wo 2015/148100 A1 I 00N OO OO0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/148100 A1

1 October 2015 (01.10.2015) WIPO I PCT
(51) International Patent Classification: ternational Corporation, 500 Oracle Parkway, Redwood
GO6F 11/07 (2006.01) Shores, California 94065 (US). JOHNSON, John G.; ¢/o
Oracle International Corporation, 500 Oracle Parkway,
(21) International Application Number: : :
PCT/US2015/019587 Redwood Shores, California 94065 (US).
. . (74) Agents: BINGHAM, Marcel K. et al; 1 Almaden
(22) International Filing Date: Boul F1. 12 lifornia 95113
10 March 2015 (10.03.2015) oulevard, Floor 12, San Jose, California 9 (US).
- . . (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
L. BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, F1, GB, GD, GE, GH, GM, GT,
61/972,082 28 March 2014 (28.03.2014) us HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
14/530,354 31 October 2014 (31.10.2014) Us KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
TION [US/US]; 500 Oracle Parkway, Mail Stop 5OP7, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Redwood Shores, California 94065 (US). SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: RADOVIC, Zoran;, c/o Oracle International
(84) Designated States (uniess otherwise indicated, for every

Corporation, 500 Oracle Parkway, Redwood Shores, Cali-
fornia 94065 (US). LOEWENSTEIN, Paul; ¢/o Oracle In-

kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: MEMORY CORRUPTION DETECTION SUPPORT FOR DISTRIBUTED SHARED MEMORY APPLICATIONS

p ~
{ Pointer-based Memory Corruption \‘
\ Detection J
N -

A

302
DETERMINEG VERSION VALUE

304
COMPARE YERSION YALUE ASSCCIATED
WITH POINTER

-«

308
TRAP

FiG. 3

(57) Abstract: Nodes in a distributed node system are con-
figured to support memory corruption detection when
memory is shared between the nodes. Nodes in the distrib-
uted node system share data in units of memory referred to
herein as "shared cache lines." A node associates a version
value with data in a shared cache line. The version value and
data may be stored in a shared cache line in the node's main
memory. When the node performs a memory operation, it
can use the version value to determine whether memory cor-
ruption has occurred. For example, a pointer may be associ-
ated with a version value. When the pointer is used to access
memory, the version value of the pointer may indicate the
expected version value at the memory location. If the ver-
sion values do not match, then memory corruption has oc-
curred.

WO 2015/148100 A1 WK 00N AT 0 0 AR

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, S, SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, .

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Yublished:

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, — with international search report (Art. 21(3))

WO 2015/148100 PCT/US2015/019587

MEMORY CORRUPTION DETECTION SUPPORT FOR DISTRIBUTED SHARED
MEMORY APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS; BENEFIT CLAIM

[0001] This application claims priority to U.S. Provisional Application No. 61/972,082,
entitled “Memory Corruption Detection Support For Distributed Shared Memory
Applications”, filed by Zoran Radovic, et al. on March 28, 2014, the contents of which are
incorporated herein by reference. This application is related to U.S. Patent Application No.
13/838,542, attorney docket number 50277-4032, filed on March 15, 2013, entitled
“MEMORY BUS PROTOCOL TO ENABLE CLUSTERING BETWEEN NODES OF
DISTINCT PHYSICAL DOMAIN ADDRESS SPACES”; U.S. Patent Application No.
13/839,525, attorney docket number 50277-4091, filed on March 15, 2013, entitled
“REMOTE-KEY BASED MEMORY BUFFER ACCESS CONTROL MECHANISM”; and
U.S. Patent Application No. 13/828,555, attorney docket number 50277-4072, filed on March
14, 2013, entitled “MEMORY SHARING ACROSS DISTRIBUTED NODES™; the contents

of each application in this paragraph is hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The present disclosure relates generally to techniques for detecting memory

corruption in distributed node systems.

BACKGROUND

[0003] Many functionalities and services available over the Internet or over a corporate
network are provided by one or more clusters of distributed computing nodes. For example, a
database used to run a large scale business may be maintained by, and made available
through, a plurality of database servers running on a plurality of distributed computing nodes
that form a cluster. Using a cluster of computing nodes to provide a functionality or service
may have a number of advantages. For example, with a cluster, it is relatively easy to add

another node to increase the capacity of the system to meet increased demand. A cluster also

WO 2015/148100 PCT/US2015/019587

makes it possible to load balance among the various nodes so that if one node becomes
overburdened, work can be assigned to other nodes. In addition, a cluster makes it possible to
tolerate failures so that if one or more nodes fail, the functionality or service is still available.
Furthermore, nodes in a cluster may be able to share information in order to, for example,
work together and carry out transactions, load balance, implement failure prevention and
recovery, etc.

[0004] For applications that run on the cluster, memory corruption detection may be
required. Memory corruption occurs when a memory location is inappropriately accessed or
modified. One example of memory corruption occurs when an application attempts to
advance a pointer variable beyond the memory allocated for a particular data structure. These
memory errors can cause program crashes or unexpected program results.

[0005] Memory corruption detection schemes exist for single-machine applications. The
single-machine memory corruption detection schemes allow a computer to track application
pointers at run-time and inform a user of memory errors.

