发明名称
液晶显示器

摘要
本发明提供柔性液晶显示器，其中将可定址液晶层安置在单个柔性基底上以使得所述显示器本身可展现柔性。所述基底优选为柔性非透明材料且更优选为可悬垂材料，例如织物。
1. 一种可悬垂的可电定址型液晶显示器，其包含可悬垂基底材料；液晶材料层；第一导电电极，其置在接近于所述基底的所述液晶层的第一侧面上；和第二导电电极，其置在远离所述基底的所述液晶层的第二侧面上，所述电极适合于连接到电子驱动电路。

2. 根据权利要求 1 所述的显示器，其进一步包括插入于所述基底与所述第一电极之间的平面化层。

3. 根据权利要求 1 所述的显示器，其进一步包括置在所述电极中的至少一者与所述液晶层之间的绝缘层。

4. 根据权利要求 1 所述的显示器，其进一步包括置为所述显示器的至少一部分的最上层的保护涂层。

5. 根据权利要求 1 所述的显示器，其中所述基底是从由天然或合成纤维制造的纺织品、聚合材料薄片或纸张中选择。

6. 根据权利要求 1 所述的显示器，其中所述基底的一个侧面比所述基底的相对侧面光滑。

7. 根据权利要求 6 所述的显示器，其中所述基底的所述一个侧面是通过将一层材料沉积于其之上而变得更光滑。

8. 根据权利要求 1 所述的显示器，其中所述电极中的至少一者为导电聚合物或碳纳米管材料。

9. 根据权利要求 1 所述的显示器，其中所述第二电极实质上为光透射性的。

10. 根据权利要求 1 所述的显示器，其中所述液晶层包含胆甾液晶材料。

11. 根据权利要求 10 所述的显示器，其中所述液晶层包含所述液晶材料的微滴分散体。
12. 根据权利要求11所述的显示器，其中所述分散体是从乳液、相分离的液晶材料或微包封的液晶材料中选择。

13. 根据权利要求12所述的显示器，其中所述分散体为聚氨甲酸酯胶乳乳液。

14. 根据权利要求13所述的显示器，其中所述乳液包含比率为约2:1到约6:1的液晶与胶乳的混合物。

15. 根据权利要求1所述的显示器，其进一步包含插入于所述基底与所述第一电极之间的聚氨甲酸酯胶乳层。

16. 根据权利要求10所述的显示器，其中所述液晶具有有效于在可见或红外光谱中反射光的正介电各向异性和节距长度。

17. 根据权利要求1所述的显示器，其中所述第一电极由所述基底组成。

18. 根据权利要求1所述的显示器，其包括在接近于所述基底的所述液晶层的第一侧面上呈实质上平行的行排列的复数个导电电极；和在所述液晶层的相对侧面上呈实质上平行的行排列的复数个导电电极，在所述液晶层的相对侧上的所述电极行实质上为彼此垂直定向。

19. 根据权利要求1所述的显示器，其进一步包括安置于所述液晶材料层邻近处的至少一个附加液晶层。

20. 根据权利要求1所述的显示器，其进一步包括安置于所述液晶材料层邻近处的至少一个附加液晶层，且包括安置在其相对侧面上的导电电极，藉此所述附加层可独立地电定址。

21. 根据权利要求1所述的显示器，其中所述显示器具有小于100%的悬垂系数。

22. 根据权利要求1所述的显示器，其中所述显示器具有小于约98%的悬垂系数。
23. 根据权利要求1所述的显示器，其中所述显示器具有小于约95%的显示系数。

24. 根据权利要求1所述的显示器，其可操作地连接到电子驱动电路。

25. 一种柔性反射型液晶显示器，其包含非透明柔性基底材料；液晶材料层：第一导电电极，其安装在接近于所述基底的所述液晶层的第一侧面上；和第二导电电极，其安装在远离所述基底的所述液晶层的第二侧面上，所述电极适合于连接到电子驱动电路。

26. 根据权利要求25所述的显示器，其中所述基底本身为非透明的。

27. 根据权利要求25所述的显示器，其中所述基底包括安置在其之上的非透明材料层以使其变得不透明。

28. 根据权利要求25所述的显示器，其进一步包括插入于所述基底与所述第一电极之间的平面化层。

29. 根据权利要求25所述的显示器，其进一步包括安置在所述电极中的至少一者与所述液晶层之间的绝缘层。

30. 根据权利要求25所述的显示器，其进一步包括安置为所述显示器的至少一部分的最上层的保护涂层。

31. 根据权利要求25所述的显示器，其中所述基底是从由天然或合成纤维制造的纺织品、聚合材料薄片或纸张中选择。

32. 根据权利要求25所述的显示器，其中所述基底的一个侧面比所述基底的相对侧面光滑。

33. 根据权利要求32所述的显示器，其中所述基底的所述一个侧面是通过将一层材料沉积于其之上而变得更光滑。

34. 根据权利要求25所述的显示器，其中所述电极中的至少一者为导电聚合物或碳纳米管材料。

35. 根据权利要求25所述的显示器，其中所述第二电极实质上为光透

射性的。

36. 根据权利要求25所述的显示器，其中所述液晶层包含胆甾液晶材料。

37. 根据权利要求36所述的显示器，其中所述液晶层包含所述液晶材料的微滴分散体。

38. 根据权利要求37所述的显示器，其中所述分散体是从乳液、相分离的液晶材料或微包封的液晶材料中选择。

39. 根据权利要求38所述的显示器，其中所述分散体为聚氨基甲酸酯胶乳乳液。

40. 根据权利要求39所述的显示器，其中所述乳液包含比率为约2:1到约6:1的液晶与胶乳的混合物。

41. 根据权利要求25所述的显示器，其进一步包含插入于所述基底与所述第一电极之间的聚氨基甲酸酯胶乳层。

42. 根据权利要求36所述的显示器，其中所述液晶具有有效地在可见或红外光谱中反射光的正介电各向异性和节距长度。

43. 根据权利要求25所述的显示器，其中所述第一电极由所述基底组成。

44. 根据权利要求25所述的显示器，其包括在接近于所述基底的所述液晶层的第一侧面上呈实质上平行的行排列的复数个导电电极；和在所述液晶层的相对侧面上呈实质上平行的行排列的复数个导电电极，所述液晶层的相对侧上的所述电极行实质上为彼此垂直定向。

45. 根据权利要求25所述的显示器，其进一步包括安置于所述液晶材料层邻近处的至少一个附加液晶层。

46. 根据权利要求25所述的显示器，其进一步包括安置于所述液晶材料层邻近处的至少一个附加液晶层，且包括安置在其相对侧面上的导电电
极，藉此所述附加层可独立地电定址。

47. 根据权利要求 25 所述的显示器，其中所述基底为可悬垂的。

48. 根据权利要求 47 所述的显示器，其中所述显示器具有小于约 98% 的悬垂系数。

49. 根据权利要求 47 所述的显示器，其中所述显示器具有小于约 95% 的悬垂系数。

50. 一种可电定址型液晶显示器，其包含作为基底的纸张或由天然或合成纤维制造的纺织品、液晶材料层、安置在接近于所述基底的所述液晶层的第一侧面上的第一导电电极和安置在远离所述基底的所述液晶层的第二侧面上的第二导电电极，所述电极适合于连接到电子驱动电路。

51. 根据权利要求 50 所述的显示器，其进一步包括插入于所述基底与所述第一电极之间的平面化层。

52. 根据权利要求 50 所述的显示器，其进一步包括安置在所述电极中的至少一者与所述液晶层之间的绝缘层。

53. 根据权利要求 50 所述的显示器，其进一步包括安置为所述显示器的至少一部分的最上层的保护涂层。

54. 根据权利要求 50 所述的显示器，其中所述基底的一个侧面比所述基底的相对侧面光滑。

55. 根据权利要求 54 所述的显示器，其中所述基底的所述一个侧面是通过将一层材料沉积于其之上而变得更光滑。

56. 根据权利要求 50 所述的显示器，其中所述电极中的至少一者为导电聚合物或碳纳米管材料。

57. 根据权利要求 50 所述的显示器，其中所述第二电极实质上为光透射性的。

58. 根据权利要求 50 所述的显示器，其中所述液晶层包含胆固醇液晶材
料。

59. 根据权利要求 58 所述的显示器，其中所述液晶层包含所述液晶材料的微滴分散体。

60. 根据权利要求 59 所述的显示器，其中所述分散体是从乳液、相分离的液晶材料或微包封的液晶材料中选择。

61. 根据权利要求 60 所述的显示器，其中所述分散体为聚氨基甲酸酯胶乳乳液。

62. 根据权利要求 61 所述的显示器，其中所述乳液包含比率为约 2:1 到约 6:1 的液晶与胶乳的混合物。

63. 根据权利要求 50 所述的显示器，其进一步包含插入于所述基底与所述第一电极之间的聚氨基甲酸酯胶乳层。

64. 根据权利要求 58 所述的显示器，其中所述液晶层具有有效于在可见或红外光谱中反射光的正介电各向异性和节距长度。

65. 根据权利要求 50 所述的显示器，其中所述第一电极由所述基底组成。

66. 根据权利要求 50 所述的显示器，其包括在接近于所述基底的所述液晶层的第一侧面上呈实质上平行的行排列的复数个导电电极；和在所述液晶层的相对侧面上呈实质上平行的行排列的复数个导电电极，所述液晶层的相对侧上的所述电极行实质上为彼此垂直定向。

67. 根据权利要求 50 所述的显示器，其进一步包括安放于所述液晶材料层邻近处的一个附加液晶层。

68. 根据权利要求 50 所述的显示器，其进一步包括安放于所述液晶材料层邻近处的至少一个附加液晶层，且包括安放在其相对面上的导电电极，其此所述附加层可独立地电定址。

69. 根据权利要求 50 所述的显示器，其中所述显示器具有小于 100%
的悬垂系数。

70. 根据权利要求 50 所述的显示器，其中所述显示器具有小于约 98% 的悬垂系数。

71. 根据权利要求 50 所述的显示器，其中所述显示器具有小于约 95% 的悬垂系数。

72. 根据权利要求 50 所述的显示器，其可操作地连接到电子驱动电路。

73. 根据权利要求 25 所述的显示器，其可操作地连接到电子驱动电路。

74. 根据权利要求 1 所述的显示器，其进一步包括插入于所述液晶层与所述第一电极之间的光电导材料层。

75. 根据权利要求 1 所述的显示器，其中所述第一电极包含有源矩阵底板。

76. 根据权利要求 25 所述的显示器，其进一步包括插入于所述液晶层与所述第一电极之间的光电导材料层。

77. 根据权利要求 25 所述的显示器，其中所述第一电极包含有源矩阵底板。

78. 根据权利要求 50 所述的显示器，其进一步包含插入于所述液晶层与所述第一电极之间的光电导材料层。

79. 根据权利要求 50 所述的显示器，其中所述第一电极包含有源矩阵底板。
说明 书

液晶显示器

根据由国防部授予的第 DAAB07-03-C-J406 号合作协定，在美国政府的一定程度的支持下提出本申请。美国政府在本发明中可拥有一定权利。

相关申请案

本常规申请案要求 2004年4月27日申请的 60/565,586 和 2004年2月28日申请的 60/539,873 两个共同待决的临时申请案的权利。

技术领域

无

背景技术

20世纪70年代早期，随着液晶显示器（LCD）的发明，信息显示技术开始了一场革命。因为 LCD 为轻质、低功率的平板显示器，它所提供的可视读出功能符合手提式电子设备的小型尺寸、轻便重量和电池要求，所以此显示器技术使得新类型的手提式和其它便携式产品大量出现。商业上，LCD 首先作为手表上的数字读出器而广泛应用，接着在仪器中采用，且后来在手提电脑、个人数据助理和很多其它数字设备中得到启用。今天，LCD 技术在电视机和个人计算机（PC）领域中甚至正逐渐取代阴极射线管。

