The invention is about a modular foldable brick that enables architectural elements such as stacked walls, arches, corners, doors, windows and wall niches to be constructed at indoor and outdoor conditions that divides, restricts and secures a certain space; Due to the possibility of folding the storing and carrying of this brick is possible at a minimum weight. The brick is connectable within itself and also attachable to others for constructing architectural elements as wall building systems. The foldable brick provides a foldable brick body that forms the outer walls and an inner wall being formed with three techniques; connecting/fixing (A-B groups) /encircling (C group). All three techniques are related to the forming of the detachable wall building system's entity unit foldable and sustainable brick. All these three techniques are used simultaneously.

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
DESCRIPTION

FOLDABLE BRICK WITH ROPE ATTACHMENTS AND DETACHABLE WALL BUILDING SYSTEM

TECHNICAL AREA
The invention is about a modular foldable brick which is only assembled with ropes that enables architectural elements such as stacked walls, arches, corners, doors, windows and wall niches to be constructed at indoor and outdoor conditions that divides, restricts and secures a certain space or area; storing and carrying this brick at a minimum weight, which is both connectable within itself and attachable for constructing architectural elements as a wall building system. This invention is about a stacked wall building system that is based on interlocking and fitting units and a brick unit having a height and volume reaching up to the arithmetical sum of the thickness of the material it is made of, that is self-folding which ensures a personal freedom for customizing the features of an architectural structure, having no size, volume, space and area restrictions, consisting of a single and completely detachable parts.

TECHNICAL PROBLEMS AIMED TO BE SOLVED WITH THIS INVENTION, PRIOR ART
The invention consists of a foldable brick, which has two large and one narrow chambers inside when the first brick unit is installed, that has been designed and manufactured with optimal lightweight materials, can be interlocked and can be fitted side by side and on top of each other and can be installed without requiring any tools and equipment; front and rear walls of the brick which have been attached with a high strength rope -the visible surfaces of these walls can be optionally coated- and interlocking elements that enables the assembly, fitting and interconnection of the bricks. The foldable brick, can be installed, removed, folded and re-installed over and over again on numerous occasions without using and tools and equipment. Thanks to the rope attached internal connection structure, the volume of the chamber comprised inside the foldable brick unit disappears during storage and transportation. This system can be installed without
requiring a special skill within an overall architectural space, this allows individuals to remodel their own spaces, to reconstruct in a different shape and form or for a different function and make additions/extensions. As the same elements can be used again, materials as in conventional methods, do not become rubble and discarded.

Foldable brick, thanks to the improved rope connection system, is quite lightweight and flexible as it is made of very light material; can be folded or be stacked in many different ways. In the making of foldable brick, no connection elements such as metal or plastic-based screws, nails etc. are being used; therefore the materials and techniques used in the manufacturing of this unit are completely recyclable. Foldable brick, being an invention which is completely outside of the traditional approach regarding issues such as storage, storing, transportation, installation, cost, structure, sustainability, maintenance, resistance, hygiene sanitary, environmentalism provides a solution that did not exist before.

The invention relates to a fitting locking system which is reciprocally located at least in two places on this foldable brick or in other words on these structure units to enable them to be connected in a way that ensures formal, functional and aesthetic integrity among brick units and to reduce these units to the area, height and volume of the material and/or materials that they are made of, through completely eliminating the area and volume that bricks, concrete blocks or units occupy in the universe along with the air gaps/chambers they contain, by folding in upon itself. This invention describes a general overview presentation of a series of interconnected units and at the same time describes a foldable brick connected with a high strength and completely flexible rope that forms the connection structure of this unit and the structure and fitting interlocking system that enables a three dimensional structure with volume to be reduced to a structure with the minimum size, thickness and volume possible by stacking upon each other and converting into a plate like flat shape that leaves absolutely no space between corresponding walls.
Such easy to assemble and disassemble panel systems with interconnected structures are available in the current techniques; there are different systems to be known as it can be seen in the following patent documents.

In the patent application no: EP0960585 (A2), a kit for the installation of three-dimensional structures is being described. Here, the cubic kit mentioned has connection elements formed with padding elements and intermediate plates. These padding cubes have sockets for connection elements on each corner and base surface along through all corner surfaces. Intermediate plates have locking gripping elements applied with positive force onto each surface, this way two cubes which is to be combined, can be locked to each other. This kit also has panels within the mentioned padding elements and/or grips which have been connected and organized with the same grid pattern like the connection sockets, which have been aligned with padding cubes.

On the other hand, patent application no: GB2323861 (A) is about a wall structure designed for display stands. The wall structure here contains removable panels, cross shaped parts, support legs which are interconnected in a way to correspond to the frame. Vertical legs have front and rear surfaces. Cross pieces are connected in a way to face the surfaces of the adjacent vertical legs along with the panels connected to the front surface. These vertical legs are comprised of a sheet material folded into a pipe shaped structure. Windows pairs are formed on front surfaces; the distance between adjacent windows pairs is equal to the distance desired between adjacent panels. Panels that are connected to the same pair of vertical legs having overlapping areas serve to limit the light leaking between two panels. There are hooks on the corners of these panels designed for the extensions on the windows and for casings. These panels are providing a removable wall system without disturbing other panels.

The patent application no: DE4208193 (Al) is about a demountable construction system designed for structures and items having panel corners shaped with profiled gripping stripes that construct supporting structures. This structure has panel corners inside these profiled units that take form by interlocking each other.
Each structural element has two profiled corners that are at least connected to these panels. These inter-connectable profiles can be secured with inner springs or with a self-locking design. Hinge pins are located in the holes prepared inside the structure for doors and shutters. The purpose of this invention is to construct an item/furniture in a simple way without using separate independent connectors.

However, each of above mentioned systems and many other similar structures, items and furniture systems, offers different solutions in terms of functionality and structure to overcome one or several problems regarding the available technique, our invention is on the other hand has a different approach in comparison to the already known systems with its special dismountable foldable brick design.

The main purpose of this invention is to easily reduce/convert a 3 dimensional structure unit to a minimum thickness and volume thanks to its foldable connection design that has flexibility and mobility in a similar fashion to the ligaments holding the human knee joint together. As a result of this conversion, the construction unit only occupies an area equal to the volume of the material or materials that it is made of, without leaving any gaps in between. The previous size of a unit is decreased approximately by 5 times. This design not only ensures convenience and ease for transportation and storage but also savings in material and transportation costs, by offering a low cost, removable and foldable brick that can be installed over and over again.

