(54) Title: ROTARY FILTER DEVICE FOR FILTERING LIQUIDS

(57) Abstract: The invention relates to a device for filtering a medium. According to the invention, a device of this type has the following features: the device for filtering a medium comprises at least one membrane disk and at least one turbulence disk; both disks are rotationally mounted; both disks are arranged in such a manner that their rotation axes are essentially parallel to one another and that they overlap when viewed from above; these disks are placed near one another in an axial direction so that the turbulence disk produces a turbulence in the area of the relevant lateral face of the membrane disk; the membrane disk is connected to a hollow shaft in a rotationally fixed manner; the hollow shaft is conductively connected to a cavity inside the membrane disk, and; both disks can be driven in the same direction of rotation. The inventive device is characterized in that the diameter of the membrane disk is less than the diameter of the turbulence disk to such an extent that, on the connecting line between their rotation axes, the difference in circumferential velocities of both disks is at least almost equal at every point in the overlapping area.

[Fortsetzung auf der nächsten Seite]
(57) Zusammenfassung: Die Erfindung betrifft eine Vorrichtung zum Filtrieren eines Mediums. Gemäß der Erfindung ist eine solche Vorrichtung mit den folgenden Merkmalen versehen: - Vorrichtung zum Filtrieren eines Mediums; - mit wenigstens einer Membranscheibe; - mit wenigstens einer Turbulenzschicht; - die beiden Scheiben sind drehbar gelagert; die beiden Scheiben sind wie folgt angeordnet: - ihre Drehachsen verlaufen im wesentlichen parallel zueinander; - sie überlappen sich in Draufsicht; - sie sind in axialer Richtung nahe beieinander angeordnet, so dass die Turbulenzschicht im Bereich der betreffenden Seitenfläche der Membranscheibe eine Turbulenz erzeugt; die Membranscheibe ist mit einer Hohlwelle drehfest verbunden; die Hohlwelle ist mit einem Hohlraum in der Membranscheibe leitend verbunden; - die beiden Scheiben sind im selben Drehsinn antreibbar; die Vorrichtung ist dadurch gekennzeichnet, dass der Durchmesser der Membranscheibe um soviel kleiner ist, als der Durchmesser der Turbulenzschicht, dass die Differenz der Umfangsgeschwindigkeiten der beiden Scheiben auf der Verbindungslinie zwischen ihren Drehachsen im Überlappungsbereich an jedem Punkt wenigstens annähernd gleich gross ist.
ROTATIONSFILTERVORRICHTUNG ZUM FILTRIEREN VON FLÜSSIGKEITEN

Die Erfindung betrifft eine Vorrichtung zum Filtrieren von Flüssigkeiten. Eine solche Vorrichtung ist beispielsweise in DE 100 19 672 A1 beschrieben.

Die genannten Wellen verlaufen parallel zueinander, so daß auch die Membranscheiben zweier einander benachbarter Scheibepakete parallel zueinander angeordnet sind. Dabei sind die Wellen derart dicht nebeneinander angeordnet, daß die Scheiben zweier Scheibepakete verzahnungsartig ineinandergreifen.

Im Folgenden geht es um die Kombination wenigstens einer Membranscheibe mit wenigstens einer Turbulenzscheibe. Die Membranscheibe besteht aus einem keramischen Material, das porös ist. Die Scheibe weist außerdem in ihrem Inneren
makroskopische Hohlräume auf. Diese stehen in leitender Verbindung mit dem Innenraum jener Hohlwelle, die die Membranscheibe trägt.

Die Turbulenzscheibe befindet sich auf einer separaten Welle, die ebenfalls hohl sein kann. In diesem Falle kann sie zur Zufuhr von unfiltriertem Medium dienen.

Bei der Filtration in einer Vorrichtung der genannten Art sind folgende Hauptforderungen zu erfüllen: Zum einen soll die Filtratqualität so hoch wie möglich sein. Dies bedeutet, dass aus dem zu filtrierenden Medium die abzutrennenden Stoffe möglichst vollständig abgetrennt werden. Zum anderen soll aber auch der Durchsatz so hoch wie möglich sein, das heißt die Menge des pro Zeiteinheit filtrierten Mediums.