现今所制造并销售的几乎所有商用 LCD 显示器都是置于玻璃基底上的。玻璃具有很多适合于 LCD 制造的特征。玻璃可在高温下进行加工，它为刚性且较为坚固，适用于大量制造中所使用的批量加工方法，在加工中玻璃的表面在大范围内变得极为光滑且均匀，且玻璃具有所要的光学特性，例如高透明性。然而，在许多应用中，玻璃远非理想的基底材料。玻璃基底并
不能变得非常地有柔性且不是很坚固，不适用于网络制造（web manufacturing）且容易破损。因此全世界都在作出很大努力以便将在更具柔性且坚固的基础上研制显示器，其不仅可与三维配置一致，而且还可重复挠曲。希望显示器具有薄膜塑料片、纸张或织物的柔性，使得其可像纸张或布那样悬垂、卷起或折叠。这不仅会使显示器更轻便且更容易携带，而且其将超过那些现今已知的典型平板信息显示器而很好地扩大其潜在应用：戴在袖子上的显示器；显示改变方向标志的骑自行车者外套的后背；改变其颜色或设计的纺织品。以上仅仅为几个实例。

虽然可电定址型（electrically addressable）液晶显示器像布或纸张那样具有柔性且变形的能力会对任何 LCD 技术有利，但其尤其有利于适合于胆甾液晶显示器的应用。胆甾显示器具有高度反射性，使得它们可在明亮的阳光或灯光昏暗的房间中被看见，而无需大量且消耗能量的背光灯的帮助。由于胆甾液晶呈双稳态，所以它们仅在被定址时需要能量，此进一步增强这种显示器相关联的节能能力。胆甾液晶材料在它们的光学和电子光学特征方面都很独特。主要的重要性是它们可以适应特定波长和宽带的 Bragg 反射光。拥有此特征是因为这些材料拥有螺旋状结构，其中液晶（LC）指向矢绕螺旋轴扭曲。将指向矢旋转 360°的距离称为节距且由 P 表示。胆甾液晶的反射带以波长 \(\lambda_0 = 0.5(n_e + n_o)P\) 为中心且具有 \(\Delta\lambda = (n_e - n_o)P\) 的带宽，其通常约为 100 nm，其中 \(n_e\) 和 \(n_o\) 分别为 LC 的非寻常和寻常折射率。反射光以与 LC 的螺旋结构相同的旋向发生圆偏振。如果入射光未发生偏振，那么可将其分解为两个圆偏振部分，它们具有相对旋向且其中之一被反射。可将胆甾材料以电力转换为两个稳定构象（平面或焦点圆锥）中的任一者，或如果合适高电场得以维持，那么可转换为垂直配向状态（homeotropically aligned state）。在平面构象中，螺旋轴垂直于基底及特定波长范围内的 Bragg 反射光，而在焦点圆锥构象中，平均来说，螺旋轴平行于基底而定向以使得材料对所有波
长透明，但弱光散射排除在外，其在邻近黑暗背景上可忽略不计。这些双稳态结构能够以大约毫秒的快速速率于彼此之间进行电力转换。还可获得灰度等级，原因在于只有一部分像素可转换为反射状态，由此控制反射强度。

双稳态胆甾反射型显示器技术在 20 世纪 90 年代早期作为主要意在用于手持式装置上的低功率、日光可读技术而引入。这种便携式装置需要较长的电池寿命，要求显示器消耗很少的能量。胆甾显示器对此应用来说较理想，因为双稳态性特征避免了对补充能量的需要，且高反射率避免了对消耗能量的背光灯的需要。这些组合特征可将电池寿命从小时延长到月，比不具有这些特征的显示器优越。反射型显示器在非常明亮的光下也易于被读取，而在此状况下，背光式显示器无效。由于胆甾显示器的高反射亮度和其非凡的对比度，胆甾显示器可在灯光昏暗的房间中容易地读取。由胆甾显示器提供的宽视角允许几个人从不同位置同时看见显示图像。在使用拥有正介电各向异性的胆甾材料的情况下，通过施加电场以使胆甾材料解开而形成透明、垂直织构，除双稳态模式之外的操作模式为可能。迅速移除所述电场使材料转变成反射平面积构。这种现代型胆甾显示器的更基本的方面揭示于（例如）美国专利第 5,437,811 号和第 5,453,863 号中，所述文献以引用的方式并入本文中。

双稳态胆甾液晶显示器具有为其它双稳态反射技术所不具有的若干重要的电子驱动特征。对定址具有很多像素的矩阵显示器来说尤其重要的是电压阈值的特征。对于多路复用行/列矩阵而无需昂贵的有源矩阵（每个像素处的晶体管）来说，阈值电压必不可少。具有电压阈值的双稳态性允许以低成本的无源矩阵技术来生产商分辨率非常高的显示器。

除具有有正介电各向异性的液晶材料的双稳态胆甾型显示器之外，还有可能制造具有有负介电各向异性的的液晶材料的胆甾型显示器，如 Haas 等人的美国专利第 3,680,950 号或 Crooker 等人的美国专利第 5,200,845 号中所
述，所述文献以引用的方式并入本文中。如“正性”材料，这些“负性材料”为由向列材料制备的手性向列液晶，所述向列材料已通过添加手性化合物或收集手性化合物而扭曲成螺旋分子排列。负性和正性材料分别由具有负或正介电各向异性的向列液晶来制备。

负型的胆甾型显示器可以通过双稳态模式操作，其中如美国专利 3,680,950 所述，以 AC 脉冲使材料转换为稳定的平面（例如有色反射）织构，或以 DC 脉冲转换为稳定的焦点圆锥（例如透明）织构。还有其它操作模式，例如由 Crooker 所揭示的模式，其中以施加的电场使负性胆甾材料的微滴分散体转换为平面、有色反射织构，但当移除所述电场时，松弛而返回为透明织构。

一些胆甾材料拥有介电各向异性，其在一个频率的施加电场下可为负性，但在另一频率下可为正性。此特征可通过使用如美国专利 6,320,563 中所述的双重频率驱动方案而用于驱动双稳态显示器，所述文献以引用的方式并入本文中。

胆甾材料的另一重要特征在于反射红、绿和蓝（RGB）颜色和 IR 夜视光线的层可堆叠（层叠）在彼此的顶部上而彼此在光学上互不干扰。这使得显示器表面最大程度地用于反射且为此明亮。传统的显示器不具有此特征，在传统显示器中，显示器分解成不同颜色的像素，且仅入射光的三分之一被反射。利用所有可用光对于在灯光昏暗的房间中观察反射型显示器而不使用背光来说很重要。灰度性能允许堆叠的 RGB、高分辨率显示器具有全色能力，其中已展示多达 4096 色。因为胆甾型显示器单元不需要偏振器，所以可使用例如 PET 的低价双折射塑料基底。其它特征，例如宽视角和宽操作温度范围以及快速响应时间使得胆甾双稳态反射技术成为很多低功率应用所选择的技术。

胆甾液晶尤其适用于柔性基底。这种胆甾型显示器已经由 Minolta 公司
且由Kent Displays公司所介绍，包括以胆甾液晶材料填充的两种塑料基底（Society for Information Display Proceedings, 1998, 分别在 897-900 和 51-54 页）。虽然基底本身为柔性，但由于两个基底层压在一起，因此经组装的显示器柔性较小。Minolta 已经开发用于制造具有两个基底的柔性显示器的程序，如参见美国专利第 6,459,467 号。

如果仅使用一个基底且将显示材料涂覆或印刷在基底上，那么可获得更大的柔性。通过使胆甾液晶形成为聚合物微滴分散体而使其适用于标准涂覆和印刷技术。作为微滴分散体，使材料对压力和剪切不敏感，以使得双稳态胆甾型显示器上的图像不容易通过挠曲基底而清除。最近，Kodak 的 Stephenson 等人通过使用摄影方法在单个透明塑料基底上制造了具有胆甾液晶聚合物分散体的柔性双稳态反射型显示器（美国公开申请案第 US 2003/0202136 A1 号和美国专利第 6,788,362 B2 号）。此过程包括在透明聚酯塑料上的沉积序列，藉此最终产品为通过基底可看到图象的显示器。这种过程需要透明的基底材料，例如透明塑料薄片。

根据前文所述，最好能够提供一种反射型显示器，其不需要透明基底从而使更广范围的基底材料可用，例如由通过弯曲、卷绕、悬垂或折叠及其他方法而变形的纤维制成的织物。这些附加特征提供很多优势，且开辟了很多新型显示应用。使用柔性可悬垂基底能够给市场带来新型显示器，这种新型显示器具有织物的物理变形性，使得它们可成为衣服的整体部分，并且由于它们可悬垂和折叠而具有布的触感和外观。

发明内容

鉴于前述内容，本发明的目的在于提供一种具有纺织品或布的物理变形性或可悬垂性的可电定址型液晶显示器，其中尤其可并入前述液晶材料和技术中的任何一者。本发明还给制造带来优势，包括电极的显示器是由涂覆或印刷在基底上的有机材料制成。导电聚合物代替传统的无机材料（例如氧化...
铟锡（ITO）作为电极。在一些织物上，制备层用以对表面上色，使表面光滑或平面化，调整电阻率、指数匹配和其它特征。胆甾液晶的聚合物分散体由多种不同方法制成，它适用于各种制造过程和显示功能。

本发明一方面提供一种可悬垂的可电定位型液晶显示器，其包含可悬垂基底材料、液晶材料层、安置在靠近基底的液晶层第一侧面上的第一导电电极和安置在远离基底的液晶层第二侧面上的第二导电电极，上述电极适合于连接到电子驱动电路。

本发明另一方面提供一种柔性反射型液晶显示器，其包含非透明柔性基底材料、液晶材料层、安置在接近基底的液晶层第一侧面上的第一导电电极和安置在远离基底的液晶层第二侧面上的第二导电电极，上述电极适合连接到电子驱动电路。

本发明优选提供一种可电定位型液晶显示器，其包含作为基底的纸张或由天然或合成纤维制造的纺织品、液晶材料层、安置在接近基底的液晶层第一侧面上的第一导电电极和安置在远离基底的液晶层第二侧面上的第二导电电极，上述电极适合于连接到电子驱动电路。当采用可悬垂型基底时，优选具有小于98%的悬垂系数的基底材料。希望悬垂系数小于95%或小于90%，具体视应用而定。

在本发明的每一前述方面的优选实施例中，所述基底的一个侧面为相对的侧面光滑。在一个实施例中，通过将一层材料沉积于其之上，优选通过将平面化层插入于所述基底与所述第一电极之间而使所述基底的一个侧面更光滑。

