«»UK Patent Application «GB 2 285526 A

(43) Date of A Publication 12.07.1995

{21) Application No 9425726.8
(22) Date of Filing 20.12.1994

(30) Priority Data

(31) 08177155 us

(32) 04.01.1994 (33)

(71) Applicant(s)
Intel Corporation

(Incorporated in USA - Delaware)

2200 Mission College Boulevard, Santa Clara,
California 95052, United States of America

(51) INTCLSE
GOGF 9/32

{62) UKCL (Edition N)
G4A APB

(66) Documents Cited
EP 0227892 A2 EP 0199947 A2 EP 0109655 A2
WO 93/17385 A1 WO 87/05417 A1 US 4860197 A

Field of Search
UK CL (Edition N) G4A APB
INT CL® GO6F 9/32 9/38
ONLINE : INSPEC, WPI

(58)

(72) Inventor(s)
Bradley D Hoyt
Glenn J Hinton
David B Papworth
Ashwani Kumar Gupta
Michael Alan Fetterman
Subramanian Natarajan
Sunil Shenoy
Reynold V D'Sa

(74) Agent and/or Address for Service
Potts, Kerr & Co
15 Hamilton Square, BIRKENHEAD, Merseyside,
L41 6BR, United Kingdom

(54) Implementing a branch target buffer in CISC processor

(57) A Branch Target Buffer Circuit in a computer predicts
branch instructions in a stream of computer instructions.
The Branch Target Buffer Circuit 40 uses a Branch Target
Buffer Cache 41 that stores information about previously
executed branch instructions. The information stored is
addressed by the last byte of each branch instruction.
When an Instruction Fetch Unit 30 in the computer fetches
a block of instructions it sends the Branch Target Buffer
Circuit an instruction pointer. Based on the pointer, Circuit
40 looks in the Cache 41 to see if any of the instructions in
the block is a branch instruction. If it is, circuit 40 informs
the Instruction Fetch Unit about the upcoming branch
instruction and the branch outcome is predicted. The cache
may be a set-associative one.

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

< External Bus >

85
1

Memory and External Bus Logic A
3
Instruction
Fetch
Unit %4
I -
g::::t}.‘ Branch T 41
Buffer Target @-9!
Circuit | Buffer 502
(3 -92 «90
Branch1p T[4 | plEvSle—]
N Table 40
Eodl
1 —
50- A]
o Branch |Return ol
Address [Stack ‘,' >l RS e
Calculator |Buffer | 53 -81
1 o
Instruction | & A -7 -+ ROB fe—s]{-80
Decoder -83 M
#“‘ N
Retirement
fo o1
1
Y & Y o1
Figure 2 8

1/16

[aunsyy

4
axryey

H
Iy

9IMOaX

yojedsiq

Surmpaydg

awreuay
1998139y

(4
apoda(

1
apo2a(

ajej0yg
/1L

YRRl

yoed

11

01

6

8

L

9

g

14

€

1

adejg odig

2/16

: External Bus >

356
| >
Memory and External Bus Logic
Instruction
Fetch
Unit - 30
[
Branch
Branch T4
D fE
s Buffer
Circuit ” N
BranchIP || ©° | [EUS|¢
Table
> 40 1 EU4|
A
Y
50 -
.| Branch Return 51
"1 Address Stack 4!'
l___‘ Calculator |Buffer | 53

] - 60 - 170
Instruction Allocator

Decoder

ROB

v

il

RRF|-84

:

Retirement
Logic

|
85

Figure 2

3/16

e aunsy

£8 (40Y) Yd44Nd HHAYO0Jd
I-u
~ ~
g
v
€
(4
!
0
90g S0% ¥0g €03 302 106 joqumpn
L1Avd LSaT NSV SOVId VIVALINSIE dAI'lVA grug
OVd dO-0d0IN

1sqd

4/16

F au4n31y

q 6 8 L 9 S i4 g A 1 0 =X
XJdd A44d
XgJd 4444
[]
®
[]
¢ X700 0000
\ 7
7 77 XT00 0000
X000 0000
d 6 8 L 9 g ¥ € 3 1 0 =X
o

Yoog 234q 91

5/16

g6 Nu]

UOT}BULIOJUT 9A[0SaI JoUuelg UoI}NIAX Y
youerg
i8
uonjels
m a4n .% 2 r&. (8A[0sal) youedg jo 3s(qd L0eAI80Y
0L
(aunssy) youeaq jo 3sqd 103B20[[Y
UOI}BULIOJUT YoueIg
donewIojur Y| 09 o3t YoURIg
Ioje :
UMISUATED mmmﬂvohwo passacoig 7| 09
GOMEwaojur | youelg |e Iapooag
h uorjea0[[ea(] oJut (puelg UoljONIISU]
Y Vv VvV
ﬂ UOT)BULIOJUT
uonjoipaad youerg
. op , e
Jayng
Josrey youelg uotjeuLIojul uorjaipald youelg AU 419
eV 1id I¥9yeeD d1d 50104 UORPNIISA] uoyonIjsu]

6/16

9 2unsny

1v ayoe) Jayng jedae], youeig

Lel

921

gcl

144!

>

€
(4
T

0

dTdV.L NUHLLVd
LIS HONVHI

SLid
a1

|
1ey

€ AULNY
HONVYd

|
(114 4

¢ AYLNH
HONVYd

T AY.LNA
HONWVHYH

0 AMINA SSITYAAV LIS
HONVYd dHOVO dlLd

7/16

I¥ ayoe) Joyng ja81e], youerq ayj wolj Anua youelq v

), 2AN31J

(SLId 2€) @d n (L9 1) (SLIE) SLig | (SLd) | (SLIE) (SLIE 6)
SSHYAAY 119 Lig XHOLSIH | AMOISIH | &dAL |L3S40 | qmiq DV.L QHHSVH
LEDYVL HONVYE | QITvA | BALLVINOEAS | NOILVINOAdS | FNYL | HONVHE | H00T1d
[1 1 1 | i i !
807 LOY 907 507 y0p €07 a0v 10%

8/16

Receive Instruction Pointer from
Instruction Fetch Unit

y

Read out a set of branch entries
from the Branch Target Buffer
Cache using bits 4 through 10 of
the Instruction Pointer

!

Eliminate the branch entries
that do not have matching tags

'

Eliminate the branch entries

located before the current
instruction pointer

'

Order the branch entries by offset
and eliminate the branch entries
after the first taken branch

-101

- 102

- 103

- 104

- 105

Figure 8

9/16

Yoo[q UM

DE 2UNI1Y

§SaIppPYVy 198

(s1d 13) 8B I
1esyj0 oyoe]) d.1d
\l.lj\ul‘nlf\.“ N —
ofojojofs]sTs[ssssTafefalala]afefaale]a]a]a]afa]aa]a]a]a] 1]
0 €y ot 11 1€
S—— -
——

)20[q L1owaw e aulep s§31q 87 Joddn

10/16

Q6 24n31q

snae) Seg peyser=[1 [1[1 [1[1][1][1[n]| 0]

S— —
—— ~—

}oo[q UTm SS9IPPV 13S /mﬁn
198130 aypen gL §31q 3207 2 Jaddn g

\ll\f)\\"l‘\\()\.‘l‘}'} ——
R O N N 5 3 O O I
0 g ¥ ot 11 LT og 1€
S—— \

———

(s1q 1g) 3e3 10y

11/16

26 24Ny

(snqe) Berpeyse=[1 [1[1 [x [Xx [x[x[|n]n]

AN

H20[q urym SS3IpPY 39S syiq 1343230} Iay}a30} Iayjeso} Ieyjedo} s3q

195330 °yuE) 9149 1omo[g d40X JOX <(0).¢ dOX teddng
— "

_oo_oco_w_m_m_mm_m_w______ [T T T T T TTTTI 1]

13 4 OT 11 €l ¥I LT 81 1¢ @3 G3% 92 6 0€ 1€
S——— I

———
(s1q 1) 33 Iy

12/16

Q01 24n31J

A[qeom uoye], £[3uoxys
uaye[, uayeJ,
0T HLVIS IT HLV.LS
uaye} 0N

NIAVL

§
5| 3
‘M -
& =)
<

usye} j0u uaye} JON uaye3 jou

Aeop Auonys
10 HLVLS 00 ILVLS
Uoye],

NHMV.L LON

DO 24n31q

10 ITIT
00 OTIT
] 1011
It 001T
00 1101
It 0101
10 1001
00 P16 (0TT0) NLLN
00 1110
01| 0110 ém\
10 1010 £10)STH
00 0010 Youelrg
1T 1100
00 0100
10 1000
00 0000
A103S1HH wIayjeq
wajjed youeag
youelg

13/16

BIT Next Linear
Entry Instruction Pointer Processor
Number Address State Information
0
1
2
3

n-1

Branch IP Table (BIT) 43

Figure 11

14/16

o1epdn
Anyuyg

youerg

auo(g

i

81¢ -| £109S1] Yourug ajepdn

0

91¢ -| 9[qe], wiajied ajepdn

[eUOKIPUO)

é
oo " E1E adAy,
T |« 18330 N\ Youeig
181y, | TIE
ejepdn ¥ Sax

L0€ -

auo(g

1

d.g ut £nuyg
youelg

91B20[IVY

auo(q

uaye)
youerg
Y} sepm

youeag
9} SEM

gI 24n31g

10€ -

UOI}OTLIISUL YOURIY
P9}RI00SSE JO SS3IppE pajemafe)d

Lot

UoI}B20[[Y

youeig

15/16

01g 93epdn
ystury

9+x adiq

9jepdn QIg
anuniuo)

zigppdn

g+x adiq

&I a4nsy

9jepdn
01d Hels

e ig
aNUINOD

iggppdn

p+x adig

01
SOA[0SaI [

¢id
ajepdn jelg

ojepdn 11g
Inuuo)

¢1g 9jepdn
ystuty

g+x adig

¢id
§9AJ0SAI

9jepdn
T1d HeIg

ajedpn gig
anuruo)

g+x adig

TId
S9A[OSaI F L

arepdn
e1d HelS

1+x adiq

e1d
S9A[0SaI Hf

x adig

Counter =0 - 501

entry pointed to by \ No
PLRR has matching

PLRR = PLRR+1 |_ £13
Counter = Counter+1

Figure 14

Replace branch
entry pointed to
by PLRR

- 505

v

Set PLRR field
to PLRR + 1

- 507

|

Done

- 509

10

15

20

25

2285526

-1 -

Method and Apparatus for Implementing
A Branch Target Buffer In CISC Processor

1. ield of the Invention:

This invention relates to the field of microprocessor
architecture. Specifically, the invention relates to a Branch Target Buffer

Circuit that predicts branch instructions within an instruction stream.

