The present invention is directed to a golf ball possessing an overall unique and perceptively pleasing golf ball having an overall color appearance of two colors wherein more than one golf ball layer/component contributes to the bi-color appearance without the need to position and align the outer layers/components in relation to the inner layer/component.
TWO-TONED COLOR GOLF BALL HAVING COLORED COMPONENT COVERED BY OPAQUE AND TRANSLUCENT COVER PARTS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of each of the following co-pending applications: U.S. application Ser. No. 13/373,599, filed on Nov. 21, 2011; U.S. application Ser. No. 13/374,197, filed on Dec. 15, 2011; and U.S. application Ser. No. 13/374,198, filed on Dec. 15, 2011; and the disclosure of each is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] The invention relates generally to golf balls incorporating color, pigments, dyes, tints and color effects in golf ball components to optimize golf ball appearance and golfer performance on the green.

BACKGROUND OF THE INVENTION

[0003] Golf balls, whether of solid or wound construction, generally include a core and at least a cover or outer coating. The properties of a conventional solid ball may be modified by altering the typical single layer core and single cover layer construction to provide a ball having at least one mantle layer disposed between the cover and the core. The core may be solid or liquid-filled, and may be formed of a single layer or one or more layers. Covers, in addition to cores, may also be formed of one or more layers. These multi-layer cores and covers are sometimes known as “core” and “cover” golf balls, respectively. Additionally, many golf balls contain one or more intermediate layers that can be of solid construction or may be formed of a tensioned elastomeric winding, which are referred to as wound balls. One piece golf balls are even available. The difference in play characteristics resulting from these different types of constructions can be quite significant. The playing characteristics of multi-layered balls, such as spin and compression, can be tailored by varying the properties of one or more of these intermediate and/or cover layers.

[0004] Moreover, color in a golf ball is a visually distinguishing feature. In this regard, golf balls having an overall color appearance of two predominant colors are known. One such prior golf ball incorporates two differently colored opaque cover halves. Another prior bi-colored golf ball incorporates two differently colored core halves and a uniformly clear cover. However, in each of these prior two-colored golf balls, overall color appearance is determined by a single layer.

[0005] In related co-pending co-owned U.S. applications Ser. Nos. 13/373,599, 13/374,197, and 13/374,198, a unique two color overall golf ball color appearance is achieved wherein the golf ball has inner and outer layers each which contribute substantially to the golf ball’s overall color appearance. Further, as seen in FIG. 2B of these applications, each layer has at least two color regions and the inner and outer layers are strategically positioned and aligned in relation to each other in order to create the overall bi-color golf ball color appearance. However, there remains a need for golf balls wherein an overall two color appearance is achieved via color contribution by both inner and outer layers without having to position and align the inner and outer layers/components in relation to each other—as this would reduce manufacturing costs. The present invention addresses and solves this problem.

SUMMARY OF THE INVENTION

[0006] Accordingly, the invention is related to a golf ball having an overall color appearance of two predominant colors wherein more than one layer/component contributes to the bi-colored appearance without the need to align the color contributing layers/components. In one embodiment of the invention, the golf ball having an overall bi-color color appearance comprises: a core and a cover disposed about the core; the core having color A; the cover comprising a cover portion CP1 and a cover portion CP2, wherein CP1 is opaque and has color B and CP2 is translucent and has color D such that D=B; the ball having an overall color appearance comprising SA1 and SA2, wherein SA1 comprises an entire surface area of CP1 and SA2 comprises an entire surface area of CP2 such that SA1 is opaque and has a color appearance of the color B and SA2 has a color appearance of a color E wherein E=A+B.

[0007] In one embodiment, A=B. That is, color A is exactly the same as or identical to color B. In another embodiment, A>B. That is color A is different than color B in at least one way such as having a different hue, saturation or chroma for example.

[0008] In one embodiment, B has a hue h1 and D has a hue h2 such that h1=h2, In another embodiment, B=D.

[0009] In one embodiment, the surface areas of CP1 and CP2 are substantially similar.

[0010] In another embodiment, the golf ball having an overall bi-color color appearance comprises: a core and a cover disposed about the core; the core having color A; the cover comprising a cover portion CP1 and a cover portion CP2, wherein CP1 is opaque and has color B and CP2 is translucent and has color D such that D=A; and wherein the golf ball has an overall color appearance comprising SA1 and SA2 that have the boundary L, such that SA1 is opaque and has a color appearance of the color B and SA2 has a color appearance of a color E wherein E=A+B.

[0011] In one embodiment, boundary L is planar. In another embodiment, boundary L is nonplanar.

[0012] In one embodiment, CP1 and CP2 have substantially similar surface areas.

[0013] In one embodiment, A>B. In another embodiment, A>B.

[0014] In one embodiment, B has a hue h1 and D has a hue h2 such that h1=h2 while their respective saturations and/or chromas differ.

[0015] In another embodiment, B=D.

[0016] In yet another embodiment, the golf ball having an overall bi-color color appearance comprises: a core, a cover disposed about the core and an intermediate layer disposed between the core and the cover; the intermediate layer having color A; the cover comprising a cover portion CP1 and a cover portion CP2, wherein CP1 is opaque and has color B and CP2 is translucent and has color D such that D=A; and wherein the golf ball has an overall color appearance comprising SA1 and SA2, wherein SA1 comprises an entire surface area of CP1 and SA2 comprises an entire surface area of CP2 such that SA1 is opaque and has a color appearance of the color B and SA2 has a color appearance of a color E wherein E=A+B.
In one embodiment, \( A = B \). In another embodiment, \( A \neq B \).

In one embodiment, \( A = B \). B has a hue \( h_1 \) and D has a hue \( h_2 \) such that \( h_1 = h_2 \).

In another embodiment, \( B = D \).

In one embodiment, the surface areas of CP1 and CP2 are substantially similar. Herein, the term "hue" shall refer to any color within the spectrum of visible light such as blue, red, yellow, purple, orange, green, etc. The symbol \( \sim \), when used herein in connection with the word color or colors shall refer to two colors which are different in that they have different hues, chromas and/or saturations or are otherwise visually distinguishable by the human viewing eye. For example, where color A \( \sim \) color B, these colors are in some way visually distinguishable by the human viewing eye. In turn, the symbol \( \sim \) as used herein in connection with the word color or colors shall refer to two colors which are visually not distinguishable by the human viewing eye.

Golf balls of the invention may be manufactured according to any method or process known in the art suitable for mating two cover half shells about an inner layer such as an inner cover layer, intermediate layer outer core layer, or solid core.

**BRIEF DESCRIPTION OF THE DRAWINGS**

**FIG. 1** is a side view depicting how a golf ball of the invention may be formed/constructed according to one embodiment of the invention; and

**FIGS. 2A, 2B, and 2C** are side views of an alternative embodiment of golf balls having an overall color appearance of two colors.

