
US 2005.0246681A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0246681 A1

Little et al. (43) Pub. Date: Nov. 3, 2005

(54) SYSTEM AND METHOD FOR COMPUTING (60) Provisional application No. 60/238,559, filed on Oct.
CODE GENERATION 4, 2000. Provisional application No. 60/238,561, filed

on Oct. 4, 2000.
(75) Inventors: Todd Little, Palatine, IL (US); Loren

Konkus, Novi, MI (US); Gilles Publication Classification
Lavalou, Grasse (FR); Timo
Metsaportti, Espoo (FI) (51) Int. Cl." - G06F 9/44

(52) U.S. Cl. .. 717/106

Correspondence Address: (57) ABSTRACT
FLIESLER MEYER, LLP
FOUR EMBARCADERO CENTER
SUTE 400
SAN FRANCISCO, CA 94111 (US)

A System and method for computer code generation that can
be used to generate code and configuration files from any
data Source. In accordance with one embodiment a Genera
tor Framework provides a common Set of Standards and

(73) Assignee: BEA Systems, Inc., San Jose, CA (US) APIs through which designs may be input. The purpose of
the Generator Framework is to unify the code generation

(21) Appl. No.: 11/176,925 techniques implemented in products Such as the Builder
products from BEA Systems, Inc., by introducing Sufficient

(22) Filed: Jul. 7, 2005 abstraction levels. Built-in rules are introduced in the Gen
erator Framework, and a data navigation layer isolates the

Related U.S. Application Data Generator Framework from the data sources used. Filters
can be added to the framework to transform data. Notifiers

(63) Continuation of application No. 09/970,741, filed on are used by the Generator Framework to notify external
Oct. 4, 2001. components about the generation process.

Provide data navigation layer for interface with, and for providing navigational
access to, a Software application design product source data

Provide a template for specifying a Code generation process to be applied to said
SOUrCe data

Optionally parse internal rules that provide basic functions to query symbol values
from the data source, navigate through the data source, and Open and close files

Optionally parse internal filters that provide generic transformation capabilities,
such as lowercase? uppercase Conversion

Optionally parse rules that implement template instruction and dynamically 18O
generate Output when static template Code is not appropriate

Optionally parse notifiers that include logic applied when a rule is invoked, to allow
external components to be notified of the progress of the Code generation process

Optionally parse Condition specifiers that include logic applied when a rule is
invoked, to evaluate conditions and allow Code generation depending on specific

Conditions

Optionally parse filters that include logic applied when a rules is invoked, to
transform data

Parse template in accordance with any specified rules, filter, conditions, and
notifiers, to generate code

190 Outputting, via a Code output mechanism, generated computer Code !

Patent Application Publication Nov. 3, 2005 Sheet 2 of 5 US 2005/0246681 A1

PARSER
SCOPE DATA

SE NAVIGATION NAVIGATION

146

ESS 1441N-1

ESES DATA SOURCE
- -

142 140

FIG. 2

US 2005/0246681 A1

[S0? (INE) $ //

· · · epoo Jesn · · ·[[6eq: SOã]$//

[[6 en pºsued: SO?TNIÐEIG) § //

}

Patent Application Publication Nov. 3, 2005 Sheet 3 of 5

US 2005/0246681 A1 Nov. 3, 2005 Sheet 4 of 5 Patent Application Publication

() ()

Patent Application Publication Nov. 3, 2005 Sheet 5 of 5 US 2005/0246681 A1

Provide data navigation layer for interface with, and for providing navigational
access to, a Software application design product SOUrce data

Provide a template for specifying a COde generation process to be applied to said
SOUrCe data

Optionally parse internal rules that provide basic functions to query symbol values
from the dataSource, navigate through the data Source, and Open and close files

Optionally parse internal filters that provide generic transformation capabilities,
Such as lowerCase/upperCase COnversion

Optionally parse rules that implement template instruction and dynamically
generate Output when static template COde is not appropriate

Optionally parsenotifiers that include logic applied when a rule is invoked, to allow
external Components to be notified of the progress of the Code generation process

Optionally parse Condition specifiers that include logic applied when a rule is
invoked, to evaluate Conditions and allow Code generation depending On specific

Conditions

Optionally parse filters that include logic applied when a rules is invoked, to
transform data

Parse template in accordance with any specified rules, filter, Conditions, and
notifiers, to generate Code

190
Outputting, via a COde Output mechanism, generated Computer COde

FIG. 5

US 2005/0246681 A1

SYSTEMAND METHOD FOR COMPUTING CODE
GENERATION

CLAIM OF PRIORITY

0001) This application is a continuation of “SYSTEM
AND METHOD FOR COMPUTER CODE GENERA
TION', application Ser. No. 09/970,741, filed Oct. 4, 2001
which claims priority from provisional applications “SYS
TEM AND METHOD FOR COMPUTER CODE GEN
ERATION', application Ser. No.60/238,559, filed Oct. 4,
2000, and “SYSTEM FOR SOFTWARE APPLICATION
DEVELOPMENT AND MODELING,” application Ser. No.
60/238,561, filed Oct. 4, 2000, all of which are incorporated
herein by reference. This application is also related to
“SYSTEM FOR SOFTWARE APPLICATION DEVELOP
MENT AND MODELING,” application Ser. No. 09/970,
917, filed Oct. 4, 2001, also incorporated herein by refer
CCC.

COPYRIGHT NOTICE

0002 A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

0003. The invention relates generally to computer soft
ware development and Specifically to a System and a method
for generating computer code for Software applications.

