
US008285847B1 

(12) United States Patent (10) Patent No.: US 8,285,847 B1 
Mongiovi (45) Date of Patent: *Oct. 9, 2012 

(54) METHOD, SYSTEM, AND STORAGE (56) References Cited 
MEDIUM FOR COLLECTING SNMP 
BANDWDTH DATA 

(75) Inventor: Roy Mongiovi. Tucker, GA (US) 

(73) Assignee: Open Invention Network LLC, 
Durham, NC (US) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 
This patent is Subject to a terminal dis 
claimer. 

(21) Appl. No.: 13/338,385 

(22) Filed: Dec. 28, 2011 

Related U.S. Application Data 

(63) Continuation of application No. 13/080,905, filed on 
Apr. 6, 2011, now Pat. No. 8,127,006, which is a 
continuation of application No. 12/414,557, filed on 
Mar. 30, 2009, now Pat. No. 7,937,466, which is a 
continuation of application No. 1 1/842,646, filed on 
Aug. 21, 2007, now Pat. No. 7,631,075, which is a 
continuation of application No. 10/643,407, filed on 
Aug. 18, 2003, now Pat. No. 7,260,630. 

(51) Int. Cl. 
G06F II/00 (2006.01) 

(52) U.S. Cl. ............................. 709/224; 714/11: 714/13 
(58) Field of Classification Search .................. 709/224, 

709/223, 203: 714/11, 13, 4.1 
See application file for complete search history. 

SORT LOCAL REMOTE DATA 

ADD 5 MIN TO NEWORK 
DEVICE TIME/SAMPLE 

COMPARE TO SAMPLES COLLECTED EY 
OCA & REMOTE SERVER 

SELECT & RECORD DATA POINT CLOSES 
TO NETWORK TIME OF STEP 404 

50 

Yes 

STORE CLEAN DAA, FE 
N MASTER SERVER 

COMPUTE BELIA WALUES 
FOR CLEAN FLE 

APPEN DETAWALUES TO 
ELA WALUE TABLE 

U.S. PATENT DOCUMENTS 

6,460,055 B1 10/2002 Midgley et al. 
6,502,125 B1 12/2002 Kenner et al. 
6,526,418 B1 2/2003 Midgley et al. 
6,587,432 B1 7/2003 Putzolu et al. 
6,625,623 B1 9/2003 Midgley et al. 
6,704,755 B2 3/2004 Midgley et al. 
6,779,003 B1 8/2004 Midgley et al. 
6,847,984 B1 1/2005 Midgley et al. 
6,985,944 B2 1/2006 Aggarwal 
7,203,176 B2 4/2007 Golikeri et al. 
7,260,630 B1 8/2007 Mongiovi 
7,631,075 B2 12/2009 Mongiovi 
7,801,130 B2 9/2010 Sheppard et al. 
7,937,466 B2 5/2011 Mongiovi 
8,127,006 B2* 

* cited by examiner 
2/2012 Mongiovi ..................... TO9,224 

Primary Examiner — Kenneth R Coulter 
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP 
(57) ABSTRACT 
A method, system, and storage medium for collecting band 
width data is provided. The method includes producing mas 
ter and slave text files in response to simultaneous collection 
of data samples from a network device by servers. The 
method also includes generating a clean data file by sorting 
data in the master and slave text files by the network device 
port, sorting data samples for the port by collection time, and 
for each of the samples: adding a designated interval of time 
to a time on the network device resulting in a target network 
device time whereby the time on the network device corre 
sponds to a time the data sample was collected, examining 
data samples in the master and slave text files corresponding 
to the time the respective data samples were collected, select 
ing from one of the master and slave text files the sample with 
a collection time most closely matching the target network 
device time, and storing the selected sample in the clean data 
file. 