2. Art Background:

Early microprocessors generally processed instructions one at a
time. Each instruction was processed using four sequential stages: instruction
fetch, instruction decode, execute, and result writeback. Within such
microprocessors, different dedicated logic blocks performed each different
processing stage. Each logic block waited until all the previous logic blocks

complete operations before beginning its operation.

To improve efficiency, microprocessor designers overlapped the
operations of the fetch, decode, execute, and writeback logic stages such that
the microprocessor operated on several instructions simultaneously. In
operation, the fetch, decode, execute, and writeback logic stages concurrently
process different instructions. At each clock tick the result of each processing
stage is passed to the following processing stage. Microprocessors that use the
technique of overlapping the fetch, decode, execute, and writeback stages are
known as “pipelined" microprocessors. Some microprocessors further divide

each processing stage into substages for additional performance

10

15

25

-2 -

improvement. Such processors are referred to as "deeply pipelined"

microprocessors.

In order for a pipelined microprocessor to operate efficiently, an
instruction fetch unit at the head of the pipeline must continually provide
the pipeline with a stream of microprocessor instructions. However,
conditional branch instructions within an instruction stream prevent the
instruction fetch unit from fetching subsequent instructions until the branch
condition is fully resolved. In pipelined microprocessor, the branch
condition will not be fully resolved until the branch instruction reaches an
instruction execution stage near the end of the microprocessor pipeline.
Accordingly, the instruction fetch unit will stall because the unresolved
branch condition prevents the instruction fetch unit from knowing which

instructions to fetch next.

To alleviate this problem, many pipelined microprocessors use
branch prediction mechanisms that predict the existence and the outcome of
branch instructions within an instruction stream. The instruction fetch unit
uses the branch predictions to fetch subsequent instructions. For example,

Yeh & Patt introduced a highly accurate two-level adaptive branch prediction

mechanism. (See Tse Yu Yeh and Yale N. Patt, Two-Level Adaptive Branch
Prediction, The 24th ACM/IEEE International Symposium and Workshop on
Microarchitecture, November 1991, pp. 51 - 61) The Yeh & Patt branch
prediction mechanism makes branch predictions based upon two levels of

collected branch history.

10

15

- 3 -
When a branch prediction mechanism predicts the outcome of a

branch instruction and the microprocessor executes subsequent instructions
along the predicted path, the microprocessor is said to have "speculatively
executed” along the predicted instruction path. During speculative execution
the microprocessor is performing useful processing if the branch instruction
was predicted correctly. However, if the branch prediction mechanism
mispredicted the branch instruction, then the microprocessor is speculatively
executing instructions down the wrong path and therefore accomplishes
nothing. When the microprocessor eventually detects the mispredicted
branch, the microprocessor must flush all the speculatively executed

instructions and restart execution at the correct address.

Since the microprocessor accomplishes nothing when a branch
instruction is mispredicted, it is desirable to accurately predict branch
instructions. This is especially true for deeply pipelined microprocessors
wherein a long instruction pipeline will be flushed each time a branch

misprediction is made.

10

15

20

-4 -
SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a
branch prediction mechanism that accurately predicts the existence of branch

instructions within an instruction stream.

It is a further object of the present invention to accurately predict

the branch outcome of all the branch instructions predicted within the

instruction stream.

It is yet another object of the present invention to accurately
predict a branch target address for all the branch instructions predicted that

are predicted taken.

These and other objectives are accomplished by Branch Target
Buffer Circuit of the present invention. The Branch Target Buffer Circuit of
the present invention comprises a Branch Target Buffer Cache. The Branch
Target Buffer Cache stores information about previously executed branch
instructions. The branch information stored in the Branch Target Buffer
Cache is addressed by the last byte of each branch instruction. When the
Instruction Fetch Unit fetches a block of instructions it sends the Branch
Target Buffer Circuit the instruction pointer. Based on this instruction
pointer, the Branch Target Buffer Circuit looks in the Branch Target Buffer
Cache to see if any of the instructions in the block being fetched is a branch
instruction. When the Branch Target Buffer Circuit finds an upcoming

branch instruction in the Branch Target Buffer Cache, the Branch Target

-5 -
Buffer Circuit informs an Instruction Fetch Unit that is responsible for

fetching future instructions.

10

15

20

25

-6 -
BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present invention

will be apparent to one skilled in the art, in view of the following detailed

description and drawings in which:

FIGURE 1 is a block diagram of a deep microprocessor pipeline

for processing microprocessor instructions.

FIGURE 2 is a block diagram of the different circuit blocks in a

microprocessor that implements the deep pipeline illustrated in Figure 1.

FIGURE 3 is a diagram of a reorder buffer that stores the results

of executed micro operations.

FIGURE 4 is a diagram of a memory map where the address

space has been divided into 16 byte memory blocks.

FIGURE 5 is a block diagram that illustrates how the Branch
Target Buffer Circuit interacts with other logic circuits in the microprocessor

depicted in Figure 2.

FIGURE 6 is a diagram illustrating the contents of the Branch

Target Buffer Cache in the Branch Target Buffer Circuit.

10

15

20

25

-7 -
FIGURE 7 is a diagram illustrating the contents of each branch

entry in the Branch Target Buffer Cache.

FIGURE 8 is a flow diagram explaining the steps performed by
the Branch Target Buffer Circuit when searching Branch Target Buffer Cache

to make a branch prediction.

FIGURE 9a illustrates how the Branch Target Buffer Circuit uses

addresses when accessing the Branch Target Buffer Cache.

FIGURE 9b illustrates a first hashing mechanism that reduces 21

bit tags into 9 bit hashed tags.

FIGURE 9c illustrates a second hashing mechanism that reduces

21 bit tags into 9 bit hashed tags.

FIGURE 10a illustrates a 4 bit branch history indexing into a 16

entry pattern table wherein each entry is a 2 bit state value.

FIGURE 10b is a state diagram that illustrates the state changes

for each 2 bit state value in a branch pattern table.

FIGURE 11 is a diagram illustrating the contents of the Branch IP

Table (BIT) in the Branch Target Buffer Circuit.

10

- 8 -
FIGURE 12 is a flow diagram that describes the steps performed

by the Branch Target Buffer Circuit when updating the Branch Target Buffer
Cache.

FIGURE 13 is a diagram that illustrates how the 3 cycle update to
the Branch Target Buffer Cache can be aborted.

FIGURE 14 is a flow diagram that explains how the Branch
Target Buffer Circuit selects one of the Branch Entries in a set when allocating

a Branch Entry for a new branch instruction.

10

15

20

25

-9 -
DETAILED DESCRIPTION OF THE INVENTION

Methods and apparatus for implementing a Branch Target
Buffer Circuit in a computer processor are disclosed. In the following-
description, for purposes of explanation, specific nomenclature is set forth to
provide a thorough understanding of the present invention. However, it
will be apparent to one skilled in the art that these specific details are not
required in order to practice the present invention. Furthermore, well
known circuits and devices are shown in block diagram form in order not to

obscure the present invention unnecessarily.
A Pipelined Superscalar Microprocessor

In a deeply pipelined processor, the major stages of a pipelined
processor such as instruction fetch, instruction decode, and instruction
execute, are divided into several different substages such that each processing
stage is pipelined. This results in a long instruction pipeline. For example,
Figure 1 illustrates a set of pipeline stages that defines one particular deeply
pipelined processor. In the instruction pipeline of Figure 1, the instruction

processing is divided into 11 pipeline stages.

Referring to Figure 1, the first two pipeline stages are used to
fetch instructions. Pipestage 3 performs Instruction Length Decoding (ILD).
Individual microprocessor instructions are then decoded at pipeline stages 4
and 5. The next 3 pipeline stages (Register Rename, Scheduling, and

Dispatch) prepare instructions for execution. Finally, the microprocessor

- 10 -
executes instructions at pipeline stage 9. The last two pipeline stages retire

instructions that have been executed.

To operate the microprocessor efficiently, the two instruction
fetch pipeline stages in Figure 1 must continually fetch a stream of
microprocessor instructions. Each fetched instruction is not fully executed
until it reaches pipeline stage 9, the execution stage. Branch instructions
within the instruction stream often direct the microprocessor to begin
executing instructions at a nonsequential address called the branch target
address. When a pipelined microprocessor encounters a branch instruction,
the instruction fetch stages can not immediately react to the branch since the
branch instruction has not yet been. decoded or executed. Thus, branch
instructions can cause a deeply pipelined microprocessor to speculatively
execute down the wrong path such that the microprocessor must later flush

the speculatively executed instructions and restart at a corrected address.

To prevent such situations, many pipelined microprocessors
employ a branch prediction mechanism that predicts branch instructions
within the instruction stream. Furthermore, such branch prediction
mechanisms predict the outcome and branch target address of such branch

instructions.

To predict branch instructions in a microprocessor containing a
deep pipeline such as the pipeline illustrated in Figure 1, the present
invention comprises a Branch Target Buffer Circuit that predicts the existence

of branch instructions within the instruction stream. The Branch Target

10

15

20

25

- 11 -
Buffer Circuit of present invention is disclosed within the context of a deeply

pipelined superscalar microprocessor. However, it will be apparent to those
skilled in the art that individual features of the disclosed Branch Target

Buffer Circuit can be implemented in other microprocessors within different

architectures.