BACKGROUND

0004. The increasingly important field of Software devel
opment brings with it the ever more common question
who can we get to actually do the Software coding? Software
developerS or coders are in high demand, and their skills
demand premium Salaries. AS Such the Software generation
or development process is a major factor to consider for any
company that relies on or uses Software for its day-to-day
business needs. This issue is even more relevant to those
companies who Support the Software development pro
cess-companies such as BEA Systems, Inc, IBM Corpo
ration, and Microsoft Corporation who develop software
development products, Suites and tools. In order to maxi
mize the benefits of their products to their end customers,
these companies must develop tools that allow a Software
developer to minimize the amount of time necessary to
finish a particular Software project, while at the same time
maximizing the options available to the developer to create
a quality product. Some tools are also particularly geared to
helping junior or beginning developers, who may not be as
experienced, to Successfully compete against more estab
lished and skilled Software architects.

0005 Given the importance of software development to
the global industry, and the demands that it should be
relatively painless, easy to work with, and that it make
optimal use of time and resources, it seems natural to want
to develop a Software generation tool or System, that auto
matically generates Software code in accordance with Some
preset or preordained wishes of a developer. This allows the

Nov. 3, 2005

Software architect or developer to concentrate on the "big
picture', and to envisage the functioning of the Software
application as a whole, without undue regard to the intrica
cies of code development.
0006 To this end, many tools allow the architect to
develop a model or plan of the desired Software application
and to use this plan as a blueprint for Subsequent Software
development. Similar to the way in which an architect
designs blueprints for a building, Software designers also
design blueprints for their complex Software applications.
And just as a building architect likes to be able to test those
blueprints for Structural Soundness, using for example a
modeling or analysis System to test each aspect of the
design, Software architects also like to test their Software
blueprints for reliability, Scalability, optimal use of
resources, and good Software design. AS the complexity of
a particular project increases, So too does the need for a
reliable, accurate model. The Software industry has devel
oped Several modeling techniques to address this need, one
of which is the Unified Modeling Language (UML), a
nonproprietary language defined in the Object Management
Group Unified Modeling Language Specification, hereby
incorporated by reference. UML provides software archi
tects with a Standardized language for Specifying, construct
ing, visualizing and documenting the artifacts of a complex
Software System. The UML Specification is a Successor to
three earlier object-oriented methods, Booch, Object Mod
eling Technique (OMT), and Object Oriented Software
Engineering (OOSE), and includes additional expressive
neSS to handle more complex modeling problems, not
readily handled by prior techniques.

0007 Some of the features inherent in UML are: Formal
definition of a common object analysis and design (OA&D)
metamodel to represent the Semantic of OA&D models,
including Static, behavioral, usage and architectural models,
Interface Definition Language (IDL) Specifications for
mechanisms for model interchange between OA&D tools,
which includes a Set of IDL interfaces that Support dynamic
construction and traversal of a user model; and, easily
readable notation for representing OA&D models, most
commonly a graphic Syntax for consistently expressing
UML semantics. As such the UML is more correctly con
sidered a visual modeling language rather than a visual
programming language. Because of its open Standard and
widespread industry use it Serves to lower the cost of
training and retooling when changing between projects or
organizations, and provides opportunity for new integration
between tools, processes and domains.
0008 Some tools have attempted to combine the design
aspects of a UML-based design System, with code genera
tion functionality, to better assist the Software developer in
code design and generation. An example of this type of tool
is the Builder range of products from BEA Systems, Inc, San
Jose, Calif., that can be used to build applications, primarily
in C or C++, and primarily for the Tuxedo Server product,
although other types of application can be built, and in other
languages. A problem with most of these types of product
are that they tend to proprietary in nature, or geared spe
cifically toward code generation for a particular species of
code type or Server. If the developer or architect must work
acroSS platforms on a particular project they often need to
learn the Specific code generation techniques for those
platforms. This in turn consumes development time, and

US 2005/0246681 A1

adds to both the learning and maintenance time required to
manage the various platform tools. The Overall situation
ends up being not much more useful than if no tools were
used.

0009. It would be more useful if there existed a uniform
code development or generation System, that was generic
enough to be used with a wide variety of platforms and
technologies, yet could be made Specific enough in those
cases in which a detailed integration with the product was
needed.

SUMMARY

0.010 The invention tackles the demand for a software
development and code generation environment that com
bines the ability to act generically acroSS a wide variety of
platforms, yet can be customized for each individual product
as required. Roughly described, the invention provides a
framework, that Supports a System and a method for com
puter code generation, which can in turn be used to generate
code and configuration files from any data Source. I n
accordance with one embodiment of the invention a Builder
Generator Framework (or simply a Generator Framework)
provides a common Set of Standards and application pro
gramming interfaces (APIs) through which designs may be
input. The purpose of the Generator Framework is to unify
the code generation techniques implemented in products
such as the Builder products from BEA Systems, Inc., by
introducing Sufficient abstraction levels. Built-in rules are
introduced or plugged-in into the generator framework, and
a data navigation layer or interface isolates the generator
framework from the data Sources (and the underlying Soft
ware products, applications, development Suites or Servers)
used. Filters can be added to the framework to transform
data, while notifiers are used by the generator framework to
notify external components about the generation process.

BRIEF DESCRIPTION OF THE FIGURES

0.011 FIG. 1 shows a Generator Framework in accor
dance with an embodiment of the invention.

0012 FIG. 2 illustrates how the Generator Framework
flexibly maps an abstraction data representation to the
Source data.

0013 FIG. 3 shows an example of a template file in
accordance with an embodiment of the invention.

0.014 FIG. 4 is a UML diagram of the components of the
Generator Framework in accordance with an embodiment of
the invention.