20 Claims, 6 Drawing Sheets 

502 

514 

56 

  

  



US 8,285,847 B1 Sheet 1 of 6 Oct. 9, 2012 U.S. Patent 

! ‘‘). I, 

r!!!--***** 

ETEW 1. BñTWA WITBO 
  

  

  

  

  

  



U.S. Patent Oct. 9, 2012 Sheet 2 of 6 US 8,285,847 B1 

2O6 21 O 216 

o 204 212 214 
w \ 1057078500.bss al 5, 409 isoso.640s 508O \ 

105.7078500.bssOOatl,6,260,4029865080,0,4029865080 
057078500,bss00atl,6,270,4029865080,0,4029865080 
1057078500hrsOeatl,6,10,2349289072,0,2349289072 
105.7078500.bss00at),6,28,0,4029865080,0,4029865080 
1057078500hrsOeatl,6,2,0,2349289072,0,2349289072 
1057078500,bss00atl,629,0,4029865080,0,4029865080 
1057078500hrsOeatl,6,3,0,2349289072,0,2349289072 5 MINUTE 

k INTERVAL 
k 

k 

1057078500,bss00atl,6,20,0,4029865080,0,4029865080 
1057078500,bss00atl,6,210,4029865080,0,4029865080 
1057078500,bsSOOatl,6,220,4029865080,0,4029865080 
1057078500,bss00at),6,23,0,4029865080,0,4029865080 | 
1057078500,bss00ati,6,240,4029865080,0,4029865080 w 

1057078500.bss00at),1,1,2165.8569386232.4029894782.259.154417765719,4029894782 \ 
1057078500,bss00atl, 2,987.492443 |40,4029894782, 13088.9375955323,4029894782 
1057078500.bss00atl, 15, 1,3626280411,4029894782,04029894782 
1057078500,bss00atl,3,1267462255790 100,4029894782,65882 15188433,4029894782 
1057078500,bss00atl,3,2,66,4029894782,66,4029894782 
1057078500,bss00atl,3,3,1314393,4029894782,66,4029894782 
1057078500,bss00atl,3,4,13255257446409,4029894782.2732623491216,4029894782 5 MINUTE 

g INTERVAL 
k 

k 

1057078500.hrs 13 at 1,948,525.52836968,3890892546, 31 162580 1,3890892546 
1057078500hrs 13.atl.2, 1,3534658483,3890892.546,783485301,3890892546 
1057078500hrs 13atl,2,2,967,3890892.546,967,3890892546 

FIG 2 



U.S. Patent Oct. 9, 2012 Sheet 3 of 6 US 8,285,847 B1 

COLLECT DATA SAMPLE - 502 

COPY DATA SAMPLE 
TO TEXT FILE 304 

306 

Yes 
BEGIN NEW TEXT FILE 3O8 

COPY FINAL RAW DATA 310 
POINT TO NEW TEXT FILE 

CREATE CLEAN DATA FILE 
(SEE FIGS. 4 & 5) J11 

COMPUTE DELTA VALUES FOR 
COMPLETED TEXT FILE JS12 

(SEE FIG. 6) 

STORE DELTA VALUES IN 
DELTA VALUE TABLE 34 

(SEE FIG. 6) 

FIC. 3 

  



U.S. Patent Oct. 9, 2012 Sheet 4 of 6 US 8,285,847 B1 

COPY TEXT FILES TO PARTNER SERVER-402 

A B QUERY 404 422 
CONTROL FILE/MASTER 

SERVER 
MS LOOKS FOR QUERY CONTROL FILE 

TEXT FILES A & B N 406 FOR HOURLY UPDATE 
424 o 425 

3G>. 
No 

Yes 426 

428 
414 

SEND AERT WATg 
a MN 

Yes 
Yes 

RECORD NAME 4.32 
SSUE 46 IN CONTROL FILE 

UPDATE TIME OF LAST 454 
RECORD TME OF 418 HOURY RUN 

CURRENT HOURLY RUN IN CONTROL FILE 
IN CONTRO TABLE 

GENERATE CLEAN 420 
DATA FLE (SEE FIG. 5) 

took for ExT FILES -436 

438 
Yes DATA 

PRESENT 

No 

issue ERROR MESSAGE-440 

GENERATE CLEAN 442 
DATA FILE (SEE FIG. 5) 

FIC 4 

  

  

  

  

  

  

  



U.S. Patent Oct. 9, 2012 Sheet 5 of 6 US 8,285,847 B1 

SORT LOCAL & REMOTE DATA - 502 

504 
ADD 5 MEN TO NETWORK L. 

DEVICE TIME/SAMPLE 

COMPARE TO SAMPLES COLLECTED BY 
LOCAL & REMOTE SERVER 

SELECT & RECORD DATA POINT CLOSEST 
TO NETWORK TIME OF STEP 404 

510 

Yes 

STORE CLEAN DATA FLE 
N MASTER SERVER 512 

COMPUTE DELTA VALUES 
FOR CLEAN FILE (SEE FIG. 6) 514 

APPEND DELTA VALUES TO 
DELTA VALUE TABLE (FIG. 6) --516 

FIC. 5 

  

  



U.S. Patent Oct. 9, 2012 Sheet 6 of 6 US 8,285,847 B1 

LOAD LAST RAY VALUE 
TABLE INTO ARRAY 

READ A DATA POINT FROM INPUT FILE 
SO4 

SEARCH ARRAY FOR 
PREVIOUS DATA POINT 

608 

TIME 
STAMP </= 
VALUE IN 
ARRAY? 

