td>
</tr>
<tr>
<td>wo 9965909</td>
<td></td>
<td>NO 20006454 A</td>
<td>15-02-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 508034 A</td>
<td>28-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA 11571 A</td>
<td>01-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA 8474101 A</td>
<td>29-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 345118 A</td>
<td>03-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1087971 E</td>
<td>29-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 18992000 A3</td>
<td>06-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 200003720 T2</td>
<td>21-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 542834 B</td>
<td>21-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 63013 C2</td>
<td>15-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9904003 A</td>
<td>18-12-2000</td>
</tr>
</tbody>
</table>

Form POT/ISA/210 (patent family annex) (April 2005)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
</table>

Form POT/ISA/210 (patent family annex) (April 2005)