Office de la Propriete Canadian CA 2427848 A1 2002/04/04

Intellectuelle Intellectual Property
du Canada Office (21) 2 427 848
Jn organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2001/09/25 (51) Cl.Int."/Int.Cl." GOBF 17/30, GOBF 7/00
(87) Date publication PCT/PCT Publication Date: 2002/04/04 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2003/05/08 APPSTREAM, INC., US
(86) N° demande PCT/PCT Application No.: US 2001/030007| (72 g‘yfgtﬁugﬁm"l‘i'_‘tOW
(87) N° publication PCT/PCT Publication No.: 2002/027556 RAMON. AMIT. IL
(30) Priorités/Priorities: 2000/09/26 (60/235,535) US: VOLK, YERUDA, IL;
2000/12/28 (09/750,835) US RAZ, URI, US;
MELAMED, SHMUEL, IL
(74) Agent: BLAKE, CASSELS & GRAYDON LLP
(54) Titre : PROCEDE ET SYSTEME POUR EXECUTER DES APPLICATIONS RESEAU CONTINUES
(54) Title: METHOD AND SYSTEM FOR EXECUTING NETWORK STREAMED APPLICATIONS
100
140
~~— OPERATING STREAMING _l/
SYSTEM |1 " APPLICATION
I A
N I I s —T
190 3 4 _— I
y 180 | | ; 120 /
. REM[SS?BLE}‘ » DRIVER 1 1/ | APPLICATION | : APPLICATION WEB
— | MANAGER : LAUNCHER | BROWSER
HARD DRIVE |« » DRIVER 2 L | I
l / : A
— | I
:
CD-ROM |« » DRIVER 3 : 60 o :
B / /170 .
i \ [STREAMING | | —1
| N FILE INTELLIGENT coMM. | | NETWORK
' sysTEm [CACHE VIRTUAL 1 priver [€71 " SOCKET
: e FILE SYSTEM
i |
| e
7
102 —
(TO SERVER VIA NETWORK)
(57) Abrége/Abstract:

A method and system for executing a streamed application (100) on a client system utilizes a virtual file system (160) installed In
the client which Is configured to appear to the operating system (140) as a local storage device containing all of the application

files required by the application. Prior to streaming, the application files are broken up into streamlets (18) correspondir
generally to various portions of the application files and these streamlets are delivered to the client by the server, preferab

using a predictive algorithm to determine an optimal transmission order. After an initilal set of streamlets Is received, tr

9

y
e

application I1s executed from the virtual file system. File loads issued by the operating system to the virtual file system are
translated to determine which streamlets correspond to the load request and the appropriate data Is returned. If a needed
streamlet Is not present, a streamlet request Is iIssued to the server and the virtual file system maintains a busy status until the

necessary streamlets have been provided.

SRR VNEEEN
R 5. sas ALy
O
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

2/27556 Al

~

WO

CA 02427848 2003-05-08

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
4 April 2002 (04.04.2002)

(51) International Patent Classification’: GO6F 17/30, 7/00

(21) International Application Number: PCT/US01/30007

(22) International Filing Date:
25 September 2001 (25.09.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/235,535
09/750,835

US
US

26 September 2000 (26.09.2000)
28 December 2000 (28.12.2000)

(71) Applicant: APPSTREAM, INC. [US/US]; 2595 East
Bayshore Road, Palo Alto, CA 94303 (US).

(72) Inventors: EYLON, Dan; 33 Harimon St., Ramat
Hasharon 47251 (IL). RAMON, Amit; 10 Harakefet
St., Zoran 42823 (IL). VOLK, Yehuda; 10 Rembrandt
Street, Tel Aviv (IL). RAZ, Uri; 36-02 Hillside Terrace,
Fairlawn, NJ 07410 (US). MELAMED, Shmuel; 35 Neve
Yehushua, Ramat-Gan (IL).

PCT

(10) International Publication Number

WO 02/27556 Al

(74) Agent: FELLER, Mitchell, S.; Clitford Chance Rogers &
Wells LLP, 200 Park Avenue, New York, NY 10166 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ., BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ., EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, L.V, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, I, FR, GB, GR, ILE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR EXECUTING NETWORK STREAMED APPLICATIONS

100
140
i~ OPERATING STREAMING ——"
SYSTEM [° APPLICATION
I A
FLESYSTEM | T T Ty TT oo T T :
DERIVERS : /-110 1 ~ 130
190 Y :
REMOVABLE 180 : f | =120 /
~ DIsKk [» DRIVER 1.1/ | { APPLICATION |, ! APPLICATION WEB
: MANAGER | LAUNCHER | BROWSER
|
HARD DRIVE {4 » DRIVER 2 { |
| | A
|
}
. < » DRIVER 3 | :
CD-ROM : an o |
BT [[¥ 144
| STREAMING | ! —t
N e L hsesn | foom, | 1 f wenwork
| SYSTEM [|| "oy E SySTEM DRIVER [SOCKET
| DRIVER l
. !
i a
1

-——.h————-._u--_——ﬂ——u.ﬂ——-—-—v—‘——oﬁ—-———m—

(TC SERVER VIA NETWORK)

(57) Abstract: A method and system for executing a streamed application (100) on a client system utilizes a virtual file system
(160) installed in the client which is configured to appear to the operating system (140) as a local storage device containing all of the
application files required by the application. Prior to streaming, the application files are broken up into streamlets (18) corresponding
generally to various portions of the application files and these streamlets are delivered to the client by the server, preferably using
a predictive algorithm to determine an optimal transmission order. After an initial set of streamlets is received, the application is
executed from the virtual file system. File loads issued by the operating system to the virtual file system are translated to determine
which streamlets correspond to the load request and the appropriate data is returned. If a needed streamlet is not present, a streamlet
request is issued to the server and the virtual file system maintains a busy status until the necessary streamlets have been provided.

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

METHOD AND SYSTEM FOR EXECUTING
NETWORK STREAMED APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS:

The present application claims the benefit under 35 U.S.C. § 119 of U.S.
Provisional Application Serial No. 60/235,535 entitled "Native Streaming Architecture”, filed
on September 26, 2000, the entire contents of which is hereby expressly incorporated by
reference. The present application is also a continuation-in part of U.S. Patent Application
Serial No. 09/120,575 entitled "Streaming Modules" and filed on July 22, 1998, the entire
contents of which is hereby expressly incorporated by reference.

This application is also related to the following pending U.S. Patent applications, the
entire contents of which is hereby expressly incorporated by reference: (a) U.S. Patent
Application Serial No. 09/237,792 entitled "Link Presentation and Data Transfer" and filed
on January 26, 2000; (b) U.S. Provisional Patent Application Serial No. 60/177,736 entitled
"Method and Apparatus for Determining Order of Streaming Modules" and filed on January
21, 2000; (c) U.S. Provisional Patent Application Serial No. 60, 177,444 entitled "Method
and Apparatus for Improving the User-Perceived System Response Time in Web-based
Systems" and filed on January 21, 2000; and (d) U.S. Provisional Patent Application Serial
No. 60/207,632 entitled "Apparatus and Method for Improving the Delivery of Software

Applications and Associated data in Web-based Systems" and filed in March 25, 2000.

FIELD OF THE INVENTION:

The present invention is directed to a method, system, and architecture for
streaming applications from a server for execution on a client, and, more particularly, a

method and system for executing streamed applications on a client system.