Another essential purpose of the invention is to enable structures in any form and architectural form, to be built by entirely allowing personal customization freedom for any type of structure without any restrictions and boundaries thanks to the detachable design of the foldable brick.

One purpose of the invention is to enable a sub-structure system that can be easily implemented for different types of furniture or a construction system that forms a new partition/room as an alternative replacing use of plasterboard especially in spaces such as offices, houses as well as building structures such as panels, rooms, cabins, items, furniture etc., constructing architectural elements such as walls,
arches, corners, doors, windows, niches etc. at indoor and outdoor conditions by stacking easily foldable modular units upon each other that have been designed with an fitting/interconnection/interlocking system. The aim is to offer a wall building system in which anyone can easily build his/her own space starting from the desired location, disassemble and make extensions without any skills and any re-construction works needed for constructing any customized partition/room with traditional bricks, briquettes or plasterboard. With the system described in the invention, it can be possible to construct customized partitions/rooms/spaces in any size, form/shape, pattern and color.

Another purpose of this invention is to materialize a brick as a unit of the wall building system which is easy to build up, offers effortless and minimum storage and transportation thanks to the mobile but strong internal structure (connection system) that occupies minimum volume without leaving any gaps after being easily, quickly and practically demounted. During the installation of the foldable brick, being the subject of the invention, it can be possible to easily install and also dismantle the units without using any tools or equipment such as screwdriver, hex key and similar other tools.

DESCRIPTION OF THE INVENTION

Foldable brick, is constructed by internally attaching a high strength rope like the ones used in tree houses in some of the primitive tribes of Amazons or like the ones used by ancient Egyptian wood makers -which may be a steel rope- through front and rear walls (just as in the cruciate ligaments of human knee joint) by making a simple sailor's knot similar like sewing them together. This mobile and flexible connection is designed to be folded by getting disassembled countless times and installed and mounted again. When folded, the air chamber inside completely disappears and the foldable brick is reduced to the total volume of the material or materials used for the manufacturing of the foldable brick.

One of the purposes of the foldable brick that has completely dismountable parts is to use corrugated board, which is a simple and cheap but green recyclable
material for creating a solution to the sound isolation issue, which is one of the biggest problems of wall systems. Again, with this inner filling unit that is formed by folding in it upon itself in a completely unique fashion, it can be possible both to increase the durability and strength of the wall and to maintain acoustic comfort level by minimizing the sound permeability.

A foldable brick with rope attachments and detachable wall building system developed for the purpose of "folding itself, can be easily composed a rectangular structure with a three dimensional volume, inner cavernously by three different techniques based on the connecting/fixing principle of the front/back two opposite wall with rope and sash which constitutes the brick.

Among these as seen in the A and B group figures, it is based on the connecting/fixing (straining, pulling) principle of the inner wall. Outer surrounding/encircling principle seen in group C figures is based on the (fixing with wrapping). All three techniques are related to the forming of the detachable wall building system's entity unit foldable and sustainable brick. All these three techniques can be both used as separately, or simultaneously according to the different client utility/profit expectations or different (mixed) material consumption.

The formation/combination and interlocking/interconnecting/fitting mechanisms for the foldable brick and wall building system, which have been designed to fulfill these purposes, are shown in the attached figures, these figures are;

Figure A - Unassembled perspective view of the materials/parts that form the demountable foldable brick - A type- and the wall building system which is the subject of this invention.

Figure A 2a - Interior surface view of any of the front and rear walls of the demountable foldable brick - A type- which is the subject of this invention.

Figure A 2b - Exterior surface view of any of the front and rear walls of the demountable foldable brick- A type- which is the subject of this invention.
Figure A 3a - View of the demountable foldable brick - A type-which is the subject of this invention seen from exterior surface angle in a folded position when the ropes of the front and rear walls are attached (mounted).

Figure A 3b - View of the demountable foldable brick-A type- which is the subject of this invention seen from interior surface angle in a folded position when the ropes of the front and rear walls are attached (mounted).

Figure A 4 - View of the demountable foldable brick -A type-, which is the subject of this invention, seen from side angle showing how the brick becomes unfolded (II, III) while in folded position (I).

Figure A 5 - Schematic view of the demountable foldable brick-A type-, which is the subject of this invention, showing how the rope making the mentioned attachment by going through the front and rear walls of the brick, like sewing them together/sewing a button; here it is highlighted how the ends of the ropes are prevented from coming out of the hole by making a simple sailor's knot shown from a perspective angle while the foldable brick is in unfolded position.

Figure A 6a - Perspective view of the demountable foldable brick-A type-, which is the subject of this invention, showing the open phase of the corrugated board filling/padding box before it is folded in.

Figure A 6b - Perspective view of the demountable foldable brick-A type-, which is the subject of this invention, showing how the corrugated board filling/padding box is folded in.

Figure A 6c - Perspective view of the demountable foldable brick-A type-, which is the subject of this invention, showing the corrugated board filling/padding box after it is folded in and ready for installation.

Figure A 7 - Schematic view showing the phases/stages of the basic formation/interlocking principle and the perspective view of the entire parts of the demountable foldable brick -A type- and the wall building system, which is the subject of the invention, that are ready for installation.

Figure A 8 - Perspective view of the demountable foldable brick-A type-, which is the subject of this invention, showing the brick in an unfolded position (after the front and rear walls are separated from each other) while placed upon the base unit (base is the unit which is formed by placing a beam clamp upon the relevant
spot on the base through dowels and showing the tongues while they are being vertically inserted in the dowel grooves located inside the brick's interior surfaces. Figure A9 - Perspective view of the demountable foldable brick-A type-, which is the subject of this invention, showing how the corrugated board filling box is placed upon the inner chambers (air gaps) formed inside the brick after it is built up by locking with the tongues.

Figure A10 - Perspective view of the demountable foldable brick -A type-, which is the subject of this invention, showing how the beam clamp is being placed upon the connection/locking spot while the corrugated board filling boxes being in a fixed position in their places with their tongues being locked.

Figure A11 - Perspective view of the demountable foldable brick-A type-, which is the subject of this invention, showing while the beam clamp is placed upon the connection/locking spot and the corrugated board filling boxes are fixed in their places with their tongues' being locked.

Figure A12 - Perspective view of the demountable foldable brick-A type- , which is the subject of this invention, showing how two horizontal bricks are laterally locked through beam clamps and how a third brick unit is vertically stacked/placed upon these two bottom bricks that are locked together through a beam clamp in an unaligned fashion.

Figure A13 - Perspective view of the demountable foldable brick -A type-, which is the subject of this invention, showing the most basic triple interlocking mechanism of the mentioned wall building system and the foldable brick units that are clamped together through beam clamps and tongues.

