
(21) Internationales Aktenzeichen: PCT/EP98/04244
(22) Internationales Anmeldedatum: 8. Juli 1998 (08.07.98)
(30) Prioritätsdaten: 197 30 649.7 17. Juli 1997 (17.07.97) DE
(72) Erfinder; und

(54) Titel: DETERGENT MIXTURES CONTAINING ESTER QUATS, CHITOSANE AND/OR CHITOSANE DERIVATIVES AND PROTEIN HYDROLYZATES
(54) Bezeichnung: DETERGENTGEMISCHES ENTHALTEND ESTERQUATS, CHITOSAN UND/ODER CHITOSANERIVATE UND PROTEINHYDROLYSATE
(57) Abstract
The invention relates to novel detergent mixtures containing a) ester quats, b) chitosane and/or chitosane derivatives and c) protein hydrolyzates, and optionally, d) alkyl and/or alkenyloligoglycosides and/or e) betaine. The inventive preparations are extremely gentle on skin, are characterised by excellent cleaning properties, make both synthetic and natural fibres extremely soft to touch, reduce electrostatic charge and promote re-wettability.
(57) Zusammenfassung
Vorgeschlagen werden neue Detergentgemische, enthaltend (a) Esterquats, (b) Chitosan und/oder Chitosanderivate und (c) Proteinhydrolysate sowie gegebenenfalls (d) Alkyl- und/oder Alkenyloligoglykoside und/oder (e) Betaine. Die Zubereitungen sind ausgesprochen hautmild, zeichnen sich durch ein ausgezeichnetes Reinigungseigenschaften aus und verleihen synthetischen wie natürlichen Fasern einen ausgezeichneten Weichgriff, setzen die elektrostatische Aufladung herab und fördern die Wiederbenetzbarkeit.
<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>ES</td>
<td>Spanien</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slowenien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
<td>Litauen</td>
<td>SK</td>
<td>Slowakei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
<td>Luxemburg</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Gabun</td>
<td>LY</td>
<td>Lettland</td>
<td>SZ</td>
<td>Swasiland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Tschad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
<td>MD</td>
<td>Republik Moldau</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagaskar</td>
<td>TJ</td>
<td>Tadschikistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Macedonien</td>
<td>TR</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>MN</td>
<td>Mongolei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>MR</td>
<td>Mauritaniens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Irland</td>
<td>MX</td>
<td>Mexiko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
<td>NE</td>
<td>Niger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Niederlande</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KE</td>
<td>Kenia</td>
<td>NO</td>
<td>Norwegen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>NZ</td>
<td>Neuseeland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>PL</td>
<td>Polen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KR</td>
<td>Republik Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>RO</td>
<td>Rumänien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LC</td>
<td>St. Lucia</td>
<td>RU</td>
<td>Russische Föderation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Schweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td></td>
</tr>
</tbody>
</table>

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.
DETERGENSEGEMISCHE ENTHALTEND ESTERQUATS, CHITOSAN UND/ODER CHITOSANDERIVATE UND PROTEINHYDROLYSATE

Gebiet der Erfindung

Die Erfindung betrifft Detergensegemische mit einem Gehalt an Esterquats, Chitosanen und Proteinhydrolysaten sowie gegebenenfalls Alkylglykosiden und/oder Betainen sowie die Verwendung der Gemische zur Herstellung von oberflächenaktiven Mitteln.

Stand der Technik

Aus dem Stand der Technik sind eine Vielzahl von Tensidmischungen bekannt, die Einsatz in den unterschiedlichsten Gebieten finden. Im Bereich der Waschmittelrohstoffe und Kosmetika gibt es jedoch ein gleichartiges Bedürfnis nach möglichst konzentrierten Tensidvorgemischen, die sich durch gute Reinigungs- und Avivageigenschaften auszeichnen, wobei dies einmal synthetische Fasern, also Textilien und deren Vorprodukte, und zum anderen natürliche (Keratin-)Fasern, also menschliches Haar betrifft. Eine weitere Forderung besteht darin, daß die Produkte über eine optimale Hautverträglichkeit verfügen, so daß die Gefahr, daß selbst besonders sensibilisierte Verbraucher entweder im direkten Umgang oder indirekt über den Kontakt mit der behandelten Faser Hautirritationen erleiden, praktisch ausgeschlossen ist.