**DETAILED DESCRIPTION**

**FIG. 2B** represents an embodiment wherein the inner layer comprises two color regions and the outer layer is strategically positioned and aligned about the inner layer to create a golf ball having an overall color appearance of two colors. In FIG. 2B, golf ball 1D includes inner layer 2 and outer layer 3, each of which participate in and/or contribute to the golf ball's overall color appearance. Inner layer 2 comprises two different color regions 4 and 5. Color region 4 has a greater surface area than color region 5. Meanwhile, outer layer 3 includes differently colored color regions 6 and 7 which have the same surface area, are disposed about inner layer 2, and are bounded by boundary 8. Color region 6 is translucent, color region 7 is opaque, and outer layer 3 is positioned and aligned about inner layer 2 such that boundary 8 does not intersect color region 5. In this embodiment, the overall color appearance of golf ball 1D is comprised of 2 different colors.

However, this golf ball would produce a different overall appearance if color region 6 is opaque and color region 7 is translucent—in that case, the color appearance of golf ball 1D would be that of golf ball 1E in FIG. 2C—comprised of 3 different colors. Furthermore, the golf ball of FIG. 2B would likewise produce a different overall color appearance, namely of three colors, if the inner and outer layers are positioned and aligned as in FIG. 2A. In FIG. 2A, golf ball 1C includes inner layer 2 and outer layer 3, each of which participate in and/or contribute to the golf ball's overall color appearance. Inner layer 2 comprises two different color regions 4 and 5. Color region 4 has a greater surface area than color region 5. Meanwhile, outer layer 3 includes differently colored color regions 6 and 7 which have the same surface area, are disposed about inner layer 2 and are bounded by boundary 8. Color region 6 is translucent, color region 7 is opaque, and outer layer 3 is positioned and aligned about inner layer 2 such that boundary 8 intersects color region 5. In this embodiment, the overall color appearance of golf ball 1C is comprised of 3 different colors. The golf ball would have a similar overall appearance if color region 6 is opaque and color region 7 is translucent.

**FIG. 1**. Herein, an inner layer may comprise, for example, a core surface, an outer core layer, an intermediate layer, a mantle layer or an inner core cover layer. Meanwhile, an outer layer may comprise a cover layer for example.

**FIG. 1**. The cores in golf balls of this invention may be solid, semi-solid, hollow, fluid-filled, or powder-filled. Typically, the cores are solid and made from rubber compositions containing at least a base rubber, free-radical initiator agent, cross-linking co-agent, and fillers. Golf balls having various constructions may be made in accordance with this invention. For example, golf balls having three-piece, four-piece, and five-piece constructions with dual or three-layered cores and cover materials may be made. The term, “layer” as used herein refers generally to any spherical portion of the golf ball. More particularly, in one version, a three-piece golf ball comprising a core and a “dual-cover” is made. In another version, a four-piece golf ball comprising a dual-core and “dual-cover” is made. The dual-core includes an inner core (center) and surrounding outer core layer. The dual-cover includes inner cover and outer cover layers. In yet another construction, a five-piece golf ball having a dual-core, intermediate layer, and dual-cover is made. In still another embodiment, a four piece golf ball comprises a core and a three layer cover. The term “semi-solid” as used herein refers to a paste, a gel or the like.
As used herein, the term, “intermediate layer” means a layer of the ball disposed between the core and cover. The intermediate layer may be considered an outer core layer, or inner cover layer, or any other layer disposed between the inner core and outer cover of the ball. The intermediate layer also may be referred to as a casing or mantle layer. The diameter and thickness of the different layers along with properties such as hardness and compression may vary depending upon the construction and desired playing performance properties of the golf ball and as specified herein.

The inner core of the golf ball may comprise a polybutadiene rubber material. In one embodiment, the ball contains a single core formed of the polybutadiene rubber composition. In a second embodiment, the ball contains a dual-core comprising an inner core (center) and surrounding outer core layer. In yet another version, the golf ball contains a multi-layered core comprising an inner core, intermediate core layer, and outer core layer.

In general, polybutadiene is a homopolymer of 1,3-butadiene. Catalysts of the 1,3-butadiene monomer enables growth of the polymer chain to form a polybutadiene polymer having a desired molecular weight. Any suitable catalyst may be used to synthesize the polybutadiene rubber depending upon the desired properties. Normally, a transition metal complex (for example, neodymium, nickel, or cobalt) or an alkyl metal such as alkyl lithium is used as a catalyst. Other catalysts include, but are not limited to, aluminum, boron, lithium, titanium, and combinations thereof. The catalysts produce polybutadiene rubber having different chemical structures. In a cis-bond configuration, the main internal polymer chain of the polybutadiene appears on the same side of the carbon-carbon double bond contained in the polybutadiene. In a trans-bond configuration, the main internal polymer chain is on opposite sides of the internal carbon-carbon double bond in the polybutadiene. The polybutadiene rubber can have various combinations of cis- and trans-bond structures. A preferred polybutadiene rubber has a 1,4 cis-bond content of at least 40%, preferably greater than 80%, and more preferably greater than 90%. In general, polybutadiene rubbers having a high 1,4 cis-bond content have high tensile strength. The polybutadiene rubber may have a relatively high or low Mooney viscosity.

Examples of commercially available polybutadiene rubbers that can be used in accordance with this invention, include, but are not limited to, BR 01 and BR 1220, available from BST Elastomers of Bangkok, Thailand; SE BR 1220LF A and SE BR 1203, available from DOW Chemical Co of Midland, Mich.; BU DENE 1207, 1207s, 1208, and 1280 available from Goodyear, Inc. of Akron, Ohio; BR 01, 51 and 730, available from Japan Synthetic Rubber (JSR) of Tokyo, Japan; BUNA CB 21, CB 22, CB 23, CB 24, CB 25, CB 29 MIN, CB 60, CB Nd 60, CB 55 NF, CB 70 B, CB RA 8967, and CB 1221, available from Lanxess Corp. of Pittsburgh, Pa.; BR 1208, available from LG Chemical of Seoul, South Korea; UBE POL BL 1300, BR 150, BR 150A, BR 150L, BR 250, BR 350L, BR 710, and VCR617, available from UBE Industries Ltd. of Tokyo, Japan; EUROPRENE NEOCIS BR 60, INTENE 60 AF and PA 60 AF, and EUROPRENE BR HV80, available from Polimeri Europa of Rome, Italy; AFDENE 50 and NEODENE BR40, BR45, BR50 and BR60, available from Karbochem (PTY) Ltd. of Bruma, South Africa; KBR 01, NdBr 40, NdBr 45, NdBr 60, KBR 7108, KBR 710H, and KBR 750, available from KUMHO Petrochemical Co., Ltd. of Seoul, South Korea; DIENE 55NF, 70AC, and 320 AC, available from Firestone Polymers of Akron, Ohio; and PBR-Nd Group II and Group III, available from Nizhnekamskneftekhim, Inc. of Nizhnekamsk, Tartarstan Republic.

Suitable polybutadiene rubbers for blending with the base rubber may include BUNA® CB22, BUNA® CB23 and BUNA® CB24, BUNA® CB24, BUNA® CB35, and BUNA® CB60, available commercially from LANXESS Corporation; BSTE BR-1220 available from BST Elastomers Co. LTD; UBEPOL® 360L and UBEPOL® 150L and UBE- POL® BR rubbers, commercially available from UBE Industries, Ltd. of Tokyo, Japan; BUNA 1207, 1208 and 1280, commercially available from Goodyear of Akron, Ohio; SE BR-1220, commercially available from Dow Chemical Company; EUROPRENE® NEOCIS® BR 40 and BR 60, commercially available from Polimeri Europa; and BR 01, BR 730, BR 735, BR 11, and BR 51, commercially available from Japan Synthetic Rubber Co., Ltd.; and KARBOCHEM® Neodec 40, 45, and 60, commercially available from Karboch.
agent is zinc diacylate ("ZDA"). Commercially available zinc diacylates include those selected from Cray Valley Resource Innovations Inc. Other elastomers known in the art may also be added, such as other polybutadiene rubbers, natural rubber, styrene butadiene rubber, and/or isoprene rubber in order to further modify the properties of the core. When a mixture of elastomers is used, the amounts of other constituents in the core composition are typically based on 100 parts by weight of the total elastomer mixture.