Figure A14 - Perspective view of the demountable foldable brick -A type- and the wall building system, which is the subject of this invention, showing how half brick units, which form the edge borders of the relevant brick row, are stacked or placed in their relevant spots.

Figure A15 - Perspective view of the demountable foldable brick -A type- and the wall building system, which is the subject of this invention, showing how the beam clamps, which are used for locking units in each vertical brick row, are placed upon the grooves located on the tongues.
Figure A 16 - Perspective view of the demountable foldable brick-A type- and the wall building system, which is the subject of this invention, showing how the corner tongue and the wall corner formation are locked to each other from top.

Figure A 17 - Perspective view of the demountable foldable brick-A type- and the wall building system, which is the subject of this invention, showing how the final wall corner is formed.

Figure A 18 - Perspective view of the demountable foldable brick -A type- and the wall building system, which is the subject of this invention, showing the uncovered surfaces of the foldable brick's side wall during the formation of the wall corner and showing its covered phase.

Figure A 19 - Perspective view of the demountable foldable brick-A type- and the wall building system^ which is the subject of this invention, showing the completed wall corner after the caps are also installed.

Figure A 20 - Bird view of the demountable foldable brick-A type-, which is the subject of this invention, showing a single and half brick unit while the tongues are locked.

Figure A 21 - Front view of the demountable foldable brick -A type-, which is the subject of this invention, showing the mathematical construction ratios of a single and half brick unit while the tongues are locked and corrugated board brick is placed into the inner gaps.

Figure A 22 - Side view of the demountable foldable brick -A type-, which is the subject of this invention, showing the mathematical construction ratios of a brick unit while the base unit (base+base beam clamp), tongue and upper beam is locked on each other.

Figure A 23 - Side view of the demountable foldable brick-A type-, which is the subject of this invention, showing assembly ratios of the rope attachment that diagonally ties the front and rear walls of the brick unit to each other.

Figure B-l- It is the disassembled perspective view of the invention subject detachable B type foldable brick and wall building system and base materials/ parts that constitutes it.
Figure B-2 - It is the perspective view of the invention subject detachable B type foldable brick's front and back walls its insulation supported string-rope rack (link) that shows the construction of the mechanism.

Figure B-3 - It is the perspective view of the invention subject of the detachable B type foldable brick, insulation supported string-rope rack (link) mechanism's front and back walls of the brick and placing of it before montage.

Figure B-4 - It is the perspective view of the invention subject of detachable B type foldable brick, insulation supported string-rope rack (link) mechanism's fastening with a staple to the front and back walls of the brick.

Figure B-5(a-b-c) - It shows the complete side view of the invention subject of the detachable B type foldable brick, its opening when in the form of detached (the first stage of the brick setup).

Figure B-6(a-b-c) - It shows the perspective view of the invention subject of the detachable B type foldable brick, opening of it when in the form of folded (the first stage of the brick setup).

Figure B-7 - It shows the perspective view of the invention subject of the detachable B type foldable brick, tongue beams' interlocking flow to the beam groove of the brick inner surface.

Figure B-8 - It shows the ultimate version of the perspective of the invention subject of the detachable B type foldable brick's, wall building system's unit that are ready for foldable brick setup.

Figure B-9 - It shows the perspective view of the invention subject of the detachable B type foldable brick, beam clamp and foldable brick units's binary and triplet interlocked flow.
Figure B-10- It shows the perspective view of the invention subject of the detachable B type foldable brick, foldable brick units' triplet interlocking (first step of building/accumulation systems)

Figure C-1- It shows the perspective view of the invention subject of the detachable C type foldable brick, when externally encircled technique's basic materials/parts are disassembled, wire/rope frames' wearing on the trunk of the bricks and montage flow of tongue beams.

Figure C-2- It shows flowchart of the perspective view of the invention subject of the detachable C type foldable brick, which provides the externally encircling the wire/rope frame front back brick trunks.

Figure C-3- It is an indicative perspective view of the invention subject detachable C type foldable brick's, wire/rope frames' front back brick body's exterior side corners placing to the wire frame holes brick bodies's pushing from two opposite directions, from interior to exterior and its encirclement from the wire/rope frame.

Figure C-4- It is an indicative perspective view of the invention subject detachable C type foldable brick's, encirclement and placing tongue beams to the beam grooves to interior surface of the front back brick bodies' with wire/rope

Figure C-5- It is an indicative perspective view of the invention subject detachable C type foldable brick's, the ultimate version of the foldable brick unit compressing with the tongue beams and encirclement with the wire/rope frame.

Separate numbers are given to each of the parts and technical details shown in the figures and the descriptions to these numbers are given below:

A Groups Figures:
A1 - Brick body
 Ala - Connection hole
 Alb - Countersunk connection hole
Ale - Rope slot
A 1d - Beam groove
A 2 - Half Brick Body
A 3 - High strength rope
3a - Rope knot
A 4 - Tongue beam
A 4a - Beam clamp insertion slot
A 4b - Beam clamp insertion slot and wiring groove
A 4c - Finger insertion hole
10 A 5 - Corner Tongue Beam
A 5a - Brick body fitting slot
A 6 - Beam Clamp
A 6a - Tongue beam clamping groove
A 7 - Half beam clamp
15 A 7a - Tongue beam clamping groove
A 8 - Base
A 8a - Dowel Joint Hole
A 9 - Base beam clamp
A 9a - Tongue beam clamping groove
20 A 9b - Dowel Joint Hole
A 10- Dowel Joint
A 11 - Corrugated board padding box
A 11a - Beam clamp fitting slot
A 11b - Diagonal lock slot
25 A 12 - Cap

B Group Figures:

B1 - Brick Body
30 B 1a - Beam Groove
B2 - Pliable string rope
B 2a - String rope connection end
B 2b - Staple
B3 - Insulation panel
 B 3a - String rope insertion hole
B4 - Tongue beam
 B 4a - Beam insertion slot
5 B4b - Installment hole
B5 - Beam clamp
 B 5a - Beam clamping groove

C Group Figures
10 C1 - Brick Body
 C 1a - Beam Groove
 C 1b - Wire Frame Groove
C2 - Wire Frame
C3 - Tongue Beam
15 C 3a - Beam insertion slot
 C 3b - Installment hole

The flexible rope (A3) connection system used in the demountable foldable brick (figures A4, A5, B5), which is easy to manufacture, build/mount, remove/demount and to fold, can be made of flexible but strong materials with movement ability such as high strength parachute or harpoon rope or steel wire-type materials and pliable string rope (B2) can be made of high resistant jacquard string rope or string bond that are made of high resistant materials, which are flexible but not stretch as plastic. Wire frame used in externally wire frame (C2) can be both iron or steel wire or wire rope and it can be made from a high resistant normal rope or string rope whose two sides are merged.

