wo 2015/160493 A1 |[IN I 000000 RO O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

22 October 2015 (22.10.2015)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/160493 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 11/10 (2006.01) GO6F 12/08 (2006.01)

International Application Number:
PCT/US2015/023269

International Filing Date:
30 March 2015 (30.03.2015)

Filing Language: English
Publication Language: English
Priority Data:

14/256,360 18 April 2014 (18.04.2014) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: INGALLS, John, Sumner; 5775 Morehouse
Drive, San Diego, California 92121 (US). STEMPEL,
Brian, Michael; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121 (US). SPEIER, Thomas, Philip; 5775 More-
house Drive, San Diego, California 92121 (US).

Agent: TERRANOVA, Steven, N.; Withrow & Terran-
ova, PLLC, 2530 Meridian Parkway, Suite 300, Durham,
North Carolina 27713 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: CACHE MEMORY ERROR DETECTION CIRCUITS FOR DETECTING BIT FLIPS IN VALID INDICATORS IN
CACHE MEMORY FOLLOWING INVALIDATE OPERATIONS, AND RELATED METHODS AND PROCESSOR-BASED
SYSTEMS

. INVALIDATE
INTERVAL

COUNTER (50)

™~ CACHE ENTRY
18(0}

CACHE ENTRY

[CACHE ENTRY (18) TO ESTABLISH
INVALIDATE o (18
ENABLE INPUT (28)
r-————tf-—————————-—— al V\
REDUNDANT | | TAG (20)
= il e
| | cRETON || V4
| 62 | CACHE MEMORY (12)
I ! » | | ¥
————— - I REDUNDANT
INVALIDATE R T INFORMATION | 20(0}20(N)
INTERVAL INVALIDAT | VALD INDICATOR TAG ARRAY{14)
COUNT (48) COUNT (48) | INDICATOR @6(0146N) |/ 47 DATAARRAY (16)
| Oy vy T A DATAENTRY (22(0))
A —
N

L (18N)

REDUNDANT
INFORMATION

INDICATOR
VALIDATION

DATAENTRY (22(N))

CIRCUIT (30) CACHE ENTRY_A

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ERROR
INDICATOR (34)

| CACHE MEMORY ERROR
DETECTION CIRCUIT (10)

|
e e a

INDIGATOR
CROUT(®)]

3%
3|2 ﬁé: CACHE HITMISS

CACHE HITIMISS
" INDICATOR (40

! FiG. 1

(57) Abstract: Aspects disclosed herein include cache memory error detection circuits for detecting bit flips in valid indicators (e.g.,
valid bits) in cache memory following invalidate operations. Related methods and processor-based systems are also disclosed. If a
cache hit results from access to a cache entry following an invalidate operation, a bit flip(s) has occurred in a valid indicator of the
cache entry. This is because the valid indicator should indicate an invalid state following the invalidate operation of the cache entry,
as opposed to a valid state. Thus, a cache memory error detection circuit is configured to determine if an invalidate operation was
performed on the cache entry. The cache memory error detection circuit can cause a cache miss or an error for the accessed cache
entry to be generated as a result, even though the valid indicator for the cache entry indicates a valid state due to the bit flip(s).

WO 2015/160493 PCT/US2015/023269

CACHE MEMORY ERROR DETECTION CIRCUITS FOR DETECTING BIT
FLIPS IN VALID INDICATORS IN CACHE MEMORY FOLLOWING
INVALIDATE OPERATIONS, AND RELATED METHODS AND
PROCESSOR-BASED SYSTEMS

PRIORITY CLAIM
[0001] The present application claims priority to U.S. Patent Application Serial No.
14/256,360 filed on April 18, 2014 and entitled “CACHE MEMORY ERROR
DETECTION CIRCUITS FOR DETECTING BIT FLIPS IN VALID INDICATORS
IN CACHE MEMORY FOLLOWING INVALIDATE OPERATIONS, AND
RELATED METHODS AND PROCESSOR-BASED SYSTEMS,” which is

incorporated herein by reference in its entirety.

BACKGROUND
I. Field of the Disclosure

[0002] The field of the present disclosure relates to detecting bit flips in cache

memory in processor-based systems.

II. Background

[0003] A memory cell is a basic building block of computer data storage, which is
also known as “memory.” A computer system may either read data from or write data
to memory. Memory can be used to provide cache memory in a central processing unit
(CPU) system as an example. Cache memory is a smaller, faster memory that stores
copies of data stored at frequently accessed memory addresses in main memory or
higher level cache memory to reduce memory access latency. Thus, cache memory is
memory that can be used by a CPU to reduce memory access times.

[0004] Cache memory is comprised of a tag array and a data array. The tag array
contains addresses also known as “tags.” The tags provide indexes into data storage
locations in the data array. A tag in the tag array and data stored at the index of the tag
in the data array is also known as a “cache line” or “cache entry.” If a memory address,
or portion thereof, provided to the cache memory as part of a memory access request
matches a tag in the tag array, this is known as a “cache hit.” A cache hit means that the
data in the data array contained at the index of the matching tag contains data
corresponding to the requested memory address in main memory and/or a higher level

cache memory. The data contained in the data array at the index of the matching tag

WO 2015/160493 PCT/US2015/023269

can be used for the memory access request, as opposed to having to access main
memory or a higher level cache memory having greater memory access latency. If
however, the memory address of the memory access request, or portion thereof, does
not match a tag in the tag array, or if the cache entry is otherwise invalid, this is known
as a “cache miss.” In a cache miss, the data array is deemed not to contain data that can
satisfy the memory access request.

[0005] For a cache hit, not only must a memory address, or portion thereof, of a
memory access request match a tag in the tag array, the cache entry corresponding to the
matched tag must also be valid. In this regard, a valid indicator (e.g., a valid bit) is
provided for each cache entry in the cache memory to indicate the validity of the cache
entry. 'Thus, the valid indicator is also consulted in a cache memory access as part of
cache error logic. The valid indicator may be set to an invalid state when the data stored
in the data array for the cache entry is no longer valid. The valid indicator also provides
a convenient method for deleting a cache entry. To delete a cache entry, the valid
indicator corresponding to the cache entry to be deleted can simply be set to an invalid
state (e.g., a logical zero ‘0’ value, where a logical one ‘1’ value indicates a valid state),
as opposed to overwriting the data stored in the data array for the cache entry. Thus, if a
deleted cache entry is subsequently accessed before being filled with valid data, the
valid indicator for the accessed cache entry will represent an invalid state for the cache
entry. In this instance, the valid indicator will cause the cache memory to generate a
cache miss for the cache entry access. However, if an unintentional bit flip occurs in the
valid indicator thereby causing the valid indicator to improperly indicate a valid state for
an invalid cache entry, such as from radiation or a power surge as examples, the cache
memory will generate a false cache hit when accessing this invalid cache entry, as
opposed to a true cache miss. As a result, invalid data may be provided from the cache
memory for the memory access request as a result of the valid indicator bit flip.

[0006] Thus, it is desired in cache memory designs to account for the possibility of
bit flips in valid indicators. One method to account for bit flips in the valid indicators in
cache memory is to protect against bit flips from occurring. For example, the valid
indicators can be radiation-hardened to make the valid indicators less susceptible to bit
flips. However, radiation hardening may add cost or circuit complexity in a manner that

decreases performance of cache memory.

WO 2015/160493 PCT/US2015/023269

[0007] An alternative method to protect against bit flips from occurring in valid
indicators in cache memory is to detect bit flips in the valid indicators. One method of
detecting bit flips in valid indicators is to duplicate the valid indicator in each cache
entry in cache memory. The cache memory is designed to only generate a cache hit if
both valid indicators for an accessed cache entry are valid. Thus, if a bit flip occurs in
one of the valid indicators, the duplicate valid indicator will not match. However,
duplicating valid indicators in cache entries in cache memory requires additional
circuitry in the cache memory. Access latency to the cache memory and the energy
consumed by the cache access may also be increased as a result of providing duplicated
valid indicators for the additional logic required to determine if the valid indicators for
an accessed cache entry match. Also, if the same bit flip occurs in duplicated valid
indicators for a given cache entry, the valid indicators will still match and possibly
generate a false cache hit.

[0008] Another method of detecting bit flips in valid indicators in cache memory is
to include the valid indicators in a parity operation and parity check. Parity logic may
be provided in cache memory to generate a parity (e.g., a parity bit or word) for a cache
entry or portion thereof that includes a valid indicator for the cache entry on a fill of the
cache entry. The parity is checked when a cache entry is accessed in the cache memory.
If an unintended bit flip has occurred, the generated parity will not match the parity of
the cache entry, or portion thereof, and a cache miss will be generated by the cache
memory as a result. Thus, if the valid indicator of a cache entry is included in the
generation of the parity, a bit flip in the valid indicator will result in a parity mismatch
that will be used to generate a cache miss or to signal an error. However, providing a
valid indicator as part of a parity indicator can be disadvantageous. If the valid indicator
is included in the parity for the cache entry, the parity must be regenerated when a cache
entry in the cache memory is changed. Thus, if a cache entry is deleted, the valid
indicator cannot simply be set to an invalid state. A new parity indicator must also be
generated and stored in the cache entry, thereby increasing latency and energy of a
cache entry deletion operation. This performance penalty and increase in energy can be
substantial if cache memory supports “flash invalidate” or “selective invalidate”
operations that allow multiple cache entries in the cache memory to be invalidated
simultaneously and quickly by simply invalidating the valid indicators. If the valid

indicator of a cache memory is included in the parity for a cache entry, the parity for

WO 2015/160493 PCT/US2015/023269

each invalidated cache entry must also be regenerated for each cache flash invalidate or

selective invalidate operation.

SUMMARY OF THE DISCLOSURE

[0009] Aspects disclosed herein include cache memory error detection circuits for

detecting bit flips in valid indicators (e.g., valid bits) in cache memory following
invalidate operations. Related methods and processor-based systems are also
disclosed. If a cache hit results from access to a cache entry (e.g., a tag) following an
invalidate operation, but before the cache entry is re-established, a bit flip(s) has
occurred in the valid indicator associated with the cache entry. This is because the valid
indicator should indicate an invalid state (for a cache miss) as opposed to a valid state
(for a cache hit) following the invalidate operation and prior to re-establishment of the
cache entry. Thus, in aspects disclosed herein, when a valid indicator indicates a valid
state for an accessed cache entry in cache memory, a cache memory error detection
circuit is configured to determine if an invalidate operation was performed on the cache
entry prior to re-establishment of the cache entry. If an invalidate operation was
performed on the cache entry, a bit flip has occurred in the valid indicator because the
valid indicator should indicate an invalid state, causing a cache miss to be generated.
The valid indicator should indicate an invalid state, because the valid indicator is set to
an invalid state following an invalidate operation. The cache memory error detection
circuit can cause a cache miss to be generated or an error to be indicated for the
accessed cache entry as a result, even though the valid indicator for the cache entry
indicates a valid state due to the bit flip(s).

[0010] Thus, in aspects disclosed herein, for the cache memory error detection
circuit to determine when an invalidate operation has occurred prior to re-establishment
of the cache entry, an invalidate interval indicator (e.g., a counter) is provided. The
invalidate interval indicator advances an invalidate interval state (e.g., a count) for each
invalidate operation performed on a cache memory. The invalidate interval state, or
encoded version thereof, is stored in the cache entry when the cache entry is established
in the cache memory. If the valid indicator for a subsequently accessed cache entry
indicates a valid state, the cache memory error detection circuit confirms that an
invalidate operation has not occurred. If the invalidate interval state originally stored or

encoded in the cache entry when the cache entry was established is not the current

WO 2015/160493 PCT/US2015/023269

invalidate interval state when the valid indicator for an accessed cache entry indicates a
valid state, this is an indication that a bit flip(s) has occurred in the valid indicator
associated with the cache entry following an invalidate operation. This is because the
valid indicator for the accessed cache entry should indicate an invalid state, as opposed
to a valid state, following the invalidate operation, because the invalidate operation
forced the valid indicator to an invalid state. Thus, in this example, the cache memory
error detection circuit is configured to cause a cache miss (as opposed to a cache hit) or
an error indication to be generated when a bit flip(s) is detected in a valid indicator
associated with an accessed cache entry following the detected invalidate operation in
order to avoid using data stored in a data array corresponding to the cache entry.