Thermoplastic elastomers (TPE) may also be used to modify the properties of the core layers, or the uncured core layer stock by blending with the uncured rubber. These TPEs include natural or synthetic balata, or high trans-polyisoprene, high trans-polybutadiene, or any styrenic block copolymer, such as styrene ethylene butadiene styrene, styrene-isoprene-styrene, etc., a metalloocene or other single-site catalyst polyolefin such as ethylene-octene, or ethylene-butene, or thermoplastic polyurethanes (TPU), including copolymers, e.g., with silicone. Other suitable TPEs for blending with the thermoset rubbers of the present invention include PEBAX®, which is believed to comprise polyether amide copolymers, HYTREL®, which is believed to comprise polyether ester copolymers, thermoplastic urethane, and KRATON®, which is believed to comprise styrene block copolymers elastomers. Any of the TPEs or TPU’s above may also contain functionality suitable for grafting, including maleic acid or maleic anhydride. Any of the Thermoplastic Vulcanized Rubbers (TPV) such as Santoprene® or Vibram® or ETPV® can be used along with a present invention. In one embodiment, the TPV has a thermoplastic as a continuous phase and a cross-linked rubber particulate as a dispersed (or discontinuous) phase. In another embodiment, the TPV has a cross-linked phase as a continuous phase and a thermoplastic as a dispersed (or discontinuous) phase to provide reduced loss in elasticity in order to improve the resiliency of the golf ball.

The rubber compositions also may contain “soft and fast” agents such as a halogenated organosulfur, organic disulfide, or inorganic disulfide compounds. Particularly suitable halogenated organosulfur compounds include, but are not limited to, halogenated thiophenols. Preferred organic sulfur compounds include, but not limited to, pentachlorothiophenol (“PCTP”) and a salt of PCTP. A preferred salt of PCTP is ZnPCTP. A suitable PCTP is sold by the Struktol Company (Stow, Ohio) under the tradename, A95. ZnPCTP is commercially available from EchinaChem (San Francisco, Calif.). These compounds also may function as cis-to-trans catalysts to convert some cis bonds in the polybutadiene to trans bonds. Antioxidants also may be added to the rubber compositions to prevent the breakdown of the elastomers. Other ingredients such as accelerators (for example, tetra methylthiuram), processing aids, dyes and pigments, wetting agents, surfactants, plasticizers, as well as other additives known in the art may be added to the rubber composition.

The core may be formed by mixing and forming the rubber composition using conventional techniques. These cores can be used to make finished golf balls by surrounding the core with outer core layer(s), intermediate layer(s), and/or cover materials as discussed further below. In another embodiment, the cores may be formed using highly neutralized polymer (HNP) compositions as disclosed in U.S. Pat. Nos. 6,756,436, 7,030,192, 7,402,629, and 7,517,289. The cores from the highly neutralized polymer compositions can be further cross-linked using any free-radical initiation sources including radiation sources such as gamma or electron beam as well as chemical sources such as peroxides and the like.

Golf balls made in accordance with this invention can be of any size, although the USGA requires that golf balls used in competition have a diameter of at least 1.68 inches and a weight of no greater than 1.62 ounces. For play outside of USGA competition, the golf balls can have smaller diameters and be heavier.

A wide variety of thermoplastic or thermosetting materials can be employed in forming the core, cover layers, or both. These materials include for example, olefin-based copolymer ionomer resin resins (for example, Surlyn® ionomer resins and DuPont® HP 1000 and HP 2000), as well as blends of Surlyn®/Surlyn®/Surlyn®8940 or Surlyn®/Surlyn®9150 commercially available from E.I. du Pont de Nemours and Company; lotek® ionomers, commercially available from ExxonMobil Chemical Company; Amplify® 10 ionomers of ethylene acrylic acid copolymers, commercially available from The Dow Chemical Company; and Claris® ionomer resins, commercially available from A. Schulman Inc.; polyurethanes; polyureas; copolymers and hybrids of polyurethane and polyurea, polyethylene, including, for example, low density polyethylene, linear low density polyethylene, and high density polyethylene; polypropylene; rubber-toughened olefin polymers; acid copolymers, for example, poly(meth)acrylic acid, which do not become part of an ionomeric polymer; plastomers; (flexomers; styrene/butadiene/styrene block copolymers; styrene/ethylene-butylene/ styrene block copolymers; dynamically vulcanized elastomers; copolymers of ethylene and vinyl acetate; copolymers of ethylene and methyl acrylate; polyvinyl chloride resins; polyamides, poly(amide-ester) elastomers, and graft copolymers of ionomer and polyamide including, for example, Pebax® thermoplastic polyether block amides, commercially available from Arkema Inc; cross-linked trans-polyisoprene and blends thereof; polyester-based thermoplastic elastomers, such as Hytrel®, commercially available from E.I. du Pont de Nemours and Company; polyurethane-based thermoplastic elastomers, such as Elastollan®, commercially available from BASF, synthetic or natural vulcanized rubber; and combinations thereof.

In fact, any of the core, intermediate layer and/or cover layers may include the following materials:

1. Polyurethanes, such as those prepared from polyols and diisocyanates or polyisocyanates and/or their prepolymers;
2. Polyureas; and
3. Polyurethane-urea hybrids, blends or copolymers comprising urethane and urea segments.

Polyurethanes and polyureas may constitute either thermoset or thermoplastic compositions, depending on the type of crosslinking bond that is created during formation of the composition. When a polyurethane or polyurea prepolymer is cross linked with a polyfunctional curing agent, covalent bonding occurs, resulting in a thermoset composition. In contrast, polyurethanes and polyureas will be thermoplastic where the crosslinking is due, for example, to hydrogen bonding, resulting in weaker bonds which may be broken upon heating the composition. This distinction explains why thermoset materials generally may not be recycled or reformed into a different shape by heating (at least not easily), whereas thermoplastic materials may so be. The process for manufacturing a golf ball according to the invention is particularly
well-suited for forming golf balls having a combination of a very thin, thermoplastic outer cover and a thermoset inner cover having a thickness greater than that of the outer cover layer, providing both COR stability and playability.

[0048] Suitable polyurethane compositions comprise a reaction product of at least one polyisocyanate and at least one curing agent. The curing agent can include, for example, one or more polyamines, one or more polyols, or a combination thereof. The polyisocyanate can be combined with one or more polyols to form a prepolymer, which is then combined with the at least one curing agent. Thus, the polyols described herein are suitable for use in one or both components of the polyurethane material, i.e., as part of a prepolymer and in the curing agent. Suitable polyurethanes are described in U.S. Patent Application Publication No. 2005/0176523, which is incorporated by reference in its entirety.