0.015 FIG. 5 is a flowchart of a code generation process
in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

0016 Roughly described, the invention provides a sys
tem and method for computer code generation that can be
used to generate code and configuration files from any data
Source. AS referred to herein, a Generator Framework is used
to unify the code generation techniques implemented in
products such as the Builder products from BEA Systems,
Inc., by introducing sufficient abstraction levels. When used
in the context of the Builder products, the framework may
be referred to as the Builder Generator Framework, although

Nov. 3, 2005

it will be evident to one skilled in the art that the systems and
techniques described herein have application beyond the
products described, which are listed for illustrative purposes
and to show the operation of the invention in an everyday
Setting.

0017)
0018. The following terms are used herein, and have the
appropriate meanings and equivalents known to one skilled
in the art:

Introduction

0019 Design Pattern-ADesign Pattern names and iden
tifies a common object oriented design Structure.
0020 IDL-Interface Definition Language, as defined by
the Common Object Request
0021 Broker Architecture and Specification.
0022 Interface Repository-An interface repository (or
Simple repository) contains the definitions of the interfaces
that determine client/server contracts.

0023 The Generator Framework provides a common set
of Standards and application programming interfaces (APIs)
to generate code and configuration files from any data
Source. A primary goal in developing the Generator Frame
work is to unify the code generation techniques imple
mented in the Builder family of products, by introducing
Sufficient abstraction levels. Built-in (or generic) rules are
introduced in the generator framework. A data navigation
layer isolates the generator framework from the data Sources
used. Filters can be added to the framework to transform
data. Notifiers are used by the generator framework to notify
external components about the generation process.

0024. The Generator Framework is intended to be used in
development products Such as those produced by BEA
Systems, Inc. which includes their Builder family of prod
ucts. BEA Builder is designed to enable companies to
leverage the development skills of their existing program
ming Staff, while Substantially reducing the time and costs
asSociated with implementing new applications, Such appli
cations being then used primarily for the BEA Tuxedo
platform. BEA Builder is a Suite of five products which
address the key aspects of client-side and Server-side appli
cation development. These include:

0025 BEA Active Expert-A tool that allows the use of
popular Windows development tools to create BEATUX
EDO client applications.
0026 BEAC++Expert-A tool that assists the program
mer in writing BEA TUXEDO servers and clients using
C++.

0027 BEA Contract Repository-A central repository
for the storage of interface information for server-side BEA
TUXEDO application components.

0028 BEA Rose Expert 2.0-A plug-in to the Rational
Rose development tool that allows the application designer
to leverage the Rose object design environment to build
BEATUXEDO servers and clients using C++.
0029 BEA Configuration Expert 2.0-A tool to quickly
and simply generate BEA TUXEDO configuration files
without having to know the Specific configuration file for
matS.

US 2005/0246681 A1

0030 This robust Suite of products helps enable rapid
development of BEA TUXEDO applications and encom
passes the full set of development tasks, allowing the
developer to continue to use their tool of choice, while filling
in the gaps, augmenting Standard development tools to
provide the essential capabilities needed to do both client
and Server Side busineSS application development. The Gen
eration Framework architecture is also intended to be flex
ible enough to be reused in other BEA products, Such as
BEA Repository, but it will be evident to one skilled in the
art that the architecture has applications beyond theses
examples. Although the Generator Framework architecture
does not decide upon or define the implementation language
used, code examples given herein are in JAVA. These
examples can easily be transposed to C or C++.
0031. Within this document, the following conventions
are used within this document when displaying UML dia
grams:

0032)
0033. Abstract classes are in Bold Italic
0034 Concrete classes are in Bold.

0035 Generator Architecture

Interfaces are in Italic

0.036 The Generator Framework architecture may be
used and customized in Several Builder products, Such as the
Active Expert, C++ Expert, Rose Expert, Configuration
Expert and Ice Crystal products. This document describes
the architecture of a common Generator Framework, in
which the abstraction levels are raised to integrate different
tools and types of generation (C++, UBBconfig files, etc.);
and different data Sources (Contract Repository, Configura
tion Repository, etc.)
0037 FIG. 1 shows the Generator Framework architec
ture, while FIG. 5 shows a flowchart of a code generation
proceSS in accordance with an embodiment of the invention.
As shown in FIG. 1, the arrows describe the data flow and
the lines ending with dots describe a plug-in relationship.
Rules, Filters, Conditions and Notifiers are internal or exter
nal pieces of code that plug into the framework. In accor
dance with one embodiment The Generator Framework
architecture is composed of the following elements
(although not all elements may be present in each embodi
ment):
0038. The Data Source 100 is the place where the data
used for the generation comes from. It is usually considered
as a repository (e.g. Builder Contract Repository, CORBA
Interface Repository, etc. . . .). The data Source may be
Stored on any temporary, permanent or Semipermanent Stor
age device, hereinafter referred to Simply as a Storage
device. Such storage devices may include memory devices,
magnetic devices, hard (fixed) disks, and equivalent storage
mechanisms. When the data Source is taken directly from a
Software product or application it may be read directly or in
real-time from that application and not e Stored as any
discrete file or record.

0039. The Output Files 102 are the result of the genera
tion. The output files may be output, written to, or Stored on
any temporary, permanent or Semipermanent Storage device,
hereinafter referred to simply as a Storage device, Such as
described above. When the output files are intended to be
Sent directly to another Software application they may be

Nov. 3, 2005

Sent directly or in real-time to that application and not e
Stored as any discrete file or record.
0040 Templates 104 are text files containing both
instructions to drive the generation proceSS and pieces of
Static code that need to be generated.
0041) Rules can be internal (106) or external (108) to the
framework, and are pieces of logic that implement template
instructions. Rules are used to generate output dynamically
when Static template code is not appropriate.
0042 Filters can be internal (110) or external (112) pieces
of logic invoked from rules and used to transform data.
0043 Conditions 114 are external pieces of logic invoked
from rules used to evaluate conditions. Conditions are used
to generate code depending on Some Specific conditions.
0044) Notifiers 116 are external pieces of logic used when
a rule is invoked. This allows external components to be
notified of the progreSS of the generation process.
004.5 The Generator Framework is composed of a set of
classes providing generation abstractions, using a data
Source as input, template files and external Specific rules to
drive the generation process against the data Sources, and
producing one or many output files. The Generator Frame
work itself is composed of the following elements:
0046 A Parser 130 parses template files and invokes
appropriate rules (built-in or specific). The Parser is also the
place where all the plug-ins are registered: Rules, Filters,
Conditions and Notifiers.

