Title: CATALYSTS AND RELATED METHODS FOR PHOTOCATALYTIC PRODUCTION OF H₂O₂ AND THERMOCATALYTIC REACTANT OXIDATION

Catalysts and Related Methods for Photocatalytic Production of \(\text{H}_2\text{O}_2 \) and Thermocatalytic Reactant Oxidation

[0001] This application claims priority to and the benefit of application serial no. 62/136,073 filed March 20, 2015, the entirety of which is incorporated herein by reference.

[0002] This invention was made with government support under DE-SC0006718 awarded by the Department of Energy. The government has certain rights in the invention.

Background of the Invention.

[0003] Approximately 3.5 million metric tons of hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) are produced globally each year for use in waste treatment, pulp and paper bleaching, and the chemical industry. \(\text{H}_2\text{O}_2 \) is an environmentally-friendly, atom-efficient, and selective oxidant for chemical synthesis. Unfortunately, current industrial-scale synthesis is problematic. Direct synthesis from \(\text{H}_2 \) and \(\text{O}_2 \) has been largely unsuccessful and is inherently dangerous. \(\text{H}_2\text{O}_2 \) is environmentally unfriendly, expensive, and difficult to carry out at all but the largest scale. Moreover, \(\text{H}_2\text{O}_2 \) must be diluted before shipping.

[0004] Accordingly, there remains an ongoing effort in the art to develop a safe, efficient and economical method for \(\text{H}_2\text{O}_2 \) production, to utilize the benefits and advantages associated with this oxidant.

Summary of the Invention.

[0005] In light of the foregoing, it is an object of the present invention to provide catalyst material(s) and related method(s) for the production of \(\text{H}_2\text{O}_2 \) and use in selective oxidation reactions, thereby overcoming various deficiencies and shortcomings of the prior art, including those outlined above. It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can meet certain other objectives. Each objective may not apply equally, in all its respects, to every aspect of this invention. As such, the following objects can be viewed in the alternative with respect to any one aspect of this invention.

[0006] It can be an object of the present invention to provide \textit{in situ} \(\text{H}_2\text{O}_2 \) production without dilution and transportation safety issues associated with the prior art.

[0007] It can also be an object of the present invention to provide a catalyst material whereby photocatalytic properties, for \(\text{H}_2\text{O}_2 \) production, and thermocatalytic properties, for substrate oxidation, can be independently tuned and optimized.
It can also be an object of the present invention, alone or in conjunction with one or more of the preceding objectives, to provide photo- and thermocatalytic functions with a single catalyst material.

Other objects, features, benefits and advantages of the present invention will be apparent from this summary and the following descriptions of various preferred embodiments, and will be readily apparent to those skilled in the art having knowledge of various H₂O₂ production and related oxidation techniques. Such objects, features, benefits and advantages will be apparent from the above as taken into conjunction with the accompanying examples, data, figures and all reasonable inferences to be drawn therefrom.

The present invention can be directed to a catalytic system comprising a photocatalyst for production of H₂O₂ from O₂ and a proton donor component, such a photocatalyst comprising a particulate TiO₂ core component and a SiO₂ shell component coupled to such a core component, such a photocatalyst comprising TiO₂ surface areas; a thermocatalyst for reactant oxidation with produced H₂O₂, such a thermocatalyst adjacent to such a photocatalyst and comprising a SiO₂ component and a transition metal moiety coupled thereto; a reaction medium comprising O₂, a proton donor component and an oxidizable reactant component; and ultra-violet radiation introduced to such a reaction medium for a time and at a wavelength sufficient to produce H₂O₂ and oxidize such a reactant component therewith.

In certain embodiments, a proton donor component of such a system can be selected from methanol, ethanol, propanols, butanols, ethylene glycol, propylene glycol, glycerol, and carbohydrates. Regardless, such an oxidizable reactant component can be selected from alkenes, including but not limited to styrene and other styrenic compounds, cycloalkenones, allyl chloride, allyl alcohol and related such unsaturated reactants. Without limitation, a transition metal moiety of such a system can be selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn moieties. In certain embodiments, such a transition metal moiety can be Ti. In certain such embodiments, such an alkene reactant component can be propylene.

Such a catalytic system can comprise both a photocatalyst and a thermocatalyst provided on such a TiO₂ core component, with such a transition metal moiety coupled to such SiO₂ shell component. In certain embodiments, such a transition metal can be Ti, and such an oxidizable reactant component can be propylene. Regardless, such a system can further comprise a catalyst to regenerate a proton donor component. For instance and without
limitation, where such a proton donor source is isopropanol and a by-product of H₂O₂ production is acetone, such a system can comprise a hydrogenation catalyst to reduce acetone and regenerate isopropanol.

[0013] In part, the present invention can also be directed to a composition comprising a nanoparticulate TiO₂ core component; a SiO₂ shell component coupled to such a core component; and a transition metal moiety coupled to such a shell component, such a composition comprising pores comprising TiO₂ surface areas. In certain embodiments, such a transition metal moiety can be selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn moieties. Regardless, such a shell component can have a thickness dimension of about 1.5- about 3.5 nm.