Front and rear walls of foldable brick (A1, A2, B1, C1), removable tongue beam (A4, A5, B4, C3) and cap (A12), can be made from any type of durable material that is hard but not brittle including plastic, glass, metal, ceramic, clay and etc. such as solid wood, plywood, laminated chipboard, laminated MDF, hard and strong cardboard, acrylic, PVC foam sheet (dakota, forex). While the base (A8) can be made of materials such as solid wood, plywood, chipboard, MDF, beam
beam clamp (A6, A7, B5) and base beam clamp (A9) can be made of plastic or metal alongside to those materials. Corrugated board padding box (A1) can be made of corrugated paperboard or also corrugated but plastic based sheets. Insulation plate (B3) can be made from any of these materials; paper box, fiber paper box, paperboard, ribbed cardboard or ribbed plastic plate, EVA, felt and plastic.

The front/rear body of the foldable brick (A1, A2, B1,C1) and tongue beam (A4, A5, B4,C3) can be manufactured in any size based on the need; the value of the lateral side of this surface material, that we call its short edge or its depth and its height should be 1 unit whilst its width should be 2 units (Figure A20). In other words the short edge/depth and height to width ratio should be 1/2 (Figure A20, A21). However, based on this ratio, a cube shaped complementary half-brick (A2) can be also created by having 1 unit of depth and height value while having 1 unit of width value; besides by having 3 units and 4 units of width value similar to various wall stacking techniques/versions, it can be possible to divide an inner partition into two divisions/areas within itself by making a "T" connection at the place facing the interior of the divided space in a way that will answer various esthetic, structural and functional needs by changing the ratios. Moreover, with twenty four unit width applications, formations like lintel/beam are easily applied

Furthermore, folding principle/feature, which this invention is based on, can be shaped according to the need when required; and different architectural structure units can be built such as arches, keystones, door window connection columns, alongside with circular and polygonal walls and also furniture items in many forms and shapes can be made. The thickness of the front and rear walls of the foldable brick is preferably between 6-20 mm.

On the top and bottom edges of the front and rear walls of the mentioned foldable brick (A1, A2) as shown almost in all figures, there are holes opened side by side such as button holes, being total of 8 pairs on a single brick (A1), total of 4 pairs (A1a) on a half-brick (A2). High strength ropes (A3) passing through these holes allow the front and rear walls of the brick to be attached/mounted to each other. This way, as in the cruciate ligaments in the human knee joint, thanks to the pulling force applied inwardly the parts are prevented and to be stretched from
falling apart outwardly. Thus, just, thanks to the inner direction of the applied pulling force is prevented from leaving towards the external side parts. One of those double connection holes (Ala) located on the inner wall surfaces of the brick, is a countersunk connection hole (Alb) and with a very simple sailor's knot, the rope is prevented from coming out of this hole. This countersunk hole, enables the rope knot (A3a) of this knotted end of the rope to be buried without any bulges on the surface. The depth of the slot (Ale) opened between these double holes on the exterior surface of the brick is equal to the thickness of the rope that enables this connection. As shown in all figures, the rope (A3) buried inside this rope slot (lc) is bare and visible from the exterior surface of the brick, like the string on a jacket or shirt button. Besides it allows all types of coating materials, which will be applied onto the exterior surface of the brick to offer aesthetic benefits, to be easily applied/coated.

On the interior surfaces of front and rear wall of the foldable brick body (Al, A2, Bl, Cl) that are facing each other, that are reciprocal beam grooves (Aid, Bla, C1a) located lengthwise being one on right and left and two in the middle. These grooves allow the tongue beam (A4, B4, C3), which enables the rope(A3) and string rope connection (B2) and externally encircled wire frame (C2) preventing the inward motion of the front and rear wall of the brick body (Al, A2, Bl, Cl) that is attached together with the mentioned rope connection, by applying force against the force coming from outward direction, to be tightened/fixing/stabilizing exactly until the desired brick depth (figure 22) and which immobilizes/stabilizes the forward-backward and upward-downward axial movements at that point, to be locked. This way, in the simplest form, a brick unit (B, C) is formed with the pulling and pushing forces balancing each other.

In this direction, the plate thickness of the tongue beam (A4, B4, C3) is enough to be fitted/placed inside the beam clamp insertion slots (Aid, Bla, C1a) on the front and rear wall, of the brick, therefore there is no need to open additional grooves. Beam clamp insertion slot (A4a, B4a, C3a located on the bottom edge of tongue beam (A4, B4, C3) and beam clamp insertion slot and wiring groove (A4b) located on the upper edge of the tongue beam (A4, B4, C3) enable the
beam clamp (A6, B5) to be locked in (Figure A10, A11 and Figure B-9, B-10) for both mitering the foldable brick and stabilizing/immobilize the last and third axis (sliding/flexing movement to right-left). Beam clamp insertion slot and wiring groove (A4b) and installment hole (B4b, C3b) is in the form of a wide circular gap (Figure A22 and Figure B-10, Figure C-5) which enables wiring and/or piping through cable trays or channels.

The third function of the tongue beam(A4, B4, C3) can be described as this, while the bricks are being stacked upon each other in the wall building system, the beam grooves (Aid) located on the interior surfaces of the front and rear brick bodies (A1, A2, B1, CI) that are aligned/lined with each other on the top and bottom, form a groove tray line by overlapping upon each other lengthwise from top to bottom through the foldable brick stack. This way foldable bricks are locked onto each other at the bottom and end by sliding these tongues vertically within this formed line. In this way, each upper brick, combined with two adjacent bottom bricks, lock/connect the entire system one by one without requiring any binding, connector agents such as mortar, adherents, screws or nails etc. for wall building system. The circular hole (A4c) located in the center of these tongues enables the user/builder to insert his/her finger and easily grab the tongues especially during mounting/demounting process.

