Title: APPARATUS AND METHOD FOR ULTRA WIDE BAND COMMUNICATION BASED ON MULTI-CODED BI-ORTHOGONAL PULSE POSITION MODULATION

Abstract: Provided is a communication system for ultra wide band impulse communication, and more particularly, to a communication apparatus and method that can be used in a sensor network or a low-rate wireless personal area network. To be more specific, the present research suggests a transmitter employing multi-coded bi-orthogonal pulse position modulation/demodulation and a method thereof. The transmitter of the present research provides: a serial-to-parallel converter for converting L-bit serial data to be transmitted into parallel data by performing grouping on the L-bit serial data; a multi-coder for generating a multi-coded symbol by multiplying the parallel data by total L orthogonal codes of length Nc; a bi-orthogonal pulse position modulator for positioning the multi-coded symbol in a predetermined pulse period and performing biorthogonal pulse position modulation; and a pulse generator for multiplying an output signal of the bi-orthogonal pulse position modulator by a predetermined pulse and outputting an output signal.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
APPARATUS AND METHOD FOR ULTRA WIDE BAND COMMUNICATION
BASED ON MULTI-CODED BI-ORTHOGONAL PULSE POSITION
MODULATION

Description

Technical Field

The present invention relates to an ultra wide band communication system; and more particularly, to a communication apparatus and method that can be used in a sensor network or a low-rate wireless Personal Area Network, and a method thereof.

Background Art

Conventional modulation and demodulation methods for ultra wide band impulse communication are as follows:

- Pulse Position Modulation/Bi-orthogonal Pulse Position Modulation (PPM/BPPM)
- Pulse Amplitude Modulation (PAM) including On-Off Keying method
- Phase Shift Keying (PSK) including Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK)
- Direct Sequence Code (DSC)

First, the PPM/BPPM, a method used and studied for a long time, changes the position of a basic pulse according to 0 or 1. According to the PPM/BPPM where modulation is performed through temporal offset, a signal arriving earlier than a reference time can be determined as '0' and a signal after the arrival of the signal 0 is determined as '1.' A method using an M-ary orthogonal signal can be applied to the PPM ultra wide band modulation/demodulation method to improve a transmission rate and a signal-to-noise
ratio. The BPPM method uses one-digit binary data for pulse phase modulation when the M-ary method is used. In case where a binary data signal is transmitted, the BPPM method becomes the same as the BPSK modulation method. As it can be seen from the above description, it is possible to transmit data twice as much as the conventional PPM and to extend a time period occupied by one pulse because a binary datum is transmitted on a phase basis.

Secondly, the PAM method displays information by changing an output. In 8-ary PAM, three-digit binary data are transmitted by using amplitudes in 8 steps. A special form of the PAM is the OOK method in which '1' is transmitted when there is a pulse and '0' when there is no pulse. The BPSK method displays '0' and '1' according to the phase of a signal. The BPSK is advantages over the PPM in the signal-to-noise ratio by 3 dB; in a transmission capacity by two-folds; and in the time period occupied by a pulse by two-folds. However, in the presence of multipath, there is a problem that the phase is changed. The QPSK is a form extended from the BPSK. Whereas the BPSK identifies a signal with '0' or '1,' the QPSK identifies a signal with two-digit binary data, e.g., '00,' '01,' '10' and '11.' Since the QPSK method transmits two-digit binary data with one waveform, it can transmit data twice as much as the BPSK can.

The DSC method which adopts the Direct Sequence-Code Division Multiple Access (DS-CDMA) without any change has advantages that it can prevent the generation of noise excellently and data from being intercepted in the course.

However, the above-described conventional modulation technologies for realizing ultra wide band impulse communication has shortcoming that they can hardly applied to multipath channels and that they have a limitation in data transmission rates.
Disclosure

Technical Problem

It is, therefore, an object of the present invention, which is devised to resolve the problems of the conventional technologies, to provide a communication apparatus and method that can be applied to multipath channels and provide excellent data transmission rates.

It is another object of the present invention to provide a communication apparatus and method whose performance is improved by enhancing error correction ability for correcting errors caused by encoding in a transmitter and a receiver of a communication system.