Die komplexe Aufgabe der Erfindung hat demnach darin bestanden, neue Detergensegemische sowohl für die Waschmittel- als auch für die Kosmetikindustrie zur Verfügung zu stellen, die sich gleichzeitig durch eine besonders hohe Hautverträglichkeit, ein gutes Haut- und Textilreinigungs- und Wiederbenutzungsvermögen sowie ausgezeichnete Avivageigenschaften für synthetische und natürliche Fasern auszeichnen sollten.
Beschreibung der Erfindung

Gegenstand der Erfindung sind Detergensgemische, enthaltend

(a) Esterquats,
(b) Chitosan und/oder Chitosanderivate und
(c) Proteinhydrolysate.

Überraschenderweise wurde gefunden, daß die erfindungsgemäßen Detergensgemische nicht nur besonders gut hautverträglich sind, sondern zudem über ein besonders hohes Reinigungsvermögen sowohl für Textilien als auch für Haut und Haare verfügen. Textilien wie Haaren verleihen sie ferner nicht nur einen angenehmen Weichgriff, sie erniedrigen auch die statische Aufladung zwischen den Fasern.

Esterquats

Die quaternierten Fettsäuretriethanolaminestersalze folgen der Formel (I),

\[
[R^4 \frac{1}{n}[OCH_2CH_2)_mOCH_2CH_2N^+CH_2CH_2O-(CH_2CH_2O)_2R^2]X^- \frac{1}{n}CH_2CH_2O(CH_2CH_2O)_nR^3
\]

in der R¹CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R² und R³ unabhängig voneinander für Wasserstoff oder R¹CO, R⁴ für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine \((CH_2CH_2O)_nH-\)
Gruppe, m, n und p in Summe für 0 oder Zahlen von 1 bis 12, q für Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprin- säure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische C_{12/18}-Kokosfettsäuren und insbesondere teilgehärtete C_{16/18}-Talg- bzw. Palmfettsäuren sowie elaidinsäure-reiche C_{16/18}-Fettsäureschnitte eingesetzt. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestern mit einem durchschnittlichen Veresterungsgrad von 1,5 bis 1,9 dar und leiten sich von technischer C_{16/18}-Talg- bzw. Palmfettsäure (Iodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriethanolaminestersalze der Formel (I) als besonders vorteilhaft erwiesen, in der R^1CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R^2 für R^1CO, R^3 für Wasserstoff, R^4 für eine Methylgruppe, m, n und p für 0 und X für Methylylsulfat steht.

Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (II) in Betracht,

\[
\begin{align*}
\text{R}^4 & \quad [\text{R}^1\text{CO}-(\text{OCH}_2\text{CH}_2)_m\text{OCH}_2\text{CH}_2\text{N}^+\text{CH}_2\text{CH}_2\text{O}-(\text{CH}_2\text{CH}_2\text{O})_n\text{R}^2]^- \\
\text{R}^5 & \quad \text{X}^{-}
\end{align*}
\]

(II)

in der R^1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 für Wasserstoff oder R^1CO, R^4 und R^5 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (III) zu nennen,
in der R^1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 für Wasserstoff oder R^1CO, R^4, R^6
und R^7 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0
oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

Hinsichtlich der Auswahl der bevorzugten Fettsäuren und des optimalen Veresterungsgrades gelten die
für (I) genannten Beispiele auch für die Esterquats der Formeln (II) und (III). Üblicherweise gelangen
die Esterquats in Form 50 bis 90 Gew.-%iger alkoholischer Lösungen in den Handel, die bei Bedarf
problemlos mit Wasser verdünnt werden können. Es ist ferner ebenfalls möglich, die Esterquats
zusammen mit Fetalkoholen in Form von Schuppen einzusetzen, wie dies beispielsweise in der
Deutschen Patentschrift DE-C1 4308794 (Henkel) beschrieben wird.

