A61K 38/27 (2006.01) A61K 47/18 (2006.01)
A61K 47/48 (2006.01) A61K 47/26 (2006.01)
A61K 47/10 (2006.01)

(30) Priority Data:
13 162480.1 5 April 2013 (05.04.2013) EP
61/821,890 10 May 2013 (10.05.2013) US
13 184957.2 18 September 2013 (18.09.2013) EP
61/879,956 19 September 2013 (19.09.2013) US

(43) International Publication Date
16 October 2014 (16.10.2014)

(51) International Patent Classification:
A61K 38/27 (2006.01) A61K 47/18 (2006.01)
A61K 47/48 (2006.01) A61K 47/26 (2006.01)
A61K 47/10 (2006.01)

(52) Inventors:
NIELSEN, Jette; Novo Nordisk A/S, Novo
Alle, DK-2880 Bagsvrd (DK).
ESKLING, Marie; Novo Nordisk A/S, Novo
Alle, DK-2880 Bagsvrd (DK).
CHRISTENSEN, Stina Granzau; Novo Nordisk A/S,
Novo Alle, DK-2880 Bagsvrd (DK).
H0JBY, Michael; Novo Nordisk A/S, Novo Alle, DK-2880 Bagsvrd (DK).
OLSEN, Minna Braendholt; Novo Nordisk A/S, Novo
Alle, DK-2880 Bagsvrd (DK).

(54) Title: GROWTH HORMONE COMPOUND FORMULATION

(57) Abstract: The present inventions relates to compositions of growth hormone compounds, including pharmaceutical formulations. The compositions are able to provide initial and long term stability of the growth hormone compounds, rendering such compositions suited for use as a pharmaceutical formulation.
GROWTH HORMONE COMPOUND FORMULATION

TECHNICAL FIELD
The present application concerns pharmaceutical compositions or formulations of growth hormone compounds.

BACKGROUND
Growth hormone (GH) is a polypeptide hormone secreted by the anterior pituitary in mammals. Dependent on species GH is a protein composed of approximately 190 amino acid residues corresponding to a molecular weight of approximately 22 kDa. GH binds to and signals through cell surface receptors, the GH receptors (GHR). GH plays a key role in promoting growth, maintaining normal body composition, anabolism and lipid metabolism. It also has direct effects on intermediate metabolism, such as decreased glucose uptake, increased lipolysis, and increased amino acid uptake and protein synthesis. The hormone also exerts effects on other tissues including adipose tissue, liver, intestine, kidney, skeleton, connective tissue and muscle.

GH is classified as a four-helix bundle protein exhibiting an "up-up-down-down" topology with two conserved disulphide linkages. Specifically, the mature wild-type human GH (hGH identified by SEQ ID NO: 1) is composed of 191 amino acid residues and has four cysteine residues at positions 53, 165, 182 and 189, which stabilizes the three dimensional structure of the protein by forming two intramolecular disulphide bonds connecting C53 with C165 and C182 with C189, respectively.

Recombinant hGH (somatropin) is commercially available as, for ex: Genotropin® (Pfizer), Nutropin® and Protropin® (Genentech), Humatrope® (Eli Lilly), Serostim® (Serono), Norditropin® (Novo Nordisk), Omnitrope® (Sandoz), Nutropin Depot® (Genentech and Alkermes). Additionally, an analogue with an additional methionine residue at the N-terminal end is also marketed as, for ex: Somatonorm® (Pharmacia Upjohn/Pfizer).

Growth hormone is used to treat growth hormone deficiencies, but unfortunately hGH and the recombinant forms described here above have a relative short half-life which means that patients receiving growth hormone treatment typically need daily growth hormone administrations. Furthermore, for growth hormone being a protein, the administration form is injection which represents a daily inconvenience to the patients.
In order to provide a more convenient product sustained release formulation can be sought or as alternatively it is desirable to provide a growth hormone compound with an extended half-life.

hGH has been subject to extensive mutagenesis and various modifications in attempts to produce hGH analogues and conjugates hereof with altered chemical or biological properties including protease stabilized mutants, cysteine mutants, and PEGylated versions of growth hormone as described in such as US 2003/0162949, WO 02/055532 and WO06/048777.

The quest for growth hormone compounds with increased functionality such as an increased half-life is aimed at reducing the amount of compound needed and the frequency of administration of the therapeutic drug.

Although growth hormone compounds with increased half-life are available, and functional in an experimental setting the compounds must be made available to the patients in a formulation that allows safe and convenient use hereof.

SUMMARY

The present invention in an aspect relates to a pharmaceutical composition comprising a growth hormone compound with prolonged half-life, which is suitable for long time storage. The pharmaceutical composition may comprise a growth hormone conjugate, in particular a growth hormone albumin binder conjugate. The chemical nature of such growth hormone conjugates provides a further challenge for the chemist seeking a pharmaceutical composition that fulfils the requirement and wishes from the industry and patients, e.g. a composition that can be easily prepared, handled and stored preferable also at room temperature and which allows easy and less frequent dosing. The present invention relates to a pharmaceutical composition that maintains stability over prolonged periods of stress including shaking and elevated temperature as a measurement of the stability of the composition.

In one embodiment the pharmaceutical composition according to the invention comprises a growth hormone albumin-binder conjugate, a buffer, a preservative and 0.5 - 5.0 mg/mL surfactant, such as 1.0-3.0 mg/mL surfactant. The surfactant may be selected from poloxamer 188 and polysorbate 80. The pharmaceutical composition may further comprise a buffer such as histidine to ensure a pH of 6.5-7.0, preferably 6.8. In further embodiments the composition comprises a preservative such as phenol and/or an isotonic agent, such as mannitol.
The growth hormone compound may be a growth hormone albumin-binder conjugate which includes and albumin binding side chain (AB) and a growth hormone protein (GH) that are covalently bound (-) to each other, as represented by the formula AB-GH.

Examples of such conjugates include molecules, wherein AB- is attached to GH via a cysteine residue in GH. The conjugate of the composition may be described with the following formula: A-W-B-Q-GH, wherein GH represents a growth hormone protein or variant, A is an albumin binding residue, B is a (hydrophilic) spacer, Q is a chemical group linking GH and B, W is a chemical group linking B and A and "-" is a covalent bond.

The concentration of the conjugate may be such as 2-15 mg/mL and the composition may be for subcutaneous administration such as once a week e.g. the composition may be for use in a method of treatment by subcutaneous administration once a week.

The composition of the invention is for use in a method of treatment of growth hormone deficiencies or a disease or disorder where the patient will benefit from an increased level of circulating growth hormone.

In further aspects the invention relates to a method of preparation of the pharmaceutical composition according to the invention, the preparation of a pharmaceutical composition for use in methods of treatment, and in particular for use in methods of treatment of growth hormone deficiencies.

The invention further relates to the use of a growth hormone compound for the manufacture of a pharmaceutical composition according to the invention.

In an aspect the invention relates to a method of treatment comprising administering said pharmaceutical composition, for treatment of growth hormone deficiencies or a disease or disorder where the patient benefits from an increased level of circulating growth hormone activity.

SEQUENCE LIST

SEQ ID NO: 1: mature hGH 1-191 (Somatotropin) (referred herein to as hGH for short)

FPTIPLSRLFDNAMLRAHRGLAFDTYQEFEEAYIPKEQKYSLQNPQTSLCEFSESIPTPSN

REETQQKSNLELLRISLLIQSWLEPVQFLRSVFANSLVYGVASDNSNVYDLDKLDEEGIQTLMG

RLEDGSPRTQIQFQTYSKFDTNHNDALLKNYGLLYCFRKMDKVETFLRIVQCRSVEG

SCGF
BRIEF DESCRIPTION OF DRAWINGS

Figure 1 shows the HMWP content in pharmaceutical compositions comprising 0.0 or 3 mg/mL poloxamer 188 during a storage period of 90 days at 5 °C in buffers with different pH's.

Figure 2 shows the HMWP content in pharmaceutical compositions comprising various surfactants in different concentration in compositions with pH 6.0. The HMWP content as measured during storage at 5 °C for a period of 90 days is shown.

Figure 3 shows the HMWP content in a series of compositions with various amount of surfactant (poloxamer 188) at pH 6.2 and 6.8. The HMWP content as measured during storage at 30 °C for a period of 180 days is shown.

Figure 4 shows OD at 340 nm of a series of pharmaceutical compositions comprising various amounts of poloxamer (0, 1.0, 3.0 mg/mL) and with variation in pH (6.2, 6.5 and 6.8) after physically stress (pipetting and shaking). The figures A and B represent the same data but with focus on different parts of the left axis as B is an enlargement of the low range to visualize low range measurements.

Figure 5 shows OD at 340 nm of series of pharmaceutical compositions comprising different growth hormone compounds, which are WT hGH, GH L101 C, and Conjugate I.

Figure 6 shows the mean IGF-I standard deviation score in Japanese subjects (A) and non-Asian subjects (B).

DESCRIPTION

The present application relates to pharmaceutical compositions of growth hormone compounds. The composition or formulation according to the invention should be able to accommodate the growth hormone compound both during production and during storage of the formulation without causing substantial loss of activity, modification or in other ways negatively influence of the growth hormone compound.

An aspect of the present invention relates to a pharmaceutical composition comprising a growth hormone albumin-binder conjugate.
The pharmaceutical composition may be prepared as a liquid composition, wherein liquid compositions may be such as a solution, a suspension or an emulsion.

In further embodiments such compositions are aqueous compositions comprising at least 50% w/w water, such as 50-80 % w/w, such as 50-70% w/w, such as 50-60 % w/w water.

Growth hormone albumin-binder conjugate

In order to accommodate the less frequent administration of a growth hormone albumin binder conjugate relative to recombinant hGH, the conjugated must be formulated in a sufficiently high concentration. Concentration of the conjugate may be described in mg/mL or in molar concentrations whereof the latter may be considered more accurate due to the variation in the molecular weight dependent on the albumin binder side chain.

In one embodiment the pharmaceutical composition according to the invention comprises a growth hormone albumin-binder conjugate in a concentration from 2.0 mg/mL to 20.0 mg/mL, such as 3.0-10.0 mg/mL. Depending on the dosage required it may be advantageous to be able to store pharmaceutical compositions with various concentrations of the active ingredient e.g. the growth hormone albumin binder conjugate. In one embodiment the concentration is, such as 6.0-8.0 mg/mL or such as 6.0-7.0 mg/mL. In one embodiment the concentration of the growth hormone albumin-binder conjugate is 6.7 mg/mL. In alternative embodiments the concentration of the growth hormone albumin binder conjugate is 2-5 mg/mL, such as 2.5-4 mg/mL. In a further alternative the concentration of the growth hormone albumin binder conjugate is 8-12 mg/mL, such as 9-11 mg/mL. In a preferred embodiment the composition and concentration of the further components of the pharmaceutical composition remains unchanged while only the concentration of the growth hormone albumin binder conjugate is adjusted.