本发明前述方面中的每一方面的另外优选实施例包括安置在所述电极中的至少一者与所述液晶层之间的绝缘层，且更优选地，将保护涂层安置为显示器的至少一部分的最上层。

与本发明前述方面结合使用的电极优选由导电聚合物或碳纳米管材料。
料形成的电极。第二电极实质上为光透射性的。在一些实施例中，第一电极将至少包含在基底的一部分中。类似地，与本发明的前述方面结合使用的液晶层优选包含胆甾液晶材料，且更优选地，包含概述液晶材料的微滴分散体。优选分散体是从乳液、相分离的液晶材料或微包封的液晶材料中选择。更优选地，分散体为聚氨基甲酸酯胶乳乳液。其包含比率为约 2:1 到 6:1 的液晶与胶乳的混合物。优选胆甾液晶材料将具有在可见或红外光谱中有效反射光的正介电各向异性和短距离长度。

在本发明采用电极矩阵的方面，显示器将优选包括在接近基底的液晶层第一侧面上实质上呈平行的行排列的复数个导电电极和在液晶层相对侧面上实质上呈平行的行排列的复数个导电电极，在所述液晶层的相对侧上的所述电极行实质上为彼此垂直。

对于一些优选应用而言，显示器将进一步包括安置于所述液晶材料层邻近处的至少一个附加液晶层。优选地，这些实施例将包括安置于所述液晶材料层邻近处的至少一个附加液晶层和安装在其相对侧面上的导电电极，整体上可独立地电定址。在本发明的其它方面，显示器可进一步包括插入于液晶层与第一电极之间的光电导材料层，或第一电极可包含有源矩阵底板。

根据以下的详细描述和附图，将获得对本发明的上述和其它方面的更好理解。

附图说明

图 1 是根据本发明的显示器结构的横截面示意图，其中将显示元件作为层依序涂覆、印刷或层压在基物基底上。

图 2 是根据本发明的另一显示器结构的横截面示意图，其中一些显示层共享功能性。

图 3 是根据本发明的另一显示器结构的横截面示意图，其中将显示元件
作为层依序涂覆、印刷或层压在非纤维和非透明的基底上。

图 4 是根据本发明的另一显示器结构的横截面示意图, 其中将显示元件作为层依序涂覆、印刷或层压在部分地由透明材料制备的非纤维和非透明的基底上。

图 5 是根据本发明的优选显示器结构的三维示意图, 其说明如何将行电极和列电极连接到基底上的接头的分解图。

图 6 是实例 1 的胆甾显示器（cholesteric display）的两种状态的光谱反射率曲线图。

图 7 是实例 1 的显示器的电光响应曲线。

图 8 是实例 12 的胆甾显示器的两种状态的光谱反射率曲线图。

图 9 是实例 12 的显示器的电光响应曲线。

图 10 是说明在判定适用于本发明优选实施例的基底的悬垂系数时的参数的示意图。

具体实施方式

对本发明的描述

本发明涉及可定址型液晶显示器的实质性改进, 显示器与可悬垂基底整体形成或在可悬垂基底上形成, 使得显示器本身为可悬垂的。这种基底包括由天然或人造纤维制成的纺织品或织物, 例如布或纸张, 以及非纤维材料, 例如柔性或甚至可悬垂的聚合薄片或薄膜。优点是基底不需要为透明的。具有可变形基底, 使得胆甾或其它液晶显示器具有柔韧性, 甚至可缝到衣服中或衣服上以提供可穿戴式显示器。事实上, 显示器本身可用以制造衣服或其它织物的材料。具有布的可悬垂性的显示器为显示器技术提供新的尺寸以使得先前不可能的显示应用成为可能。这种显示器可符合三维结构或可与含有所述显示器的外衣或其它织物构成物一起挠曲和折叠。为此, 根据本发明的显示器可有效地变形, 这意味着即使它们正变形或已经变形, 它们也将起作

16
用。在优选应用中，基于本发明的显示器将可悬垂，这使它们可具有可折叠性和可测量的悬垂系数。

织物或其它可悬垂基底材料的可成形性可定义为其从二维形状再形成简单或复杂的三维形状的能力。悬垂系数是用以描述当织物样品悬垂在悬垂仪上时 3-D 变形的程度，例如以下公开案中所描述：V. Sidabraite 和 V. Masteikaite 的“Effect of Woven Fabric Anisotropy on Drape Behavior”，ISSN 1392-1320, Materials Science (Medziagotyra)，第 9 卷第 1 号第 111-115 页 (2003) 或 S. Jevsnik 和 J. Gersak 的“Modeling the Fused Panel for a Numerical Simulation of Drape”，Fibers and Textiles，第 12 卷第 47-52 页 (2004)，其引用方式并入本文中。可悬垂性为例如窗帘、旗帜、桌布或喇叭裙从物体上悬挂下来时所发生的现象。悬挂系数 DC 描述悬挂的材料与未悬挂的材料之间的任何变形。以百分比折算，它由比率：DC=100(S_p - \pi R_1^2)/(\pi R_2^2 - \pi R_1^2) 来描述，其中 R_2 为未变形织物的圆形切口的半径；R_1 为所持所述织物的水平圆盘的半径；S_p 为垂直样品的投影面积，包括由水平圆盘覆盖的部。DC 的值在零与 100% 之间变化。由于 DC 的值可视针对悬垂仪的 R_1 和 R_2 选定的值而定，因此我们按照其他，取 R_1=9 cm, R_2=15 cm。悬垂系数的值越大，织物越硬越难再成形。反之，DC 的值越低，越容易再成形。理想的基底材料的一些实例包括由通过编织和非编织方式形成的纤维性材料制成的丝绸、棉、尼龙、人造丝、聚酯、凯夫拉尔 (Kevlar) 或类似材料，其具有布的可变形性。表 1 中展示具有所希望的悬垂性的织物的一些实例，其中展示对于各种织物材料以 R_2=15 cm 且 R_1=9 cm 测得的悬垂系数 DC 值。关于以星号 (*) 标识的材料的数据从以下公开案中获得：G.E. Cusick 的“The Dependence of Fabric Drape on Bending and Shear Stiffness”，J. Textile Institute，第 56 卷，第 596-606 页 (1965)，其引用方式并入本文中。其它材料是获自 Jo-Ann Fabrics、Cuyahoga Falls、Ohio 和 Hudson、Ohio，且
对 DC 值进行测量。

表 I

<table>
<thead>
<tr>
<th>织物</th>
<th>重量 (g/m²)</th>
<th>厚度 (mm)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*编织服装织物，粘胶短纤纱人造丝</td>
<td>231</td>
<td>0.36</td>
<td>67.8</td>
</tr>
<tr>
<td>*编织服装织物，粘胶短纤纱人造丝</td>
<td>142</td>
<td>0.41</td>
<td>36.9</td>
</tr>
<tr>
<td>*平织 1.5 旦粘胶短纤纱人造丝</td>
<td>196</td>
<td>0.45</td>
<td>32.6</td>
</tr>
<tr>
<td>*平织连续长丝醋酸纤维素和人造丝</td>
<td>226</td>
<td>0.46</td>
<td>24.7</td>
</tr>
<tr>
<td>*编织服装织物棉纱</td>
<td>115</td>
<td>0.20</td>
<td>75.5</td>
</tr>
<tr>
<td>*编织服装织物棉纱</td>
<td>105</td>
<td>0.31</td>
<td>97.2</td>
</tr>
<tr>
<td>*平织、连续长丝聚酯纤维</td>
<td>96</td>
<td>0.20</td>
<td>49.9</td>
</tr>
<tr>
<td>来自 Jo-Ann Fabrics 的聚酯</td>
<td>186</td>
<td>0.3</td>
<td>14</td>
</tr>
<tr>
<td>来自 Jo-Ann Fabrics 的聚酯 65%，尼龙 35%</td>
<td>116</td>
<td>0.17</td>
<td>49</td>
</tr>
<tr>
<td>来自 Jo-Ann Fabrics 的聚酯，缎纹</td>
<td>128</td>
<td>0.21</td>
<td>52</td>
</tr>
</tbody>
</table>

如所属领域的技术人员将了解的那样，鉴于本揭示，如本文所揭示的具有所要柔性或可悬垂性且能够支撑显示元件的任何可变形性材料都将适用于本发明。在一些优选实施例中，织物基底可为复合物或更优选地为纤维增强型复合物，例如棉和聚异戊二烯。这种复合物的实例为雨衣，其中棉提供布的触感和可悬垂性，聚异戊二烯提供防水性。另一实例为用作挡激光的光屏障物的人造丝和氯丁橡胶，例如由 Thorlabs 公司 (NJ) 目录 # BK5 获得的光屏障物。复合物可用于本发明的很多优选显示器的适用基底材料，因为对于显示元件而言它们可能要求较少的平面化。

在很多优选实施例中，基底材料为非透明的。虽然黑色为优选颜色，但例如深蓝、绿或一些其它颜色可用于附加地与胆甾液晶的反射颜色混合以提供在显示器上定址的文本或其它图像的所需颜色。基底材料本身实质上可为清晰或透明的，但为了显示器的背景所需，通过添加黑色涂层而使基底不透明或对基底进行染色而使其变得模糊、半透明或不透明。反射型胆甾显示器上的图像通过参加背景中看到。因此背景吸收不需要的光，且不提供与从胆甾液晶反射的光相竞争的光或将从胆甾液晶反射的光抵消掉的光，这是非常
重要的。多数织物为非透明的。存在很多并非由纤维制成的可变形薄片材料的实例，例如聚合物薄膜。如果薄片足够薄，那么这些薄膜也可为可悬垂的。非透明且极具可悬垂性的聚合物薄膜的实例为来自 Graphix Plastics，Cleveland OH 的黑色静电粘合型聚氯乙烯薄片材料（black static cling polyvinyl chloride sheet material）。表 II 中展示具有所需可悬垂性的非纤维和可悬垂性塑料薄膜的其它实例，其中展示对于各种非纤维薄片材料（$R_1=9$ cm 且 $R_2=15$ cm）测得的悬垂系数 DC 值。通过从上方拍摄在半径为 R_1 的支架上在具有相同半径的加重圆盘下悬垂的半径为 R_2 的样品的悬垂来测量悬垂系数值。在半径为 R_2 的圆中的悬垂的投影图像面积从数字照片中获得。在所有情况下，悬垂都展示特征褶皱。

表 II

<table>
<thead>
<tr>
<th>薄片材料</th>
<th>重量（g/m²）</th>
<th>厚度（mm）</th>
<th>DC（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>来自 Graphix Plastics 的黑色聚氯乙烯</td>
<td>189</td>
<td>0.15</td>
<td>52</td>
</tr>
<tr>
<td>Clear DuraLar（通用聚酯）</td>
<td>18.1</td>
<td>0.013</td>
<td>68</td>
</tr>
<tr>
<td>Clear DuraLar（通用聚酯）</td>
<td>32.9</td>
<td>0.025</td>
<td>95</td>
</tr>
<tr>
<td>Clear DuraLar（通用聚酯）</td>
<td>73.7</td>
<td>0.050</td>
<td>98</td>
</tr>
</tbody>
</table>