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

BACKGROUND:

The Internet, and particularly the world-wide-web, 1s a rapidly growing
network of interconnected computers from which users can access a wide variety of
5 information. Initial widespread use of the Internet was limited to the delivery of static
information. A newly developing area of functionality is the delivery and execution of
complex software applications via the Internet. There are two basic techniques for sofiware
delivery, remote execution and local delivery, e.g., by downloading.
In a remote execution embodiment, a user accesses software which 1s loaded
10 and executed on a remote server under the control of the user. One simple example 1s the use
of Internet-accessible CGI programs which are executed by Internet servers based on data
entered by a client. A more complex systems 1s the Win-to-Net system provided by Menta
Software. This system delivers client software to the user which 1s used to create a Microsoft
Windows style application window on the client machine. The client sofiware interacts with
15 an application program executing on the server and displays a window which corresponds to
one which would be shown if the application were installed locally. The client software is
further configured to direct certain I/O operations, such as printing a file, to the client's
system, to replicate the "feel" of a locally running application. Other remote-access systems,
such as provided by Citrix Systems, are accessed through a conventional Internet Browser
20 and presént the user with a "remote desktop" generated by a host computer which is used to
execute the software.
Because the applications are already installed on the server system, remote
execution permits the user to access the programs without transterring a large amount of data.
However, this type of implementation requires the supported software to be installed on the

25 server. Thus, the server must utilize an operating system which 1s suitable for the hosted

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

software. In addition, the server must support separately executing program threads for each
user of the hosted software. For complex software packages, the necessary resources can be
significant, limiting both the number of concurrent users of the software and the number of
separate applications which can be provided.

In a local delivery embodiment, the desired application 1s packaged and
downloaded to the user's computer. Preferably, the applications are delivered and installed as
appropriate using automated processes. After installation, the application is executed.
Various techniques have been employed to improve the delivery of software, particularly in
the automated selection of the proper software components to install and 1nitiation of
automatic software downloads. In one technique, an application program 1s broken into parts
at natural division points, such as individual data and library files, class definitions, etc., and
each component is specially tagged by the program developer to identify the various program
components, specify which components are dependent upon each other, and define the
various component sets which are needed for different versions of the application.

Once such tagging format is defined in the Open Software Description
("OSD") specification, jointly submitted to the World Wide Web Consortium by Marimba
Incorporated and Microsoft Corporation on August 13, 1999. Defined OSD information can
be used by various "push" applications or other software distribution environments, such as
Marimba's Castanet product, to automatically trigger downloads of software and ensure that
only the needed software components are downloaded in accordance with data describing
which software elements a particular version of an application depends on.

Although on-demand local delivery and execution of software using OSD /
push techniques is feasible for small programs, such as simple Java applets, for large
applications, the download time can be prohibitively long. Thus, while suitable for software

maintenance, this system is impractical for providing local application services on-demand

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

because of the potentially long time between when the download begins and the software
begins local execution.

Recently, attempts have been made to use streaming technology to deliver
software to permit an application to begin executing before i1t has been completely
downloaded. Streaming technology was initially developed to deliver audio and video
information in a manner which allowed the information to be output without waiting for the
complete data file to download. For example, a full-motion video can be sent from a server
to a client as a linear stream of frames instead of a complete video file. As each frame arrives
at the client, it can be displayed to create a real-time full-motion video display. However,
unlike the linear sequences of data presented in audio and video, the components of a
software application may be executed in sequences which vary according to user input and
other factors.

To address this issue, as well as other deficiencies in prior data streaming and
local software delivery systems, an improved technique of delivering applications to a client
for local execution has been developed. This technique is described 1n parent U.S. Patent
Application Serial No. 09/120,575, entitled "Streaming Modules" and filed on July 22, 199s.

In a particular embodiment of the "Streaming Modules" system, a computer.
application 1s divided imto a set of modules, such as the various Java classes and data sets
which comprise a Java applet. Once an initial module or modules are delivered to the user,
the application begins to execute while additional modules are streamed in the background.
The modules are streamed to the user in an order which is selected to deliver the modules
before they are required by the locally executing software. The sequence of streaming can be
varied in response to the manner in which the user operates the application to ensure that
needed modules are delivered prior to use as often as possible. To reduce streaming time, the

size of code files, such as library modules, can be reduced by substituting various coded

10

15

20

235

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

procedures with shortened streaming "stub" procedures which act as link-tiﬁle subvstitutes for
the removed code. Suitable modules to replace are those which are not required for the initial
execution of the application. As the application is running locally on the client, additional
modules are streamed to the client and the stub code can be dynamically replaced as the
substituted procedures are received. The stub procedure can point to a streaming engine
which will request a missing procedure if the program calls it before it has been received at
the client.

Although effective, the stub-code substitution technique used in the "Streaming
Modules" system may require a reasonable degree of processing to prepare a given
application for streaming. In addition, the client software required to manage the streamed
modules does not necessarily integrate cleanly with the normal routines used by the operating
system executing on the client machine.

Accordingly, there is a need to provide streamed applications and supporting
streaming management software in a manner which more closely aligns with how a locally

running application would actually be loaded and executed.

SUMMARY OF THE INVENTION:

The present invention is directed to a method, system, and architecture which
enables local execution of application programs on a Client computer while delivering the
application code and data from a central Server and over a network, such as the Internet, or
other data network, such as a wired or wireless TCP/IP Wide Area Network (WAN). The
application does not need to be installed on the Client PC. Instead, the application is
streamed to the client’s system in streamlets or blocks which are stored in a persistent client-
side cache and the system is configured such that the application can begin to execute on the

client machine after only a small fraction of the application is loaded.

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

More specifically, the application to be executed is stored as a set of blocks or
"streamlets" (parts into which the application has been divided) on a server. In a preferred
embodiment, each streamlet blocks corresponds to a data block which would be processed by
the native operating system running on the client system were the entire application locally
present. For example, standard Windows systems utilize a 4k code page when loading data
blocks from disk or in response to paging requests. Preferably, each streamlet is stored in a
pre-compressed format on the server and decompressed upon receipt by the client.

A set of streaming control modules are installed on the client system and
include an intelligent caching system which is configured as a sparsely populated virtual file
system ("VFS") which is accessed via a dedicated streaming file system ("FSD") driver. The
VES will appear to the operating system to be a local drive which contains the entire
application. However, in practice, only pieces of the various files required for execution of

the application may actually be present.

During normal operation of an application, the Windows operating system will
periodically generate page faults and associated paging requests to load portions of the
application into memory. Standard operating system procedures direct these I/0 requests to
the proper data device driver for processing. When the streaming application is initialized,
the operating system is informed that the relevant data is stored on the VES drive. Thus, as
the streaming application executes and paging or data I/O requests are generated to retrieve
require code or data, the operating system will automatically direct it to the FSD driver which
then passes it in the proper format to the VFS caching system for processing.

If the requested streamlets are present in the VFS, the data is returned to the
operating system and the streaming program continues normal operation. If one or more of
the requested streamlet blocks are absent from the VFS, a fetch request 1s 1ssued to the server

for the appropriate streamlet blocks. When the streamlets are returned, they are stored in the

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

VFS and the read or paging request from the operating system 1s satisfied. Application
streamlet data can be persistently stored on the client between sessions such that subsequent
uses of the same application will result in an immediate startup. Persistent data can be
retained within the client's VFS itself or an image or snapshot of the VFS can be made and
stored elsewhere on the client system, which snapshot can be reloaded into the VFS when
needed.

To improve responsiveness of the system when the applioatidn is not fully
loaded in the cache, a predictive engine can be used on the server. Based upon information
gathered from user interaction with the application at issue, a statistical usage model can be
built which tracks the order in which users access the various streamlets. When a client starts
a streaming application, an initial set of streamlets sufficient to enable the application to
begin execution is forwarded to the client. Additional application streamlets can then be
actively pushed to the client in accordance with the predictive model and possibly additional
data forwarded to the server from the client while the application executes. As a result, many
of the needed streamlets will be present in the client-side cache before they are needed.