Chitosane und Chitosanderivate

Chitosane (Komponente b) stellen Biopolymere dar und werden zur Gruppe der Hydrokolloide gezählt.
Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine unterschiedlichen Molekulargewich
tes, die den folgenden - idealisierten - Monomerbaustein enthalten:

![Chitosan Molekülstruktur](image)

Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen
sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen
Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden
deraus in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen

Proteinhydrolysate

Alkyl- und/oder Alkenyloligoglykoside

In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Detergengemische weiterhin als Komponente (d) Alkyl- und Alkenyloligoglykoside, die der Formel (IV) folgen,

\[\text{R}^8 \text{O-}[\text{G}]_p \quad (\text{IV}) \]

Betaine

\[\text{R}^{10} \]
\[\text{R}^{9}-\text{N}-(\text{CH}_2)_n\text{COO}X \]
\[\text{R}^{11} \]

in der R\text{R} für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R\text{R} für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R\text{R} für Alkylreste mit 1 bis 4 Kohlenstoffatomen, n für Zahlen von 1 bis 6 und X für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, De- cetyltrimethylamin, Dodecylmethylamin, Dodecyltrimethylamin, Dodecyldimethylamin, C\text{R}2\text{R}4-Kokosalkyldimethylamin, Myristyldimethylamin, Cetyltrimethylamin, Stearyltrimethylamin, Stearyldimethylamin, Oleylmethylamin, C\text{R}1\text{R}8-Talgalkyltrimethylamin sowie deren technische Gemische.

Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (VI) folgen,

\[\text{R}^{10} \]
\[\text{R}^{12}\text{CO-NH-(CH}_2)_m-N-(\text{CH}_2)_n\text{COO}X \]
\[\text{R}^{11} \]

Detergengemische

In einer bevorzugten Ausführungsform der Erfindung werden die Detergengemische in Form von wässrigen Zubereitungen mit einem Feststoffgehalt im Bereich von 15 bis 70, vorzugsweise 25 bis 50 und insbesondere 35 bis 45 Gew.-% eingesetzt. Bezogen auf den Feststoffgehalt können die Gemische die Komponenten (a) bis (e) in den folgenden Mengen enthalten:

(a) 10 bis 60, vorzugsweise 20 bis 40 Gew.-% Esterquats,
(b) 1 bis 10, vorzugsweise 2 bis 5 Gew.-% Chitosan und/oder Chitosanderivate,
(c) 10 bis 30, vorzugsweise 5 bis 20 Gew.-% Proteinhydrolysate,
(d) 0 bis 25, vorzugsweise 5 bis 20 Gew.-% Alkyl- und/oder Alkenyloligoglykoside und
(e) 0 bis 25, vorzugsweise 5 bis 20 Gew.-% Betaine,

mit der Maßgabe, daß sich die Gewichtsangaben jeweils zu 100 Gew.-% ergänzen.

Gewerbliche Anwendbarkeit

Wasch-, Spül- und Reinigungsmittel

Als Verdickungsmittel können beispielsweise gehärtetes Rizinusöl, Salze von langkettigen Fett säuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt werden. Zu den letzten gehören bevorzugt Polyvinylpyrrolidon, Urethane und die Salze polymerer Polycarboxylate, beispielsweise homopolymerer oder copolymerer Polyacrylate, Polyethacrylate und insbesondere Copolymere der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 bis 10% Maleinsäure. Die relative Molekülmasse der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, die der Copolymere zwischen 2000 und 200000, vorzugsweise zwischen 50000 bis 120000, bezogen auf die freie Säure. Insbesondere sind auch wasserlösliche Polyacrylate geeignet, die beispielsweise mit etwa 1% eines Polyallylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb 1000000 besitzen Beispiele hierfür sind unter dem Namen Carbopol® 940 und 941 erhältliche Polymere. Die quervernetzten Polyacrylate werden vorzugsweise in Mengen nicht über 1 Gew.-% besonders bevorzugt in Mengen von 0,2 bis 0,7 Gew.-% eingesetzt.
Als **Enzyme** kommen solche aus der Klasse der Proteasen, Lipase, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentes gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.

Zusätzlich zu mono- und polyfunktionellen Alkoholen und Phosphonaten können die Mittel weitere **Enzymstabilisatoren** enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (\(\text{H}_3\text{BO}_3\)), der Metaborsäure (\(\text{HBO}_2\)) und der Pyroborsäure (Tetrabor säure \(\text{H}_2\text{B}_4\text{O}_7\)).