It is another object of the present invention to provide a communication apparatus and method that can extend a time period used to transmit a pulse by improving link capacity higher than that of conventional technologies, when the same data are to be transmitted in the same time period.

Technical Solution

In accordance with one aspect of the present invention, there is provided a transmitter employing multi-coded bi-orthogonal pulse position modulation in an ultra wide band impulse communication apparatus, which includes: a serial-to-parallel converter for converting L-bit serial data to be transmitted into parallel data by performing grouping on the L-bit serial data; a multi-coder for generating a multi-coded symbol by multiplying the parallel data by total L orthogonal codes of length Ns; a bi-orthogonal pulse position modulator for positioning the multi-coded symbol in a predetermined pulse period and performing bi-orthogonal pulse position modulation; and a pulse generator for multiplying an output signal of the bi-orthogonal pulse
position modulator by a predetermined pulse and outputting an output signal.

In accordance with one aspect of the present invention, there is provided a modulation method of an ultra wide band impulse communication apparatus, which includes the steps of: a) converting L-bit serial data to be transmitted into parallel data by performing grouping on the L-bit serial data; b) generating a multi-coded symbol by multiplying the parallel data by total L orthogonal codes of length N_s; and c) performing bi-orthogonal pulse position modulation based on symmetrical characteristics of elements of the multi-coded symbol to thereby produce a bi-orthogonal pulse position-modulated signal.

The present invention relates to a communication system that performs ultra wide band impulse communication, for example, it provides a communication apparatus and method that can be used in a sensor network or a low-rate wireless Personal Area Network. Particularly, the present invention provides a multi-coded bi-orthogonal pulse position modulation/demodulation method in a communication system performing ultra wide band impulse communication, and a communication apparatus and method employing the same.

Description of Drawings

The above and other objects and features of the present invention will become apparent from the following description of the preferred embodiments given in conjunction with the accompanying drawings, in which:

Fig. 1 is a diagram describing a multi-coded bi-orthogonal pulse position modulation method in accordance with an embodiment of the present invention;

Fig. 2 is a diagram illustrating a physical layer frame which is a basic unit for communication in accordance with an embodiment of the present invention;
Fig. 3 is a block diagram showing a transmitter adopting multi-coded bi-orthogonal pulse position modulation in accordance with an embodiment of the present invention;

Fig. 4 is a block diagram showing a receiver adopting multi-coded bi-orthogonal pulse position demodulation in accordance with an embodiment of the present invention;

Fig. 5 is a graph comparing a link capacity of the modulation method of the present invention;

Fig. 6 is a table comparing the modulation method of the present invention with conventional modulation methods on a time period;

Fig. 7 is a diagram comparing the maximum pulse transmission time period widths; and

Fig. 8 is a graph comparing the amount of interference in an indoor Non-Line-of-Sight (NLOS) radio channel environment.

Best Mode for the Invention

Other objects and aspects of the invention will become apparent from the following description of the embodiments with reference to the accompanying drawings, which is set forth hereinafter. When it is considered that detailed description on prior art may blur the points of the present invention, the description will not be provided herein. Hereinafter, preferred embodiments of the present invention will be described in detail.

To resolve the problems of conventional technologies, the present invention supports coding gain acquisition and diverse transmission rates based on multi-coded bi-orthogonal pulse position modulation and, at the same time, extends a time period occupied by a transmitting pulse. With the technology suggested the present invention, inter-pulse interference caused in an indoor environment due to
multipath is reduced, and performance degradation caused in a receiver by interference between pulses can be prevented. Hereinafter, the technology of the present invention will be described in detail with reference to the accompanying drawings.

A. Multi-Coded Bi-Orthogonal Pulse Position Modulation

Fig. 1 is a diagram describing a multi-coded bi-orthogonal pulse position modulation method in accordance with an embodiment of the present invention. Parameters which will be described hereinafter are as follows.

T_m: Time period of a pulse
L: The number of bits of data to be transmitted in each data block

T_c: Time period of a multi-coded chip

N_s: Length of a orthogonal multi-code

T_s: Time period of a multi-coded symbol

Referring to Fig. 1, the multi-coded bi-orthogonal pulse position modulation method will be described. First, L-bit binary data 100 to be transmitted in the transmitter are multiplied by total L orthogonal codes 105 having a length of N_s to thereby generate an N_s-long multi-coded symbol 110 with a code rate of L/N_s, where L is an odd number.