The growth hormone albumin-binder conjugate is obtained by conjugating an albumin binding side chain to a growth hormone protein. The growth hormone albumin-binder conjugate may thus comprise an albumin binding side chain (AB) and a growth hormone protein (GH) that are covalently bond (-) to each other, as represented by the formula AB-GH. The albumin binding side chain (AB) may be composed of an albumin binding residue (A) and optionally a spacer (B) linked together by a chemical entity (W). The linkage to growth hormone may be via a chemical group Q. The growth hormone albumin-binder conjugate may thus be described by the extended formula: GH-Q-B-W-A. In one embodiment the composition according to the invention comprises a growth hormone albumin-binder conjugate of the formula: GH-Q-B-W-A.
For any growth hormone compound which include either mutations or modifications it is important to consider if those changes affect the activity compared to wt growth hormone. Multiple tests are available to the skilled person and for the purpose of the present application growth hormone compounds, proteins or conjugates are all considered to be biologically active, such as capable of stimulating the growth hormone receptor which may be measured in an BAF assay or in mouse or rat studies known in the art and described in such as WO2011/089255. It is noted that the activity in some assays may be decreased compared to wild type growth hormone, but the increased half-life due the structural changes to the molecule, may counteract this, resulting in a molecule with a prolong effect.

Human growth hormone (hGH) is herein used to described the sequence of the mature human growth hormone protein of 191 amino acid residues as defined by SEQ ID NO: 1.

Although mutations in the sequence of human growth hormone is tolerated a minimal number of mutations is preferred which may be expressed as the level of identity to SEQ ID NO: 1. In one embodiment GH of the conjugate is at least 95% identical to hGH, such as 96%, such as 97%, such as 98% or such as 99% identical to hGH.

In further embodiments GH of the conjugates has at most 4 point mutation, such as at most 3 point mutations compared to hGH, such as at most 2 point mutations or such as exactly 1 point mutation compared to hGH.

Linkage of the albumin binding side chain to the GH may be via a wild type residue or a mutant amino acid residue.

In one embodiment the growth hormone (GH) comprises a point mutation in any one of amino acid AA 98-105 compared to human growth hormone. In one embodiment the growth hormone (GH) comprises a Cys mutation, which is substitution of a wt residue for a cysteine in the GH sequence. In one embodiment the GH comprises a Cys mutation in any one of amino acid AA 98-105 compared to human growth hormone.

In one embodiment the growth hormone (GH) includes the L101C mutation.

In one embodiment the side chain (AB) is attached to growth hormone via an amino acid residue in loop 2 (L2, AA99-106) or corresponding residues in a growth hormone variant.

In one embodiment the composition according to invention comprises a growth hormone albumin binder conjugate having the following formula: A-W-B-Q-GH, wherein GH represents a growth hormone polypeptide,

A is an albumin binding residue,

B is a (hydrophilic) spacer,
W is a chemical group linking A and B,
Q is a chemical group -NH-C(0)-(CH\(_2\))\(_n\) linking GH and B
and "-" is a covalent bond.

In one such embodiment A-W-B-Q- is attached to GH via a Cys residue in GH,
which may be such as to a Cys mutation introducing an additional Cys residue.

In one embodiment A-W-B-Q- is attached to L101 C of GH.

In a further embodiment A is selected from:

\[
\text{\begin{array}{c}
\text{N} & \text{N} & \text{N} \\
\text{H} & \text{H} & \text{H}
\end{array}}
\]

\[
\text{H} \\
\text{O} & \text{O} & \text{O}
\]

\[
\text{O} & \text{O} & \text{O}
\]

\[
\text{O} & \text{O} & \text{O}
\]

\[
\text{O} & \text{O} & \text{O}
\]

wherein * denotes the attachment to B through W.

In a further embodiment W has the formula: \(W_a\)\(W_b\), wherein

W\(_a\) is selected from -C(0)NH-, -NHC(O)-, -C(0)NHCH\(_2\)-, -CH\(_2\)NHC(0)-,
-C(0)NHCH\(_2\)-, -S(0)\(_2\)-NHC(0)-, -OC(0)NH-, -NHC(0)O-, -C(0)CH\(_2\)-, -CH\(_2\)C(0)-,
-C(0)CH=CH-, -CH=CHC(0)-, -(CH\(_2\))\(_n\)-, -C(0)-, -C(0)O-, -OC(O)-, and
W\(_b\) is selected from -CH\(_2\)-C\(_6\)H\(_12\)-C(=O)-, -OEG-, -Lys, -Glu, -γ-Glu-, -CH-, -CH-(CH\(_2\)-SO\(_3\)H)-C(0)-, -S(0)\(_2\)-(CH\(_2\))\(_3\)-C(0)-, or a valence bond.

In a further embodiments W is selected from -C(0)NH-, -NHC(O)-, -C(0)NHCH\(_2\)-, -CH\(_2\)NHC(0)-, -C(0)NHCH\(_2\)-, -S(0)\(_2\)-NHC(0)-, -OC(0)NH-, -NHC(0)O-, -C(0)CH\(_2\)-, -CH\(_2\)C(0)-, -C(0)CH=CH-, -CH=CHC(0)-, -(CH\(_2\))\(_n\)-, -C(0)-, -C(0)O-, -OC(O)-, or a valence bond.

In a further embodiments W is -C(0)NH-S(0)\(_2\)-(CH\(_2\))\(_3\)-C(0)-.

In one embodiment the, the spacer B, is a hydrophilic spacer B. The hydrophilic
nature of B increases the solubility in water of the albumin binding side chain (AB- or A-W-B-
Q-) and the resulting growth hormone conjugate. Therefore such side chains and compounds are well suited for aqueous solutions both during processing and for storage. At least part of the compound will thus have a tendency to interact with water molecules and thus dissolve in water and other polar substances or solvents.

In one embodiment the, the spacer B comprises at least one OEG motif, the radical 8-amino-3,6-dioxoanonic acid, i.e. -NH-(CH2)2-0-(CH2)2-0-CH2-C(0)-.

In a further specified embodiment the hydrophilic spacer (B) comprise at least two OEG motifs. The orientation of such OEG motif(s) is in one embodiment so that the -C(O)- is closest to the growth hormone compound, while -NH- is closest to the albumin binding residue.

In additional embodiments comprising two OEG motifs the two motifs have identical orientation or different orientation. In an embodiment two such OEG motifs are located beside each other, whereas in alternative embodiments such OEG motifs are separated by one or more covalently linked atoms.

In an embodiment the hydrophilic spacer comprise at least one glutamic acid residue. The amino acid glutamic acid comprises two carboxylic acid groups. Its gamma-carboxy group may be used for forming an amide bond with the epsilon-amino group of lysine, or with an amino group of an OEG molecule, if present, or with the amino group of another Glu residue, if present. The alfa-carboxy group may alternatively be used for forming a similar amide bond with the epsilon-amino group of lysine, or with an amino group of an OEG molecule, if present, or with the amino group of another Glu residue, if present. The amino group of Glu may in turn form an amide bond with the carboxy group of the albumin binding residue, or with the carboxy group of an OEG motif, if present, or with the gamma-carboxy group or alfa carboxy group of another Glu, if present. The linkage of the amino group of one Glu to a gamma-carboxy group of a second Glu may be referred to as a "gamma-Glu" motif.

In an embodiment the hydrophilic spacer comprise at least one combined OEG-Glu motif (-NH-(CH2)2-0-(CH2)2-0-CH2-C(0)-NH-CH(C(0)OH)-(CH2)2-0-CH2-C(0)-) or at least one combined Glu-OEG motif (-NH-CH(C(0)OH)-(CH2)2-0-CH2-C(0)-NH-(CH2)2-0-(CH2)2-0-CH2-C(0)-) or combinations here of, wherein such Glu-OEG and OEG-Glu motifs may be separated by one or more covalently linked atoms or directly bond to each other by an amide bond of the Glu's forming a gamma-Glu.

In an embodiment the hydrophilic spacer comprise at least one combined OEG-Lys motif (-NH-(CH2)2-0-(CH2)2-0-CH2-C(0)-NH-CH(C(0)OH)-(CH2)4-0-NH-) or at least one combined Lys-OEG motif (-NH-CH(C(0)OH)-(CH2)4-NHC(0)-CH2-0-(CH2)2-0-(CH2)2-0-NH-) or
combinations here of, where in such Lys-OEG and OEG-Lys motifs may be separated by one or more covalently linked atoms.

In a further embodiment B has the formula; -XrX e-X3-

wherein

5 X_1, X_2 and X_3 independently are selected from a valence bond and the elements of -OEG-, -Lys-, -Glu- and -γ-Glu- which may all be linked through peptide bonds, where X_3 is preferably an -OEG- or -Lys-.

In an embodiment B has the formula; -Xr-X2-X3-X4-

wherein

10 x_4 is -NH-CH(-COOH)-(CH$_2$)$_4$NH-, X_3 is -OEG-, X_2 is -γ-Glu-Y-Glu- and X_1 is -OEG-.

In an embodiment B has the formula; -Xr-X2-X3-X4-

wherein

15 x_4 is -NH-CH(-COOH)-(CH$_2$)$_4$NH-, X_3 is -OEG-, X_2 is -γ-Glu-Y-Glu- and X_1 is a valence bond.

In an embodiment B has the formula; -Xr-X2-X3-

wherein

20 X_1 is -$W_1{(CHR^1)}$ -$W_2{[(CH_2){E1}]}_{m2}$ -$[(CHR^3){E2}]{[(CH_2){E3}]}_{m3}$ -$W_3{[(CH_2){E2}]}_{m4}$ -$[(CHR^4){E1}]{[(CH_2){E3}]}_{m5}$ -$W_4{[(CH_2){E1}]}_{m6}$ -$W_5{[(CH_2){E2}]}_{m7}$ -$W_6{[(CH_2){E3}]}_{m8}$ -$W_7{[(CH_2){E3}]}_{m9}$ -$W_8{[(CH_2){E3}]}_{m10}$ -$W_9{[(CH_2){E3}]}_{m11}$ -$W_10{[(CH_2){E3}]}_{m12}$ -$W_11{[(CH_2){E3}]}_{m13}$ -$W_12{[(CH_2){E3}]}_{m14}$

25 l_1, l_2, l_3, l_4 and l_5 independently are selected from 0-16, m_1, m_3, m_4, m_6 and m_7 independently are selected from 0-10, m_2 and m_5 independently are selected from 0-16, n_1, n_2, n_3 and n_4 independently are selected from 0-6, R_1, R_2, R_3, R_4 and R_5 independently are selected from hydrogen, -C(0)OH, -C(0)NH, -

30 $S(0)$OH, -$S(0)$2OH, -$CH_2S(0)$ 2OH, -NH-C(=NH)-NH2 or C$_{1-6}$-alkyl; wherein the alkyl groups optionally are substituted with -C(0)OH, -C(0)NH, -S(0)OH, -S(0)2OH, -CN or -OH, E_1 and E_2 independently are selected from 0, -N(R$_6$), -N(C(0)R 7) or a valence bond; wherein R_6 and R_7 independently represent hydrogen or C$_{1-6}$-alkyl, W1 to W6 independently are selected from -C(0)NH-, -NHC(O)-, -(CH$_2$)$_n$ C(0)NH-,
-C(0)NHCH₂-, -CH₂NHC(0)-, -C(0)NHS(0), -C(0)NH-, -NHC(0)O-, -C(0)CH₂-, -CH₂C(0)-, -C(0)CH=CH-, -CH=CHC(0)-, -(CH₂)₅-, -C(0)₂-, -O(0)₂-, -OC(O)-, or a valence bond; wherein s₁ and s₂ independently are 0, 1, 2, 3 or 4.