[0049] Any polyisocyanate available to one of ordinary skill in the art is suitable for use according to the invention. Exemplary polyisocyanates include, but are not limited to, 4,4′-diphenylmethane diisocyanate (MDI); polymeric MDI; carbodiimide-modified liquid MDI; 4,4′-dicyclohexylmethane diisocyanate (H12-MDI); p-phenylene diisocyanate (PPDI); m-phenylene diisocyanate (MPDI); toluene diisocyanate (TDI); 3,3′-dimethyl-4,4′-biphenylene diisocyanate; isophoronediisocyanate; 1,6-hexamethylene diisocyanate (HDI); naphthalene diisocyanate; xylene diisocyanate; p-tetramethylxylene diisocyanate; m-tetramethylxylene diisocyanate; ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1,4-diisocyanate; cyclohexyl diisocyanate; dodecane-1,12-diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; methyl cyclohexyl diisocyanate; trisocyanate of HDI; trisocyanate of 2,4,4-trimethyl-1,6-hexane diisocyanate; tetracone diisocyanate; naphthalene diisocyanate; anthracene diisocyanate; isocyanurate of toluene diisocyanate; uretdione of hexamethylene diisocyanate; and mixtures thereof. Polyisocyanates are known to those of ordinary skill in the art as having more than one isocyanate group, e.g., di-isocyanate, tri-isocyanate, and tetra-isocyanate. Preferably, the polyisocyanate includes MDI, PPDI, TDI, or a mixture thereof, and more preferably, the polyisocyanate includes MDI. It should be understood that, as used herein, the term MDI includes 4,4′-diphenylmethane diisocyanate, polymeric MDI; carbodiimide-modified liquid MDI, and mixtures thereof.

Additionally, the prepolymer is synthesized from these diisocyanates may be “low free monomer,” understood by one of ordinary skill in the art to have lower levels of “free” isocyanate monomers, typically less than about 0.1% free isocyanate. Examples of “low free monomer” prepolymer include, but are not limited to Low Free Monomer MDI prepolymer, Low Free Monomer TDI prepolymer, and Low Free Monomer PPDI prepolymer.

[0050] Any polyol available to one of ordinary skill in the art is suitable for use according to the invention. Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols. In one preferred embodiment, the polyol includes polyether polyol. Examples include, but are not limited to, polytetramethylene ether glycol (PTMEG), polyethylene propylene glycol, polyoxypropylene glycol, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups. Preferably, the polyol of the present invention includes PTMEG.

[0051] In another embodiment, polyester polyols are included in the polyurethane material. Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol; polybutylene adipate glycol; polyethylene propylene adipate glycol; o-phthalate-1,6-hexanediol; poly(hexamethylene adipate) glycol; and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.

[0052] In another embodiment, polycaprolactone polyols are included in the materials of the invention. Suitable polycaprolactone polyols include, but are not limited to, 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethyl propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butenedioli-initiated polycaprolactone, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In one embodiment, the molecular weight of the polyol is from about 200 to about 4000.

[0053] Yet another embodiment, polycarbonate polyols are included in the polyurethane material of the invention. Suitable polycarbonates include, but are not limited to, polyphthalate carbonate and poly(hexamethylene carbonate) glycol. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In one embodiment, the molecular weight of the polyl is from about 200 to about 4000.

[0054] Polyamine curatives are also suitable for use in the polyurethane composition of the invention and have been found to improve cut, shear, and impact resistance of the resultant balls. Preferred polyamine curatives include, but are not limited to, 3,5-di(methylthio)-2,4-toluenediamine and isomers thereof; 3,5-di(ethylthio)-2,4-diamine and isomers thereof, such as 3,5-diethylthio-2,4-diamine and 4,4′-bis(2-sec-butylamino)-diphenylmethane, 1,4-bis(2-sec-butylamino)-benzene, 4,4′-methylenedi-bis(2-chloroaniline), aromatic hydrocarbon, aromatic hydrocarbon derivatives, hydroquinone-di-(β-hydroxyethyl)ether; hydroquinone-di-(β-hydroxyethyl)ether; and mixtures thereof. Preferred hydroxy-terminated curatives include 1,3-
bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]benzene; 1,4-butanediol, and mixtures thereof. Preferably, the hydroxy-terminated curatives have molecular weights ranging from about 48 to 2000. It should be understood that molecular weight, as used herein, is the absolute weight average molecular weight and would be understood as such by one of ordinary skill in the art.

Both the hydroxy-terminated and amine curatives can include one or more saturated, unsaturated, aromatic, and cyclic groups. Additionally, the hydroxy-terminated and amine curatives can include one or more halogen groups. The polyurethane composition can be formed with a blend or mixture of curing agents. If desired, however, the polyurethane composition may be formed with a single curing agent.

In one embodiment of the present invention, saturated polyurethanes are used to form one or more of the cover layers.

Additionally, polyurethane can be replaced with or blended with a polyurea material. Polyureas are distinctly different from polyurethane compositions, giving better shear resistance.

The polyether amine may be blended with additional polyls to formulate copolymers that are reacted with excess isocyanate to form the polyurea prepolymer. In one embodiment, less than about 30 percent polyl by weight of the copolymer is blended with the saturated polyether amine. In another embodiment, less than about 20 percent polyl by weight of the copolymer, preferably less than about 15 percent by weight of the copolymer, is blended with the polyether amine. The polyls listed above with respect to the polyurethane prepolymer, e.g., polyether polyls, polycaprolactone polyls, polyester polyls, polycarbonate polyls, hydrocarbon polyls, other polyls, and mixtures thereof, are also suitable for blending with the polyether amine. The molecular weight of these polyls may be from about 200 to about 4000, but also may be from about 1000 to about 3000, and more preferably are from about 1500 to about 2500.

The polyurea composition can be formed by crosslinking a polyurea prepolymer with a single curing agent or a blend of curing agents. In one embodiment, the amine-terminated curing agent may have a molecular weight of about 64 or greater. In another embodiment, the molecular weight of the amine-curing agent is about 2000 or less. As discussed above, certain amine-terminated curing agents may be modified with a compatible amine-terminated freezing point depressing agent or mixture of compatible freezing point depressing agents.