Beide Forderungen stehen sich in der Praxis entgegen. Ist die Filtrationsqualität hoch, so ist der Durchsatz zwangsläufig gering.

Eine weitere Forderung ist die Forderung nach einer langen Standzeit. Unter Standzeit wird hierbei die Zeitspanne zwischen zwei Reinigungsvorgängen der Membranscheibe verstanden. Es bedeutet anders ausgedrückt die Zeitdauer zwischen zwei notwendigen Reinigungsvorgängen.

Will man den Durchsatz steigern, bei einer gegebenen Filtrationsqualität, so könnte man daran denken, den Druck im Druckgefäß zu steigern, um eine möglichst große Filtratmenge durch die Poren der Membran hindurchzupressen. Dies führt jedoch in manchen Fällen, beispielsweise bei Filtration von Gelatinelösungen oder Bier, zu einer Änderung der Filtratqualität sowie zu einer
Verminderung des Fluxes. Man erreicht somit bei einer zu hohen Druckdifferenz zwischen Unfiltrat und Permeat nur das Gegenteil dessen, was man will.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs beschriebenen Art derart zu gestalten, dass eine möglichst hohe Filtrationsqualität erzielt wird, bei möglichst hohem Durchsatz und langer Standzeit, ferner bei Betrieb der gesamten Membranfläche und ermöglicht optimalem und gleichem Trasmembranrdruk. „Transmembranrdruk“ ist die Druckdifferenz, die zwischen Unfiltrat auf der Vorderseite des Filtermediums in Fließrichtung und der Filterscheibe, somit nach dem Durchtritt durch das Filtermedium herrscht.

Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst.

Der Erfinder ist von folgenden Überlegungen ausgegangen:

Der Erfinder geht aus von Scheiben - eine Membranscheibe sowie eine benachbarte Turbulenzscheibe -, die sich in Draufsicht gesehen überlappen, und die außerdem im selben Drehsinn umlaufen.

Haben die Scheiben einen gleich großen Durchmesser, und laufen sie mit derselben Drehzahl um, so ist die Relativgeschwindigkeit zwischen den beiden Scheiben an jedem beliebigen Punkt des Überlappungsbereiches, das heißt in jedem beliebigen Abstand von der einen und der anderen Drehachse – gleich groß.

Bestehe die Forderung nach möglichst konstantem und niedrigem Transmembranrdruk, so darf der durch Zentrifugalkraft erzeugte Druckanstieg Pz innerhalb der Scheibe (von innen nach außen) einen bestimmten Wert nicht überschreiten. Das heißt, die Membranscheibe darf eine bestimmte Umfangsgeschwindigkeit nicht überschreiten. Anderfalls strömt filtriertes Medium im Umfangsbereich der Membranscheibe aus dieser in den Unfiltratraum zurück.
Die Forderung nach konstanter und zugleich sehr hoher Geschwindigkeitsdifferenz zwischen benachbarten, einander überschneidenden Scheiben bei niedrigem, durch Zentrifugalkraft erzeugten Druckanstieg p_z, innerhalb der Membranscheibe lässt sich aber nur dann erfüllen, wenn die Membranscheibe nur langsam umläuft und die Turbolenzscheibe mit entsprechend höherer Geschwindigkeit.

Bei einem System, umfassend eine Membranscheibe und eine Turbolenzscheibe, geht es beispielsweise darum, die folgenden Forderungen zu erfüllen:

$$\Delta V = \text{Konstant (auf der Verbindungslinie zwischen der Rotationsachse einer Membranscheibe und der Rotationsachse einer Turbolenzscheibe)}$$
$$\Delta V = \text{deutlich größer als 5 m/s}$$
$$p_z = < 0,1$$

Die Membranscheibe und die Turbolenzscheibe müssen bezüglich ihrer Durchmesser und ihrer Drehzahlen in einem bestimmten Verhältnis zueinander stehen.