太厚的薄片材料不会展现悬垂，但可弯曲或绕一个轴挠曲，例如卷起。实例为 5 密耳（0.125 mm 厚）Clear DuraLar（聚酯）或 5 密耳厚的 Teijin Limited 的聚碳酸酯 ITO 涂覆箔（SS120-B30）。这种 2-D 变形材料可卷起但不反映悬垂的性质。然而，应注意，这些和类似的薄膜将适用于不要求可悬垂性的本发明的某些实施例。举例来说，在仅需要柔性显示器处，可通过以黑色
Krylon 漆涂层这种薄膜使其变黑或者为非透明来作为基底。

从以下内容中将明了，虽然通过提出可变形性液晶显示器来实现本发明的主要优势，但对实现此优势的主要贡献在单个基底上提供可电定址型液晶显示器。现今市场上的可电定址型显示器采用至少两个基底（如上文所提及，其通常为刚性），液晶夹在它们之间。通常，通过批量加工方法来制造这些显示器。根据本发明的优选实施例，在单个基底上的显示元件是通过一定序
列的层来制造，所述层可通过适合于低成本、大量生产所必需的网络加工方法的涂覆、印刷或层压技术而置于基底上。基本上，这些层由第一导电层，继之电响应微滴分散体层（例如经聚合物分散的胆甾液晶），接着继之透明的导电层组成。在纺织品或其它织物上涂覆平面化涂层以使表面至少部分光滑。继此之后可为预备涂层或一定序列的这种涂层，以便进一步使织物表面光滑，且相对于第一导电层调整织物表面的颜色、电阻率、润湿性和粘着性。在胆甾分散体与电极之间通常需要绝缘涂层以避免电极之间的电短路。涂覆耐久性保护层以完成显示元件的构造。在一些情况下，某些涂层之间需要隔
离层以避免由随后涂层带来的损害，例如可由涂层溶剂或其它成分之间的化学反应而造成的损害。同样地，各种层之间的预备涂层也是有必要的，用以
促进随后涂层的湿润和粘着。在一些实施例中，涂层通常具有多重功能，例如第一导电涂层还可用于预备涂层以使表面光滑。

电光层可进一步由具有如为多个颜色或高亮度所需要的不同反射颜色或扭转旋向的胆甾分散体的若干涂层组成。对于颜色而言，根据本发明可采用例如在以引用的方式并入本文中的美国专利第 6,654,080 号中所述的那些增强亮度或红外应用、如其中所揭示排列的涂层堆叠。涂覆在上部导电电极上的保护涂层避免了对上部基底进行层压。单个基底上的这种显示器结构改
进了显示器的柔性以及其亮度和对比度。根据本发明的这种显示器展现改进的坚固性，因为与上部层压的基底相比，保护涂层可能更难以分层。
虽然在本文中将主要结合胆甾液晶的优选使用来描述本发明，但根据本发明，可适合与前述基底结合使用的任何液晶材料都将是适用。作为实例，这种材料包括向列、手性向列（胆甾）、近晶和铁电近晶液晶材料。它们包括双稳态的材料和非双稳态的材料。包括具有正性或负性介电各向异性性或具有适用于双频定址的交叉频率负性与正性的组合的胆甾或手性向列液晶。包括具有在可见光谱中发生反射的节距长度的胆甾材料和在可见光谱（包括紫外线和红外线）外发生反射的节距的那些材料。用于本发明的优选液晶材料为具有正性介电各向异性的双稳态胆甾（手性向列）液晶。尤其优选的材料为具有高双折射率和介电各向异性的向列材料，其具有手性添加剂使材料扭转成在可见光谱中发生反射的节距长度，例如来自纽约的 EM Industries of Hawthorne 的 BL061、BL048 和 BL131。借鉴于本揭示内容，所属领域的一般技术人员将明了这些和其它合适材料。

借鉴于本揭示内容，所属领域的一般技术人员将明了，液晶材料将优选以由液晶分散体且优选为由胆甾微滴分散体组成的液晶层的形式存在于本发明的显示器中。存在很多不同途径来形成液晶微滴层，其中的一些已经用于胆甾液晶。为了形成这种液晶层，可将液晶微包封，使其形成于相分离的液晶微滴的层中或形成于乳化的液晶微滴中。

更具体地说，适用于形成用于本发明的液晶层的一个工艺为相分离，其基本上为涉及将胆甾液晶材料与预聚合物溶液混合。接着在合适的条件下使所述聚合物聚合在聚合物粘着剂中形成微滴分散体的工艺。聚合和因此的微滴形成在材料混合物已经涂覆到临时或过渡基底上或者涂覆到显示器基底本身上之后发生。取决于聚合物（或单体），基本上有三种类型的聚合技术可使用：（1）热致相分离（TIPS）；（2）聚合致相分离（PIPS）；和（3）溶剂致相分离（SIPS）。

如在以引用的方式并入本文中的美国专利 6,061,107 中所揭示，热致相
分离（TIPS）工艺已经被用于展示当包封到微滴结构中时，胆甾材料会保持其双稳态性和电光特征。TIPS系统为液晶与热塑性聚合物的二元混合物。在高温时，聚合物融化，且材料在溶液中。随着温度降低，由于聚合物凝固，液晶相分离以形成微滴。可通过冷却速率来控制微滴尺寸，冷却速率越快，形成的微滴越小。在控制微滴尺寸方面，TIPS为有利，因为冷却速率容易调节。此外，系统可热循环很多次，且在相同样本中使用不同冷却速率可获得不同的微滴尺寸。存在很多可用于此工艺的热塑性聚合物。一些实例为：PMMA（聚甲基丙烯酸甲酯），其为细长液晶分子提供切向锚定条件（tangential anchoring condition）；PIMB（聚甲基丙烯酸异丁酯），其提供垂直锚定条件。借鉴于本揭示，所属领域的一般技术人员将明了适用于此实施例和以下实施例的其它聚合物。

聚合致相分离（PIPS）以预聚合物（单体）与液晶的均匀混合物开始。随着单体的聚合，液晶相从聚合物中分离。所述聚合可为热引发或光引发的。在热引发聚合中，单体通常为Epon 828（Shell Chemical）或Capcapture 3800（Miller Stephenson Company）的环氧树脂与硫醇固化剂的组合。在室温下涂覆的混合物可接着在高温下固化。通常，由于较高的反应速率，温度越高或环氧树脂的浓度越高，所形成的微滴就越小。在光引发的聚合中，使用具有丙烯酸酯或甲基丙烯酸酯端基的单体，例如Norland 65（其为丙烯酸酯单体与光引发剂的组合）。还需要一些光引发剂。在样本制备中，印刷或涂覆混合物，接着在UV光照射下固化。越高的uv照射，形成越小的微滴。

在SIPS方法中，引发材料为液晶和溶解于常见溶剂中的热塑性塑料的混合物。当溶剂的浓度足够高时，成分将均匀地混合。随着溶剂的蒸发，系统相分离。液晶的微滴尺寸取决于溶剂蒸发速率，蒸发速率越快，获得的微滴越小。

根据前述内容，所属领域的一般技术人员将能够选择适用于产生相分离
的液晶微滴层的材料和方法于以用于本发明。在一些情况下，使用 PIPS、SIPS 和 TIPS 工艺的组合可为优选。如在以引用的方式并入本文中的美国专利第 4,688,900 号和第 4,684,771 号中所揭示，PIPS、SIPS 和 TIPS 方法和材料为所属领域中所熟知的。

另一非常不同的包封工艺涉及胆甾液晶在具有水性聚合物的水中的乳化。甚至在双稳态胆甾显示器发明以前，已经实践了通过乳化将胆甾液晶包封。早在 20 世纪 70 年代早期，如在以引用的方式并入本文中的美国专利 3,600,060 中所论述，将胆甾材料乳化以制造胆甾热涂层和电响应涂层。更近一些，如以引用的方式并入本文中的美国专利 6,423,368 Bl 中所揭示，乳化方法已经在 Kodak 由 Stevenson 等人所改进以制造尺寸非常均一的胆甾微滴。最常见的乳化程序基本上涉及将液晶分散在含有例如经去离子的明胶（de-ionized gelatin）、聚乙烯醇（PVA）或胶乳的水溶性粘着剂材料的水浴中。水充当溶剂使聚合物溶解以形成粘性溶液。此水溶液不溶解液晶，且其相分离。当螺旋桨叶片以足够高的速度搅拌此系统时，形成微米尺寸的液晶微滴。如以引用的方式并入的 P. Drzaic，Liquid Crystal Dispersions，World Scientific Publishing Co.，新加坡（1995）中所揭示，搅拌速度越高，形成的液晶微滴越小。水溶性聚合物的分子量也是影响微滴尺寸的因素。在微滴形成后，将乳液涂覆在基底上，允许水蒸发。存在很多不同乳化程序。在优选实施例中，将 PVA、明胶和胶乳（优选基于氨基甲酸酯的胶乳）中的一者或多者以上用于形成所述粘着剂。聚氨基甲酸酯胶乳材料尤其优选为 NeoRez R967 和 Witcobond W232 或 W786。乳化方法具有微滴分散体可含有极高百分比的胆甾材料的优势。如同相分离的液晶层一样，借鉴于本揭示，所属领域中的一般技术人员将能够选择合适的材料和方法以用于提供根据本发明而使用的经乳化的液晶微滴层。

如在以引用的方式并入本文中的美国专利 6,271,898 中可见，微包封是
用于制备微液分散体的又一工艺。虽然此程序可能更复杂且材料敏感，但其
仍可提供对胆甾液晶的微滴尺寸和分子键定条件的更多控制。在此情况下，
液滴微滴由壳涂覆，使其与粘着剂隔开。有可能以稍后分散在用于涂覆的合
适粘着剂中的湿滤饼（wet cake）或浆料的形式来处理微滴颗粒。如在 D. J.
Broer 等人的 Society for Information Display 2004 Proceedings，第 767 页中所
揭示，其它类型的分散体可为以液晶材料填充且顶部通过相分离工艺密封的
聚合物囊（polymer pocket）的规则阵列。

在一些实施例中，将通过直接将涂覆或印刷的层施加在可变形聚合薄膜
上来形成基底材料，所述可变形聚合薄膜具有相对较光滑的表面，显示元件
并入所述表面上或所述表面中。或者，可将织物制造成具有光滑表面，例如
具有氯丁橡胶涂层，其用于使织物表面部分平面化。然而，在本发明的很多
实施例中，显示器将形成在例如布和类似织物或纺织品材料的具有粗糙表面
的基底上或与其整体形成。在基底表面为不可取的粗糙时的实例中，基底将
需要一定程度的平面化以便提供较光滑的表面，第一电极可沉积到所述表面
上。使表面光滑有助于维持胆甾或其它电光层的恒定厚度。从有机层的施加、
热量和/或机械压力的施加或表面的化学修饰来看，可以用许多方式来达到
平面化。举例来说，可通过施加聚合物涂层，继而用热轧层压机（hot roll
laminator）施加物理性应力和热量来使基底表面光滑。或者，可对表面进行
化学处理以使其融化或另外使其光滑度发生物理性改变。当然，所属领域的
一般技术人员将明了，必要的光滑度是相对的，只要其有助于维持电极之间
的均匀厚度或间隙以便提供均一电场，且因此驱动越过整个显示器的均一性
即可。平面化不需要使基底表面变得完全光滑或平整。事实上，在很多实施
例中，本发明的显示器的电极和液晶层将顺应织物基底的细微轮廓，平面化
层或其它平面化方式仅用于消除基底表面中最显著的起伏。因此，借鉴于本
揭示，所属领域的一般技术人员将明了将基底表面平面化（即使其光滑）的
这些和其它合适方式。