DISCARD DATA POINT 

COMPUTE DELTA VALUES & 
APPEND TO DEA VALUE TABLE 62 

REPLACE DATA POINT FROM STEP 604 
WITH NEW DATA POINT FROM STEP 612 - 614 

66 

Yes 

REPLACE VALUES IN LAST RAW VALUE 
TABLE WITH NEW CONTENTS OF ARRAY S18 

FIG. 6 

  

  

  

  

  

      

  

  

  

  

    

  

  

    

  



US 8,285,847 B1 
1. 

METHOD, SYSTEM, AND STORAGE 
MEDIUM FOR COLLECTING SNMP 

BANDWIDTH DATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

The present application is a continuation of U.S. patent 
application Ser. No. 13/080,905, filed Apr. 6, 2011, now U.S. 
Pat. No. 8,127.006, which is a continuation of U.S. patent 
application Ser. No. 12/414,557, filed Mar. 30, 2009, now 
U.S. Pat. No. 7,937,466, which is a continuation of U.S. 
patent application Ser. No. 1 1/842,646, filed Aug. 21, 2007, 
now U.S. Pat. No. 7,631,075, which is a continuation of U.S. 
patent application Ser. No. 10/643,407, filed Aug. 18, 2003, 
now U.S. Pat. No. 7,260,630, the contents of which are incor 
porated by reference herein in their entirety. 

BACKGROUND OF THE INVENTION 

The present invention relates to network monitoring and 
management systems, and more particularly, the present 
invention relates to a method, system, and storage medium for 
collecting SNMP bandwidth data for a network device. 
The present invention relates to network monitoring and 

management systems, and more particularly, the present 
invention relates to a method, system, and storage medium for 
collecting SNMP bandwidth data for a network device. 
Many businesses today are transferring their network man 

agement activities to third parties, such as backbone provid 
ers, who are better skilled to build and maintain complex 
network configurations. Such activities include web hosting, 
VPN access, and other data transport activities, to name a few. 
These third parties often rely on Simple Network Manage 
ment Protocol (SNMP) to track and monitor the network 
devices they host. SNMP is used to collect statistics from 
various types of network equipment. SNMP governs network 
management and the monitoring of network devices and their 
functions by sending messages to different parts of a network. 
SNMP-compliant devices, called agents, store data about 
themselves in Management Information Bases (MIBs) and 
return this data to the SNMP requesters. SNMP is based on 
user datagram protocol (UDP), which is an inherently unre 
liable protocol. As a result, current systems have not been 
capable of guaranteeing the capture of all data samples. 
Despite the use of timeouts and retransmissions, SNMP 
request and response packets are not guaranteed to arrive at 
their destination. 

Backbone service providers require high quality data Sam 
pling of network devices in order to generate accurate band 
width billing for these electronic business services. Raw data 
tracked from network devices is often inaccurate or incom 
plete. Consequently, these providers often lose a significant 
amount of their billing revenue. 
What is needed, therefore, is a way to comprehensively 

track the SNMP data received from network devices. 

SUMMARY OF THE INVENTION 

Exemplary embodiments of the invention relate to a 
method, system, and storage medium for collecting band 
width data is provided. The method includes producing mas 
ter and slave text files in response to simultaneous collection 
of data samples from a network device by servers. The 
method also includes generating a clean data file by sorting 
data in the master and slave text files by the network device 
port, sorting data samples for the port by collection time, and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
for each of the samples: adding a designated interval of time 
to a time on the network device resulting in a target network 
device time whereby the time on the network device corre 
sponds to a time the data sample was collected, examining 
data samples in the master and slave text files corresponding 
to the time the respective data samples were collected, select 
ing from one of the master and slave text files the sample with 
a collection time most closely matching the target network 
device time, and storing the selected sample in the clean data 
file. 