[0006] However, applications that run on clusters are more difficult than single-machine
applications to debug. Some solutions exist for debugging applications running on clusters.
Such debugging solutions may include in-house tool support, run-time support, or check-
summing schemes. Unfortunately, these solutions complicate programming models and add
performance overheads to a system and may not detect memory corruption.

[0007] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the approaches described in this

section qualify as prior art merely by virtue of their inclusion in this section.

WO 2015/148100 PCT/US2015/019587

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the drawings:

[0009] FIG. 1 is a block diagram that depicts an example distributed node system in an
embodiment;

[0010] FIG. 2 illustrates an example in which some nodes in a distributed node system
are sharing memory, in accordance with an embodiment;

[0011] FIG. 3 is a flow diagram that depicts a procedure for detecting memory corruption
in a node, in an embodiment;

[0012] FIG. 4 is a flow diagram that depicts a procedure for updating a cache line when
loading the cache line while detecting memory corruption, in an embodiment;

[0013] FIG. 5A is a flow diagram that depicts a procedure for performing a store in a
remote node, in an embodiment;

[0014] FIG. 5B is a flow diagram that depicts a procedure for propagating a store from a
remote node to a source node, in an embodiment;

[0015] FIG. 6 is a flow diagram that depicts a procedure for performing a store in a
source node, in an embodiment;

[0016] FIG. 7 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

WO 2015/148100 PCT/US2015/019587

DETAILED DESCRIPTION

[0017] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present invention.

GENERAL OVERVIEW
[0018] According to embodiments described herein, nodes in a distributed node system
are configured to support memory corruption detection when memory is shared between the
nodes. Nodes in the distributed node system share data in units of memory referred to herein
as “shared cache lines.” A node associates a version value with data in a shared cache line.
The version value and data may be stored in a shared cache line in the node’s main memory.
When the node performs a memory operation, it can use the version value to determine
whether memory corruption has occurred. For example, a pointer may be associated with a
version value. When the pointer is used to access memory, the version value of the pointer
may indicate the expected version value at the memory location. If the version values do not
match, then memory corruption has occurred.
[0019] A pointer, as the term is used herein, is a value that contains an address to a
memory location of another value stored in memory. The value is loadable into a register of
processor. According to an embodiment, a pointer contains two separate values, a version
value and a virtual address, which is translated to a physical address for execution of a
memory operation.
[0020] The nodes in a distributed node system share portions of their main memory with
other nodes in the system. A node (“‘source node”) makes a portion of its main memory
available for sharing with other nodes in the system, and another node (“remote node”™)
copies the shared memory portion in its own main memory. A memory portion may comprise
one or more shared cache lines. The remote node creates a copied cache line that is a copy of
a source cache line in the source node.
[0021] In an embodiment, a shared cache line comprises version bits and data bits. The
version bits of a shared cache line indicate a version value associated with the shared cache
line. A pointer configured to point to the shared cache line also contains a version value.

When the pointer is used to perform a memory operation on the shared cache line, the node

WO 2015/148100 PCT/US2015/019587

compares the version value of the pointer to the version value indicated by the version bits of
the shared cache line.
[0022] In an embodiment, the source node generates the version value in response to a
memory allocation request. For example, if an application allocates memory for a data
structure, the source node may generate a version value to be associated with that data
structure. The generated version value and the associated data structure may be copied in the
main memory of the local node.
[0023] In an embodiment, the memory operation is requested by an application. If a node
detects that memory corruption has occurred, the node may inform the application of the
error. The node may also terminate the memory operation rather than execute it.
[0024] In another embodiment, a node uses the version value to maintain coherency
between nodes. For example, the version value in a remote cache line may indicate that the
remote cache line is out of date. The remote node may then update the remote cache line from
the corresponding source cache line. In an embodiment, one or more version values are
reserved for indicating when the copied cache line is invalid. The one or more reserved
version values are not used when a node generates a version value in response to a memory
allocation request.

SYSTEM OVERVIEW
[0025] Fig. 1 shows a block diagram of an example distributed node system 100, in an
embodiment. Distributed node system 100 includes three nodes: Node 1 102A, Node 2 102B,
and Node 3 102C. Although three nodes are shown in the present illustration, system 100
may include more or fewer nodes.
[0026] Each node 102 includes a main memory 108. The main memory 108 includes one
or more shared cache lines 106. In an embodiment, shared cache line 106 comprises version
bits 112 and data bits 114. Data is stored in data bits 114. Version bits 112 indicate a version
value associated with the shared cache line 106. Shared cache lines 106 may be the same size
or the size may vary.
[0027] A node 102 may make a portion of its main memory 108 available for sharing
with other nodes (“shared memory portion”). Another node 102 may allocate a portion of its
main memory 108 (“copied memory portion”) for duplicating the contents of the shared
memory portion. In an embodiment, a node 102 may both make a portion of its main memory
108 available for sharing and may copy a portion of main memory 108 made available by
another node 102. For purposes of the present invention, a node 102 may share any number

of memory portions (zero or more) and may copy any number of shared memory portions