0047 AData Navigation Layer 132 acts as an abstraction
to the data Source, by providing navigational capabilities
inside the data Source. This layer implements the Facade
design pattern, and exposes only the navigation primitives,
not the details of the data Source. This and other design
patterns are described in Design Patterns, Gamma et al.
Addison Wesley, hereby incorporated by reference.
0048 Built-in Rules 106 provide basic functions to query
Symbol values from the data Source, navigate through the
data Source, and open and close files.
0049 Built-in Filters 110 provide generic transformation
capabilities, Such as lowercase/uppercase conversion.
0050 Data Navigation Layer 132
0051 FIG. 2 illustrates how the data navigation layer is
used to provide access to the data source 140. The model
used for the data Source is independent of Specific data
Source implementations. The resultant abstraction 142 pro
vides access to Simple type data elements, and navigation
inside the data Source. Because the model is based on
navigation inside the data Source, a context must be main
tained. This context is referred to herein as a scope 144. The
Scope provides access to the data Sources as a pointer to the
current data. Furthermore, the model used in generation is
assumed to be a hierarchical assembly 146, so that the
Scopes are Stacked by the parser as abstract tree Structures
are traversed. The combined Scopes act as a “facade',
isolating the parser from the data Source implementation.
0.052 The Parser 130 provides functions to manipulate
the Scope Stack, Such as pushing a new Scope on the Stack,
popping the Scope Stack, and getting the current Scope. The
model for the data navigation layer is based on an object

US 2005/0246681 A1

oriented model for data. Scope represents objects from the
data Source, which have String attributes, accessed through
attribute related functions; and references (relationships or
pointers to other objects), accessed through reference related
functions.

0053 Symbol Naming
0054) A symbol name is a name for an attribute (simple
data) or a reference (related Scope), and can be absolute or
relative. An absolute Symbol name is composed of the Scope
name and the relative Symbol name, for example Interface
:: name. A relative Symbol name can be simple or composed.
A Simple Symbol name is just an identifier, Such as "SrvList'.
A composed Symbol name contains Several reference names
Separated by dots and a simple Symbol name used to acceSS
a related Scope Symbols. For instance, getting the module
name from the operation Scope in the Contract Repository
would be done using the following symbol:

0055)
0056. If a module and an interface scopes have been
pushed on the Scope Stack when parsing, the same name can
be written:

0057 Module:name
0058. The General form of a symbol name is:

0059) <ScopeName>::<ReferenceName>.
* <Name>.

0060 Element Cardinality
0061 Attributes and references can be single or multi
valued. This impacts the usage of the Scope API, because it
is not Semantically possible to query individually an
attribute or a reference which is multi-valued. The Scope
API defines functions to both query single and multi-valued
attributes and references. Single valued attributes and ref
erences are queried by functions that return directly the
requested value (character String or Scope). Multi-valued
attributes and references are queried by functions that return
an iterator of character Strings or Scopes. The Scope API
provides an isMultiple() function that checks if a symbol
name corresponds to a single or multi-valued attribute or
reference.

0.062 Accessing Data Elements

interface.module.name

0063 The Scope interface implements a getValue()
method to get the value of a Single-valued attribute. This
method accepts a relative Symbol name only. If the attribute
is multi-valued, this function throws an exception. In the
following example, the Scope method getValue() is used to
return the type of a parameter (for example “in”, “out” or
“inout”) in IDL generation:

0064 String parameterType=currentScope.getVal
ue(“paramType”);

0065. The Scope interface implements a value so method
that returns an iterator of the values for a multi-valued
attribute:

0.066)
bers”);

Iterator i=currentScope.values("portNum

0067 Because the scopes are stacked by the parser, the
value of a Symbol can also be queried to the parser itself,
asking the value of the Symbol to the top Scope on the Stack,

Nov. 3, 2005

then to the previous Scope, and So on. When querying
symbol values from the parser, both absolute and relative
Symbol names can be used. The parser itself implements a
getValue() and a value So methods, which retrieve directly
the corresponding attribute value(s) if the Symbol name is
absolute; and retrieve the value(s) of the attribute of the
current scope (i.e. the Scope at the top of the Scope Stack) if
the Symbol name is relative.
0068 Scope Navigation
0069 Scope Navigation is performed by means of point
erS or pointer-like references. A reference provides access to
a list of (Sub-)scopes related to the current Scope. Similarly
to the attribute names, reference names are either relative or
absolute. For instance, in IDL generation, a Module Scope
gives access to an “interface list” reference, which provides
access to the interfaces of the module. The relation between
the Scope navigation and the data Source navigation is shown
in FIG. 2. The scope method getScope() takes a reference
name as input and returns the related Scope. If the reference
is multi-valued, this functions throws an exception. The
following shows an example:

0070 Scope
Scope(“module”);

moduleScope=interfaceScope.get

0071. The scope method scopes() takes a reference name
as input and returns an iterator of the corresponding Scopes,
as shown in the example below:

0072 Iterator i=moduleScope.scopes(“interfaces”);
0073. Similarly, the parser allows access to references
through the Scope Stack by providing a getScope() and
Scopes() methods, accepting both absolute and relative
reference names. For instance, this allows access to the
module interface list at the operation Scope level, by calling:

0074 parserscopes("Module::interfaceList”);
0075) Rules
0076. In the template files, a rule is represented by a
String delimited by Separators, containing a rule name and
Zero or more arguments. A rule name is an identifier con
taining uppercase characters. A rule argument contains text
(which may also contain nested rules). In terms of regular
expressions, a rule has the following Syntax:

0.077 SruleName:ruleArgument
0078. The rule delimiter symbols “S", "I" and “:” may be
changed if appropriate. They may even be changeable
programmatically. Examples of these are shown below:

0079) SLOPEN:SLAPPNAME).cpp.)