Other systems, methods, and/or computer program prod 
ucts according to embodiments will be or become apparent to 
one with skill in the artupon review of the following drawings 
and detailed description. It is intended that all such additional 
systems, methods, and/or computer program products be 
included within this description, be within the scope of the 
present invention, and be protected by the accompanying 
claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Referring now to the drawings wherein like elements are 
numbered alike in the several FIGURES: 

FIG. 1 is a block diagram of a system upon which the data 
collection system is implemented in an exemplary embodi 
ment; 

FIG. 2 is a sample text file comprising two 5-minute data 
samples collected from a network device; 

FIG. 3 is a flowchart describing a high-level view of the 
data collection and computation activities performed by the 
data collection system in an exemplary embodiment; 

FIG. 4 is a flowchart describing the process of handling the 
redundant data of text files produced from via the data col 
lection system in an exemplary embodiment; 

FIG. 5 is a flowchart describing the process of generating a 
clean data file via the data collection system in an exemplary 
embodiment; and 

FIG. 6 is a flowchart describing the process of computing 
delta Values for clean data files and computing bandwidth 
usage via the data collection system in an exemplary embodi 
ment. 

DETAILED DESCRIPTION OF THE INVENTION 

The data collection system of the invention is a network 
monitoring device that can be used for Ethernet, TokenRing, 
FDDI, and other suitable networks. It can monitor a single 
LAN or may be used in a distributed network with multiple 
complex LANs and WANs. Further, the data collection sys 
tem tracks data from various types of SNMP-enabled devices 
and displays Web-based results. A network administrator of 
the data collection system can view network traffic in near 
real time, and resolve issues before they become disabling to 
the network. An alert system tracks the performance of the 
equipment monitoring the network devices and sends a mes 
sage to a network administrator when the equipment is not 
responding. 
The data collection system allows for two or more collect 

ing servers to collect SNMP data samples and to use one 
server's data to repair gaps in the data collected by the other 
if any should occur. In theory, single values from one server's 
data could be plugged into the gaps in the other server's data. 
Because the two or more data collection servers are running 
with synchronized time-of-day clocks, they should be collect 
ing data at precisely the same time. In practice, however, each 
of their system clocks will not be perfectly synchronized and 
the load on the servers will not be identical, so they will not 



US 8,285,847 B1 
3 

retrieve SNMP information from the network devices being 
monitored at precisely the same time. Therefore, the gap 
between samples when Switching from one server's data to a 
partner server's data will not produce an exact five-minute 
interval. The process of plugging the holes in one server's 
data with samples from the other server(s) essentially 
switches the data stream from one server to the other(s) and 
then immediately back, resulting injitter that occurs twice for 
each gap filled in the five-minute sample—once upon Switch 
ing over to the partner server, and again upon Switching back 
to the original collecting server. The data collection system of 
the invention minimizes the occurrence of Switching between 
servers, resulting in fewer incidences of jitter in the resultant 
bandwidth data. 

FIG. 1 illustrates a block diagram of a system upon which 
the data collection system of the invention is implemented. 
System 100 includes data collection servers 102 and 106 (also 
referred to as “collecting servers') that perform simultaneous 
data sampling of a network device 104 and store the data 
internally in text files 108 and 110, respectively. Servers 102 
and 106 may comprise any Suitable multi-processing devices 
typically used in a data-sampling environment. While the 
invention is described with respect to two servers, it will be 
understood by those skilled in the art that multiple servers 
may be utilized in the data sampling and bandwidth compu 
tation processes described herein. 
A sample text file with sampling data is illustrated in FIG. 

2.Textfiles 108 and 110 store raw data received from the data 
sampling activities, including collection times and dates, the 
identification of the device being monitored, and the number 
of bytes received and transmitted by the network device. The 
data in text file 108 have been collected via server A102 and 
the data in text file 110 have been collected by server B 106. 
At a predetermined time, text file 110 is copied to server A 
102 and text file 108 is copied to server B 106 as will be 
described further herein. The server charged with processing 
the raw data into clean data files is referred to herein as the 
“master server, while the partner server (referred to hereinas 
“slave' server), in an auxiliary capacity, performs little func 
tion unless the master server fails in its duties. For illustrative 
purposes, server A102 is initially deemed the master server. 
It is important to note that the active server is also referred to 
as the “local server, while the inactive server will be referred 
to as the “remote” server. 
Computed delta values for the raw data collected in text 