Advantageously, the present architecture described enables a positive user
experience with streamed applications without requiring constant use of broadband data links.
In addition, and unlike remote-access application systems, the streaming applications execute
on the client machine and server and network resources are utilized for delivery only. As a
result, server and network load are reduced, allowing for very high scalability of the server-
baéed application delivery service which can deliver, update and distribute applications to a
very large number of users, as well as perform centralized version updates, billing, and other
management operations. Furthermore, because the application server does not run
application code but only delivers streamlets to the client, it can run on operating systems

other than the application target operating system, such as Unix derivatives or other future

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

operating systems, as well as Windows-based servers. In addition, the application streaming
system is source code independent. Applications are packaged automatically on the server n
accordance with an analysis of the sequence in which the application is loaded mto memory
during execution. No changes to the application itself are required.

The present invention can be used as an enabling technology for remote
application hosting, or application service provision (ASP). As broadband technology for
connecting end-users to the Internet becomes more widespread, the advantages of application
hosting and provision become more convincing and overpowering. However, since
bandwidth limitations are likely to exist for some time, especially when compared to the
bandwidth available to a locally executed application, the present invention provides ways 10
enhance an application delivery and make it more efficient, while at the same time creating a
layer of separation between the Client and the Server, enabling much better control over

server integrity and security.

BRIEF DESCRIPTION OF THE FIGURES:

The foregoing and other features of the present invention will be more readily
apparent from the following detailed description and drawings of illustrative embodiments of
the invention in which:

FIG. 1 is a block diagram of a system for implementing the present invention;

FIG. 2 1s a sample usage graph used to predict usage of an application
program,

FIG. 3 is a high-level block diagram of the client and server architecture;

FIG. 4 is a block diagram of the client system showing various elements of the

streaming control system 1illustrating various;

10

15

20

235

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

FIGs. 5 and 6A-6B are high-level flow diagrams illustrating the operation of

the client streaming software;

FIG. 7 is a block diagram of one embodiment of a virtual file system

containing a partially streamed application; and |

FIG. 8 is an illustration of a drive map of the partially streamed application of

Fig. 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S):

Turning to Fig. 1, there 1s éhown block diagram of a system 10 implementing
various aspects of the present invention. The system includes a server 12 which is connected
to one or more clients 14 via a data network 16, such as the Internet, an intranet, extranet or
other TCP/IP based communication network, or other types of data networks, including
wireless data networks.

Prior to streaming an application, the application files are divided into small
segments called streamlets. Rather than delivering an entire application prior to execution,
the server delivers information about the application files and preferably a small portion of
the application itself. In particular, the client receives a file structure specification which
defines how files associated with the application and required for the application to operate
appear to a computer when the application is locally installed. In particular, the file structure
specification defines the structure of at least the primary application file which is loaded by
the operating system when the application 1s initially executed.

In addition, a startup streamlet set is preferably sent to the client and which
includes at least those streamlets containing the portions of the application required to enable
execution of the application to be initiated. Preferably, the startup streamlet set comprises

those streamlets required to begin application execution and have the application run to a

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

point where user interaction is required. Most preferably, the file structure specification and
the startup streamlet(s) are provided to the client packaged 1n a Startup Block or Imit Block.
In addition, further application information, such as environmental variable settings,
additions to system control files, and other system modifications or additions which may be
required to "virtually install" the application can be provided. A preferred technique for
determining the contents of the Startup Block and defining the various streamlets for a given
application is disclosed in U.S. Patent Application entitled "Method and System for
Streaming Software Applications to a Client" and filed concurrently with the present
application, the entire contents of which is expressly incorporated by reterence.

Once the streamlets in the startup block (or streamlet set) are received and
loaded, e.g., during a short streaming initialization phase, and provided environmental
information is processed, the application is executed. Even though typically only a small
fraction of the application's files (or portions thereof) are locally present on the client, enough
is generally present to for the application to run to the point that user interaction is required.
The remaining application streamlets can be delivered to the client automatically by the
server or in response to fetch requests 1ssued by the client. Preferably, the streamlets are
delivered to the client in compressed form and decompressed as they are received and stored
locally in a Virtual File System. The streamlets can be forwarded to the client individually or
arouped together and pushed to the client in clusters as appropriate.

As discussed in more detail below, the client-side virtual file system can be
configured as a sparsely populated virtual file system which will appear to the operating
system as a local drive on which all the files needed by the streaming application reside.
When a required segment 1s not present on the client machine, the client issues a request for

the appropriate streamlet(s) to the server. Usage information 20 can also be sent from the

10

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

client 14 to the server 12 and can be used by the server to determine which streamlets to
provide next.

Preferably, the server is configured to automatically forward sequences of
streamlets to the client using a predictive streaming engine which selects streamlets to
forward according to dynamic statistical knowledge base generated by analyzing the various
sequences in which the application program attempts to load itself into memory as various
program features are accessed. Such a knowledge base can be generated by analyzing the
past and present behavior of the current user, the behavior of the entire user group, or the
behavior of subsets within that group. As a result, the streamlets 18 which are predicted to be
needed at a given point during execution are automatically sent to the client 14 so that they
are generally present before the application attempts to access them. Both code and data,
including external files used by the application, can be predictively streamed in this manner.

Various statistical techniques can be used to analyze the sequence of code and
data loads generated by an operating system as it executes an application and determine an
optimal order to push the application streamlets to the client. In one embodiment, the
predictive knowledge base can be viewed as a graph where a node 1s a user request (e.g. save,
load) and an edge is the calculated probability that such a request will be made. A simple
example of such a graph is shown in Fig. 2. By examining the links flowing from a given
node, the system can easily determine the most likely future requests and, with access to an
appropriate database, determine the streamlets which will be needed by the application to
execute those requests. When the user strays from the predictive path and an on-demand
request is issued, the predictive routine can be re-centered on the appropriate node associated
with the on-demand request and the predictive stream restarted from that point.

The predictive graph of usage probabilities can be updated continuously in

response to the usage data provided by the clients connected to the server. In this manner, the

11

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

Server can adapt its model to different usage patterns, depending on the population of users
who actually use the application. Several different models can be provided for each
application based on the type of user at issue. For example, one set of users accessing a
desktop publishing application may concentrate on text-based functionality while another set
of users accesses generally graphical functions. Different predictive models may be
appropriate for the various user-types. The system can dynamically assign users to various
type categories based on an analysis of their usage patterns. Personalized predictive models
can also be generated in which the activity of a particular user 1s analyzed and used to
generate a personalized predictive model.

As will be recognized by those of skill in the art, other techniques for selecting
which streamlets to forward to the client can also be used. While the efficiency with which a
streamed application is executed on the client machine can vary depending on the order in
which the streamlets are delivered, provided that the server is generally compatible with the
basic commu:nication protocols and data format used by the client, the operation of client side
streaming support software is not generally dependant on the specific manner in which the
server system is implemented. One preferred embodiment of a Predictive Streaming server 1s
disclosed in more detail in co-pending U.S. Patent Application entitled "Method and System
for Streaming Software Applications to a Client" which was filed concurrently with the
present application, the entire contents of which is expressly incorporated by reference.

Fig. 3 1s a block diagram showing the high-level architecture of the client 14
and server 12. As shown, the server 12 can have access to one or more databases which store
information used to manage the application streaming. In one embodiment, the server can
access an application library 171 which contains predefined sets of streamlets for various
software applications. The server also has access to the predictive data model 172 which

contains information about the usage patterns of the application, i.e., the probability that the

12

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

application will require a given block B, of one or more streamlets if the last block used was
B... A user database 173 can also be provided for storing various user-specific information
for use in authorizing access to streamed application, storing information related to streaming
order, etc.