In a further embodiment 11, I₂, I₃, I₄ and I₅ independently are 0-6. In a further embodiment m₁, m₃, m₄, m₆ and m₇ independently are 0-10. In a further embodiment n₁, n₂, n₃ and n₄ independently are 0-4. In a further embodiment E₁ and E₂ are independently selected from -O- or -N(R₆)- or a valence bond.

In a further embodiment W₁ through W₆ independently are selected from the group consisting of -C(0)NH-, -NHC(O)-, -CH₂NHC(O)-, -(CH₂)₅₁C(0)NH-, -C(0)NHS(0)₂-, -S(0)₂NHC(O)-, -NHC(O)C₆₆-alkyl, -C(0)NHC₆₆-alkyl or a valence bond; wherein the alkyl group is optionally substituted with oxo.

In a further embodiment R₁, R₂, R₃, R₄ and R₅ independently are selected from hydrogen, -C(0)OH, -C(0)NH₂, -S(0)₂OH or C₆₆-alkyl; wherein the C₆₆-alkyl group optionally is substituted with -C(0)OH, -C(0)NH₂ or -S(0)₂OH.

In a further embodiment -{[(CHR₂)₃]-[E₁]m₂-[CHR₂]l₂}-W₃l₃n₄- and -{[(CHR₄)₄]-[CHR₄]l₄}-W₅l₅n₆-, wherein E₁ and E₂ are -O-, are selected from
wherein * is intended to denote a point of attachment, i.e., an open bond.

In a further embodiment B is selected from:

and
In a further embodiment the GH conjugate is selected from:

- S^{11} hGH [E33C]
- S^{11} hGH [Y42C]
- S^{11} hGH [S62C]
- S^{11} hGH [Q69C]
- S^{11} hGH [T135C]
- S^{11} hGH [D154C]
- S^{11} hGH [E166C]
- S^{10} hGH [S106C]
- S^{10} hGH [L101C]
- S^{11} hGH [L101C]
Pharmaceutical excipients

As described herein above the present invention concerns a pharmaceutical composition comprising a growth hormone conjugate and a surfactant capable of stabilizing the formulation.

The composition may further comprise pharmaceutical excipients, such as a buffer system, preservative(s), tonicity agent(s), chelating agent(s), stabilizers and further surfactants. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 20th edition, 2000.

In one embodiment of the invention the pharmaceutical composition is a liquid formulation. In one embodiment of the invention the pharmaceutical composition is an aqueous composition, i.e. a composition where the components are dissolved or suspended
in water. Such composition is typically a solution or a suspension. If the composition comprises components which cannot be dissolved in water the composition may be an emulsion of two liquids, frequently water and an oil or a fatty acid based liquid. In another embodiment the pharmaceutical composition is a freeze-dried composition, where the physician or the patient adds solvents and/or diluents prior to use.

It is well known that human growth hormone is an unstable protein that reacts to pH changes by both deamination and aggregation. It is thus of high interest to determine for new growth hormone compound which pH and buffer composition that provides high stability.

In one embodiment the composition of the invention has a pH of 5.0-8.0, such as from 6.0-7.5, such as from 6.5-7.0. The pH may also be 6.6-6.9 or 6.7-6.9. In further embodiments the pH of the composition is 6.6, 6.7, 6.8, 6.9 or 7.0.

In a further embodiment of the invention the buffer is selected from the group consisting of sodium acetate, sodium carbonate, citrate, glycyglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, bicine, tricine, malic acid, succinate, maleic acid, fumaric acid, tartaric acid, aspartic acid or mixtures thereof. In one embodiment the pharmaceutical composition does not include glycine. In one embodiment composition comprises histidine as buffer.

In one embodiment the composition comprises histidine and has a pH of 6.5-7.0.

In one embodiment the concentration of histidine is from 0.5 mg/mL to 2 mg/mL, such as from 0.6-1.0 mg/mL, such as from 0.6-0.8 mg/mL, or from 0.6-0.7 mg/mL, such as 0.65-0.70 mg/mL or around 0.7 mg/mL. In an alternative embodiment the concentration of histidine is from 1.0-2.0 mg/mL, or such as from 1.5-1.8 mg/mL, or such as from 1.5-1.6 mg/mL, such as around 1.5 mg/mL.

Growth hormone and in particular growth hormone conjugates display an undesirable tendency to aggregate. In the present case the hydrophobic albumin binder linked to growth hormone may create an increased tendency for aggregation of the molecule when diluted in a pharmaceutical composition.

A surfactant may help to increase the water solubility of hydrophobic, oily substances or otherwise increase the miscibility of two substances with different hydrophobicity's and hence opposite solubility. A surfactant may further help to decrease aggregation by interaction between the surfactant and the protein molecule in a liquid pharmaceutical composition. In an embodiment of the invention the composition comprises a surfactant.
In a further embodiment of the invention the surfactant is a polyoxypropylene-
polyoxyethylene block polymer. In one embodiment the surfactant is selected from non-ionic
surfactants, such as poloxamers including Pluronic® F68, poloxamer 188 and 407 and Triton
X-100. In one embodiment the surfactant is selected from polyoxyethylene and polyethylene
derivatives such as alkylated and alkoxylated derivatives (tweens, e.g. Tween-20, Tween-40,
Tween-80 and Brij-35). In one embodiment the surfactant is polysorbate 80. In one
embodiment the composition of the invention comprises a surfactant selected from
poloxamer 188 and polysorbate 80. In one embodiment the surfactant is poloxamer 188
as 0.5-3.0 mg/mL surfactant, such as poloxamer 188 or polysorbate 80.

In one embodiment the composition comprises 1 mg/mL poloxamer 188.

In one embodiment the composition comprises histidine and has a pH of 6.5-7.0 and
includes a surfactant. In one embodiment the composition comprises histidine and has a pH
of 6.5-7.0 and comprises 0.1 - 5.0 mg/mL poloxamer 188, such as 1.0 - 3.0 mg/mL
poloxamer 188, or 3 mg/mL.

In a further embodiment of the invention the composition further comprises a
pharmacologically acceptable preservative. In a further embodiment of the invention the
preservative is selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol,
methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-
hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomersal, bronopol,
benzoic acid, imidurea, chlorohexidine, sodium dehydroacetate, chlorocresol, ethyl p-
hydroxybenzoate, benzethonium chloride, chlorphenesine (3-(p-chlorphenoxy)propane-1,2-
diol) or mixtures thereof.

In one embodiment the composition comprises phenol.

In a further embodiment of the invention the preservative is present in a concentration
from 0.1 mg/mL to 20 mg/mL. In a further embodiment of the invention the preservative is
present in a concentration from 0.1 mg/mL to 5 mg/mL. In one embodiment the composition
according to the invention comprises 2.0-4.0 mg/mL phenol, such as 3.0-4.0 mg/mL phenol.

Method for preparing a pharmaceutical composition

As a starting point for preparation of a pharmaceutical composition the Growth
hormone albumin-binder conjugate is provided in a solution, usually an aqueous solution.
This starting solution is preferably highly concentrated to allow dilution during preparation of
the pharmaceutical compositions. In one embodiment the starting solution of the growth
hormone albumin-binder conjugate is more than 15 mg/mL, such as 15-30 mg/mL, or such as 15-25 mg/mL.

The usual method of preparation is to dissolve the excipients (buffer, surfactant, isotonic agent and preservative in water) in a 2X buffer solution which includes each excipient in the double concentration of the concentration of the final compositions. Depending on the concentration of the growth hormone albumin-binder conjugate solution (starting solution) an appropriate volume of this is added to include the amount required to reach the concentration of the final pharmaceutical compositions. The mixing may be performed by slowly adding the compound solution and ensuring continuous mixing by stirring. Finally, water is added to reach the total volume. The pH may be adjusted at different steps, such as one or more of the compound solution, the 2X buffer and the final pharmaceutical composition.

The skilled person will know how to modify the methods in various ways such as to adjust concentrations of the 2X buffer if a different mixing relationship is required or if one or more of the components of the final composition is already present in the compound solution, wherefore the concentration of such components in the 2X buffer should be less than the double of the end concentration.

Example 8 and 9 herein describes preparation of GH compositions with adjustments to the above general method. A key information is the need to avoid mixing GH with high concentration of phenol.

Methods of treatment

As described in the background section growth hormone products are suitable for treatment of growth hormone deficiencies. Basically a pharmaceutical composition according to the invention may be for use in treatment of any disease or disorder where the patient will benefit from an increase in circulating growth hormone activity. In current treatments a growth hormone protein is administered. As an alternative growth hormone compounds with a prolonged half-life may be administered to provide growth hormone activity.

An aspect of the invention relates to the use of the growth hormone composition for the manufacture of a medicament for treatment, in particular treatment of growth hormone deficiency in children and/or adults or other diseases or states where the patient benefit from an increased level of growth hormone as described herein.
The invention further relates to the aspects of preparation of a pharmaceutical composition according to the invention for use in a method of treatment as well as the pharmaceutical composition for use in a method of treatment.