files 108 and 110 are held in database 112. Computed delta 
values are described further herein. Database 112 is prefer 
ably a relational database utilizing a relational database man 
agement system (DBMS) for allowing data to be stored in the 
form of related tables and which allow the data to be viewed 
in a variety of ways. Database 112 further houses a control 
table 116, a delta value table 118, and a last raw value table 
119, each of which is utilized by the data collection system. 
Control table 116 stores the name or identification of the 
server charged with updating database 112 (i.e., the master 
server) as well as the time of the hourly run by which the 
database was last updated. Delta value table 118 stores delta 
value computations of clean files produced by the data col 
lection system. Last raw value table 119 stores the last raw 
data point for a previous text file that is used in computing the 
data in delta value table 118. This is described further herein. 

Each of servers 102 and 106 also stores its own copy of a 
lock file 115 that is used to facilitate the serialization of hourly 
runs on each server. An hourly run refers to a completed text 
file that is awaiting or has completed computational process 
ing. Because the slave server may have had to wait up to an 
hour to actually begin operation, and because of uncertainties 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
regarding the speed of database 112 and the amount of time it 
takes for the hourly run to complete, the data collection sys 
tem uses lock file 115 to ensure that the current hourly run has 
completed before the next hourly run is allowed to begin. 
Lock file 115 records the nominal time of each hourly process 
currently running along with its process ID. The lock file is 
maintained and sorted by nominal time, and only the process 
listed first in the file is allowed to run. As each hourly process 
completes on each of servers 102 and 106, it is removed from 
the respective lock files 115 and the next hourly process 
begins. 

Either of servers 102 and 106, when acting in the capacity 
of master server, will storea clean data file 114. Clean data file 
114 is generated by reviewing the text file of the master server 
and filling in any missing information using information pro 
vided in the text file of the slave server. As described above, 
the master server refers to the server that is determined by the 
data collection system to have master control over the data 
computation process that occurs for each hourly run. A time 
stamp associated with the network system being monitored 
(see FIG. 2, fields 212 and 216) is provided in the text files to 
enable the data collection system to cross-reference the cor 
responding data samples between the text files. When the data 
collection system determines that the master server is not 
performing, the data collection system turns master control 
over to the slave server to continue processing data samples 
provided in the hourly run. By relinquishing master control 
only upon Such malfunction, and by limiting the transfer of 
control between data collection servers, the integrity of the 
data collected can be maximized since there will be fewer 
offsets that are otherwise caused by incidences of jitter. 
Network device 104 represents the device to be monitored. 

Network device 104 may include components generally asso 
ciated with computer network architecture Such as a router, a 
Switch, a gateway, a hub, etc. Data is collected from each 
physical port on the network device. Although not necessary 
to realize the advantages of the invention, network devices are 
typically located remotely from data collection servers. Mul 
tiple network devices may be monitored utilizing the data 
collection system. 

Servers 102 and 106 may be connected to network device 
104 via any Suitable communications link including wired or 
wireless technologies operable for receiving digital data. In a 
preferred embodiment, database 112 is stored in a data reposi 
tory and exists independently of servers 102 and 106 and is 
logically addressable from servers 102 and 106. 

Servers 102 and 106 perform simultaneous and redundant 
data sampling of network device 104, and the results are 
processed by the data collection system. As described above, 
the data collection system maintains one master server for 
directing and managing the computation processes but also 
possesses the intelligence to determine when to Switch overto 
the remote server to avoid data loss. This intelligence ensures 
minimization of data error caused by jitter and system fail 
U.S. 

Data collection system also includes two independent alert 
and safety mechanisms that monitor the collection process 
and generate messages when necessary to minimize loss of 
data due to system malfunctions or data corruption. These 
alert mechanisms are further described herein. 
Network administrator client system 120 refers to a com 

puter device operated by a network administrator or other 
system specialist. A network administrator of the data collec 
tion system can view network traffic in near real time, and 
resolve issues before they become disabling to the network 
via an alert system. Client system 120 receives email or 
similar communications from servers 102 and 106 via the 



US 8,285,847 B1 
5 

data collection system. These communications include alerts 
and error messages as described further herein. 
The data collection method uses two or more servers each 

running an identical set of processes to provide a reliable, 
redundant data collection service. A process to sample band 
width data via SNMP is run periodically (e.g., every five 
minutes on a five minute boundary) for each of the data 
collection servers retrieving the same data from the same set 
of network device. Data is collected from every physical port 
on each network device which is then appended to a text file. 
Each text file may comprise multiple sequential data samples 
(e.g., one hours worth of five minute data sampling). 