The client system 14 comprises an operating system 140 which can access a
variety of local system resources 142, such as data storage devices and memory. A streaming
support system module 102 is provided and contains streaming control software which is
generally configured to initiate the streaming of streamlets from the server 12 through, e.g.,
network socket 144, initiate the execution of a specified streaming application 100, process
received streamlets, request specific streamlets from the server when necessary, and make
received streamlets available for use by the application in a manner which 1s generally

transparent to the native operating system 140.

Fig. 4 is an illustration of a more detailed block diagram of the client system
14 showing various streaming control modules which comprise a preferred implementation of
the streaming support system 102. Figs. 5, 6A, and 6B are high-level tlow diagrams
illustrating the operation of the client streaming software.

With reference to Fig. 4, the operating system 140 will generally have access
to one or more data storage devices 190, such as a removable disk, a hard drive, and a CD-
ROM. Each storage device 190 typically has an associated device driver 180 which acts as
an interface between the standard I/O protocols used by the operating system 140 and the
specific I/O protécols used by the given device 190.

According to one aspect of the invention, a virtual file system ("VES") 160 1s
provided to store and organize received program streamlets and present an appearance to the
operating system 140 that all of the application files are locally present. The VFS 160 resides

on a local storage device, such as the client's hard drive. Some or all of the VFS 160 can

13

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

alternatively be retained in system memory. A streaming file system device driver ("FSD")
150 is provided to act as an interface between the operating system 140 and the VFS'160.
The VFS 160, through the FSD driver 150, is configured to appear to the operating system as
a local virtual file system which can be accessed by the operating system 1n the same manner
as other data storage devices 190. When a streaming application 1s launched, it is configured
to indicate the VES 160 as the source for application files. Thus, from the operating system
point of view, the application appears to be present on a local drive. However, unlike a
conventional local file system 190, such as a hard disk or CD-ROM accessed through a
conventional device driver 180, the VES 160 does not need to (and generally will not) contain
complete copies of the various required application files. Instead, only those portions of the
various data files which have been provided to the client as streamlets are present. The data
behind some files may be missing and other files may be only partially present.

In addition to the VFS 160 and FSD driver 150, the streaming support system
102 can also comprise an application manager 110 and a communication driver 170. The
application manager 110 is preferably configured to initiate execution of a streaming
application after sufficient streamlets have been received . In addition, the application
manager can "register" the streaming applications with the VES 160 and/or FSD 150 to limat
access to the streamed data to authorized applications as a way of preventing a user from
extracting streamed data from the VES 160 without authorization. The Application Manager
110 can be further configured to monitor and meter the usage of the program, to indicate the
application status to the end user, and perform or initiate cleanup functions when the
application is terminated. The communication driver 170 is configured to process streamlets
which are pushed to the client from the server and issue requests to the server for streamlets

needed by the VFS.

14

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

As will be recognized by those of skill in the art, the functionality of the
communication driver 170 can be combined with that of the application manager 110.
Similarly, the functionality of the application manager 110 can be combined with other
modules and a separate application manager module need not be provided. Thus, various
functions of the application launcher 120 and application manager 110 can be combined 1nto
a single module. Similarly, the functionality of the application launcher 110 and
communication driver 170 can instead be implemented in the VFS 160. The specific
implementation of the application manager functions is dependent on the operating system
and the complexity of the streaming environment, among other factors.

Turning to Fig. 5, when a user wants to execute a streaming application 100 on
a client PC computer running an operating system 140, such as one of tﬁe Microsoft
Windows operating systems, the user of the client system access the server 12 and mitiates an
application launch procedure. The server can be accessed in various ways. In a preferred
embodiment, access to the server is provided through a Web page displayed by a Web
browser 130, or through a special application residing on the client and providing access to
the server 12. In a web-browser based implementation, a special, small software module 120,
such as an applet or an embedded object, is included within or loaded through a streaming
application startup-page. The startup web page can be hosted on the server 12, a third party
server, or even stored on the client machine. When the link to the desired streaming
application is triggered by the user (step 500), the application launcher 120 is downloaded
from the server if necessary and then executed (step 502). The link to the application
launcher 120 can be provided as a icon on the client system desktop, an Internet URL link, or
any other suitable link or pointer. A log-on routine can also be provided to ensure that the
user has authorization to access the particular application at issue and to verify that the user

does, 1n fact, want the application to launch.

135

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

On startup, the application launcher 110 checks for the availability of a valid
client environment on the client (step 504). In particular, a check is made to ensure that the
particular software modules from the streaming support system 102 which are required to
manage the streaming of applications are present. If a valid client system 1s not installed, a
client installation process can be executed to download the required streaming support system
files from the server and install them on the client system (step 506). Once the client
environment is verified, the application manager 110 is started. (Step 508).

When the application manager 110 is started, 1t is provided with information
that identifies the streaming application to execute and also indicates which streamlets or
blocks of the application are required for initial execution. This information can be passed in
whole to the application manager 110 as startup parameters or some can be fetched from the
server. More preferably, application information is included in the Startup Block provided to
the client by the server, to specify details about files, directories, environment settings, etc.,
that are relevant to the particular application.

When first starting an application, the application manager 110 checks the
VES 160 to determine if the Startup Block for the application 1s already present, as may be
the case if the user has previously executed the streaming application. (Step 510). It the
initial Startup Block is present, the application manager 110 instructs the operating system
using standard operating system procedures to load and run the application from the VFS
160. (Step 514). If the initial blocks are not present, a fetch request will be issued to the
server for the starting set. Once this initial set has been retrieved from the server and stored
in the VES 160 (step 512), the application is executed. In a preferred implementation, the
client system notifies the server when a streaming application is started or restarted and

indicates in this notification whether the startup block is required.

16

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 | PCT/US01/30007

The VFS 160 appears to the local client as a drive which contains the
application files. While information about the folder/file structure of the streaming
application is available, the actual data in the files may or may not be resident. When the
application is started, the operating system will attempt to load the initial application
executable file and possibly additional library files, such as DLLs. Many conventional
operating systems, such as the various Windows™ operating systems from Microsoft
Corporation, use memory mapped file mechanisms. This functionality allows a portion of a
file to be loaded into memory and the remaining aspects of the file to be represented as
missing code pages. As the loaded executable or DLL is processed, the operating system
issues a series of page faults or similar input requests to dynamically load additional needed
portions of the file into memory.

The specific mechanisms for dynamically loading sections of an application
file or library vary in accordance with the operating system at issue and will be known to
those of skill in the art. For example, in a Windows operating environment, the LoadLibrary
API can be called from an application to have the operating system load a DLLL. In response,
the header of the DLL is read and loaded into memory. The remainder of the DLL 1tself 1s
'loaded' using a memory mapped file mechanism which represents the additional portion of
the DLL as a series of absent pages or code blocks for the various functions defined in the
DLL. The additional parts will be loaded dynamically through faults conditions as functions
are called from the DLL. In particular, using the DLL header information, when the
operating system detects that a unloaded function of a DLL is required, a data read operation
is issued to load the needed portion of the DLL. Typically, a DLL contains many functions,
only one or a few of which are needed immediately after the DLL 1s loaded and thus the

majority of the DLL may remain absent from memory for some time after the initital DLL

load.