Figure 2 illustrates, in block diagram form, the major logic
circuits of a deeply pipelined superscalar microprocessor that implements the
deep pipeline illustrated in Figure 1. An overview of the microprocessor
illustrated in Figure 2 is provided, followed by a detailed description of the
Branch Target Buffer Circuit 40 that predicts the existence of branch

instructions within the instruction stream.

At the top of the block diagram of Figure 2 is Memory & Bus
Logic 35. The Memory & Bus Logic 35 is responsible for loading information
into the microprocessor and outputting information from the
microprocessor. The Memory & Bus Logic 35 usually first attempts to load or
store from a high speed cache memory. If the cache memory cannot be used
(perhaps due to a cache "miss”), the Memory & Bus Logic 35 instead accesses a

main memory over an external bus.

Coupled to the Memory & Bus Logic 35 is an Instruction Fetch
Unit 30. The Instruction Fetch Unit 30 is responsible for continually fetching
new microprocessor instructions (also known as macro instructions) and
operands for the microprocessor to execute. The Instruction Fetch Unit 30

uses an instruction pointer (IP) to maintain the current fetch address. The

10

15

20

25

- 12 -
fetched microprocessor instructions are fed into the head of the instruction

pipeline.

Simple unconditional branch instructions within the
instruction stream prevent the Instruction Fetch Unit 30 from simply
fetching instructions along a sequential path. Furthermore, conditional
branch instructions within the instruction stream prevent the Instruction
Fetch Unit 30 from simply fetching instructions along a predefined path since
the branch condition must be resolved to determine the fetch path. To help
fetch the correct instructions, the Instruction Fetch Unit 30 consults a Branch
Target Buffer Circuit 40. The Branch Target Buffer Circuit 40 predicts the
existence of branch instructions within the instruction stream and predicts
the outcome of each predicted branch instruction. The Branch Target Buffer
Circuit 40 passes its branch prediction information back to the Instruction
Fetch Unit 30 such that the Instruction Fetch Unit 30 can fetch the proper

instructions.

After the Instruction Fetch Unit 30 fetches each microprocessor
instruction, the Instruction Fetch Unit 30 passes each microprocessor
instruction to an Instruction Decoder 60. If the Branch Target Buffer Circuit
40 made a branch prediction for an instruction, the Instruction Fetch Unit 30
also passes the Branch Target Buffer Circuit’s branch prediction on the

instruction.

The Instruction Decoder 60 is responsible for determining what

type of microprocessor instruction is received and breaking down the

10

15

20

25

- 13 -
microprocessor instruction into one or more micro-operations (hereinafter

referred to as micro-ops) with associated micro-operands. The one or more
micro-ops corresponding to a microprocessor instruction perform the

function of the corresponding microprocessor instruction.

If the Instruction Decoder 60 determines that a received
microprocessor instruction is a branch instruction, the Instruction Decoder 60
passes information describing the branch instruction to a Branch Address
Calculator 50 for special treatment. If the Branch Target Buffer Circuit 40
made a branch prediction for the branch instruction, the Branch Address
Calculator 50 verifies the branch prediction if possible using the branch
information received from the Instruction Decoder 60. If the Branch Target
Buffer Circuit 40 did not predict the branch instruction, the Branch Address
Calculator 50 makes a branch prediction for the branch instruction using the
branch information received from the Instruction Decoder 60. After the
Branch Address Calculator 50 completes its processing of the branch
instruction, the Branch Address Calculator 50 returns the processed branch

information to the Instruction Decoder 60.

After the Instruction Decoder 60 breaks down a microprocessor
instruction into a set of micro-ops, the Instruction Decoder 60 passes the
micro-ops and associated operands to an Allocator 70. The Allocator 70

allocates the processor resources necessary to execute each micro-op.

In the present embodiment, the microprocessor is a superscalar

processor that may execute the micro-ops out of the original program order.

10

15

20

25

- 14 -
However, the executed micro-ops must eventually be retired in the original

program order to properly execute the computer program. To maintain the
original program order, the microprocessor uses a reorder buffer 83 that stores

micro-op result data in the original program order.

Figure 3 illustrates the reorder buffer 83. The reorder buffer 83 of
Figure 3 comprises a circular buffer that contains n entries wherein each entry
is used to store the results of executed micro-ops. Since each entry in the
reorder buffer 83 provides a destination where the micro-op result data can
physically be put, each reorder buffer 83 is referred to as a physical destination
(pDst). The pDsts within the reorder buffer 83 are numbered 0 through n-1.
Referring to Figure 3, each pDst in the reorder buffer 83 contains fields for a
valid bit that indicates whether or not the micro-op result is valid, a micro-op
result, a set of flags affected by the micro-op, a mask for the flags, a code that

indicates what the results mean, and fault data.

For each micro-op, the Allocator 70 allocates the next available
pDst in the reorder buffer 83 to store the micro-op result. By sequentially
allocating the pDsts in the reorder buffer 83 in the same order that the micro-
ops are received, the original program order of the micro-op results will be

maintained.

When the Allocator 70 allocates a pDst in the reorder buffer 83
for a branch micro-op associated with a branch instruction, a matching entry
is also allocated in a buffer called the Branch IP Table (BIT) 43 located in the

Branch Target Buffer Circuit 40. The Instruction Decoder 60 then passes the

10

15

20

25

- 15 -
Branch Target Buffer Circuit 40 the address of the instruction that

immediately follows the branch instruction and a processor state value. The
Branch Target Buffer Circuit 40 writes the address of the instruction that
immediately follows the branch instruction and the processor state value into
the Branch IP Table (BIT) 43. This information stored in the Branch IP Table

(BIT) 43 is later used after the Branch Execution Unit has executed the branch

micro-op.

The Allocator 70 also allocates an entry in the reservation station
81 that stores the micro-op instruction and operand data for each micro-op.
Each reservation station 81 entry stores a valid bit that indicates if the
reservation station 81 entry is valid, the micro-op instruction code, two
source data fields, two valid bits for the source data fields, two physical source
fields that indicate where the source data will come from if the source data is
not valid, and a physical destination of the result of the micro-op. After the
Allocator 70 allocates a reservation station entry and a pDst in the reorder

buffer 83, each micro-op waits at the reservation station 81 entry until it is

executed.

Each micro-op in a reservation station 81 entry remains at the
reservation station 81 entry until all the source data required to execute the
micro-op has been obtained and an execution unit for executing the micro-op
is ready. When all the source data required for a micro-op is ready and an
execution unit is available, the reservation station 81 dispatches the micro-op
to the execution unit in the execution cluster 90. In the present embodiment,

there are four execution units (EU1 91, EU2 92, EU3 93, and EU4 94) in the

10

15

20

25

- 16 -
execution logic circuit 90. After an execution unit executes a micro-op, the

execution unit writes the result data, the architectural flags, and any fault
information into the reorder buffer 83 pDst that the Allocator 70 allocated for

the micro-op.

In the present embodiment, execution unit 92 is designated as a
Branch Execution Unit. The Branch Execution Unit 92 determines the final
branch decision outcome and the final branch target address for each branch
micro-op. The Branch Execution Unit 92 compares the final branch outcome
and target address with the predicted branch outcome and target address. If
the Branch Execution Unit 92 detects a mispredicted branch, the Branch
Execution Unit 92 initiates a set of actions that will correct the branch
misprediction. Thus the Branch Execution Unit 92 comprises the third stage

of the branch resolution mechanism.

Finally, a Retirement Circuit 85 retires the results that are stored
in the reorder buffer 83 pDsts from each executed micro-op. The Retirement
Circuit 85 retires the Reorder Buffer 83 pDsts by sequentially going through
the pDsts in the Reorder Buffer 83 in the same order that the Allocator 70
allocated the pDsts. The Retirement Circuit 85 retires pDsts by transferring
the micro-op results into a Real Register File (RRF) 84 that stores the current
committed architectural state. Since the Allocator 70 allocated the reorder
buffer 83 pDsts in original program order and the Retirement Circuit 85
retires the micro-op results in the reorder buffer 83 pDsts in that same order,
original program order is maintained even though micro-ops may have been

executed out of the original program order.

10

15

20

25

- 17 -
Referring to Figure 3, to retire a micro-op, the retirement circuit
tests the valid bit 201 of a reorder buffer pDst entry to see if the pDst contains a
valid executed micro-op result. If the valid bit 201 for the pDst is set, the
retirement circuit checks the fault field 206 of the pDst to see if a fault must be
handled. If the reorder buffer pDst entry contains a valid executed micro-op
result and there is no fault problem, then the executed micro-op result is

committed to permanent architectural state in the Real Register File (RRF) 84.

When the Retirement Circuit 85 attempts to retire a branch
micro-op, the Retirement Circuit 85 tests the fault field 206 of the pDst entry
to see if the branch micro-op was mispredicted. If Retirement Circuit 85
detects that the micro-op was mispredicted, the Retirement Circuit 85 flushes
the remainder of the instructions in the reorder buffer 83 since those

instructions were fetched after a branch misprediction.

Branch Target Buffer Circuit Overview

As described in the preceding microprocessor overview, the
Instruction Fetch Unit 30 is responsible for fetching instructions into the
microprocessor. The Instruction Fetch Unit 30 of the microprocessor in
Figure 2 views the memory address space as a collection of aligned 16 byte
blocks such that the Instruction Fetch Unit 30 fetches instructions and
operands in 16 byte blocks. Figure 4 illustrates memory map where the
address space is split into aligned 16 byte blocks. The Instruction Fetch Unit 30

uses an instruction pointer to maintain the current fetch address. When no

10

15

20

25

- 18 -
branch instructions are encountered within the code, the Instruction Fetch

Unit 30 fetches instructions and operands by sequentially fetching adjacent 16

byte blocks.