FIG. 2 illustrates a sample text file 200 comprising two 
5-minute data samplings of a network device. The first field 
202 of text file 200 indicates the time on the collecting server 
when the sample was gathered in standard UNIX time format 
(i.e., in seconds beginning Jan. 1, 1970). This is the nominal 
data collection time. That is, due to system load, etc., the data 
collection process started at 08:15:00 might not actually 
begin until 08:15:03. The time recorded in the text file would 
be 08:15:00, as this is the intended time of this sample. 

Fields 204-208 indicate the name, module, and index (re 
spectively) of the network device from which this data point 
was collected. Thus, fields 204-208 together describe a single 
physical port on a network device. 

Field 210 indicates the number of bytes received on this 
port since the ports free-running counter was last reset. This 
may be expressed as a 64-bit unsigned integer. Field 212 
represents the time on the network device at which the num 
ber of bytes from field 210 was sent. 

Field 214 indicates the number of bytes transmitted on this 
port by this single connection, since the ports free-running 
counter was last reset. This may be expressed as a 64-bit 
unsigned integer. Field 216 refers to the time on the network 
device at which the number of bytes of field 214 was trans 
mitted. 
The data collection system uses the data in fields 202-216 

to determine the number of bytes received and transmitted in 
the interval between data samples. This number is referred to 
hereinas a “delta value” and is used to monitor network traffic 
and bandwidth use. Successive values from Sampled data are 
Subtracted for the same physical port in determining these 
delta values. Additionally, text files can be stored as standal 
one files or can be concatenated by the data collection system 
as described further herein. 

FIG. 3 describes a high-level view of the data sampling 
process and Subsequent computations for determining band 
width usage. A detailed description of how the data collection 
system generates a clean data file (step 311) is described in 
FIGS. 4 and 5, while a detailed description of the delta value 
computation process (step 312) is described in FIG. 6. At step 
302, a data sample is collected simultaneously by servers 102 
and 106 at a designated time period. The data sample is 
written to corresponding first text files 108 and 110, respec 
tively, at step 304. Periodic samples continue to be collected 
at designated time intervals such as five-minute intervals. At 
step 306, the data collection process determines whether 
additional samples are to be collected for the text files. This 
will depend upon the interval of collection as well as the size 
of the text file. For illustrative purposes, each text file com 
prises five-minute samples for a sixty-minute duration (also 
referred to as an hourly run). If there are additional samplings 
needed for the text file at step 306, the process returns to step 
302. If the text file is complete at step 306, the data collection 
process begins a new text file at step 308 and the process 
repeats. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
The last raw data point from the first or previous text file is 

copied over to the new text file at step 310. Because it is 
possible that some ports were not sampled in the current run, 
step 310 is performed by scanning the current text file and 
recording the final sampled value for each port. For example, 
when a network device stops responding, the final values 
received from it are carried forward from one hourly run to the 
next. In order to prevent this from continuingad infinitum, the 
values carried forward are discarded if they were collected 
more than 24 hours ago or more than some other designated 
time period. At step 311, a clean data file is generated by the 
data collection process utilizing the two completed text files. 
As indicated above, step 311 is described in further detail in 
FIGS. 4 and 5. At step 312, delta values for the data samples 
for the previous or completed raw text files are computed. The 
computational process of step 312 is described further in FIG. 
6. By carrying over the last raw data point for each text file to 
the next text file, the data collection system allows for delta 
values to be computed for a completed text file without the 
need to access the entire previous text file. This feature also 
allows the text files to be concatenated for ongoing analysis of 
bandwidth usage. Computed delta values are stored in delta 
value table 118 at step 314. 