17

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

Turning to Fig. 6A, when a Page Fault exception occurs 1n the streaming
application context, the operating system issues a paging request signaling that a specific
page of code 1s needed for the streaming application. A typical request will specify the drive,
file name (or handle), offset, and length of the data block(s) to retrieve. Because the
operating system 140 views the application as residing on the virtual file system "drive" 160,
it will automatically direct the paging" request to the dedicated streaming FSD driver 150.
When the FSD 150 receives a paging request (step 600), it passes the request to the FSD 150,
and thereby to the VFS 160 which determines if the desired data 1s available (Step 602). If
the page is present, it 1s retrieved and returned to the operating system. (Step 608). In many
cases, as a result of the predictive streaming, the desired page will already reside 1n the
Cache/VFS 160. Thus, even though the entire application 1s not present on the client system,
the user sees a responsiveness equal or stmilar to that of a locally running application.

When the desired page is not available, a fetch request for the needed data 1s
sent through the communication driver 170 (or an alternate route, depending on
implementation specifics) to the server.12. (Step 604). The VFS 160 waits until the request
to the server has been fulfilled. After the requested streamlets have been recetved from the
server and are stored 1 the VES (step 606), the data 1s refurned to the operating system (step
608). A busy or wait flag can be presented to the operating system during the time the fetch
request 1s outstanding. As can be appreciated, if there are multiple streaming applications or
application threads operating at the same time, the VFS may be able to process a subsequent
data retrieval request from the operating system even when a prior request 1s still pending due
to an outstanding streamlet fetch request at the server.

The format and content of the fetch request issued by the VEFS 160 and/or
application manager 110 can vary. In one embodiment, the request specifically identifies the

streamlets which are required. Alternatively, details regarding the faulting input request

18

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

1ssued by the operating system, such as the file name, offset, and length, can be forwarded to
the server which then determines the appropriate streamlet data blocks to be returned and
may also return additional data not yet requested if it determines that the additional data be
required shortly. In particular, the server can reset position in the Usage Data graph 172 to
reflect the user’s new position in the application’s usage space to ensure that the predictive
algorithm will continue to predict the most likely streamlets in response to user’s actions.

In general, after the server 12 is notified that a streaming application has been
started, e.g., by a message forwarded from the client system or in response to a request for the
Startup block set from the client, the streaming process will preferably commence and can
remain active throughout the application session. As a result, the client machine will receive
streamlets pushed from the server. In a preferred embodiment, and with reference to Fig. 6B,
when a streamlet is received at the client (step 620), the streamlet 1s processed, e.g., by the
communication driver 170. Initially, the data integrity of the streamlet 1s verified (step 622).

If the received streamlet is corrupt (step 624), it is discarded and a resend request 1s 1ssued to

the server (step 626). Provided the data is verified, the received streamlet data 1s added to the

VFS 160. (Step 630). If the streamlet was sent in response to a VFS fault, (Fig. 6A, step
604), the VES can then be notified that the request has been fulfilled (step 634).
Turning to Fig. 7, there is shown a block diagram of a preferred embodiment

of a VFS 160. which is configured to appear to the local client as a drive which can be

accessed through the FSD driver 150. The VFS 160 comprises a VFS Manager module 200

which provides a functional interface to a plurality of data files that contain the streamed data

and information needed to map that data to the application files. In particular, the VES 160
includes an application file structure database 210 which contains the complete folder/file

structure for each streaming application. In addition a streamlet library 230 is provided

within which received streamlets are stored. A streamlet map 220 can be used to associate

19

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

the various streamlets in the library 230 with a respective file name and position within that
file.

The various libraries, maps, and databases used by the VFS 160 can be stored
in RAM, in appropriate data files on a conventional local device, such as a hard drive, or
distributed between various short and long-term storage devices. In one embodiment, the
application file structure and streamlet map information is retained in RAM while the
streamlets in the streamlet library are stored on a local hard disk. To prevent unauthorized
access to the streamlets (and thus various portions of the application files), one or more of the
streamlets in the library, the streamlet map, and the application file structure can be stored in
an encrypted or other proprietary format.

Fig. 7 shows representative data for an simple example application FOOBAR
which consists of a 100k executable, FOOBAR.EXE and a 40k Iibrary file, FOOBAR.DLL,
both of which are stored under the application folder FOOBAR. A data file,
DEFAULT.DATA, 1s also provided under a DATA subfolder. When the user initially starts
streaming this application, the Startup block is retrieved from the server by the application
manager 110 and the VES manager 200 adds the data 1s added to the various library files 210-
230. In particular, the file structure 1s added to the File Structure Library 210 as shown.

Preferably, each streamlet (when uncompressed by the client 1f necessary) has
a s1ze which corresponds to the standard I/O code page used by the native operating system.
A typical size is the 4k code page used in Windows operating systems. In this example, the
Startup Block contains 28k of data in seven 4k streamlets, six of which are associated with
various sections of the executable, and one which is associated with the DLL (and here is the
DLL header). The streamlet map database 200 indicates which parts of the various
application files each streamlet is associated with. For example, the streamlet FOOBARO001

is a code page in the FOOBAR.EXE file beginning at offset 4k. Fig. 8 shows an illustrative

20

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

drive map 300 of the sparse file system containing 24k of the executable and 4k of the DLL
in accordance with the streamlet map 220 shown 1n Fig. 7. h

The streamlet map 220 is shown in a basic table format for simplicity. Also
shown in the sample streamlet map 220 are absent code pages. For example, the codé page
starting at an offset of 4k in the DLL file is not defined in the map, here having an associated
streamlet ID of "x", and is therefore considered absent. As will be appreciated, absent
streamlets need not be defined expressly. The actual mapping and local streamlet storage can
be done in a variety ways using various database and linked object mechanisms and data
structures which are known to those of skill in the art. In one implementation, the map 1s
stored, at least in part, as a binary table with a bit corresponding to each block 1n each file.
Thus, the sample 140k file set would contain 35 bit entries reflecting the presence or absence
of the twenty five 4k blocks in the executable and the ten blocks m the DLL.

After the data in the Startup Block is loaded into the database files, the
application is executed. During execution, streamlets (e.g., additional code pages) forwarded
by the server are received by the application manager 110 where, after verification, they are
passed to the VFS manager 200 which adds the streamlets to the library 230 and updates the
map 220 accordingly. When a page fault occurs, the application issues a data load which 1s
passed in an appropriate format to the VFS manager 200 by the FSD driver 150. The VES
manager accesses the map 220 to determine if the required code pages are present and, if so,
returns the requested data.

For example, when the application, perhaps in response to user input, requires
the DLL to be loaded, an I/O request for the header is issued and which, in the example, 1s the
4k code block represented by streamlet FOOBARO006. As the header 1s processed by the

application, a series of additional page faults associated with the needed library functions are

21

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

issued. Because these additional code pages are not present in the streamlet library, the VEFS
manager 200 initiates a request for additional streamlets as discussed above.

Thus, the virtual file system 160 implements a sparsely populated file system
wherein the VFS 160 knows the framework, files, folder/directory structure, etc., which
would exist if the application were fully installed, but (unknown to the operating system) the
actual file contents are only partially existent in local storage. Advantageously, the streaming
mechanism leverages a conventional property of the operating system which uses memory
mapped files to avoid having to load complete files into memory to thereby avoid having to
stream more than a small portion of an application to a client before initiating execution and
to transparently manage the subsequent operation of the application without having to modify
the application code or data in any way.

In configurations where the server autonomously streams data to the client, 1t
is useful in making the selection of which streamlets to forward for the server to monitor the
state of the client executed streamed application. Simple feedback 1s provided by the stream
of data fetches which are issued by the client when needed data 1s absent. In a further
embodiment, the VES 160 can monitor the code pages accessed by the streaming application
and the order of access, even if those pages are locally present, and forward this tracking data
to the client, e.g., on a periodic basis. Such information can be useful in refining a predictive
model used to determine an optimal order in which to send streamlets to a client.