[0011] Because the invalidate interval state was stored or encoded in the cache entry
in the cache memory when the cache entry was established, the cache memory error
detection circuit can detect a bit flip(s) in valid indicators in the cache memory without
protecting the valid indicators with radiation hardening, or including the valid indicators
in a parity for the cache entry. If the valid indicators were included in the parity for the
cache entry to detect valid indicator bit flips, the parity of each cache entry would have
to be recalculated on a cache memory flash invalidate operation in addition to forcing
the valid indicators to an invalid state, thus substantially increasing latency and energy
of the flash invalidate operation. However, if the invalidate interval state is stored in
each cache entry upon establishment, additional bits must be included for each cache
entry in the cache memory. However, in other aspects disclosed herein, to avoid the
need to include this additional storage in each cache entry in the cache memory to store
the invalidate interval state when the cache entry is established, the invalidate interval
state could alternatively be encoded with an existing cache entry parity stored in the
cache entry. Thus in this latter example, only the overhead of the invalidate interval
indicator and logic to encode and check the current invalidate interval state in the parity
for the cache entry on cache entry establishment and access, respectively, would be
required in the cache memory.

[0012] In this regard in one aspect, a cache memory error detection circuit for
detecting bit flips in a valid indicator in cache memory is provided. The cache memory
error detection circuit comprises at least one invalidate interval indicator configured to
advance an invalidate interval state (e.g., increment a counter) based on an invalidate

operation performed in a cache memory. The cache memory error detection circuit

WO 2015/160493 PCT/US2015/023269

further comprises a redundant information indicator generation circuit configured to
generate a redundant information indicator for each of an at least one cache entry based
on the invalidate interval state, in response to establishment of the at least one cache
entry in the cache memory. The cache memory error detection circuit also comprises at
least one redundant information indicator validation circuit. The redundant information
indicator validation circuit, in response to a valid indicator for an accessed cache entry
in the cache memory indicating a valid state, is configured to receive the redundant
information indicator for the accessed cache entry in the cache memory. The redundant
information indicator validation circuit is also configured to receive the invalidate
interval state from the at least one invalidate interval indicator and generate a current
redundant information indicator based on the invalidate interval state. The redundant
information indicator validation circuit is further configured to compare the redundant
information indicator for the accessed cache entry to the current redundant information
indicator and generate a cache entry error indicator. The cache entry error indicator can
indicate if a bit flip occurred in the accessed cache entry based on the comparison of the
redundant information indicator and the current redundant information indicator.

[0013] In another aspect, a cache memory error detection circuit for detecting bit
flips in a valid indicator in cache memory is provided. The cache memory error
detection circuit comprises a means for advancing an invalidate interval state based on
an invalidate operation performed on a cache memory. The cache memory error
detection circuit further comprises a means for generating a redundant information
indicator for each of an at least one cache entry in the cache memory based on the
invalidate interval state, in response to establishment of the at least one cache entry.
The cache memory error detection circuit also comprises a means for, in response to a
valid indicator for an accessed cache entry in the cache memory indicating a valid state,
receiving the redundant information indicator for the accessed cache entry in the cache
memory, receiving the invalidate interval state, generating a current redundant
information indicator based on the invalidate interval state, and comparing the
redundant information indicator for the accessed cache entry to the current redundant
information indicator and generating a cache entry error indicator. The cache entry
error indicator can indicate if a bit flip occurred in the accessed cache entry based on the
comparison of the redundant information indicator and the current redundant

information indicator.

WO 2015/160493 PCT/US2015/023269

[0014] In another aspect, a method of detecting cache memory errors from bit flips in
a valid indicator in cache memory following invalidate operations is provided. The
method comprises advancing an invalidate interval state of at least one invalidate
interval indicator based on an invalidate operation performed on a cache memory and
generating a redundant information indicator for each of an at least one cache entry in
the cache memory, in response to establishing the at least one cache entry. The method
further comprises receiving the redundant information indicator for an accessed cache
entry in the cache memory and receiving the invalidate interval state from the at least
one invalidate interval indicator. The method also comprises generating a current
redundant information indicator based on the invalidate interval state, comparing the
redundant information indicator for the accessed cache entry to the current redundant
information indicator, and generating a cache entry error indicator. The method can
also comprise generating a cache entry error indicator indicating if a bit flip occurred in
the accessed cache entry based on the comparing of the redundant information indicator
and the current redundant information indicator.

[0015] In another aspect, a non-transitory computer-readable medium having stored
thereon computer executable instructions to cause a processor-based cache memory
error detection circuit to detect bit flips in a valid indicator in cache memory is
provided. The non-transitory computer-readable medium having stored thereon
computer executable instructions causes the processor-based cache memory error
detection circuit to advance an invalidate interval state of at least one invalidate interval
indicator based on an invalidate operation performed on a cache memory, generate a
redundant information indicator for each of an at least one cache entry in the cache
memory, in response to establishing the at least one cache entry, receive the redundant
information indicator for an accessed cache entry in the cache memory, receive the
invalidate interval state from the at least one invalidate interval indicator, generate a
current redundant information indicator based on the invalidate interval state, and
compare the redundant information indicator for the accessed cache entry to the current

redundant information indicator.

BRIEF DESCRIPTION OF THE FIGURES

[0016] Figure 1 is a schematic diagram of an exemplary cache memory error

detection circuit provided in cache memory, wherein the cache memory error detection

WO 2015/160493 PCT/US2015/023269

circuit is configured to detect bit flips in valid indicators in the cache memory following
invalidate operations performed on the cache memory;

[0017] Figure 2 is a table illustrating a series of exemplary cache entry events in the
cache memory in Figure 1, which exemplifies the occurrence of a bit flip in a valid
indicator for a cache entry after an invalidate operation is performed on the cache
memory, and the ability of the cache memory error detection circuit in Figure 1 to detect
the bit flip of the valid indicator using an encoded redundant information indicator;
[0018] Figure 3 is a flowchart illustrating an exemplary process for advancing an
invalidate interval state in an invalidate interval indicator of the cache memory error
detection circuit in Figure 1 for each invalidate operation performed on the cache
memory;

[0019] Figure 4 is a flowchart illustrating an exemplary process of a redundant
information indicator generation circuit in the cache memory error detection circuit in
Figure 1 receiving a current invalidate interval state from an invalidate interval indicator
to be used to encode a redundant information indicator in a cache entry upon
establishment in the cache memory;

[0020] Figure 5 is a flowchart illustrating an exemplary process of a redundant
information indicator validation circuit in the cache memory error detection circuit in
Figure 1 detecting if a bit flip has occurred in a valid indicator of an accessed cache
entry in the cache memory based on the redundant information indicator encoded with
the accessed cache entry during establishment of the accessed cache entry and the
current invalidate interval state in the invalidate interval indicator;

[0021] Figure 6 is a schematic diagram of another exemplary cache memory error
detection circuit provided in cache memory, wherein the cache memory error detection
circuit is configured to detect bit flips in valid indicators in the cache memory following
invalidate operations performed on the cache memory, wherein an invalidate interval
indicator is encoded in an error detecting code (e.g., parity) corresponding to an
accessed cache entry;

[0022] Figure 7 is a table illustrating a series of exemplary cache entry events in the
cache memory in Figure 6, which exemplify the occurrence of a bit flip in the valid
indicator for a cache entry after an invalidate operation is performed on the cache

memory, and the ability of the cache memory error detection circuit in Figure 6 to detect

WO 2015/160493 PCT/US2015/023269

the bit flip of the valid indicator using an encoded redundant information indicator as
part of an error detecting code of the accessed cache entry;

[0023] Figure 8 is a schematic diagram of an exemplary redundant information
indicator validation circuit that can be provided in the cache memory error detection
circuit in Figure 6, wherein the redundant information indicator validation circuit is
configured to detect a bit flip in the valid indicator of an accessed cache entry based on
an associated redundant information indicator encoded with the invalidate interval state
from the invalidate interval indicator upon establishment of the cache entry in the cache
memory;

[0024] Figure 9 is a schematic diagram of an exemplary redundant information
indicator generation circuit that can be provided in the cache memory error detection
circuit in Figure 6, wherein the redundant information indicator generation circuit is
configured to generate the redundant information indicator based on an encoded error
detecting code corresponding to the accessed cache entry to be established and the
invalidate interval state from the invalidate interval indicator at establishment of the
accessed cache entry;

[0025] Figure 10 is a flowchart illustrating an exemplary process of the redundant
information indicator generation circuit in Figure 9 receiving a current invalidate
interval state from the invalidate interval indicator to be encoded as part of an error
detecting code of an established cache entry in the cache memory;

[0026] Figure 11 is a flowchart illustrating an exemplary process of the redundant
information indicator validation circuit in Figure 8 detecting if a bit flip has occurred in
a valid indicator of the accessed cache entry in the cache memory based on the
redundant information indicator encoded with the invalidate interval state of an
established cache entry and the current invalidate interval state in the invalidate interval
indicator; and

[0027] Figure 12 is a block diagram of an exemplary processor-based system that can
include cache memory that includes any cache memory error detection circuit
configured to detect bit flips in valid indicators in the cache memory following

invalidate operations performed on cache entries of the cache memory.

WO 2015/160493 PCT/US2015/023269

10

DETAILED DESCRIPTION

[0028] Aspects disclosed herein include cache memory error detection circuits for

detecting bit flips in valid indicators (e.g., valid bits) in cache memory following
invalidate operations. Related methods and processor-based systems are also
disclosed. If a cache hit results from access to a cache entry (e.g., a tag) following an
invalidate operation, but before the cache entry is re-established, a bit flip(s) has
occurred in the valid indicator associated with the cache entry. This is because the valid
indicator should indicate an invalid state (for a cache miss) as opposed to a valid state
(for a cache hit) following the invalidate operation and prior to re-establishment of the
cache entry. Thus, in aspects disclosed herein, when a valid indicator indicates a valid
state for an accessed cache entry in cache memory, a cache memory error detection
circuit is configured to determine if an invalidate operation was performed on the cache
entry prior to re-establishment of the cache entry. If an invalidate operation was
performed on the cache entry, a bit flip has occurred in the valid indicator because the
valid indicator should indicate an invalid state, causing a cache miss to be generated or
error to be indicated. The valid indicator should indicate an invalid state, because the
valid indicator is set to an invalid state following an invalidate operation. The cache
memory error detection circuit can cause a cache miss to be generated or an error to be
indicated for the accessed cache entry as a result, even though the valid indicator for the
cache entry indicates a valid state due to the bit flip(s).

[0029] In this regard, Figure 1 is a schematic diagram of an exemplary cache
memory error detection circuit 10 provided in a cache memory 12. The cache memory
12 comprises a tag array 14 and a data array 16. The cache memory 12 can establish
cache entries 18(0)-18(N) in the tag array 14 and the data array 16, wherein ‘N+1" is the
number of cache entries 18 in the cache memory 12. The cache entries 18(0)-18(N) are
established by storing an associated tag 20(0)-20(N) in the tag array 14. Establishment
of the cache entries 18(0)-18(N) also comprises storing corresponding data entries
22(0)-22(N) in the data array 16. The data entries 22(0)-22(N) may correspond to data
stored in higher level memory, such as higher level cache memory or main memory.
Upon establishment of a cache entry 18(0)-18(N), a valid indicator 24(0)-24(N)
associated with each cache entry 18(0)-18(N) is set to a valid state (e.g., storing a
logical high “17) indicating a validity of the cache entry 18(0)-18(N). If a cache entry
18(0)-18(N) is no longer valid, the corresponding valid indicator 24(0)-24(N) for the

WO 2015/160493 PCT/US2015/023269

11

cache entry 18(0)-18(N) that is no longer valid can be changed to an invalid state (e.g.,
storing a logical low “0”) to invalidate the cache entry 18(0)-18(N). The valid indicator
24(0)-24(N) can be used to determine whether a cache miss or other error should be
generated for a respective cache entry 18(0)-18(N).