FIG. 4 is a flowchart describing the process of handling the 
redundant data of text files produced from the method 
described in FIG. 3. At step 402, the text file 110 for a 
completed hourly run is copied over to server 102 and the text 
file 108 is copied over to server 106. Servers 102 and 106 
query control table 116 to determine which server is the 
master server at step 404. This determination may be initially 
made by recording an identification of the preferred server in 
control table 116. Once this determination has been made, 
control of the data collection process preferably remains with 
the same server unless a failure or malfunction occurs. For 
purposes of illustration, the master server determined in step 
402 is server A102. Steps 406-420 representactions taken by 
server 102 in its capacity as master server. Steps 422-430 
represent actions taken by server 106 in its capacity as slave 
server. Steps 432-442 represent actions taken by server 106 
upon taking control as master server. 
At step 406, master server 102 checks for the existence of 

text files 108 and 110. If the data of the slave server text file 
110 is present (e.g., all data was received from server 106), 
then master server 102 records the time of the current hourly 
run in control table 116 at step 418 and proceeds to generate 
a clean data file at step 420. If the data from slave server 106 
is incomplete at step 408, master server 102 waits a predeter 
mined time period (e.g., 30 minutes) at step 410 in order to 
give slave server 106 time to provide its data. Once the wait is 
more than 10 minutes or some similar predetermined time 
limit at step 412, an alert is generated and sent to network 
administrator client system 120 at step 414, and master server 
102 continues to check to see if the data is received at step 
408. Alerts continue to be sent periodically throughout the 
wait period. This waiting continues until the predetermined 
time limit has been reached at step 412, whereupon master 
server 102 issues a message to network administrator client 
system 120 that the data was never received from slave server 
106 at step 416. Master server 102 then records the time of the 
current hourly run in control table 116 at step 418 in order to 
inform the slave server that it is updating database 112 and 
generates a clean data file utilizing the information in the text 
files 108 and 110, if present, at step 420. The time of the 
current hourly run is a nominal time indicating the time that 
the hourly run was scheduled, not necessarily the time that the 
hourly run was performed. The generation of a clean data file 



US 8,285,847 B1 
7 

is described further in FIG. 5, while the computational pro 
cess is further described in FIG. 6. 
Upon determining that server 106 is the slave server at step 

404, slave server 106 enters a loop waiting for master server 
102 to update the time of the last hourly run in control table 
116. Slave server 106 queries control table 116 to determine 
whether master server 102 recorded the hourly update at step 
422. If the hourly update is confirmed at step 424, slave server 
106 exits at step 425 because it knows that master server 102 
will complete the computational process. If, however, the 
query reveals that an hourly update has not occurred at step 
424, slave server 106 waits a predetermined amount of time 
(e.g. 60 minutes) at step 426 to allow master server 102 to 
update control table 116. Once the wait is more than 10 
minutes or some predetermined time limit at step 428, slave 
server 106 periodically sends alerts to network administrator 
client system 120 at step 430 as notification that master server 
102 has not updated control table 116. If the wait has reached 
sixty minutes at step 428 and no confirmation of the control 
table 116 hourly run update has been received, slave server 
106 records its host name or identification in control table 116 
at step 432 and updates the time of the last hourly run at step 
434. The slave server 106 now assumes the role as master 
server. As the master server, server 106 checks for the exist 
ence of text files 108 and 110 at step 436 and determines if the 
data from server 102's text file 108 is present at step 438. If 
both data files are not present at step 438, server 106 issues an 
error message to network administrator client system 120 at 
step 440 and proceeds. Server 106 then generates a clean file 
for the hourly run at step 442 as described in FIG. 5. 
As described in FIG. 1, lock file 115 is used by the data 

collection system in conjunction with control table 116 and 
locking mechanisms of database 112 to ensure that the cur 
rently hourly run has completed before the next hourly run is 
allowed to begin. 
The master server generates a clean data file by comparing 

the two text files 108 and 110, filling in missing information, 
if any, and merging the data as described further in FIG. 5. At 
step 502 the local and remote data is sorted by port identifi 
cation and then by time within each port. This transforms each 
hourly run text file into a number of small sections of data 
each of which contains the hour's data for one port. The data 
collection process starts with the initial sample gathered for 
the port from the local server. At step 504 the data collection 
system adds a designated time interval (e.g., 30,000/100ths of 
a second, or five minutes in the units of time used by the 
network device) to the time on the network device when that 
sample was gathered. This is the exact desired time of the next 
sample of five minutes (also referred to as “target network 
device time'). The data collection process examines the 
samples collected by the local and remote servers at step 506, 
and selects the one whose network device time most closely 
corresponds to the desired time at step 508. This process in 
steps 504-508 repeats until all data points in the text files have 
been processed at step 510 resulting in a clean text file. In this 
manner, the data collection process selects from the two 
streams of data a set of points whose times best approximate 
the desired five-minute intervals. This clean data file is then 
stored in a flat file in the master server that produced it at step 
512. Delta values are computed at step 514 and appended to 
delta value table 118 at step 516. Steps 514 and 516 are 
described in further detail in FIG. 6. 
The data collection system takes the clean data file from the 