To predict the presence of branch instructions within the
instruction stream, the microprocessor of Figure 2 employs Branch Target
Buffer Circuit 40. The Branch Target Buffer Circuit 40 has a Branch Target
Buffer Cache 41 that contains information about branch instructions that the
microprocessor has previously executed. The Branch Target Buffer Circuit 40
uses the information in the Branch Target Buffer Cache 41 to recognize

branch instructions and predict the branch instruction outcome.

The Branch Target Buffer Circuit 40 also maintains a Branch IP
Table (BIT) 43 that contains information about branch instructions that are
currently within the microprocessor. The information in the Branch IP Table
43 is used to correct mispredicted branch instructions and maintain the

Branch Target Buffer Cache 41 after the branch instructions has been executed.

Figure 5 illustrates a block diagram that generally illustrates how
the Branch Target Buffer Circuit 40 interacts with other major logic circuits in
the microprocessor of Figure 2. The Instruction Fetch Unit 30 requests
information about upcoming branch instructions from Branch Target Buffer
Circuit 40 by passing an instruction pointer to the Branch Target Buffer
Circuit 40. The instruction pointer passed to the Branch Target Buffer Circuit
40 points to the memory block currently being fetched by the Instruction Fetch
Unit 30.

10

15

20

25

- 19 -
The Branch Target Buffer Circuit 40 searches the Branch Target
Buffer Cache 41 for inforrﬁation about branch instructions in the memory
block currently being fetched by the Instruction Fetch Unit 30. The Branch
Target Buffer Circuit 40 makes a branch prediction for any branch instructions
located in the memory block currently being fetched by the Instruction Fetch
Unit 30 that were found in the Branch Target Buffer Cache 41. The Branch
Target Buffer Circuit 40 passes the branch prediction information to the
Instruction Fetch Unit 30 thereby informing the Instruction Fetch Unit 30

about any branch instructions in the memory block currently being fetched by

the Instruction Fetch Unit 30.

To maintain the Branch Target Buffer Cache 41 and the Branch
IP Table 43, the Branch Target Buffer Circuit 40 receives information from

several other logic circuits in the microprocessor.

Referring to Figure 5, the Instruction Decoder 60 sends branch
information from to Branch Target Buffer Circuit 40. The branch
information sent by the Instruction Decoder 60 includes the address of the
instruction immediately following the branch instruction. The Branch Target
Buffer Circuit 40 stores the address of the instruction immediately following

the branch instruction into the Branch IP Table 43 for later use.

The Branch Address Calculator 50 validates branch predictions
made by the Branch Target Buffer Circuit 40. If the Branch Address Calculator

50 determines that the Branch Target Buffer Circuit 40 made a branch

10

15

20

25

- 20 -
prediction for a nonexistent branch, the Branch Address Calculator 50
instructs the Branch Target Buffer Circuit 40 to deallocate an entry in the

Branch Target Buffer Cache 41 containing the nonexistent branch instruction.

The Allocator 70 is responsible for allocating a reorder buffer 83
entry for each micro-op. When the Allocator 70 allocates a pDst entry in the
reorder buffer 83 for a branch micro-op, the Allocator 70 provides the pDst
entry- number to the Branch Target Buffer Circuit 40. The Branch Target
Buffer Circuit 40 uses the pDst entry number to allocate a corresponding entry
in the Branch IP Table 43. The corresponding entry in the Branch IP Table 43
stores information about the branch micro-op while the branch micro-op is

within the microprocessor.

The reservation station 81 stores micro-ops waiting to execute
and dispatches ready micro-ops to execution units in the microprocessor.
When the reservation station 81 dispatches a branch micro-op to the Branch
Execution Unit 92, the reservation station 81 informs the Branch Target
Buffer Circuit 40 of the pDst entry for the branch micro-op. The Branch
Target Buffer Circuit 40 responds by reading out the corresponding entry for
the branch instruction in the Branch IP Table 43. The information read out of

the entry in the Branch IP Table 43 is used after the branch micro-op executes.

The Branch Execution Unit 92 executes branch micro-ops for the
microprocessor. When the Branch Execution Unit 92 executes a branch
micro-op, the Branch Execution Unit 92 provides the branch resolution

information to the Branch Target Buffer Circuit 40. The Branch Target Buffer

10

15

20

25

- 21 -
Circuit 40 uses the branch resolution information to update an existing entry

in the Branch Target Buffer Cache 41 or allocate a new entry in the Branch

Target Buffer Cache 41.

The Branch Target Buffer Cache

The Branch Target Buffer Circuit 40 maintains a Branch Target
Buffer Cache 41 to predict the presence of branch instructions within an
instruction stream and the outcome of those branch instructions. The Branch
Target Buffer Cache 41 contains information about branch instructions that
the microprocessor has previously executed. Figure 6 illustrates the

organization of the Branch Target Buffer Cache 41.

The Branch Target Buffer Cache 41 is set-associative cache that
stores information about branch instructions located in main memory. In the
present embodiment, the Branch Target Buffer Cache 41 stores information
about branch instructions in 128 individual "sets” of branch information.
Each set of branch information in the Branch Target Buffer Cache 41 contains
4 branch entries wherein each branch entry contains information about a

single branch instruction that the microprocessor has previously executed.

Each set of branch entries within the Branch Target Buffer Cache
41 also includes a branch pattern table 421 and a pair of Pseudo-Least Recently
Replaced (PLRR) bits 420. The Branch Target Buffer Circuit 40 uses the branch
pattern table 421 for predicting the outcome of conditional branch

instructions in the set of branch entries. The Branch Target Buffer Circuit 40

10

15

20

25

- 27 -
uses the Pseudo-Least Recently Replaced (PLRR) bits 420 to select a branch

entry in the set when information about a new branch will be written into the

set of branch entries.

Figure 7 illustrates the branch information stored within each
branch entry of a Branch Target Buffer Cache 41 set. As illustrated in Figure 6,
each branch entry contains a hashed tag address 401, a block offset 402, a
branch type 403, a true branch history 404, a speculative branch history 405, a
speculation bit 406, a valid bit 407, and a branch target address 408.

The hashed tag address 401 and the block offset 402 are used to
identify a memory address of the branch instruction associated with the
branch entry. The hashed tag address 401 is a 9 bit compressed representation

of the 21 most significant bits of the address of the branch instruction.

The block offset value 402 indicates the byte offset within the 16
byte memory block address of the branch instruction's last byte. Branch
instructions are indexed by the last byte such that every byte of a branch
instruction that crosses a block boundary will be fetched before making a
branch prediction. For example, referring again to the memory map of Figure
4, a four byte long branch instruction is illustrated at the hexadecimal address
1E to 21. After being executed, the four byte branch instruction will be placed
into an entry in the Branch Target Buffer Cache 41 and associated with the
hexadecimal address 21. Thus the block offset 402 in the branch entry for that

branch instruction will be set to 1.

10

15

20

- 23 -
If the branch instruction was instead indexed by the first byte

(hexadecimal address 1E), the Branch Target Buffer Circuit 40 would instruct
the Instruction Fetch Unit 30 to fetch from the branch target address before all
the bytes comprising the branch instruction had been fetched. Thus, the
Instruction Decoder 60 and Branch Execution Unit 92 would not be able to

verify the branch instruction since the entire branch instruction was not

fetched.

The branch type field 403 in each branch entry specifies what type
of branch instruction the branch entry identifies. The following Table 1 lists

the different types of branch instructions.

Table 1
Branch Branch Type
Type Code
00 Conditional branch
01 Return From Subroutine
10 Call Subroutine
11 Unconditional branch

The Branch Target Buffer Circuit 40 uses the branch type field
403 when making a branch prediction since different branch prediction
mechanism is used for different type of branch instruction. For example, the
Branch Target Buffer Circuit 40 predicts the outcome of conditional branch

instruction based upon the branch instruction's history, but the Branch Target

10

15

20

25

- 24 -
Buffer Circuit 40 always predicts an unconditional branch instruction as

taken.

The true branch history field 404 in Figure 7 maintains the taken
or not-taken history of the branch instruction as determined by the Branch
Execution Unit 92. The true branch history field 404 stores branch history for
the last 4 executions of the branch instruction using 4 bits where "0"
designates not-taken and "1" designates taken. The 4 bits of taken or not-
taken history are used to index into a pattern state table when calculating a

branch prediction. This is based on the branch outcome at branch execution.

The speculation bit 406 and the speculative branch history field
405 are used to help make predictions for branch instructions without waiting
for branch instructions to execute. The speculative branch history field 405 in
Figure 7 maintains the “speculative” taken or not-taken history of the branch
instruction for the last 4 branch predictions made by the Branch Target Buffer
Circuit 40. The speculation bit 406 is set when the speculative branch history
field 405 contains valid speculative history. The 4 bits of speculative branch
history 405 are used to index into the pattern state table when calculating a
branch prediction and the speculation bit 406 is set. For more information on
predicting branch instructions using the speculative branch history, see the
copending patent application "Speculative History Mechanism in a Branch

Target Buffer", Serial No. 08/062,012, filed May 14, 1993.

The valid bit 407 indicates whether the branch entry contains

valid branch information. When the Branch Target Buffer Circuit 40

10

15

20

25

- 25 -
allocates and fills a branch entry, the Branch Target Buffer Circuit 40 sets the
valid bit 407 for the entry 'thereby indicating that the entry contains valid
branch information. Later, when the Branch Address Calculator 50

deallocates the branch entry, the valid bit 407 for the deallocated entry is

cleared.