[0030] In continuing reference to Figure 1, when it is desired to invalidate a cache
entry 18 in the cache entries 18(0)-18(N), an invalidate operation can be performed on
the cache entry 18 to be invalidated. One cache entry 18 can be invalidated in an
invalidate operation, or an entire cache memory 12 or multiple cache entries 18(0)-
18(N) thereof can be invalidated as part of a flash invalidate operation performed on the
cache memory 12. An invalidate operation performed on one or more of the cache
entries 18(0)-18(N) in the cache memory 12 in Figure 1 is initiated upon receipt of an
invalidate enable signal 26 received on an invalidate enable input 28. In response, the
cache memory 12 sets the valid indicator 24(0)-24(N) associated with the invalidated
cache entry 18(0)-18(N) to an invalid state. If a flash invalidate operation is performed
on the cache memory 12 to invalidate all cache entries 18(0)-18(N), the cache memory
12 sets the state of all valid indicators 24(0)-24(N) corresponding to all cache entries
18(0)-18(N) to an invalid state.

[0031] With continuing reference to Figure 1, if a valid indicator 24(0)-24(N) for a
cache entry 18(0)-18(N) indicates a valid state following an invalidate operation, but
prior to re-establishment of the cache entry 18(0)-18(N), it is known that a bit flip(s) has
occurred in the valid indicator 24(0)-24(N) associated with the cache entry 18(0)-
18(N). This is because the valid indicator 24(0)-24(N) should indicate an invalid state
(for a cache miss) as opposed to a valid state (for a cache hit) following the invalidate
operation prior to re-establishment of the cache entry 18(0)-18(N). Thus, when the
valid indicator 24(0)-24(N) indicates a valid state for the accessed cache entry 18(0)-
18(N) in the cache memory 12, as will be discussed in more detail below, a redundant
information indicator validation circuit 30 provided in the cache memory error detection
circuit 10 can determine if an invalidate operation was performed on the cache entry
18(0)-18(N) prior to re-establishment of the cache entry 18(0)-18(N). If an invalidate
operation was performed on the cache entry 18(0)-18(N) prior to re-establishment of the
cache entry 18(0)-18(N), the cache memory error detection circuit 10 in Figure 1 can

cause a cache miss to be generated or generate an error for the accessed cache entry

WO 2015/160493 PCT/US2015/023269

12

18(0)-18(N), even though the valid indicator 24(0)-24(N) for the cache entry 18(0)-
18(N) indicates a valid state due to the bit flip(s) in the valid indicator 24(0)-24(N).
[0032] With continuing reference to Figure 1, a cache entry error indicator 34 is
provided on a cache entry error indicator line 32 to indicate if the accessed cache entry
18(0)-18(N) has incurred an error, such as a bit flip having occurred. As one example
shown in Figure 1, the cache entry error indicator 34 may be combined with other
optional inputs 36 indicating cache memory errors (e.g., parity errors) as inputs to a
cache hit/miss indicator circuit 38 to generate a cache hit/miss indicator 40 on a cache
hit/miss indicator line 42 as a non-limiting example. As another example, the cache
entry error indicator 34 could be provided to indicate an error in the valid indicator
24(0)-24(N) for the accessed cache entry 18(0)-18(N) separately from cache error
generation and/or reporting. As yet another example, the cache entry error indicator 34
may be used to generate a forward error recovery using error correction codes (ECC) or
a backward error recovery by resetting to a desired checkpoint.

[0033] Before discussing further exemplary details of the cache memory error
detection circuit 10 in Figure 1, Figure 2 is first described herein to explain how the
cache memory error detection circuit 10 in Figure 1 can detect bit flips in the valid
indicators 24(0)-24(N) following invalidate operations. In this regard, Figure 2
illustrates a table 44 illustrating a series of exemplary events performed for a cache
entry 18(0) in the cache memory 12 in Figure 1. However, it should be noted that this
example also applies to accessing cache entries 18(1)-18(N). The table 44 exemplifies
the occurrence of a bit flip in the valid indicator 24(0) for the cache entry 18(0)
following an invalidate operation, and the ability of the cache memory error detection
circuit 10 in Figure 1 to detect the bit flip.

[0034] In this regard, taking cache entry 18(0) in the cache memory 12 in Figure 1 as
an example, the cache entry 18(0) is shown as being established in the cache memory 12
by an establish event 52 in Figure 2. The valid indicator 24(0) is set to a valid state
(e.g., “1”) during establishment of the cache entry 18(0). A current invalidate interval
state in the form of an invalidate interval count 48 (e.g., “10”) in this example is used as
a redundant information indicator 46(0), which is stored in the cache entry 18(0) upon
establishment. Thus, in this embodiment, the redundant information indicator 46(0)
contains the actual, unencoded form of the invalidate interval count 48. The cache

memory error detection circuit 10 detects the bit flip using the redundant information

WO 2015/160493 PCT/US2015/023269

13

indicator 46(0)-46(N) corresponding to each cache entry 18(0)-18(N) and a current
invalidate interval count 48 provided by an invalidate interval indicator in the form of
an invalidate interval counter 50 in this example in the cache memory error detection
circuit 10 in Figure 1. The tag 20(0) is also established for the cache entry 18(0). Note
that the invalidate interval indicator could be provided in other forms other than a
counter to store any type of indicator desired without limitation, such as different states
or other statuses as the invalidate interval state.

[0035] Next, with continuing reference to Figure 2, an invalidate operation 54 is
performed on the cache entry 18(0). The invalidate operation 54 sets the validity state
of the valid indicator 24(0) for the cache entry 18(0) to an invalid state (e.g., “0”) to
invalidate the cache entry 18(0), as discussed above. The current invalidate interval
count 48 is also advanced by being incremented in this example to record the invalidate
operation 54. Note that while the current invalidate interval count 48 has been
incremented, the redundant information indicator 46(0) in the cache entry 18(0) remains
the same. This information is later used, as described below, to determine that the
invalidate operation 54 occurred after the prior establish event 52 for the cache entry
18(0).

[0036] With continuing reference to Figure 2, it is next assumed for illustration
purposes that a radiation event 56 occurs that causes a bit flip to occur in the valid
indicator 24(0) in this example (e.g., bit flip from “0” to “1”). However, as discussed
above, the redundant information indicator 46(0) in the cache entry 18(0) is not equal to
the current invalidate interval count 48, meaning that the invalidate operation 54
occurred where the valid indicator 24(0) is expected to contain an invalid state (e.g.,
‘0’). Thus, when the cache entry 18(0) is subsequently accessed in an access event 58
before being re-established, the valid indicator 24(0) for the cache entry 18(0) indicates
a valid state. However, as stated above, the cache entry 18(0) is not actually valid due
to the previous invalidate operation 54. Because the current invalidate interval count 48
was incremented as a result of the invalidate operation 54, the current invalidate interval
count 48 will not match the redundant information indicator 46(0) that was stored in the
cache entry 18(0) when the cache entry 18(0) was established. Thus, the cache memory
error detection circuit 10 can be configured to determine this mismatch as a method to
detect that a bit flip occurred in the valid indicator 24(0) following the invalidate

operation 54. As will be discussed in more detail below, the cache memory error

WO 2015/160493 PCT/US2015/023269

14

detection circuit 10 can cause the access event 58 to the cache entry 18(0) to generate a
cache miss or generate an error even though the valid indicator 24(0) indicates a valid
state due to the bit flip to prevent a false cache hit from being generated.

[0037] In this regard, more exemplary detail of the cache memory error detection
circuit 10 in Figure 1 will now be discussed. In this regard, the redundant information
indicator validation circuit 30 in the cache memory error detection circuit 10 in Figure 1
determines when an invalidate operation (not shown) has occurred prior to re-
establishment of the cache entry 18(0)-18(N), based on the invalidate interval counter
50. The invalidate interval counter 50 increments an invalidate interval count 48 for
each invalidate operation performed on a cache entry 18(0)-18(N) in the cache memory
12 in this example. The invalidate interval count 48 is stored in the cache entry 18(0)-
18(N) by a redundant information indicator generation circuit 60 as a redundant
information indicator 46(0)-46(N) when the cache entry 18(0)-18(N) is established in
the cache memory 12.

[0038] The invalidate interval counter 50 may be configured to increment the
invalidate interval count 48 by one (1), or it may be desired to increment the invalidate
interval count 48 by values other than one (1). The invalidate interval counter 50 may
be configured to increment the invalidate interval count 48 over a range of invalidate
interval count values based on the number of bits used by the invalidate interval counter
50. For example, if two (2) bits are used by the invalidate interval counter 50, there will
be four (4) possible values for the invalidate interval count 48 (e.g., “007, “017, “107,
and “117); as described in Figure 2, three (3) bits will provide for a range of eight (8)
values. It may also be possible to configure the range of invalidate interval count values
for the invalidate interval count 48 or even disable the invalidate interval counter 50
based on an invalidate interval configuration setting 62. The invalidate interval count
48 is provided by the invalidate interval counter 50 to the redundant information
indicator generation circuit 60 and also to the redundant information indicator validation
circuit 30.

[0039] With continuing reference to Figure 1, if the valid indicator 24(0)-24(N) for a
subsequently accessed cache entry 18(0)-18(N) indicates a valid state, the redundant
information indicator validation circuit 30 in the cache memory error detection circuit
10 confirms if an invalidate operation has occurred since the last establishment of the

accessed cache entry 18(0)-18(N). The redundant information indicator validation

WO 2015/160493 PCT/US2015/023269

15

circuit 30 confirms if an invalidate operation has occurred based on the current
invalidate interval count 48 and the invalidate interval count stored in the cache entry
18(0)-18(N) as the redundant information indicator 46(0)-46(N) when the cache entry
18(0)-18(N) was established. If the invalidate interval count stored in the cache entry
18(0)-18(N) when the cache entry 18(0)-18(N) was established does not match the
current invalidate interval count 48 associated when the valid indicator 24(0)-24(N) for
an accessed cache entry 18(0)-18(N), this results in a mismatch. This mismatch is an
indication that a bit flip(s) has occurred in the valid indicator 24(0)-24(N) associated
with the cache entry 18(0)-18(N) following an invalidate operation. This is because the
valid indicator 24(0)-24(N) for the accessed cache entry 18(0)-18(N) should indicate an
invalid state, as opposed to a valid state, following the invalidate operation, because the
invalidate operation forced the valid indicator 24(0)-24(N) to an invalid state.

[0040] Thus, in this example in Figure 1, the redundant information indicator
validation circuit 30 in the cache memory error detection circuit 10 is configured to
cause a cache miss (as opposed to a cache hit) to be generated or generate an error when
a bit flip(s) is detected in a valid indicator 24(0)-24(N) associated with an accessed
cache entry 18(0)-18(N). The current invalidate interval count 48 provided by the
invalidate interval counter 50 not matching the redundant information indicator 46(0)-
46(N) associated with the cache entry 18(0)-18(IN) is an indication that a bit flip(s) has
occurred in the valid indicator 24(0)-24(N) following the invalidate operation. The
cache miss or other error is generated when a bit flip(s) is detected following the
detected invalidate operation to avoid using the data entry 22(0)-22(N) stored in the data
array 16 corresponding to the cache entry 18(0)-18(N). If the incorrect valid indicator
24(0)-24(N) state had not been detected for the accessed cache entry 18(0)-18(N), the
cache memory 12 would have generated a false cache hit, as opposed to a true cache
miss.

[0041] In this regard, Figure 3 is a flowchart illustrating an exemplary process for
incrementing the invalidate interval count 48 in the invalidate interval counter 50 of the
cache memory error detection circuit 10 in Figure 1 for each invalidate operation (not
shown) performed on the cache entry 18(0)-18(N) in the cache memory 12. With
reference to Figures 1 and 3, the invalidate interval counter 50 receives the invalidate
enable signal 26 (block 64). The invalidate interval counter 50 then increments the

invalidate interval count 48 based on receiving the invalidate enable signal 26 (block

WO 2015/160493 PCT/US2015/023269

16

66). The invalidate interval counter 50 may increment the invalidate interval count 48
by a configurable increment amount set by the invalidate interval configuration setting
62. The invalidate interval counter 50 may also be disabled or set to a fixed invalidate
interval count 48 value based on the invalidate interval configuration setting 62.