WO 2015/148100 PCT/US2015/019587

(zero or more). Each memory portion may include one or more shared cache lines 106. In an
embodiment, sharing or copying a portion of main memory 108 includes, respectively,
sharing or copying the one or more shared cache lines 106.
[0028] As an example, in Fig. 2, Node 2 102B is making a portion of its main memory
108B available for sharing with the other nodes. Nodes 1 and 3 are copying the shared
memory portion 202. Thus, Node 1 102A has a memory portion 204A in its main memory
108A that is a copy of the shared memory portion 202, and Node 3 102C has a memory
portion 204C in main memory 108C that is a copy of the shared memory portion 202. Node 3
102C is also making a portion of its main memory 108C available for sharing with the other
nodes. Nodes 1 and 2 are copying the shared memory portion 206. Therefore, Node 2 102B
has a memory portion 208B that is a copy of the shared memory portion 206, and Node 1
102A has a memory portion 208 A that is a copy of the shared memory portion 206. In the
illustrated example, Nodes 2 and 3 are both sharing a memory portion and copying a shared
memory portion from another node. Node 1 is copying a memory portion from two nodes,
but is not sharing a memory portion.
[0029] In an embodiment, a node 102 may include a directory 210. The directory 210
indicates, for each shared memory portion, which nodes in system 100 contain a copy of that
shared memory portion. In an embodiment, the directory 210 contains an entry for each
source cache line in the shared memory portion. That is, the directory 210 contains an entry
for each shared cache line for which the node 102 is a source node.
[0030] In an embodiment, a node 102 may include an index 212. The index 212 indicates,
for each shared memory portion, the location of the directory in main memory 108 of the
shared memory portion. The index 212 also indicates, for each copied memory portion, the
source node that shared the memory portion and the location of the shared memory portion in
the main memory of the source node. In an embodiment, the index 212 contains an entry for
each shared cache line in the main memory 108. The index 212 indicates, for each shared
cache line in a copied memory portion, the source node that shared the source cache line and
the location of the source cache line in the main memory of the source node.

SYSTEM INITIALIZATION
[0031] In order to prepare the nodes 102 in system 100 to share memory, the nodes 102
are initialized. In an embodiment, the nodes 102 may be initialized in the manner described
below. A node 102 may share any number of memory portions and may copy any number of
memory portions shared by other nodes. Depending on what a node 102 decides to do, it may

perform some, all, or none of the operations described.

WO 2015/148100 PCT/US2015/019587

[0032] During initialization, a node 102 determines whether it wishes to make any
portion of its main memory 108 available for sharing with other nodes in the system 100. If it
does, the node 102 broadcasts information to the other nodes 102 indicating its willingness to
share a portion of its main memory. The information broadcasted may include information
about the node 102, the size of the shared memory portion 202, as well as where the memory
portion 202 is located on the main memory 108. The information indicates to other nodes in
the system 100 where to access the shared memory location.

[0033] A node 102 may receive broadcasted information indicating that another node
wishes to share a portion of its main memory. In response to receiving the broadcasted
information, the node 102 may decide whether to copy or not to copy the shared memory
portion 202. If the node 102 decides to copy the shared memory portion, the node will
allocate a copied memory portion sufficient to store a copy of the shared memory portion.
[0034] In an embodiment, the node 102 does not populate the allocated memory with
data. That is, the node only allocates the memory, but does not copy data from the shared
memory portion. The node sets the version value for each copied cache line in the copied
memory portion to a value that indicates the copied cache lines are invalid. In an
embodiment, a node 102 will not copy the data from the shared memory portion into its copy
of the memory portion until an application requests the data. When the node attempts to
execute an operation that targets the copied cache line, the version value will indicate to the
node that the shared cache line is invalid. The node may then copy the source cache line from
the shared memory portion into the copied cache line in the copied memory portion.

[0035] In an embodiment, if node 102 is sharing a portion of its main memory 108, the
node allocates memory in main memory 108 for storing a directory structure 210. The
directory structure 210 indicates which nodes contain a copy of each memory portion shared
by node 102. In an embodiment, the directory structure 210 comprises a directory entry for
each shared cache line that is in the shared memory portion. In other words, each source
cache line is associated with a directory entry. Thus, the directory entries indicate, for each
source cache line, which other nodes have a copied cache line that should be a copy of that
source cache line. In an embodiment, the directory entry may also indicate whether each
copied cache line in the remote nodes is a valid (up-to-date) copy. In an embodiment, the
directory entry may include a lock to serialize access to the directory entry.

[0036] In an embodiment, node 102 allocates memory in its main memory 108 for an
index structure 212. The index structure 212 comprises an index entry for each shared cache

line in main memory 108. If the node 102 is sharing a shared cache line in a shared memory

WO 2015/148100 PCT/US2015/019587

portion, the index entry indicates the location in main memory 108 of the directory entry for
the shared cache line. If the shared cache line is in a copied memory portion, the index entry
indicates the source node that shared the shared memory portion and the location of the
corresponding source cache line in the main memory of the source node. In an embodiment,
the node 102 updates the index structure 212 if it decides to copy a shared memory portion
upon receiving broadcasted information from a source node. The information received from
the source node may correspond to information stored in the index structure 212.
EXEMPLARY MEMORY ALLOCATION