As mentioned above and demonstrated schematically in figure A-10-, A-1, B-9 and B-10 beam clamp (A6, B5), which is one of the most critical parts of the foldable brick and demountable wall building system, solves the mitering problem, which is one of the most important problems regarding any type of wall building system including traditional wall building systems, by stabilizing and fixing the flexing/sliding movement to the right and left directions on the third axis of the foldable brick and enables the brick placed on its left and right to be locked in (Figure A12, A13, B-9, B-10) through the tongue unit (A4,B4,C3) located on the outer edge and middle line of the mentioned foldable brick. In this merging/clamping, beam clamp is used addition to the previous technique is cycled ninety degrees and perpendicular to the beam tongue(B4, C3). (Figure B-1, B-9). Beam clamp (A6, B5) makes this function with the tongue beams (A4, B4)
belong to the brick units that is bottom of its bottom surface and on the upper
surface, it makes this function with the tongue beams (A4, B4) belong to the upper foldable brick units (B, C) that are accumulated/placed on it.

In other words, the bottom half of the beam clamp locks the bottom bricks, the upper half of the beam clamp locks the top bricks to each other on tongue beams. In this way, the beam clamp greatly increases the durability and strength exponent-static property- of the system, which is built by going across the each row of the foldable brick and wall building system lengthwise, vertical to the foldable brick bodies (Al, A2, Bl, Cl) to the brick body (1, 2) on a horizontal plane (Figures A14, A15 ve B-9, B-10). Again, this locking principle completely solves the workmanship problems, such as grouting and misalignment which are among the biggest problems of traditional wall building system. The ultimate result, is a near perfect wall building workmanship.

Another component of this invention is the padding box (Al l), which offers huge benefits but is not necessarily requisite item; that is made of corrugated cardboard or corrugated plastic sheets and built with an entirely unique folding method. This padding box, as seen in figure A6a, A6b ve A6c'de, is built by bending, twisting and folding the conic sections according to the guiding lines to inward-upward directions form the corners of the box towards the center of the box. This box which is formed this way, has four walls that are progressing to the center from the corners and inter-locking with each other diagonally, unlike having four sides and one bottom surface. (Figure A6c) The ceiling/upper surface of this corrugated padding box is open and has beam clamp fitting slots (Al ia) deep enough to allow the beam clamp to fit. The corrugated padding box (Al l), as seen in the Figure A9 ve A10, is fitted/placed into the chambers formed inside after the foldable brick body (Al) and tongue beams (A4) are locked together. While helping to maintain an acoustic comfort level by providing sound control, at the same time this padding box, strengthens the system both against forces may be applied from front and behind and weight may be applied in downward direction. At the same time, it reduces the fragility of the wall system during ground movements such as an earthquake while increasing the flexibility.
The folding principle of the foldable brick is as this;

As shown in Figure A7, mounting/installation process and principle of the system is based on working from bottom to upward direction, whereas demounting/uninstallation process and principle is based on working from top to downward direction.

Dowel joint (A10) and base beam clamp is locked with each other through the corresponding holes (A8a) located on the base (A8) placed onto the ground. (Figure A7) Afterwards, as in the train wheels locking with the rails on a railway from inner side, the brick body (A1), consisting of front and rear walls that are attached to each other with a rope, becomes ready for mounting by simply keeping these walls apart from each other. While stretching the rope connection, this brick body (A1) is fitted/placed on this base unit (8+9) towards the outer edges of the base. (Figure A8) In this layout position, without requiring any additional guiding equipment, tongue beam (A4) are vertically slid inside the beam grooves (Aid) located on the interior surfaces of the brick body (A1, A2) which is already stretched from the bottom edges by the base unit (A8, A9) and the beam clamp insertion slot (A4a) located on the bottom edges of these corresponding tongues, is fitted into the tongue beam clamping slot (A9a) located on the outer edges of the base beam clamp (A9), this way, the foldable brick is aligned and locked with the base unit (A8+A9). (Figure A8, A9) If the architectural structure is planned to be built in a more permanent fashion or if desired; a padding box made of corrugated board folded into a cube shape, can be vertically fitted/placed into the front-rear walls of the brick body and the chambers formed inside the brick surrounded by tongue beams. (Figure A9, A10) In order to demonstrate the mentioned invention, its main parts and installation details in a clearer way, this padding box (A11) made of corrugated board is intentionally not included in the figures other than Figures A7, A9, A10 and A11.

The main approach at the the principle of interior stretched folding (B groups figures) is both simplifying the production and simplifying the folding procedures
thus increasing users friendly property. In this process, pliable string rope (B2) is mounted by a mean such as staple or screw to the internal surface of brick body. (Fig B-4) Pliable string rope (B2) is connected crossingly at the internal surface of brick body (B1) that is separated two equal areas by the beam grooves at the middle line, on the single connection line from middle line to external side, from external side to middle line. This connection technique has two advantages: First, it is sufficient total 8 connection points on the single connection line instead connecting interrelated total 16 points such as previous crosslinking technique. Second, the angulation problem of unit brick unit is solved by this crosslinking technique without beam clamp (B5). The crosslinking technique, for example, is ensured benefits to the fair users for setup time. Because, if requested, beam clamp (B5) is not used as shown figure B9-B10, having an advantage on time and cost. Before mounting the pliable string rope (B2) to the brick body (B1), after string rope connection end (B2a) inserted to string rope insertion hole (B3a) at the external side of insulation panel (B3), sticking by curling to the bottom surface of the insulation panel. Fig (B2-B3) insulation panel (B3) with a string rope connection kit totaly is placing at the related places on the internal surfaces of the brick body(B1) and they are fixed from the gaps at the string rope insertion hole (B3a) (that is reference point at the same time) by staple or screw. The function of insulation panel (B3) prevents light leakage at the connection point of overlapping sides of brick body during the connection, providing directly both sound and heat insulation without using any supporting material, according to kind of material used on the expectations of the user. After mounting the pliable string rope mechanism (B2) with insulation panel, the unit brick unit is ready to set up and as shown in figure B5 and B6, the folded brick body (B1) at the horizontal axis is holded from right and left sides and is lifted by turning upward. Tongue beams (B4) are placed by sliding in vertical direction to the beam grooves (B3a) in the internal surfaces of brick bodies (B1) which is lifted/set up vertical to floor. Thus, the foldable brick (B) that is the unit of the building wall system is obtained. (Fig B-8)
The same steps are followed for the second unit to be placed on the right or on the left side of it. Onto those two foldable brick units placed adjacently on both sides, the beam clamp (A6, B6) is locked/connected by fitting the corresponding tongue beams (A4, B4) vertically into the beam clamp insertion slot (A4b, B4b), which is located on the upper edge, by passing through the center lines of both of these two brick bodies (A1, B1), while one being the starting point, other being the ending point (if the brick on the side is a half brick then from the outer line) (Figures A-12, A-14, A-15 ve Figures B-9, B-10). The foldable brick unit that is stacked namely is placed on the bottom row is seated/interlocked as shown in figure A-12 and B-10 following the same way of the installation of the beam clamp (A6, B5). This fitting-interlocking is a couple fitting-interlocking. After first conjunction, the foldable brick unit (B) placed on the beam clamping groove (A6a, B5a), compressing in vertically, is seated on the tongue beams (A4, B4) forming male bulges of foldable couple brick unit is below it. In this way, the second fitting-interlocking is provided. (Fig A-14, Fig A-15, Fig B-10)