Beim Einsatz im maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche **Schaumhinderntoren** zuzusetzen. Geeignete Schaumhinderntoren enthalten beispielsweise bekannte Organopolysiloxane, Paraffine oder Wachse.

Kosmetische Zubereitungen

Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche **Tenside** sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, Ethercarbonsäuren, Fettsäureglucamide, und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.

Als **Ölkörper** kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen \(\text{C}_6\text{-C}_{22}\)-Fettsäuren mit linearen \(\text{C}_6\text{-C}_{22}\)-

Als *Emulgatoren* kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:

1. Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
2. C₁₂/₁₈-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
3. Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
4. Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinöl;
6. Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
7. Paratlester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C₆₂₂-Fettsäuren, Ricinolsäure sowie 12-Hydroxysearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipenta erythrit, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucoside (z.B. Cellulose);
8. Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate;
9. Wollwachsalkohole;
10. Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
11. Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin sowie

Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxyierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

Als Perliglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenlycoldistearat; Fettsäurealkanolamide, speziell Kocosfettsäuredezanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxyxsubstituierten Carbon säuren mit Fettalkoholen mit 8 bis 22 Kohlenstoffatomen, speziell langkettige Esters der Weinsäure; Fetttöne, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxidien mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen; sowie deren Mischungen.

Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. ein quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymer von Diallylammoniumsalzen und Acrylamiden, quaternierte
Vinylpyrrolidon/Vinylimidazol-Polymere wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide wie beispielsweise Laurylidonium hydroxypropyl hydrolyzed collagen (Lamequat®/L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymerien wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropylidethylentriamin (Caretretine®/Sandoz), Copolymere der Acrylsäure mit Dimethylallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide wie z.B. beschrieben in der FR-A 2252840 sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen wie z.B. Dibrombutan mit Bisalkylaminen wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Celanese, quaternierte Ammoniumsalz-Polymere wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Miranol.

Unter UV-Lichtschutzfiltern sind organische Substanzen zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Typische Beispiele sind 4-Aminobenzoesäure sowie ihre Ester und Derivate (z.B. 2-Ethylhexyl-p-dimethylaminobenzooat oder p-Dimethylaminobenzoesäureoctylester), Methoxyzimtsäure und ihre Derivate (z.B. 4-Methoxyzimtsäure-2-ethylhexylester), Benzophenone (z.B. Oxybenzon, 2-Hydroxy-4-methoxybenzophenon), Dibenzoylmethane, Saliylatester, 2-Phenylbenzimidazol-5-sulfonsäure, 1,4-tetrahydro-3-(4'-methoxyphenyl)-propan-1,3-dion, 3-(4',Methylbenzyldenbornan-2-on, Methylbenzyldencamphery und dergleichen. Weiterhin kommen für diesen Zweck auch
feindisperse Metalloxide bzw. Salze in Frage, wie beispielsweise Titandioxid, Zinkoxid, Eisenoxid, Aluminiumoxid, Ceroxid, Zirkoniumoxid, Silicate (Talk) und Bariumsulfat. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsöide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Tocopherole (Vitamin E) und Ascorbinsäure (Vitamin C).

Zur Verbesserung des Fließverhaltens können ferner Hydrotrope wie beispielsweise Ethanol, Isopropanolalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind

- Glycerin;
- Alkyglycole wie beispielsweise Ethyglycol, Diethyglycol, Propyglycol, Butyglycol, Hexyglycol sowie Polyethyglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
- technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylopropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
- Niedrigalkylglycoside, insbesondere solche, mit 1 bis 8 Kohlenstoffen im Alkyrest wie beispielsweise Methyl- und Butylglycosid;
- Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Sorbit oder Mannit,
- Zucker mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Glucose oder Saccharose;
- Aminozucker wie beispielsweise Glucamin.

Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlosung, Parabene, Pentandiol oder Sorbinsäure. Als Insekten-Repellentien kommen N,N-Diethyl-m-touluidid, 1,2-Pentandiol oder Insect repellent 3535 in Frage, als Selbstbrüäuer eignet sich Dihydroxyaceton.