Beispiel 1:

Membranscheibendurchmesser = 312 mm
Drehzahl der Membranscheibe = 4.5 s$^{-1}$
V_{max} der Membranscheibe = 3,92 m/s
V_{min} der Membranscheibe = 1,57 m/s
p_z der Membranscheibe = 0,15 bar
Angestrebtes ΔV = 15 m/s

Die Turbolenzscheibe muss in den Position V_{min} beziehungsweise V_{max} der Membranscheibe (in der jeweiligen Gegenrichtung) Geschwindigkeiten aufweisen, die eine Ergänzung zur Zielgeschwindigkeitsdifferenz bewirken ($\Delta V = 15$ m/s).
Bei einem angestrebten \(\Delta V \) von 15 m/s muss - beispielsweise bei einer Membranscheibe mit einem Durchmesser von 312 mm - in Position \(V_{\text{min}} \) 15 - 1,57 = 13,43 m/s und in der Position \(V_{\text{max}} \) 15 - 3,92 = 11,08 m/s durch die Turbulenzscheibe erzeugt werden.

Die maximale Geschwindigkeit auf der Turbulenzscheibe beträgt somit 13,43 m/s. Die geringere Geschwindigkeit der Turbulenzscheibe in der Position von \(V_{\text{max}} \) der Membranscheibe (11,08 m/s) befindet sich auf \(\text{Radius}_{\text{max}} \) der Turbulenzscheibe – (Position \(V_{\text{max}} \) – Position \(V_{\text{min}} \)) = \(\text{Radius}_{\text{max}} \) – (156 mm – 62,5 mm)

\[
\frac{\text{Radius}_{\text{max}} - 93,5\,\text{mm}}{\text{Radius}_{\text{max}}} = \frac{11,08}{13,43}
\]

folgt:

\[
\text{Radius}_{\text{max}} = 534,34\,\text{mm}
\]

Die Drehzahl der Turbulenzscheibe muss so gewählt werden, dass sich für \(V_{\text{max}} \) eine Umfangsgeschwindigkeit von 13,43 m/s ergibt.

\[
n \cdot 2 \pi r = 13,43 \, \text{m/s}, \text{ somit}
n = 4 \, \text{s}^{-1}
\]

Geänderte Forderungen bezüglich der Parameter

- maximales \(p_z \)
- gewünschte Differenzgeschwindigkeit
- Membranscheibengröße

führen zu entsprechenden Durchmessern und Drehzahlen für die Turbulenzscheibe.
Wenn hier von „Turbulenzscheibe“ die Rede ist, so bedeutet dies, dass es sich um eine Scheibe handelt, die die Funktion der Turbulenzerzeugung besitzt. Sie kann aus Keramik, aber auch aus Metall usw. bestehen. Sie kann glatt, genoppt, gelocht usw. sein. Sie kann auf einer Vollwelle oder einer Hohlwelle angeordnet sein und sie kann zusätzlich die Funktion der Zufuhr von zu filtrierendem Medium oder Waschmedium übernehmen.

Beispiel II:

Membranscheibendurchmesser 312
\(p_x = 0,15 \text{ bar} \)
Drehzahl der Membranscheibe = 4,5 upm
\(V_{\text{max}} \) der Membranscheibe = 3,92 m/s

<table>
<thead>
<tr>
<th>Differenzgeschwindigkeit (\text{m/s})</th>
<th>Durchmesser der Dummyscheibe (\text{m})</th>
<th>Drehzahl der Dummyscheibe upm</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0,512</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0,671</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1,07</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1,466</td>
<td>4</td>
</tr>
</tbody>
</table>

Beispiel III:

Membranscheibendurchmesser 90 mm
\(p_x = 0,15 \text{ bar} \)
Drehzahl der Membranscheibe = 13,55
\(V_{\text{max}} \) der Membranscheibe = 3,92 m/s