[0014] In part, the present invention can also be directed to a method for concomitant H₂O₂ production and reaction. Such a method can comprise providing a reaction medium comprising a catalyst composition of the sort discussed above or illustrated elsewhere herein, a proton donor component for photoreduction of O₂, and an oxidizable reactant component; introducing O₂ to such a reaction medium; and irradiating such an oxygenated reaction medium with ultra-violet light of a wavelength and for a time sufficient to produce H₂O₂ and oxidize such a reactant component within such a reaction medium. In certain embodiments, such a proton donor component can be selected from alcohols. In certain other embodiments, without regard to proton donor component, such an oxidizable reactant component can, as discussed above, be selected from various alkenes. As a separate consideration, such a transition metal moiety can be selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn moieties. Without limitation, such an alkene can be propylene, and such a method can comprise oxidation thereof to propylene oxide. Regardless, as discussed above and illustrated elsewhere herein, such a method can comprise regeneration of such a proton donor source.

[0015] In part, the present invention can also be directed to a method of using a single catalyst for hydrogen peroxide production and alkene oxidation. Such a method can comprise providing a reaction medium comprising a single catalyst composition comprising a nanoparticulate TiO₂ core component, a SiO₂ shell component coupled to such a core component and a transition metal moiety coupled to such a shell component, a proton donor component and an alkene component, such a composition comprising a photocatalytic TiO₂-SiO₂ component and a thermocatalytic transition metal-SiO₂ component and pores comprising TiO₂ surface areas;
introducing \(\text{O}_2 \) to such a reaction medium; and irradiating such an oxygenated reaction medium with ultra-violet light of a wavelength and for a time sufficient to produce hydrogen peroxide and oxidize such an alkene component within such a reaction medium. Proton donor components and transition metals can be selected from those discussed above or illustrated elsewhere herein. Without limitation, such an alkene component can be selected from cyclo- and straight-chain alkenes. In certain such embodiments, such an alkene can be propylene, which can be oxidized to propylene oxide.

Detail Description of the Drawings.

[0016] Figure 1: TEM image of Si\(0.2@\text{Ti}0.2 \) core-shell material, in accordance with certain non-limiting embodiments of this invention.

[0017] Figure 2: \(\text{N}_2 \) adsorption isotherms for \(\text{Ti}0.2 \) core (▲) and Si\(0.2@\text{Ti}0.2 \) (●) materials. In the region below \(\text{P}/\text{P}_0=0.06 \) there is less than monolayer coverage for the core-shell material, indicating the presence of microporosity. This adsorption phenomenon is absent for the \(\text{Ti}0.2 \) core material.

[0018] Figure 3: TEM images of the Si\(0.2@\text{Ti}0.2 \) material with silica shell thickness between 1.9 and 3.0 nm.

[0019] Figure 4: Epoxide yields after 2 hours for control reactions for the combined photo-/thermo-catalytic system and Ti- Si\(0.2@\text{Ti}0.2 \) catalyst: (A) standard conditions (isopropanol, 0.2, UV light and 65°C), (B) standard conditions except at room temperature, (C) standard conditions except no UV illumination, (D) standard conditions except using dodecane as solvent (i.e., less effective proton donor and hole scavenger than IPA for \(\text{H}_2\text{O}2 \) synthesis), (E) standard conditions except \(\text{N}_2 \) is bubbled to remove \(\text{O}_2 \), and (F) standard conditions using Ti-Si\(0.2 \) material only, showing that it does not respond to the 365-nm UV light.

[0020] Figure 5: Epoxide yields vs. time for the thermocatalytic epoxidation of \(\text{cis}-\text{cyclooctene} \) on Ti-Si\(0.2 \) for (●) 3.5 mmol \(\text{H}_2\text{O}2 \) (50 wt%, aq.) added at once at the beginning of the reaction and (O) 0.2 mmol \(\text{H}_2\text{O}2 \) (4.0 M dry in MeCN) added continuously at a rate of 0.1 mmol h\(^{-1}\) over the course of the reaction, mimicking the \textit{in situ} \(\text{H}_2\text{O}2 \) production of the combined photo-/thermo-catalytic system. The yields for the combined photo-/thermo-catalytic system is also shown (●).

[0021] Figure 6: Catalytic activity over an extended period of time, as shown through \(\text{cis}-\text{cyclooctene} \) (◇) and cyclooctene epoxide (●) production, epoxide selectivity (O)
and mass balance (·). Yields are reported per gram of photocatalyst.

Figure 7: UV light affect on reaction, as shown through Acetone (), cyclooctene epoxide (♦), and H₂O₂ (♦, right axis) production per gram of photocatalyst.

Detailed Description of Certain Embodiments.

As relates to one or more non-limiting embodiments of this invention, reference is made to Scheme 1. A TiO₂ surface is partially coated with silica (hereon referred to as SiO₂@TiO₂), and the resulting material is used to synthesize H₂O₂ photocatalytically from O₂ (in the air) and a proton donor/hole scavenger. In this case protons are generated and photo-generated holes are scavenged by the concurrent photocatalytic oxidation of isopropanol to acetone, but this can be achieved using many other sources, including other alcohols. If desired, the co-product acetone could be reduced with H₂ in a second step using existing art, thereby recycling the proton source and hole scavenger. The H₂O₂ generated in situ then migrates to an epoxidation site (e.g., either on the same or another catalyst particle) for use as an oxidant in alkene epoxidation—for instance, either, cis-cyclooctene to cyclooctane oxide or 1-octene to octane oxide. An example of such an epoxidation catalyst is Ti-SiO₂. Alternatively, the components necessary for performing these tasks can be combined onto a single catalyst particle by first overcoating a TiO₂ core with silica, then grafting dispersed Ti sites onto the silica (hereon referred to as Ti-SiO₂@TiO₂).