根据本发明将基底表面平滑化的优选方式为添加平滑化层。平滑化层为材料涂层，其在施加到基底时将倾向于使基底中最显著的起伏平滑。以便提供通常光滑、尽管不一定平整的表面，在其上沉积导电电极。根据本发明用作平滑化层的优选材料为明胶、氯丁橡胶和胶乳材料，例如可从 MA 的 NeoResins 购得的 NeoRez R967。平滑化层还可为聚合薄膜，例如层压在基底上的 PET。

如所提及的那样，在优选实施例中，液晶层将由导电电极所限定。电极不需要相同。举例来说，在很多实施例中，在液晶不透明侧面上的电极将为黑色或一些其它颜色，而可见侧面上的电极将为透明的。在其它的一些实施例中，液晶层两侧上的电极都将为透明。在另外的一些实施例中，电极或电极阵列可与基底一起整体地形成，或基底本身可构成其中一个电极。能够使用织物基底的优势在于，其使得显示器可得以配置的方式具有更大灵活性。可能存在施加和图案化导体的方法有很多。可使用喷墨、丝网或胶版印刷以一些特定图案来印制导体。或者可通过使用掩模、模板或对表面预处理以形成允许电极材料仅粘附于某些区域的化学掩模来将导电材料喷涂或涂覆到织物上。在一些情况下，首先敷设均一的导电涂层，随后通过将导电材料区域以化学或机械方式钝化来使所述层图案化，这是可取的。事实上，预期甚至可将基底本身制造为导体。举例来说，一些柔性塑料材料制造有氧化铟锡 (ITO) 涂层，其可经图案化以作为电极。借鉴于本揭示，所属领域的一般技术人员将明了用于施加到本发明的基底的合适电极材料，且其包括导电聚合物、碳纳米管、金属或碳导电墨、ITO 和类似物。自身整平且能以合适厚度使用来排除对平滑化层的需要的电极材料尤其可取。根据本发明用作导电电极的材料的实例包括可从比利时的 Agfa-Gevaert N.V.购得的 Agfa 导电聚合物 ELP-3040、S300 和 S2500；和可从 Franklin MA 的 EiKos 公司购得的
碳纳米管材料。

前面所提及的电极可被图案化，形成具不同形状或尺寸的像素，排列成行和列以便形成无源矩阵等等，借鉴于本揭示，所属领域的一般技术人员将明了其全部。可采用所属领域中任何已知且可适合于具有本发明的可变形性的显示器的液晶定址方法。在优选的可电定址型显示器中，根据所属领域的一般技术人员已知的任何合适驱动方案，用于定址液晶的装置将是驱动和控制电子器件，该器件可操作地连接到用于穿过液晶材料施加驱动电压的电极。合适驱动方案的实例包括（但不限于）以双极或单极驱动芯片实施的美国专利第 5,644,330 号中所揭示的常规驱动方案；用于较快或较慢温度响应的美国专利 5,748,277 或 6,154,190 中所揭示的动态驱动方案；或用于视频响应的美国专利第 6,133,895 号中所揭示的累积驱动方案，所有文献都以引用的方式并入本文中。或者，用于定址的方法可为光学方法，藉此，以例如同样以引用的方式并入本文中的 H. Yoshida 等人的 Journal of the SID，第 5/3 卷，第 269-274 页，（1997）中所揭示的方式，用白光或激光将图像写在显示器。当然，在这些实施例中，可制造不具有图案化电极的显示器。

在优选配置中，配置根据本发明的高分辨率显示装置，其中第一导电聚合物是以平行条的形式来印刷或另外图案化以形成平行导电电极行。接着将微滴分散体涂覆在导体行的顶部，紧跟着是透明导体，接着在垂直于分散体下的导体行的方向上以导电条（列）的形式将其印刷或另外涂覆和图案化在微滴分散体的顶部上。以此方式，电极的行和列矩阵与其中的电介质分布体一起形成。接着以选择性地定址由每个行和列的交叉点所形成的显示器的每个像素的方式来进行多路复用电压脉冲。当高分辨率图像定址在织物上且电压被移除时，图像将不确定，直到重新定址以形成另一图像为止。

在执行本发明的过程中，在电极之间采用一或多个绝缘层以使导体彼此绝缘且从而最小化短路的可能性通常将是可取的。因此，出于本发明的目的，
选择可涂覆、印刷、喷涂或另外敷设在电光响应液晶层之前和/或之后的层中的材料是可取的。绝缘层不得明显地有损于显示器的可变形性或光学特性。根据本发明的优选实施例，可以采用例如明胶或胶乳的材料。一些尤其合适的绝缘材料为聚氨基甲酸酯胶乳材料，例如 WITCOBOND W232（可从 CT 的 Crompton Corporation 购得）。尽管例如明胶的绝缘层可供选择，但实验展示其在液晶层为胆甾微滴分散体时，导致转换电压减少大约 10-15 伏（f=250 Hz）。在不受理论限制的情况下，这可能是因为明胶层通过增加介电常数来增强液电介电特性的缘故。

如上文所提及，一个或一个以上耐久性保护涂层的使用排除了层压第二基底的需要，从而增强显示器的柔性和耐久性。可取的保护涂层将为如下材料，这些材料将在显示器最上表面的至少一部分上，或最好为全部上，提供坚固、耐刮擦和耐磨涂层，但不明显干扰系统的光学特性。同样，最可取的材料将保持系统的可变形性。鉴于本揭示，所属领域的一般技术人员将能够选择合适的材料。优选材料包括丙烯酸或聚硅酮涂料、UV 可固化粘附剂（UV curable adhesive）、PVA、胶乳材料和类似物。因为一些保护涂层将包括可对显示器的电极或其它元件有害的溶剂或其它成分，所以在执行本发明的过程中，选择将保护其它显示器元件免受保护涂层有害成分影响的隔离层材料或包括附加保护材料作为插入保护涂层与其它显示器元件之间的隔离层是可取的。

所属领域的一般技术人员将明了，可使用前述成分层中的一些层或所有层以很多不同配置来形成本发明的显示器。举例来说，显示材料可仅出现在织物的一侧上，而另一侧未触及，或可使显示器部分地嵌入基底中且与基底一起整体形成。当然，对本发明的可电定址型显示器的最低要求是将一对导电电极之间的液晶层并入到基底上或基底中。所属领域的一般技术人员将明了，除此之外，存在多个可能的配置和组合，它们可有效地利用本发明所述
的基底的柔性和/或可垂直性。

这些显示装置的制造涉及印刷、涂覆或其它沉积方法，以允许显示器与基底一起变形的方式，将液晶材料、显示器电极和任何绝缘、隔离或其它涂层并入基底中或基底上。借鉴本揭示，所述领域的一般技术人员将能够选择并采用适当的涂覆、印刷和沉积技术，其包括（但不限于）视情况结合所述领域中已知的各种掩模或模板的气刷、喷墨、旋涂和喷涂印刷；丝网印刷；光刻法；化学掩蔽等等，此视所使用的特定基底和显示器元件而定。预期所述领域中已知的施加涂层和导体的任何接触或非接触方法根据本揭示都将适用。

在执行本发明的过程中，还将可能在远距离的基底上制备显示器，且接着将其转移到例如可悬垂至物的所要基底。在这一情况下，将包括配制完整的显示装置所需要的微滴分散体、导电涂层和任何可取的绝缘涂层、隔离涂层等的一定序列的多个涂层涂覆在临时基底上，一旦干燥或固化可将所述经涂覆的序列从所述临时基底移除。所移除的薄膜现在本身为显示器元件，而无任何基底。接着可将显示器薄膜层压在任何物体或材料上，且可将电极施加到所述物体或材料以连接到驱动电子器件。如印刷电子技术所允许，显示器薄膜的铸件或基底层可用于印刷驱动电子器件中的全部或一部分。

可通过一个或两个以上分散层来代替单个胆甾分散层来制造多色反射型显示器，所述两个或两个以上分散层中的每一者都具有不同的层叠在彼此顶部的反射颜色，其间具有导电电极。可通过层叠红 R、绿 G 和蓝 B 来制造全色显示器。在各颜色之间仅有一个电极层的情况下，有可能以双稳态胆甾分散体通过共享的电极定址方案来对显示器进行电定址。如果 R、G 和 B 层中的每一者都含有堆叠的左扭转和右扭转分散层，那么可达成增加的亮度。红外线反射型显示器为可能，其中微滴分散层中的至少一者在红外线中发生反射，例如可用于夜视目的。多色显示器还可以单个分散层来制备，其
中将每个像素分为不同的原色，例如红、绿和蓝，以供合成色混合。如（例如）以引用的方式并入本文中的 2004 年 9 月 16 日申请的美国专利第 5,668,614 号所述，可获得经图案化的颜色。

更进一步地，可通过使用太阳能电池板（solar panel）作为基底或基底的组件，藉此不为胆甾材料反射的光可被吸收于太阳能电池板中以转化为用于供以显示器动能的电能，从而获得自供电型显示器。还设想可采用有源矩阵基底来制造有源地驱动的胆甾型显示器，藉此将各种显示器元件按顺序层叠在有源底板上。更进一步地，通过将光电导片放置在下部导电电极上便获得光定位型显示器。随着将连续电压施加到电极，碰撞显示器薄膜的光将局部地改变光电导体的电阻率且驱动显示器薄膜。这种显示器构造避免了对电极进行图案化的需要。如在以引用的方式并入本文中的 J. Yoshida 等人的公开案“Reflective Display with Photoconductive Layer and Bistable Reflective Cholesteric Mixture”，Journal of the SID，第 5/3 卷，第 269-274 页（1997）中所述，可通过合适地聚焦在薄膜上或以扫描激光束书写的图像来定址显示器。当然，视所要显示器而定，其它镶面堆叠为有可能。

对优选实施例的详细描述

图 1 至图 5 说明根据本发明的各种优选显示器配置。图 1 是对在高度可
悬垂的织物上的胆甾反射型显示器的剖面说明。显示器 100 是涂覆 coating、
印刷 printing 或层压在由纤维材料制成的织物基底 101 上的层的堆叠。基底
101 可为可悬垂的且为不透明或透明的，其由天然或人造纤维组成。织物材料
101 可为编织或非编织纤维，或可为复合物，例如纤维增强型的热塑性材料。

因为织物的表面通常非常粗糙，所以可能有必要具有平面化层 110。平
面化层可涂覆、层压在织物上或可成为织物的整体部分，除了至少部分地平
滑表面外，平面化层还可用于其它几个目的，例如调节序列的下一层的润湿和粘着特征；调节薄膜的颜色、折射率或其它光学特性等。如果需要更多平面化或如果 110 不为第一导电电极 120 呈现合适的表面，那么层 111 为重叠在层 110 上的制备层。涂覆为将层 111 铸造在 110 上的优选方法，且对于异乎寻常地粗糙的表面来说，可能需要一个以上的涂层。如果前一层 110 导电，那么层 111 还可充当绝缘层。然而，如图所示，下一层 120 为第一或下导电电极。通常，在织物基底的情况下，基底为不透明的。在此情况下，尽管导电电极 120 不应为反射性的，但其同样可为不透明的。基于碳的材料，例如导电聚合物为适用的，只要它们提供足够的导电率即可；（例如）小于 1000 欧姆/平方的电阻率，即还由层的厚度控制的参数。基于碳的材料通常为可取，在于通常它们可被丝网、喷墨或另外印刷以形成所需的电极图案。