In short, the multi-coded symbols are as follows:

\[d_1 = b_1c_{1,1} + b_2c_{2,1} \ldots + b_Lc_{L,1} \]

\[d_{N_s} = b_1c_{1,N_s} + b_2c_{2,N_s} \ldots + b_Lc_{L,N_s} \]

Herein, each element of a multi-coded symbol 110 has a value in the range of -L, -L+2, ..., -1, ..., +1, L-2, L.

Subsequently, the multi-coded symbols 110 are modulated and transmitted based on the bi-orthogonal pulse position modulation 115. Since the elements of the multi-coded symbol have symmetrical characteristics, the bi-
orthogonal pulse position modulation is performed based on
the symmetrical characteristics. Herein, \((L+1)/2\) pulse
position periods are needed to perform bi-orthogonal pulse
position modulation on the values of the elements in the
multi-coded symbol 110. When the value of an element is \(-L\),
the pulse is positioned in the first pulse position period.
Likewise, when the value of an element is \(-L+2\), the pulse
is positioned in the second pulse position period and \(-L+4\),
in the third pulse position period; and \(L\), in the
\((L+1)/2\)th pulse position period. As shown above, the
multi-coded symbol 110 having a length of \(N_a\) is modulated
and transmitted in the bi-orthogonal pulse position
modulation 115.

Although the present invention takes an embodiment
where the \(L\) value is an odd number, it can be applied to a
case when the \(L\) value is an even number. If any, when the
\(L\) value is an even number, a total of \((L/2)+1\) pulse
position periods are needed and, when the value of an
element is 0, the sign of the pulse can be ignored.

B. Physical Layer Frame Structure

Fig. 2 is a diagram illustrating a physical layer
frame which is a basic unit for communication in accordance
with an embodiment of the present invention.

Referring to Fig. 2, the physical layer frame
structure basically includes a preamble period 200 for
performing synchronization in the transmitter and receiver,
an SPFD and PHR period 205, and a presentation service data
unit (PSDU) 210 which substantially transmits data. The
PSDU 210 is further divided into a plurality of data block
periods 215.

As shown in Fig. 2, each data block period 215 is
formed of pulses generated by using the above-described
multi-coded bi-orthogonal pulse position modulation. The
entire time period of a signal generated based on the
multi-coded bi-orthogonal pulse position modulation is \(T_s\).
When a guard time period T_g is added to the rear end of the signal and repetition is performed N_L times, a data block period 220 occupying a time period T_d is completed. Herein, when the N_L value is 1, the guard time period T_g is added to one data block period.

C. Structures of Transmitter and Receiver

Fig. 3 is a block diagram showing a structure of a transmitter adopting multi-coded bi-orthogonal pulse position modulation in accordance with an embodiment of the present invention.

Referring to Fig. 3, the transmitter includes a serial-to-parallel converter 300 for converting L-bit serial data to be transmitted into parallel data by performing grouping thereon, a multi-coder 310 for generating the above-described multi-coded symbol, a bi-orthogonal pulse position modulator 320 for performing bi-orthogonal pulse position modulation on the generated multi-coded symbol, and a pulse generator 330 for generating a pulse to be multiplied by an output signal of the bi-orthogonal pulse position modulator 320. Output signals of the pulse generator 330 are finally transmitted through a wide band transmitting antenna 340.

Fig. 4 is a block diagram showing a receiver adopting multi-coded bi-orthogonal pulse position demodulation in accordance with an embodiment of the present invention.

Referring to Fig. 4, the receiver includes a wide band receiving antenna 400 for receiving the multi-coded bi-orthogonal pulse position-modulated signal, a matching filter 405 for performing synchronization on the received signal, a bi-orthogonal pulse position demodulator 410 for receiving a matching-filtered signal and performing bi-orthogonal pulse position demodulation on the matching-filtered signal, and a multi-decoder 420 for receiving the bi-orthogonal pulse position-demodulated signal and
performing multi-decoding thereon. The received signal goes through the multi-decoder 420 and become finally estimated data.