In such embodiments, the pharmaceutical composition according to the invention is for use in a method of treatment or prevention of growth hormone deficiency in children and/or adults. Other diseases or disorders where an increased concentration of circulating growth hormone may be helpful may also be treated or prevented using the pharmaceutical composition of the invention. In one embodiment the pharmaceutical compositions of the invention is for use in a method for treating diseases or states where a benefit from an increase in the amount of circulating growth hormone is observed. Such diseases or states include growth hormone deficiency (GHD); Turner Syndrome; Prader-Willi syndrome (PWS); Noonan syndrome; Down syndrome; chronic renal disease, juvenile rheumatoid arthritis; cystic fibrosis, HIV-infection in children receiving HAART treatment (HIV/HALS children); short children born short for gestational age (SGA); short stature in children born with very low birth weight (VLBW) but SGA; skeletal dysplasia; hypochondroplasia; achondroplasia; idiopathic short stature (ISS); GHD in adults; fractures in or of long bones, such as tibia, fibula, femur, humerus, radius, ulna, clavicular, matacarpia, matatarsea, and digit; fractures in or of spongy bones, such as the scull, base of hand, and base of food; patients after tendon or ligament surgery in e.g. hand, knee, or shoulder; patients having or going through distraction osteogenesis; patients after hip or discus replacement, meniscus repair, spinal fusions or prosthesis fixation, such as in the knee, hip, shoulder, elbow, wrist or jaw; patients into which osteosynthesis material, such as nails, screws and plates, have been fixed; patients with non-union or mal-union of fractures; patients after osteatomia, e.g. from tibia or 1st toe; patients after graft implantation; articular cartilage degeneration in knee caused by trauma or arthritis; osteoporosis in patients with Turner syndrome; osteoporosis in men; adult patients in chronic dialysis (APCD); malnutritional associated cardiovascular disease in APCD; reversal of cachexia in APCD; cancer in APCD; chronic abstractive pulmonal disease in APCD; HIV in APCD; elderly with APCD; chronic liver disease in APCD, fatigue syndrome in APCD; Chron's disease; IBD, UC, impaired liver function; males with HIV infections; short bowel syndrome; central obesity; HIV-associated lipodystrophy syndrome (HALS); male infertility; patients after major elective surgery, alcohol/drug detoxification or neurological trauma; aging; frail elderly; osteo-arthritis; traumatically damaged cartilage; erectile dysfunction; fibromyalgia; memory disorders; depression; traumatic brain injury; subarachnoid haemorrhage; very low birth weight; metabolic syndrome; glucocorticoid myopathy; or short stature due to glucocorticoid treatment in children. Growth hormones
have also been used for acceleration of the healing of muscle tissue, nervous tissue or
wounds; the acceleration or improvement of blood flow to damaged tissue; or the decrease
of infection rate in damaged tissue.

In one embodiment, the growth hormone compound and compositions hereof is for
treatment of GHD in children, GHD in adults (AGHD), Turner syndrome (TS), Noonan
syndrome, Idiopathic short stature (ISS), Small for gestational age (SGA), Prader-Willi
syndrome (PWS), Chronic renal insufficiency (CRI), Skeletal dysplasia, SHOX deficiency,
AIDS wasting, HIV associated lipodystrophy (HARS), Short bowel syndrome optionally
including, steroid dependent disease, cystic fibrosis and fibromyalgia.

In one embodiment the growth hormone albumin-binder conjugate is for use in the
manufacture of a pharmaceutical composition as described herein.

In one embodiment, the present invention relates to a method of treating diseases or
states mentioned above, wherein the activity of the pharmaceutical composition according
to the invention is useful for treating said diseases or states. The administering of the
pharmaceutical composition e.g. the growth hormone albumin-binder conjugate resulting in a
therapeutic benefit associated with an increase in the amount of circulating growth hormone
compound in the patient. In an embodiment said method comprises, administering to a
patient an effective amount of the pharmaceutical composition comprising a growth hormone
albumin-binder conjugate thereby ameliorating the symptoms of said patient.

In one embodiment, the present invention relates to a method comprising
administration to a patient in need thereof an effective amount of a therapeutically effective
amount of a pharmaceutical composition according to the invention. The present invention
thus provides a method for treating these diseases or states, the method comprising
administering to a patient in need thereof a therapeutically effective amount of a growth
hormone albumin-binder conjugate in a pharmaceutical composition according to the present
invention.

A "therapeutically effective amount" of a compound of the invention as used herein
means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a
given disease and its complications. An amount adequate to accomplish this is defined as
"therapeutically effective amount".

Effective amounts for each purpose will depend on e.g. the severity of the disease
or injury as well as the weight, sex, age and general state of the subject.

As described herein the growth hormone albumin-binder conjugate of the
pharmaceutical composition have an extended half-life aimed at increasing the exposure in
the patient to the compound after each dosage and the administration regime of the pharmaceutical composition should be adjusted to reach an effective exposure.

In one embodiment the pharmaceutical composition is for administration by subcutaneous injections.

In one embodiment the pharmaceutical composition is for use in a method of treatment by subcutaneous injections.

As the IGF-1 response is a hallmark of GH functionality, the therapeutically effective dosage may be estimated based on the IFG-1 response of a given growth hormone albumin-binder conjugate. As seen in Figure 6, administration of conjugate I results in dose dependent IGF-1 responses with elevated IGF-1 levels at all dosages demonstrating that such compounds are suitable for once weekly administration.

In one embodiment the pharmaceutical composition is for use in a method of treatment administering the growth hormone conjugate in an amount of about 0.01-2.0 mg/kg per dosage. In adults the composition may be for administering 0.02-0.10 mg/kg, or such as 0.02-0.08 mg/kg or such as 0.03-0.06, 0.02-0.05 mg/kg or such 0.02-0.04 mg/kg of the growth hormone conjugate per dosage. In further embodiments the pharmaceutical composition is for use in a method of treatment administering 0.05-0.18 mg/kg such as 0.08-0.16 mg/kg of the growth hormone conjugate per dosage if the subject in need is a child. As is seen the range may be wider for adults and may also dependent of gender, although usually within the range of 0.01-0.08 mg/kg.

Current treatment options are mainly once daily injects with one of several recombinant growth hormone products.

In an embodiment the pharmaceutical composition is for use in a method of treatment by administration about once a week, or every 7th day, or maybe even for administration once every 10th day.

While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

The invention is further described in the following none-limiting embodiments and illustrated by the Examples provided further below.
Embodiments

1. A pharmaceutical composition comprising
 a) 2-20 mg/mL growth hormone albumin-binder conjugate and
 b) 0.5 - 5.0 mg/mL surfactant.

2. The composition according to embodiment 1, wherein the composition comprises 0.5-4.0 mg/mL surfactant.

3. The composition according to embodiment 1, wherein the composition comprises 1.0-3.0 mg/mL surfactant.

4. The composition according to embodiment 1, wherein the composition comprises around 1.0 mg/mL surfactant.

5. The composition according to any of embodiments 1-4, wherein the composition comprises a surfactant selected from poloxamer 188 and polysorbate 80.

6. The composition according to embodiment 1, wherein the composition comprises 1 mg/mL poloxamer 188 as surfactant.

7. The composition according to any of the embodiments 1-6, wherein the composition comprises a buffer.

8. The composition according to any of the embodiments 1-6, wherein the composition comprises a buffer selected from the group consisting: of sodium acetate, sodium carbonate, citrate, glycyglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, bicine, tricine, malic acid, succinate, maleic acid, fumaric acid, tartaric acid, aspartic acid or mixtures thereof.

9. The composition according to any of the embodiments 1-6, wherein the composition comprises a buffer selected from the group consisting of: citrate, glycyglycine, histidine, glycine, lysine and arginine.
10. The composition according to any of the embodiments 1-6, wherein the composition comprises a buffer selected from the group consisting of: sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate and tris(hydroxymethyl)-aminomethan.

11. The composition according to any of the previous embodiments, wherein the composition does not comprise glycine.

12. The composition according to any of embodiments 1-9, wherein the composition comprises histidine buffer.

13. The composition according to any of embodiments 1-9, wherein the composition comprises histidine buffer in a concentration of 0.5-2 mg/mL.

14. The composition according to any of embodiments 1-13, wherein pH of the composition is 6.0-8.0, such as 5-7.0, or such as around 6.8.

15. The composition according to any of embodiments 1-14, wherein the composition comprises an isotonic agent.

16. The composition according to any of embodiments 1-14, wherein the composition comprises an isotonic agent, wherein the isotonic agent is a sugar alcohol.

17. The composition according to any of embodiments 1-14, wherein the composition comprises an isotonic agent, wherein the isotonic agent is mannitol.

18. The composition according to any of embodiments 1-14, wherein the composition comprises 20-50 mg/mL of an isotonic agent.

19. The composition according to any of embodiments 1-18, wherein the composition comprises 20-50 mg/mL mannitol.

20. The composition according to any of embodiments 1-18, wherein the composition comprises 40-50 mg/mL mannitol.
21. The composition according to any of embodiments 1-18, wherein the composition comprises a preservative.

22. The composition according to any of embodiments 1-18, wherein the composition comprises phenol as preservative.

23. The composition according to any of the previous embodiments, wherein the composition comprises 2.0-4.0 mg/mL phenol, such as 3.0-4.0 mg/mL.

24. The composition according to embodiment 1, wherein the growth hormone albumin-binder conjugate includes and albumin binding side chain (AB) and a growth hormone protein (GH) that are covalently linked (\(\sim\)) to each other, as represented by the formula AB-GH.

25. The composition according to any of the previous embodiments, wherein GH comprises at least one point mutation compared to human growth hormone.

26. The composition according to embodiment 25, wherein the growth hormone comprises one point mutation in any one of amino acid AA 98-105 compared to human growth hormone.

27. The composition according to embodiment 25, wherein the point mutation is a Cys mutation.

28. The composition according to embodiment 25, wherein the growth hormone include the L101C mutation.

29. The composition according to embodiment 24, wherein the side chain (AB) is attached to growth hormone via an amino acid residue in loop 2 (L2, AA99-106) or corresponding residues in a growth hormone variant.

30. The composition according to embodiment 24, wherein AB- is attached to GH via a Cys residue in GH.

31. The composition according to embodiment 24, wherein AB- is attached to L101 C of GH.
32. The composition according to any of the previous embodiments, wherein the growth hormone albumin binder conjugate has the following formula:

\[A-W-B-Q-GH \]

GH represents a growth hormone protein/compound
A is an albumin binding residue
B is a (hydrophilic) spacer
Q is a chemical group linking GH and B,
W is a chemical group linking B and A.
and "-" is a covalent bond.

33. The composition according to embodiment 32, wherein the wherein A-W-B-Q is attached to an L101C mutation in GH.

34. The composition according to embodiment 32 or 33, wherein the chemical group Q is: \[-\text{NH-C(0)-(CH}_2\text{)}^-\].

35. The composition according to embodiment 32 or 33 or 34, wherein A is selected from:

\[\text{wherein } * \text{ denotes the attachment to B through } W. \]
36. The composition according to embodiment 32, 33, 34 or 35, wherein the hydrophilic spacer B comprise at least one OEG motif, the radical 8-amino-3,6-dioxaocatonic acid, i.e. \(-\text{NH-(CH}_2\text{)}_2\text{O-(CH}_2\text{)}_2\text{O-CH}_2\text{C(0)}.\)

5 37. The composition according to any of embodiments 32-36, wherein W has the formula:

\(W_a \cdot W_b\)

wherein \(W_a\) is selected from: -C(0)NH, -NHC(0), -C(0)NHCH\(_2\), -CH\(_2\)NHC(0), -C(0)NHS(0)\(_2\), -S(0)\(_2\)NHC(0), -OC(0)NH, -NHC(0)\(_2\), -C(0)CH\(_2\), -CH\(_2\)C(0), -C(0)\(_2\), -CH=CH(0), -S(0)\(_2\), -C(0), -C(0)O, and \(W_b\) is selected from: -CH\(_2\)-C\(_6\)H\(_{12}\)C(=0), -OEG, -Lys, -Glu, -\(\gamma\)-Glu, -CH, -CH(CH\(_2\)SO\(_3\)H)-C(0), -S(0)\(_2\)CH\(_2\)\(_3\)C(0), and a valence bond.