The branch target address field 408 in Figure 7 stores the branch
target address for the branch instruction except if the branch instruction is a
Return From Subroutine instruction. If the Branch Target Buffer Circuit 40
predicts the branch instruction associated with the branch entry is taken, the
address in the branch target address field 408 can be passed to the Instruction
Fetch Unit 30 to inform the Instruction Fetch Unit 30 where the next
instructions should be fetched from. (However, the branch target address
field 408 is not always used to predict the target address.) The upper 28 bits of
the branch target address field 408 select a 16 byte block that the Instruction
Fetch Unit 30 should fetch if the branch is taken. The lowest 4 bits of the
branch target address field 408 select the byte in the fetched block where the

microprocessor should resume execution.
Predicting Branch Instructions using the Branch Target Buffer Cache

The Instruction Fetch Unit 30 requests information about
upcoming branch instructions by passing an instruction pointer to the Branch
Target Buffer Circuit 40. Figure 8 illustrates the steps performed by the
Branch Target Buffer Circuit 40 when searching the Branch Target Buffer

Cache 41 for upcoming branch instructions. At step 101, the Branch Target

10

15

20

25

- 26 -
Buffer Circuit 40 receives the instruction pointer from the Instruction Fetch

Unit 30.

At step 102, the Branch Target Buffer Circuit 40 reads out a set of
branch four branch entries from the Branch Target Buffer Cache 41 using the
instruction pointer. To clarify how the Branch Target Buffer Circuit 40 uses
the instruction pointer, Figure 9a illustrates the individual bits of the 32 bit
instruction pointer address as used by the Branch Target Buffer Cache 41 to
identify the address of a branch instruction. The upper 28 bits of the address
identify a memory block. The 4 least significant bits of an address designate
an offset location within a 16 byte block. In the Branch Target Buffer Cache 41,
each entry contains an block offset 402 that locates the last byte of the

associated branch instruction within a 16 byte block.

The upper 28 bits of an address identifying a memory block can
be divided into two separate sections. The uppermost 21 bits (bits 11 though
31) represent a tag that is associated with each branch entry in the Branch
Target Buffer Cache 41. The remaining 7 bits (bits 4 though 10) are the "set
bits" that identify a set of branch entries within the Branch Target Buffer

Cache 41.

The Branch Target Buffer Circuit 40 indexes into the Branch
Target Buffer Cache 41 using the seven set bits (bits 4 though 10) of the
instruction pointer to select a set of branch entries. The Branch Target Buffer

Circuit 40 then reads out the selected set of branch entries.

10

15

20

25

- 27 -
At step 103, the Branch Target Buffer Circuit 40 examines the

four branch entries within the selected set to determine if any of the four
branch entries contain information about a branch instruction in the 16 byte
block pointed to by the instruction pointer. Specifically, the Branch Target
Buffer Circuit 40 compares a 9 bit compressed version of the upper 21 bits of
the instruction pointer address with the hashed tag field 401 within each

branch entry to eliminate branch entries that do not match.

To reduce the die area required to construct the Branch Target
Buffer Cache 41, each branch entry in the Branch Target Buffer Cache 41 stores
a compressed tag address. In the preferred embodiment, the full 21 bit tag
value is run through a hash mechanism that reduces the tag to 9 bits. The
compression of the tag address loses some information and thus causes some
aliasing. The aliasing created by the compressed tag occasionally causes
branch mispredictions. However, any branch mispredictions are eventually

cured by the Branch Address Calculator 50 or the Branch Execution Unit 92 in

the microprocessor.

The Branch Target Buffer Logic 40 of the present invention uses
two different hashing mechanisms to compress the tag address. Both hashing
mechanisms reduce the full 21 bit tag address into a 9 bit hashed tag. A

machine specific register (MSR) in the microprocessor selects one of the two

types of hashing mechanisms.

Figure 9b illustrates the operation of the first hashing

mechanism. The first hashing mechanism concatenates the 2 most

10

15

20

25

- 28 -
significant bits (bits 30 and 31) of the full tag address with the 7 least
significant bits (bits 11 though 17) of the full tag address to create a 9 bit hashed
tag. This first hashing mechanfsm works well for programs that usually
jump locally such that the low seven bits are useful, but occasionally jump to
an Operating System routine far away such that the two most significant bits

are useful.

Figure 9c illustrates the operation of the second hashing
mechanism. The second hashing mechanism concatenates the 2 most
significant bits (bits 30 and 31) of the full tag address, a 4 bit exclusive-OR
(XOR) combination of the next 16 bits in the full tag address (bits 14 though
29), and the 3 least significant bits (bits 11 though 13) of the full tag address to
create a 9 bit hashed tag. The 4 bit exclusive-OR (XOR) combination is created
by combining together the middle 16 bits (bits 14 though 29) in groups of four
as illustrated in Figure 9c. The second hashing mechanism works well for '
programs that jump any where in the address space since all tag bits are taken
into consideration. Note that the 2 most significant bits (bits 30 and 31) are
preserved in order to detect calls to Operating System routines that are far

away from the current address.

When examining the Branch Target Buffer Cache 41, the Branch
Target Buffer Logic 40 runs the upper 21 bits of the current instruction pointer
through hashing mechanism and compares the hashed instruction pointer
value against the hashed tag fields 401 in the four branch entries of the

selected set. The Branch Target Buffer Logic 40 eliminates those branch

10

15

20

25

- 29 -
entries having a hashed tag field 401 that does not match the value of the

current hashed instruction pointer.

At step 104, the Branch Target Buffer Logic 40 eliminates the
branch entries in the selected set that identify branch instructions located
before the current instruction pointer. For example, referring to again to the
memory map of Figure 4, a four byte long branch instruction is illustrated at
the hexadecimal addresses 1E to 21. The branch instruction at hexadecimal
addresses 1E to 21 is placed into a branch entry in the Branch Target Buffer
Cache 41 and associated with the hexadecimal address 21 since that is the
address of the last byte of the branch instruction. Thus the block offset field
402 of the branch entry will be set to 1. If the current instruction pointer
points to the hexadecimal address 23, then the Branch Target Buffer Logic 40
eliminates all branch entries that have values less than 3 in the block offset
field 402 such that the branch entry for the branch instruction at hexadecimal

address 21 is no longer considered.

The remaining branch entries describe branch instructions
within the 16 byte block pointed to by the current instruction pointer and are
located after the current instruction pointer. At step 105, the Branch Target
Buffer Logic 40 orders the remaining branch entries using the block offset
field 402 of the remaining branch entries. The Branch Target Buffer Logic 40
then selects the first "taken" branch instruction from the remaining ordered
branch entries if there is a "taken" branch instruction. To select the first taken

branch instruction from the remaining ordered branch entries, the Branch

10

15

20

- 30 -
Target Buffer Logic 40 must make branch outcome predictions for all the

remaining branch entries in the selected set.
Predicting Branch Outcomes and Branch Target Addresses

To make a branch outcome prediction for each entry, the Branch
Target Buffer Circuit 40 first reads the branch type field 403. The Branch
Target Buffer Circuit 40 handles the branch prediction differently depending

upon what type of branch instruction is predicted.

The branch type field designates if the predicted branch
instruction is a conditional, an unconditional, a Call Subroutine, or a Return
From Subroutine branch instruction. Note that although Call Subroutine
and Return From Subroutine instructions are specific types of unconditional
branch instructions, those two instructions are marked as different types. The
Branch Target Buffer Circuit 40 marks Call Subroutine and Return From
Subroutine instructions as different types since the Branch Target Buffer
Circuit 40 performs special operations when those two types of branch

instruction are predicted.

10

- 31 -

The following Table 2 summarizes how the Branch Target

Buffer Circuit 40 predicts branch outcomes and target addresses for the four

types of branch instructions stored within the Branch Target Buffer Cache 41.

Table 2

Branch Type

Branch Target Buffer Circuit Action

Branch Outcome
Prediction

Branch Target Address
Prediction

Unconditional Branch
Instruction(Other than
Call Subroutine or
Return From
Subroutine)

Predict taken

Predict branch target
address from target field
in Branch Target Buffer
Cache

Conditional Branch
Instruction

Predict branch outcome
using branch history
and branch pattern table

Predict branch target
address from target field
in Branch Target Buffer
Cache

Call Subroutine
Instruction

Predict taken

Predict branch target
address from target field
in Branch Target Buffer
Cache

Return From
Subroutine Instruction

Predict taken

Predict from Return
Register if Return
Register valid bit set else
predict from RSB using
BTB TOS pointer

As set forth in Table 2, all branch instructions other than

conditional branch instructions are predicted taken. To predict the outcome

of a conditional branch instruction, the Branch Target Buffer Circuit 40 uses

the Yeh & Patt two-level adaptive branch prediction mechanism. (See Tse Yu

Yeh and Yale N. Patt, Two-Level Adaptive Branch Prediction, The 24th

10

15

20

- 32 -
ACM/IEEE International Symposium and Workshop on Microarchitecture,

November 1991, pp. 51 - 61) The two-level Yeh & Patt branch prediction

mechanism dynamically maintains two levels of branch history.

The first level of branch history maintained in the two-level
adaptive branch prediction mechanism is the taken or not-taken branch
history stored within each branch entry. For example, a "not-taken, taken,
taken, not-taken" branch history is represented by "0110". In the present
embodiment, two versions of the branch history are stored: a true branch
history and a speculative branch history. The true branch history stores the
last four outcomes of the branch instruction as determined by the Branch
Execution Unit 92. The speculative branch history stores the last four
outcomes of the branch instruction as predicted by the Branch Target Buffer
Circuit 40. The speculative history is used to get around the problem of
predicting branch instructions within small (or "tight") loops since the true
history might not be updated fast enough. This document will concentrate
on the true branch history, however, additional information about the
speculative branch history can be found in the copending patent application
“Speculative History Mechanism in a Branch Target Buffer”, Serial No.

08/062,012, filed May 14, 1993.

The second level of branch history maintained in the two-level
adaptive branch prediction mechanism is the branch pattern history. The
branch pattern history indicates the likely outcome of a branch instruction
based upon the previous branch outcomes of the branch instruction with

identical branch histories. The branch pattern history is stored as a two-bit

10

15

20

25

- 33 -
state value for each possible branch history pattern. Since the present

embodiment stores 4 bits of branch history, there are 16 state values for the 16
possible branch history patterné as illustrated in Figure 10a. The two-bit state

value classifies branch patterns into strongly taken, weakly taken, weakly not-

taken, and strongly not-taken as illustrated in Figure 10b.