[0042] In this regard, Figure 4 is a flowchart illustrating an exemplary process of the
redundant information indicator generation circuit 60 in the cache memory error
detection circuit 10 in Figure 1 receiving the current invalidate interval count 48 from
the invalidate interval counter 50 to store a redundant information indicator 46(0)-46(N)
in a cache entry 18(0)-18(N) upon establishment. With reference to Figures 1 and 4, the
redundant information indicator generation circuit 60 is configured to receive the tag
20(0)-20(N) provided in the cache entry 18(0)-18(N) to be established (block 68). The
redundant information indicator generation circuit 60 is also configured to receive the
current invalidate interval count 48 provided by the invalidate interval counter 50 (block
70). The redundant information indicator generation circuit 60 stores the current
invalidate interval count 48 received from the invalidate interval counter 50 in the cache
entry 18(0)-18(N) being established (block 72). In this example, the redundant
information indicator 46(0)-46(N) is the current invalidate interval count 48 and is
stored in the cache entry 18(0)-18(N) as the redundant information indicator 46(0)-
46(N). The redundant information indicator 46(0)-46(N) will be used by the redundant
information indicator validation circuit 30 of the cache memory error detection circuit
10 to validate the valid indicator 24(0)-24(N) associated with the cache entry 18(0)-
18(N).

[0043] In this regard, Figure 5 is a flowchart illustrating an exemplary process of the
redundant information indicator validation circuit 30 in the cache memory error
detection circuit 10 in Figure 1 detecting if a bit flip has occurred in a valid indicator
24(0)-24(N) of an accessed cache entry 18(0)-18(N) in the cache memory 12. Detecting
if a bit flip has occurred is based on comparing the redundant information indicator
46(0)-46(N) associated with the cache entry 18(0)-18(N) during establishment of the
cache entry 18(0)-18(N) and the current invalidate interval count 48 in the invalidate
interval counter 50. With reference to Figures 1 and 5, the redundant information
indicator validation circuit 30 validates the valid indicator 24(0)-24(N) corresponding to
the cache entry 18(0)-18(N) being accessed based on the redundant information

indicator 46(0)-46(N) stored in the cache entry 18(0)-18(N). The redundant information

WO 2015/160493 PCT/US2015/023269

17

indicator validation circuit 30 receives the redundant information indicator 46(0)-46(N)
for the accessed cache entry 18(0)-18(IN) in response to the valid indicator 24(0)-24(N)
for an accessed cache entry 18(0)-18(N) indicating a valid state (block 74). The
redundant information indicator validation circuit 30 also receives the current invalidate
interval count 48 from the invalidate interval counter 50 (block 76). The redundant
information indicator validation circuit 30 compares the redundant information indicator
46(0)-46(N) associated with the accessed cache entry 18(0)-18(N) to the current
invalidate interval count 48 (block 78). If the current invalidate interval count 48 does
not match the invalidate interval count stored in the redundant information indicator
46(0)-46(N) at the time when the valid indicator 24(0)-24(N) for an accessed cache
entry 18(0)-18(N) indicated a valid state, this is an indication that a bit flip(s) has
occurred in the valid indicator 24(0)-24(N) associated with the cache entry 18(0)-18(N)
following an invalidate operation. This is because the valid indicator 24(0)-24(N) for
the accessed cache entry 18(0)-18(N) should indicate an invalid state, as opposed to a
valid state, following the invalidate operation because the invalidate operation forces the
valid indicator 24(0)-24(N) to an invalid state. A match will indicate that both
establishment of the cache entry 18(0)-18(IN) and access of the established cache entry
18(0)-18(N) have occurred in the same invalidate interval. The cache entry error
indicator 34 indicates whether a bit flip has occurred in the valid indicator 24(0)-24(N)
for the accessed cache entry 18(0)-18(N) in this aspect based on comparing of the
redundant information indicator 46(0)-46(IN) and the current invalidate interval count 48
(block 80).

[0044] The cache memory error detection circuit 10 in Figure 1 can detect a bit
flip(s) in the valid indicators 24(0)-24(N) in the cache memory 12 without protecting the
valid indicators 24(0)-24(N) with radiation hardening, or including the valid indicators
24(0)-24(N) in an error detecting code, such as a parity, for the cache entry 18(0)-
18(N). The cache memory error detection circuit 10 can detect a bit flip(s) by the
invalidate interval count 48 being stored in the cache entry 18(0)-18(N) in the cache
memory 12 when the cache entry 18(0)-18(N) is established. If the valid indicator
24(0)-24(N) was included in an error detecting code for the cache entry 18(0)-18(N), the
error detecting code of each invalidated cache entry 18(0)-18(N) would have to be
recalculated on a cache memory flash invalidate operation in addition to forcing the

valid indicators 24(0)-24(N) to an invalid state, thus increasing latency of the flash

WO 2015/160493 PCT/US2015/023269

18

invalidate operation. However, if the invalidate interval count 48 is stored in each cache
entry 18(0)-18(N) upon establishment, additional bits must be included for each cache
entry 18(0)-18(N) in the cache memory 12. To avoid the need to provide additional bits
in each cache entry 18(0)-18(N) in the cache memory 12 to store the invalidate interval
count 48 when the cache entry 18(0)-18(N) is established, the invalidate interval count
48 could alternatively be encoded with an existing cache entry error detecting code
(e.g., parity) stored in the cache entry 18(0)-18(N).

[0045] In this regard to Figure 6, a schematic diagram of an exemplary cache
memory error detection circuit 10(1) providing cache entry error detection similar to
Figure 1 is provided. The cache memory error detection circuit 10(1) in Figure 6
includes some common elements with the cache memory error detection circuit 10
Figure 1, which share common element numbers. Thus, these common elements will
not be re-described here. The cache memory error detection circuit 10(1) in Figure 6
also provides a function of detecting a bit flip(s) in the cache entry 18(0)-18(N). The
cache memory error detection circuit 10(1) is comprised of at least one invalidate
interval counter 50(0)-50(M), previously described in Figure 1. The cache memory
error detection circuit 10(1) provides the invalidate interval count 48(0)-48(M) to both a
redundant information indicator generation circuit 60(1) and also to a redundant
information indicator validation circuit 30(1).

[0046] With continuing reference to Figure 6, a plurality of invalidate interval
counters 50(0)-50(M) may be provided that include associated invalidate interval counts
48(0)-48(M) to facilitate tracking selective invalidate operations. A selective invalidate
operation is an invalidate operation performed on only a portion of the cache entries
18(0)-18(N), which may or may not be contiguous, in the cache memory 12(1), as
opposed to a flash invalidate operation performed on all or a subset of all the cache
entries 18(0)-18(N) in the cache memory 12(1). A selective invalidate operation allows
for a subset of the cache entries 18(0)-18(N), which may or may not be contiguous, to
be associated with a particular invalidate interval counter 50(0)-50(M) and the
corresponding invalidate interval count 48(0)-48(M). A selective invalidate operation
may be determined based on, but not limited to, privilege, security, exception level,
different modes of operation, type of entries, etc. In this manner, the cache memory

error detection circuit 10(1) in Figure 6 may be configured to increment the invalidate

WO 2015/160493 PCT/US2015/023269

19

interval count 48(0)-48(M) associated with only a portion of the cache entries 18(0)-
18(N) in response to the invalidate enable signal 26.

[0047] With continued reference to Figure 6, the cache memory 12(1) includes a
plurality of data arrays 16(0)-16(X) in this example, wherein the number of data arrays
16 is equal to “X+1.” Fach of the plurality of data arrays 16(0)-16(X) is associated with
the invalidate interval counters 50(0)-50(M). The data arrays 16(0)-16(X) also share
common invalidate interval counters 50(0)-50(M) if the plurality of data arrays 16(0)-
16(X) are using a common list of events that invalidate operations may be based on,
such as, privilege, security, exception level, different modes of operation, type of
entries, etc. A plurality of cache memories (not shown) may each provide the redundant
information indicator generation circuit 60(1) and the redundant information indicator
validation circuit 30(1). For example, a plurality of cache levels provided by the
plurality of cache memories (not shown) may invalidate together, thus eliminating the
need for an invalidate interval counter 50(0)-50(M) for each cache memory 12(1) or
each level of the cache memory 12(1).

[0048] With continued reference to Figure 6, the redundant information indicator
generation circuit 60(1) receives the current invalidate interval count 48(0)-48(M)
provided by the invalidate interval counter 50(0)-50(M) associated with the cache entry
18(0)-18(N) being accessed. In addition, the redundant information indicator generation
circuit 60(1) receives an error detecting code 81 in the form of a tag parity 82, as a non-
limiting example, as a second input provided by a tag error detecting code generation
circuit 84. The tag error detecting code generation circuit 84 generates the tag parity 82
based on the tag 20(0)-20(N) received in the cache entry 18(0)-18(N). The tag parity 82
is used for error checking purposes allowing the cache memory 12(1) to detect if the tag
20(0)-20(N) has been corrupted or has otherwise changed unexpectedly. In this
example, the redundant information indicator generation circuit 60(1) receives the tag
parity 82 and encodes the received invalidate interval count 48(0)-48(M) to provide an
encoded version of the received invalidate interval count 48(0)-48(M) as part of the tag
parity 82. As a result of this encoding, the redundant information indicator generation
circuit 60(1) outputs an encoded version of the redundant information indicator
46°(1)(0)-46’(1)(N) to be stored corresponding to the cache entry 18(0)-18(N) to be
established.

WO 2015/160493 PCT/US2015/023269

20

[0049] Encoding the invalidate interval count 48(0)-48(M) in the tag parity 82 allows
for the benefit of encoding the invalidate interval count 48(0)-48(M) without the need
for additional bits for parity storage. This form of encoding also provides the benefit of
combining the valid indicator 24(0)-24(N) and tag 20(0)-20(N) error detecting code
(e.g., parity) checks into a single operation in the redundant information indicator
validation circuit 30(1). The stored encoded redundant information indicator 46°(1)(0)-
46°(1)(N) is then used to validate the valid indicator 24(0)-24(N) corresponding to the
cache entry 18(0)-18(N) subsequently accessed. However, as discussed in more detail
below, if a bit flip is detected in the cache entry 18(0)-18(N) in the cache memory 12(1)
in Figure 6, the bit flip may have occurred anywhere in the cache entry 18(0)-18(N), as
opposed to only in the valid indicator 24(0)-24(N).To further explain the cache memory
12(1) in Figure 6, Figure 7 provides a table 86 illustrating a series of exemplary cache
entry 18(0) events in the cache memory 12(1) in Figure 6. As an example, the table 86
exemplifies the occurrence of a bit flip in the valid indicator 24(0) after an invalidate
operation and the ability to detect a bit flip in the cache entry 18(0)-18(N) using the
encoded redundant information indicator 46°(1)(0) and the current invalidate interval
count 48(0). With reference to Figure 7, the illustrated exemplary events are comprised
of a series of cache entry 18(0) events. The cache entry 18(0) is initially established in
an establish event 90. Upon the cache entry 18(0) establish event 90, the tag 20(0) is
stored in the tag array 14. In addition, the valid indicator 24(0) is set to a valid state
(e.g., logical high or “1”) by the cache memory 12(1). The redundant information
indicator 46(1)(0) in this example is encoded by the redundant information indicator
generation circuit 60(1) with the current invalidate interval count 48(0) (e.g., “10”) to
provide the encoded redundant information indicator 46°(1)(0) stored in the cache entry
18(0) in the tag array 14. In this example, the redundant information indicator
generation circuit 60(1) encodes the current invalidate interval count 48(0) (e.g., “107)
with the tag 20(0) (e.g., “0111”) using an “exclusive or” function, resulting in a value of
“00” stored corresponding to the cache entry 18(0). At some point in time, an invalidate
operation 92, indicated by the received invalidate enable signal 26 (not shown),
invalidates at least one cache entry 18(0). When the invalidate operation 92 occurs, the
cache memory 12(1) will set the valid indicator 24(0) to an invalid state (e.g., logical
low or “0”). In addition, in response to receiving the invalidate enable signal 26

indicating the invalidate operation 92, the current invalidate interval count 48(0) is

WO 2015/160493 PCT/US2015/023269

21

incremented by a configured interval by the invalidate interval counter 50(0) (e.g.,
“11”). However, while the current invalidate interval count 48(0) is incremented, the
stored encoded redundant information indicator 46°(1)(0) with the encoded invalidate
interval count 48(0) remains unchanged.