<table>
<thead>
<tr>
<th>Differenzgeschwindigkeit (\text{m/s})</th>
<th>Durchmesser der Dummyscheibe (\text{m})</th>
<th>Drehzahl der Dummyscheibe upm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m/s</td>
<td>Dummyscheibe M</td>
<td>Dummyscheibe upm</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>8</td>
<td>0,272</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>0,361</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>0,587</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>0,812</td>
<td>7</td>
</tr>
</tbody>
</table>

Beispiele von Druckverhältnissen aufgrund von Zentrifugalkräften in Membranscheiben mit unterschiedlichen Durchmessern

Die folgenden Übersichten zeigen den Zusammenhang zwischen V_{min}, V_{max}, ΔV, p_{zmax} und der Drehzahl der Membranscheiben (bei gleicher Drehzahl und gleicher Drehrichtung).
Beispiel 1

Beide Membranscheiben haben einen Durchmesser von 90 mm. Auf Figur 1 wird verwiesen.

<table>
<thead>
<tr>
<th>N (s⁻¹)</th>
<th>(V_{\text{min}}) (ms⁻¹)</th>
<th>(V_{\text{max}}) (ms⁻¹)</th>
<th>(\Delta V) (ms⁻¹)</th>
<th>(p_z) bar ≈</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,28</td>
<td>0,56</td>
<td>0,84</td>
<td>0,004</td>
</tr>
<tr>
<td>5</td>
<td>0,71</td>
<td>1,41</td>
<td>2,12</td>
<td>0,018</td>
</tr>
<tr>
<td>10</td>
<td>1,41</td>
<td>2,83</td>
<td>4,24</td>
<td>0,08</td>
</tr>
<tr>
<td>15</td>
<td>2,12</td>
<td>4,24</td>
<td>6,36</td>
<td>0,18</td>
</tr>
<tr>
<td>20</td>
<td>2,83</td>
<td>5,65</td>
<td>8,48</td>
<td>0,35</td>
</tr>
<tr>
<td>30</td>
<td>4,24</td>
<td>8,48</td>
<td>12,72</td>
<td>0,85</td>
</tr>
</tbody>
</table>

Beispiel 2

Beide Membranscheiben haben einen Scheibendurchmesser von 312 mm. Auf Figur 2 wird verwiesen.

<table>
<thead>
<tr>
<th>n (s⁻¹)</th>
<th>(V_{\text{min}}) (ms⁻¹)</th>
<th>(V_{\text{max}}) (ms⁻¹)</th>
<th>(\Delta V) (ms⁻¹)</th>
<th>(p_z) bar ≈</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,393</td>
<td>0,98</td>
<td>1,37</td>
<td>0,01</td>
</tr>
<tr>
<td>2</td>
<td>0,785</td>
<td>1,96</td>
<td>2,75</td>
<td>0,04</td>
</tr>
<tr>
<td>4</td>
<td>1,571</td>
<td>3,92</td>
<td>5,49</td>
<td>0,15</td>
</tr>
<tr>
<td>6</td>
<td>2,36</td>
<td>5,88</td>
<td>8,24</td>
<td>0,35</td>
</tr>
<tr>
<td>8</td>
<td>3,14</td>
<td>7,84</td>
<td>10,98</td>
<td>0,63</td>
</tr>
<tr>
<td>12</td>
<td>4,72</td>
<td>11,76</td>
<td>16,48</td>
<td>1,40</td>
</tr>
</tbody>
</table>

\(p_z\) hängt nur von der Umfangsgeschwindigkeit der Membranscheibe ab. Im Falle der überlappenden Scheibe mit gleicher Drehrichtung und gleicher Drehzahl ist \(p_z\) nur von \(\Delta V\) abhängig.
Für die Filtration bedeutet dies, dass bei nur geringem, zulässigem Transmembrandruck von beispielsweise 0,4 bar die Druckdifferenz innerhalb der Scheibe einen deutlich geringeren Betrag nicht überschreiten sollte, beispielsweise 0,15 bar. Damit darf ΔV einen Wert von höchstens 5,49 m/s annehmen.