The branch pattern history is created from previous occurrences
of the same branch pattern. Each time a conditional branch instruction is
resolved, the branch pattern table is updated using the Lee & Smith saturating

up/down counter as illustrated by the state transition arrows in Figure 10b.

A branch prediction example is provided with reference to
Figures 10a. Referring to Figure 10a, 4 bits of branch history store a "not-
taken, taken, taken, not-taken" ("0110") pattern for a conditional branch
instruction. The 4 bit branch pattern is used to index into a branch pattern
table that stores branch pattern history state values for each branch pattern. In
Figure 10a, the "0110" branch pattern indexes to a "10" state value that
represents the "weakly taken" state. The branch prediction mechanism will
therefore predict the branch will be taken. When the branch instruction is
resolved by the Branch Execution Unit 92, the Branch Execution Unit 92
updates both the branch history for the branch and the appropriate state value

entry in a branch pattern table.

After the Branch Target Buffer Circuit 40 determines the branch
outcome for all conditional branch instructions in the ordered set, the Branch

Target Buffer Circuit 40 searches for the first taken branch instruction. If no

10

15

20

25

- 34 -
branch instructions are predicted taken, then the Instruction Fetch Unit 30

fetches the next sequential memory block. However, if there is a taken branch
instruction in the selected set, then the Branch Target Buffer Circuit 40

predicts a branch target address for the first taken branch instruction.

Table 2 describes how the Branch Target Buffer Circuit 40
predicts a branch target address for each type of branch instruction as indicated
in the branch type field 403 when the branch instruction is predicted taken.
As stated in Table 2 The Branch Target Buffer Circuit 40 handles
unconditional, conditional, and Jump To Subroutine branch instructions by
predicting a branch to the address provided in the branch target address field
408 of the Branch Target Buffer Cache 41 entry. However, Return From

Subroutine instructions are handled differently.

When the Branch Target Buffer Circuit 40 predicts a taken
Return From Subroutine instruction, the Branch Target Buffer Circuit 40
predicts a return address from a Return Register or from a Return Stack

Buffer within the Branch Address Calculator 50.

The Branch Target Buffer Circuit 40 passes the predicted branch
target address to the Instruction Fetch Unit 30. The Instruction Fetch Unit 30

then fetches the next memory block using the predicted branch target address.

10

15

20

25

- 35 -
The Branch Instruction Pointer Table

In addition to the Branch Target Buffer Cache 41, the Branch
Target Buffer Circuit 40 also maintains another cache called the Branch
Instruction Pointer (IP) Table 43. The Branch IP Table 43 stores information
about all unresolved branch micro-ops currently within the microprocessor.
After each branch micro-op has been executed, the information stored within
the Branch IP Table 43 is retrieved to update the Branch Target Buffer Cache

41 or restart the microprocessor in the case of a branch misprediction.

Figure 11 illustrates the Branch IP Table 43 of the present
invention. The Branch IP Table 43 comprises a buffer containing n branch
entries (0 to n - 1) wherein n equals the number of entries in the Reorder
Buffer 83. Each branch information entry within the Branch IP Table 43

comprises a Next Linear Instruction Pointer (NLIP) address field and a

processor state information field.

The Next Linear Instruction Pointer (NLIP) address field stores
the address of the instruction immediately following the branch instruction
associated with the branch micro-op. The Instruction Fetch Unit 30 uses the
Next Linear Instruction Pointer (NLIP) address when a branch is mispredicted

taken when the branch should not have been taken.

The Next Linear Instruction Pointer (NLIP) address is also used

to index into the Branch Target Buffer Cache 41 when allocating new branch

10

15

20

25

- 36~
entries or updating the branch history information in existing branch entries.

When allocating a new branch entry or updating an existing branch entry, the
Next Linear Instruction Pointer (NLIP) address is decremented by one to
produce the address of the last byte of the branch instruction. The address of
the last byte of the branch instruction is used by the Branch Target Buffer

Circuit 40 to index into the Branch Target Buffer Cache 41.

The processor state information field is used to store state
information that may be corrupted when the microprocessor begins
speculative execution after making a branch prediction. If the microprocessor
is speculatively executing down the wrong path due to a branch
misprediction, the state information can be restored from the Branch IP Table
43 when the misprediction is detected. In the present embodiment, the
microprocessor state information field stores a stack pointer for the Return

Stack Buffer in the Branch Address Calculator 50.

As stated in the microprocessor overview, when the Allocator 70
assigns a pDst entry in the reorder buffer 83 for a branch micro-op, a
corresponding entry in the Branch IP Table 43 is assigned. The Instruction
Decoder 60 informs the Branch Target Buffer Circuit 40 about the assigned
pDst entry, the processor state information, and the Next Linear Instruction
Pointer (NLIP) address. The Branch Target Buffer Circuit 40 writes the
processor state information and the Next Linear Instruction Pointer (NLIP)

address into a corresponding entry in the Branch IP Table 43.

10

15

20

25

- 37 -

Updating the Branch Target Buffer Cache

Referring to Figure 2, each branch micro-op remains at the
reservation station 81 entry until all the source data required to execute the
branch micro-op has been obtained and the Branch Execution Unit 92 is
available. When the source data required to execute the branch micro-op is

ready, the reservation station 81 sends the branch micro-op to the Branch

Execution Unit 92.

The Branch Target Buffer Circuit 40 monitors the bus used to
send micro-ops from the reservation station 81 to the Branch Execution Unit
92. Upon seeing the reservation station 81 issue a branch micro-op to the
Branch Execution Unit 92, the Branch Target Buffer Circuit 40 notes which
pDst entry number in the reorder buffer 83 will be used to store the branch
micro-op result. As the Branch Execution Unit 92 executes the branch micro-
op, the Branch Target Buffer Circuit 40 reads out an entry in the Branch IP
Table 43 having the same entry number as the reorder buffer 83 pDst entry. In
this manner, the stored branch information associated with the branch micro-

op being executed will be available when the branch micro-op is resolved.

The Branch Execution Unit 92 executes the branch micro-op by
determining a final branch target address and a final branch outcome (taken

or not-taken). The Branch Execution Unit 92 compares the final branch

10

15

20

25

- 38 =
outcome of the branch with a predicted branch outcome to see if the branch
prediction was correct. If the branch prediction was correct, then the processor
continues along the predicted path. However, if the branch prediction was
wrong, the Branch Execution Unit 92 must flush the front-end of the
microprocessor pipeline and restart the microprocessor at the correct address.
If the branch instruction was predicted taken and the final branch outcome
was instead not-taken, the microprocessor must resume execution at the
address of the instruction immediately following the branch instruction. The
Branch Execution Unit 92 handles this situation by flushing the front-end of
the microprocessor pipeline and instructing the Instruction Fetch Unit 30 to
resume execution at the Next Linear Instruction Pointer (NLIP) address as

provided by the Branch IP Table 43.

After the Branch Execution Unit 92 executes a branch micro-op,
the Branch Target Buffer Circuit 40 must allocate a new entry or update an
existing entry in the Branch Target Buffer 41. To access the proper set in the
Branch Target Buffer Cache 41, the Branch Target Buffer Circuit 40 must have
the address of the last byte of the branch instruction. To calculate the last byte
of the branch instruction, the Branch Target Buffer Circuit 40 decrements the
Next Linear Instruction Pointer (NLIP) address obtained from the Branch IP

Table 43.

To provide information for the updating the Branch Target
Buffer Cache 41, the Branch Execution Unit 92 transfers information about
the resolved branch instruction to the Branch Target Buffer Circuit 40.

Specifically, the Branch Execution Unit 92 informs the Branch Target Buffer

10

15

20

25

- 39 -
Circuit 40 what type of branch instruction was executed, whether the branch

was taken or not-taken, and the branch target address. The Branch Target

Buffer Circuit 40 uses the resolved branch information to update the Branch

Target Buffer Cache 41.

Figure 12 illustrates the steps the Branch Target Buffer Circuit 40
performs when updating the Branch Target Buffer Cache 41. At step 301, the
Branch Target Buffer Circuit 40 decrements the Next Linear Instruction
Pointer (NLIP) address read out of the Branch IP Table 43 to calculate the
address of the last byte branch instruction. The Branch Target Buffer Circuit

40 uses the address of the last byte branch instruction to index into the Branch

Target Buffer Cache 41.

At step 302, the Branch Target Buffer Circuit 40 indexes into the
Branch Target Buffer Cache 41 to see if a branch entry already exists in the
Branch Target Buffer Cache 41 for the branch instruction. Specifically, the
Branch Target Buffer Circuit 40 indexes into the Branch Target Buffer Cache
41 with the set bits of the calculated branch instruction address looks for a

branch entry with a matching hashed tag field 401 and block offset field 402.

If the Branch Target Buffer Circuit 40 cannot find a branch entry
in the Branch Target Buffer Cache 41 for the branch instruction, then the
Branch Target Buffer Circuit 40 uses an allocation policy to decide if the
branch instruction should be added to the Branch Target Buffer Cache 41. The
allocation policy is explained later in this specification. Alternatively, if the

Branch Target Buffer Circuit 40 finds a branch entry in the Branch Target

10

15

20

- 40 -
Buffer Cache 41 for the branch instruction, then the Branch Target Buffer

Circuit 40 proceeds to update the branch entry starting at step 310.
Updating an Existing Branch Entry in the Branch Target Buffer Cache

The entire process of updating an existing branch entry in the
Branch Target Buffer Cache 41 requires 3 machine cycles. An update to an
existing branch entry in the Branch Target Buffer Cache 41 can be aborted by
the Branch Target Buffer Circuit 40 if it is determined that the branch entry

should not be updated.

Referring to step 310 of Figure 12, the Branch Target Buffer
Circuit 40 compares the branch target address in the branch entry with the
branch target address calculated by the Branch Execution Unit 92 unless the
branch is a Return From Subroutine Instruction. If the two target addresses
do not match, the Branch Execution Unit 92 updates the branch target address

at step 311.