A wall corner is built by combining two foldable brick modules at a vertical angle without leaving any space at the overlapping corners. As shown in Figure A 16, A17, A18, A19, in-a way to cover the complete half of the rear wall of the left brick body (A1), it is placed in a position to form a strength angle with the right side of the other foldable brick unit and onto these two bricks, a single foldable brick module is placed in a way to cover the half of these two brick units right in the middle. This connection is quite simple: For this, corner tongue beam (A5) is placed only on the corner forming other halves of the brick bodies (1) that will form the corner. The brick body fitting slot (A5a) located on the upper outer edge of this corner tongue (A5), enters into the inner cavity of the foldable brick unit stacked on top and ensures a firm grip and connection. (Figure A16, A17)

The final stage is the aesthetic stage, if desired, includes the mounting of the caps (A12). This procedure is also relatively simple; to ensure aesthetic integrity, applied by fitting the caps onto the outer edge of the exposed foldable brick body
(AI, 2) with a double-sided tape if the wall system is to be removed/dismounted again in a short time or with an adhesive compatible with the corresponding material if it is to be permanent by fitting the caps onto the outer surfaces of the tongue (5/4) and onto the corresponding cavity from inside to outside. (Figure A 18, A 19)

The second connection technique of the brick principle, which is a subject for the invention, are shown in the group C figures. Unlike the other interior connecting/stretching principles, this technique is based on exterior encirclement. The most advantageous part of this technique is; every single parts of the foldable brick unit's can be totally demounted. Thus, the workmanship cost in production is minimized and it is useful for the users that maintenance or renewal procedures are applied to the relevant parts.

So, there is an opportunity for the ultimate user to change/renew only the related part, not the whole part, of the default foldable brick unit.

Furthermore, in this technique, the volume that the foldable brick system covers, is equal to the 8/1 volume of the setup. In this technique, (C group figures) there is not any connection (fixation) before setup. Previous fitting-interlocking principle of the foldable bricks and wall building system, which is subject to invention, is entirely same. Herein there is not just the principle of folding, but folding by separating to its parts and preserving principle.

A channel, is opened throughly to the brick body (CI) including outside surfaces, except inner surface, and that channel is as the thickness and depth of the rope or wire frame (C2) that makes the related encircling/enfolding to the outside surface of the brick body (CI) at the horizontal axis. The wire frame (C2) whose two ends are fixed, connected, combined or the two ends are combined inextricably by welding, is placed to the related wire frame groove (channel) (Clb) by putting on to the front and back brick body upwardly or downwardly. (Figure C-2, C-3.) The internal surfaces of the brick bodies (CI) are pushed from inside to outside up to
the margin of wire frame (C2) by moving away from each other in opposite
directions (front and back) while they are corresponding each other. (Figure C3)
Thus, wire frame (C2) is placed entirely with four directions to the wire frame
grooves (Clb) at the external surface of brick body (Cl). (Figure C4) After this
phase, the tongue beams (C3), which prevent internal direction movement of the
brick front/back bodies (Cl) that are fixed in external direction, can be inserted.
The folding techniques such as the subject of the invention, tongue beams (C3), as
in the other the folding techniques which are the subject of the invention, are
assembled vertically from top to bottom by putting on the beam groove (Cl a)
(Figure C4-C5). Thus, the main brick unit of the wall building system is
constituted, the phases of building system are same as the previous technique.
(Figure B-9, B-10)

The merging, fitting-interlocking of the foldable bricks which are subject to
invention is based on laying together front-back wall foldable bricks bodies and
interlocking by placing on related places these upper foldable brick units which
are placed/accumulated on these foldable bricks and herein, front-back wall
foldable bricks bodies that are fixed with non-stable and rigid rope or tie wire
but which can move independently.

Connection/locking of the foldable bricks, which is the subject this invention, is
based on placing the front and rear walls of brick bodies side by side, which are
exactly identical to each other and remain independent from each other through a
rope connection and locking the upper foldable brick bodies into corresponding
slots which are placed/stacked on top of these foldable brick units. In other words,
one foldable brick is stacked/placed on top on top of the two bottom foldable
bricks in a way to center the full merging axis of these two. Each box shaped
foldable brick progressing on the right and left of these foldable bricks, is locked
with another foldable brick body on the side and on the top according to the
installation principle described above. This way, an architectural wall building
system which is fully demountable, consisting of entirely removable parts with a
single foldable brick (i.e., a foldable structural unit) that is easy to assemble and
disassemble without the use of appropriate equipment, screwdriver, hex key and a similar tools is obtained.

The foldable brick, which is the subject of this invention, can also be used for various furniture products such as tables, coffee tables, desks, bars to function as a base foot; and thanks to its foldable design and the flexible inner connection principle and/or external encircling principle that allows any form, different types of furniture can be produced as coffee tables, chairs, sofas, shelves, table, bed, bunk etc. and surfaces such as fabric, leather, plastic or decorative plates can be used.

The above mentioned preferred applications and the accompanying drawings have been added provide a better understanding of the invention, are not intended to limit the protection scope of the invention. In accordance with the information disclosed with the invention, the changes will be made on the preferred applications and accompanying drawings, should be considered within the scope of protection of the invention.
CLAIMS

1. The invention is about a foldable brick connected with a rope and about a demountable wall building system based on a stacking/clamping/connecting/locking system used both within the system and for the construction of architectural structures or elements, about the storage and transportation of a dismounted modular building block-brick which is designed to ensure any architectural structure be constructed at any indoor and outdoor conditions by offering a personal design and production liberty for customizing the features of any architectural structure, having no size, volume, space and area restrictions and has no ends, this invention has the following features:

- Independent foldable brick body (Al, A2, Bl, CI) that forms the visible outer walls of the mentioned foldable brick.

- Four pairs of high-strength diagonal rope (A3) connections, forming the internal structure and the main connection of the mentioned foldable bricks, which is mobile and flexible like a swing that can be folded and rolled.

- Two pairs of high resisting pliable string rope (B2) connections, forming the internal structure and the main connection of the mentioned foldable bricks, which is flexible and foldable but not stretching.