D. Performance Verification of Communication Method suggested in embodiments of the present invention

Fig. 5 presents a result obtained by comparing the multi-coded bi-orthogonal pulse position modulation of the present invention with conventional Binary Phase Shift Keying (BPSK) and M-ary BPPM methods. As shown in Fig. 5, the multi-coded bi-orthogonal pulse position modulation method of the present invention shows more excellent link capacity than the conventional BPSK and M-ary BPPM methods.

 Particularly, in the multi-coded bi-orthogonal pulse position modulation method of the present invention, the link capacity increases gradually, as the bit number of data transmitted simultaneously increases (L=1, L=3, L=5). This is different from the conventional M-ary BPPM. The high data transmission rate and the increase in the link capacity can be also understood that a time period used to transmit a pulse can be extended when the same data are transmitted during the same time period.

Fig. 6 is a table comparing a time period used to transmit a pulse in an identical environment where the transmission power per pulse and the link capacity are the same in the modulation method of the present invention with the conventional M-ary BPPM and BPSK methods. Herein, Fig. 6 shows a result of the modulation method suggested in the present invention when a period occupied by one pulse is normalized to 1 in each data rate and \((L,N_s) = (1,4), (3,4), (1,8), (3,8), (5,8)\), where \(L\) denotes the bit number \(L\) of data and \(N_s\) denotes the length of an orthogonal code. It can be seen from Fig. 6 that, when the same quantity of data is transmitted for the same time period and the link capacity is the same, the maximum pulse transmission time
period width of the modulation method of the present invention is longer than that of the conventional M-ary BPPM and BPSK methods. To have a look at the case where \((L, N_b) = (5, 8)\) in Fig. 6, the maximum pulse transmission time period width of the M-ary BPPM method remains at 21% of that of the present invention while the BPSK method is 68.8%.

Fig. 7 is a diagram comparing maximum pulse-transmission time period widths when \((L, N_b) = (5, 8)\).

Fig. 7 shows the maximum pulse transmission period widths in the conventional M-ary BPPM and BPSK methods, when the maximum pulse transmission time period width is assumed to be 200ns in the modulation method of the present invention and the link capacity is the same.

As above, the modulation method of the present invention can reduce interference caused by multipath to thereby enhance performance by extending the maximum pulse transmission period width. Also, since it does not require an additional interference removal in the receiver, it does not require additional costs for reducing complexity and realizing a circuit, and it does not increase power consumption, either.

Fig. 8 is a graph comparing the amount of interference in an indoor Non-Line-of-Sight (NLOS) radio channel environment to show that the modulation method of the present invention can realize the aforementioned advantages.

While the present invention has been described with respect to certain preferred embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the following claims.

Industrial Applicability

Firstly, the technology of the present invention has
an advantage that it can improve performance in a transmitter and a receiver by enhancing error-correction ability based on coding gain. Secondly, it can increase link capacity.

Consequently, the technology of the present invention has an advantage that it can reduce inter-pulse interference caused by multipath which occurs frequently in an indoor environment, which is a major operation environment of the wireless Personal Area Network. Also, it has an advantage that, as described with reference to Fig. 7 and 8, it can minimize performance degradation caused by the interference between pulses in the receiver by maintaining a time period extension characteristic while it supports a variety of transmission rates.
What is claimed is:

1. A transmitter employing multi-coded bi-orthogonal pulse position modulation in an ultra wide band impulse communication apparatus, comprising:
 a serial-to-parallel converter for converting L-bit serial data to be transmitted into parallel data by performing grouping on the L-bit serial data;
 a multi-coder for generating a multi-coded symbol by multiplying the parallel data by an total L orthogonal codes of length N_s;
 a bi-orthogonal pulse position modulator for positioning the multi-coded symbol in a predetermined pulse period and performing bi-orthogonal pulse position modulation; and
 a pulse generator for multiplying an output signal of the bi-orthogonal pulse position modulator by a predetermined pulse and outputting an output signal.

2. The transmitter as recited in claim 1, wherein the bi-orthogonal pulse position modulator adds a predetermined guard time period to a multi-coded bi-orthogonal pulse position-modulated signal and outputs a multi-coded bi-orthogonal pulse position-modulated signal with the guard time period.