Referring to step 312 of Figure 12, the Branch Target Buffer
Circuit 40 examines the branch type provided by the Branch Execution Unit
92. If the branch type is an unconditional branch instruction, then the Branch
Target Buffer Circuit 40 is done updating the branch entry. If the branch
instruction is a conditional branch instruction, then the Branch Target Buffer

Circuit 40 proceeds to update the branch pattern table a branch history.

10

15

20

25

- 41 -
At step 316, the Branch Target Buffer Circuit 40 updates the

branch pattern table 421 for the set that contains the branch entry. The branch
pattern table 421 is updated by indexing into the branch pattern table 421 with
the existing true branch history 404 and changing the state value using latest
branch result according to the state transition table as illustrated in Figure 10b.
The branch pattern table 421 must be update before the true branch history
field 404 is updated since the current history in the true branch history field

404 is needed to index into the branch pattern table 421.

After updating the branch pattern table at step 316, the Branch
Target Buffer Circuit 40 updates the true branch history field 404 at step 318.
The Branch Target Buffer Circuit 40 updates true branch history field 404 by
shifting the latest branch outcome of the conditional branch instruction as
calculated by the Branch Execution Unit 92 into the true branch history field
404. This completes the branch entry updating for a conditional branch

instruction.

The Branch Target Buffer Circuit 40 updates each branch entry in
the Branch Target Buffer Cache 41 two machine cycles after the Branch
Execution Unit 92 has executed the branch micro-op associated with the
branch instruction. However, since the microprocessor containing the
Branch Target Buffer Circuit 40 can execute micro-ops out of the original
program order, the Branch Target Buffer Circuit 40 may update the Branch

Target Buffer Cache 41 out of the original program order.

10

15

20

25

- 42 -
In most cases, updating the Branch Target Buffer Cache 41 out of

the original program order causes no problems. However, when the Branch
Execution Unit 92 detects a branch misprediction while executing a branch
after a later branch had already executed, the later branch would have been
updated with invalid history. To help remedy this situation, the Branch
Target Buffer Circuit 40 may abort the update of a branch entry if the Branch
Target Buffer Circuit 40 learns that the branch should not have been executed
within the next 2 cycles. An example of this situation is explained with

reference to Figure 13.

Consider four branch instructions named Br0, Brl, Br2, and Br3
that appear in that order within a computer program. In the microprocessor
illustrated by Figure 2, the associated branch micro-ops may executed in any
order. In Figure 13, the four branch instructions are executed the following

order Br3, Brl, Br2, and finally Br0.

Referring to pipe x of Figure 13, the Branch Execution Unit
resolves Br3. At the next pipe, pipe x+1, the Branch Execution Unit resolves
Brl and the Branch Target Buffer Circuit 40 starts updating the branch entry
for Br3. At pipe x+2, the Branch Execution Unit resolves Brl while at the
same time the Branch Target Buffer Circuit 40 starts updating the branch
entry for Brl and continues updating the branch entry for Br3. At pipe x+3,
the Branch Execution Unit resolves Br0 while at the same time the Branch
Target Buffer Circuit 40 starts updating the branch entry for Br2, continues
updating the branch entry for Brl, and finishes updating the branch entry for
Br3.

10

15

20

25

- 43 -
If the Branch Execution Unit determines that branch Br0 was

mispredicted, then the subsequent branch instructions should not have been
executed since the microprocessor was speculatively executing down the
wrong path. More importantly, the branch histories for branch instructions
Brl, Br2, and Br3 should not be updated since these branch instructions
should not have been executed thus any new branch history would be wrong.
When the Branch Execution Unit detects the misprediction, the Branch
Execution Unit instructs the Branch Target Buffer Circuit 40 to abort all the
updates currently be processed. Thus the Branch Target Buffer Circuit 40
aborts the updates for branch instructions Brl and Br2 as illustrated in Figure
13. Since the update for Br3 had already completed when the misprediction
was detected, it cannot be prevented. However, the ability to abort branch
entry updates during the 2 cycles before completion of the update will handle

the majority of such cases.
Allocating Branch Entries in the Branch Target Buffer Cache

Referring back to step 302 of Figure 12, if the Branch Target
Buffer Circuit 40 does not find an existing branch entry in the Branch Target
Buffer Cache 41 for the branch instruction, the Branch Target Buffer Circuit 40
must determine if a new branch entry in the Branch Target Buffer Cache 41
will be allocated. To determine whether or not to allocate a branch entry, the
microprocessor implements a branch entry allocation policy. Steps 303 and
305 implement the branch entry allocation policy of the Branch Target Buffer

Cache 41. Simply stated, the branch entry allocation policy of the present

10

15

20

25

- 44 -
invention is to allocate a branch entry for all branch instructions mispredicted

by the Branch Address Calculator 50 and all taken branch instructions.

Referring to Figure 2, the Branch Address Calculator 50 performs
static prediction on branch instructions not predicted by the Branch Target
Buffer Circuit 40. The static prediction is based only upon the information
encoded within the branch instruction itself such that the Branch Address
Calculator 50 will always make the same prediction for a given branch
instruction. Thus, when the Branch Address Calculator 50 mispredicts a
branch instruction, the same misprediction will be repeated over and over
again (until the branch outcome changes). To prevent this situation, all
branch instructions mispredicted by the Branch Address Calculator 50 are
allocated into the Branch Target Buffer Cache 41. Thus, at step 303 of Figure
12, the Branch Target Buffer Circuit 40 tests if the branch instruction was
mispredicted. If the branch was mispredicted, the Branch Target Buffer
Circuit 40 allocates a branch entry for the branch instruction within the

Branch Target Buffer Cache 41.

If the Branch Address Calculator 50 predicts that a branch
instruction will not be taken and the branch prediction is correct, no delay
results. Alternatively, when the Branch Address Calculator 50 predicts that a
branch instruction will be taken, the Branch Address Calculator 50 must still
flush the front-end of the microprocessor and start the Instruction Fetch Unit
30 fetching from the branch target address. Thus, if a branch instruction is
taken, there will be a 5 cycle delay whether or not the Branch Address

Calculator 50 correctly predicts the branch instruction's outcome. To prevent

10

15

20

25

- 45 -
this situation from recurring, the Branch Target Buffer Circuit 40 allocates a

branch entry within the Branch Target Buffer Cache 41 for all taken branch
instructions at step. Referring to step 305 of Figure 12, the Branch Target
Buffer Circuit 40 tests if the branch instruction was taken. If the branch
instruction was taken, the Branch Target Buffer Circuit 40 allocates a branch

entry for the branch instruction within the Branch Target Buffer Cache 41.

To select a branch entry from the selected set in the Branch
Target Buffer Cache 41, the Branch Target Buffer Circuit 40 uses a pair of
Pseudo-Least Recently Replaced (PLRR) bits 420 in the Branch Target Buffer
Cache 41 set. The Pseudo-Least Recently Replaced (PLRR) bits 420 indicate
which branch entry in the set has been least recently replaced. To selects the
branch entry in the selected set, the Branch Target Buffer Circuit 40 reads the
Pseudo-Least Recently Replaced (PLRR) bits 420 of the selected set and then
follows the branch entry allocation policy illustrated in Figure 14. The branch
entry allocation policy attempts to avoid destroying existing branch entries for

branch instructions in the current memory block.

At step 501, the Branch Target Buffer Circuit 40 sets a counter to
zero. At step 503, the Branch Target Buffer Circuit 40 tests the branch entry to
see if its hashed tag field 401 equals the hashed tag of the branch instruction
being allocated. If the two hashed tags do not match, the Branch Target Buffer
Circuit 40 proceeds to step 505 where it replaces that branch entry. After
replacing the branch entry, the Branch Target Buffer Circuit 40 increments the
Pseudo-Least Recently Replaced (PLRR) bits 420 at step 507 and writes the

incremented Pseudo-Least Recently Replaced (PLRR) bits back into the set.

10

15

20

25

- 46 -
If the two hashed tags do match, the Branch Target Buffer Circuit

40 proceeds to step 511 where the Branch Target Buffer Circuit 40 tests the
counter to see if all four branch entries have been tested. If all four branch
entries have been tested, then the Branch Target Buffer Circuit 40 proceeds to
step 505 where it replaces the branch entry pointed to by the Pseudo-Least
Recently Replaced (PLRR) bits 420 as originally read out of the branch set.
Referring back to step 511, if the all four branch entries have not yet been
tested, the Branch Target Buffer Circuit 40 proceeds to step 513 where the
counter and the Pseudo-Least Recently Replaced (PLRR) bits are incremented.
After step 513, the Branch Target Buffer Circuit 40 returns to step 503 to test

the next branch entry.

After a branch entry in the Branch Target Buffer Cache 41 has
been selected, the Branch Target Buffer Circuit 40 proceeds to fill in the data

fields of the selected branch entry.

If the branch instruction was taken, the Branch Target Buffer
Circuit 40 sets the true history field 404 to "1011". Otherwise, if the branch
was not taken, the Branch Target Buffer Circuit 40 sets the true history to

"0100".

The speculation bit 406 is reset indicating that no speculative
history yet exists for the branch entry. The speculative history field 405 is not
modified during the branch entry allocation since it will later be set when

speculative history is generated.

10

15

20

25

- 47 -
The hashed tag field 401 and the block offset field 402 are set

using address that points to the last byte of the branch instruction. The
hashed tag field 401 is set by running the uppermost 21 bits of the address that
points to the last byte of the branch instruction through the selected hashing

function. The block offset field 402 is set using the lowest 4 bits of the branch

address.

The Branch Target Buffer Circuit 40 sets the branch type field 403
using the branch type information received from the Branch Execution Unit
92. The Branch Target Buffer Circuit 40 sets the branch target address field 408
using the branch instruction's target address as calculated by the Branch

Execution Unit 92.