Depending on the amount of storage available to the VFS 160, it may become
necessary to remove streamlets from the library. Various techniques used to purge data items
from a cache can be used 1n this situation as well. In some implementations, the server 12
can keep track of the streamlets which are present on a given client and use this information
as part of the predictive streaming process. In particular, the server can reference this data to

avoid sending duplicate streamlets to a client. In such a situation, it may be beneficial for the

22

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

VES 160 to provide notice to the client when one or more streamlets must be dropped from
local storage. Alternatively, when local streamlets must be purged from storage, the server
can be queried as to which streamlets to purge. In response, the server can use the predictive
streaming routines to identify those streamlets which are present on the client and which are
least likely to be needed and forward this information to the client so the identified streamlets
can be purged.

In one particular embodiment, the server maintains a shadow copy of the
streamlet map (e.g., in a binary table format) which should be present on the client. This
image can become out of date if the Client discards blocks from the cache. In this case,
eventually, an on-demand request will be issued by the client for a block which the Server
shows as existing on the Client side. The Server can then request an 1mage update, 1n
response to which the Client will send a bitmap image of the VES population. The client can
also send an image to the server when a previously run is being restarted or in response to the
server sending a streamlet which is already present on the client to ensure that the server has
the most current VFS 1mage. According to a further aspect of the invention,
the VFS 160 is configured to prevent a user from running a streaming application locally
without first accessing the server 12 and requesting the streaming application be mitiated.
This feature can be useful, for example, to control use of the application as per license
agreements or for billing purposes.

In one technique, one or more key blocks of code or data are specially flagged
to prevent them from being persistently stored in the VES 160 between sessions. When the
streaming application exits, these tagged blocks are deleted. To execute the application, the -
user must reaccess the server and retrieve these key blocks. Alternatively, the streamlets can
be encrypted and the key(s) stored in the VFS 160 only for the authorized period of time.

In another technique, the VFS 160 or FSD driver 150 can contain a

23

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

registry of running authorized streaming applications. Such a registry can be created by the
application manager 110 when a new streaming application is started. To prevent a user from
copying the stored streamlets to a local drive, the streaming FSD 150 can be configured to
only process read or page-in requests from the operating system which are generated on
behalf of the application itself or on behalf of other approved processes. Various techniques
are available for determining the process originating a data I/O request in a Windows
environment, which techniques will be known to those of skill in the art.

It should be noted that in this overall system, there is preferably no direct
access from the operating system level to the server 12. Communication with the server 12 1s
performed using a streaming data protocol‘ implemented by, e.g., communication driver 170,
and is generally limited in scope to the initiation of a streaming application and the
subsequent processing of streamlets and forwarding of usage data. As aresult, operating
system level operations such as copy or erase/delete files, etc., cannot be performed from the
client side on the Server file system, further securing the streamed application from
unauthorized access and use. Additional features, such as handshaking protocols, version
control, etc., can be included in this communication protocol to increase the overall system
security. This is in sharp contrast to other application service providing technologies, which
simply extend the file system into the remote server, so that the server looks to the client
operating system like a remote disk drive or remote file server. Such schemes can are also be
substantially slower, since they do not take advantage of "deep" predictive algorithms, but
can only use simple, heuristic approaches such as cache read-ahead, which deliver several
contiguous blocks of data into the local Client context in addition to the required block(s).

According to further aspects of the invention, the general application
streaming methodology disclosed above can be integrated with a billing systems to

implement various Application Service Provider models, such as Pay-Per-Use, time-based

24

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

payment, subscriptions, or function-based payment. A graphical user interface can be
provided to permit the user to view and manipulate a streamed application’s status. For
example, the user can view the dynamic state of the application’s presence in the VES along
with a prediction of how long it would take to enable use of various application features
which are not present, and perhaps additional fees associated with those features. The
prediction can be made based on a determination of the number of streamlets associated with
the features which are not already present in the virtual file system combined with an
estimated streamlet delivery time.

Various hardware platforms can be used to implement the client and server
systems. Preferably, the client system is implemented on a conventional desktop, laptop, or
handheld computer running one of the various Windows operating systems, such as Windows
95, 98, Millennium, Windows NT, and CE. Network access can be provided via standard
network applications and web-browsers, such as Internet Explorer and Netscape. The
streaming server is preferably implemented using a Windows NT or Solaris environment. As
will be appreciated, because the server does not execute the streamed program, but simply

pushes data blocks and services requests, the server’s operating environment does not need to

be compatible with the client environment.

While the invention has been particularly shown and described with reference
to preferred embodiments thereof, it will be understood by those skilled in the art that various
changes in form and details may be made without departing from the sprit and scope of the
invention. For example, diiferent applications may reside on multiple servers and a user
executing several streaming applications may access multiple servers. In addition, the
breakdown and division of functionality between the various software routines comprising
the streaming support system 102 can vary depending on implementation 1ssues and various

design choices and the functionality attributed to a particular module can be performed by a

235

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

separate routine. Further, the functionality of two or more modules can be combined into a
single package. Thus, for example, the functionality associated with the Streaming File
System driver 150 and the Virtual File System 160 can be combined into a single module.

Other divisions and combinations of functionality are also possible.

26

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

CLAIMS:

1. A method for executing a streamed application on a client system
having an operating system and connected to an application server via a network, the
application being divided into a plurality of streamlets, each streamlet containing a portion of
a file associated with the application, the method comprising the steps of:

receiving from the server a file structure specification for at least a primary

application file of the application when the application 1s installed on a computer;

configuring a virtual file system on the client which interacts with the
operating system as a local data storage device to appear to the operating system that the files
defined in the file structure specification are present in the virtual file system;

in response to the operating system issuing a data retrieval request to retrieve a
portion of a specific file from the virtual file system:

(a) determining if the streamlets corresponding to the specified portion
of the specific file are present in the virtual file system,

(b) sending a fetch request to the server indicating a data missing
condition if the corresponding streamlets are not present and adding streamlets returned from
the server to satisfy the fetch request to the virtual file system, and

(¢) returning the requested portion of the specific file to the operating
system.

2. The method of claim 1, further comprising the steps of:
recetving unrequested streamlets from the server; and

adding the unrequested streamlets to the virtual file system.

3. The method of claim 1, further comprising the steps of:

27

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

receiving from the server a startup streamlet set contaimning at least a minimal
set of streamlets sufficient for execution of the application to be 1nitiated; and

adding the streamlets in the startup streamlet set to the virtual file system.

4, The method of claim 3, wherein the startup streamlet set comprises
application streamlets sufficient to begin application execution and have the application run
to a point where user interaction is required.

5. The method of claim 3, wherein the file structure specification and the
startup streamlet set are received by the client as part of a startup block.

6. The method of claim 1, further comprising the step of informing the
operating system that the virtual file system is processing the data retrieval request during a
period between the sending of the fetch request and when the fetch request 1s satisfied.

7. The method of claim 1, wherein the application file set comprises all
application files which are required for the application to operate.

8. The method of claim 1, further comprising the steps of:

forwarding to the server a request to start the streaming application;

verifying that the virtual file system is present on the client system; and

if the virtual file system is not present, installing the virtual file system on the
client.

0. The method of claim 8, wherein the step of installing the virtual file
system comprises installing a streaming file system device driver which acts as an interface
between the operating system and the virtual file system.

10. The method of claim 1, further comprising the steps of:

maintaining a record of processes authorized to access the virtual file system;

and

28

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

blocking data retrieval requests 1ssued by the operating system to the virtual
file system which are not generated on behalf of an authorized process.