Suitable amine-terminated curing agents include, but are not limited to, ethylene diamine; hexamethylene diamine; 1-methyl-2,6-cyclohexyl diamine; tetrahydroxypropylene ethylene diamine; 2,2,4- and 2,4,4-trimethyl-1,6-hexanediame; 4,4'-bis-(sec-butylamine)-dicyclohexyl methane; 1,4-bis-(sec-butylamino)-cyclohexane; 1,2-bis-(sec-butylamino)-cyclohexane; derivatives of 4,4'-bis-(sec-butylamino)-dicyclohexyl methane; 4,4'-dicyclohexylmethane diamine; 1,4-cyclohexane-bis-(methylamine); 1,3-cyclohexane-bis-(methylamine); diethylene glycol di-(aminopropy)ether; 2-methylpentamethylene diamine; diamino-cyclohexane; diethylene triamine; triethylene tetramine; tetraethylene pentamine; propylene diamine; 1,3-diaminopropene; dimethylamine propylene diamine; diethylamine propylene diamine; dimethylamine, diethylamine, triethylamine, monoisopropanolamine, diisopropanolamine; isophoronediamine; 4,4'-methylenebis-(2-chloroaniline); 3,5-dimethylthio-2,4-toluenediamine; 3,5-dimethylthio-2,6-toluenediamine; 3,5-diethylythio-2,4-toluenediamine; 3,5-diethylythio-2,6-toluenediamine; 4,4'-bis-(sec-butylamino)-diphenylmethane and derivatives thereof; 1,4-bis-(sec-butylamino)-benzene; 1,2-bis-(sec-butylamino)-benzene; N,N,N,N'-tetrakis(2-hydroxypropyl)ethylene diamine; trimethylene glycol di-p-aminobenzolote; polystyremelameneoxide-di-p-aminobenzole; 4,4'-methylenebis-(3-chloro-2,6-diethylenenline); 4,4'-methylenebis-(2,6-diethylenline); meta-phenylenediamine; paraphenylenediamine; and mixtures thereof. In one embodiment, the amine-terminated curing agent is 4,4'-bis-(sec-butylamino)-dicyclohexylmethane.

Suitable saturated amine-terminated curing agents include, but are not limited to, ethylene diamine; hexamethylene diamine; 1-methyl-2,6-cyclohexyl diamine; tetrahydroxypropylene ethylene diamine; 2,2,4- and 2,4,4-trimethyl-1,6-hexanediame; 4,4'-bis-(sec-butylamino)-dicyclohexylmethane; 1,4-bis-(sec-butylamino)-cyclohexane; 1,2-bis-(sec-butylamino)-cyclohexane; derivatives of 4,4'-bis-(sec-butylamino)-dicyclohexylmethane; ; 4,4'-dicyclohexylmethane diamine; 4,4'-methylenebis-(2,6-diethylenamino)cyclohexane; 1,4-cyclohexane-bis-(methylamine); 1,3-cyclohexane-bis-(methylamine); diethylene glycol di-(aminopropyl)ether; 2-methylpentamethylene diamine; diamino-cyclohexane; diethylene triamine; triethylene tetramine; tetraethylene pentamine; propylene diamine; 1,3-diaminopropene; dimethylamine propylene diamine; diethylamine propylene diamine; dimethylamine, diethylamine, triethylamine, monoisopropanolamine, diisopropanolamine; isophoronediamine; triisopropanolamine; and mixtures thereof. In addition, any of the polyether amines listed above may be used as curing agents to react with the polyurea prepolymer.

Alternatively, other suitable polymers include partially or fully neutralized ionomer, metalloocene, or other single-site catalyzed polymer; polyester, polyamide, non-ionomeric thermoplastic elastomer, copolyether-esters, copolyether-amides, polycarbonate, polybutadiene, polyisoprene, polystyrene block copolymers (such as styrene-butadiene-styrene), styrene-ethylene-propylene-styrene, styrene-ethylene-butylene-styrene, and the like, and blends thereof.

Intermediate layers and/or cover layers may also be formed from ionomeric polymers or ionomer blends such as Surlyn 7940/8940 or Surlyn S 8150/8150 or from highly-neutralized ionomers (HNPs).

In one embodiment, at least one intermediate layer of the golf ball is formed from an HNP material or a blend of HNP materials. The acid moieties of the HNP's, typically ethylene-based ionomers, are preferably neutralized greater than about 70%, more preferably greater than about 90%, and most preferably at least about 100% with a cation source. Suitable cation sources include metal cations and salts thereof, organic amine compounds, ammonium, and combinations thereof. The HNP's can be also blended with a second polymer component, which, if containing an acid group(s) such as organic acids, or more preferably fatty acids, may be neutralized in a conventional manner, with a suitable cation source. The second polymer component, which may be partially or fully neutralized, preferably comprises ionomeric copolymers and terpolymers, ionomer precursors, thermo-
plastics, polyamides, polycarbonates, polyesters, polyurethanes, polyureas, thermoplastic elastomers, polybutadiene rubber, balata, metallocene-catalyzed polymers (grafted and non-grafted), single-site polymers, high-crystalline acid polymers, cationic ionomers, and the like. HNP polymers typically have a material hardness of between about 20 and about 80 Shore D, and a flexural modulus of between about 3,000 psi and about 200,000 psi.

[0066] In one embodiment of the present invention the HNP's are ionomers and/or their acid precursors that are preferably neutralized, either fully or partially, with sufficient amount of metal base to achieve the desired neutralization level. The acid copolymers are preferably α-olefin, such as ethylene, C3–8, α-β-ethylenically unsaturated carboxylic acid, such as acrylic and methacrylic acid, copolymers. They may optionally contain a softening monomer, such as alkyl acrylate and alkyl methacrylate, wherein the alkyl groups have from 1 to 8 carbon atoms.

[0067] The acid copolymers can be described as E/X/Y copolymers where E is ethylene, X is an α,β-ethylenically unsaturated carboxylic acid, and Y is a softening comonomer. In a preferred embodiment, X is acrylic or methacrylic acid and Y is a C1–8 alkyl acrylate or methacrylate ester. X is preferably present in an amount from about 1 to about 35 weight percent of the polymer, more preferably from about 5 to about 30 weight percent of the polymer, and most preferably from about 10 to about 20 weight percent of the polymer. Y is preferably present in an amount from about 0 to about 50 weight percent of the polymer, more preferably from about 5 to about 25 weight percent of the polymer, and most preferably from about 10 to about 20 weight percent of the polymer.

[0068] Specific acid-containing ethylene copolymers include, but are not limited to, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/isoo-buty1 acrylate, ethylene/methacrylic acid/isoo-buty1 acrylate, ethylene/methacrylic acid/n-butyl methacrylate, ethylene/methacrylic acid/methyl methacrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl methacrylate, and ethylene/methacrylic acid/n-butyl methacrylate. Preferred acid-containing ethylene copolymers include, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methyl acrylate/n-butyl acrylate, ethylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl acrylate, and ethylene/methacrylic acid/methyl acrylate copolymers. The most preferred acid-containing ethylene copolymers are, ethylene/methacrylic acid/n-butyl acrylate, ethylene/(meth)acrylic acid/ethyl acrylate, and ethylene/(meth)acrylic acid/methyl acrylate copolymers.

[0069] Ionomers are typically neutralized with a metal cation, such as Li, Na, Mg, K, Ca, or Zn. It has been found that by adding sufficient organic acid or salt of organic acid, along with a suitable base, to the acid copolymer or ionomer, the ionomer can be neutralized, without losing processability, to a level much greater than for a metal cation alone. Preferably, the acid moieties are neutralized greater than about 80%, preferably from 90–100%, most preferably 100% without losing processability. This is accomplished by melt-blending an ethylene α,β-ethylenically unsaturated carboxylic acid copolymer, for example, with an organic acid or salt of organic acid, and adding a sufficient amount of a cation source to increase the level of neutralization of all the acid moieties (including those in the acid copolymer and in the organic acid) to greater than 90%, (preferably greater than 100%).