[0037] In an embodiment, node 102 assigns a version value to a memory location when
the memory is allocated. For example, when an application performs a malloc request, the
node 102 allocates the requested amount of memory, generates a version value to associate
with the allocated memory, and returns a pointer to the application. In an embodiment, the
allocated memory location comprises one or more shared cache lines. A version value may be
indicated by the version bits of each shared cache line.
[0038] In an embodiment, the version value is generated by the heap manager of the
application. The version value may be chosen from a range of valid values. In an
embodiment, one or more version values are used to indicate when a shared cache line is
invalid, and are not included in the range of valid values to choose from. The format of the
version value may vary depending on the implementation. For example, the version value
may be four bits long, resulting in sixteen possible values. In another example, the version
value may be a 44-bit time stamp.
[0039] The version value is also associated with the pointer to the allocated memory. In
an embodiment, a pointer includes both a version value and a virtual address. For example, a
node might use 44-bit registers to store a pointer, but the virtual address does not use the
entire 44 bits. The version value may be stored in extra unused bits of the 44-bit register.
[0040] If the allocated memory is being shared as part of a shared memory portion, other
nodes 102 may copy the shared cache lines in the allocated memory location into their
respective copied memory portions. In an embodiment, copying the shared cache lines
includes copying the associated version value. The other nodes 102 may also generate
pointers to the copied shared cache lines. A version value may be stored in association with
each generated pointer.

POINTER-BASED MEMORY CORRUPTION DETECTION
[0041] Fig. 3 is a flowchart illustrating a procedure for detecting memory corruption in a

node 102 using a version value associated with a pointer. The procedure may performed

WO 2015/148100 PCT/US2015/019587

when performing a memory operation involving a shared cache line referred to by a pointer,
where the pointer is associated with a version value. The procedure may be referred to
hereafter as pointer-based memory corruption detection.
[0042] For example, node 102 receives a command from an application. The command
may be, for example, a request to execute a memory operation such as a load or a store
command. During execution of the command, the node 102 executes steps for detecting
memory corruption. The command may include a pointer to a shared cache line in main
memory 108. As discussed above, in an embodiment, when the node 102 allocates memory to
an application, the node returns a pointer that is associated with a version value.
[0043] In step 302, the node 102 determines the version value associated with the pointer
included with the command. In an embodiment, the pointer includes the version value. The
version value associated with the pointer may indicate a version value the command expects
to be associated with the requested shared cache line. For example, if the command is using
the pointer to access a data structure, the version value may be associated with the data
structure.
[0044] In step 304, the node 102 compares the version value of the pointer with a version
value associated with the requested shared cache line. In an embodiment, the version bits of
the shared cache line indicate the version value associated with the shared cache line. The
method then proceeds to decision block 308.
[0045] At decision block 308, if the version value of the pointer does not match the
version value associated with the requested shared line, memory corruption is detected. In an
embodiment, a trap operation is executed. The trap operation may include indicating to the
application that a memory corruption was detected. The trap operation may also include
terminating execution of the memory operation. Alternatively, the procedure ends and the
memory operation proceeds.
[0046] If the version value of the pointer matches the version value associated with the
requested shared line, then the procedure ends and the memory operation proceeds.
[0047] The procedure for detecting memory corruption using a version value associated
with a pointer illustrated in FIG. 3 may be performed while performing various kinds of
memory operations. Such memory operations shall be described in further detail.
COHERENCY BETWEEN NODES
[0048] In an embodiment, a version value in a shared cache line may also be used to
manage coherency of shared cache lines between nodes. When a source node updates a

source cache line, the copied cache lines in the remote nodes will be out of date. However,

WO 2015/148100 PCT/US2015/019587

the remote nodes may not immediately update their copied cache lines. Instead, the version
value of each copied cache line is set to indicate that the copied cache line is invalid. Later, if
the remote node attempts to access the copied cache line, the node will see that the copied
cache line is invalid and will update the copied cache line.
[0049] In an embodiment, when a node 102 executes a store command, it may execute a
trap operation. In an embodiment, the node 102 will execute different steps depending on
whether the target shared cache line is a source cache line or a copied cache line. If the target
shared cache line is a copied cache line, then the node 102 will propagate the store to the
source cache line in the source node. In an embodiment, a remote node may record the store
in a store buffer prior to sending the store to the source node.
[0050] In an embodiment, the node 102 contains an index 212. If the requested shared
cache line is a copied cache line, the index entry will indicate the source node and location of
the source cache line for the copied cache line. Thus, the node 102 may reference the index
212 to determine whether the requested shared cache line is a copied cache line or a source
cache line. Based on the determination, the node 102 may determine which steps to take to
execute the store command.

REMOTE NODE LOAD
[0051] In an embodiment, nodes do not update a copied cache line when a source node
updates a corresponding source cache line. A node may only update the copied cache line
when the copied cache line is loaded at the node. The version value indicating that copied
cache line is invalid triggers the updating. When the copied cache line is updated, memory
corruption detection is performed. Fig. 4 is a flowchart illustrating a procedure for updating a
shared cache line when a copied cache line is requested in a node 102.
[0052] In step 402, node 102 receives a command from an application. For example, the
command may be a memory operation involving a load operation, such as a load command.
[0053] The command may include a pointer to a shared cache line in main memory 108.
As discussed above, in an embodiment, when the node 102 allocates memory to an
application, the node returns a pointer that is associated with a version value. For purposes of
this illustration, it will be assumed that the pointer included with the command is associated
with a version value.
[0054] In step 404, node 102 determines whether the version value indicates that the
shared cache line is invalid. In an embodiment, at least one version value is used to indicate
the shared cache line is invalid and is not used during memory allocation. In an embodiment,

the shared cache line is a copied cache line. The version value may indicate the shared cache