10 38. The composition according any of embodiments 32-36, wherein W is selected from:

-C(0)NH, -NHC(0), -C(0)NHCH\(_2\), -CH\(_2\)NHC(0), -C(0)NHS(0)\(_2\), -S(0)\(_2\)NHC(0), -OC(0)NH, -NHC(0)\(_2\), -C(0)CH\(_2\), -CH\(_2\)C(0), -C(0)\(_2\), -C(0), -C(0)O, -OC(O), or a valence bond.

15 39. The composition according to any of the embodiments, wherein the growth hormone albumin binder conjugate is selected from the group of:

-\(\text{hGH}[E33C]\)
-\(\text{hGH}[Y42C]\)
-\(\text{hGH}[S62C]\)
-\(\text{hGH}[D269C]\)
-\(\text{hGH}[T155C]\)
-\(\text{hGH}[G315C]\)
and
40. The composition according to any of the previous embodiments, wherein the composition is a liquid.

41. The composition according to any of the previous embodiments, wherein the composition is an aqueous composition.

42. The composition according to any of the previous embodiments for use in a method of treatment.

43. The composition according to any of the previous embodiments for use in a method of treatment of growth hormone deficiency.

44. The composition according to any of the previous embodiments for use in a method of treatment for administration by subcutaneous injections.

45. The composition according to any of the previous embodiments for use in a method of treatment for less than daily administration.

46. The composition according to any of the previous embodiments for use in a method of treatment for less than bi-weekly administration.

47. The composition according to any of the previous embodiments for use in a method of treatment for once weekly administration.

48. The composition according to any of the previous embodiments for use in a method of treatment for at most once weekly subcutaneous administering.

49. The composition according to any of the previous embodiments comprising 2-20 mg/mL growth hormone albumin-binder conjugate (GH-AB), a buffer, a preservative and 0.5 - 5.0 mg/mL surfactant.
50. The composition according to any of the previous embodiments wherein the composition comprises 3-10 mg/mL growth hormone albumin binder conjugate.

51. The composition according to any of the previous embodiments for use in a method of treatment for weekly administration of 0.01-0.20 mg/kg, such as 0.02-0.08 mg/kg, of the growth hormone conjugate.

52. The composition according to any of the previous embodiments, wherein the composition is for use in a method of treatment for administering 0.01-0.16 mg/kg of the growth hormone albumin binder conjugate per dosage.

53. The composition according to any of the previous embodiments wherein the composition is for use in a method of treatment of growth hormone deficiency by a once weekly dosage of 0.01-0.08 mg/kg.

54. The composition according to any of the previous embodiments, wherein the composition is for use in a method of treatment by administration to adults.

55. The composition according to any of the previous embodiments wherein the composition is for use in a method of treatment of growth hormone deficiency in adults (AGHD).

56. A pharmaceutical composition comprising a growth hormone albumin binder conjugate, a surfactant selected from poloxamer 188 and 0.5-2 g/mL histidine, 35-50 mg/mL mannitol and 2-5 mg/mL phenol.

57. A pharmaceutical composition comprising a growth hormone albumin binder conjugate, 0.5-2 mg/mL poloxamer 188, 0.5-2 g/mL histidine, 35-50 mg/mL mannitol and 2-5 mg/mL phenol.

58. A pharmaceutical composition comprising
 5-10 mg/mL growth hormone albumin binder conjugate,
 1-3 mg/mL poloxamer 188
 0.5-1.0 mg/mL histidine buffer
 40-45 mg/mL mannitol and
3-4 mg/mL phenol.

59. A method for preparing a pharmaceutical composition according to any of the previous embodiments.

60. A method for treatment of growth hormone deficiency, comprising administration to a patient in need thereof a therapeutically effective amount of a pharmaceutical composition according to any of the embodiments 1-58.

61. A method for treating diseases or states where the patient may benefit from an increase in the level of circulating growth hormone, the method comprising administering to a patient in need thereof a therapeutically effective amount of a growth hormone albumin-binder conjugate in a pharmaceutical composition according to any of the embodiments 1-58.

62. The method according to embodiment 60, wherein the composition is administered to a patient suffering from adult growth hormone deficiency (AGHD) at most once weekly.

63. The method according to embodiment 60, wherein the composition is administered to a patient suffering from adult growth hormone deficiency (AGHD), wherein 0.01-0.08 mg/kg of the growth hormone albumin binder conjugate is administered per dosage.

64. The method according to embodiment 60, wherein the composition is administered to a patient suffering from adult growth hormone deficiency (AGHD), wherein 0.01-0.08 mg/kg of the growth hormone albumin binder conjugate is administered at most once weekly.

65. The method according to embodiment 60, wherein the composition is administered to a patient suffering from growth hormone deficiency (GHD) once a weekly.

66. The method according to embodiment 60, wherein the composition is administered to a patient suffering from growth hormone deficiency (GHD), wherein 0.01-0.08 mg/kg of the growth hormone albumin binder conjugate is administered per dosage.
67. The method according to embodiment 60, wherein the composition is administered to a patient suffering from growth hormone deficiency (GHD), wherein 0.01-0.08 mg/kg of the growth hormone albumin binder conjugate is administered once a weekly.

68. The method according to embodiment 60, wherein the composition is administered to an adult patient at most once weekly.

69. The method according to embodiment 60, wherein the composition is administered to a patient suffering from growth hormone deficiency in adults (AGHD) at most once weekly.

70. The method according to embodiment 60, wherein the composition is administered to a patient suffering from growth hormone deficiency in adults (AGHD), wherein 0.01-0.08 mg/kg of the growth hormone albumin binder conjugate is administered per dosage.
Examples

A growth hormone albumin binder conjugates may be prepared according to standard methods. The growth hormone protein is expressed in a suitable host, such as E. coli and purified. The conjugation reaction may be performed according to methods in the art known to the skilled person. General methods useful for preparing such conjugates are presented below including details relating to the specific conjugates described herein. The skilled person may adapt the methods to prepare alternative conjugates based on general knowledge in the art.

General method for preparing a growth hormone protein

The gene coding for a growth hormone protein is inserted recombinant into a plasmid vector. A suitable E. coli strain is subsequently transformed using the plasmid vector. Human GH or GH variants may be expressed with an N-terminal methionine or as a MEAE fusion from which the MEAE sequence is subsequently cleaved off.

Cell stock are prepared in 25% glycerol and stored at -80 °C. Glycerol stock strain are inoculated into LB plates and subsequently incubated at 37 °C overnight. The content of each plate is washed with LB medium and diluted into 500 mL LB medium for expression. The cultures are incubated at 37 °C with shaking at 220 rpm until OD₆₅₀ 0.6 has reached. Succeeding induction is performed using 0.2 mM IPTG at 25 °C for 6 hours. Cells are finally harvested by centrifugation.

Cells are subsequently suspended in 10 mM Tris-HCl, pH = 9.0 containing 0.05% Tween 20, 2.5 mM EDTA and 4M urea, and disrupted using a cell disrupter at 30kPSI. If a GH molecule with a free cysteine (for conjugation) is expressed 10 mM cysteamine is included in the suspension buffer. The supernatant was collected by centrifugation and subsequently subjected to chromatographic purification.

The purification is performed using ion-exchange chromatography and hydrophobic interaction, followed by removal of the peptide tag using human dipeptidyl peptidase I (hDPPI) expressed from CHO cell. Final purification is achieved by isoprecipitation and ion-exchange chromatography.

The purification could also be achieved by using but not limited to ion-exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, size exclusion chromatography and membrane based separation techniques known to a person skilled in the art.
Preparation of single cys GH variants including GH(L101C):
After the initial purification as described above, the variants may have part of its free cysteine blocked with glutathione and cystamine. De-blocking is performed enzymatically using glutaredoxin II (Grx2) in an equilibrium buffer containing GSH and GSSG. De-blocked GH (L101 C) is separated from low molecular weight GSH/GSSG by buffer exchanged on a Sephadex G25 column.

Protein chemical characterization of purified growth hormone compounds.
The intact purified protein is analysed using MALDI-MS to confirm that the observed mass corresponded to the theoretical mass deduced from the amino acid sequence. The expected linkage disulfide bonds may be demonstrated by peptide mapping using trypsin and AspN digestion followed by MALDI-MS analysis of the digest before and after reduction of the disulfide bonds with DTT.

Albumin-binder side-chain preparation

Side chain (I)

4-(1H-Tetrazol-16-yl-hexadecanoylsulfamoyl)butanoyl-OEG-YGlu -γGlu-OEG-N°(C(0)CH₂Br)Lys-OH (I):

![Side chain (I)]

The side-chain (I) was synthesised on solid support according to scheme 1, in 1mM scale using standard Fmoc-peptide chemistry on an ABI433 synthetizer. Peptide was assembled on a Fmoc-Lys(MTT)-Wang resin using Fmoc-OEG-OH and Fmoc-Glu-OtBu protected amino acids. 4-(1H-Tetrazol-5-yl-hexadecanoylsulfamoyl)butyric acid was manual coupled using DIC/NHS in DCM/NMP, 2 eq. over-night, TNBS test showed the reaction to be completed. The resin was then treated with 50 mL DCM/TFA/TIS/water (94:2:2:2) in a flow-through arrangement until the yellow colour disappeared, -20 min. followed by washing and
neutralizing with DIPEA/DMF. Bromo acetic acid (4 mM) in DCM/NMP (1:1) was activated with a 1 mM mixture of NHS and DIC, filtered and added to the resin with addition of further 1 mM of DIPEA. After 1 hr the reaction was completed. The resin was treated with 80 ml TFA/TIS/water (95:2.5:2.5) for 1 hr. Evaporated with a stream of N$_2$, precipitated by addition of Et$_2$O and washed with Et$_2$O and dried. Crude product was purified on preparative HPLC (2 runs), with a gradient from 30-80% 0.1 TFA / MeCN against 0.1% TFA in water. Fractions were collected and lyophilized with -50% MeCN affording side chain (I). TOF-MS: mass 1272.52 (M+1)

Scheme 1

Side chain (II)

In a similar way as described in above the following side chain (II) was prepared using Fmoc-Lys(Mtt)-OH and Wang Resin. TOF-MS: mass 844.84 (M+1)

(II)
General method for conjugating an albumin binder side-chain to a growth hormone protein

Coupling of a GH protein having an internal free single cys (GH-SH) with an albumin binding side-chain (AB-Halo) as described above.

a) Liberation of GH-SH (VII) via reduction of disulfide (VI) with a suitable selective reducing agent:

b) Alkylation of free GH-SH (VII) with a halogen activated albumin binder (VIII) affording growth hormone conjugate with AB linked to "-S-" of single Cys residue.