[0070] The organic acids may be aliphatic, mono- or multi-functional (saturated, unsaturated, or multi-unsaturated) organic acids. Salts of these organic acids may also be employed. The salts of organic acids of the present invention include the salts of barium, lithium, sodium, zinc, bismuth, chromium, cobalt, copper, potassium, strontium, titanium, tungsten, magnesium, cesium, iron, nickel, silver, aluminum, tin, or calcium, salts of fatty acids, particularly stearic, behenic, erucic, oleic, linoleic or dimerized derivatives thereof. It is preferred that the organic acids and salts of the present invention be relatively non-migratory (they do not bloom to the surface of the polymer under ambient temperatures) and non-volatile (they do not volatilize at temperatures required for melt-blending).

[0071] The ionomers may also be more conventional ionomers, i.e., partially-neutralized with metal cations. The acid moiety in the acid copolymer is neutralized about 1 to about 90%, preferably at least about 20 to about 75%, and more preferably at least about 40 to about 70%, to form an ionomer, by a cation such as lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, or a mixture thereof.

[0072] The golf ball may also contain additives, ingredients, and other materials in amounts that do not detract from the properties of the final composition. These additive materials include, but are not limited to, activators such as calcium or magnesium oxide; fatty acids such as stearic acid and salts thereof; fillers and reinforcing agents such as organic or inorganic particles, for example, clays, talc, calcium carbonate, silica, aluminum silicates, zeolites, powdered metals, and organic or inorganic fibers, plasticizers such as dialkyl esters of dicarboxylic acids; surfactants; softeners; tackifiers; waxes; ultraviolet (UV) light absorbers and stabilizers; antioxidants; optical brighteners; whitening agents such as titanium dioxide and zinc oxide; dyes and pigments; processing aids; release agents; and wetting agents. These compositions provide improved melt processability, and a balance of ball performance.

[0073] Blowing/foaming agents may also be compatible with and be included in golf balls of the invention, including, for example those disclosed in U.S. Pat. No. 7,708,654. Typical physical foaming/blowing agents include volatile liquids such as freons (CFC's), other halogenated hydrocarbons, water, aliphatic hydrocarbons, gases, and solid blowing agents, i.e., compounds that liberate gas as a result of desorption of gas. Preferably, the blowing agent includes an absorbent. Typical absorbents include, for example, activated carbon, calcium carbonate, diatomaceous earth, and silicates saturated with carbon dioxide.

[0074] Chemical foaming/blowing agents may be incorporated into the infused blowing agents may be inorganic, such as ammonium carbonate and carbonates of alkalai metals, or may be organic, such as azo and diazo compounds, such as nitrogen-based azo compounds. Suitable azo compounds include, but are not limited to, 2,2'-azobisis(2-cyanobutane), 2,2'-azobisis(methylbutyronitrile), azodicarbonamide, p,p'-oxibis(benzene sulfonyl hydrazide), p-toluene sulfonfonyl semicarbazide, p-toluene sulfonfonyl hydrazide. Other blowing agents include any of the Celogen®️, sold by Crompton Chemical Corporation, and nitroso compounds, sulfonhydrazides, azides of organic acids and their analogs, triazines,
tri- and tetrazole derivatives, sulfonil semicarbazides, urea derivatives, guanidine derivatives, and esters such as alkoxyboroxines. Other possible blowing agents include agents that liberate gases as a result of chemical interaction between components such as mixtures of acids and metals, mixtures of organic acids and inorganic carbonates, mixtures of nitriles and ammonium salts, and the hydrolytic decomposition of urea.

Alternatively, low specific gravity can be achieved by incorporating low density fillers or agents such as hollow fillers or microspheres in the polymeric matrix, where the cured composition has the preferred specific gravity. Moreover, the polymeric matrix can be foamed to decrease its specific gravity, microballoons, or other low density fillers as described in U.S. Pat. No. 6,692,380 ("380 Patent"). The 380 patent is incorporated by reference in its entirety.

Blends including non-ionicomer and olefin-based ionomeric polymers may also be incorporated to form a golf ball layer. Examples of non-ionicomer polymers include vinyl resins, polyolefins including those produced using a single-site catalyst or a metallocene catalyst, polyurethanes, polyureas, polyamides, polyphenylenes, polycarbonates, polyesters, polysacrylates, engineering thermoplastics, and the like. Also, in one embodiment of the invention, processability of the golf ball of the invention may even be enhanced by incorporating in the core a metallocene-catalyzed polybutadiene.

Olefins-based ionomers, such as ethylene-based copolymers, normally include an unsaturated carboxylic acid, such as methacrylic acid, acrylic acid, or maleic acid. Other possible carboxylic acid groups include, for example, crotonic, maleic, fumaric, and itaconic acid. "Low acid" and "high acid" olefin-based ionomers, as well as blends of such ionomers, may be used. In general, low acid ionomers are considered to be those containing 16 wt. % or less of carboxylic acid, whereas high acid ionomers are considered to be those containing greater than 16 wt. % of carboxylic acid. The acidic group in the olefin-based ionomer copolymer is partially or totally neutralized with metal ions such as zinc, sodium, lithium, magnesium, potassium, calcium, manganese, nickel, chromium, copper, or a combination thereof. For example, ionomeric resins having carboxylic acid groups that are neutralized from about 10 percent to about 100 percent may be used. In one embodiment, the acid groups are partially neutralized. That is, the neutralization level is from 10 to 80%, more preferably 20 to 70%, and most preferably 30 to 50%. In another embodiment, the acid groups are highly or fully neutralized. Or, the neutralization level may be from about 80 to 100%, more preferably 90 to 100%, and most preferably 95 to 100%. The blend may contain about 5 to about 30% by weight of the moisture barrier composition and about 95 to about 70% by weight of a partially, highly, or fully-neutralized olefin-based ionomeric copolymer. The above-mentioned blends may contain one or more suitable compatibilizers such as glycidyl acrylate or glycidyl methacrylate or maleic anhydride containing-polymers.

In one embodiment, the overall golf ball has a compression of from about 25 to about 110. In another embodiment, the overall golf ball has a compression of from about 35 to about 100. In yet another embodiment, the overall golf ball has a compression of from about 45 to about 95. In still another embodiment, the compression may be from about 55 to about 85, or from about 65 to about 75. Meanwhile, the compression may also be from about 50 to about 110, or from about 60 to about 100, or from about 70 to about 90, or even from about 80 to about 110.

Generally, in golf balls of the invention, the overall golf ball COR is at least about 0.780. In another embodiment, the overall golf ball COR is at least about 0.788. In yet another embodiment, the overall golf ball COR is at least about 0.791. In still another embodiment, the overall golf ball COR is at least about 0.794. Also, the overall golf ball COR may be at least about 0.797. The overall golf ball COR may even be at least about 0.800, or at least about 0.805, or at least about 0.812.

The core, intermediate layer(s) and/or cover layers may contain sections having the same hardness or different hardness levels. That is, the core can be uniform hardness throughout the different sections of the core or there can be hardness gradients across the layers. For example, in single cores, there may be a hard-to-soft gradient (a "positive" gradient) from the surface of the core to the geometric center of the core. In other instances, there may be a soft-to-hard gradient (a "negative" gradient) or zero hardness gradient from the core's surface to the core's center. For dual core golf balls, the inner core layer may have a surface hardness that is less than the geometric center hardness to define a first "negative" gradient. As discussed above, an outer core layer may be formed around the inner core layer, and the outer core layer may have an outer surface hardness less than its inner surface hardness to define a second "negative" gradient. In other instances, the hardness gradients from surface to center may be hard-to-soft ("positive"), or soft-to-hard ("negative"), or a combination of both gradients. In still other versions the hardness gradients from surface to center may be "zero" (that is, the hardness values are substantially the same.) Methods for making cores having positive, negative, and zero hardness gradients are known in the art as described in, for example, U.S. Pat. Nos. 7,537,530; 7,537,529; 7,427,242; and 7,410,429, the disclosures of which are hereby incorporated by reference.