Performing H₂O₂ synthesis and epoxidation in such a combined photo/thermo system offers the following advantages over conventional H₂O₂ synthesis and epoxidation reactions: (i) SiO₂@TiO₂ is a more active photocatalyst than TiO₂ for H₂O₂ synthesis, (ii) the H₂O₂ does not need to be purified and concentrated, (iii) the H₂O₂ is not diluted.
with H₂O (as is commercial H₂O₂), which is known to inhibit the epoxidation step, (iv) the
epoxidation occurs at higher rates than the case where excess aqueous H₂O₂ is added at the start
of the reaction.

[0025] Performance of the present invention is demonstrated through the
following comparisons (Table 1. below, summarizes the catalytic performance of the materials):

SiO₂@TiO₂ gives higher yields of H₂O₂ at a given time than the TiO₂ core. Table 1 entry
1 gives the performance of the TiO₂ core material, while entry 2 gives the performance of
SiO₂@TiO₂. SiO₂@TiO₂ yields 14 times greater H₂O₂ than the TiO₂ core alone. This is
unexpected because the SiO₂ shell covers part of the active TiO₂ surface. The net H₂O₂
production on SiO₂@TiO₂ is equivalent to 21 mM H₂O₂ h⁻¹, which is 6 times greater than the
best-performing previously reported photocatalysts for H₂O₂ synthesis (3.4 mM H₂O₂ h⁻¹). A
TEM image of the SiO₂@TiO₂ catalyst is shown in Figure 1, which shows that the catalyst
comprises a TiO₂ core with a ~2 nm SiO₂ shell.

[0026] Addition of Ti-SiO₂ to a reactor with SiO₂@TiO₂ provides a catalyst
system that can perform the thermocatalytic epoxidation reaction using in situ generated H₂O₂, as
illustrated in Scheme 1. Entry 3 of Table 1 demonstrates that this physical mixture greatly
increases the epoxide yield (compared to entries 1 & 2). Consequently, the H₂O₂ yield is
reduced due to consumption of H₂O₂ by the epoxidation reaction. Producing the H₂O₂ in situ
means that it does not need to be produced elsewhere, purified, concentrated, diluted, and finally
transported to the reactor responsible for epoxidation. Instead, the H₂O₂ is not only produced on
site, it is synthesized in the very same reactor as the epoxidation reaction.

[0027] The photo/thermo-catalytic system with in situ H₂O₂ production leads to
higher rates of epoxidation when compared to conventional methods of epoxidation. Entry 4 of
Table 1 displays the catalytic performance of Ti-SiO₂ for a conventional thermocatalytic
epoxidation reaction, when an excess of aqueous H₂O₂ is added at the beginning of the reaction
and there is no photocatalytic cycle taking place to produce H₂O₂. The epoxide yield for the
photo/thermo-catalytic system (entry 3) is 7 times greater than the conventional epoxidation
system (entry 4). This is unexpected because the conventional system contains a much higher
instantaneous concentration of H₂O₂ (3.5 mmol) than is measured in the combined photo/thermo-
catalytic system (0.42 mmol, using the H₂O₂ yield from entry 2).

[0028] The photo/thermo-catalytic system with in situ H₂O₂ productions is active
for other epoxidations. Table 1 entry 5 displays the catalytic performance for the combined system using 1-octene as the substrate. The rates of 1-octene epoxidation are 20 times higher for the combined photo/thermo-catalytic system than for a conventional thermocatalytic reaction (entry 6). 1-octene is a model reaction for the epoxidation of propylene, which is currently practiced at industrial scale over Ti-SiO\textsubscript{2} catalysts with added H\textsubscript{2}O\textsubscript{2} by various industrial concerns.

[0029] The separate features of the SiO\textsubscript{2}@TiO\textsubscript{2} photocatalyst and Ti-SiO\textsubscript{2} thermocatalyst can be combined onto a single catalyst particle to perform tandem photo- and thermo-catalytic functions. By grafting Ti onto the silica-overcoated TiO\textsubscript{2} core, a material capable of performing both catalytic reaction cycles can be obtained. Table 1 entry 7 displays the performance of single component catalyst Ti-SiO\textsubscript{2}@TiO\textsubscript{2}. While not achieving epoxide yields as high as the combined photo-/thermo-catalytic system (entry 3) this material still yields more epoxide than either TiO\textsubscript{2} or SiO\textsubscript{2}@TiO\textsubscript{2}, due to addition of tetrahedral Ti on the silica shell. The performance of this material may be improved by optimizing the TiO\textsubscript{2} morphology, the shell structure, or the Ti loading.

[0030] This system is not limited to Ti-SiO\textsubscript{2} as the epoxidation catalyst. Table 1, entries 8 and 9 display catalytic results for the combined photo-/thermo-catalytic system when using Ta-SiO\textsubscript{2} and Nb-SiO\textsubscript{2} as the thermocatalysts, respectively. As would be understood by those skilled in the art and made aware of this invention, most catalysts that use conventional H\textsubscript{2}O\textsubscript{2} can also be utilized herewith.