Als Parfümöl seien genannt die Extrakte von Blüten (Lavendel, Rosen, Jasmin, Neroli), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamom, Costus, Iris, Calmus), Hölzern (Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen
(Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Moschus, Zibet und Castoreum. Als synthetische bzw. halbsynthetische Parfümöle kommen Ambroxan, Eugenol, Isoeugenol, Citronellal, Hydroxycitronellal, Geraniol, Citronellol, Geranylacetat, Citral, Ionon und Methylikon in Betracht.

Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstockkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele

Zur Bestimmung des **Reinigungsvermögens** wurde verschmutztes Baumwollgewebe (Anschmutzung: Staub/Hautfett) im Lauder-o-meter bei 60°C mit 1 g der Zubereitungen und 1 g Zeolith A gewaschen und der Weißgrad (%-Remission) photometrisch gegen Bariumsulfat als Standard bestimmt.

Die Beurteilung des **Weichgriffs** erfolgte durch ein Panel von 6 geschulten Personen, die die gewaschenen Baumwollgewebe auf einer Skala von (1) = sehr weich bis (4) = hart bewerteten.

Die **Hydropophilie**, d.h. Wiederbenetzbarkeit der Gewebe, wurde im bekannten Steighöhenentest nach DIN 53924 bestimmt, bei dem man Streifen des Baumwollgewebes von 1 cm Breite in Wasser eintaucht und die Höhe mißt, auf die das Wasser aufgrund der Kapillarkräfte in dem Gewebe innerhalb von 1 min steigt; je größer die Steighöhe um so höher ist auch die Hydropophilie des Gewebes.

Die **Naßkämmbarkeit** wurde an braunem Haar (Alkinco #6634, Strähnenlänge 12 cm, Strähnenmasse 1 g) untersucht. Nach der Nullmessung wurden die Strähnen mit 1000 ml der Formulierungen getränkt. Nach einer Einwirkzeit von 5 min wurden die Strähnen 1 min unter fließendem Wasser (1 l/min 38°C) ausgespült. Die Strähnen wurden erneut vermessen und mit der Nullmessung verglichen. Der Fehler bei den Messungen betrug im Mittel 2 %, die statistische Sicherheit lag bei 99 %.

Die Ergebnisse sind in Tabelle 1 zusammengefaßt. Die Beispiele 1 bis 8 sind erfindungsgemäß, die Beispiele V1 und V2 dienen zum Vergleich.
Tabelle 1
Zusammensetzung und Performance von Detergengemischen

<table>
<thead>
<tr>
<th>Zusammensetzung / Performance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esterquat*</td>
<td>35</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distearyldimethylammonium</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>chloride</td>
<td></td>
</tr>
<tr>
<td>Chitosan</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Succinyliertes Chitosan</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wheat Protein Hydrolysate</td>
<td>14</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Coco Glucosides</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Cocamidopropyl Betaine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>10</td>
<td>-</td>
<td>20</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ad</td>
<td>100</td>
</tr>
<tr>
<td>Reizsummenscore [%-rel]</td>
<td>85</td>
<td>88</td>
<td>76</td>
<td>78</td>
<td>68</td>
<td>77</td>
<td>79</td>
<td>69</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Weißgrad [%-Rem]</td>
<td>59,7</td>
<td>60,1</td>
<td>75,8</td>
<td>76,5</td>
<td>78,2</td>
<td>74,4</td>
<td>75,0</td>
<td>73,9</td>
<td>52,5</td>
<td>66,8</td>
</tr>
<tr>
<td>Weichgriff</td>
<td>1,5</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Hydrophilie [mm]</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Naßkämmbarkeit [mV]</td>
<td>44,3</td>
<td>45,7</td>
<td>50,1</td>
<td>51,0</td>
<td>49,8</td>
<td>49,7</td>
<td>49,5</td>
<td>50,0</td>
<td>36,1</td>
<td>37,0</td>
</tr>
</tbody>
</table>

*) Methylquaternierter Dipalmitfettsäuretriethanolaminester, Methyisulfat-Salz
Patentansprüche