A golf ball according to the invention may therefore achieve various hardness gradients therein. For example, a golf ball of the invention having unique color appearance may incorporate a single-solid core having a "positive" hardness gradient (that is, the outer surface of the core is harder than its geometric center.) In a second embodiment, the core may be a dual-core comprising an inner core and a surrounding outer core layer. The inner core has a "positive" hardness gradient and the outer core layer has a "negative" hardness gradient (that is, the outer surface of the outer core layer is softer than the inner surface of the outer core layer.) Other embodiments of golf balls having various combinations of positive, negative, and zero hardness gradients may be made in accordance with this invention. For example, the inner core may have a positive hardness gradient and the outer core layer also may have a positive hardness gradient. In another example, the inner core may have a positive hardness gradient and the outer core layer may have a "zero" hardness gradient. (That is, the hardness values of the outer surface of the outer core layer and the inner surface of the outer core layer are substantially the same.) Particularly, the term, "zero hardness gradient" as used herein, means a surface to center Shore C hardness gradient of less than 8, preferably less than 5 and most preferably less than 3 and may have a value of zero or negative 1 to negative 25. The term, "negative hardness gradient" as used herein, means a surface to center Shore C hardness gradient of
less than zero. The terms, zero hardness gradient and negative hardness gradient, may be used herein interchangeably to refer to hardness gradients of negative 1 to negative 25. The term, “positive hardness gradient” as used herein, means a surface to center Shore C hardness gradient of 8 or greater, preferably 10 or greater, and most preferably 20 or greater. By the term, “steep positive hardness gradient” as used herein, it is meant surface to center Shore C hardness gradient of 20 or greater, more preferably 25 or greater, and most preferably 30 or greater. Methods for measuring the hardness of the inner core and surrounding layers and determining the hardness gradients are discussed in further detail below.

[0082] The center hardness of a core is obtained according to the following procedure. The core is gently pressed into a hemispherical holder having an internal diameter approximately slightly smaller than the diameter of the core, such that the core is held in place in the hemispherical portion of the holder while concurrently leaving the geometric central plane of the core exposed. The core is secured in the holder by friction, such that it will not move during the cutting and grinding steps, but the friction is not so excessive that distortion of the natural shape of the core would result. The core is secured such that the parting line of the core is roughly parallel to the top of the holder. The diameter of the core is measured 90 degrees to this orientation prior to securing. A measurement is also made from the bottom of the holder to the top of the core to provide a reference point for future calculations. A rough cut is made slightly above the exposed geometric center of the core using a band saw or other appropriate cutting tool, making sure that the core does not move in the holder during this step. The remainder of the core, still in the holder, is secured to the base plate of a surface grinding machine. The exposed 'rough' surface is ground to a smooth, flat surface, revealing the geometric center of the core, which can be verified by measuring the height from the bottom of the holder to the exposed surface of the core, making sure that exactly half of the original height of the core, as measured above, has been removed to within 0.004 inches. Leaving the core in the holder, the center of the core is found with a center square and carefully marked and the hardness is measured at the center mark according to ASTM D2240. Additional hardness measurements at any distance from the center of the core can then be made by drawing a line radially outward from the center mark, and measuring the hardness at any given distance along the line, typically in 2 mm increments from the center. The hardness at a particular distance from the center should be measured along at least two, preferably four, radial arms located 180° apart, or 90° apart, respectively, and then averaged. All hardness measurements performed on a plane passing through the geometric center are performed while the core is still in the holder and without having disturbed its orientation, such that the test surface is constantly parallel to the bottom of the holder, and thus also parallel to the properly aligned foot of the durometer.

[0083] The outer surface hardness of a golf ball layer is measured on the actual outer surface of the layer and is obtained from the average of a number of measurements taken from opposing hemispheres, taking care to avoid making measurements on the parting line of the core or on surface defects, such as holes or protrusions. Hardness measurements are made pursuant to ASTM D-2240 “Indentation Hardness of Rubber and Plastic by Means of a Durometer.” Because of the curved surface, care must be taken to ensure that the golf ball or golf ball subassembly is centered under the durometer indentor before a surface hardness reading is obtained. A calibrated, digital durometer, capable of reading to 0.1 hardness units may be used for the hardness measurements. The digital durometer is attached to, and its foot made parallel to, the base of an automatic stand. The weight on the durometer and attack rate conform to ASTM D-2240. In certain embodiments, a point or plurality of points measured along the “positive” or “negative” gradients may be above or below a line fit through the gradient and its outermost and innermost hardness values. In an alternative preferred embodiment, the hardest point along a particular steep “positive” or “negative” gradient may be higher than the value at the innermost portion of the inner core (the geometric center) or outer core layer (the inner surface)—as long as the outermost point (i.e., the outer surface of the inner core) is greater than (for “positive”) or lower than (for “negative”) the innermost point (i.e., the geometric center of the outer surface of the outer core layer), such that the “positive” and “negative” gradients remain intact.

[0084] As discussed above, the direction of the hardness gradient of a golf ball layer is defined by the difference in hardness measurements taken at the outer and inner surfaces of a particular layer. The center hardness of an inner core and hardness of the outer surface of an inner core in a single-core ball or outer core layer are readily determined according to the test procedures provided above. The outer surface of the inner core layer (or other optional intermediate core layers) in a dual-core ball are also readily determined according to the procedures given herein for measuring the outer surface hardness of a golf ball layer, if the measurement is made prior to surrounding the layer with an additional core layer. Once an additional core layer surrounds a layer of interest, the hardness of the inner and outer surfaces of any inner or intermediate layers can be difficult to determine. Therefore, for purposes of the present invention, when the hardness of the inner or outer surface of a core layer is needed after the inner layer has been surrounded with another core layer, the test procedure described above for measuring a point located 1 mm from an interface is used.

[0085] Also, it should be understood that there is a fundamental difference between “material hardness” and “hardness as measured directly on a golf ball.” For purposes of the present invention, material hardness is measured according to ASTM D2240 and generally involves measuring the hardness of a flat “slab” or “button” formed of the material. Surface hardness as measured directly on a golf ball (or other spherical surface) typically results in a different hardness value. The difference in “surface hardness” and “material hardness” values is due to several factors including, but not limited to, ball construction (that is, core type, number of cores and/or cover layers, and the like); ball (or sphere) diameter; and the material composition of adjacent layers, and thickness of the various layers. It also should be understood that the two measurement techniques are not linearly related and, therefore, one hardness value cannot easily be correlated to the other. Shore C hardness was measured according to the test methods D-2240.