[0050] With continued reference to Figure 7, the cache memory error detection
circuit 10(1) is configured to detect bit flips in a cache entry 18(0)-18(N) following the
invalidate operation 92. If the valid indicator 24(0) for a subsequently accessed cache
entry 18(0) indicates a valid state, the cache memory error detection circuit 10(1)
confirms that an encoded version of the current invalidate interval count 48(0) provided
by the invalidate interval counter 50(0) matches the redundant information indicator
46(1)(0) when the cache entry 18(0) was established. The current invalidate interval
count 48(0) is encoded in the same manner as was the redundant information indicator
46(1)(0).Thus, the current invalidate interval count 48(0) matching the stored redundant
information indicator 46(1)(0) means the same invalidate interval count 48(0) was used
to establish and access the cache entry 18(0). Thus, the invalidate operation 92 was not
performed prior to the access to the cache entry 18(0). If, however, upon an access
event 96 to the cache entry 18(0), an encoded version of the current invalidate interval
count 48(0) does not match the invalidate interval count 48(0) associated with the cache
entry 18(0), this is an indication that a bit flip(s) has occurred in the accessed cache
entry 18(0) following the invalidate operation 92 even though the valid indicator 24(0)
for the accessed cache entry 18(0) indicates a valid state. In this manner, the cache
memory 12(1) may generate a false cache hit as opposed to a true cache miss.

[0051] Figure 8 provides additional detail of a schematic diagram of an exemplary
redundant information indicator validation circuit 30(1) that can be provided in the
cache memory error detection circuit 10(1) in the cache memory 12(1) in Figure 6 to
detect bit flips in the cache entries 18(0)-18(N). The redundant information indicator
validation circuit 30(1) is configured to detect a bit flip in the cache entry 18(0)-18(N)
based on a stored encoded redundant information indicator 46°(1)(0)-46’(1)(N) encoded
with the invalidate interval count 48(0)-48(M) from the invalidate interval counter
50(0)-50(M) at the time of the cache entry 18(0)-18(N) establishment. Referring to
Figure 8, the redundant information indicator validation circuit 30(1) is configured to
compare the stored encoded redundant information indicator 46’(1)(0)-46°(1)(N) to a

current redundant information indicator 98 to determine the valid indicator 24(0)-24(N)

WO 2015/160493 PCT/US2015/023269

22

as properly valid. The generation of the current redundant information indicator 98 is
discussed below. A redundant information indicator compare circuit 100 is provided to
compare the encoded redundant information indicator 46’(1)(0)-46’(1)(N), encoded at
the time of the cache entry 18(0)-18(N) establishment, to the current redundant
information indicator 98 generated at the time of the cache entry 18(0)-18(N) access.
By comparing the encoded redundant information indicators 46°(1)(0)-46’(1)(N) and the
current redundant information indicator 98, the redundant information indicator
validation circuit 30(1) is able to determine if an invalidate operation has occurred
subsequent to the cache entry 18(0)-18(N) establishment and prior to the cache entry
18(0)-18(N) access. If the encoded redundant information indicators 46°(1)(0)-
46’(1)(N) and the current redundant information indicator 98 are not equal, then this is
an indication that an invalidate operation has occurred following the establishment of
the cache entry 18(0)-18(N) and the associated valid indicator 24(0)-24(N) should be set
to an invalid state.

[0052] With continued reference to Figure 8, the current redundant information
indicator 98 is generated by a second redundant information indicator generation circuit
102 provided in the redundant information indicator validation circuit 30(1). The
second redundant information indicator generation circuit 102 receives a current
generated error detecting code 103 in the form of a tag parity 104 as a non-limiting
example provided by a tag error detecting code circuit 106 in Figure 6. The second
redundant information indicator generation circuit 102 also receives the current
invalidate interval count 48(0)-48(M) provided by the invalidate interval counter 50(0)-
50(M). The invalidate interval count 48(0)-48(M) represents the current invalidate
interval count 48(0)-48(M) at the time of cache entry 18(0)-18(N) access. The current
redundant information indicator 98 is generated by the second redundant information
indicator generation circuit 102 in a similar fashion to the encoded redundant
information indicator 46°(1)(0)-46’(1)(N).

[0053] With continued reference to Figure 8, the second redundant information
indicator generation circuit 102 uses a plurality of logic gates 108 that implement an
OR-based function to generate the current redundant information indicator 98. For
example, the logic gates 108 are XOR gates in this example, but other gates, including
OR-based gates such as OR and/or NOR gates may also be employed as examples. As

a non-limiting example, if the invalidate interval count 48(0)-48(M) is “10” and the tag

WO 2015/160493 PCT/US2015/023269

23

20(0)-20(N) is “0111,” a first parity generation circuit 110 performs an “exclusive or”
function on the odd bits of the combined or concatenated value of “10” + 0111 or
“100111.” The first two (2) bits of the combined or concatenated value “100111” are
the invalidate interval count 48(0)-48(M) and the second four (4) bits are the tag 20(0)-
20(N) in the cache entry 18(0)-18(N). The results of the “exclusive or” function on the
odd bits of the combined or concatenated value “100111” is “0,” which becomes the
first bit of the encoded redundant information indicator 46’(1)(0)-46’(1)(N). In a
second parity generation circuit 112, the even bits of the tag parity 104 and the even bits
of the invalidate interval count 48(0)-48(M) are encoded using the same “exclusive or”
function applied to each of the even bits. The result forms a second bit of the encoded
redundant information indicator 46°(1)(0)-46’(1)(N). The resulting encoded redundant
information indicator 46°(1)(0)-46’(1)(N) becomes the tag parity 104 encoded with the
invalidate interval count 48(0)-48(M) via an applied “exclusive or” function to each of
the odd and even bits. It should be noted that other digital logic functions, besides an
“exclusive or” function, may be used.

[0054] With continued reference to Figures 6 and 8, the redundant information
indicator validation circuit 30(1) may be configured to receive a plurality of bits
representing the tag parity 104, such that tag parity[0] 114 represents the first or least
significant bit and tag parity[Y] 116 represents the last or most significant bit, where
there are Y bits in the tag parity 104. The redundant information indicator validation
circuit 30(1) may also be configured to receive a plurality of bits representing the
invalidate interval count 48(0)-48(M), such that invalidate interval count[0] 118
represents the first or least significant bit and invalidate interval count[Z] 120 represents
the last or most significant bit, where there are 7 bits in the invalidate interval count
48(0)-48(M). The resulting encoded redundant information indicator 46°(1)(0)-
46°(1)(N) is stored in the tag array 14 corresponding to the cache entry 18(0)-18(N).
[0055] Once generated, the current redundant information indicator 98 is compared
to the stored encoded redundant information indicator 46’(1)(0)-46’(1)(N) by the
redundant information indicator compare circuit 100 to determine whether a match
exists. If a match exists, this is an indication that the valid indicator 24(0)-24(N) should
be valid since the cache entry 18(0)-18(N) establishment and the cache entry 18(0)-
18(N) access have occurred in the same invalidate interval as represented by the same

invalidate interval count 48(0)-48(M). As a result of the comparison, the redundant

WO 2015/160493 PCT/US2015/023269

24

information indicator compare circuit 100 generates a cache entry error indicator 122
that signals whether a bit flip(s) has occurred in the cache entry 18(0)-18(N).

[0056] With continued reference to Figure 6, additional detail of a schematic diagram
of an exemplary redundant information indicator generation circuit 60(1) in the cache
memory 12(1) is provided in Figure 9. The redundant information indicator generation
circuit 60(1) is configured to generate the encoded redundant information indicator
46°(1)(0)-46’(1)(N) based on the encoded error detecting code (e.g., parity)
corresponding to the cache entry 18(0)-18(N) to be established and the invalidate
interval count 48(0)-48(M) at the time the cache entry 18(0)-18(N) is established.
Referring to the redundant information indicator generation circuit 60(1) in Figure 9,
one method of encoding the invalidate interval count 48(0)-48(M) with the tag parity 82
to generate the encoded redundant information indicator 46’(1)(0)-46’(1)(N) is
illustrated. In this example, the redundant information indicator generation circuit 60(1)
uses the plurality of logic gates 108 that implement an “exclusive or” function for
encoding the invalidate interval count 48(0)-48(M) in the tag parity 82. The redundant
information indicator generation circuit 60(1) is similar to the redundant information
indicator validation circuit 30(1). The “exclusive or” function can be used to implement
parity generation as an error detecting code in digital circuits. In this example, the
redundant information indicator generation circuit 60(1) will generate the encoded
redundant information indicator 46°(1)(0)-46’(1)(N) based on applying an “exclusive
or” to each of the odd and even bits of the received inputs. In the first parity generation
circuit 110, the odd bits of the tag parity 82 and the odd bits of the invalidate interval
count 48(0)-48(M) are encoded using an “exclusive or” function applied to each of the
odd bits. The result forms a first bit of the encoded redundant information indicator
46°(1)(0)-46’(1)(N).

[0057] With continued reference to Figure 9 in conjunction with Figure 6, as a non-
limiting example, if the invalidate interval count 48(0)-48(M) is “10” and the tag 20(0)-
20(N) is “0111,” the first parity generation circuit 110 performs an “exclusive or”
function on the odd bits of the combined or concatenated value of “10” + 0111 or
“100111.” The first two (2) bits of the combined or concatenated value “100111” are
the invalidate interval count 48(0)-48(M) and the second four (4) bits are the tag 20(0)-
20(N) in the cache entry 18(0)-18(N). The results of the “exclusive or” function on the

odd bits of the combined or concatenated value “100111” is “0,” which becomes the

WO 2015/160493 PCT/US2015/023269

25

first bit of the encoded redundant information indicator 46°(1)(0)-46’(1)(N). In the
second parity generation circuit 112, the even bits of the tag parity 82 and the even bits
of the invalidate interval count 48(0)-48(M) are encoded using the same “exclusive or”
function applied to each of the even bits. The result forms a second bit of the encoded
redundant information indicator 46°(1)(0)-46’(1)(N). The resulting encoded redundant
information indicator 46°(1)(0)-46°(1)(N) becomes the tag parity 82 encoded with the
invalidate interval count 48(0)-48(M) via an applied “exclusive or” function to each of
the odd and even bits. It should be noted that other digital logic functions, besides an
“exclusive or” function, may be used.

[0058] With continued reference to Figures 6 and 9, the redundant information
indicator generation circuit 60(1) may be configured to receive a plurality of bits
representing the tag parity 82, such that tag parity[0] 114 represents the first or least
significant bit and tag parity[Y] 116 represents the last or most significant bit, where
there are Y bits in the tag parity 82. The redundant information indicator generation
circuit 60(1) may also be configured to receive a plurality of bits representing the
invalidate interval count 48(0)-48(M), such that invalidate interval count[0] 118
represents the first or least significant bit and invalidate interval count[Z] 120 represents
the last or most significant bit, where there are 7 bits in the invalidate interval count
48(0)-48(M). The resulting encoded redundant information indicator 46°(1)(0)-
46°(1)(N) is stored in the tag array 14 corresponding to the cache entry 18(0)-18(N).
[0059] With continued reference to Figure 6, the redundant information indicator
validation circuit 30(1) is configured to receive the current invalidate interval count
48(0)-48(M) in response to the cache entry 18(0)-18(N) being accessed. The redundant
information indicator validation circuit 30(1) is also configured to receive the encoded
redundant information indicator 46°(1)(0)-46’(1)(N) stored corresponding to the cache
entry 18(0)-18(N) accessed. Additionally, the redundant information indicator
validation circuit 30(1) is configured to receive a current generated tag parity 104 from
the tag parity circuit 106. The current generated tag parity 104 is generated in a similar
fashion to the tag parity 82 generated from the tag parity generation circuit 84 discussed
above. The tag parity circuit 106 generates the current generated tag parity 104 using
logic gates (not shown) provided in the tag parity circuit 106. However, in this
example, checking the tag parity 104 is not performed in the tag parity circuit 106. In

this example, the tag parity 104 is checked in the redundant information indicator

WO 2015/160493 PCT/US2015/023269

26

validation circuit 30(1). While the tag parity 104 is still checked, it is now performed
on both the tag 20(0)-20(N) and the valid indicator 24(0)-24(N), even though the same
number of bits for the encoded redundant information indicator 46°(1)(0)-46°(1)(N) are
still used. The same number of bits for the encoded redundant information indicator
46°(1)(0)-46’(1)(N) are used as the number that would be used in the scenario where
only the tag parity 104 check for the tag 20(0)-20(N) is performed. In this manner,
encoded redundant information indicator 46’(1)(0)-46’(1)(N) provides error detecting
code (e.g., parity) protection for both the valid indicator 24(0)-24(N) and also the tag
20(0)-20(N). Additionally, the invalidate interval counter 50(0)-50(M) can also be used
by other cache memories (not shown) to track invalidate operations.