Höhere Geschwindigkeiten, die im Sinne höherer Turbolenz und besserer Filtrationsleistung wunschenswert wären, sind somit nicht zulässig.

Die Forderungen nach konstanter Geschwindigkeitsdifferenz zwischen den Scheiben, hoher Geschwindigkeitsdifferenz bei niedrigem p_z innerhalb der Membranscheibe, lässt sich dann erfüllen, wenn die Membranscheibe nur langsam umläuft, beispielsweise mit weniger als 5 m/s, und die entsprechend höhere Geschwindigkeit von einer Turbulenzscheibe übernommen wird.

Um zum Beispiel in einem System Membranscheibe – Turbolenzscheibe alle Forderungen zu erfüllen, nämlich

\[
\Delta V = \text{konstant}
\]

\[
\Delta V > 5 \text{ m/s}
\]

\[
p_z < 0,15... \text{ (in der Membranscheibe)}
\]

muss die Turbulenzscheibe in Bezug auf Durchmesser und Drehzahl in einem bestimmten Verhältnis zur Membranscheibe stehen.
Beispiel:

Membranscheibendurchmesser = 312 mm
Drehzahl der Membranscheibe = 4 s⁻¹

\[V_{\text{max}} \text{ der Membranscheibe} = 3,92 \text{ m/s} \]
\[V_{\text{min}} \text{ der Membranscheibe} = 1,57 \text{ m/s} \]
\[p_z \text{ der Membranscheibe} = 0,15 \text{ bar} \]
\[\text{angestrebtes } \Delta V = 15 \text{ m/s} \]

10 Die Turbolenzscheibe muss an den Positionen \(V_{\text{min}} \) beziehungsweise \(V_{\text{max}} \) der Membranscheibe (in der jeweiligen Gegenrichtung) Geschwindigkeiten besitzen, die die Ergänzung zur Zielgeschwindigkeit (\(\Delta V = 15 \text{ m/s} \)) bewirken.

Bei einem Ziel \(\Delta V \) von 15 m/s muss in Position \(V_{\text{min}} \) 15 – 1,57 = 13,43 m/s sein, und in Position \(V_{\text{max}} \) 15 – 3,92 = 11,08 m/s in Gegenrichtung erzeugt werden.

Ermitteln des „richtigen“ Durchmessers der Turbolenzscheibe:
Die maximale Geschwindigkeit auf der Turbolenzscheibe beträgt 13,43 m/s. Die geringere Geschwindigkeit der Turbolenzscheibe an der Position von \(V_{\text{max}} \) der Membranscheibe beträgt 11,08 m/s. Sie befindet sich auf \(\text{Radius}_{\text{max}} - (\text{Positon } V_{\text{max}} - \text{Position } V_{\text{min}}) \)

\[= \text{Radius}_{\text{max}} - (156 \text{ mm} - 62,5 \text{ mm}) \]

somit bei \[= \text{Radius}_{\text{max}} - 93,5 \text{ mm} \]

mit \[\frac{\text{Radius}_{\text{max}} - 93,5 \text{ mm}}{\text{Radius}_{\text{max}}} = \frac{11,08}{13,43} \]

\((\text{Radius}_{\text{max}} - 93,5 \text{ mm}) \times 13,43 = 11,08 \times V_{\text{max}} \)
\(13,43 \times \text{Radius}_{\text{max}} - 1255,7 \text{ mm} = 11,08 \times V_{\text{max}} \)
\(2,35 \times \text{Radius}_{\text{max}} = 1255,7 \text{ mm} \)

\[V_{\text{max}} = 534,34 \text{ mm} \]
Auf Figur 3 wird verwiesen.