Conjugation of albumin binder side chain with GH (101C) with side chain (I)

The albumin binder side chain (78 mg/ 5 eq) is dissolved in 170 mL HEPES/EDTA buffer with 5% hydroxypropyl-B-cyclodextrin and added MTP (2,1 mL, 1%) and 0.5 M NaCl (6,34 g). To this mixture was added concentrated GH(L101 C) (1 eq, 46 mL) and the mixture was left over night at RT. The solution became cloudy overnight. As HPLC indicated unreacted starting material another 5 eq. albumin binder from example 5 dissolved in a minimum of NMP was added. The resulting mixture was stirred at RT for an additional 16 hrs. For further details on conjugation and purification method reference is made to WO 11/098255.

Growth hormone albumin-binder conjugate I and II, shown below, was obtained using the method described above.
Alternative methods may be used to prepare alternative growth hormone albumin-binder conjugates as have previously been described in W01 1/015649 including N-terminal C-terminal conjugations and in chain site specific conjugations to Gin or Lys residues using a transglutaminase reaction. Also for single Cys conjugation as described above an alternative conjugation process can be applied, such as described in W01 1/050923.

Determination of HMWP content by size-exclusion chromatography (SEC-HPLC)

The analytical procedure is a size-exclusion chromatography (SE-HPLC) test, where the samples are analysed using a TSK G2000 SWxl column, isocratic elution using a sodium phosphate/isopropanol buffer and subsequent UV detection at 215 nm. % HMWP is calculated relative to the total integrated area.

Visual inspection

Samples (minimum volume of 2 ml.) stored in glass vials or cartridges (type I) are inspected under architect lamp and in light chamber. The visual appearance of samples is quantified by a visual score with criteria for clarity and particles on a score from 1 to 5 with 1 being clear and without particles and 5 referring to samples with visible precipitate.

Determination of protein Aggregates using optical density (OD)

The optical density of samples is measured at 340 nm using a Varian Cary 100 Bio UV-VIS spectrophotometer.

Determination of particles using Micro-Flow Imaging (MFI)

Quantification of particles by size and morphology in undiluted solution (1 ml.) was performed using flow microscopy on Micro-Flow Imaging flow microscopy MFI 5000. Quantification and characterisation of sub-visible particles >2 µm, >10 µm and > 25 µm was performed. A filter (circularity 0-0.85) removing eventual air bubbles and silicon droplets, was also applied.
Example 1

The stability of a formulation of Conjugate I, described above was investigated at different pH (pH 6.0 and 6.6) including different surfactants and variation of surfactant and buffer (histidine) concentration. The study was performed as a design of experiment (DoE) study.

The formulation tested includes in addition to growth hormone conjugate I a surfactant and histidine buffer in a concentration of 0.68 mg/mL or 1.55 mg/mL, also including 40 mg/mL mannitol and 3.0 mg/mL phenol.

The amount of HMWP (high molecular weight protein) was measured over 90 days, in samples from time point 0, 30, 60 and 90 days at 5 °C. Similar data were obtained at 25 °C. The HMWP content is measured by size-exclusion chromatography (SEC-HPLC) using a TSK gel G3000 SWXL column, a sodium phosphate / isopropanol pH 7.0 mobile phase with isocratic elution and subsequent UV detection at 215 nm.

Figure 1 shows that poloxamer 188 stabilises the formulation at the time of preparation. Increased amounts of HMWP were found at time zero (t=0) in formulations without poloxamer 188. The level of HMWP in polysorbate 80 formulations and formulations without surfactant was however decreased to levels comparable to formulations with poloxamer analysed after one month storage at 5 °C.

Figure 2 shows that 3 mg/mL poloxamer 188 is superior to 1.0 mg/mL polysorbate 80 at low pH.

Example 2

A manufacturability study was performed preparing formulations of conjugate I.

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>histidine,</th>
<th>mannitol</th>
<th>phenol</th>
<th>poloxamer</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7 mg/mL</td>
<td>0.68 mg/mL</td>
<td>44 mg/mL</td>
<td>3.0 mg/mL</td>
<td>from 0 to 3.0 mg/mL</td>
<td>6.8</td>
</tr>
</tbody>
</table>

The liquid conjugate I drug substance preparation (including histidine buffer) was pH adjusted to pH 6.5 and 7.1 in a volume approximately 40% of final volume. The buffer solution (histidine, mannitol, poloxamer and phenol) of approximately 60% volume was pH adjusted to pH 6.8. After mixing of the two solutions the final formulation was pH adjusted to pH 6.8. Formulations at pH 6.8, prepared from preparations having different pH's, were followed in a stability study during 1 month storage at 25 °C.
Samples taken at time = 0, 1 day, 2 weeks and 1 month was analyzed. All samples appeared clear from visual inspection and % HMPW measured from SE-HPLC is provided in the table below.

<table>
<thead>
<tr>
<th>pH of conjugate I preparation</th>
<th>Poloxamer 188 (mg/mL)</th>
<th>T=0 25 °C</th>
<th>T=1 day 25 °C</th>
<th>T=2 weeks 25 °C</th>
<th>1=month 25 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 6.5</td>
<td>0</td>
<td>3.6</td>
<td>3.6</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>pH 6.5</td>
<td>0.5</td>
<td>3.6</td>
<td>3.5</td>
<td>3.9</td>
<td>4.5</td>
</tr>
<tr>
<td>pH 6.5</td>
<td>1.0</td>
<td>3.5</td>
<td>3.8</td>
<td>4.6</td>
<td>5.1</td>
</tr>
<tr>
<td>pH 6.5</td>
<td>3.0</td>
<td>3.5</td>
<td>3.8</td>
<td>4.6</td>
<td>5.1</td>
</tr>
<tr>
<td>pH 7.1</td>
<td>0</td>
<td>3.6</td>
<td>3.6</td>
<td>3.9</td>
<td>4.5</td>
</tr>
<tr>
<td>pH 7.1</td>
<td>0.5</td>
<td>3.5</td>
<td>3.6</td>
<td>4.2</td>
<td>4.7</td>
</tr>
<tr>
<td>pH 7.1</td>
<td>1.0</td>
<td>3.5</td>
<td>3.5</td>
<td>4.1</td>
<td>4.6</td>
</tr>
<tr>
<td>pH 7.1</td>
<td>3.0</td>
<td>3.5</td>
<td>3.5</td>
<td>4.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Table 1. Evaluation of conjugate I formulation, pH 6.8

No clear difference in the levels of HMWP was observed between the formulations dependent on pH of the GH conjugate DS solutions during preparation of final product formulations. All formulations display a similar level of HMWP at time of preparation and similar stability in the accelerated stability study where stability during 1 month storage at 25 °C was tested. A slight tendency for the formulations with higher amounts of poloxamer 188 (1.0 mg/mL and 3.0 mg/mL) to develop a higher amount of HMWP over time might be observed for the formulations prepared from DS with pH 6.5.

The almost similar stability of all formulations is expected to be caused by an nearly comparable pH in formulations after mixing of buffer and DS solutions as the buffer solution (pH 6.8) comprises approximately 60% of the final product solution.

Example 3

Formulations of Conjugate I were made with variation in concentration of poloxamer 188 (1.0, 3.0 and 5.0 mg/mL) in histidine buffer including mannitol and phenol (0.68 mg/mL histidine, 44 mg/mL mannitol, and 3 mg/mL phenol). Stability at 30 °C at pH 6.2, 6.8 and 7.4 was tested by measuring HMWP. The study was performed as a design of experiment (DoE) study.
As seen in figure 3, the samples displayed an equal amount of HMWP at time 0 (T=0). The statistical analysis of HMWP data found no significant effect of poloxamer after 4 weeks storage at 30 °C. However, a tendency for formulation with increased amount of poloxamer to develop a higher amount of HMWP over time was observed at both pH 6.2 and 6.8, indicating that the high concentration of poloxamer 188 should be avoided if the composition is for long term storage. Data from pH 7.4 is not included in figure as pH effect is dominating resulting in a generally low HMWP formation.

Example 4

The effect at pH 6.2, 6.5 and 6.8 was studied in the following experiment. Conjugate formulations were made with variation in concentration of poloxamer 188 (0.0, 1.0, 3.0 mg/mL) and with variation in pH (6.2, 6.5 and 6.8). Other components of the tested compositions were as in Example 3. Samples were physically stressed with shear at room temperature for 7 days. Samples were taken after 3 and 6 hours and after 1, 2, 5, 6 and 7 days. Other samples were stressed by pipetting 25 times. All samples were visually examined and further analysed for OD (optical density) at 340 nm.

As seen in figure 4, samples without poloxamer 188 displayed a distinct increase in OD 340 compared to samples with 1.0 and 3.0 mg/mL poloxamer 188 in both shaking and pipetting study. The tendency was confirmed at all pH levels. Figure 4A display the full results whereas Figure 4B display only the low OD 340 measure. Furthermore, the visual scoring clearly showed that samples without poloxamer were turbid and the turbidity increased at decreasing pH.

Example 5

Experiments similar to Example 4 at pH 6.2 and 6.8 were performed using three additional growth hormone compounds. Wild type human growth hormone (WT hGH), Conjugate I and a growth hormone variant including a 101 Cys mutation (GH L101C) which is also the GH protein of Conjugate I. As seen from Figure 5A, 5B and 5C the conclusions from above were confirmed. Low surfactant content improves the stability of the composition both initially and after stress as tested during 7 days. For Conjugate I, samples without poloxamer seemed specifically dependent on pH. By visual scoring, an increase of turbidity was observed with decreasing pH.
Example 6

Micro-flow Imaging (MFI) evaluation was used to measure particle formation in growth hormone compositions. Samples (1 mL) were measured on Micro-Flow Imaging flow microscopy MFI 5000. As above the following compounds were included in the evaluation: Wild type human growth hormone (hGH), Conjugate I, Conjugate II and growth hormone variant L101 C (GH L101C).

The stabilising effect of poloxamer 188 is evaluated with 6.7 mg/mL growth hormone compound at pH 6.2 and pH 6.8.