如果印刷导电层不是一个选择，那么其可作为连续薄片涂覆且随后图案化 patterned。举例来说，可首先涂覆导电聚合物，接着通过以所要图案将钝化剂印刷在导电聚合物上而图案化。在液晶层 130 并未在上导体 140 与下导体 120 之间提供充分绝缘以防止短路的情况下，将绝缘层 121 涂覆在导电聚合物上。

所述序列中的下一层为液晶层 130，如上文所述，其可为以液晶填充的分散体或聚合物壁阵列。如上文所述，液晶分散体材料可由例如乳化、相分离或微包封工艺的几个不同工艺中的任何一者制成。优选工艺为由胶乳乳化、PIPS 相分离或明胶微包封工艺制备的分散体，因为这些材料可容易地涂覆或印刷。如果需要双稳态性，那么胆固醇分散体的微滴尺寸应足够大以允许稳定的焦点圆锥和平面结构，微滴尺寸通常为 1.0 微米。此涂层的厚度决定显示器的驱动电压和显示亮度。为了最佳化亮度，希望此层的厚度至少为 4.0 微米。然而，为了维持中等到低的驱动电压，取决于液晶材料的物理特性，希望层的厚度小于 15 微米。作为分散体的可能替代，可利用以液晶
填充的聚合物壁阵列，尽管这需要更多的涂层和处理。

在需要防止来自第二或上导电层的材料渗透到液晶层的情况下，将隔
离涂层 131 涂覆在液晶层上。层 131 还可充当绝缘层或充当透明或上导电电
极的润湿和粘着层。接着印刷或涂覆透明导电层 140 且将其适当图案化以
充当上电极。透明导电聚合物或碳纳米管为适用于此目的的优选材料。透明
度与导电率的比率取决于涂层的厚度。如果显示器的响应速度不是问题，那
么已经发现高达几千欧姆/平方的电阻率适用于驱动胆甾分散体。最终，为
了改进显示器的坚固性且为了保护显示器元件免受环境的影响，使透明导体
140 与柔性保护层 150 重叠。可通过涂覆、印刷、压合或其组合来将保护层
150 施加在一个或一个以上层中。

在图 2 中，展示可悬垂织物上的胆甾反射型显示器的说明，其中通过组
合电极与平面化层的功能来有利地减少层的数目。显示器 200 为涂层、印刷
或层压在由纤维或其它可变形材料制成的织物基底上的层的堆叠。基底 201
可为由不透明或透明的天然或人造纤维组成的可悬垂织物。织物材料可为编
织或非编织纤维或可为复合物，例如纤维增强型的热塑性材料。在此实施例
中，平面化层 220 导电以充当电极和平面化层两者，又在需要处为绝缘层
221 制备表面。导电层 220 可涂层、压合或制成织物的整体部分。可将例
如导电聚合物或碳纳米管的透明导电材料印刷成合适图案。可通过以 UV 的
局部钝化或印刷例如漂白剂的钝化溶液以对导电聚合物进行局部钝化，从而
对导电层进行图案化。在涂层或印刷绝缘层 221 后，如所说明，浇铸含有液
晶的层 230。此层可为微滴分散体，例如聚合物分散的胆甾液晶，或固持液
晶材料的限制聚合物杯（confining polymer cup）阵列。透明导电电极 240
使得显示器堆叠的电光组件完整，接着在后者之上涂层或层压有保护层 250。

图 3 是例如热塑性复合物或交叉连接聚合材料的柔性非纤维且非透明
薄片基底 301 上的胆甾反射型显示器 300 的剖面说明。通常需要制备层 311
以提供表面的改进的平面化；调节基底的颜色和光吸收；且呈现合适的表面，
用于润湿且粘着下导电电极层 320。合适地限制（例如）在聚合物分散体中
的胆甾材料 330 的层接着铸造在导电层上，其继而涂覆在层 330 上的隔离层
331。隔离层提供表面，在所述表面上涂覆或印刷有透明导电电极层 340，
其还与短路绝缘，且保护液晶层。接着涂覆保护层 350 以保护其下的电光元件
免受环境的影响。

图 4 是胆甾显示器 400 的剖面图，其中非透明基底 401 由下侧上涂覆有
墨或漆 402 以防止光穿过薄膜的例如聚酯（PET）或聚碳酸酯（PC）的透明
材料制成。所述墨或漆涂层优选为黑色。透明材料的上侧含有导电层 420，
其在此情况下可为预涂覆且预蚀刻的氧化铟锡（ITO）。接着将胆甾液晶分散
体 430 涂覆在导电电极层 420 上，继而印刷透明电极层 440 和保护涂层 450。

图 5 是无源矩阵配置的三维图 500，其以分解图说明图案化为行的导电
透明电极 540 如何电连接到粘着到基底 501 的导电接头 540。列电极 520 电
连接到接头 522，其还附接到基底 501。接头用于互连驱动电子器件（未图
示）。由于用于列 520 和行 540 两者的接头安置在基底 501 上，所以附接驱
动电子器件大大简化。将明了，显示器的中间层，包括胆甾分散体层，未以
分解图展示。

将明了，结合图 1 至图 5 的前述描述内容希望说明使用根据本发明的电
可定址显示器所必要的组件的优选单元配置。在前述实施例中的每一者中，
必要地或希望包括上文所述的附加显示器组件中的任何一者或所有，且将耐
久保护涂层或涂层系列涂覆在上透明导体的顶部上以确保坚固的显示器，其
被保护以免受环境的影响。因此，尽管本发明的优选显示器的最基本电光元
件为可变形基底、液晶层和一对电极，但图 1 至图 5 中所示的优选显示器配
置包括：平面化层，以使织物或其它基底的表面光滑；制备层，其用于所需
的以下多个目的：进一步使表面光滑，调节用于涂覆序列中的下一层的表面
润湿和粘着特征，和/or调节显示器、绝缘层中所需的光学特性以防止下导体与上透明导体之间的电短路；和隔离层，需要其以防止层之间的化学反应或合适地调节润湿和粘着特征。

图6至图9展示了实例中所述的经制造的显示器的经测量的光学和电光特征。图6展示了实例1的织物基底上的胆甾显示器测量的反射率比波长。来自平织织物601和来自焦点圆锥织构602的光谱反射率显示在实验图600中。图7是展示了实例1的织物上的显示器测量的反射率比电压的电光响应曲线。曲线651展示当样本起初呈反射平织织构时电压脉冲的响应，而曲线652展示当样本起初呈焦点圆锥状态时电压脉冲的响应。

图8展示了实例12的塑料基底上的胆甾显示器测量的反射率比波长。来自平织织物701和来自焦点圆锥织构702的光谱反射率显示在实验图700中。图9展示了实例12的塑料基底上的显示器测量的反射率比电压的电光响应曲线。曲线751展示当样本起初呈反射平织织构时电压脉冲的响应，而曲线752展示当样本起初呈焦点圆锥状态时电压脉冲的响应。

图10是用于判定悬垂系数的参数的示意图。在说明图800中，织物薄膜在平整表面上被切割为半径R2的圆860。阴影区域862代表悬垂在呈半径为R1的圆盘861的形状的基座上的织物从上方观看的投影Sp。由等式100 (Sp - πR1^2)/(πR2^2 - πR1^2)计算悬垂系数。

实例1

通过将各种显示器元件涂覆和印刷在织物基底上来制成可操作型4×1像素胆甾显示器。织物基底为涂覆有可从Thor Labs (Newton, NJ) 购得的氯丁橡胶的黑色人造丝织物（150 微米厚）。氯丁橡胶涂层用于使织物表面部分地平面化。以水与异丙醇（90:10%）的混合物来冲洗所述织物以使得表面亲水。将水性聚氨基甲酸酯分散体（可从MA的NeoResins 购得的NeoRez R967）的制备层以Meyer棒 # 8（可从OH, Mentor 的Chemsultants
International 购得）技术来沉积在织物上且使其在室温下干燥。制备层的干燥厚度近似为 10-12 微米。制备层用于使相当粗糙的氯丁橡胶表面进一步光滑，且为下一掩件层提供化学屏障。将导电聚合物（可从比利时的 Agfa-Gevaert 购得的 ELP-3040）的层作为 25 mm 宽、18 mm 长、间隔 2 mm 的 4 个像素网印在制备层上以充当无源矩阵显示器的电极。在涂覆导电聚合物后，在 100℃下将其固化 10 分钟。导电聚合物层的薄片电阻率为 800 Ω/sq。使用刮刀技术将聚氨基甲酸酯分散体 NeoRez R967 的薄绝缘层（1-2 μm）铸造在导电层上。聚合物在粘剂中经包封的胆甾液晶的层是由基于水的乳液形成，且使用具有 25 微米间隙的刮刀来涂覆在绝缘层上，且使其在室温下干燥 1 小时。经包封的液晶层厚度近似为 8-10 μm。液晶与粘剂之间的比率 4:1 到 5:1。乳液是由 0.4 g 的黄 CLC KLC19（EM Industries of Hawthorne, NY）和 0.27 g 的 NeoRez R967 来制备。为了改进显示器对比度，在乳化之前，将少量（0.3-0.4 重量%）的 4-乙氨基-4′-硝基-偶氮苯染料添加到液晶中。在室温下，用均化器（PowerGen 700）以 1000 rpm 将混合物乳化 3-4 min。经乳化的 CLC 形成微滴，其直径约为 3-15 μm。第二导电电极是由高度透明的导电聚合物（可自 Agfa 购得的 Dipcoat）形成。经由掩模使用气刷来沉积导电聚合物薄层且在室温下使其固化。掩模为无源矩阵显示器提供连续的顶部电极。可通过施加 125 伏使双稳定胆甾材料定址成平面（黄反射）构，或以 50 Hz 的频率和 20 ms 的脉冲宽度施加 70 伏来定址成焦点圆锥（非反射构）。图 7 中展示电光曲线。图 6 中展现反射率与波长的关数据，其中对相位为 12:1 且亮度为 26%。

实例 2

通过将各种显示器元件涂覆和印刷在织物底上来制造可操作型 4×1 像素胆甾显示器。除了对于显示器保护，使用刮刀将聚氨基甲酸酯分散体 WITCOBOND W232（可从 CT 的 Crompton Corporation 购得）的清晰涂层沉
积在第二导电电极顶部上以外，层的序列和材料与实例 1 中的相同。具有大约 5-10 微米的厚度的 WITCOBOND W232 的透明层用作清晰涂层以允许增加归因于折射率匹配的透射。

实例 3

通过将各种显示器元件涂覆盖印刷在织物基底上来制造可操作型 4×1 像素胆甾显示。除了第二导电电极是由可从 Agfa 购得的透明导电聚合物 2500 制成以外，层的序列和材料与实例 1 中的相同。经由掩模使用气刷来沉积导电聚合物薄膜且在 45℃下使其固化历时 3 min。