- Insulation plate (B3), increasing the insulation property of the mentioned foldable bricks, and is fixed into the interior surface.

- Wire frame (C2) forming the mentioned foldable brick by an external encircling process before set up, without any fixation device and method (montage).

- Wire frame groove (Clb) forming the apparent external walls of the mentioned foldable brick, which is on the foldable brick body(CI) independently separate.

- Tongue beams (A4, A5, B4, C3) that help the mentioned foldable brick bodies (Al, A2, Bl, CI) to take the form of a closed...
box/briquette/block and enables them to be locked upon each other while
these units are stacked.

- The beam clamp (A6, A7, A9, B5) which miters the
mentioned foldable brick units, locks the foldable bricks that are placed
side by side to each other through tongue beams (A4, A5, B4, C3 and
increases the strength by stabilizing/immobilize the third axis of the
brick.

- Corrugated board padding box (A11) which is quite light
and has a unique folding technique that increases the load carrying
capacity, absorbs the externally applied force, reduces fragility, increases
durability and strength of the wall building system as well as providing
sound and heat control by filling the chambers/air gaps formed inside the
mentioned foldable brick after the tongues are mounted.

- The base(A8) that grips the mentioned foldable brick and
wall building system from inside like a rail,

- Fitted demountable decorative caps (A12) which enables
the exposed brick edges to be covered after the wall building with the
mentioned foldable brick is completed.

2- In accordance with the Claim 1, is about a rope attached, foldable,
demountable brick and wall building system that features the entire elimination
of the air gaps/chambers formed inside when folded, reducing the unit to the
total thickness and volume of the material or materials used for the
manufacturing of the foldable brick, reducing the volume of the mentioned
foldable brick module to the between four and eight times percentage of the
mounting size, this way allowing both storage and transfer costs to be reduced
to four times of a similar brick or briquette at regular conditions.

3- In accordance with any of the above mentioned claims, is about a rope
attached, foldable, demountable brick and wall building system that features the
ability to be demounted, folded and mounted numerous times and as the same
elements can be used over and over again, the prevention of discarding any
materials such as rubble as in the traditional methods.
4. In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features fully recyclable materials and techniques used in the manufacturing of foldable bricks and a very light structure as being made of very light material thanks to the improved rope connection and/or wire frame encircling system.

5. In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features a desired acoustic comfort level easily maintained through the padding box made of foldable corrugated box without using any chemical or synthetic filling materials, adhesives, mortar or plaster.

6. In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features connection holes (Ala, Alb) that allows the foldable brick bodies (Al, A2) to be attached to each other diagonally with a high strength rope (A3) to form the front and rear walls by making a simple sailor’s knot and/or foldable brick bodies (Bl) are fixed by high pliable string rope (B2) on a single line with a staple or screw for constituting front-back wall or constituting the foldable brick unit (C) by restraining with encircling the independent brick front-back wall with tie wires frames (C2) are developed in the principle of external encirclement.

7. In accordance with any of the above mentioned claims, is about a foldable brick that features foldable brick units(Bl) are constituted on a single line with four connection ends (B2a) by high resistant string ropes (B2) for constituting the front-back wall.

8. In accordance with any of the above mentioned claims, is about a foldable brick that features before mounting the pliable string rope (B2) to the mounting brick unit body (Bl), inserting string rope connection end (B2a) to the string rope insertion hole (B3a) which is external side of insulation panel (B3) after sticking by curling to the bottom surface of the insulation panel, placing on related places on the internal surfaces of the brick body (Bl) with insulation panel (B3) as a string rope connection kit, constituting the unit brick unit by mounting with staple (B2b) or screw to the gaps that are montage reference
point at the same time, in the string rope insertion hole (B3a) without beam clamp and solving angulation problem.

9- In accordance with any of the above mentioned claims, is about a foldable brick that features constituting the unit brick unit (C) with wire frame (C2) that encircles the brick bodies externally by means of foldable brick body (CI) sitting to the wire frame holes (Clb) forming exterior surfaces of its.

10- In accordance with claim 1 and 6, is about a foldable brick that features, each different part of foldable brick unit (C) is totally detached and in this application the ultimate user can change only the related part of the default foldable brick unit, not necessarily the whole material and the folding principle is valid not only in folding but also separating the whole parts constituting foldable brick.

11- In accordance with claim 1, 6 and 9, is about a foldable brick that features, there is a wire frame groove (Clb), which is formed thoroughly channel as thickness and depth of wire frame (C2) and rope, which makes related encirclement of on the exterior surfaces of brick body (CI) on the horizontal axis, the internal surfaces of the brick bodies (CI) are pushed from inside to outside up to the margin of wire frame (C2) by moving away from each other in opposite directions (front and back) while they are corresponding each other, wire frame (C2) which of two ends are fixed, connected, stucked or welded is placed from top or bottom to the wire frame grooves (Clb) by putting on to the front and back brick body (CI), after inserting the tongue beams (C3), which prevent internal direction movement of the brick front/back bodies (CI) that are fixed in external direction, constituting unit brick unit (C) with the tongue beams (C3) putting on from top to bottom vertically from the beam groove (C1a).

12- In accordance with any of the above mentioned claims, is about a foldable brick that features it has an insulation plate (B3) providing sound, heat and light insulation and whose raw material can vary according to the expectation level and want.

13- In accordance with any of the above mentioned claims, is about a foldable brick that features pliable string rope (B2) interior connection structure, high resistant Jacquard string rope or every string ropes that are made of high
resistant materials, which are flexible and do not stretch, after passing the related string rope insertion hole (B3a) then it is fastened with a staple, is constituted easily.

14- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features a single tongue groove at the on the outer edges of the inner surfaces of the foldable brick bodies (A1, A2, B1, C1); and a pair of beam grooves (Aid, B1a, C1a) on the right and left side of the middle line that allow the tongues to be locked upon and the brick unit to be formed.

15- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features the locking the foldable brick modules side by side at the bottom and top of the tongue beams (A4, B4,) forming the vertical edges of the brick unit; beam clamp insertion slots (A4a, A4b, B4a, C3a) as a part of the upward alignment function; the finger insertion hole (A4c, B4b, C3b) that especially facilitates the demounting process; and the upper corner beam clamp insertion slot (A4b) which is also used as the wiring groove.

16- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features tongue beam clamping grooves (A6a, B5a) on the outer edges of the beam clamps (A6, A7, B5) which lock/fit into the slots (A4a, A4b, B4a, C3a) located at the bottom and upper edges of the corresponding tongues at a horizontal plane.