0080 SVAL:date:U
0081 Rule Interface
0082 For each rule, there is a piece of code implementing
the rule logic. This piece of code is implemented by an
execute() method which is invoked by the parser. The
parser's built-in rules are implemented in the Generator
Framework itself. Specific rules are implemented out of the
Generator Framework. The Rule interface defines the fol
lowing abstract method:

0083) public abstract String execute(String largs,
Parser p) throws GenException;

US 2005/0246681 A1

0084 where args are the arguments passed to the rule
(argO) is the rule name itself). The returned value contains
the result of the rule execution, and can then be either printed
to the output file or used as an argument to an upper-level
rule (see also the OPEN rule example above). If a rule does
not generate any output, its return value is null. Rule
arguments may contain other rules. It is up to the rule
implementation to decide if the arguments should be parsed
again. In order to do this, the rule calls the parsed method
from the parser:

0085 String parse(String str) throws GenException;
0086) Built-in Rules
0.087 Built-in rules provide a generic set of rule imple
mentation for data access, data navigation and boolean
conditions. These rules are part of the Generator Frame
work. The (non-exhaustive) list and Syntax of these rules is
described below in the section titled Built-in

0088 Rules Syntax.
0089 Templates
0090 FIG. 3 shows an example of a template 150 as it
may used to generate code 154. Templates are text files that
drive the generation proceSS. Template files contain lines of
text in which rules are parsed by the generator parser.
Template lines also contain Static text which is Sent directly
to the generator output. Some rules (ITERATE, COND)
define the notion of a block of template code which is parsed
Zero or Several times depending on Some conditions. These
blocks of template code are put between the '(a): and “(a)}
markers. The following is a yacc-like Syntax description of
the template files. The terminal Symbols are in uppercase.

TemplateFile:TemplateLines;
TemplateLines: TemplateLines TemplateLine :
TemplateLine: BlockDelimiter RET TemplateElements
RET;
TemplateElements: TemplateElements TemplateElement;
TemplateElement: Rule Text;
Rule: SI RuleName RuleArgs I;
RuleName: RULE IDENT:
RuleArgs: : TemplateElements;
Text:TEXT :
BlockDelimiter: (a): (a)} :

0091 Filters
0092 Filters are used to transform data during the gen
eration. A filter is a piece of logic that takes a String and a
Scope as input, and outputs the transformed String. Trans
formations include:

0093 Mapping a name to another name.
0094 Prepending/appending characters.
0095 Changing character case.

0.096 Filters are initially registered with the Parser in the
framework. Each filter has a name, and may allow Several
transformations to take place. For example, the “Case' filter
(built-in filter) has the two “U” and “L” transformations, for
uppercase and lowercase conversion respectively. The
Parser provides functions to add and remove filters, and to
get a filter by its name.

Nov. 3, 2005

0097 TextFilter Interface

0098 Text Filters are used to transform any kind of data
during the generation proceSS. Text Filters are used by the
FILTER rule (see also the FILTER Rule below), and can be
used by external rules. The TextFilter interface defines the
following abstract method:

abstract public String transform (Scope scope,
String input,
String transformationName);

0099 A filter is invoked from a rule, either built-in (such
as the FILTER rule) or specific. The filter name and trans
formation name are typically arguments to a rule, as shown
in the example below:

01.00 SLFILTER:SVAL:moduleName:Case:U)
mbOElter Interface 01.01 Symbol Filter Interf

0102) The Symbolfilter interface is used to transform the
value of a symbol. The difference with Text Filters is that a
symbol bears more information than simple text from the
Scope point of view. For instance, the type of the Symbol that
can be used to transform data includes adding double quotes
if the symbol is a string, or generating Y or N if the symbol
is boolean. Symbol Filters are used by the VAL rule (see also
the VAL Rule below), and can be used by external rules. The
Symbolfilter interface defines the following abstract
method:

abstract public String transform (Scope scope,
String symbolName,
String input,
String transformationName);

0103). Using Filters

0104. When implementing Filters, there is the alternative
between using:

01.05 SFILTER:SVAL:symbolName:filterName
:transformationName

01.06 or
0107 SIVAL:symbolName:filterName:trans
formationName

0108. These two forms are equivalent, unless the symbol
name is meaningful to perform the transformation, like the
formatting depending on the Symbol type above.

0109) Conditions
0110 Conditions are used to generate code conditionally.
Conditions are pieces of code that are plugged into the
Generator Framework. The Parser provides functions to add
and remove conditions, and to get a condition by its name.

US 2005/0246681 A1

0111 Condition Interface
0112 The Condition interface implements the following
abstract method:

0113 abstract public boolean is Applicable(Scope
Scope);

0114 Conditions are used by the COND rule (see COND
Rule below), and can be used by external rules.

0115 Generic Conditions
0116 Generic Conditions are implemented by the COND
rule. This rule accepts complex conditions as input,
expressed by Symbol values, constants and logical operators.
The condition text is parsed by the COND rule code. The
Syntax of generic conditions is still an open issue. Below is
an example of a generic condition:

$COND:domain.machines. Shi > 1

*NETWORK
SITERATE:domain.machines

SIVAL:lmid NADDR=SIVAL:naddr NLSADDR=SIVAL:nlsaddr

G}

0117. In this example, domain. machines is a composed
Symbol name representing a reference. The Sif notation is the
number of elements of this reference. Below is a possible
Syntax for generic conditions, the notation and Syntax are
borrowed from “The JAVA Language Specification” by the
JAVA Team, Addison Wesley, 1996, hereby incorporated by
reference.

