A double-aperture L-shaped crimp (14) is crimped to one end of a cable (16). The other end of the cable (13) is passed around the bone (12) or bones and, if the situation requires, any orthopedic appliance or device to be attached to the bones, and it is then passed through the other aperture (24) in the crimp. The cable is then tensioned by application thereto of a tensioning tool (17) with the tool applied to the cable and to an abutment face (23) of the crimp, whereupon the cable is tensioned. Then the cable portion in the aperture adjacent the tensioning tool is crimped onto the cable to complete the attachment. Then the tensioning tool is removed, and the free end of the cable is cut off at the abutment surface (23).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>GB</th>
<th>United Kingdom</th>
<th>MR</th>
<th>Mauritania</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
SURGICAL CABLE CRIMP AND METHOD

BACKGROUND OF THE INVENTION

Field of the Invention:
This invention relates generally to orthopedics and spinal surgery, and more particularly to a method and apparatus for securing cable to bone.

Description of the Prior Art:
Many ways and means have been developed for securing bone in place and for securing devices to bone. While single filament wires were used for many years in various types of surgical procedures, multi-filament cables have been used increasingly in recent years, particularly where strength and long-term reliability in a comparatively inaccessible site, are important. One example is shown in U. S. Patent No. 4,889,110 issued December 26, 1989 to Galline et al. In that example, an anchoring plate 11 has four bores therein receiving two crimping tubes and two crimping rings for holding multi-ply cables to secure a trochanter major to the femur. Another example of use of multi-filament cables is shown in U. S. Patents 5,116,340 and 4,966,600 to Songer et al. The latter patent uses a loop 38 and a flanged tube crimp member 28 as in Fig. 1, or a stop member 94, bar 96 and a crimp member having a front flange 60 as in Fig. 6, to secure the cable. Because of the need to minimize space requirements for cabling, crimp members of the type shown in the Songer patents are small. As a result, they are difficult to handle, cannot be manipulated well with surgical gloves, and can be dropped easily. It is desirable to
provide a system whereby a separate loose crimp is not needed, the crimp is reliably secured and securable to the cable, does not require tight bends or small loops in the cable, and which does not require cable-to-cable contact stress as in the cable passing through the small loop 38 in the Fig. 1 embodiment of the Songer patents.
SUMMARY OF THE INVENTION

Described briefly according to a typical embodiment of the present invention, a double-apertured crimp is crimped to one end of a cable. The other end of the cable is passed around the bone or bones and, if the situation requires, any orthopedic appliance or device to be attached to the bones, and it is then passed through the other aperture in the crimp. The cable is then tensioned by application thereto of a tensioning tool with the tool applied to the cable and to an abutment face of the crimp, whereupon the cable is tensioned. Then the cable portion in the aperture adjacent the tensioning tool is secured in the crimp by crimping the crimp onto the cable to complete the attachment. Then the tensioning tool is removed, and the free end of the cable is cut off at the abutment surface.
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic illustration of the application of the crimp assembly to a bone.

Fig. 2 is an enlarged fragmentary view of the attachment, when completed.

Fig. 3 is an enlarged elevational view of the crimp with portions broken out to show interior details.
DESCRIPTION OF THE PREFERRED EMBODIMENT

For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.

Referring now to the drawings in detail, and more particularly Fig. 1, the goal is to secure cable 11 around bone 12, with the proper tension on the cable, and maintain it. For that purpose, the free end 13 of the cable is passed around the bone 12 while the crimp 14 at the other end 16 of the cable is held at a suitable location above the bone. Then the free end 13 is passed up through an aperture in the crimp and then through the central passageway in a tensioning tool 17. Then a clamp lug 18 at the upper end of the tool 17 clamps a portion 19A of the tensioning tool onto the cable. Portion 19A telescopes within portion 19B which is secured to a bar which telescopes into the barrel 20 of the tensioning tool and, upon operation of the hand lever 21, portion 19B is ratcheted out of the barrel 20 whereupon the barrel tip 22 abuttingly engages the tool receiving abutment end 23 of the crimp 14. Further ratcheting of the tool pulls the cable up through the aperture 24 in the crimp 14 until the desired tension is reached, as indicated on the scale 26 on portion 19B in which portion 19A is restrained by a calibrated spring. Then a separate crimping tool (not shown) is applied to the portion 27 of the crimp 14 and crimps it onto the cable portion extending through aperture 24. Then the cable
clamp 18 can be loosened, whereupon the tensioning tool can be removed from the cable and the cable is cut off at the abutment face 23, flush with face 23. The cable is secure to the bone.