10

WO 2015/148100 PCT/US2015/019587

line is invalid if, for example, the copied cache line has not been populated with data from the
source cache line. The requested shared cache line may or may not be a copied cache line.
[0055] In one example, the shared cache line is not a copied cache line. In an
embodiment, a shared cache line that is not in a copied memory portion is presumed to
always be valid.
[0056] In another example, the shared cache line is a copied cache line. The data in the
shared cache line may be out of date. That is, the data in the copied cache line is not the same
as the data in the source cache line. This may occur, for example, when a source node stores
data to the source cache line.
[0057] The method then proceeds to decision block 406. At decision block 406, if the
version value indicates that the shared cache line is valid, the node 102 continues execution
of the procedure and proceeds to step 410, where pointer-based memory corruption detection
is performed.
[0058] If the version value indicates that the shared cache line is invalid, the method
proceeds to step 408. In step 408, the node suspends execution of the command and executes
a trap operation.
[0059] In an embodiment, the trap operation includes copying a source cache line to the
copied cache line. Copying the source cache line may include copying the version bits and
the data bits of the source cache line. Therefore, after the copy is performed, the version
value of the copied cache line is set to the version value from the source cache line. The data
in the copied cache line is set to the most recent data contained in the source cache line as
modified by any stores to the copied cache line made by the remote node recorded to the
store buffer that have not been propagated to the source cache line. Thus, the node is able to
update the data in the shared cache line in order to maintain coherency with other nodes.
[0060] In an embodiment, the node contains an index 212. The node may use an index
entry corresponding to the requested shared cache line in order to determine which source
node contains the corresponding source cache line and where the corresponding source cache
line is located in the main memory of the source node.
[0061] In an embodiment, the source node contains a directory 210. When the remote
node updates its copied cache line, the source node may update the directory entry for the
corresponding source cache line to indicate that the copy at the remote node is a valid copy.
REMOTE NODE STORE
[0062] As mentioned previously, in an embodiment, a remote node uses a store buffer to

record a store before the store is sent to a source node. Fig. 5A is a flowchart illustrating a

11

WO 2015/148100 PCT/US2015/019587

store performed by a remote node 102 in distributed node system 100. The store may be
performed to execute a store command. The command may include a pointer to a copied
cache line in main memory 108. The pointer may be associated with a version value.
[0063] In step 502, the node 102 suspends execution of the command and executes a trap
operation to execute steps that follow.
[0064] At step 504, the store is recorded in a store buffer. The information recorded in the
store buffer may indicate a memory location to which to perform the store and what data to
store. Recording the store in a store buffer may include indicating the source node and the
location of the source cache line in the main memory of the source node to which the store
should be performed, the storing thread, and the version number associated with the store(s).
[0065] In an embodiment, the node 102 contains an index 212. The node may use an
index entry corresponding to the requested shared cache line in order to determine which
source node contains the corresponding source cache line and where the corresponding
source cache line is located in the main memory of the source node.
[0066] In step 506, the node 102 determines whether the version value of the copied
cache line indicates the copied cache line is invalid. If the version value indicates that the
shared cache line is invalid, then the store is not performed to the shared cache line. If the
value indicates that the copied cache line is valid, then the method proceeds to step 508.
[0067] At 508, the node 102 performs pointer-based memory corruption detection. If the
pointer-based memory corruption detection performed by node 102 does not detect memory
corruption, then the method proceeds to step 510.
[0068] At step 510, the node 102 stores the data in its shared cache line.
[0069] The trap operation ends.

UPDATE PROPAGATION
[0070] In an embodiment, a remote node records a store in its store buffer but does not
send the store to a source node containing the corresponding source cache line. After the node
records the store in its store buffer, the store needs to be propagated to the source node.
Propagating the store may be performed as part of the same procedure as recording the store
buffer or it may be performed separately. In an embodiment, the node may receive a
command that includes a propagate stores operation. For example, the store command may
include instructions to propagate the store. The store may be propagated after the trap
operation is completed, as part of resuming execution of the store command. In another

embodiment, the node 102 may check the store buffer for entries prior to writing to a shared

12

WO 2015/148100 PCT/US2015/019587

cache line. Fig. 5B is a flowchart illustrating store propagation in the distributed node system
100. The store may be propagated asynchronously by another thread of execution.

[0071] At step 522, the node retrieves an entry from the store buffer. The entry may
include information indicating a source node, a source cache line to which the store should be
performed, the data to be stored, the version number associated with the store(s) and the
storing thread.

[0072] At step 524, the node 102 requests from the source node a list of remote nodes for
the source cache line. After receiving the information, the method proceeds to step 526.
[0073] In an embodiment, in response to the request, the source node refers to the
directory entry for that shared cache line. The directory entry indicates which nodes contain a
copy of the source cache line. Any number of nodes in system 100 may contain a copy of the
source cache line. In an embodiment, when accessing the directory entry for the requested
shared cache line, the source node locks the directory entry. In an embodiment, the source
node only shares a list of remote nodes that contain a valid copy of the source cache line. The
directory entry may be updated to indicate that all remote nodes contain an invalid copy.
[0074] At step 526, the node 102 causes other remote nodes that contain a copy of the
source cache line to mark their copied cache line as invalid. The node indicates to each node
that holds a respective copied cache line the data in the source cache line has been changed.
The version value of the copied cache line at the remote nodes is changed to indicate that the
copied cache line is invalid.