1. Detergensgemische, enthaltend
 (a) Esterquats,
 (b) Chitosan und/oder Chitosanderivate und
 (c) Proteinhydrolysate.

2. Detergensgemische nach Anspruch 1, **dadurch gekennzeichnet**, daß sie Esterquats der Formel (I) enthalten,

 \[
 [R^4\text{CO}-(OCH}_2\text{CH}_2)_m\text{OCH}_2\text{CH}_2\text{N}^-\text{CH}_2\text{CH}_2\text{O}-(\text{CH}_2\text{CH}_2\text{O})_n\text{R}^2]^- \times \text{X}^-
 \]

 in der R^4CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 und R^3 unabhängig voneinander für Wasserstoff oder R^1CO, R^4 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH_2_CH_2_O__H-Gruppe, m, n und p in Summe für 0 oder Zahlen von 1 bis 12, q für Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

3. Detergensgemische nach Anspruch 1, **dadurch gekennzeichnet**, daß sie Esterquats der Formel (II) enthalten,

 \[
 [R^4\text{CO}-(OCH}_2\text{CH}_2)_m\text{OCH}_2\text{CH}_2\text{N}^-\text{CH}_2\text{CH}_2\text{O}-(\text{CH}_2\text{CH}_2\text{O})_n\text{R}^2]^- \times \text{X}^-
 \]

 in der R^4CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^2 für Wasserstoff oder R^1CO, R^4 und R^5 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.
4. Detergensgemische nach Anspruch 1, **dadurch gekennzeichnet**, daß sie Esterquats der Formel (III) enthalten,

\[
\begin{align*}
R^6 & \quad O-(\text{CH}_2\text{CH}_2\text{O})_m\text{OCR}^1 \\
[\text{R}^4\text{N}^+\text{CH}_2\text{CH}_2\text{O}-(\text{CH}_2\text{CH}_2\text{O})_n\text{R}^2]^{-} \quad \text{X}^- \\
R^7 &
\end{align*}
\]

(III)

in der \(R^1\text{CO}\) für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, \(R^2\) für Wasserstoff oder \(R^1\text{CO}\), \(R^4\), \(R^6\) und \(R^7\) unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.

5. Detergensgemische nach den Ansprüchen 1 bis 4, **dadurch gekennzeichnet**, daß sie Chitosan und/oder Chitosanderivate enthalten, die ein durchschnittliches Molekulargewicht von 800.000 bis 1.200.000 Dalton, eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% aufweisen.

6. Detergensgemische nach den Ansprüchen 1 bis 5, **dadurch gekennzeichnet**, daß sie pflanzliche Proteinhydrolysate enthalten.

7. Detergensgemische nach den Ansprüchen 1 bis 6, **dadurch gekennzeichnet**, daß sie weiterhin Alkyl- und Alkenyloligoglykoside der Formel (IV) enthalten,

\[
R^8\text{O-}[\text{G}]_p
\]

(IV)

in der \(R^8\) für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht.

8. Detergensgemische nach den Ansprüchen 1 bis 7, **dadurch gekennzeichnet**, daß sie Betaine der Formel (V) enthalten,

\[
\begin{align*}
R^10 \\
\quad \quad | \\
R^9\text{-N}\{(\text{CH}_2)_n\text{COO}\text{X}} \\
\quad \quad | \\
R^{11}
\end{align*}
\]

(V)
in der R^0 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R^{10} für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R^{11} für Alkylreste mit 1 bis 4 Kohlenstoffatomen, n für Zahlen von 1 bis 6 und X für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht.

9. Detergensgemische nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß sie Betaine der Formel (VI) enthalten,

$$
\begin{align*}
R^{10} \\
R^{12}\text{CO-NH}-(\text{CH}_2)_m\text{-N-(CH}_2)_n\text{COOX} \\
R^{11}
\end{align*}
$$

(VI)

in der $R^{12}\text{CO}$ für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, m für Zahlen von 1 bis 3 steht und R^{10}, R^{11}, n und X die oben angegebenen Bedeutungen haben.

INTERNATIONAL SEARCH REPORT

International Application No: PCT/EP 98/04244

A. CLASSIFICATION OF SUBJECT MATTER
- C11D3/382

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
- Minimum documentation searched (classification system followed by classification symbols)
 - IPC 6 C11D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 97 18033 A (HENKEL) 22 May 1997 see page 6, paragraph 2 see page 8, paragraph 3 see page 9, paragraph 2; claim 3</td>
<td>1, 7, 8, 10</td>
</tr>
<tr>
<td>A</td>
<td>WO 94 16677 A (HENKEL) 4 August 1994 see claim 4</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>P,A</td>
<td>DE 196 04 180 A (HENKEL) 7 August 1997 see page 3, line 35-38; claim 8</td>
<td>1, 7</td>
</tr>
<tr>
<td>A</td>
<td>WO 97 06780 A (HENKEL) 27 February 1997 see claims 1,7</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>WO 95 05802 A (HENKEL) 2 March 1995 see claims 1,6</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation box C. Patent family members are listed in annex.

- * Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other reason
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search: 7 December 1998

Date of mailing of the international search report: 22/12/1998

Name and mailing address of the ISA:
European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk
Tel.: (+31-70) 340-3040, Tx.: 31 651 epo nl, Fax: (+31-70) 340-3018

Authorized officer: Van Bellingen, I
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 19636039 A</td>
<td>12-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7565896 A</td>
<td>05-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2210345 A</td>
<td>22-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1168107 A</td>
<td>17-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 29520746 U</td>
<td>04-04-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0804280 A</td>
<td>05-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 320734 A</td>
<td>27-10-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5795978 A</td>
<td>18-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4305726 A</td>
<td>01-09-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 9317968 U</td>
<td>17-02-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59402667 D</td>
<td>12-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9416668 A</td>
<td>04-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0680314 A</td>
<td>08-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0680313 A</td>
<td>08-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2102822 T</td>
<td>01-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8510442 T</td>
<td>05-11-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8505636 T</td>
<td>18-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5656200 A</td>
<td>12-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9221503 A</td>
<td>26-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0844867 A</td>
<td>03-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0714288 A</td>
<td>05-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9501684 T</td>
<td>18-02-1997</td>
</tr>
</tbody>
</table>
A. Klassifizierung des Anmelddingegenstandes

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. Recherchierte Gebiete

- Recherchiertes Mindestprüfstoßen (Klassifikationssystem und Klassifikationssymbole)
 - IPK 6 C11D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. Als wesentlich angesehene Unterlagen

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 97 18033 A (HENKEL) 22. Mai 1997 siehe Seite 6, Absatz 2 siehe Seite 8, Absatz 3 siehe Seite 9, Absatz 2; Anspruch 3</td>
<td>1, 7, 8, 10</td>
</tr>
<tr>
<td>A</td>
<td>WO 94 16677 A (HENKEL) 4. August 1994 siehe Anspruch 4</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>P, A</td>
<td>DE 196 04 180 A (HENKEL) 7. August 1997 siehe Seite 3, Zeile 35-38; Anspruch 8</td>
<td>1, 7</td>
</tr>
<tr>
<td>A</td>
<td>WO 97 06780 A (HENKEL) 27. Februar 1997 siehe Ansprüche 1, 7</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>WO 95 05802 A (HENKEL) 2. März 1995 siehe Ansprüche 1, 6</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind in der Fortsetzung von Feld C zu entnehmen

Datum des Abschlusses der internationalen Recherche

7. Dezember 1998

AbsendeDatum des internationalen Recherchenberichts

22/12/1998

Name und Postanschrift der Internationalen Recherchenbehörde

- Europäisches Patentamt, P. B. 5819 Patentlaan 2
- NL - 2280 HV Rijswijk
- Tel. (+31-70) 340-2040, Tx. 31 651 epos nl
- Fax: (+31-70) 340-3016

Bevollmächtigter Beisatz

- Van Bellingen, I
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 19636039 A</td>
<td>12-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7565896 A</td>
<td>05-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2210345 A</td>
<td>22-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1168107 A</td>
<td>17-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 29520746 U</td>
<td>04-04-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0804280 A</td>
<td>05-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 320734 A</td>
<td>27-10-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5795978 A</td>
<td>18-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4305726 A</td>
<td>01-09-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 9317968 U</td>
<td>17-02-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59402667 D</td>
<td>12-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9416668 A</td>
<td>04-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0680314 A</td>
<td>08-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0680313 A</td>
<td>08-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2102822 T</td>
<td>01-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8510442 T</td>
<td>05-11-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8505636 T</td>
<td>18-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5656200 A</td>
<td>12-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9221503 A</td>
<td>26-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0844867 A</td>
<td>03-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0714288 A</td>
<td>05-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9501684 T</td>
<td>18-02-1997</td>
</tr>
</tbody>
</table>