Table 1: Product yields after 2 hours of reaction in photo-/thermo-catalytic system for various catalysts.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Photocatalyst</th>
<th>Thermocatalyst</th>
<th>Acetone a mmol g$^{-1}$</th>
<th>H\textsubscript{2}O\textsubscript{2} a mmol g$^{-1}$</th>
<th>Epoxide a mmol g$^{-1}$</th>
<th>b mmol g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TiO\textsubscript{2} core</td>
<td>-</td>
<td>42</td>
<td>3</td>
<td>0.4</td>
<td>cn/a</td>
</tr>
<tr>
<td>2</td>
<td>SiO\textsubscript{2}@TiO\textsubscript{2}</td>
<td>-</td>
<td>22</td>
<td>42</td>
<td>0.5</td>
<td>cn/a</td>
</tr>
<tr>
<td>3</td>
<td>SiO\textsubscript{2}@TiO\textsubscript{2}</td>
<td>Ti-SiO\textsubscript{2}</td>
<td>37</td>
<td>16</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Ti-SiO\textsubscript{2}</td>
<td>dn/a</td>
<td>dn/a</td>
<td>dn/a</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>SiO\textsubscript{2}@TiO\textsubscript{2}</td>
<td>Ti-SiO\textsubscript{2}</td>
<td>42</td>
<td>9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Ti-SiO\textsubscript{2}</td>
<td>dn/a</td>
<td>dn/a</td>
<td>dn/a</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>Ti-SiO\textsubscript{2}@TiO\textsubscript{2}</td>
<td>n/a</td>
<td>14</td>
<td>13</td>
<td>3</td>
<td>cn/a</td>
</tr>
<tr>
<td>8</td>
<td>SiO\textsubscript{2}@TiO\textsubscript{2}</td>
<td>Ta-SiO\textsubscript{2}</td>
<td>48</td>
<td>25</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2 summarizes physical characterization data from the materials examined. All of the TiO$_2$ based materials have edge energies of 3.2 eV, indicating that the addition of a silica shell does not change the photo-response of the TiO$_2$ core material. The edge energy of Ti-SiO$_2$ of 3.7 eV indicates that this material contains predominantly isolated Ti cations, with some clustered, non-tetrahedral Ti sites. Addition of the silica shell increases the surface area of the TiO$_2$ core, likely due to the formation of micropores, as indicated from the N$_2$ isotherm (Figure 2). The crystal size does not significantly change with the addition of the silica shell. TEM images confirm the formation of a thin silica shell (Figure 3). Taken together the characterization data show that the core-shell materials comprise a crystalline anatase TiO$_2$ core with a transparent ~2 nm microporous silica shell.

<table>
<thead>
<tr>
<th>Material</th>
<th>E_s eV</th>
<th>Surface Area* mV</th>
<th>Crystallite size5 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$ core</td>
<td>3.2</td>
<td>43</td>
<td>23</td>
</tr>
<tr>
<td>core-shell</td>
<td>3.2</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>Ti-core-shell</td>
<td>3.2</td>
<td>56</td>
<td>27</td>
</tr>
<tr>
<td>Ti-SiO$_2$</td>
<td>3.7</td>
<td>589</td>
<td>-</td>
</tr>
</tbody>
</table>

aEstimated from DRUV-visible spectra transformed with a tauc plot.
bEstimated from N$_2$ physisorption using the BET method.
cEstimated from XRD; only anatase TiO$_2$ is observed

As illustrated by Table 1 entries 1-3, addition of the silica shell unexpectedly enhances H$_2$O$_2$ production, while addition of Ti to the shell surface increases the epoxidation activity. To prove that the reaction proceeds as illustrated in Scheme 1, several control reactions were performed with the combination Ti-SiO$_2$@TiO$_2$ catalyst (Figure 4). Removing any component of the combined photo-thermo-catalytic system reduces or eliminates production of epoxide, confirming that the reaction proceeds through the photocatalytic production of hydrogen peroxide from isopropanol and the subsequent epoxidation of cis-cyclooctene via hydrogen peroxide. Comparing the combined photo/thermocatalytic systems for
both alkenes (entries 3 and 5 from Table 1) to conventional thermocatalytic reactions (entries 4 and 6 from Table 1) shows that epoxidation rates for the combined system are unexpectedly 7 times greater for cis-cyclooctene and 20 times greater for 1-octene. Finally, Figure 5 shows that slowly adding dry H₂O₂ over the course of the reaction increases epoxide yields vs. the case where H₂O₂ is added all at once, but still does not reach the productivity of the combined photo-/thermo-catalytic system. Thus, without limitation to any one theory or mode of operation, a combined photo-/thermo-catalytic system may improve epoxide yields by slowly synthesizing H₂O₂ in parallel with its consumption. Further, and also without limitation, comparing yields of H₂O₂ and acetone, the SiO₂@TiO₂ material may be improving H₂O₂ yields by inhibiting the unproductive, subsequent decomposition of H₂O₂, as opposed to accelerating the production of H₂O₂.

[0033] Accordingly, the present invention describes catalytic materials and method(s) for the photocatalytic production of H₂O₂ in the same reactor as the subsequent consumption of H₂O₂ in a useful chemical transformation (e.g., alkene epoxidation). Such methods avoid H₂O₂ purification and transport, and greatly simplify the total production process. A representative photocatalyst described herein for H₂O₂ synthesis exhibits significantly higher synthesis rates than those previously reported, and the epoxidation rates for a combined system are higher than those observed for a conventional system, due to the intimate coupling of H₂O₂ generation and consumption.

Examples of the Invention.