[0075] At step 528, the node 102 notifies the source node to perform the store. The
notification may include the location of the source cache line in the main memory of the
source node, the data to be stored in the source cache line and the version number. Before
performing the store, the source node compares the version number from the store buffer to
the version number in respective source cache line. If a version mismatch is detected, the
source node does not perform the store and the issuing thread may be notified, for example
via an asynchronous trap.

[0076] At step 530, the stored data is removed from the store bufter.

[0077] In an embodiment, the steps are repeated for each entry in the store buffer.

[0078] In an alternative embodiment, a remote node does not record the store in a store
buffer. Instead, the remote node performs the update propagation steps during execution of

the trap operation, in place of writing to the store buffer.

13

WO 2015/148100 PCT/US2015/019587

SOURCE NODE STORE

[0079] In an embodiment, the source node executes a store command to store a shared
cache line without using a store buffer. Fig. 6 is a flowchart illustrating steps performed by a
source node 102 to execute a store command in a distributed node system 100. The stored
command may include a pointer to a source cache line in main memory 108. The pointer may
be associated with a version value.
[0080] At step 602, the node 102 suspends execution of the store command and executes
a trap operation.
[0081] At step 604, the node 102 performs pointer-based memory corruption detection
for the source cache line. If no memory corruption is detected, then the method proceeds to
step 606. If memory corruption is detected, then the method exits the trap operation without
performing the store.
[0082] In step 606, the node 102 instructs the remote nodes to invalidate their respective
copied cache lines. The node 102 indicates to each remote node that the data in the source
cache line has been changed. The version value of the copied cache line at the remote nodes
is changed to indicate that the copied cache line is invalid.
[0083] In an embodiment, the source node refers to the directory entry for that shared
cache line. The directory entry indicates which nodes contain a copy of the source cache line.
Any number of nodes in system 100 may contain a copy of the source cache line. The node
indicates to each node that is copying the source cache line that the data has been changed.
The version value of the copied cache line at the other nodes is changed to indicate that the
copy of the source cache line is invalid.
[0084] In an embodiment, the invalidation of the source cache line is recorded and an
instruction to the remote nodes to invalidate is sent lazily. For example, a thread other than a
thread performing the store discovers the recording of the invalidated source cache line and
sends instructions to the remote nodes to invalidate the copied cache line of the source cache
line.
[0085] At step 608, the source node performs the store on the source cache line.
[0086] The source node completes the trap operation.

HARDWARE OVERVIEW
[0087] According to one embodiment, the techniques described herein are implemented
by one or more special-purpose computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may include digital electronic devices such

as one or more application-specific integrated circuits (ASICs) or field programmable gate

14

WO 2015/148100 PCT/US2015/019587

arrays (FPGAs) that are persistently programmed to perform the techniques, or may include
one or more general purpose hardware processors programmed to perform the techniques
pursuant to program instructions in firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine custom hard-wired logic, ASICs, or
FPGAs with custom programming to accomplish the techniques. The special-purpose
computing devices may be desktop computer systems, portable computer systems, handheld
devices, networking devices or any other device that incorporates hard-wired and/or program
logic to implement the techniques.

[0088] For example, FIG. 7 is a block diagram that illustrates a computer system 700
upon which an embodiment of the invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for communicating information, and a
hardware processor 704 coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose microprocessor.

[0089] Computer system 700 also includes a main memory 706, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 702 for storing information
and instructions to be executed by processor 704. Main memory 706 also may be used for
storing temporary variables or other intermediate information during execution of instructions
to be executed by processor 704. Such instructions, when stored in non-transitory storage
media accessible to processor 704, render computer system 700 into a special-purpose
machine that is customized to perform the operations specified in the instructions.

[0090] Computer system 700 further includes a read only memory (ROM) 708 or other
static storage device coupled to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic disk, optical disk, or solid-state
drive is provided and coupled to bus 702 for storing information and instructions.

[0091] Computer system 700 may be coupled via bus 702 to a display 712, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 714,
including alphanumeric and other keys, is coupled to bus 702 for communicating information
and command selections to processor 704. Another type of user input device is cursor control
716, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 704 and for controlling cursor movement
on display 712. This input device typically has two degrees of freedom in two axes, a first
axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
[0092] Computer system 700 may implement the techniques described herein using

customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic

15

WO 2015/148100 PCT/US2015/019587

which in combination with the computer system causes or programs computer system 700 to
be a special-purpose machine. According to one embodiment, the techniques herein are
performed by computer system 700 in response to processor 704 executing one or more
sequences of one or more instructions contained in main memory 706. Such instructions may
be read into main memory 706 from another storage medium, such as storage device 710.
Execution of the sequences of instructions contained in main memory 706 causes processor
704 to perform the procedure steps described herein. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with software instructions.

[0093] The term “storage media” as used herein refers to any non-transitory media that
store data and/or instructions that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or volatile media. Non-volatile media
includes, for example, optical disks, magnetic disks, or solid-state drives, such as storage
device 710. Volatile media includes dynamic memory, such as main memory 706. Common
forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid-
state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.