The study is set up as a stress stability study with shaking samples for up to 7 days at room temperature. Growth hormone compositions at pH 6.2 and 6.8 including 0.0, 1.0 or 3.0 mg/mL poloxamer 188 and measurements were made at T=0 and T=2 (2 days). The compositions all comprised 0.68 mg/mL histidine, 44.0 mg/mL and 3 mg/mL phenol. Data obtained at T=0 is included in table 1, while data obtained after two days (T=2) is included in table 2, below.
<table>
<thead>
<tr>
<th>Compound (6,7 mg/mL)</th>
<th>pH</th>
<th>Poloxamer (mg/mL)</th>
<th>> 2 µηι (#/ml_)</th>
<th>> 10 µηι (#/ml_)</th>
<th>> 25 µηι (#/ml_)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGH 6,2</td>
<td>6,2</td>
<td>0.0</td>
<td>108622</td>
<td>25593</td>
<td>5645</td>
</tr>
<tr>
<td>hGH 6,2</td>
<td>6,2</td>
<td>1.0</td>
<td>1012</td>
<td>195</td>
<td>33</td>
</tr>
<tr>
<td>hGH 6,2</td>
<td>6,2</td>
<td>3.0</td>
<td>451</td>
<td>131</td>
<td>41</td>
</tr>
<tr>
<td>hGH 6,8</td>
<td>6,8</td>
<td>0.0</td>
<td>45695</td>
<td>7568</td>
<td>1186</td>
</tr>
<tr>
<td>hGH 6,8</td>
<td>6,8</td>
<td>1.0</td>
<td>317</td>
<td>141</td>
<td>39</td>
</tr>
<tr>
<td>hGH 6,8</td>
<td>6,8</td>
<td>3.0</td>
<td>268</td>
<td>127</td>
<td>47</td>
</tr>
<tr>
<td>Conjugate 1</td>
<td>6,2</td>
<td>0.0</td>
<td>52825</td>
<td>11045</td>
<td>2117</td>
</tr>
<tr>
<td>Conjugate 1</td>
<td>6,2</td>
<td>1.0</td>
<td>1234</td>
<td>348</td>
<td>88</td>
</tr>
<tr>
<td>Conjugate 1</td>
<td>6,2</td>
<td>3.0</td>
<td>119</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Conjugate 1</td>
<td>6,8</td>
<td>0.0</td>
<td>1558</td>
<td>192</td>
<td>18</td>
</tr>
<tr>
<td>Conjugate 1</td>
<td>6,8</td>
<td>1.0</td>
<td>213</td>
<td>82</td>
<td>39</td>
</tr>
<tr>
<td>Conjugate 1</td>
<td>6,8</td>
<td>3.0</td>
<td>76</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>GH L101C</td>
<td>6,2</td>
<td>0.0</td>
<td>56467</td>
<td>11807</td>
<td>2008</td>
</tr>
<tr>
<td>GH L101C</td>
<td>6,2</td>
<td>1.0</td>
<td>2020</td>
<td>488</td>
<td>78</td>
</tr>
<tr>
<td>GH L101C</td>
<td>6,2</td>
<td>3.0</td>
<td>1195</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>GH L101C</td>
<td>6,8</td>
<td>0.0</td>
<td>26262</td>
<td>3472</td>
<td>477</td>
</tr>
<tr>
<td>GH L101C</td>
<td>6,8</td>
<td>1.0</td>
<td>1575</td>
<td>242</td>
<td>43</td>
</tr>
<tr>
<td>GH L101C</td>
<td>6,8</td>
<td>3.0</td>
<td>106</td>
<td>37</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 1 - Particle numbers at T=0
<table>
<thead>
<tr>
<th>Compound (6,7 mg/mL)</th>
<th>pH</th>
<th>Poloxamer (mg/mL)</th>
<th>> 2 µηι (#/ml_)</th>
<th>> 10 µηι (#/ml_)</th>
<th>> 25 µηι (#/ml_)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGH 6,2 0.0</td>
<td>n/a</td>
<td>n/a</td>
<td>3460</td>
<td>807</td>
<td>188</td>
</tr>
<tr>
<td>hGH 6,2 1.0</td>
<td>200</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hGH 6,8 0.0</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hGH 6,8 1.0</td>
<td>14204</td>
<td>1791</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hGH 6,8 3.0</td>
<td>411</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate 1 6,2 0.0</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate 1 6,2 1.0</td>
<td>2168</td>
<td>503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate 1 6,2 3.0</td>
<td>214</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate 1 6,8 0.0</td>
<td>89085</td>
<td>5095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate 1 6,8 1.0</td>
<td>310</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate 1 6,8 3.0</td>
<td>82</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH L101C 6,2 0.0</td>
<td>301980</td>
<td>29499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH L101C 6,2 1.0</td>
<td>1119</td>
<td>283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH L101C 6,2 3.0</td>
<td>922</td>
<td>306</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH L101C 6,8 0.0</td>
<td>40493</td>
<td>6443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH L101C 6,8 1.0</td>
<td>775</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH L101C 6,8 3.0</td>
<td>150</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate II 6,2 0.0</td>
<td>263980</td>
<td>33209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate II 6,2 3.0</td>
<td>512</td>
<td>159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate II 6,8 0.0</td>
<td>19818</td>
<td>3278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugate II 6,8 3.0</td>
<td>483</td>
<td>188</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 - Particle numbers at T=2. N/A indicates that it was not possible to measure particle number due to too many particles.
It was concluded that poloxamer 188 suppresses particle formation in all growth hormone compound composition tested. Moreover, higher concentration (3 mg/mL compared to 1 mg/mL) of poloxamer 188 has a stronger effect on particle formation. For the conjugates of GH, pH seems to have a pronounced effect on particle suppression as better results are obtained at pH 6.8 than at pH 6.2, reducing the advantage of a high poloxamer concentration. A similar conclusion was reached by visual inspection.

Example 7

A randomised, double-blind, placebo-controlled multiple-dose and dose-escalation trial was performed in Japanese and non-Asian healthy, male subjects, to evaluate safety, tolerability and pharmacokinetic (PK) and pharmacodynamic (PD) parameters.

Four cohorts of 16 subjects were dosed by subcutaneous administration with conjugate 1 (n=12) or placebo (n=4) once-weekly for 4 consecutive weeks (equal numbers of Japanese and non-Asian subjects). The dosage was 0.02, 0.08, 0.16 and 0.24 mg/kg in the individual cohorts, The compound was provided as freeze dried formulation and reconstituted before use.

The pharmacokinetic of conjugate 1 was assessed after the fourth (4th) dose. A dose-dependent increase of the mean plasma concentrations of conjugate 1 was observed (data not shown). The pharmacodynamics parameters of conjugate 1 administration was evaluated by measuring the IGF-I response (Immunodiagnostic system (IDS)).

Dose-dependent IGF-I and IGFBP-3 responses were observed, with elevated IGF-I levels at all doses. The mean IGF-I standard deviation score (SDS) profiles (Figure 6) indicate that conjugate 1 may be suitable for once-weekly dosing. If further shows that a clinically relevant IGF-I response was induced at doses < 0.08 mg/kg.

Example 8

The pharmaceutical composition may be prepared by mixing a preparation of the growth hormone albumin-binder conjugate with the required excipients. The following process is useful when a liquid preparation of the conjugated is the starting point.
Final composition:
Growth hormone conjugate I (6.7 mg/ml)
1.0 mg/ml poloxamer 188
0.68 mg/ml histidine
44 mg/ml mannitol
4.0 mg/ml phenol
pH for the formulation is 6.8

Stock solutions:
21.3 and 20.5 mg/ml Growth hormone conjugate I (in 0.68 mg/ml histidine) (batch NLfK040501 and NLfK040503)
20 mg/ml poloxamer 188 (in WFI)
Buffer solution: 110 mg/ml mannitol, 10 mg/ml phenol and histidine, wherein the histidine concentration is dependent on the volume/amount of DS used.
HCl for pH adjustment

The conjugate I preparations (including histidine buffer) was weighed out and poloxamer 188 was added as a stock solution. WFI was added to the solution to reach 55% of final volume. A buffer solution was prepared including mannitol, histidine, phenol and hydrochloric acid for adjustment of pH. The buffer solution (40% of final volume) was added to the conjugate I and poloxamer 188 solution resulting in 95% of final volume. pH was measured (and adjusted if necessary), and finally WFI was added to reach the final volume.

During preparation samples were taken from the conjugate I and poloxamer 188 solution and from the intermediate formulation and the final pharmaceutical composition. The content of high molecular weight proteins (\% HMWP) was measured by SE-HPLC (table 1) and was found to be low throughout the process. The final pharmaceutical composition appeared clear and colourless.
Conjugate 1 preparation batch NLfK040501
Conjugate I preparation batch NLfK040503
Conjugate I and poloxamer 188 solution (55 % of final volume)
Intermediate formulation 95% of final volume

<table>
<thead>
<tr>
<th>HMWP (%)</th>
<th>Conjugate 1 preparation</th>
<th>Conjugate I preparation</th>
<th>Conjugate I and poloxamer 188 solution</th>
<th>Intermediate formulation</th>
<th>Final formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>3.5</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 - HMWP (%) of Conjugate 1 preparations, in-process samples and final formulation

Example 9

In another study phenol was included in a phenol-buffer solution at varying concentrations (5, 10 and 30 mg/ml) and introduced to the conjugate I preparation. As seen below use of 30 mg/ml phenol gave an increase in % HMWP in the final formulation. The level of HMWP is dependent on the concentration of conjugate I in the solution and the concentration of phenol.

Stock solutions and excipients:
Conjugate I preparation (batch IHJe12-021): 18.0 mg/ml
Phenol solutions 30 mg/ml, 10 mg/ml and 5 mg/ml
50 mg/ml poloxamer
Mannitol (powder).
Histidine

For each formulation a phenol and histidine solution was prepared including the total amount of phenol and histidine to reach the desired concentration in the final formulation. Conjugate I preparation, in amount to reach total amount in final formulation, was added to the phenol-histidine solutions, in-process samples were taken, and subsequently poloxamer 188 and mannitol was added in amounts to reach the desired concentration in the final formulation. Previous studies (not shown) had revealed solubility issues if poloxamer 188 and mannitol was included in the buffer solution. Finally WFI was added to reach the final volume pH was adjusted with hydrochloric acid.
Final formulations:
2.0, 3.3; 6.7; and 10 mg/ml growth hormone conjugate I
1.0 mg/ml poloxamer 188
0.68 mg/ml histidine
44 mg/ml mannitol
3.0 mg/ml phenol
pH 6.3.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phenol conc. of histidine and phenol solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0 mg/ml</td>
</tr>
<tr>
<td>In-process (to reach 2 mg/ml)</td>
<td>4.1</td>
</tr>
<tr>
<td>2.0 mg/ml</td>
<td>3.7</td>
</tr>
<tr>
<td>In-process (to reach 3,3 mg/ml)</td>
<td>3.6</td>
</tr>
<tr>
<td>3.3 mg/ml</td>
<td>3.4</td>
</tr>
<tr>
<td>In-process (to reach 6,7 mg/ml)</td>
<td>3.7</td>
</tr>
<tr>
<td>6.7 mg/ml</td>
<td>3.6</td>
</tr>
<tr>
<td>In-process (to reach 10 mg/ml)</td>
<td>-</td>
</tr>
<tr>
<td>10.0 mg/ml</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2 shows the HMWP (%) in in-process samples and final formulations depending on starting phenol concentration and GH concentration. Initial HMWP level of conjugate I preparation was 3.7%. A very high HMWP content was obtained when a high concentration of phenol was mixed with a low concentration of growth hormone conjugate.
CLAIMS

1. A pharmaceutical composition comprising 2-20 mg/mL growth hormone albumin-binder conjugate (GH-AB), a buffer, a preservative and 0.5 - 5.0 mg/mL surfactant.