[0034] The following non-limiting examples and data illustrate various aspects and features relating to the catalyst materials and/or methods of the present invention, including unitary photo- and thermocatalytic nanoparticles, as are available through the synthetic methodologies described herein. In comparison with the prior art, the present methods and catalyst materials provide results and data, which are surprising, unexpected and contrary thereto. While the utility of this invention is illustrated through the use of several catalyst materials, proton donor and reactant components which can be used therewith, it will be understood by those skilled in the art that comparable results are obtainable with various other catalyst materials, proton donor and reactant components, as are commensurate with the scope of this invention.
Example 1

[0035] **Synthesis of SiO$_2$@TiO$_2$ core-shell.** Anatase TiO$_2$ nanoparticles were used as received from Sigma-Aldrich (<25 nm particles, "TiO$_2$ core"). 2 g of the TiO$_2$ core, 50 mL ethanol (KOPTEC, 200 proof), 3.2 mL NH$_4$H solution (56.6 w/w%) were added to a plastic container, sonicated for 30 minutes to disperse the oxide particles and equilibrate the pH. The mixture was transferred to a shaker plate, shaking at 200-250 rpm, and 1 mL of tetraethoxyorthosilicate (TEOS, Sigma-Aldrich) was added in 0.1 mL increments every 20 minutes while shaking the vial in between. The mixture was allowed to shake overnight then centrifuged to collect solids. The solids were resuspended in 50 mL of 18 MΩ deionized water then centrifuged to wash away excess TEOS and NH$_4$OH. This washing step was repeated 5 times. Finally the solids were collected and dried in a drying oven at 150°C for 12 to 15 hours.

[0036] Various other methods for SiO$_2$@TiO$_2$ synthesis can be utilized, including the use of other core materials, SiO$_2$ precursors, and deposition conditions, as would be understood by those skilled in the art.

Example 2

[0037] **Synthesis of Ti-SiO$_2$@TiO$_2$.** The core-shell material of Example 1 was dried under vacuum (<200 mTorr) at 200°C for 12 to 15 hours to remove physisorbed water. In a separate round-bottomed flask titanocene dichloride (Cl$_5$H$_9$Cl$_2$Ti, Aldrich 97%) was dissolved in freshly-distilled anhydrous toluene. In an Ar-filled glovebox the dried core-shell support was added to the round-bottomed flask and sealed. The round-bottomed flask was then removed from the glovebox and attached to a condenser and refluxed under N$_2$ for 48 hours. The reflux occurred without stirring to avoid grinding the core-shell particles. The material was then collected via vacuum filtration where it was washed with 200 mL toluene, 400 mL acetonitrile, and allowed to dry at room temperature overnight.

[0038] Various other methods of adding Ti to SiO$_2$@TiO$_2$ can be utilized, including the use of other precursors and deposition methods as would be understood by those skilled in the art. Likewise, as would be understood in the art, other catalytically active cations can be coupled to the SiO$_2$ surface, such as thermocatalytic transition metals of the sort described elsewhere herein, through use of, for instance, corresponding metallocene starting materials.
Example 3

[0039] Synthesis of Ti-SiO$_2$. Mesoporous silica (SiO$_2$, Selecto, 540 m2 g$^{-1}$, 2.2 nm average pore radius, 100-200 µm particles) was dried under vacuum (<200 mTorr) at 500°C for 12 to 15 hours and stored under N$_2$ before use. 4-tert-butylmethoxycalix[4]-arene (C$_4$H$_6$O$_4$, "C$_x$Me$_2$$"_2") was synthesized by methylating 4-tert-butylcalix[4]arene (C$_4$H$_8$O$_4$, "C$_x$", Sigma-Aldrich) with methyl iodide, following a literature procedure. Titanium-tert-butyl-calix[4]-arene chloride (TiC$_x$) was synthesized by adding TiC$_4$ (1.0 M in toluene, Sigma-Aldrich) to a solution of C$_x$Me$_2$ in toluene and refluxed for 48 hours. The dried silica was then added to the TiC$_x$ solution in an Ar-filled glovebox, then removed from the glovebox and refluxed in toluene for >72 hours. During reflux N$_2$ was continuously bubbled through the reaction solution and vented through the top of the condenser to remove HCl. The TiC$_x$-SiO$_2$ material was collected via vacuum filtration and repeatedly washed with toluene until the filtrate was clear (approximately 400 mL per g of material). The material was washed further with THF then water and dried at room temperature under vacuum. The final titanium loading was 200 µmol g$^{-1}$ or 1 wt% Ti, as determined by ICP-AES.

Example 4

[0040] Synthesis of Ta-SiO$_2$. Mesoporous silica (SiO$_2$, Selecto, 540 m2 g$^{-1}$, 2.2 nm average pore radius, 100-200 µm particles) was dried under vacuum (<200 mTorr) at 500°C for 12 to 15 hours and stored under N$_2$ before use. To obtain tantalum-fer t-buty1-calix[4]-arene (TaC$_x$), TaCl$_5$ was refluxed in toluene with 1 equivalent of C$_x$ to form TaC$_x$. The dried silica was then added to the TaC$_x$ solution in an Ar-filled glovebox, then removed from the glovebox and refluxed in toluene for >72 hours. During reflux N$_2$ was continuously bubbled through the reaction solution and vented through the top of the condenser to remove HCl. The TaC$_x$-SiO$_2$ material was collected via vacuum filtration and repeatedly washed with toluene until the filtrate was clear (approximately 400 mL per g of material). The material was washed further with THF then water and dried at room temperature under vacuum.