Die Drehzahl für die Turbulenzscheibe muss so gewählt werden, dass sich für V_{max} eine Umfangsgeschwindigkeit von 13,43 m/s ergibt.

\[n \cdot 2 \pi V_{\text{max}} = 13,43 \text{ ms}^{-1} \]
\[= \frac{13,43 \text{ m s}^{-1}}{0,53434 \text{ m} \cdot 2 \cdot \pi} = 4,0 \text{ s}^{-1} \]

Geänderte Forderungen bezüglich der Parameter

- maximales p_z
- gewünschte Differenzgeschwindigkeit
- Membranscheibengröße

führen zu entsprechenden Durchmessern und Drehzahlen für die Turbulenzscheibe.

Membranscheibendurchmesser 312 mm

\[p_z = 0,15 \text{ bar} \]

Drehzahl der Membranscheibe = 4 s$^{-1}$

V_{max} der Membranscheibe =3,92 m/s

<table>
<thead>
<tr>
<th>Differenzgeschwindigkeit</th>
<th>Durchmesser der Turbulenzscheibe</th>
<th>Drehzahl der Turbulenzscheibe</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/s</td>
<td>M</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>8</td>
<td>0,512</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0,671</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1,07</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>1,466</td>
<td>4</td>
</tr>
</tbody>
</table>

Membranscheibendurchmesser 90 mm
\[p_z = 0,15 \text{ bar} \]

Drehzahl der Membranscheibe \(=13,5 \text{s}^{-1} \)

\(V_{\text{max}} \) der Membranscheibe \(=3,92 \text{ m/s} \)

<table>
<thead>
<tr>
<th>Differenzgeschwindigkeit Membran-Turbulenzscheibe m/s</th>
<th>Durchmesser der Turbulenz-Scheibe M</th>
<th>Drehzahl der Turbulenzscheibe s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0,272</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>0,361</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>0,587</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>0,812</td>
<td>7</td>
</tr>
</tbody>
</table>

Die Figuren 4 bis 7 zeigen weitere Ausführungsbeispiele. Dabei sind jeweils zwei Scheiben dargestellt. Die links dargestellte Scheibe ist eine Membranscheibe. Sie hat in allen vier Fällen einen gleichgroßen Durchmesser, nämlich 312mm.

Die rechts dargestellte Scheibe ist eine Turbulenzscheibe. Sie ist in den genannten vier Figuren 4, 5, 6, 7 ungleichgroß; ihr Durchmesser beträgt 512,788,1070 und 1724mm.

Links neben der Membranscheibe sind die angestrebten Differenzgeschwindigkeiten Delta \(V \) aufgeführt: 8, 10, 15, 20m/s.

Patentansprüche

1. Vorrichtung zum Filtrieren eines Mediums;
1.1 mit wenigstens einer Membranscheibe;
1.2 mit wenigstens einer Turbulenzschreibe;
1.3 die beiden Scheiben sind drehbar gelagert;
1.4 die beiden Scheiben sind wie folgt angeordnet:
1.4.1 ihre Drehachsen verlaufen im wesentlichen parallel zueinander
1.4.2 sie überlappen sich in Draufsicht
1.4.3 sie sind in axialer Richtung nahe beieinander angeordnet, so dass die Turbulenzschreibe im Bereich der betreffenden Seitenfläche der Membranscheibe eine Turbulenz erzeugt;
1.5 die Membranscheibe ist mit einer Hohlwelle drehfest verbunden;
1.6 die Hohlwelle ist mit einem Hohlraum in der Membranscheibe leitend verbunden;
1.7 die beiden Scheiben sind im selben Drehsinn antreibbar;
1.8 die Vorrichtung ist dadurch gekennzeichnet, dass der Durchmesser der Membranscheibe um soviel kleiner ist, als der Durchmesser der Turbulenzschreibe, dass die Differenz der Umfangsgeschwindigkeiten der beiden Scheiben auf der Verbindungsline zwischen ihren Drehachsen im Überlappendungsbereich an jedem Punkt wenigstens annähernd gleich groß ist.