11. The method of claim 1, further comprising the step of decompressing
streamlets retrieved from the server.

12. The method of claim 11, wherein streamlets are decompressed prior to
adding them to the virtual file system.

13. The method of claim 1, further comprising the step of:

purging streamlets from the virtual file system in response to a storage low
condition.

14. The method of claim 13, further comprising the step of informing the
server when streamlets are purged from the virtual file system.

15. The method of claim 1, further comprising the step of purging at least
selected streamlets from the virtual file system when use of the streaming application is
terminated.

16. The method of claim 1, further comprising the steps of:

monitoring a sequence of data retrieval requests 1ssued by the operating
system to generate application usage tracking information; and

periodically forwarding the tracking information to the server.

17. The method of claim 1, further comprising the step of signaling the
operating system to execute the primary application file from the virtual file system.

18. A method for executing a streamed application on a client system
having an operating system and connected to an application server via a network, the
application being divided into a plurality of streamlets, each of which corresponds to a code-
page sized portion of an application file, the method comprising the steps of:

sending to the server a request to initiate the application;

29

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

recelving from the server a start block comprising a file structure specification
for at least a primary file of the application when the application is installed on a computer
and a startup streamlet set containing at least a minimal set of streamlets sufficient to begin
application execution;

installing a virtual file system on the client which interacts with the operating

system as a local data storage device via device driver;

configuring the virtual file system to the operating system that the files defined
1n the file structure specification are present in the virtual file system,;

signaling the operating system to execute the primary application file from the
virtual file system;

in response to the receipt of a streamlet from the server, adding the received
streamlet to the virtual file system.

in response to the operating system issuing a data retrieval request to retrieve a
sequence of code pages beginning at a specified portion of a specific file from the virtual file

system:

(2) determining if the streamlets corresponding to the specified code
pages are present in the virtual file system,

(b) if the corresponding streamlets are present, returning the requested
code pages to the operating system,

(c) otherwise, sending a fetch request to the server indicating a data
missing condition , presenting a busy condition to the operating system until the fetch request
is satisfied and the corresponding streamlets have been added to the virtual file system, and
returning the requested code pages to the operating system.

19. The method of claim 18, further comprising the steps of, after adding a

received streamlet to the virtual file system,

30

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

determining whether the received streamlet completes an outstanding fetch
request and, if so, indicating to the virtual file system that fetch request has been satisfied.

20. The method of claim 19, further comprising the steps of:

maintaining a record of processes authorized to access the virtual file system,;
and

blocking data retrieval requests issued by the operating system to the virtual
file system which are not generated on behalf of an authorized process.

21. The method of claim 19, further comprising the step of decompressing
streamlets retrieved from the server.

22. The method of claim 1, further comprising the steps of:

monitoring a sequence of data retrieval requests issued by the operating
system to generate application usage tracking information; and

periodically forwarding the tracking information to the server.

23. A system for executing a streamed application on a client computer
system having an operating system and connected to an application server via a network, the
application being divided into a plurality of streamlets, each streamlet containing a portion of
a file associated with the application, the system comprising:

a streaming support module comprising a virtual file system, the virtual file
system including a streamlet library configured to store a plurality of streamlets and having
data associating streamlets in the streamlet library with specific portions of files associated
with the application;

the streaming support module being configured to permit communication
between the operating system and the virtual file system as 1f the virtual file system were a
local data storage device, issue fetch requests for streamlets to the server, and add streamlets

received from the server to the streamlet library;

31

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

The streaming support module being further configured to respond to data
retrieval requests issued by the operating system to retrieve a portion of a specific file from
the virtual file system by:

(a) determining if the streamlets corresponding to the specified portion
of the specific file are present in the streamlet library,

(b) if the streamlets are present, returning the data to the operating
system,

(c) otherwise, 1nitiating a fetch request to the server indicating a data

missing condition and returning the requested code pages to the operating system after the

fetch request has been satisfied.

24. The system of claim 23, wherein the streaming support module
COMprises

a virtual file system manager module configured to respond to data retrieval
requests issued by the operating system; and

a streaming file system driver configured as an interface between the operating
system and the virtual file system manager.

25. The system of claim 24, wherein the streaming support module further
comprises an application manager configured to issue the fetch requests to the server and add
streamlets received from the server to the streamlet library.

26. The system of claim 23, wherein the streaming support module 1s
further configured to:

request from the server a startup block comprising a file structure specification
for at least a primary file of the application when the application is installed on a computer
and a startup streamlet set containing at least a minimal set of streamlets sufficient to begin

application execution;

32

10

15

20

25

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

add the save the file structure specification in the virtual file system and add
the streamlets in the startup streamlet set in the streamlet library; and

signal the operating system to execute the primary application file from the
virtual file system.

27. The system of claim 26, wherein the startup streamlet set comprises
application streamlets sufficient to begin application execution and have the application run
to a point where user interaction is required.

28. The system of claim 23, wherein the streaming support module 1s
further configured to present a busy condition to the operating system during a period
between the sending of the fetch request to the server when data requested by the operating
system is not present in the virtual file system and when the fetch request is satisfied.

29. The system of claim 23, wherein each streamlet corresponds to a code-
page sized portion of a respective application file.

30. The system of claim 23, further comprising an application launcher
module configured to, in response to an initiation of a streaming application, verity that
various components of the streaming support module are present on the client system,
retrieve missing components from the server and install the retrieved components on the
client.

31. The system of claim 23, wherein the streaming support module is
further configured to:

maintain a record of processes authorized to access the virtual file system; and

block data retrieval requests issued by the operating system to the virtual file
system which are not generated on behalf of an authorized process.

32. The system of claim 23, wherein the streaming support module 1s

further configured to:

33

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

monitor a sequence of data retrieval requeéts issued by the operating system to
generate application usage tracking imnformation; and

periodically initiate sending a message to the server including the tracking
information.

33. A computer program product stored on a computer readable medium,
the product comprising a computer program for executing a streamed application on a client
system having an operating system and connected to an application server via a network, the
application being divided into a plurality of streamlets, each streamlet containing a portion of
a file associated with the application, , the computer program comprising code to configure
the client to:

receive from the server a file structure specification for at least a primary
application file of the application when the application 1s installed on a computer;

configure a virtual file system on the client which interacts with the operating
system as a local data storage device to appear to the operating system that the files defined
in the file structure specification are present in the virtual file system;

in response to the operating system issuing a data retrieval request to retrieve a
portion of a specific file from the virtual file system:

(a) determine if the streamlets corresponding to the specified portion of
the specific file are present in the virtual file system,

(b) send a fetch request to the server indicating a data missing
condition if the corresponding streamlets are not present and adding streamlets returned from
the server to satisfy the fetch request to the virtual file system, and

(c) return the requested portion of the specific file to the operating

system.

34

10

15

20

235

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

34. The computer program product of claim 33, the computer program
further comprising code to configure the client to:

recelve unrequested streamliets from the server; and

add the unrequested streamlets to the virtual file system.

35. The computer program product of claim 33, the computer program
further comprising code to configure the client to:

receive from the server a startup streamlet set containing at least a minimal set
of streamlets sufficient for execution of the application to be initiated; and

add the streamlets 1n the startup streamlet set to the virtual file system.

36. The computer program product of claim 33, the computer program
further comprising code to configure the client to inform the operating system that the virtual
file system is processing the data retrieval request during a period between the sending of the
fetch request and when the fetch request 1s satisfied.

37. The computer program product of claim 33, the computer program
further comprising code to configure the client to:

forward to the server a request to start the streaming application;

verify that the virtual file system 1s present on the client system; and

if the virtual file system 1s not present, install the virtual file system on the
chient

38. The computer program product of claim 37, wherein the code to install
the virtual file system configures the client to install a streaming file system device driver
which acts as an interface between the operating system and the virtual file system.