Example 5

[0041] Synthesis of Nb-SiO$_2$. Mesoporous silica (SiO$_2$, Selecto, 540 m2 g$^{-1}$, 2.2 nm average pore radius, 100-200 µm particles) was dried under vacuum (<200 mTorr) at 500°C for 12 to 15 hours and stored under N$_2$ before use. To obtain niobium-tert-buty1-calix[4]-arene
(NbCx), NbCl₅ was refluxed in toluene with 1 equivalent of Cx to form NbCx. The dried silica was then added to the NbCx solution in an Ar-filled glovebox, then removed from the glovebox and refluxed in toluene for >72 hours. During reflux N₂ was continuously bubbled through the reaction solution and vented through the top of the condenser to remove HC1. The NbCx-Si0₂ material was collected via vacuum filtration and repeatedly washed with toluene until the filtrate was clear (approximately 400 mL per g of material). The material was washed further with THF then water and dried at room temperature under vacuum.

As indicated above, various other thermocatalysts can be utilized, including most transition metal cations supported on SiO₂, and many other materials useful in catalytic oxidation with H₂O₂.

Example 6

Catalytic reactions. Prior to all catalytic reactions, the materials described above were calcined at 600°C for 2 hours in static air. For the combined photo-/thermo-catalytic reaction system 5 to 10 mg of photocatalyst (Ti0₂ core, Si0₂@Ti0₂ or Ti-Si0₂@Ti0₂) and 0 to 70 mg of thermocatalyst (Ti-Si0₂, Ta-Si0₂ or Nb-Si0₂) were added to a 20 mL reaction vial with 10 mL isopropanol, 1.15 mmol alkene (cis-cyclooctene or 1-octene) and 150 µL dodecane as an internal standard. A hole was punched into the reaction vial septum to allow the fitting of a quartz test tube to hold the 365 nm pen-ray UV lamp. Prior to reaction the reaction mixture was sonicated for 5 minutes to disperse any aggregated particle and then allowed to heat up to 65°C for 30 minutes. The UV lamp was allowed to warm-up for 30 minutes prior to starting the reaction. O₂ was bubbled through the reaction solution for 5 minutes prior to starting the reaction, and then for 1 minute at each sampling interval (0, 30, 60, 90, 120 minutes).

The reaction was started by introducing the pen-ray lamp to the reaction mixture and the vessel was agitated using a Glas-Col shaker plate. 150 µL aliquots were collected into GC vials with ~1 mg Ag powder to decompose any H₂O₂ and avoid overoxidation. Acetone, cis-cyclooctene and cyclooctene oxide were quantified by GC-FID. H₂O₂ was quantified by iodometry (see below). For thermal reactions, 10 to 30 mg of thermocatalyst were added to a 20 mL reaction vial with 10 mL isopropanol, 1.15 mmol alkene, 150 µL dodecane as internal standard, sonicated for 5 minutes, allowed to heat up to 65°C for 30 minutes, and then 3.5 mmol H₂O₂ (either from aqueous 50 wt% H₂O₂ or 4.0 M H₂O₂ in MeCN dried via MgSO₄) is added to initiate the reaction. Alternatively, in one control reaction H₂O₂ (dried, in MeCN) is
added at a rate of 100 \mu mol h^{-1} continuously over the course of the reaction with a syringe pump.

Example 7

[0045] Catalyst activity can be demonstrated through extended reaction. A physical mixture of SiO_{2}@TiO_{2} photocatalyst and Ti-SiC^α thermocatalyst was run with 60 mM cyclooctene in isopropanol. With reference to Figure 6, conversion of alkene reaches 79% after 60 hours with 98% selectivity towards cyclooctene epoxide (97% mass balance, shown in black, where mass balance is ([Alkene]_t+[Epoxide]_t)/[Alkene]_{initial}). O₂ is bubbled through periodically.

Example 8

[0046] Reaction can be affected via the illumination source. With reference to Example 1, reaction conditions were as follows: 5 mg SiO_{2}@TiO_{2}, 15 mg Ti-SiO_{2}, 10 mL isopropanol, 1.15 mmol czs-cyclooctene, 65°C, 365 nm UV (between 0-1, 2-3, 4-5 hours, etc.); O₂ bubbled every 30 minutes. As shown in Figure 7, periods of illumination produce hydrogen peroxide and acetone. Hydrogen peroxide is consumed during dark periods, while no acetone is produced. As long as sufficient hydrogen peroxide is present, cyclooctene epoxide formation continues during light and dark cycles.

Example 9

[0047] In accordance with certain embodiments of this invention, hydrogenation can be used to regenerate a starting alcohol proton donor, as shown in Scheme 2.

![Scheme 2](image)

Scheme 2.

[0048] Acetone hydrogenation was performed to demonstrate the recovery of isopropanol from the photocatalytic oxidation system. A reaction solution was prepared with 1.1 mmol acetone, 0.4 mmol cyclooctene oxide, and dodecane as internal standard in 50 mL isopropanol. Prior to hydrogenation, Pt on activated carbon ("Pt/C", 1 wt% Pt, Aldrich) was heat treated to 400°C for 4 hours under flowing He, ~ 1 mL min in a u-tube reactor. The Pt/C catalyst was sealed within the u-tube until use for hydrogenation. The reaction solution and 230 mg of Pt/C was loaded and sealed into a high-pressure Parr reactor, degassed with N₂, then charged with 10 bar H₂. Hydrogenation occurred at 10 bar H₂, 50°C, with stirring at 600 rpm. After
18 hours the reactor was cooled, de-pressurized, and an aliquot was collected for GC analysis: no epoxide was consumed under these conditions, whereas 100% of the acetone was hydrogenated.