[0086] Several different methods can be used to measure compression, including Atti compression, Riehle compression, load/deflection measurements at a variety of fixed loads and offsets, and effective modulus. See, e.g., Compression by Any Other Name, Science and Golf IV, Proceedings of the World Scientific Congress of Golf (Eric Thain ed., Routledge, 2002) (“J. Dalton”). The term compression, as used herein,
refers to Atti or PGA compression and is measured using an Atti compression test device. A piston compresses a ball against a spring and the piston remains fixed while deflection of the spring is measured at 1.25 mm (0.05 inches). Where a core has a very low stiffness, the compression measurement will be zero at 1.25 mm. In order to measure the compression of a core using an Atti compression tester, the core must be shimmed to a diameter of 1.680 inches because these testers are designed to measure objects having that diameter. Atti compression units can be converted to Riehle (cores), Riehle (balls), 100 kg deflection, 130-10 kg deflection or effective modulus using the formulas set forth in J. Dalton. The approximate relationship that exists between Atti or PGA compression and Riehle compression can be expressed as: (atti or PGA compression) = (160 - Riehle Compression). Thus, a Riehle compression of 100 would be the same as an Atti compression of 60.

[0087] COR, as used herein, is determined by firing a golf ball or golf ball subassembly (e.g., a golf ball core) from an air cannon at two given velocities and calculating the COR at a velocity of 125 ft/s. Ball velocity is calculated as a ball approaches ballistic light screens which are located between the air cannon and a steel plate at a fixed distance. As the ball travels toward the steel plate, each light screen is activated, and the time at each light screen is measured. This provides an incoming transit time period inversely proportional to the ball’s incoming velocity. The ball impacts the steel plate and rebounds through the light screens, which again measure the time period required to transit between the light screens. This provides an outgoing transit time period inversely proportional to the ball’s outgoing velocity. COR is then calculated as the ratio of the outgoing transit time period to the incoming transit time period, COR = \( \frac{V_{out}}{V_{in}} \cdot \frac{T_{out}}{T_{in}} \). Preferably, a golf ball according to the present invention has a COR of at least about 0.78, more preferably, at least about 0.80.

[0088] The spin rate of a golf ball also remains an important golf ball characteristic. High spin rate allows skilled players more flexibility in stopping the ball on the green if they are able to control a high spin ball. On the other hand, recreational players often prefer a low spin ball since they do not have the ability to intentionally control the ball, and lower spin balls tend to drift less off the green.

[0089] Golf ball spin is dependent on variables including, for example, distribution of the density or specific gravity within a golf ball. For example, when the center has a higher density or specific gravity than the outer layers, a lower moment of inertia results which increases spin rate. Alternatively, when the density or specific gravity is concentrated in the outer regions of the golf ball, a higher moment of inertia results with a lower spin rate. The moment of inertia for a golf ball of the invention may be from about 0.410 oz-in² to about 0.470 oz-in². The moment of inertia for a one piece ball that is 1.62 ounces and 1.68 inches in diameter may be approximately 0.4572 oz-in², which is the baseline moment of inertia value.

[0090] Accordingly, by varying the materials and the density of the regions of each core or cover layer, different moments of inertia may be achieved for the golf ball of the present invention. In one embodiment, the resulting golf ball has a moment of inertia of from about 0.440 to about 0.455 oz-in². In another embodiment, the golf balls of the present invention have a moment of inertia of from about 0.456 oz-in² to about 0.470 oz-in². In yet another embodiment, the golf ball has a moment of inertia of from about 0.450 oz-in² to about 0.460 oz-in².

[0091] Unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, and others in the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

[0092] Notwithstanding that the numerical ranges and parameters set forth in the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.

[0093] While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the preferred embodiments of the present invention, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Examples of such modifications include reasonable variations of the numerical values and/or materials and/or components discussed above. Hence, the numerical values stated above and claimed below specifically include those values and the values that are approximate to those stated and claimed values. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.

[0094] The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. For example, the compositions of the present invention may be used in a variety of equipment. Such modifications are also intended to fall within the scope of the appended claims.

[0095] While any of the embodiments herein may have any known dimple number and pattern, a preferred number of dimples is 252 to 456, and more preferably is 300 to 392. The dimples may comprise any width, depth, and edge angle and patterns which satisfy the relationships defined between cover layers as disclosed herein. The parting line configuration of said pattern may be either a straight line or a staggered wave parting line (SWPL). In one embodiment, the golf ball has 302, 320, 328, 330, 332, 352 or 392 dimples, comprises 5 to 7 dimples sizes, and the parting line is a SWPL.

[0096] In any of these embodiments the single-layer core may be replaced with a two or more layer core wherein at least one core layer has a negative hardness gradient. Other than in
the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials and others in the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount or range.

[0097] Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

What is claimed is:

1. A golf ball having an overall bi-color color appearance comprising:
   a core and a cover disposed about the core;
   the cover comprising a cover portion CP1 and a cover portion CP2, wherein CP1 is opaque and has color B and CP2 is translucent and has color D such that D≠A; and wherein the golf ball has an overall color appearance comprising two colors SA1 and SA2 that have the boundary L, such that SA1 is opaque and has a color appearance of the color B and SA2 has a color appearance of a color E wherein E≠A+D.

2. The golf ball of claim 1, wherein A≠B.

3. The golf ball of claim 1, wherein A=B.

4. The golf ball of claim 1, wherein B≠D.

5. The golf ball of claim 1, wherein B=D.

6. The golf ball of claim 1, wherein the surface areas of CP1 and CP2 are substantially similar.

7. A golf ball having an overall bi-color color appearance comprising:
   a core and a cover disposed about the core;
   the core having color A;
   the cover comprising a cover portion CP1 and a cover portion CP2, CP1 and CP2 having a boundary L, wherein CP1 is opaque and has color B and CP2 is translucent and has color D such that D≠A; and wherein the golf ball has an overall color appearance comprising two colors SA1 and SA2 that have the boundary L, such that SA1 is opaque and has a color appearance of the color B and SA2 has a color appearance of a color E wherein E≠A+D.

8. The golf ball of claim 7, wherein boundary L is planar.

9. The golf ball of claim 7, wherein boundary L is non-planar.

10. The golf ball of claim 7, wherein CP1 and CP2 have substantially similar surface areas.

11. The golf ball of claim 7, wherein A=B.

12. The golf ball of claim 7, wherein A≠B.

13. The golf ball of claim 7, wherein B≠D.

14. The golf ball of claim 7, wherein B=D.

15. A golf ball having an overall bi-color color appearance comprising:
   a core, a cover disposed about the core and an intermediate layer disposed between the core and the cover;
   the intermediate layer having color A;
   the cover comprising a cover portion CP1 and a cover portion CP2, wherein CP1 is opaque and has color B and CP2 is translucent and has color D such that D≠A; and wherein the golf ball has an overall color appearance comprising SA1 and SA2, wherein SA1 comprises an entire surface area of CP1 and SA2 comprises an entire surface area of CP2 such that SA1 is opaque and has a color appearance of the color B and SA2 has a color appearance of a color E wherein E≠A+D.

16. The golf ball of claim 15, wherein CP1 and CP2 have substantially similar surface areas.

17. The golf ball of claim 15, wherein A=B.

18. The golf ball of claim 15, wherein A≠B.

19. The golf ball of claim 15, wherein B≠D.

20. The golf ball of claim 15, wherein B=D.

* * * *