ConditionalExpression:
ConditionalAndExpression
ConditionalExpression ConditionalAndExpression
ConditionalAndExpression:
EqualityExpression
ConditionalAndExpression & & EqualityExpression
EqualityExpression:
UnaryExpression
EqualityExpression RelationalOperator UnaryExpression
RelationalOperator: one of

UnaryExpression:
Expression
UnaryExpression

Expression:
Identifier
Constant
(ConditionalExpression)
Identifier:
Literal
Identifier. Literal
Identifier. Sif
Constant:
NumberConstant
StringConstant
NumberConstant:

StringConstant:
“StringChars

Nov. 3, 2005

0118 Conditional Lists and Iterations
0119 When navigating the data source with the scopes, it
is often desirable to Select related data elements depending
on Some condition. For instance, when generating code from
IDL, the list of input parameters may be needed: if the model
only provides a list of parameters (in, out, and inout), a
conditional list may be useful to do this. This is the purpose
of the CONDLIST and CONDITERATE rules, which apply
a condition (named orgeneric) to each Scope element of the
list or the iteration, and then process their block of template
code.

0120 Notifications
0121 Notifiers are used to send messages to external
components that use the Generator Framework. Notifiers are
typically used to inform external components (such as
progress bars, output text widgets) about the Status of the
generation. A component wanting to be notified about the
generation progreSS must simply implement the Notifier
interface (see below). Notifications are sent in rules using
the parser notify() method. Notifiers are registered in the
parser for a specific rule (e.g. OPEN, CLOSE). Two condi
tions must be met for receiving notification messages from
a rule:

0122) The rule must call notify() in its execute()
method.

0123 The notifier must be registered in the parser
for that rule.

0124 Notifier Interface
0125) The Notifier interface defines the following
abstract method:

abstract public void ruleInvoked(String ruleName,
Parser P.
String message);

0126 Protected Code Sections
0127 Protected code sections allow users of the Genera
tor Framework to define parts of the output file (or files)
being untouched by the generation process. This is a pow
erful mechanism used to preserve user code while Still being
able to apply the generator to produce updated versions of
the output files. For instance, defining a protected code
Section in a function implementation allows to keep the user
code in the output file. Protected code sections are identified
by a particular rule in the templates (see also the PCS Rule
below). Unicity of a protected code section depends on a
tag which is defined by the perSon writing the template.
The tag generated in the output file is parsed by the PCS rule
to ensure uniqueness.
0128. 3. Generator Framework
0129. The UML diagram in FIG. 4 shows the class
architecture of the framework. The meaning of the UML
representation 160 in FIG. 4 will be evident to one skill in
the art. AS Shown therein, the parser is the central point of
the Generator Framework. It’s functions include invoking
the parsing of a template file, and executing rules which in
turn change the Scope of the parser. Scopes are organized in
a Stack inside the parser. The following class and interface

US 2005/0246681 A1

Specifications are given as examples, although it will be
evident to one skilled in the art that the Specific classes given
C

0130 Scope Class
0131 The Scope class is an abstract class providing
access to a data Source (Contract Repository, Configuration
Repository, UREP, . . .).

package com.beasyS. generator;
public abstract class Scope {

If
If General purpose functions
If

public String getName();
public String getType(String symbolName);
public boolean isMultiple(String symbolName);

If
If Attribute-related functions
If

public abstract boolean hasAttribute(String symbolName);
public abstract int getAttributecount(String symbolName);
public abstract String getValue(String symbolName)

throws CardinalityException;
public abstract Enumeration values(String symbolName);

If
If Reference related functions
If

public abstract boolean hasReference(String symbolName);
public abstract int getReferenceCount(String symbolName);
public abstract Scope getScope(String symbolName)

throws CardinalityException;
public abstract Enumeration values(String symbol Name);

0132) Rule Class
0133. The Rule class defines the function that implements
a rule. A rule is invoked by the parser when a rule invocation
is recognized in the templates.

package com.beasyS. generator;
public abstract class Rule {
public String execute(String args, Parser p) throws GenException;

0134) Parser Class
0135 The Parser class contains the core of the Generator
Framework, parsing template files and invoking rules.

package com.beasyS. generator;
public class Parser {
public Parser();
If
If Scope Management
If
public Scope getCurrentScope();
public String getValue(String symbolName)
throws CardinalityException;
public Enumeration values(String symbolName);
public Scope getScope(String symbolName) throws CardinalityException;
public Enumeration scopes(String symbolName);
public void popScope();
public void push Scope(Scopes);
If

Nov. 3, 2005

-continued

If Rule Management
If
public void addRule(Rule r);
public void removeRule(String ruleName);
If
ff Condition Management
If

l

l

l

l

If
// Filter Management
If
public void add Filter(Filter f);
public void removeFilter(String);
public Filter getFilter(String name);
If
// Notifier Management
If
public void addNotifier(String ruleName, Notifier n);
public void removeNotifier(String ruleName, Notifier);
public void notify(Rule r, String message);
If
If Template Management
If
public void loadTemplates(String)
hrows ParserException;

If
// Parsing Functions
If
public String parse(Strings)
hrows GenException;
public void parseTemplate(String templateName)
hrows GenException;