[0094] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media.
For example, transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 702. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0095] Various forms of media may be involved in carrying one or more sequences of
one or more instructions to processor 704 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 700 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 702. Bus 702 carries the data to main memory
706, from which processor 704 retrieves and executes the instructions. The instructions
received by main memory 706 may optionally be stored on storage device 710 either before

or after execution by processor 704.

16

WO 2015/148100 PCT/US2015/019587

[0096] Computer system 700 also includes a communication interface 718 coupled to bus
702. Communication interface 718 provides a two-way data communication coupling to a
network link 720 that is connected to a local network 722. For example, communication
interface 718 may be an integrated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communication connection to a corresponding
type of telephone line. As another example, communication interface 718 may be a local
area network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 718 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0097] Network link 720 typically provides data communication through one or more
networks to other data devices. For example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data equipment operated by an
Internet Service Provider (ISP) 726. ISP 726 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 728. Local network 722 and Internet 728 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 720 and through communication interface 718, which carry
the digital data to and from computer system 700, are example forms of transmission media.
[0098] Computer system 700 can send messages and receive data, including program
code, through the network(s), network link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested code for an application program
through Internet 728, ISP 726, local network 722 and communication interface 718.

[0099] The received code may be executed by processor 704 as it is received, and/or
stored in storage device 710, or other non-volatile storage for later execution.

[0100] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the scope of the invention, is the literal
and equivalent scope of the set of claims that issue from this application, in the specific form

in which such claims issue, including any subsequent correction.

17

WO 2015/148100 PCT/US2015/019587

CLAIMS

What is claimed is:

1. A method, comprising:

in a memory of a local node, generating a copied cache line that is a copy of a source
cache line on a source node, wherein the said copied cache line comprises
version bits and data bits, said version bits being set to a version value;

generating a pointer that points to said copied cache line, said pointer value including
said version value;

using said pointer to perform a memory operation on said copied cache line, wherein
performing a memory operation includes:
comparing the version value included in said pointer to the version value to

which the version bits of the copied cache line are set; and

determining whether memory corruption has occurred based on the

comparison.

2. The method of Claim 1, wherein generating a copied cache line includes:
determining a version value of the source cache line; and

setting the version bits to the version value of the source cache line.

3. The method of Claim 2, wherein the version value is generated by the source node in

response to a memory allocation request.

4. The method of Claim 1, wherein comparing the version value includes:
determining whether the copied cache line is invalid; and
in response to determining that the copied cache line is invalid, copying the source

cache line to the copied cache line.

5. The method of claim 4, wherein the method further includes the steps of:
the local node storing in a store buffer one or more updates to the copied cache line
that have not been propagated to said source cache line; and
further in response to determining that the copied cache line is invalid, propagating

said one or more updates to said copied cache line.

6. The method of Claim 1, further comprising:

executing a trap operation if memory corruption has occurred.

18

WO 2015/148100 PCT/US2015/019587

7. The method of Claim 6, wherein executing a trap operation includes:

informing an application that memory corruption has occurred.

8. The method of Claim 6, wherein executing a trap operation includes:

terminating the memory operation.

0. A computer system, comprising:
one or more computing nodes, wherein each computing node of the one or more
computing nodes is configured to:
in a memory of said each computing node, generate a copied cache line that is
a copy of a source cache line on a source node belonging to said one or
more computing nodes, wherein the said copied cache line comprises
version bits and data bits, said version bits being set to a version value;
generate a pointer that points to said copied cache line, said pointer value
including said version value;
use said pointer to perform a memory operation on said copied cache line,
wherein the memory operation includes:
to compare the version value included in said pointer to the version
value to which the version bits of the copied cache line are set;
and
to determine whether said copied cache line has been corrupted based

on the comparison.

10. The system of Claim 9, wherein to generate a copied cache line, each computing node
of the one or more computing nodes is configured to:
determine the version value of said source cache line; and

set the version bits to the version value of the source cache line.

11. The system of Claim 10, wherein for each computing node of the one or more
computing nodes, the version value is generated by a source node that is configured to

generate the version value in response to a memory allocation request.

12. The system of Claim 9, wherein for each computing node of said one or more
computing nodes, to compare the version value, each computing node is configured to:
determine whether the copied cache line is invalid; and

copy the source cache line to the copied cache line if the copied cache line is invalid.

19

WO 2015/148100 PCT/US2015/019587

13. The system of Claim 9, wherein for each computing node of said one or more
computing nodes, each computing node is configured to:
store in a store buffer one or more updates to the copied cache line that have not been
propagated to said source cache line; and
further in response to the determination that the copied cache line is invalid, propagate

said one or more updates to said copied cache line.

14. The system of Claim 9, wherein for each computing of said one or more computing
nodes, to execute a trap operation, each computing node is configured to execute a trap

operation if memory corruption has occurred.

15. The system of Claim 14, wherein for each computing of node said one or more
computing nodes, to execute a trap operation, each computing node is configured to inform

an application that memory corruption has occurred.

16. The system of Claim 14, wherein to execute a trap operation, each computing node of

said one or more computing is configured to terminate the memory operation.

17. One or more non-transitory storage media storing instructions which, when executed

by one or more processors, cause performance of a method recited in any of claims 1 — 8.