[0060] As one non-limiting example, the number of bits provided in each invalidate
interval count 48(0)-48(M) in the cache memory error detection circuit 10(1) in Figure 6
may be provided to be less than or equal to the number of bits in the tag parity §2.
Otherwise, it may not be possible for the redundant information indicator validation
circuit 30(1) in Figure 8 to detect bit flips in all scenarios. For example, assume there
are four (4) counter bits provided in an invalidate interval count 48 and two (2) parity
bits in the current tag parity 104. Also assume counter values of ‘0111° and ‘1000’ as
invalidate interval counts 48. When the even and odd bits of these invalidate interval
counts of ‘0111° and ‘1000’ are considered, both result in the same “even” result of = 1
XOR 1 = 0 XOR 0 = 0 being generated by the redundant information indicator
generation circuit 60(1) in Figure 9. Both also result in the same “odd” result = 0 XOR
1 =1 XOR 0 = 1 being generated by the redundant information indicator generation
circuit 60(1) in Figure 9. Therefore, when the invalidate interval count 48 is
incremented from ‘0111° to ‘1000’ due to an invalidate operation, the redundant
information indicator generation circuit 60(1) encodes the same value in an encoded
redundant information indicator 46’ for both invalidate interval counts of ‘0111’ and
‘1000’ as the new invalidate interval count 48. Thus, it would not be possible in this
example for the redundant information indicator validation circuit 30(1) in Figure 8 to
detect a bit flip after a corresponding invalidate operation that increments the invalidate
interval count 48 from ‘0111 to ‘1000,” since the encoding results of the redundant
information indicator 46 provided by the redundant information indicator generation

circuit 60(1) would be the same in this instance.

WO 2015/160493 PCT/US2015/023269

27

[0061] Note that it is also possible that when establishing the cache entries 18(0)-
18(N), the redundant information indicator 46(1)(0)-46(1)(N) may be encoded with an
invalidate interval count to provide an encoded redundant information indicator 46’
different from the current invalidate interval count 48(0)-48(M). This technique may be
used for other operations performed on the cache memory 12(1) that are not flash
invalidates. For example, it may be desired to target a particular cache entry 18(0)-
18(N) to invalidate. In this example, the valid indicator 24(0)-24(N) for the targeted
cache entry 18(0)-18(N) could be overwritten with an invalid indicator indicating that
the corresponding cache entry 18(0)-18(N) is invalid. The tag parity 82 for the targeted
cache entry 18(0)-18(N) could also be overwritten. In this manner, if the valid indicator
24(0)-24(N) flips back to a valid state, such could be detected. The current invalidate
interval count 48(0)-48(M) would also not be incremented. In this manner, the ability
of the cache memory 12(1) to detect bit flips in other established cache entries 18(0)-
18(N) following invalidate operations is not affected, because the current invalidate
interval count 48(0)-48(M) that was used to encode the tag parity 82 for the other
established cache entries 18(0)-18(N) is not altered.

[0062] In this example, an invalidate interval count different from the current
invalidate interval count 48(0)-48(M) could be used to encode the redundant
information indicator 46(1)(0)-46(1)(N) corresponding to the targeted cache entry
18(0)-18(N) to provide the encoded redundant information indicator 46’(1)(0)-
46’(1)(N). For example, an invalidate interval count that is outside of the range of
configured count values for the current invalidate interval count 48 may be used to
provide the encoded redundant information indicator 46°(1)(0)-46’(1)(N) corresponding
to the targeted cache entry 18(0)-18(N). Otherwise, if the invalidate operation is not of
a type that signals the invalidate enable signal 26 and thus does not advance the current
invalidate interval count 48(0)-48(M), a bit flip occurring in the valid indicator 24(0)-
24(N) for the targeted cache entry 18(0)-18(N) invalidated may go undetected by the
redundant information indicator validation circuit 30(1).

[0063] In regard to Figure 10, a flowchart illustrating an exemplary process of the
redundant information indicator generation circuit 60(1) in Figure 6 receiving the
current invalidate interval count 48(0)-48(M) from the invalidate interval counter 50(0)-
50(M) to encode in the tag parity 82 of the cache entry 18(0)-18(N) established is

provided. The redundant information indicator generation circuit 60(1) is configured to

WO 2015/160493 PCT/US2015/023269

28

receive the tag parity 82 based on the cache entry 18(0)-18(N) to be established (block
124). The tag parity 82 is generated as an error detecting code 81 by the tag error
detecting code generation circuit 84. In addition, the redundant information indicator
generation circuit 60(1) is configured to receive the current invalidate interval count
48(0)-48(M) (block 126). The redundant information indicator generation circuit 60(1)
is configured to provide the encoded redundant information indicator 46°(1)(0)-
46°(1)(N) for each of the cache entries 18(0)-18(IN) based on the current invalidate
interval count 48(0)-48(M), in response to establishing the cache entry 18(0)-18(N)
(block 128). In this example, as described above, the encoding comprises using an
“exclusive or” function to encode the invalidate interval count 48(0)-48(M) with the tag
parity 82 as described in Figures 6 and 9. Once encoded, the encoded redundant
information indicator 46°(1)(0)-46’(1)(N) for each of the cache entries 18(0)-18(N) is
stored in the tag array 14 corresponding to each of the cache entries 18(0)-18(N) (block
130). The stored encoded redundant information indicator 46°(1)(0)-46’(1)(N) will be
used by the redundant information indicator validation circuit 30(1) to detect a bit flip in
the valid indicator 24(0)-24(N).

[0064] In regard to Figure 11, a flowchart illustrating an exemplary process of the
redundant information indicator validation circuit 30(1) in Figure 6 is provided. The
redundant information indicator validation circuit 30(1) detects if a bit flip has occurred
in a valid indicator 24(0)-24(N) of an accessed cache entry 18(0)-18(N) in the cache
memory 12(1). The redundant information indicator validation circuit 30(1) detects a
bit flip based on the encoded redundant information indicator 46°(1)(0)-46’(1)(N)
encoded with the invalidate interval count 48(0)-48(M) during the cache entry 18(0)-
18(N) establishment and the current invalidate interval count 48(0)-48(M) in the
invalidate interval counter 50(0)-50(M). The redundant information indicator validation
circuit 30(1) receives the encoded redundant information indicator 46’ (1)(0)-46’(1)(N)
for the accessed cache entry 18(0)-18(N) (block 132). The redundant information
indicator validation circuit 30(1) additionally receives the current invalidate interval
count 48(0)-48(M) from the invalidate interval counter 50(0)-50(M) (block 134). The
redundant information indicator validation circuit 30(1) then generates a current
redundant information indicator 98 (as shown in Figure 8) based on the current
invalidate interval count 48(0)-48(M) (block 136). The redundant information indicator

compare circuit 100 compares the encoded redundant information indicator 46°(1)(0)-

WO 2015/160493 PCT/US2015/023269

29

46’ (1)(N) for the accessed cache entry 18(0)-18(N) to the current redundant information
indicator 98 (block 138). Based on the comparison, the redundant information indicator
compare circuit 100 generates a cache entry error indicator 122 if a bit flip occurred in
the valid indicator 24(0)-24(N) for the accessed cache entry 18(0)-18(N) based on the
comparing of the encoded redundant information indicator 46°(1)(0)-46’(1)(N) and the
current redundant information indicator 98 (block 140).

[0065] Cache memory error detection circuits for detecting bit flips in valid
indicators in cache memory following invalidate operations, and related methods and
processor-based systems according to aspects disclosed herein may be provided in or
integrated into any processor-based device. Examples, without limitation, include a set
top box, an entertainment unit, a navigation device, a communications device, a fixed
location data unit, a mobile location data unit, a mobile phone, a cellular phone, a
computer, a portable computer, a desktop computer, a personal digital assistant (PDA),
a monitor, a computer monitor, a television, a tuner, a radio, a satellite radio, a music
player, a digital music player, a portable music player, a digital video player, a video
player, a digital video disc (DVD) player, and a portable digital video player.

[0066] In this regard, Figure 12 illustrates an example of a processor-based system
146 that can employ a cache memory error detection circuit 147, which can include any
of the cache memory error detection circuits 10, 10(1), and 10(2) in Figures 1, 6, and 12,
respectively, as non-limiting examples, for detecting bit flips in valid indicators (e.g.,
valid bits) in cache memory following invalidate operations. In this example, the
processor-based system 146 includes one or more CPUs 148, each including one or
more processors 150. The CPU(s) 148 may have cache memory 152 coupled to the
processor(s) 150 for rapid access to temporarily stored data. The CPU(s) 148 is coupled
to a system bus 154 and can intercouple master and slave devices included in the
processor-based system 146. As is well known, the CPU(s) 148 communicates with
these other devices by exchanging address, control, and data information over the
system bus 154. For example, the CPU(s) 148 can communicate bus transaction
requests to a memory controller 156 as an example of a slave device. Although not
illustrated in Figure 12, multiple system buses 154 could be provided, wherein each
system bus 154 constitutes a different fabric.

[0067] Other master and slave devices can be connected to the system bus 154. As

illustrated in Figure 12, these devices can include a memory system 158, one or more

WO 2015/160493 PCT/US2015/023269

30

input devices 160, one or more output devices 162, one or more network interface
devices 164, and one or more display controllers 166, as examples. The input device(s)
160 can include any type of input device, including but not limited to input keys,
switches, voice processors, etc. The output device(s) 162 can include any type of output
device, including but not limited to audio, video, other visual indicators, etc. The
network interface device(s) 164 can be any devices configured to allow exchange of
data to and from a network 168. The network 168 can be any type of network,
including but not limited to a wired or wireless network, a private or public network, a
local area network (LAN), a wide local area network (WLAN), and the Internet. The
network interface device(s) 164 can be configured to support any type of
communication protocol desired. The memory system 158 can include one or more
memory units 170(0-N).

[0068] The CPU(s) 148 may also be configured to access the display controller(s)
166 over the system bus 154 to control information sent to one or more displays 172.
The display controller(s) 166 sends information to the display(s) 172 to be displayed via
one or more video processors 174, which process the information to be displayed into a
format suitable for the display(s) 172. The display(s) 172 can include any type of
display, including but not limited to a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, etc.

[0069] Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in connection with the
aspects disclosed herein may be implemented as electronic hardware, instructions stored
in memory or in another computer-readable medium and executed by a processor or
other processing device, or combinations of both. The master devices, and slave
devices described herein may be employed in any circuit, hardware component,
integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any
type and size of memory and may be configured to store any type of information
desired. To clearly illustrate this interchangeability, various illustrative components,
blocks, modules, circuits, and steps have been described above generally in terms of
their functionality. How such functionality is implemented depends upon the particular
application, design choices, and/or design constraints imposed on the overall system.

Skilled artisans may implement the described functionality in varying ways for each

WO 2015/160493 PCT/US2015/023269

31

particular application, but such implementation decisions should not be interpreted as
causing a departure from the scope of the present disclosure.

[0070] The various illustrative logical blocks, modules, and circuits described in
connection with the aspects disclosed herein may be implemented or performed with a
processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit
(ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device,
discrete gate or transistor logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A processor may be a
microprocessor, but in the alternative, the processor may be any conventional processor,
controller, microcontroller, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one Or more microprocessors in
conjunction with a DSP core, or any other such configuration.