If
// Parser Properties
If
public String getOutputDir();
public void setOutputDir(String dirName);
public String getRootDir();
public void setRootDir(String dirName);
public void setTemplateDir(String dirName);

ic void addCondition(String name, Condition c);
ic void removeCondition (String name);
ic Condition getCondition (String name);

b

b

b

blic boolean hasCondition(String name);

0136 Filter Class
0.137 The Filter class is the common Superclass of the
Symbolfilter and TextFilter classes:

abstract public class Filter

protected Filter(String name);
public String getName();
public abstract boolean hasTransformation (String name);

0138 Symbol Filter Class
013:9) The Symbol Filter class is used by the VAL rule to
transform a Symbol value.

abstract public class Symbol Filter
extends Filter

protected Symbol Filter(String);
abstract public String transform (Scopes,

US 2005/0246681 A1

-continued

String symbol Value,
String input,
String transfName);

0140 TextFilter Class

0141. The TextFilter class is used by the FILTER and
VAL rules to transform a text value.

abstract public class TextFilter
extends Filter

protected TextFilter(String);
abstract public String transform (Scopes,

String input,
String transfName);

0142 Condition Interface

0143. The Condition interface defines a is Applicable()
method used to

0144 conditionally generate code. Conditions are used
by the COND rule.

public interface Condition

public abstract boolean is Applicable(Scope scope);

0145 Notifier Interface

0146 The Notifier interface defines a method used to
notify external components about the Status of the genera
tion. External components are notified from rules when the
rule invokes the notify() method of the Parser class.

public interface Notifier

public abstract void ruleInvoked(String ruleName,
Parser p,
String message);

0147 4. Built-in Rules Syntax

0.148. The following rules are given as examples of the
type of rules that can be used with the invention. It will be
evident to one skilled in the art that other rules can be used.

Nov. 3, 2005

0149 OPEN Rule
0150. Synopsis

0151. SLOPEN:<fileName>
0152. Description

0153. The OPEN rule opens the file <fileName> for
output. The generation output is written to the file <file
Name>. The name of <fileName> can contain static values
such as “test.idl”, or symbols for substitution, such as
“SIVAL: moduleName)lidl”.

EXAMPLE

0154 SOPEN:SVAL:moduleNameidl

O155 CLOSE Rule
0156 Synopsis

O157 SCLOSE)
0158 DeScription p

0159. The CLOSE rule closes the current output file. The
generator output is restored to the previous opened output
file, if any. If there is no more output file, any rule other than
SOPEN causes the generator to fail.

O160. SCOPE Rule
0161 Synopsis

0162 SSCOPE:<scopeName>

0163. Description

0164. The SCOPE rule ensures that the current scope
name is the same as the Scope name passed in the rule. The
generator fails if the current Scope name is not <Scope
Name>. This rule has no other effect.

0165) VAL Rule
0166 Synopsis

0167 SIVAL:<symbolName>

0168 SIVAL:<symbolName>:<filterName>.
<transformationName>

0169. Description

0170 The VAL rule is used to return the value of sym
bols. A Symbol value pertains to the current Scope Stack.
Symbol values are retrieved against Scopes from the Scope
Stack, using the getValue() method of the Scope class.
Usually, the VAL rule can only be used on Single-valued
attributes. An exception is thrown if this rule is used on a
multiple-valued attribute. However, the VAL rule can be
used with a Symbol representing a multi-valued attribute
only if it is invoked from an iterated code block in the LIST,
ITERATE, CONDLIST and CONDITERATE rules. The
Second form allows the framework to apply a symbol or a
text filter to the symbol value. The <filterName> parameter
is the name of the filter to be used. The <transformation
Name> parameter is the name of a valid transformation in
this filter.

US 2005/0246681 A1

EXAMPLE

0171 S(VAL:passingModelSVAL:type ISIVAL:pa
rameterName:Case:U

0172 FILTER Rule
0173 Synopsis

0174 SFILTER:<texts:<filterName>: <transfor
mationName>

0175. Description
0176) The FILTER rule is used to apply a text filter to
Some text block. The <text> argument is parsed by the parser
(it may contain rules). The <filterName> parameter is the
name of the text filter to be used. The <transformation
Name> parameter is the name of a valid transformation in
this text filter.

EXAMPLE

0177 SFILTER:SVAL:parameterType:FML:out
Decl

0178 COND Rule
0179 Synopsis

$COND:<condition>:<codeBlocks
$COND:<condition>

<conditionalCodeBlocks

0180. Description
0181. The COND rule has two forms: the first forms
allows to conditionally generate a (one line) piece of code
depending on a named or generic condition. The Second
form allows to generate a block of code (on multiple lines)
depending on a named or generic condition. The code block
is delimited by the '(a): and (a markers.
0182 ITERATE Rule
0183) Synopsis

SITERATE:<symbolName>
G{

<iteratedCodeBlocki>

0184. Description
0185. The ITERATE rule repeats the same block of code
for a given Symbol name. The iteration Symbol name is a
Static name corresponding to a multi-valued reference
related to the current Scope. The iterated code block
(between the (G) and (a markers) is a piece of template
code that is iterated for all the objects returned by the
iteration at the Scope level. Rules may be invoked inside this
block, with a Scope corresponding to the iterated objects.
The iteration Symbol name can also be a multi-valued
attribute. In that case, the iterated code block is invoked with

Nov. 3, 2005

the same Scope, and the VAL rule can be used to retrieve the
Sequenced values of the multi-valued attribute.

0186 LIST Rule

0187 Synopsis

SLIST:<listName>:<codeBlocks
SLIST:<listName>:<codeBlocks:<separators

0188 Description

0189 The LIST rule is similar to the ITERATE rule.
Instead of iterating Several lines of code, it outputs a list of
<codeBlock> elements, separated by a separator String (the
default separator is “...”)