2. The composition according to claim 1, wherein the composition comprises 1 mg/mL poloxamer 188 as surfactant.

3. The composition according to any of the previous claims, wherein the composition comprises histidine buffer.

4. The composition according to any of the previous claims, wherein the composition does not comprise glycine.

5. The composition according to any of the previous claims, wherein pH of the composition is 6.5-7.0, preferably 6.8.

6. The composition according to any of the previous claims, wherein the composition comprises 2.0-4.0 mg/mL phenol or 3.0-4.0 mg/mL phenol.

7. The composition according to any of the previous claims, wherein the composition comprises an isotonic agent, such as 40-45 mg/mL mannitol.

8. The composition according to any of the previous claims, wherein AB- is attached to GH via a cys residue in GH.

9. The composition according to any of the previous claims, wherein the composition is for use in a method of treatment of growth hormone deficiency (GHD) or growth hormone deficiency in adults (AGHD).

10. The composition according to any of the previous claims, wherein the composition is for use in a method of treatment by once weekly administration.
11. The composition according to any of the previous claims, wherein the composition is for use in treatment of growth hormone deficiency (GHD) or growth hormone deficiency in adults (AGHD) by once weekly administration of a dosage of 0.01-0.08 mg/kg.

12. A method for treatment of growth hormone deficiency (GHD) or growth hormone deficiency in adults (AGHD), comprising administering to a patient in need thereof a therapeutically effective amount of a pharmaceutical composition according to any of the claims 1-9.

13. The method according to claim 12, wherein the composition is administered once weekly.

14. The method according to claim 12, wherein the composition is administered to an adult patient suffering from growth hormone deficiency once weekly.

15. The method according to claim 12 or 13, wherein the composition is administered to a patient suffering from growth hormone deficiency wherein 0.01-0.08 mg/kg of the growth hormone albumin binder conjugate is administered per dosage.
Fig. 2

HMWP

- pH 6.0, no surfactant
- pH 6.0, 1.0 mg/ml polysorbate 80
- pH 6.0, 3.0 mg/ml poloxamer 188

Storage at 5°C, Days
Fig. 3

![Graph showing HMWP over storage at 30°C, days for different pH and polox concentrations.](image-url)
Fig. 4

A

OD 340 nm

- pH 6.2, 0 polox.
- pH 6.2, 1 polox.
- pH 6.2, 3 polox.
- pH 6.5, 0 polox.
- pH 6.5, 1 polox.
- pH 6.5, 3 polox.
- pH 6.8, 0 polox.
- pH 6.8, 1 polox.
- pH 6.8, 3 polox.

25 x Pipetting 7 days shake

B

OD 340 nm (zoom for low results)

- pH 6.2, 0 polox.
- pH 6.2, 1 polox.
- pH 6.2, 3 polox.
- pH 6.5, 0 polox.
- pH 6.5, 1 polox.
- pH 6.5, 3 polox.
- pH 6.8, 0 polox.
- pH 6.8, 1 polox.
- pH 6.8, 3 polox.

25 x Pipetting 7 days shake
Fig. 5 – continued

GH L101C

- Time zero
- 1 Day
- 2 Days
- 5 Days
- 7 days

pH 6.2, pH 6.2, pH 6.2, pH 6.8, pH 6.8, pH 6.8,
0 polox 1 polox 3 polox 0 polox 1 polox 3 polox

OD 340 nm

0,000 0,2000 0,4000 0,6000 0,8000 1,0000 1,2000 1,4000 1,6000 1,8000 2,0000
Figure 6

A

B
INTERNATIONAL SEARCH REPORT

PCT/EP2014/056819

A. CLASSIFICATION OF SUBJECT MATTER

ADD.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data, BIOSIS, EMBASE, CHEMABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wO 94/03198 A1 (GENENTECH INC [US]) 17 February 1994 (1994-02-17) page 3, lines 21-33 page 5, line 20 - page 7, line 18 page 8, line 20 - page 9, line 2 claims 1-21</td>
<td>1-15</td>
</tr>
<tr>
<td>Y</td>
<td>wO 2011/015649 A1 (NOVORDISK HEALTHCARE AG [CH]) 10 February 2011 (2011-02-10) cited in the application on the whole document</td>
<td>1-15</td>
</tr>
</tbody>
</table>

1 Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search: 12 May 2014

Date of mailing of the international search report: 19/05/2014

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:

Gomez Gallardo, S
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wo 2011/101261 A2 (NOVO NORDISK AS [DK]) 25 August 2011 (2011-08-25) page 6, line 27 - page 9, line 18</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>wo 2007/025988 A2 (NOVO NORDISK AS [DK]) 8 March 2007 (2007-03-08) Embodiment 1; Embodiments 37 and 38; page 7 Embodiments 41 and 42; page 7 - page 8 page 27, line 6 - page 29, line 15 page 29, line 29 - page 30, line 5 page 30, line 23 - page 31, line 20</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>0SBORN B L ET AL: "Al butropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys", EUROPEAN JOURNAL OF PHARMACOLOGY, ELSEVIER SCIENCE, NL, vol. 456, no. 1-3, 5 December 2002 (2002-12-05), pages 149-158, XP002339364, ISSN: 0014-2999, DOI: 10.1016/S0014-2999(02)02644-4 abstract page 149, right-hand column, last paragraph - page 151, left-hand column, paragraph 1</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CHOU DANNY K ET AL: "Effects of Tween 20 (R) and Tween 80 (R) on the stability of albumin during aging", JOURNAL OF PHARMACEUTICAL SCIENCES, AMERICAN PHARMACEUTICAL ASSOCIATION, WASHINGTON, US, vol. 94, no. 6, 1 June 2005 (2005-06-01), pages 1368-1381, XP002509399, ISSN: 0022-3549, DOI: 10.1002/jps.20365, abstract page 1369, right-hand column, paragraph 2, page 1379, right-hand column, last paragraph - page 1380, left-hand column, paragraph 1</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Form PCTISA210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 941 901 AI (GENESCIENCE PHARMACEUTICALS CO [CN]) 9 July 2008 (2008-07-09) page 6; example 3</td>
<td>1-15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 9403198</td>
<td>17-02-1994</td>
<td>AT 197405 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 359824 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 686567 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2139358 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2337745 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2489978 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69329651 Di</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69329651 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69334134 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0652766 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0955062 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0652766 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0955062 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2153385 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2286868 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3035144 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 106524 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4018133 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H07509719 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007045841 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MD 960246 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 255158 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 652766 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 9403198 Al</td>
</tr>
<tr>
<td>wo 2011089255</td>
<td>28-07-2011</td>
<td>AU 2011208625 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2787890 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102834109 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103002918 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2525834 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013518038 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2013028053 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012134975 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201127397 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 201309944 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014107324 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011089255 Al</td>
</tr>
<tr>
<td>wo 2011015649</td>
<td>10-02-2011</td>
<td>CN 102612376 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2461831 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013501036 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012172303 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011015649 Al</td>
</tr>
<tr>
<td>wo 2011101261</td>
<td>25-08-2011</td>
<td>EP 2536434 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013012684 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011101261 A2</td>
</tr>
<tr>
<td>wo 2007025988</td>
<td>08-03-2007</td>
<td>AU 2006286486 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0615351 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2620638 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101268098 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1928906 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009506096 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080038391 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009325865 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2007025988 A2</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2005266532 A1</td>
<td>01-12-2005</td>
<td>AU 5906301 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5906601 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6102401 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6294201 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6456301 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6655701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7480901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405525 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405550 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405557 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405563 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405709 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2405912 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2747325 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1274719 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1276756 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1276849 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1276856 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1278544 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1832599 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1983055 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2206720 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2213743 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2216409 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2236152 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2267026 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2295456 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2298355 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2357008 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003530838 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003530839 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003530846 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003530847 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003530852 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003531590 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004506407 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20111217750 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014057589 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003125247 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003171267 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003199043 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004010134 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004171123 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005266532 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005266533 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008131399 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008261877 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008267962 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008269125 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008269126 A1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2008269127 AI</td>
<td>30-10 -2008</td>
<td></td>
</tr>
<tr>
<td>US 2008269128 AI</td>
<td>30-10 -2008</td>
<td></td>
</tr>
<tr>
<td>US 2010189686 AI</td>
<td>29-07 -2010</td>
<td></td>
</tr>
<tr>
<td>US 2012141415 AI</td>
<td>07-06 -2012</td>
<td></td>
</tr>
<tr>
<td>US 2012141449 AI</td>
<td>07-06 -2012</td>
<td></td>
</tr>
<tr>
<td>US 2012252732 AI</td>
<td>04-10 -2012</td>
<td></td>
</tr>
<tr>
<td>US 2013266553 AI</td>
<td>10-10 -2013</td>
<td></td>
</tr>
<tr>
<td>US 2014004095 AI</td>
<td>02-01 -2014</td>
<td></td>
</tr>
<tr>
<td>US 2014010798 AI</td>
<td>09-01 -2014</td>
<td></td>
</tr>
<tr>
<td>W0 0177137 AI</td>
<td>18-10 -2001</td>
<td></td>
</tr>
<tr>
<td>W0 0179258 AI</td>
<td>25-10 -2001</td>
<td></td>
</tr>
<tr>
<td>W0 0179271 AI</td>
<td>25-10 -2001</td>
<td></td>
</tr>
<tr>
<td>W0 0179442 A2</td>
<td>25-10 -2001</td>
<td></td>
</tr>
<tr>
<td>W0 0179443 A2</td>
<td>25-10 -2001</td>
<td></td>
</tr>
<tr>
<td>W0 0179444 A2</td>
<td>25-10 -2001</td>
<td></td>
</tr>
<tr>
<td>W0 0179480 A1</td>
<td>25-10 -2001</td>
<td></td>
</tr>
<tr>
<td>US 5045312 AI</td>
<td>03-09 -1991</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 1941901 AI</td>
<td>09-07 -2008</td>
<td></td>
</tr>
<tr>
<td>CN 1939534 A</td>
<td>04-04 -2007</td>
<td></td>
</tr>
<tr>
<td>EP 1941901 AI</td>
<td>09-07 -2008</td>
<td></td>
</tr>
<tr>
<td>US 2009156482 AI</td>
<td>18-06 -2009</td>
<td></td>
</tr>
<tr>
<td>W0 2007036107 AI</td>
<td>05-04 -2007</td>
<td></td>
</tr>
</tbody>
</table>