[0071] The aspects disclosed herein may be embodied in hardware and in
instructions that are stored in hardware, and may reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), Electrically
Programmable ROM (EPROM), Electrically Frasable Programmable ROM
(EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of
computer readable medium known in the art. An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
server.

[0072] It is also noted that the operational steps described in any of the exemplary
aspects herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the illustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed in a number of different steps. Additionally, one or more operational
steps discussed in the exemplary aspects may be combined. It is to be understood that
the operational steps illustrated in the flow chart diagrams may be subject to numerous

different modifications as will be readily apparent to one of skill in the art. Those of

WO 2015/160493 PCT/US2015/023269

32

skill in the art will also understand that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

[0073] The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be applied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

WO 2015/160493 PCT/US2015/023269

33

‘What is claimed is:

1. A cache memory error detection circuit for detecting bit flips in a valid indicator
in cache memory, comprising:
at least one invalidate interval indicator configured to advance an invalidate
interval state based on an invalidate operation performed in a cache
memory;
a redundant information indicator generation circuit configured to generate a
redundant information indicator for each of an at least one cache entry
based on the invalidate interval state, in response to establishment of the
at least one cache entry in the cache memory; and
at least one redundant information indicator validation circuit configured to, in
response to a valid indicator for an accessed cache entry in the cache
memory indicating a valid state:
receive the redundant information indicator for the accessed cache entry
in the cache memory;

receive the invalidate interval state from the at least one invalidate
interval indicator;

generate a current redundant information indicator based on the
invalidate interval state; and

compare the redundant information indicator for the accessed cache entry

to the current redundant information indicator.

2. The cache memory error detection circuit of claim 1, wherein the at least one
redundant information indicator validation circuit is further configured to generate a
cache entry error indicator indicating if a bit flip occurred in the accessed cache entry
based on the comparison of the redundant information indicator and the current

redundant information indicator.

WO 2015/160493 PCT/US2015/023269

34

3. The cache memory error detection circuit of claim 1, wherein:

the at least one invalidate interval indicator is further configured to provide the
invalidate interval state as a current invalidate interval state;

the redundant information indicator generation circuit is configured to generate
the redundant information indicator for each of the at least one cache
entry based on the current invalidate interval state, in response to
establishment of the at least one cache entry in the cache memory; and

the at least one redundant information indicator validation circuit is configured
to:
receive the invalidate interval state as the current invalidate interval state

from the at least one invalidate interval indicator; and

generate the current redundant information indicator based on the current

invalidate interval state.

4. The cache memory error detection circuit of claim 3, wherein the at least one
invalidate interval indicator is further configured to provide the invalidate interval state

not based on the current invalidate interval state.

5. The cache memory error detection circuit of claim 1, wherein the redundant
information indicator generation circuit is further configured to store the redundant

information indicator in the at least one cache entry.

6. The cache memory error detection circuit of claim 2, wherein the least one
redundant information indicator validation circuit is configured to generate the cache
entry error indicator indicating if the bit flip occurred in the accessed cache entry based
on the comparison of the redundant information indicator and the current redundant

information indicator.

7. The cache memory error detection circuit of claim 2, further comprising a cache
hit/miss indicator circuit configured to receive the cache entry error indicator and

generate a cache hit/miss indicator based on the received cache entry error indicator.

WO 2015/160493 PCT/US2015/023269

35

8. The cache memory error detection circuit of claim 7, wherein the cache hit/miss
indicator circuit is configured to:
generate the cache hit/miss indicator as a cache miss if the received cache entry
error indicator indicates the bit flip occurred in the accessed cache entry;
and
generate the cache hit/miss indicator as a cache hit if the received cache entry
error indicator does not indicate that the bit flip occurred in the accessed

cache entry.

9. The cache memory error detection circuit of claim 1, wherein the at least one
invalidate interval indicator is further configured to receive an invalidate enable signal

on an invalidate enable input indicating the invalidate operation on the cache memory.

10. The cache memory error detection circuit of claim 1, wherein the redundant

information indicator is comprised of the invalidate interval state.

11. The cache memory error detection circuit of claim 1, wherein the at least one
redundant information indicator validation circuit is further configured to generate the
redundant information indicator as an encoded redundant information indicator in an

error detecting code generated for the at least one cache entry.

12. The cache memory error detection circuit of claim 1, wherein the redundant
information indicator generation circuit is included in an error detecting code generation

circuit.

13. The cache memory error detection circuit of claim 1, wherein the at least one
invalidate interval indicator is further configured to advance the invalidate interval state
over an invalidate interval state range based on an invalidate interval configuration

setting.

WO 2015/160493 PCT/US2015/023269

36

14. The cache memory error detection circuit of claim 1, wherein:

the at least one cache entry is comprised of a plurality of cache entries, and
wherein the at least one invalidate interval indicator is comprised of a
plurality of invalidate interval indicators each having an associated
invalidate interval state, each of the plurality of invalidate interval
indicators associated with a selective group of the at least one cache
entry among the plurality of cache entries; and

the plurality of invalidate interval indicators are each configured to advance the
associated invalidate interval state based on the invalidate operation
performed on the selective group of the at least one cache entry
associated with a corresponding one of the plurality of invalidate interval

indicators.

15. The cache memory error detection circuit of claim 14, wherein each of the
plurality of invalidate interval indicators is configured to advance the associated
invalidate interval state based on a flash invalidate operation performed on the cache

memory.

16. The cache memory error detection circuit of claim 14, wherein an invalidate
interval indicator among the plurality of invalidate interval indicators is configured to
advance the associated invalidate interval state based on a selective invalidate operation
on the selective group of the at least one cache entry associated with the corresponding

one of the plurality of invalidate interval indicators.

17. The cache memory error detection circuit of claim 1, wherein the at least one
redundant information indicator validation circuit is comprised of a plurality of
redundant information indicator validation circuits, wherein the at least one invalidate
interval indicator is configured to provide the invalidate interval state to the plurality of

redundant information indicator validation circuits.

WO 2015/160493 PCT/US2015/023269

37

18. The cache memory error detection circuit of claim 11, wherein the at least one
redundant information indicator validation circuit comprises:
the redundant information indicator generation circuit configured to:
receive the encoded redundant information indicator for the accessed
cache entry in the cache memory;
receive the invalidate interval state from the at least one invalidate
interval indicator; and
generate the current redundant information indicator based on the
invalidate interval state; and
a redundant information indicator compare circuit configured to:
compare the encoded redundant information indicator for the accessed
cache entry to the current redundant information indicator; and
generate the cache entry error indicator indicating if the bit flip occurred
in the accessed cache entry based on the comparison of the
encoded redundant information indicator and the current

redundant information indicator.

19. The cache memory error detection circuit of claim 1, wherein:
the at least one invalidate interval indicator is further configured to not advance
the invalidate interval state based on the invalidate operation performed
on a targeted cache entry in the cache memory; and
the redundant information indicator generation circuit is further configured to
generate a redundant information indicator for the targeted cache entry
based on a state that is not the invalidate interval state, in response to

establishment of the targeted cache entry in the cache memory.

20. The cache memory error detection circuit of claim 1 integrated into a device
selected from the group consisting of a set top box, an entertainment unit, a navigation
device, a communications device, a fixed location data unit, a mobile location data unit,
a mobile phone, a cellular phone, a computer, a portable computer, a desktop computer,
a personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner,

a radio, a satellite radio, a music player, a digital music player, a portable music player,

WO 2015/160493 PCT/US2015/023269

38

a digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

21. A cache memory error detection circuit for detecting bit flips in a valid indicator
in cache memory, comprising:
a means for advancing an invalidate interval state based on an invalidate
operation performed on a cache memory;
a means for generating a redundant information indicator for each of an at least
one cache entry in the cache memory based on the invalidate interval
state, in response to establishment of the at least one cache entry; and
a means for, in response to a valid indicator for an accessed cache entry in the
cache memory indicating a valid state:
receiving the redundant information indicator for the accessed cache
entry in the cache memory;

receiving the invalidate interval state;

generating a current redundant information indicator based on the
invalidate interval state; and

comparing the redundant information indicator for the accessed cache

entry to the current redundant information indicator.

22. A method of detecting cache memory errors from bit flips in a valid indicator in
cache memory following invalidate operations, comprising:
advancing an invalidate interval state of at least one invalidate interval indicator
based on an invalidate operation performed on a cache memory;
generating a redundant information indicator for each of an at least one cache
entry in the cache memory, in response to establishing the at least one
cache entry;
receiving the redundant information indicator for an accessed cache entry in the
cache memory;
receiving the invalidate interval state from the at least one invalidate interval
indicator;
generating a current redundant information indicator based on the invalidate

interval state; and

WO 2015/160493 PCT/US2015/023269

39

comparing the redundant information indicator for the accessed cache entry to

the current redundant information indicator

23. The method of claim 22, further comprising generating a cache entry error
indicator indicating if a bit flip occurred in the accessed cache entry based on the
comparing of the redundant information indicator and the current redundant information

indicator.

24. The method of claim 22, further comprising storing the redundant information

indicator in the at least one cache entry.

25. The method of claim 23, wherein generating the cache entry error indicator
indicating if the bit flip occurred in the accessed cache entry further comprises
generating the cache entry error indicator indicating if the bit flip occurred in a valid
indicator for the accessed cache entry based on the comparing of the redundant

information indicator and the current redundant information indicator.

26. The method of claim 25, further comprising generating a cache hit/miss

indicator for the cache memory based on the cache entry error indicator.

27. The method of claim 26, wherein generating the cache hit/miss indicator for the
cache memory comprises generating a cache miss if the received cache entry error

indicator indicates the bit flip occurred in the accessed cache entry.

28. The method of claim 22, wherein generating the current redundant information
indicator comprises generating the current redundant information indicator as the

invalidate interval state.

29. The method of claim 22, wherein generating the current redundant information
indicator further comprises generating the redundant information indicator as an
encoded redundant information indicator in an error detecting code generated for the at

least one cache entry.

WO 2015/160493 PCT/US2015/023269

40

30. A non-transitory computer-readable medium having stored thereon computer
executable instructions to cause a processor-based cache memory error detection circuit
to detect bit flips in a valid indicator in cache memory, by:
advancing an invalidate interval state of at least one invalidate interval indicator
based on an invalidate operation performed on a cache memory;
generating a redundant information indicator for each of an at least one cache
entry in the cache memory, in response to establishing the at least one
cache entry;
receiving the redundant information indicator for an accessed cache entry in the
cache memory;
receiving the invalidate interval state from the at least one invalidate interval
indicator;
generating a current redundant information indicator based on the invalidate
interval state; and
comparing the redundant information indicator for the accessed cache entry to

the current redundant information indicator.