Referring more specifically now to Fig. 2, the one end 31 of the cable portion received in the base portion 32 of the crimp 14, is secured therein by swaging at 33 in a die press at the factory. After the cable has been wrapped around the bone and adequately tensioned, the column portion 27 is swaged as at 34 by a suitable crimping tool as are known in the art. The cable end received up through the longitudinal aperture 24 from the bottom 36 to the top abutment surface 23 is cold crimped by such a tool after the desired tension has been applied to the cable.

It should be understood, of course, that if it is desired to secure two bones within the loop of the cable, or one or more bones and spinal rods or other devices within the loop, that can be done in a similar manner.

As an example, the crimp member can be made from 316 LVM ASTM 38F-138 stainless steel, annealed dead soft so that it can be easily swaged. The cable can be commercially pure titanium (CP Ti) ASTM F-67. The overall height from face 23 to face 36 in the illustrated example is 0.254 inches. The overall width between the two parallel faces of the base portion 32 receiving the anchor end of the cable is, for example, 0.088 inches.

As an example, where the cable anchoring aperture in the base portion 32 is cylindrical, the diameter may be 0.065 inches. The same diameter would be applicable in the cylindrical aperture 24 of the column portion of the crimp. As is evident in Fig. 3, where portions of the crimp are broken away to show the two internal apertures 24 and 30, the longitudinally extending central axes of these apertures lie in planes which are parallel to each other and to the plane of the paper, and in planes 41 and 42 which are perpendicular
to the plane of the paper. For some purposes, it is conceivable that, instead of the body portion 14 of the crimp member being specifically L-shaped as shown in Figs. 1 and 2, it can be modified by rotating the plane 41 toward plane 42 in the direction of arrow 43 if it is desired to have a different orientation of the cable around the bone, particularly at the cable entrance face to the cable receiving aperture 24 of the on-site crimpable portion 27.

While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
What is claimed is:

1. A method for securing cable around bone and comprising the steps of:
 taking a cable having one end affixed in a crimp, and
 passing the other end of the cable around the bone and returning to the crimp;
 feeding the other end of the cable through an aperture in the crimp;
 engaging a cable tensioning tool with the crimp and with a portion of the cable between the crimp and the other end of the cable after the other end was fed through the aperture; using the tool for applying tension on the cable; fixing in the crimp aperture, that portion of the cable residing in the aperture when the applied tension on the cable is at a desired value; and removing the tensioning tool from the cable.

2. The method of claim 1 and wherein: the fixing step is performed by cold crimping the crimp onto the cable portion residing in the aperture.

3. The method of claim 1 and further comprising the step of:
 after removing the tensioning tool from the cable, cutting off the cable at the location where the tensioning engaged the crimp.

4. The method of claim 1 and wherein: the steps of passing and feeding and tensioning are performable without the cable contacting itself.

5. A surgical cable assembly comprising:
 a crimp having an apertured crimpable portion; and
a cable having an end portion fixed in the crimp and an end portion receivable through the aperture in the crimp.

6. The cable assembly of claim 5 and wherein:
the cable is crimped in the aperture at a location along
the cable between the fixed end portion and the opposite end portion.

7. The cable assembly of claim 6 and wherein:
the fixed end portion is crimped in an aperture separate from the first-mentioned aperture.

8. The cable assembly of claim 7 and wherein:
each of the apertures receives a length of cable therein
and the apertures are longitudinally extending central axes being in parallel planes.

9. The cable assembly of claim 8 and wherein:
the axis of one of the apertures is perpendicular to a third plane containing the axis of the other aperture.

10. The cable assembly of claim 5 and wherein:
the crimp is made of stainless steel annealed dead soft;
and
the cable is made of multiple strands of commercially pure titanium.

11. A surgical cable assembly comprising:
a generally L-shaped body having a base portion and a column portion,
a cable having one end portion fixed in the base portion, and
an aperture in the column portion sized to receive the cable therethrough.
12. The assembly of claim 11 and wherein:
the one end portion is swaged in the base portion.

13. The assembly of claim 11 and wherein:
there is an aperture in the base portion,
each of the apertures has a longitudinal axis,
the axes of the apertures lying in two perpendicular planes.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5): A61B 17/56
US CL: 606/74
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S.: 2422, 23W, 225A, 129W; 292822, 283.5; 140/123.5, 123.6; 606/607, 74, 86, 103, 157, 158, 232

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE, A, 2911-748, (DAWIDOWSKI G), 09 October 1980. See figures.</td>
<td>1. 4</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4,128,100, (WENDORFF), 05 December 1978.</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4,966,600, (SONGER ET AL.), 30 October 1990. See Fig. 6.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be part of particular relevance

E earlier document published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"T" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search
19 OCTOBER 1994

Date of mailing of the international search report
07 DEC 1994

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
TAMARA L. GRAYSLAY

Telephone No. (703) 308-0421

Form PCT/ISA/210 (second sheet)(July 1992)*