2. Vorrichtung nach Anspruch 1 mit den folgenden Merkmalen:
2.1 es ist eine Mehrzahl von Membranscheiben und eine Mehrzahl von Turbulenzschreiben vorgesehen;
2.2 die Scheiben sind derart angeordnet, dass jeweils eine Scheibe der einen Gattung in den Zwischenraum zwischen zwei andern der benachbarten Scheiben der anderen Gattung eingreift.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass auch die Turbulenzschreibe mit einer Hohlwelle drehfest verbunden ist und
einen Hohlraum aufweist, der mit dem Hohlraum der Hohlwelle in leitender Verbindung steht
Fig. 1

Fig. 2

Fig. 3

Membranscheibe

Turbulenzscheibe

r_{\text{max}} = 93.5 \text{ mm}

r_{\text{max}} = 534.4 \text{ mm}
Membranscheibe ϕ 312 mm

- $n = 4 \text{ s}^{-1}$
- $V_{\text{min}} = 1,57 \text{ ms}^{-1}$
- $V_{\text{max}} = 3,92 \text{ ms}^{-1}$

$\Delta V = 8 \text{ m/s}$

Fig. 4

Turbulenzscheibe

- $n = 4$
- $V_{\text{min}} = 4,08 \text{ ms}^{-1}$
- $V_{\text{max}} = 6,43 \text{ ms}^{-1}$
- $\phi = 512 \text{ mm}$

$\Delta V = 10 \text{ m/s}$

Fig. 5

- $n = 3,4$
- $V_{\text{min}} = 6,43 \text{ ms}^{-1}$
- $V_{\text{max}} = 8,43 \text{ ms}^{-1}$
- $\phi = 788 \text{ mm}$

$\Delta V = 15 \text{ m/s}$

Fig. 6

- $n = 4$
- $V_{\text{min}} = 11,08 \text{ ms}^{-1}$
- $V_{\text{max}} = 13,43 \text{ ms}^{-1}$
- $\phi = 1070 \text{ mm}$

$\Delta V = 20 \text{ m/s}$

Fig. 7

- $n = 3,4$
- $V_{\text{min}} = 16,43 \text{ ms}^{-1}$
- $V_{\text{max}} = 18,43 \text{ ms}^{-1}$
- $\phi = 1724 \text{ mm}$
Beispiel für praktisch Anwendung

<table>
<thead>
<tr>
<th>Forderungen</th>
<th>(p_z) = 0,15 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta V = 10 , \text{ms}^{-1})</td>
</tr>
</tbody>
</table>

Membranscheibe:
- \(\phi = 312 \, \text{mm} \)
- \(n = 4 \, \text{s}^{-1} \)
- \(V_{\text{min}} = 1,57 \, \text{ms}^{-1} \)
- \(V_{\text{max}} = 3,92 \, \text{ms}^{-1} \)

Turbulenzscheibe:
- \(\phi = 671 \, \text{mm} \)
- \(n = 4 \, \text{s}^{-1} \)
- \(V_{\text{min}} = 6,08 \, \text{ms}^{-1} \)
- \(V_{\text{max}} = 8,43 \, \text{ms}^{-1} \)

Fig. 8
Topansicht

Fig. 9
Seitenansicht

Platz für Kühlung

Behälterwand

Membranscheibe

Hohlwellen für Membranscheibe

Zentrale Welle für Turbulenzscheibe
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B01D63/16 B01D65/08 B01D33/21 B01D61/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, PAJ, WPI Data, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 100 39 272 C (AAFLOWSYSTEMS GMBH & CO KG) 24 January 2002 (2002-01-24) cited in the application paragraph '0027'; figures 1,2</td>
<td>1-3</td>
</tr>
<tr>
<td>X</td>
<td>WO 02 05935 A (BLAESE DIETER ;OLAPINSKI HANS (DE); AAFLOWSYSTEMS GMBH & CO KG (DE) 24 January 2002 (2002-01-24) page 15, line 5 - line 31; claims 21,22; figure 13</td>
<td>1</td>
</tr>
</tbody>
</table>

X Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance
E earlier document but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone or in combination with one or more other such documents, such combination being obvious to a person skilled in the art.