Example 10

[0049] Iodometric titration of H$_2$O$_2$. H$_2$O$_2$ was quantified by iodometry adapting previously described literature techniques. After 2 hours of reaction 200 µL aliquots were added to 1 mL of 50 v/v% H$_2$SO$_4$ and N$_2$ was bubbled through the solution for 10 minutes to remove O$_2$. Then 1 w/w% KI (aq) was added to form I$_2$, which was a yellow solution. The solution was titrated with 0.1 mM Na$_2$S$_2$O$_3$ until the solution color was faintly yellow, then 0.1 mL starch indicator was added, forming a dark purple color, and the solution was further titrated until colorless. The Na$_2$S$_2$O$_3$ titrant was standardized with solutions of KI$_3$.

Example 11

[0050] Characterization. All catalyst samples were calcined for 2 hours at 600°C prior to characterization.

[0051] TEM images were obtained using a JEOL 2100F transmission electron microscope. Catalyst samples were suspended in methanol, sonicated for 5 minutes, then platinum TEM grids were dipped into the suspension and dried at room temperature before imaging.

[0052] Diffuse-reflectance UV-visible spectra were collected with a UV-3600 Shimadzu spectrophotometer with a Harrick Praying Mantis accessory for powder measurements and polytetrafluoroethylene as the baseline reference. Reflectance spectra were converted with the Kebulka-Munk transformation and edge energies were taken from Tauc plots of the spectra.

[0053] N$_2$ physisorption measurements were performed on a Micromeritics ASAP 2010. Prior to analysis, powder samples were dried at 200°C under vacuum (<5 µm Hg). Surface areas were calculated by the BET method.

[0054] X-ray diffraction (XRD) spectra were collected with a Rigaku X-ray diffractometer from 20 to 60° 2θ, with Cu Kα radiation. The slit width, dwell time and slit widths were kept constant for all materials. Crystallite sizes were estimated using the Scherrer equation for the (101) anatase reflection at a Bragg angle of 25.2° 2θ, assuming a shape factor of 0.9 with a lower detection limit of approximately 5 nm.

[0055] H$_2$O$_2$ is widely used as a "green" oxidant for chemical synthesis, because
it is efficient, selective, and has only water as a byproduct. *In situ* \(\text{H}_2\text{O}_2 \) generation for selective oxidation has long been a goal of catalysis, specifically so for propylene epoxidation. As demonstrated, above, this invention provides an excellent catalyst for \(\text{H}_2\text{O}_2 \) production from \(\text{O}_2 \) and a proton donor. In addition, \(\text{H}_2\text{O}_2 \) production can be coupled to a thermocatalyst for epoxidation, thus preventing the need to purify, concentrate, then dilute \(\text{H}_2\text{O}_2 \) for sale and transport. This invention also demonstrates oxidation of 1-octene, a model substrate for epoxidation of linear alkenes, indicating to those skilled in the art, broader applicability to other synthetic processes, including the production of propylene oxidation.
We claim:

1. A catalytic system comprising:
 a photocatalyst for production of H\textsubscript{2}O\textsubscript{2} from O\textsubscript{2} and a proton donor component, said photocatalyst comprising a particulate TiO\textsubscript{2} core component and a SiO\textsubscript{2} shell component coupled to said core component, said photocatalyst comprising TiO\textsubscript{2} surface areas;
 a thermocatalyst for reactant oxidation, said thermocatalyst adjacent to said photocatalyst and comprising a SiO\textsubscript{2} component and a transition metal moiety coupled thereto;
 a reaction medium comprising O\textsubscript{2}, a proton donor component and an oxidizable reactant component; and
 ultra-violet radiation introduced to said reaction medium for a time and at a wavelength sufficient to produce H\textsubscript{2}O\textsubscript{2} and oxidize said reactant component therewith.

2. The system of claim 1 wherein said proton donor component is selected from alcohols.

3. The system of claim 1 wherein said oxidizable reactant component is selected from alkenes.

4. The system of claim 1 wherein said transition metal moiety is selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn moieties.

5. The system of claim 4 wherein said transition metal moiety is Ti.

6. The system of claim 5 wherein said alkene is propylene.

7. The system of claim 1 wherein said photocatalyst and said thermocatalyst are provided on said TiO\textsubscript{2} core component, said transition metal moiety coupled to said SiO\textsubscript{2} shell component.