PCT/US2015/023269

WO 2015/160493

1/12

r---------------------------—»- - - - " A
_ (01) LINOYWI9 NOILDO3L3A |
_ (v€) YOLVOIQNI HOYYI AYOWIW JHOVO |
Zr~ | ¥ >Ezmmmw@w |
(0%) YOLYIONI Il Gunown [(og) LInoMIo |
SSIW/LIH FHOYD HOLYOIONI HOLYIIaNI _
Il ssInLHIHOVD [—f) 43 NOILVWHOANI |
| INVANNGTY _
_ o¢ _
_ _
8l _ (NJar-(0)ov N X5 _
(Nzd wsaa v / e - |
Ngy) Te———— T — — T 7IN (N2 _
RN FHOVO—H————— 1~ | (09 ¥3Nn0o |
((0)8)) e == e e p 2y R _ WAN3INI _
ICILEELR AN p— e S e _ AVATANI~ |
((0)22) AMLNT YLYO = I vy | (@) _
(00) AV YIYa T (y) ary o= \ (Nar{olor 4OLYOION | B AN @ INn0D ||
(Noz<0)oz | NOILYWHOANI | Tt IVGNAN _
INVANNQ3Y _ | rE==— i1l
1
_ \A _ 1] |
(21) ASONIN 3HOWD =T | o9 Lnows ki
Vol | [NOILYY3IN3D L[x I |
| [HOLvOIaNI i S Ry I |
(02) ovL | | NOILYWHOANI _
(02) ovL | LLNVANNGde _
_ A _
/’ S —_———
L
HSI18v1S3 01 (81) AMINT FHOVD 9z

PCT/US2015/023269

WO 2015/160493

212

¢ 'Old

LLLO L 0l | (85) LNIAT SS3IDDV
LLLO L 0l | (95) INIAT NOILYIAVY
LLLO L 0l 0 (¥G) NOILYH3dO JLVAITVANI
LLLO 0l 0l | (2) INIAT HSITaVLST
(8%)
LNNOD ((0)op)

IVAYALNI HOLVOIANI ((0)¥2)

((0)02) | 3LVAINVANI | NOILYWHOANI | ¥OL1VDIANI
OVL LINIYHND | INVANNQ3N anvA | SLN3A3((0)8L) AMLNI FHOVD

SV.\

WO 2015/160493 PCT/US2015/023269

3/12
L~ 64
INVALIDATE INTERVAL COUNTERéSO}\ RECEIVES THE
INVALIDATE ENABLE SIGNAL (26)

'

INVALIDATE INTERVAL COUNTER (50) INCREMENTS - 66
THE INVALIDATE INTERVAL COUNT (48) BASED ON
RECEIVING THE INVALIDATE ENABLE SIGNAL (26)

FIG. 3

WO 2015/160493 PCT/US2015/023269

4/12

68

REDUNDANT INFORMATION INDICATOR GENERATION |
CIRCUIT (60) RECEIVES THE TAG 2(_)|§ O%g PROVIDED
IN THE CACHE ENTRY (18(0)- O BE ESTABLISHED

'

REDUNDANT INFORMATION INDICATOR - 70
GENERATION CIRCUITI\(IGOg RECEIVES
THE CURRENT INVALIDATE INTERVAL COUNT é48)
PROVIDED BY THE INVALIDATE INTERVAL COUNTER (50

'

REDUNDANT INFORMATION INDICATOR 72
GENERATION CIRCUIT 60 ENCODES THE
INVALIDATE INTERVAL COUNT 48?\IRECEIVED FROM
THE INVALIDATE INTERVAL COUNTER (50) IN THE
CACHE ENTRY (18(0)-18(N)) BEING ES ABLISHED

FIG. 4

WO 2015/160493 PCT/US2015/023269

512
RECEIVE THE REDUNDANT INFORMATION - 74
?)) FOR THE ACCESSED CACHE
ENTRY 1 N RESPONSE TO THE VALID

INDICATOR (46(0 -46}

INDICAT é24 O‘? N??\IFOR AN ACCESSED CACHE
ENTRY (1 DICATING A VALID STATE

'

76
RECEIVE THE CURRENT INVALIDATE INTERVAL COUNT (48) -
FROM THE INVALIDATE INTERVAL COUNTER (50)

'

78
COMPARE THE REDUNDANT INFORMATION -
INDICATOR 46 O -46('I) FOR THE ACCESSED CACHE
ENTRY (18(0 (I'I%k THE CURRENT INVALIDATE
INTERVAL COUNT (48)

'

GENERATE A CACHE ENTRY ERROR INDICATOR (34) - 80
INDICATING IF A BIT FLIP OCCURRED IN THE VALID
INDICATOR (24(0 %) FOR THE ACCESSED
CACHE ENTRY 8 O 18(8[:_\) ASED ON THE COMPARISON
OF THE REDUNDANT INF ATION INDICATOR646'\S_I)-46
AND THE CURRENT INVALIDATE INTERVAL C

FIG. 5

PCT/US2015/023269
6/12

WO 2015/160493

e ——————
_ .m o) |
_ (001) LINYHID 1IN0¥I9 NOILO313d
| m%%%_ _ HONYT AMOWIW JHIVD
| (zz1) HOLYOIaNI - NOILVINHOANI
_ dO0d¥3 AHLINT FHOVO INYANNG3Y _
_ g0} (og) Linddid ||
8l A vl NOLYAITYA ||
=l (90}) LINOYIO 3000 A |
(NJoz-{0)oz| ONILOILIA HOHY3 OvL OILVWHON
0z-(0)oz INvaNnay |l
(x)91-(0)o} I\ i X 1 _
(NZ2) KNIV~) g N ——— L N] (Wosole)
(N)81) . Y=<\ | 4/ {0)0g
AMINT FHOVD) —E=———— — == S e e U _ ﬂ@»%%
(0)g) 11 : =1 &WE,@W 3LYAITVANI
AYINT FHOV) ~ff==—== i m— — | 9
(0172 Auina Vi TR T NN (omo) (Wer-ogy) 7m========== =
74 |
((X)91-0)a1) Avedy viva =7 A fNG)er-0)))ov) soolaN | INNOD 1t ((w)pH0)s)
LT R T O I 0 Rt
- 1
(NJoz-oloe | N Rvannaa — Hzmm%o/mm - MEE@_I_
PSSP N = HE _
| ey mwmom|l i A |
| o Rron M
y8) 1INOYIO 1
(02) OVL [75,44 |NOILYNINTD NOILYINHOSNI | | He————— _
A \ ![.3000 28 INVONNQ3Y ||
((1)z)) AMOWAW FHOVD | | ONILO313d Al A _
| | do¥NI 9Vl » _
T o EEP PP === _
(0z) OvL]
57 § (82) LNdNI 319YN3
HSI18vLS3 OL (8}) AYINT FHOVD 07 JL¥QIVANI

PCT/US2015/023269

WO 2015/160493

712

L "9id

LLLO L 00 | (96) LNIAT SS3IDDV
LLLO L 00 | (¥6) LNIAT NOILVIAYY
LLLO L 00 0 [(z6) NOILYH3IdO JLVAITVANI
LLLO 0l 00 | (06) LNIAT HSINGVLST

((0)gp) ((0)(1).9t)

LNNOD JOLVIIaNI

IVAYILINI | NOILYINYOANI ((0)¥2)

((0)o2) | 3LVAITVANI | LNVANNQ3Y | YOLVOIANI SIN3AT
oVl LINIYNND d300DN3 divA ((0)81) AYMLNI JHOVD

ow.\

PCT/US2015/023269
8/12

WO 2015/160493

8 "Oid

-« (001) LINDYID TYVAINOD HOLYDIONI NOILYWHOANI LNYANNATY
(22)) MOLYOIONI ¥O¥Y3
AYINT HIVD A (86) HOLYDIONI NOLLYNNOANI A
INYANN@3Y INTHEN9—
F——— = —————— - 7
_ 80} || 80} _
| || _
| || _
| || : _
_ || [2-Al _
| (7)) | ALIYd OVL _
| [0]ALIMYd VL 0L | 8L
|
(201) LINOYID _ L || L _
NOILY4INTD _ | | _
NOLIVHGOUN | - (02)) |
|
INvVONNGRS | 1 | e A Z1INNOD |
INO33S— | [1-A WANEIN | | | 2 CvarTgA |
_ ALlevd V1] 3 yavaN | | | A) g
| ik AALIYYd OVL |
((1)og) LINOYID e -__________ L —_
NOILYQI VA [1
HOLYOINI o § ez
NOLLYWRON! 4)
INYANNa3y — A
701) ALINYd VL
™ INTHEND N
((N)(1)9t-(0)(1).9F) HOLYOIAN (()gr-(0)8r) LNNOD TYAHALNI
NOILYWHOANI INVONNAIY 43A0INT JLYAITYANI LNIHYNT

€0l

PCT/US2015/023269

WO 2015/160493

9/12

((1)09) LINo¥ID
NOILYYINTD
HOLYDIANI
NOILYIWHOANI
INVANNQ3y

((N)(L).or-(0)(1)9F) HOLYOIONI
NOILYIWHOANI INVANNQIY a3A0ONT—"

6 Oid

-

T T T T T T T 1 1 _
_ 80} || 80} _
_ |1 _
R [T |
| (
yil) [2-Al
| [olAvva vl T N ovl |
80} 80}
_ |1 _
_ ese _ _ see _
| T 1T sl
_ -
_) I T (o) !
| o | ! o | 200 1| N,
o)) | TVANAINI
_ ALI¥Yd OVI—] 3ivaITvANI | | [NALINYA OYL /] JIVAITVANI | | 3LYOITYANILNZXNND
_ |1 _
e —— [R N I — I
o N
4/ (28) ALIYYd OVL

WO 2015/160493

10/12

PCT/US2015/023269

RECEIVE ATAG PARITY {82 BASED IN
THE CACHE ENTRY I-{ E18
TO BE ESTABLISHE

'

RECEIVE A CURRENT INVALIDATE
INTERVAL COUNT (48(0)-48(M))

'

ENCODE A REDUNDANT INFORMATION
INDICATOR 1(4(3;1 (8 -46(1)(N)) FOR EACH
CACHE ENTRY (18(0 18 1) BASED ON
THE CURRENT INVALIDATE INTERVAL
COUNT (48)r48 M)), PROVIDE ENCODED
REDUN A ORMATION INDICATOR
é 1)-46§ h)) IN RESPONSE
TOE ABLIS INGTHE CACHE
ENTRY (18(0)-18(N))

'

STORE THE ENCODED REDUNDANT
INFORMATION INDICATOR I_(\f‘rG 1& -46
FOR EACH CACHE ENTRY

L~ 130

FIG. 10

WO 2015/160493 PCT/US2015/023269

11/12

RECEIVE THE ENCODED REDUNDANT INFORMATION | 132
INDICATOR (46 (1}0L461¢ N))FOR THE ACCESSED

'

134
RECEIVE THE CURRENT INVALIDATE INTERVAL @
COUNT (48(0)-48(M)) FROM THE INVALIDATE INTERVAL
COUNTER (50(0)-50(M))

'

GENERATE A CURRENT REDUNDANT INFORMATION ~ |— 138
INDICATOR (38 BASED ON THE CURRENT INVALIDATE
INTERVAL COUNT (48(0)-48(M))

'

138
COMPARE THE ENCODED REDUNDANT INFORMATION

INDICATOR 2466 {)-46' (I'(B) FOR THE ACCESSED
CACHE ENTRY F{ (Il_\lB THE CURRENT REDUNDANT
INF MATION INDICATOR (98)

'

140

GENERATE A CACHE ENTRY ERROR INDICATOR (122) z
INDICATING IF ABIT FLIP OCCURRED IN THE
CACHE MEMORY gIZé 18FOR THE ACCESSED

CACHE ENTRY (1 BASED ON THE
COMPARISON O ENC DED REDUNDANT
INFORMATION INDICATOR (4 1%-46 SRE)NB AND THE
CURRENT REDUNDANT INFO ATOR (98)

FIG. 11

PCT/US2015/023269

WO 2015/160493

12/12

¢l "OIid
291
WYOMLIN Nyaa | +-- | Oyaa
(NJoLL = Mw (0oLl
961
— — 71 HITIOHINOD AHOWIW ~—g5!
291 097 (S)301A3Aa Av
(S)301A3Aa (S)301A3a JOV4HIINI
1nd1n0 1NdNI WHOMLIN
¥SI SN WALSAS
@mﬂmﬁmhzoo
051 6 [N
(S)M0SST00Nd K= FHOVD |4 >5ﬂm_o
87T (S)ndD —
ol le— (S)N0SSID0Nd
(S)AV1dSIa O3dIA
oi\

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/023269

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/10 GO6F12/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

29 March 2012 (2012-03-29)

page 4, paragraph 29-30
43; figures 3,5

page 3, paragraph 25-29; figure 2

page 5, paragraph 39 - page 6, paragraph

A US 2012/079350 Al (KRICK ROBERT [US]) 1-30

A US 2009/077425 Al (GSCHWIND MICHAEL [US] 1-30
ET AL) 19 March 2009 (2009-03-19)
page 2, paragraph 26-34; figure 23

A US 2010/064206 Al (MOYER WILLIAM C [US] ET 1-30
AL) 11 March 2010 (2010-03-11)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 July 2015

Date of mailing of the international search report

21/07/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bauer, Regine

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2015/023269
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012079350 Al 29-03-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report