8 document member of the same patent family

Date of the actual completion of the international search 18 November 2003

Date of mailing of the international search report 27/11/2003

Name and mailing address of the ISA European Patent Office, P.B. 5318 Patentlaan 2 NL - 2280 HJ Rijswijk Tel. (+31-70) 340-3040, Tx. 31 051 epo nl, Fax: (+31-70) 340-3016

Authorized officer Goers, B

Form PCT/AS/210 (second sheet) (July 1992)

page 1 of 2
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 195 02 848 A (OTTO ULRICH) 8 June 1995 (1995-06-08) column 2, line 14 - line 20; figures 3,4</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>DE 101 04 812 A (AAFLOWSYSTEMS GMBH & CO KG) 14 August 2002 (2002-08-14) paragraphs ‘0005!,'0014!,‘0015!; figures 2-5</td>
<td>1,2</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 10039272 C</td>
<td>24-01-2002</td>
<td>DE 10039272 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6391001 A</td>
</tr>
<tr>
<td>WO 0205935 A</td>
<td>24-01-2002</td>
<td>AU 8194001 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0205935 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1299177 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003183586 A1</td>
</tr>
<tr>
<td>DE 19502848 A</td>
<td>08-06-1995</td>
<td>DE 19502848 A1</td>
</tr>
<tr>
<td>DE 10104812 A</td>
<td>14-08-2002</td>
<td>DE 10104812 A1</td>
</tr>
</tbody>
</table>
A. KLASSEIFZIERUNG DES ANMELDUNGSSEGENSTANDES

IPK 7 B01D63/16 B01D65/08 B01D33/21 B01D61/20

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestdruckstoff (Klassifikationssystem und Klassifikations symbole)

IPK 7 B01D

Recherchierte aber nicht zum Mindestdruckstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 02 05935 A (BLAES E DIETER ; OLA PINSKI HANS (DE); AAFLOWSYSTEMS GMBH & CO KG (DE) 24. Januar 2002 (2002-01-24) Seite 15, Zeile 5 - Zeile 31; Ansprüche 21,22; Abbildung 13</td>
<td>1</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilien

* Besondere Kategorien von angegebenen Veröffentlichungen :
* A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
* E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
* L* Veröffentlichung, die gleichzeitig einen Prioritätsanspruch zweifelhaft erscheinen lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
* O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht
* P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantworten Prioritätsdatum veröffentlicht worden ist

1 Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann natiheiligend ist
N Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

18. November 2003

Abschließendes Datum der internationalen Rechercheberichts

27/11/2003

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5815 Patentbaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 eipo nl, Fax. (+31-70) 340-3016

Bevollmächtigter Rechteinhaber

Goers, B
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Bezugnahme liegenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 195 02 848 A (OTTO ULRICH) 8. Juni 1995 (1995-06-08) Spalte 2, Zeile 14 - Zeile 20; Abbildungen 3,4</td>
<td>1,2</td>
</tr>
<tr>
<td>Patentiertechnische Informationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>INTERNATIONALER RECHERCHENBERICHT</td>
<td>PCT/EP 03/08924</td>
<td></td>
</tr>
<tr>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(ern) der Patentinhaberschaft</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>DE 10039272 C</td>
<td>DE 10039272 C1</td>
<td>24-01-2002</td>
</tr>
<tr>
<td>AU 6391001 A</td>
<td>WO 0185317 A1</td>
<td>20-11-2001</td>
</tr>
<tr>
<td>JA 10099611 A</td>
<td>EP 1299177 A2</td>
<td>09-04-2003</td>
</tr>
<tr>
<td>US 0205935 A1</td>
<td>US 2003183586 A1</td>
<td>02-10-2003</td>
</tr>
<tr>
<td>DE 19502848 A</td>
<td>DE 19502848 A1</td>
<td>08-06-1995</td>
</tr>
<tr>
<td>DE 10104812 A</td>
<td>DE 10104812 A1</td>
<td>14-08-2002</td>
</tr>
</tbody>
</table>