实例 4

通过将各种显示器元件涂覆盖印刷在织物基底上来制造可操作型单像素胆甾显示器。除了以下所述以外，层的序列和材料与实例 1 中的相同。第一导电电极是由导电聚合物 ELP-3040 制成且形成为一个像素电极且以 Meyer 棒#12 来沉积。沉积两个导电聚合物涂层以得到电极的可取导电率。使用 Meyer 棒#12 涂覆来自于高纯明胶（可从 Norland Products 公司购得）的 5 wt% 水溶液的制备层，且在室温下干燥 30 min。以 2000 rpm 旋涂导电聚合物 Dipcoat 的第二导电电极历时 60 s 且在室温下固化 1 小时。双稳态胆甾材料可通过施加 170 伏来定址成平面（黄反射）织构，或以 250 Hz 的频率施加 60 伏来定址成焦点圆锥（非反射织构）。显示器薄膜在 590 nm 的波长下具有 31% 的亮度。

实例 5

通过将各种显示器元件涂覆盖印刷在织物基底上来制造可操作型 4×1 像素胆甾显示。除了以下所述以外，层的序列和材料与实例 4 中的相同。ELP-3040 的第一导电电极经丝网印刷和图案化以形成如实例 1 中所述的 4 像素行。双稳态胆甾材料可通过施加 150 伏来定址成平面（黄反射）织构，或以 1 Hz 的频率施加 50 伏来定址成焦点圆锥（非反射织构）。显示器薄膜
在 610 nm 的波长下具有 27% 的亮度。

实例 6

通过将各种显示元件涂覆和印刷在织物基底上来制造可操作型 16×16 像素无源矩阵显示器。除了第一和第二导电电极经图案化以提供 256 像素显示器以外，层的序列和材料与实例 2 中的相同。将由导电聚合物 ELP-3040 制成的第一电极网印在制备层上，作为 5 mm 宽、15 cm 长、间隔 1 mm 的条以充当无源矩阵显示器的列电极。经由掩模使用气刷来沉积由导电聚合物 Dipcoat 制成的第二导电电极且在室温下使其固化。将掩模图案化以提供 5 mm 宽、15 cm 长、间隔 1 mm 的条，以形成无源矩阵显示器的行电极。附接到驱动电子器件且使用如美国专利第 6,133,895 号中所揭示的累积驱动方案以图像来驱动，双稳态胆甾材料可通过施加 140 伏来定址成平面（黄反射）织构或通过施加 105 伏来定址成焦点圆锥（非反射织构）。

实例 7

通过将各种显示元件涂覆和印刷在织物基底上来制造可操作型 16×16 像素无源矩阵显示器。除了对于显示器保护，使用刮刀将聚氨基甲酸酯分散体 WITCOBOND W232 的清晰涂层沉积在第二导电电极顶部以外，层的序列和材料与实例 6 中的相同。

实例 8

通过将各种显示元件涂覆和印刷在织物基底上来制造可操作型 16×16 像素无源矩阵显示器。除了第一导电电极与经包封的液晶层之间的绝缘层是由聚氨基甲酸酯分散体 WITCOBOND W232 制成以外，层的序列和材料层与实例 6 中的相同。

实例 9

通过将各种显示元件涂覆和印刷在织物基底上来制造可操作型 16×16 像素无源矩阵显示器。除了将第二绝缘层引入经包封的液晶层与第
二透明导电电极之间以外，层的序列和材料与实例 6 中的相同。使用刮刀将
聚氨基甲酸酯分散体 WITCOBOND W232 的清晰层沉积在经包封的液晶层
顶部上。此层的厚度大致为 2-3 微米。同样，此显示器不具有顶部清晰涂层。

实例 10

通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 16×16 像素无源矩阵胆甾显示器。塑料基底为可从 Teijin（日本）购得的具有 137
微米厚度的 PET 薄片。为了为反射型显示器建立黑色背景，首先通过喷涂
将黑色漆（KRYLON）涂覆在基底的后侧面上且在室温下干燥。将导电聚合
物（可从比利时的 Agfa-Gevaert 购得的 ELP-3040）层网印在塑料基底的另一
侧上，作为 5 mm 宽、15 cm 长，间隔 1 mm 的条以充当无源矩阵显示器的列电极。在涂覆之后，在 100℃下将导电聚合物固化 10 分钟。使用刮刀
t技术，将聚氨基甲酸酯分散体 WITCOBOND W232（可从 CT 的 Crompton
Corporation 购得）的薄绝缘层（1-2 μm）铸造在导电层上。在聚合物粘着剂
中呈基于水的乳液的形式的经包封的胆甾液晶层是使用具有 25 微米间隙的
刮刀而涂覆在绝缘层上且使其在室温下干燥 1 小时。经包封的液晶层的厚度
大致为 8-10 μm。乳液是由 0.4 g 的黄 CLC KLC19（EM Industries of
Hawthorne，NY）和 0.27 g 的 NeoRez R967 来制备且在室温下用均化器
（PowerGen 700）以 100 rpm 乳化 3-4 min。在经包封的层中，液晶和粘着
剂的含量分别为 78%和 22%。经乳化的 CLC 形成微滴，其直径约为 3-15 μm。

第二导电电极是由可从 Agfa 购得的高透明导电聚合物 Dipcoat 所形成。经由
掩模使用气刷来沉积导电聚合物薄膜且使其在室温下固化。将掩模图案化以
提供 5 mm 宽、15 cm 长，间隔 1 mm 的条以形成无源矩阵显示器的行电极。
连接到用于多路复用的驱动电路且使用在美国专利第 6,133,895 号中所揭示
的累积驱动方案来定址成图像，双稳态胆甾材料可通过施加 95 伏而转换成
平面（黄反射）织构或通过施加 65 伏而转换成焦点圆锥（非反射织构）。

37
实例 11

通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 16×16 像素无源矩阵型显示器。除了将第二绝缘层引入经包封的液晶层与第三透明导电电极之间以外，层的序列和材料与实例 10 中的相同。使用刮刀将聚氨酯甲酸酯分散体 WITCOBOND W232 的清晰层沉积在经包封的液晶层顶部上。此层的厚度大致为 2-3 微米。

实例 12

通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 2×6 像素显示器。塑料基底为涂覆有 ITO 导电层的 137 微米厚 PET 薄片（可从日本的 Tijin 获得）。通过蚀刻来进行 ITO 图案化。每个像素为 20 mm 宽且 13 mm 长，且充当无源矩阵显示器的电极。为了为反射型显示器建立黑色背景，首先通过喷涂将黑色漆（KRYLON）涂覆在基底的后侧面上且在室温下干燥。聚合物粘着剂中的胆甾液晶的基于水的乳液是使用具有 25 微米间隙的刮刀而涂覆于 ITO 层上，且使其在室温下干燥 1 小时。经包封的液晶层的厚度大致为 8-10 μm。乳液是由 0.4 g 的绿 CLC KLC19（EM Industries of Hawthorne, NY）和 0.27 g 的 NeoRez R967 来制备且在室温下用均化器（PowerGen 700）以 1000 rpm 乳化 3-4 min。在经包封的层中，液晶和粘着剂的含量分别为 78%和 22%。经乳化的 CLC 形成微滴，其直径约为 3-15 μm。经由掩模使用气刷来沉积高度透明的导电聚合物（可从 Agfa 购得的 Dipcoat）的第二导电电极且在室温下使其固化。掩模提供无源矩阵显示器的固体电极。双稳态胆甾材料可通过施加 60 伏来定址成平面（黄反射）织构或通过施加 35 伏来定址成焦点圆锥（非反射织构）。显示器薄膜具有 16:1 的对比率和 28%的亮度。图 9 中展示电光曲线。图 8 中呈现反射率与波长的关系数据，其中对比率 16:1 且亮度为 28%。

实例 13
通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 2×6 像素胆甾显示器。除了将聚氨甲酸酯分散体 WITCOBOND W232 清晰层用于显示器保护以外，材料和层的序列与实例 12 中的相同。使用刮刀将聚氨甲酸酯分散体的薄透明层沉积在第二导电电极顶部上。此层的厚度大致为 2-3 微米。

实例 14

通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 2×6 像素胆甾显示器。除了经包封的液晶为在光谱的蓝光区域中具有反射带的 CLC 以外，材料和层的序列与实例 12 中的相同。双稳态胆甾材料可通过施加 80 伏来定址成平面（蓝反射）织构，或通过施加 50 伏来定址成焦点圆锥（非反射织构）。

实例 15

通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 2×6 像素胆甾显示器。除了经包封的液晶为在光谱的黄光区域中具有反射带的 CLC 以外，材料和层的序列与实例 12 中的相同。双稳态胆甾材料可通过施加 70 伏来定址成平面（黄绿反射）织构，或通过施加 40 伏来定址成焦点圆锥（非反射织构）。

实例 16

通过将各种显示器元件涂覆和印刷在塑料基底上来制造可操作型 2×6 像素无源矩阵胆甾显示器。除了经包封的液晶为与 1 wt%的 BAB6 混合的 CLC 以外，材料和层的序列与实例 12 中的相同。BAB6 添加剂的目的在于改进对比率和亮度。在将 CLC 转换成垂直状态的所施加的电场下，在 UV 光下将经组装的显示器固化 30 min。双稳态胆甾材料可通过施加 115 伏来定址成平面（绿反射）织构，或通过每像素施加 70 伏来定址成焦点圆锥（非反射织构）。显示器薄膜具有 25:1 的对比率和 30%的亮度。
实例 17

通过将各种显示器元件涂覆和印刷在塑料基底上制造可操作型 2 × 6 像素型彩色显示器。除了经组装的显示器在没有电场的情况下在 UV 光下固化 30 min 以外，材料和层的序列与实例 16 中的相同。双稳态色彩材料可通过施加 110 伏来定址成平面（绿反射）织构，或通过每像素施加 65 伏来定址成焦点圆锥（非反射织构）。显示器薄膜具有 19:1 的对比率和 30% 的亮度。

实例 18

通过将各种显示器元件涂覆和印刷在黑色塑料基底上制造可操作型 4 × 1 像素型彩色显示器。塑料基底为具有 125 微米厚度的黑色 PET 薄片。将导电聚合物 ELP-3040 的层网印在塑料基底上，作为 3.5 × 10 cm 的条以充当无源矩阵显示器的固体电极。在铸成之后，在 100℃下将导电聚合物固化 10 分钟。在 NeoRez R967 粘着剂中 CLC 的水基乳液是通过使用具有 25 微米间隙的刮刀从水性乳液状态涂覆于电聚合物层上，且使其在室温下干燥 1 小时，所述乳液来自于水性乳液。第二导电电极是由经由掩模使用气刷而沉积为薄膜且在室温下固化的导电聚合物 Dipcoat 所形成。掩模提供 4 × 1 像素化电极。

实例 19

通过将各种显示器元件涂覆和印刷在塑料基底上制造可操作型 16 × 16 像素无源矩阵彩色显示器。如实例 10 中所述沉积背景的黑色漆和第一导电层。在 NeoRez R967 粘着剂中经微包封的 CLC 层是通过使用具有 25 微米间隙的刮刀从基于水的浆料状态涂覆于导电聚合物层上且使其在室温下干燥 1 小时。CLC（来自 EM Industries 的 KLC2）的每个个别微滴是使用凝聚工艺（由 IL 的 Liquid Crystal Resources 公司生产）而包封在由交叉连接的明胶组成的个别壳中。将 5 wt%的胶乳粘着剂添加到经微包封的液晶浆料中以在个别微滴之间提供粘着剂。涂层非常坚固且耐刮擦，且不需要任何保护层。
双稳态胆甾材料可通过施加 60 伏来定址成平面（绿反射）构造，或通过以 10 Hz 的频率和 100 ms 的脉冲宽度使用累积驱动方案而施加 35 伏来定址成焦点圆锥（非反射织构）。