17- In accordance with any of the above mentioned claims, is about a foldable brick that features the beam clamp (B5) is used by rotating ninety degrees, perpendicular to the tongue beam (B4, C3) in order to increase the activity of the fitting/interlocking.

18- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features corrugated board padding box (A1 l), which has an entirely unique folding form/technique and is used especially in the permanent wall structures.
19- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features 1 unit of depth or short edge value for the edge section, 1 unit of height value and 2 units of width value whilst the tongue beams (A4, B4, C3) are fitted into the corresponding grooves (Aid, Bla, Cla); along with the selection of 1:1:1, 1:1:3, 1:1:4 and even 1x1x24 ratios.

20- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features a thickness measurement for the brick body (Al, Bl, Cl) material which is preferably between 6-20mm.

21- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features a flexible inner (A3) connection structure which is easily formed by making a simple sailor's knot after inserting high strength parachute rope, harpoon rope and/or steel wire type materials through a pair of holes, -in a similar way to sewing a button- opened on the brick body.

22- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features a selection of materials to choose from to manufacture the brick body (Al, A2, Bl, Cl) which may be any resilient material hard or elastic such as baked clay, ceramic, metal, glass, carian, PVC foam sheet (dakota, forex), acrylic, hard or elastic but strong cardboard, laminated MDF, laminated chipboard, plywood, solid wood etc.

23- In accordance with any of the above mentioned claims, is about a rope attached, foldable, demountable brick and wall building system that features the purpose to use the units for the manufacturing of various furniture items thanks to the foldable bricks mounted on or to use the units that will function as a foot base for the mentioned furniture items.

24- In accordance with any of the above mentioned claims, this is a system for building architectural elements and spaces, with any measurements such as walls, arches, corners, doors, windows, niches, rooms, partitions or booths, furniture table, bank, bed, chair, cedar, trestle etc or various items by using rope
attached, foldable, demountable brick and wall building system, which is based on
-Turning foldable brick bodies (Al, Bl, B1, CI) into a two walled box by simply pulling these units apart from each other,
- Mounting/fitting the tongues (4) that stretch the movable, flexible, high strength rope connection (A3, B2a) and/or wire frame (C2) holding together related brick bodies (CI) with the logic of exterior encircling, tongue beams (A4, B4, C3) to be stretched by applying opposite force is mounted/fixed, thereby forming -the final brick module (B)
- Building the structure in a simple way without requiring any construction workmanship or technique detail only by sliding the male and female parts into each other as in the Lego system, thanks to fitting/interlocking process of the mentioned tongue beams (A4, B4, C3) sliding in vertical direction
- Quartet interlocking can be provided by interlocking tongue beams from bottom to top with beam clamp (A6, A7, B5) which is placed in double holes at the middle of both of them and the inner surfaces of two amounts side by side foldable brick bodies (Al, Bl, B, C) placed to right external side of left brick unit(B), right brick placed to the grooves (Aid, B1a, C1a) in left external side
- Thus, the bulge of tongue beams, laying in upward direction, which is in bottom foldable brick unit (B) slipping to the hollow of the bottom of the upward unit and completing the process of bottom to top, the beam groove (Aid, B1a, C1a) that are in the same row slipping inside rail condition line formed internal surfaces throughout the all building system
- Building wall corners by combining two foldable brick modules, which are formed into box bricks with chambers, at a vertical angle without leaving any space at the overlapping corners,
- Forming the wall building system of an architectural structure planned to be made by placing completely identical, independent and unconnected box shaped foldable bricks side by side and placing a single foldable brick unit at top onto these bottom brick units and by repeating this steps.
Fig. A-1
Fig. C-2

Fig. C-3
INTERNATIONAL SEARCH REPORT

International application No

PCT/TR2014/000486

A. CLASSIFICATION OF SUBJECT MATTER

INV. E04B1/343 E04C1/00 E04C1/40 E04B2/14 E04B2/18

ADD. E04B2/86

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E04B E04C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 608 799 A (HASEGAWA STANLEY [US]) 2 September 1986 (1986-09-02) col umn 1, line 29 - line 47 col umn 2, line 40 - col umn 6, line 36; figures 1-13</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>US 3 665 669 A (HUBER W ILIAM C) 30 May 1972 (1972-05-30) col umn 1, line 47 - line 55 col umn 2, line 4 - col umn 3, line 32; figures 1-6</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 206 502 A2 (SANDSLEEVE PTY LTD [ZA]) 30 December 1986 (1986-12-30) page 1, line 1 - line 9 page 2, line 1 - page 3, line 23 page 4, line 17 - page 5, line 22; figures 1-4</td>
<td>1-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

*" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"Z" document member of the same patent family

Date of the actual completion of the international search

30 April 2015

Date of mailing of the international search report

12/05/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040; Fax: (+31-70) 340-3018

Authorized officer

Gi annakou, Evangelia
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 424 452 AI (COFFOR INTERNAC EXPLORACAO DE [PT]) 2 June 2004 (2004-06-02) paragraph [0012] - paragraph [0020] figures 1,2</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>WO 2011/025373 AI (UNDA MARIS HOLDING NV [NL] ; SNEL WI LHELMUS JAN REINIER KAREL [NL]) 3 March 2011 (2011-03-03) page 7, line 13 - page 9, line 20; figures 1A-2B</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006/083159 AI (BEHEERSMIJ H P DE WIT B V [NL] ; DE WIT JAN HENDRIK [NL]) 10 August 2006 (2006-08-10) page 4, line 10 - page 5, line 8; figures la-le</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>GB 2 304 745 A (HOWARD MAURICE EDWIN [GB]) 26 March 1997 (1997-03-26) page 5, line 18 - page 11, line 25; figures 1-5</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>US 2 061 486 A (SCHUH CHARLES H) 17 November 1936 (1936-11-17) the whole document</td>
<td>1-24</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 4608799</td>
<td>02-09-1986</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3665669</td>
<td>30-05-1972</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 0206502</td>
<td>30-12-1986</td>
<td>AU 5716786 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0206502 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW 10086 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1424452 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004048713 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 2003407 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011025373 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 1027691 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006083159 A1</td>
</tr>
<tr>
<td>US 6138426</td>
<td>31-10-2000</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 2304745</td>
<td>26-03-1997</td>
<td>NONE</td>
</tr>
<tr>
<td>FR 2630478</td>
<td>27-10-1989</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2061486</td>
<td>17-11-1936</td>
<td>NONE</td>
</tr>
</tbody>
</table>