EXAMPLE

0.190 SIVAL:operationName(SLIST:parameter
List:SIVAL:parameterName)

0191 CONDITERATE Rule

0192 Synopsis

$CONDITERATE:<symbolName>
G{

<iteratedCodeBlocki>

0193 Description

0194 The CONDITERATE rule repeats the same block
of code for a given Symbol name, depending on a named or
generic condition. The iteration Symbol name is a Static
name corresponding to a multi-valued reference related to
the current scope. The iterated code block (between the '(a){
and (a markers) is a piece of template code that is iterated
for all the objects returned by the iteration at the scope level
which Satisfy the named or generic condition. Rules may be
invoked inside this block, with a Scope corresponding to the
iterated objects.

0195 CONDLIST Rule

0196) Synopsis

$CONDLIST:<listName>:<condition>:<codeBlocks
$CONDLIST:<listName>:<condition>:<codeBlocks:<separators

0197) Description

0198 The CONDLIST rule is the result of the composi
tion of a LIST rule and a COND rule. Each element
generated in the list and used as the current Scope in the code
block must Satisfy the named or generic condition.

US 2005/0246681 A1

EXAMPLE

0199 SICONDLIST parameterList:passingMode==
“in”:SVAL:parameterName

0200) INCLUDE Rule
0201 Synopsis

0202) SINCLUDE:<templateName>
0203) Description
0204 The INCLUDE rule is used to include a template
inside the current template.

EXAMPLE

0205 SLINCLUDE:t funcDecl
0206 PCS Rule
0207 Synopsis

0208) SPCS:<pcs tag->
0209. Description
0210. The PCS rule defines the location of a protected
code section in a template. The argument to the PCS rule is
a tag which is parsed by the parser. In the output file, the
protected code section will be delimited by the two lines
shown below. Any comments put in the template on the
SPCS: ... line will be preserved in the output file for both
begin and end markers.

S BEGIN PCS:<parsed tags
SEND PCS

5. TEMPLATE EXAMPLE

0211 The following example was developed as a proto
type for validating the Generator Framework architecture.
This particular template example is used to generate IDL
files:

SSCOPE:Module
SOPEN:SIVAL:nameidl

File: SIVAL:nameidl

module SIVAL:name{
SITERATE:interfaceList
G{

interface SIVAL:name{
SITERATE:operationList
G{

SIVAL:retType
SIVAL:name (SLIST-paramList:SIVAL:passMode

SIVAL:type SIVAL:name);
G}

G}

SCLOSE

0212. In this example, the “name” symbol is used several
times to get the names of modules, interfaces, operations and
parameters, respectively. The ITERATE and LIST rules

Nov. 3, 2005

manage the data navigation So that the “name' symbol is
each time the name of the element in the corresponding
Scope.

0213 The foregoing description has been provided for
the purposes of illustration and description. It is not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical
application, thereby enabling otherS Skilled in the art to
understand the invention for various embodiments and with
various modifications that are Suited to the particular use
contemplated. It is intended that the Scope of the invention
be defined by the following claims and their equivalence.
What is claimed is:

1. A System for code generation, comprising:
a data navigation layer that provides navigational access

to a Software application Source data, via pointers to the
Source data;

a template that Specifies instructions to drive a code
generation process that is applied to the Source data;

a parser that parses the template in accordance with rules,
and accesses the Source data via the pointers of the data
navigation layer, to generate code; and

a code output logic that outputs the generated code.
2. The System of claim 1 wherein the navigation layer

allows mapping of an abstracted data representation to the
Source data.

3. The System of claim 1, further comprising rules that
implement template instructions and dynamically generate
output.

4. The system of claim 1, wherein the system further
comprises filters.

5. The system of claim 4, wherein the rules implement the
template instructions, and wherein the filters are used to
transform the Source data.

6. The System according to claim 4, wherein the rules and
filters are registered as plug-ins to the parser.

7. The System of claim 1, wherein the code output logic
outputs the generated code to a Storage device.

8. The System of claim 1, wherein the parser comprises a
Set of classes providing generation abstractions.

9. The system of claim 1, wherein the source data includes
protected code Sections that allow users to define parts of the
output file to remain untouched by the code generation
proceSS.

10. A method of generating computer code, comprising
the Steps of:

accessing a data navigation layer that provides naviga
tional access to a Software application Source data, via
pointers to the Source data;

accessing a template that Specifies instructions to drive a
code generation process that is applied to the Source
data;

parsing the template in accordance with rules, and access
ing the Source data via the pointers of the data navi
gation layer, to generate code; and

outputting the generated code.

US 2005/0246681 A1

11. The method of claim 10 wherein the navigation layer
allows mapping of an abstracted data representation to the
Source data.

12. The method of claim 10, further comprising accessing
rules that implement template instructions and dynamically
generate Output.

13. The method of claim 10, further comprising accessing
filters, wherein the rules implement the template instruc
tions, and wherein the filters are used to transform the Source
data.

14. The method according to claim 13, wherein the rules
and filters are registered as plug-ins.

15. The method of claim 10, wherein the step of output
ting includes outputting the generated code to a Storage
device.

16. The method of claim 10, wherein the step of parsing
includes accessing a set of classes that provide generation
abstractions.

17. The method of claim 10, further comprising defining
in the Source data a protected code Section that allow users

Nov. 3, 2005

to define parts of the output file to remain untouched by the
code generation process.

18. A computer readable medium including instructions
Stored thereon which when executed cause the computer to
perform the Steps of:

accessing a data navigation layer that provides naviga
tional access to a Software application design product
Source data, via pointers to the Source data;

accessing a template that Specifies instructions to drive a
code generation process that is applied to the Source
data;

parsing the template in accordance with rules, and access
ing the Source data via the pointers of the data navi
gation layer, to generate code; and

outputting the generated code.