实例 20

通过将各种显示器元件涂覆和印刷在白色纸张基底上来制造可操作型 2 × 2 像素胆甾显示器。为了为反射型显示器建立黑色背景，首先通过喷涂将黑色漆（KRYLON）涂覆在纸张基底上且使其在室温下干燥。经由掩模对由导电聚合物 Dipcoat 制成的第一导电电极进行刷且在室温下使其固化 1 小时。掩模提供 15 mm 宽、50 mm 长、间隔 2 mm 距离的 2 个条。在 NeoRez R967 粘结剂中经包封的黄 CLC 的层是通过使用具有 25 微米间隙的刮刀从基于水的乳化剂状态而涂覆于导电聚合物层上，且使其在室温下干燥 1 小时。Dipcoat 导电聚合物的第二导电电极是通过经由掩模使用气刷而沉积为薄透明层且在室温下得以固化。掩模提供 15 mm 宽、50 mm 长、间隔 2 mm 距离的两个条。显示器薄膜具有 18:1 的对比率和 32%的亮度。

实例 21

通过将各种显示器元件涂覆和印刷在塑料基底上来制造具有两个电活性层的可操作型 2 × 6 像素胆甾显示器。具有经图案化的 ITO 层、经包封的 CLC 层和第二导电电极的塑料基底与实例 12 中的相同。CLC 螺旋为右旋（RH）。将 UV 可固化光学粘合剂 NOA 72（可从 Norland Products 购得）的薄绝缘层（以 3000 rpm）旋涂在第二导电层的顶部上。通过使绝缘层暴露于每平方厘米具有若干毫瓦的强度的 UV 灯下持续 4 min 而使其固化。在聚氨基甲酸酯粘着剂（NeoRez R967）中包封的胆甾液晶的第二层通过使用刮刀从基于水的乳液状态涂覆于绝缘层上。CLC 螺旋为左旋（LH）。经包封的液晶层的厚度大致为 8-10 μm。由导电聚合物 Dipcoat 制成的第三导电透明电极是通过使用气刷经由掩模而沉积且在室温下固化。掩模提供无源矩阵显
示器的固体电极。最终，将 NOA 72 的顶部清晰涂层（以 3000 rpm）旋涂在第三导电电极上。每个经包封的 CLC 层可分别地定址。

实例 22

通过将各种显示器元件涂覆和印刷在塑料基底上来制造具有两个电活性层的可操作型 2×6 像素胆甾显示器。具有经图案化的 ITO 层的塑料基底与实例 12 中的相同。在 PVA 粘着剂中经包封的蓝 CLC 层如前文所述以刮刀技术自水乳液状态来沉积。为了制备乳液，在室温下用均化器（PowerGen 700）以 1000 rpm 将大致 0.350 g 的 CLC、0.250 g 的 20%PVA 水溶液和 0.100 g 的一元醇乳化 3-4 min。包封材料，PVA（来自 Celanese Chemicals 的具有 88%水解的 Celvool 205）起初是使用索氏萃取法（Soxhlet extraction method）来纯化。经乳化后的 CLC 形成微滴，其直径约为 2-10 μm。经包封的液晶层的厚度约为 10-12 μm。将 UV 可固化 NOA 72 的薄绝缘层（以 3000 rpm）旋涂在经包封的层的顶部上。通过使绝缘层暴露于每平方厘米具有若干毫瓦的强度的 UV 灯下持续 4 min 而使其固化。由导电聚合物 Dipcoat 制成的第二导电透明电极是通过使用气刷经由掩模而沉积且在室温下固化。掩模提供无源矩阵显示器的固体电极。在 PVA 粘着剂中经包封的黄色胆甾液晶的第二层是使用刮刀从基于水的乳液状态涂覆于第二导电电极上。经包封的液晶层的厚度约为 10-12 μm。由导电聚合物 Dipcoat 制成的第二导电透明电极是通过使用气刷经由掩模而沉积且在室温下固化。掩模提供无源矩阵显示器的固体电极。将 UV 可固化 NOA 72 的第二绝缘层旋涂在第二经包封的 CLC 层的顶部上。由导电聚合物 Dipcoat 制成的第三导电透明电极是使用气刷经由掩模而沉积且在室温下使其固化。掩模提供无源矩阵显示器的固体电极。每个经包封的 CLC 层可分别地定址。

实例 22

通过 PIPS 方法使用微滴分散体来将可操作型胆甾层制造在织物上。
步骤为在 100℃时将涂覆有氯丁橡胶的一块黑色人造丝织物穿过层压机，且接着以甲醇对其进行清洗来制备表面。接下来，将导电聚合物 Agfa EL-P 3040 的层网印到氯丁橡胶上且在 130℃下使其固化历时 2 分钟以形成底部电极。使用#12 Meyer 棒将其由 75% KCL19 胆甾液晶和 25%预聚合物混合物组成的暴露聚合致相分离（PIPS）混合物铸到织物上。预聚合物混合物具有以下成分：40%甲基丙烯酸 2-乙基己基酯、31%甲基丙烯酸异芐基酯、18%丙烯酸五氟丙基酯、9%三羟甲基丙烷三丙烯酸酯和 2% Irgacure 651（光引发剂）。接着以 UV 光（ELC4001，Electro-lite 公司，3.75 mW/cm²）将薄膜照射 10 分钟，同时装入以 N₂气流净化的清澈 Tupperware 容器（Rubbermaid StainShield，2.1QT）中。N₂流的目的是双重的：1）通过以惰性气体净化大气来使丙烯酸单体能够聚合，从而阻止自由基经由 O₂而清除[K. Studer、C. Decker、E. Beck、R. Schwalm, Progress in Organic Coatings 48 92-100 (2003)], 2）使黑色织物在经受高强度的 UV 照射时保持冷却。在固化过程中，预聚合物混合物聚合导致液晶发生相分离而形成微滴。在固化后，以异丙醇冲洗薄膜以移除在表面上所存在的任何非经包封的液晶。在冲洗后，使用压缩空气而使样本干燥。最终，使用 Scotch 带（3M）条将表面分成 3 个像素，且将 5 层 Dipcoat 导电聚合物（700）气刷到薄膜表面上且使其在空气中干燥 15 分钟。在干燥后，移除所述带且相位可单独地转换。在 170 伏（f=20 Hz）下使样本转换成平面状态，且在 100 伏（f=20 Hz）下使样本转换到焦点圆锥状态。在平面状态中，在 500 nm 处最大反射率为 23%，而在 500 nm 处焦点圆锥状态具有 8.25%的反射率。样本非常具柔性——易于绕铅笔卷起或与圆形表面一致，而不改变双稳态液晶织构。

实例 24

通过 PIPS 方法使用微滴分散体将可操作型胆甾层制造在实例 23 的聚合物平面化织物上。第一步骤为以异丙醇清洗涂覆在织物上的氯丁橡胶预平面
化层以制备表面。接下来，添加聚合物平面化层以使氯丁橡胶层光滑。聚合物平面化层是由 82% 甲基丙烯酸 2-乙基己基酯、10% 甲基丙烯酸五氟丙基酯、6% 三羟甲基丙烷三丙烯酸酯和 2% Irgacure 651 的混合物组成。如果未使织物基底平面化，那么基底的编织会导致越过像素的平面织构的不均匀性，因为与较厚的点相比，较薄的点会在较低电压下转换。将具有 1.0% 助粘剂（PLM158）和 0.5% 润湿剂（TPR156）的导电聚合物 Agfa EL-P 3040 的层穿过 4 像素掩模网印到基底上，且在 85℃ 下使其固化历时 40 分钟以形成底部电极。使用#12 Meyer 棒将由 75% KCL19 胆甾液晶和 25% 预聚合物混合物组成的暴露 PIPS 混合物铸造到织物上且如实例 23 中那样固化。在固化后，以异丙醇冲洗薄膜以移除表面上所存在的任何未经包封的液晶。在冲洗后，使用 N₂ 流来干燥样本。最终将 15 层 Dipcoat 导电聚合物气刷到 PIPS 薄膜表面上且将其在空气下干燥 15 分钟。使样本在 130 伏（f=20 Hz）下转换成平面状态，且在 60 伏（f=20 Hz）下转换成焦点圆雉状态。样本非常具有柔性——易于绕铅笔卷起或与圆形表面一致，而不改变双稳态液晶织构。

实例 25

除了在第一导电层与暴露 PIPS 层之间添加绝缘层以外，以与实例 24 中相同的方法，通过 PIPS 方法使用微滴分散体将可操作型胆甾层制造在经平面化的织物上。制备方法与实例 24 为止的制备方法相同且包括第一导电层。为了防止从导电聚合物的底层到导电聚合物的顶层的顶部与底部短路，将绝缘层施加在第一导电层上。绝缘层是由预聚合物（50% 双酚 A 甘油酸酯二丙烯酸酯（Bisphenol A Glycerolate Diacrylate）、48% 异丙醇和 2% Irgacure）的薄（约 5 微米）层组成，其是使用 2.5 号线绕棒来铸造且在氮环境中 UV 聚合 10 分钟。绝缘层的聚合成分并不重要，只要其湿润导电聚合物和平面化层的表面即可。如实例 24 中所述，将随后的 PIPS 层和剩余的层添加到绝缘层。使样本在 150 伏（f=20 Hz）下转换成平面状态，且在 70 伏（f=20 Hz）
下转换成焦点圆锥状态。样本非常具有柔性——易于绕铅笔卷起或与圆形表面一致，而不改变双稳态液晶织构。

实例 26

除了在聚合物平面化层与第一导电层之间添加绝缘层以外，以与实例 25 中相同的方法，通过 PIPS 方法使用微滴分散体将可操作型胆甾层制造在经平面化的织物上。制备方法与实例 24 为止的制备方法相同，且包括聚合物平面化层。为了增强导电聚合物对平面化层的润湿，使用由 50% 双酚 A 甘油酸酯二丙烯酸酯、48% 异丙醇和 2% Irgacure 组成的薄隔离层。此层是通过使用 2.5 号线绕棒来铸造且在 N₂ 环境中 UV 固化 15 分钟。将导电聚合物 Agfa EL-P 304 的层通过穿过 4 像素掩模网印到基底上而沉积于隔离层上，且在 85°C 下固化 40 分钟以形成底部电极。从绝缘层向前以与实例 25 相同的方式制备样本的剩余部分。使样本在 150 伏 (f=20 Hz) 下转换为平面状态且在 70 伏 (f=20 Hz) 下转换为焦点圆锥状态。样本非常具柔性——易于绕铅笔卷起或与圆形表面一致，而不改变双稳态液晶织构。

实例 27

将实例 1-9 和 22-26 中所使用的 Thor Labs (Newton, NJ) 的裸人造丝/氯丁橡胶织物基材材料的薄片切割成直径为 30 cm 的圆，接着悬垂在直径为 18 cm 的支架上，且拍摄投影并测量面积。测量裸织物基底的悬垂系数为 53%。接着以与实例 1 相同的层涂覆基底，且再次测量悬垂系数，并发现为 59%，仅略大于裸基底。