Finally, the valid bit 407 for the branch entry is set to indicate
that the branch entry contains valid information about a branch instruction.
Future occurrences of the branch instruction will be predicted by the Branch

Target Buffer Circuit 40.
Deallocating Branch Entries in the Branch Target Buffer Cache

Referring to Figure 2, the Branch Address Calculator 50 verifies
the existence of all branch instructions predicted by the Branch Target Buffer
Circuit 40. Entries in the Branch Target Buffer Cache 41 that no longer point
to valid branch instructions may cause the Branch Target Buffer Circuit 40 to

predict nonexistent branch instructions.

10

15

20

25

- 48 -
There are several reasons why a branch entry in the Branch

Target Buffer Cache 41 may no longer point to valid branch instruction. Self
modifying code can change a branch instruction such that the entry in the
Branch Target Buffer Cache 41 is no longer accurate. Furthermore, the
hashed address tag field 401 causes aliasing such that more than one address

maps into each branch entry.

When the Branch Address Calculator 50 determines that the
Branch Target Buffer Circuit 40 made a branch prediction for a nonexistent
branch instruction, the inaccurate branch entry in the Branch Target Buffer
Cache 41 should be deallocated. When the Branch Address Calculator 50
detects a branch prediction for a nonexistent branch instruction, the Branch
Address Calculator 50 sends the Branch Target Buffer Circuit 40 a pointer to
the first byte of the non-branch instruction. To deallocate the bogus branch
entry, the Branch Target Buffer Circuit 40 deallocates all the branch entries in
the set defined by the passed pointer and the following set of branch entries.
Both the set defined by the passed pointer and the following set of branch
entries must be deallocated since the branch instruction, which is placed into
the Branch Target Buffer Cache 41 by the address of the last byte, may exists in
either of the two sets of branch entries. To deallocate branch entries in a set,
the Branch Target Buffer Circuit 40 resets all the valid bits 407 of the branch

entries.

The foregoing has described several methods and apparatus for

implementing a Branch Target Buffer Circuit that predicts branch instructions

- 49 -
within an instruction stream. It is contemplated that changes and

modifications may be made by one of ordinary skill in the art, to the materials
and arrangements of elements of the present invention without departing

from the scope of the invention.

- 50 -
LAIMS

5 1. A branch instruction prediction mechanism, said branch
instruction prediction mechanism predicting a plurality of branch
instructions within a stream of computer instructions, said branch
instruction prediction mechanism comprising the elements of:

a branch target buffer cache, said branch target buffer comprising a
10 plurality of branch entries, each of said branch entries storing
information about an associated branch instruction within said
stream of computer instructions; and
a branch target buffer circuit, said branch target buffer circuit receiving
an instruction pointer, said branch target buffer circuit indexing into

15 said branch target buffer cache with said instruction pointer, said

branch target buffer circuit searching for an upcoming branch

instruction based upon said instruction pointer.

20 2. The branch instruction prediction mechanism as claimed
in claim 1 wherein said instruction pointer points to a block of memory and
said branch target buffer circuit searches for an upcoming branch instruction

in said block of memory pointed to by said instruction pointer.

25

10

15

20

25

- 51 -
3. The branch instruction prediction mechanism as claimed

in claim 1 wherein said plurality of branch entries are organized into a

plurality of sets, each of said sets comprising a plurality of branch entries.

4. The branch instruction prediction mechanism as claimed
in claim 3 wherein said branch target buffer cache comprises a set-associative

cache.

5. The branch instruction prediction mechanism as claimed

in claim 1 wherein each set comprises four set-associative branch entries.

6. The branch instruction prediction mechanism as claimed

in claim 1 wherein each set further comprises a branch pattern table.

7. The branch instruction prediction mechanism as claimed
in claim 1 wherein each set further comprises a set of Least Recently Replaced

Bits.

8. The branch instruction prediction mechanism as claimed

in claim 1 wherein each said associated branch instruction is stored into said

10

15

20

25

- 52 -

branch target buffer cache using an address of a last byte of said associated

branch instruction.

9. The branch instruction prediction mechanism as claimed
in claim 1 wherein each said branch entry in said branch target buffer cache
comprises

a tag field;
a branch target address; and

a valid bit.

10. The branch instruction prediction mechanism as claimed
in claim 9 wherein said tag field comprises a compressed tag field that is

smaller than a full tag address.

11. The branch instruction prediction mechanism as claimed
in claim 9 wherein said tag field comprises a compressed tag field that is

smaller than a full tag address.

12. The branch instruction prediction mechanism as claimed
in claim 11 wherein said a compressed tag field comprises a subset of most
significant bits from said full tag address concatenated with a subset of least

significant bits from said full tag address .

10

15

20

25

- 53 =

13. The branch instruction prediction mechanism as claimed

in claim 11 wherein said a compressed tag field comprises a first subset of
most significant bits from said full tag address, an exclusive or combination of

a second subset of bits from said full tag address, and a third subset of least

significant bits from said full tag address .

14. The branch instruction prediction mechanism as claimed
in claim 9 wherein each said branch entry in said branch target buffer cache

further comprises a branch type field.

15. The branch instruction prediction mechanism as claimed
in claim 14 wherein each said branch entry in said branch target buffer cache
further comprises a block offset field that identifies an offset of a last byte of

said associated branch instruction.

16. The branch instruction prediction mechanism as claimed
in claim 15 wherein each said branch entry in said branch target buffer cache

further comprises a branch history field.

10

15

20

25

- 54 -
17. The branch instruction prediction mechanism as claimed

in claim 16 wherein each said branch entry in said branch target buffer cache

further comprises a speculation bit and a speculative branch history field.

18. A branch target buffer cache, said branch target buffer
cache comprising a plurality of branch entries, each of said branch entries
storing information about an associated branch instruction within a stream of
computer instructions, said plurality of branch entries addressed in said
branch target buffer cache by an address of a last byte of said associated branch

instruction.

19. A method of updating a branch target buffer, said method
comprising the steps of:

resolving a branch instruction to determine a final branch outcome
and a final branch target address for said branch instruction;

finding a branch entry associated with said branch instruction from a
set of branch entries in said branch target buffer;

updating a branch target address in said branch entry associated with
said branch instruction using said final branch target address;

updating a branch pattern table associated with said set of branch
entries in said branch target buffer if said branch instruction is a
conditional branch instruction; and

updating a branch history associated with said branch entry if said

branch instruction is a conditional branch instruction.

10

15

20

25

- 55 -

20. The method of updating a branch target buffer as claimed in

claim 19 wherein said updating steps can be aborted.

21. The method of updating a branch target buffer as claimed in
claim 20 wherein said updating steps are aborted if an earlier branch

instruction was mispredicted.

22. The method of updating a branch target buffer as claimed in
claim 19 wherein said step of finding a branch entry associated with said

branch instruction comprises

indexing into said branch target buffer using an address of a last byte of

said branch instruction.

23. The method of updating a branch target buffer as claimed in
claim 22 wherein said step of finding a branch entry associated with said

branch instruction further comprises

matching a subset of most significant bits from said address of a last
byte of said branch instruction with a tag field in said branch

entry.

10

15

20

25

- 56 -
24. The method of updating a branch target buffer as claimed in
claim 23 wherein said step of matching a subset of most significant bits from
said address of a last byte of said branch instruction further comprises
generating a hashed version of said subset of most significant bits from
said address of a last byte of said branch instruction; and
matching said hashed version of said subset of most significant bits
from said address of a last byte of said branch instruction with a

hashed tag field in said branch entry.

25. A method of allocating in a branch target buffer, said method
comprising the steps of:
resolving a branch instruction to determine a final branch outcome
and a final branch target address for said branch instruction;
determining if said branch instruction was mispredicted; and
allocating a branch entry in said branch target buffer if said branch
instruction was mispredicted or if said final branch outcome of

said branch instruction was taken.

26. The method of allocating in a branch target buffer as claimed
in claim 25 wherein said step of determining if said branch instruction was
mispredicted comprises

comparing said final branch outcome and said final branch target

address to a predicted branch outcome and a predicted branch

- 57 -

target address to determine if said branch instruction was

mispredicted.

5 27. The method of allocating in a branch target buffer as claimed
in claim 26 wherein said branch target buffer is organized into sets of branch
entries and said step of allocating a branch entry in said branch target buffer
further comprises the substeps of:

reading least recently replaced value from a least recently replaced field
10 associated with a set of branch entries;
replacing a branch entry pointed to by said least recently replaced value
if said first branch entry does not have a matching tag field;
incrementing said least recently replaced value and repeating said
previous step until all branch entries have been examined; and
15 replacing a branch entry pointed to by said least recently replaced value
as originally read from said least recently replaced field

associated with a set of branch entries.

28. A branch instruction prediction mechanism,

substantiallyas hereinbefore described with reference to the

accompanying drawings.

29, A branch target buffer cache, substantially

as hereinbefore described with reference to the accompany

drawings.

- 58 -

30. A method of updating a branch target
buffer, substantiallyas hereinbefore described with

reference to the accompanying drawings.

31. A method of allocating in a branch target
buffer, substantially as hereinbefore described with

reference to the accompanying drawings.

Patent
Office 4

Application No: GB 9425726.8 Examiner: Geoff Western
Claims searched: 1-17, 28 Date of search: 16 March 1995
Patents Act 1977

Search Report under Section 17

Databases searched:
UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK ClI (Ed.N): G4A(APB)
Int Cl (Ed.6): GO6F(9/32, 9/38)
Other: On-line databases: INSPEC, WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Rlel_evmt to
claims
X | EP-0227892-A2 (IBM) N.b. pages 14-16 1-5,7,9
X | EP-0199947-A2 (IBM) N.b. pages 15-27 1-5,7,9-11
X | EP-0109655-A2 (NEC) N.b. pages 26-34,41 1-5,7,9-12
X | WO-93/17385-A1 (INTEL) N.b. pages 8-21 1-5,7,9,14
X | WO-87/05417-A1 (NEC) See whole document 1,2,8
X US-4860197-A (LANGENDOREF et al) 14.8
See whole document ’
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before
with one or more other documents of same category. the filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