39. The computer program product of claim 33, the computer program

further comprising code to configure the client to:

maintain a record of processes authorized to access the virtual file system; and

35

10

15

20

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

block data retrieval requests i1ssued by the operating system to the virtual file
system which are not generated on behalf of an authorized process.

40. The computer program product of claim 33, the computer program
further comprising code to configure the client to decompress streamlets retrieved from the
Server.

41. The computer program product of claim 40, the computer program
further comprising code to decompress streamlets prior to adding them to the virtual file
system.

42. The computer program product of claim 33, the computer program
further comprising code to configure the client to:

purge streamlets from the virtual file system in response to a storage low
condition.

43. The computer program product of claim 42, the computer program
further comprising code to configure the client to inform the server when streamlets are
purged from the virtual file system.

44. The computer program product of claim 33, the computer program
further comprising code to configure the client to purge at least selected streamlets from the
virtual file system when use of the streaming application 1s terminated.

45. The computer program product of claim 33, the computer program
further comprising code to configure the client to:

ménitor a sequence of data retrieval requests issued by the operating system to
generate application usage tracking information; and

periodically forwarding the tracking information to the server.

36

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

46. The computer program product of claim 33, the computer program
further comprising code to configure the client to signal the operating system to execute the

primary application file from the virtual file system.

37

CA 02427848 2003-05-08

PCT/US01/30007

WO 02/27556

1/8

N LNIJITO

- edettt-fde o4
—_——]
]

=0

IIIIL

SIS

L Ol

eled]

AHJOMLIN
al
0c¢
N
eied
abesn
\\\‘} lMl -
aseqgele(
abesn <)

[edlISelS

>

(DI

eleq
obesn

s}o|Wwealls

¢l

%]

b INIJIO

™

}

[
Sl

SETI =TS

81

N

0}

CA 02427848 2003-05-08

PCT/US01/30007

WO 02/27556

2/8

11ddS

%0¢

Z 'Ol

%04

708

1dVLS

1HISNI

%06

%G

7%0¢

%S

MV

CA 02427848 2003-05-08

PCT/US01/30007

WO 02/27556

3/8

V.ivd
JAILOIA3dd
ANV JdOVSh

NOILVOIlddV

clLl

_ JSvav.ivd

=ERYE

€Ll ~

[

AdVEd] 1 M0019
NOILVYOI'lddV

1217 4

dAAGSS

G

T A

/
1474

¢0}

& Ol

AR
1IMD0S SIOHNOSIY j
T MYOMLIN W3 LSAS TVOO1
ol
ey wa— ——
Y . S
NI LSAS |
—— WNILSAS -
14¥0ddNs |¢———>
ONINYIHLS ONILvEda0 /oi
- Y

NOILYOITddY
ONINYIHLS /

001

CA 02427848 2003-05-08

PCT/US01/30007

WO 02/27556

4/8

(MYOMLIN VIA SEREER OL)

_
Yy " |
| YIANIYEQA |
_ NILSAS 34 |
xwm%%mwz > m%bwm_ > IWNLYIA SHOVO [zmmm_m u>m |
I _ IN3OMIELNI NIV LS T _
061
v l)/ b 4o
o 0./ [T N mwewen
| _ e ¥IAINA NOY-Q0
! _ R
—
Z ¥3AINA JAINA QYVH
HIASMONYE | HIHONNY HIOVYNVI T ye
SENY NOILVOITddV NOILVYOI'lddV AT L H3AING P> SaYAONIY
[ﬂrﬂln 081
SHIANC
eeb— L __ o B L NILSAS T

I

ii!’ll]l!llllillillllililililllllli

001 |

~ 1 ONJAVYVIHLS

NOILVYOITddV

1

ﬂAI.ll'II

—P

WILSAS

ONILYY3dO —1—

vl

06l

CA 02427848 2003-05-08
WO 02/27556 PCT/US01/30007

5/8
(START)

User launches | 500
streaming
application

— gl

Download and 502
execute
Application
L auncher

Valid Initiate Streaming | ©06

Streaming N Support system
Support system download and intall
installed? process -

508

Start Application
Manager

010

" App's
~ InitBlock present
in Streaming file
system?

N Retrieve initBlock 512
from server

514

[Start Aplication l<

(o)

FIG. 5

CA 02427848 2003-05-08

WO 02/27556

(starr)

il

Receive Input | 600
request at
streaming file
system from
operating system
for streaming

6/8

604

application
602
pdd Issue data request
" Requested N to Server via
data block(s) P Application
present? Manager
Y

Request

Return requested {008
data to operating
system

l
(=)

FIG. BA

fulfited? 7~

PCT/US01/30007

(START)
v

Receive streamlet Be
from server via
Application
Manager
622

L\/erify data integrityl

626

Discard
streamed block
and request

Received
data OK?

resend from
server
Add ne\;v streamed | 630
blocks to
streaming file
system h,
632 634
“ treamlet fulfills Y Noigy‘:/ei?i;hat
client request? ~ J
. complete

CA 02427848 2003-05-08

WO 02/27556 PCT/US01/30007
7/8
150 110
INPUT] STREAMLET
EQUEST > REQUESTS
R STREAMING FILE APPLICATION
SYSTEM DRIVER MANAGER .
DATA < STREAMLETS
200
VFS MANAGER
160 "‘\-)
%FOOBARooo.g
} FOOBAROO1L g
} FOOBAR0O02 |}
APPLIVATION STREAMLET | | STREAMLET | i o oo |
STRUCTURE MAP LIBRARY ;FOOBAROO&‘ ;
; \\h | FOOBAROOS !
; = ’ i FOOBAROO06 |
210 220 7 T 230 S
. /FOOBAR % i STREAMLET ;
FOOBAR . EXE . FILENAME OFFSET 1D
FOOBAR . DLL i FOOBAR.EXE 0K FOOBAROOO |
/DATA i FOOBAR.EXE 4K FOOBAROOL !
i L DEFAULT.DAT |} ! FOOBAR.EXE 8K FOOBAR002 }
L o { FOOBAR.EXE 12K X
""""""""""""""""" ! FOOBAR.EXE 16K X
| FOOBAR.EXE 48K X
: FOOBAR.EXE 52K FOOBAROO3 i
} FOOBAR.EXE 56K FOOBAR004
} FOOBAR.EXE 60K X
{ FOOBAR.EXE 96K FOOBAR0OS |
} FOOBAR.DLL 0 FOOBAROO6 !
! FOOBAR.DLL 4K x
FOOBAR . DLL 32K X

PR ——————p SRS TS Y T T P TS R L S L R R R LR R R

CA 02427848 2003-05-08

WO 02/27556 PCT/US01/30007
8/8

FOOBAR.EXE FOOBAR.DLL

FIG. 8

100

OPERATING | STREAMING —
SYSTEM APPLICATION

140

FILE SYSTEM S '
190 DRIVERS | 110 : 130
180 : . 120
V
"— REM{SSQBLE DRIVER 1 | | APPLICATION ' APPLICATION
: MANAGER | LAUNCHER | BROWSER
|
HARD DRIVE DRIVER 2 | |
' I
| |
CD-ROM DRIVER 3 | 60 s
B I S IR - 170 | ad
' 15& STREAMING :
l
| INTELLIGENT ,
FILE | COMM. NETWORK
CACHE VIRTUAL j€>q
l—1—>] -
SYSTEM | i E SYSTEM DRIVER [, SOCKE
| DRIVER |
e |
|

‘—-“_--—-—u—a—n_—_-ﬂ_-__——_——D“—_—*__.-—“_

(TO SERVER VIA NETWORK)

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - abstract drawing