20

PCT/US2015/019587

1/7

WO 2015/148100

oy . o, B, At S o S o P, R R, ot S S ot
— Ll S

2901
ANIT AHOVO d3YYHS

0801
AHOWEN NIV

€ 300N

o . Mt Wt Mt i i e £ A M Wt i A M M . it A A, . M Wt Wttt S e A £ M W Wt Wt i e A M Wt e it B O A . B k.

L Ol

|

¥ S8 VY1VQ

Zii sig

£904
AN FHOVD dadvHS

g9801
AHOWIN NiviN

Z 3AON

s o o o o o o o i O

NOISH3IA

v
»
)

v
»
.

w901}
NN FHOVD QAUYHS

¥801
AHOWIN NIvIN

I JAOON

v

’.\a W31SAS 3AON dd1Ngdid1sId

N e . S o, o o . o o s e o, i o P

PCT/US2015/019587
2/7 CT/US /

WO 2015/148100

¢ 'Ol

0174174
NOILHOd
AHOWIN

a31doo

90z
NOILHOd
AHOW3W
QFAVHS

8802
NOLLYOd
AHOWIN

az3doo

20z
NOILMOd
AHOWIN
Q3dVHS

2¢L e X3aaNt

0012 AHOLO3HIA

2801 AHOWIN NiviA

© 2TON

SrARD Elal

4012 A40OLO3Fd

2801 AJONIW NIvIN

¢ 3AON

v30¢ vyic
NOILHOd NOILHOd
AAOWIN AHOWEN
azidod a31doo
Y l¢ XAaN

Y012 AH0LO3HIG

V80l AdOWIN NIVIA

} JAON

rl/

0c0l

rl/

g0l

rl/

Vol

WO 2015/148100 PCT/US2015/019587

3/7

ﬂointer—based Memory Corruption \

'\ Det10ti0ﬂ /

302
DETERMINE VERSION VALUE

304
COMPARE VERSION VALUE ASSCCIATED
WITH POINTER

306 N
MATCH?

308
TRAP

END

FIG. 3

WO 2015/148100

4/7

402

RECEIVE LOAD
COMMAND

l

404

DETERMINE {F INVALID
SHARED CACHE LINE

406
INVALID?

408
TRAP & STORE

END

410
MEMORY CORRUPTION?

PCT/US2015/019587

FIG. 4

PCT/US2015/019587

WO 2015/148100

5/7

g9 oI

AYLINT IAOWIY
0€S

1

3HOLS
825

4

I

$31d0D LVAIVANI
92s

a

S3AON
3LoN3Y 1S3NDIY
¥ZS

a

AdLNT JAIIELITY
ccs

Vs 'Ol

TIOLS VOO
015

¢NOILANYHOD
AHOWIN
B80S

¢AIVAN
905

y344ng
TIOLS NI QHOITY
%05

)

dviL
205

WO 2015/148100

6/7

602
TRAP

604
MEMORY

CORRUPTION?

606
INVALIDATE COPIES

i

608
STORE

PCT/US2015/019587

FIG. 6

vzl

o~
2 LSOH
=
S
= 02, e ,
L LY &
2 817
MNIT | w7 |
3 MOMIAN s 0VAUIIN 70 | 57
éoﬁ | NOILYQINININOD 4088300ud | HV T04INOD
m m ¥0SUND
, ,
, ,
, ,
| |
92. | |
- | i - N
~
N | sng N\— 30IA3A LNNI
dsl | |
| |
, ,
LANYILNI | |
, ,
| ™ 501 %01 | 7
— | 30IA30 AJONN | “V
5e | | AV1dSIa
I9VHOLS
- m NOY NIV |

L ‘b4

WO 2015/148100

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/019587

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/07
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/036332 Al (GOVE DARRYL J [US] ET 1-17

AL) 7 February 2013 (2013-02-07)

abstract

figures 3,7,14

paragraph [0032]
paragraph [0041]
paragraph [0047]
paragraph [0057]
paragraph [0070]
paragraph [0104]

paragraph [0049]
paragraph [0061]
paragraph [0077]
paragraph [0107]
X US 20137013843 Al (RADOVIC ZORAN [US] ET 1-17
AL) 10 January 2013 (2013-01-10)
abstract

figures 3,7

paragraph [0037] - paragraph [0039]
paragraph [0045] - paragraph [0048]
paragraph [0062] - paragraph [0067]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
7 July 2015 14/07/2015
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, PP
Fax: (+31-70) 340-3016 Knapczyk, Frédéric

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/019587

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WO 02/19115 A2 (ORACLE CORP [US])
7 March 2002 (2002-03-07)
abstract

page 1, line 12 - line 17

page 3, line 10 - line 22

page 5, line 4 - Tine 21

1-17

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/019587
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013036332 Al 07-02-2013 NONE
US 2013013843 Al 10-01-2013 NONE
WO 0219115 A2 07-03-2002 AT 320042 T 15-03-2006
AU 8918001 A 13-03-2002
CA 2421700 Al 07-03-2002
DE 60117818 T2 19-10-2006
EP 1316019 A2 04-06-2003
EP 1667026 A2 07-06-2006
HK 1054798 Al 04-08-2006
JP 2004511840 A 15-04-2004
US 6633891 Bl 14-10-2003
WO 0219115 A2 07-03-2002

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