8. The system of claim 7 wherein said transition metal is Ti and said oxidizable reactant is propylene.

9. The system of claim 2 wherein said alcohol is isopropanol.

10. The system of claim 9 wherein acetone is a by-product of said H\textsubscript{2}O\textsubscript{2} production.

11. The system of claim 10 comprising a hydrogenation catalyst to reduce said acetone and regenerate said isopropanol.

12. A composition comprising a nanoparticulate TiO\textsubscript{2} core component; a SiO\textsubscript{2} shell component coupled to said core component; and a transition metal moiety coupled to said shell component, said composition comprising pores comprising TiO\textsubscript{2} surface areas.
13. The composition of claim 12 wherein said transition metal moiety is selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn moieties.
14. The composition of claim 13 wherein said transition metal moiety is Ti.
15. The composition of claim 12 wherein said SiO₂ shell component has a thickness dimension of about 1.5 - about 3.5 nm.
16. The composition of claim 15 wherein said transition metal is Ti.
17. A method for concomitant H₂O₂ production and reaction, said method comprising:
 providing a reaction medium comprising a composition of claim 12, a proton donor component, and an oxidizable reactant component;
 introducing O₂ to said reaction medium; and
 irradiating said oxygenated reaction medium with ultra-violet light of a wavelength and for a time sufficient to produce H₂O₂ and oxidize said reactant component within said reaction medium.
18. The method of claim 17 wherein said proton donor component is selected from alcohols.
19. The method of claim 17 wherein said oxidizable reactant component is selected from alkenes.
20. The method of claim 17 wherein said transition metal moiety is selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn moieties.
21. The method of claim 20 wherein said transition metal is Ti.
22. The method of claim 21 wherein said alkene is propylene, and said propylene is oxidized to propylene oxide.
23. The method of claim 18 wherein said alcohol is isopropanol.
24. The method of claim 23 wherein acetone is a by-product of said H₂O₂ production.
25. The method of claim 24 comprising hydrogenation of said acetone and regeneration of said isopropanol.
26. A method of using a single catalyst for hydrogen peroxide production and alkene oxidation, said method comprising:
 providing a reaction medium comprising a single catalyst composition comprising a nanoparticulate TiO₂ core component; a SiO₂ shell component coupled to said core component;
and a transition metal moiety coupled to said shell component, said composition comprising pores comprising TiO$_2$ surface areas, a proton donor component and an alkene component, said catalyst composition comprising a photocatalytic TiO$_2$-SiO$_2$ component and a thermocatalytic transition metal-SiO$_2$ component;

introducing O_2 to said reaction medium; and

irradiating said oxygenated reaction medium with ultra-violet light of a wavelength and for a time sufficient to produce hydrogen peroxide and oxidize said alkene within said reaction medium.

27. The method of claim 26 wherein said proton donor component is selected from alcohols.

28. The method of claim 26 wherein said proton donor component is isopropanol.

29. The method of claim 26 wherein said alkene is selected from cyclo- and straight-chain alkenes.

30. The method of claim 29 wherein said alkene is selected from octenes and propylene.

31. The method of claim 26 wherein said transition metal is selected from V, Ti, Cr, Mn, Co, Cu, Zn, Mo, Nb, Ta, W, Os, Re, Ir, and Sn.

32. The method of claim 31 wherein said transition metal is Ti.

33. The method of claim 32 wherein said alkene is propylene, and said propylene is oxidized to propylene oxide.

34. The method of claim 26 wherein said irradiation is intermittent to control hydrogen peroxide production and reactant oxidation.
Figure 1

![Image of TiO$_2$ core and SiO$_2$ shell with annotations]
Figure 2

Micropores formed upon SiO₂ coating

Vol. Ads. (cm³ g⁻¹)

P/P₀
Figure 3

- TiO₂ core
- SiO₂ shell
- Scale bars: 20 nm
Figure 7

Graph showing time (hours) on the x-axis and mmol g⁻¹ on the y-axis with data points indicating changes over time.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C01B 15/01(2006.01)i, B01J 20/06(2006.01)i, B01J 20/10(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C01B 15/01; B01J 21/08; C04B 14/30; B05D 7/24; B01J 20/06; B01J 20/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: photocatalyst, Si02/Ti02, core shell, thermocatalyst, Ti-Si02, H202, alcohol, oxygen, alkene, epoxide, in-situ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CHEN, JIAQI et al., "Kinetic study of propylene epoxidation with H2 and O2 over Au/Ti-Si02 in the explosive regime," Faraday Discussions, 2011, vol. 152, pages 321-336 See abstract; page 322, lines 43-45; page 326, lines 12-13; page 333, [lines 40-42; and page 334, lines 3-5.</td>
<td>1-34</td>
</tr>
<tr>
<td>A</td>
<td>US 2012-0238442 A1 (LEE, KWANGYEOL) 20 September 2012 See paragraphs [0014], [0015]; claims 1, 7, 8, and figures 1-3.</td>
<td>1-34</td>
</tr>
<tr>
<td>A</td>
<td>PAN, XIAOVANG et al., "Efficient thermal- and photocatalyst of Pd nanoparticle icles on Ti02 achieved by an oxygen vacancies promoted synthesis strategy," ACS Applied Materials & Interfaces, 2014, vol. 6, pages 1879-1886 See abstract; and figures 1, 2, 6.</td>
<td>1-34</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0259244 A1 (HERBIG, BETTINA et al.) 27 October 2011 See abstract; claims 1-16; and figure 3.</td>
<td>1-34</td>
</tr>
<tr>
<td>A</td>
<td>EATON, TODD m. et al., "Counting active sites on titanium oxide-silica catalysts for hydrogen peroxide activation through in situ poisoning with phenylphosphonoc acid," ChemCatChem, 2014, vol. 6, pages 3215-3222 See abstract; and scheme 1.</td>
<td>1-34</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
25 May 2016 (25.05.2016)

Date of mailing of the international search report
26 May 2016 (26.05.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578

Authorized officer
CHO, Han Sol

Telephone No. +82-42-481-5580

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TSUKAMOTO, DAIIRO et al., "Photocatalytic H2O2 product ion from ethano l/02 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles," ACS Catalysis, 2012, vol. 2, pages 599-603 See pages 599, 600; scheme 1, table 1; and figure 1.</td>
<td>1-34</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2012-0238442 Al</td>
<td>20/09/2012</td>
<td>US 2010-056366 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8216961 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8415267 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2367762 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2010-072688 Al</td>
</tr>
</tbody>
</table>