3. The transmitter as recited in claim 1, wherein the bi-orthogonal pulse position modulator performs the bi-orthogonal pulse position modulation based on symmetrical characteristics of elements of the multi-coded symbol.

4. A receiver employing bi-orthogonal pulse position demodulation in an ultra wide band impulse communication apparatus, comprising:
 a matching filter for receiving a multi-coded bi-
orthogonal pulse position modulated signal and performing matching filtering to thereby produce a matching-filtered signal;

a bi-orthogonal pulse position demodulator for performing bi-orthogonal pulse position demodulation on the matching-filtered signal based on a predetermined demodulation method to thereby produce a bi-orthogonal pulse position demodulated signal; and

a multi-decoder for multi-decoding the bi-orthogonal pulse position demodulated signal based on a predetermined decoding method.

5. An ultra wide band communication apparatus, comprising:

a transmitter for multi-coding data to be transmitted based on a predetermined orthogonal code and performing bi-orthogonal pulse position modulation on the multi-coded data based on symmetrical characteristics of elements of the multi-coded data; and

a receiver for estimating a receiving signal based on decoding and demodulation methods corresponding to the coding and modulation methods used in the transmitter.

6. A modulation method of an ultra wide band impulse communication apparatus, comprising the steps of:

a) converting L-bit serial data to be transmitted into parallel data by performing grouping on the L-bit serial data;

b) generating a multi-coded symbol by multiplying the parallel data by total L orthogonal codes of length N_s; and

c) performing bi-orthogonal pulse position modulation based on symmetrical characteristics of elements of the multi-coded symbol to thereby produce a bi-orthogonal pulse position-modulated signal.
7. The modulation method as recited in claim 6, further comprising the step of:
 d) adding a predetermined guard time period to the bi-orthogonal pulse position-modulated signal.

8. A method for transmitting data in an ultra wide band impulse communication apparatus based on multi-coded bi-orthogonal pulse position modulation, comprising the steps of:
 a) converting L-bit serial data to be transmitted into parallel data by performing grouping on the L-bit serial data;
 b) generating a multi-coded symbol by multiplying the parallel data by total L orthogonal codes of length \(N_s \);
 c) performing bi-orthogonal pulse position modulation by positioning the multi-coded symbol in a predetermined pulse period to thereby produce a bi-orthogonal pulse position-modulated signal; and
 d) multiplying the bi-orthogonal pulse position-modulated signal by a predetermined pulse.

9. An ultra wide band impulse communication method, comprising the steps of:
 a) multi-coding a predetermined data block by using a plurality of orthogonal codes, each having a predetermined length, to thereby produce a multi-coded signal;
 b) performing bi-orthogonal pulse position modulation on the multi-coded signal based on a predetermined method; and
 c) adding a predetermined guard time period to each of pulses generated through the bi-orthogonal pulse position modulation.
FIG. 5

Graph showing the relationship between Link Capacity (bps) and Eb/No (dB) for different modulation schemes and parameters.

FIG. 6

Table showing Eb/No (dB) values for different (L, Ns) parameters with corresponding Link Capacity (bps) values for BPPM, BPSK, and other modulation schemes.
FIG. 7

\[T_n^{(IC-BPM)} = 200\text{ns} \]

\[T_e^{(BPSK)} = 138\text{ns} \]

\[T_n^{(BPM)} = 42\text{ns} \]

FIG. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7 H04L 12/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

KR: as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IEEE Transactions on Communications, Vol.47, No. 1 (Dong In Kim) Jan 1999 (see whole document)</td>
<td>1 - 9</td>
</tr>
<tr>
<td>A</td>
<td>US 6,320,897 B1 (W-LAN Inc.) 20 Nov 2001 (see abstract, figure 1A, 1B, claim 1)</td>
<td>1 - 9</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C.

✗ See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 19 JULY 2005 (19.07.2005)

Date of mailing of the international search report: 20 JULY 2005 (20.07.2005)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

LEE, Dong Hwan

Telephone No. 82-42-481-5755

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US6192068BA</td>
<td>20.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6320897B1</td>
<td>20.11.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6320897BA</td>
<td>20.11.2001</td>
</tr>
</tbody>
</table>