master server and Subtracts Subsequent values for each port to 
compute delta values which are then appended to a delta value 
table in database 112. To minimize database table size, only 
the samples which have non-zero delta values are stored in the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
database 112. This automatically removes unused network 
ports from the recorded data and reduces table space to a 
manageable level. The last raw value table 119 contains the 
last raw data point that was used in a computation for each 
port being monitored. As indicated above, these values are 
also stored in the raw data files (text files) themselves so that 
these files can be processed in a stand-alone manner if nec 
essary, in the event of a catastrophic system failure. In the 
delta computation process of FIG. 6, the previous values in 
last raw value table 119 in database 112 are used to insure that 
when the slave server has to take over, it continues the delta 
computation from the point where the previous master left 
off. Any data points in the new file that precede in time the 
values of those in delta value table 118 are automatically 
ignored. This provides the ability to store redundant points in 
the raw data files as well as to concatenate raw data files for 
ease of storage. 

FIG. 6 describes how the data collection process computes 
the delta values for clean data files. Last raw value table 119 
is loaded into an array at step 602. The data collection process 
reads a data point from the input file (text file) at step 604 and 
then searches the array for the previous data point for the same 
port at step 606. At step 608, it is determined whether the time 
stamp on the data point from the file is the same or earlier than 
the value in the array. If so, the data point is redundant and is 
discarded at step 610. If the time stamp is later than the value 
in the array, the delta Values are computed and appended to 
delta value table 118 at step 612. The new data point from the 
file then replaces the value in the array to prepare for the next 
data point at Step 614. This process repeats until all data points 
have been processed at step 616. After the input file has been 
completely processed at step 616, the new contents of the 
array replace the values in the last raw value table 119 so that 
the next hourly run can be processed at step 618. 
As described in FIG. 4, the data collection process will 

issue error messages and alerts in the event that a problem is 
encountered. One drawback to these types of alerts is that if 
the process doesn’t run at all no alerts are generated. To 
remedy this problem, an independent and distinct monitoring 
process is run continuously to ensure that data continues to be 
collected. The five-minute sampling process and the hourly 
computational run may be started by the UNIX “cron’ pro 
cess which allows the exact hour and minute when each 
process runs to be specified. The monitoring process may be 
run by the master UNIX process “init' with the “respawn 
flag which ensures that the monitoring process will be 
restarted in the event it dies, provided that the UNIX server is 
operating. The conditions checked by the monitoring process 
may include: 

it has been no longer than 1.5 time periods (1.55 min 
utes=7.5 minutes) since data has been stored in the raw local 
data file by the five-minute sampling process; 

the remote data file has been set by the partner server if it is 
more than 10 minutes after the hour; 

a connection to database 112 can be established; 
log in attempts to database 112 are confirmed; 
it has been no longer than 1.5 hours since the last hourly 

update run began; and 
if there is data in database 112 for a particular network 

device within the last 24 hours, or some other predetermined 
time period, then it has not been more than two hours since the 
last time data was received from that device; should contact 
be lost with a network device, it will be two hours before an 
entity takes action; once 24 hours have elapsed, however, it is 
assumed that the device has been deprovisioned and will stop 
generating alerts. 



US 8,285,847 B1 
9 

The redundant operations of the data collection system 
coupled with its other features, allows for greater accuracy in 
the capture of data so that backbone providers can increase 
their profits without adding a new service or a new customer. 
The data collection system gathers data in five-minute inter 
vals every hour, processes it in real time, and delivers it to 
billing applications. 

The data collection system tracks data from various types 
of SNMP-enabled devices and displays Web based reports. 
Network traffic can be viewed in near real time, whereby an 
administrator can work to resolve issues at the time they are 
detected. The redundant data sampling and alert System 
facilitates greater accuracy in data collection, which provides 
enhanced reliability in the organization's billing structure. 
As described above, the present invention can be embodied 

in the form of computer-implemented processes and appara 
tuses for practicing those processes. The present invention 
can also be embodied in the form of computer program code 
containing instructions embodied in tangible media, Such as 
floppy diskettes, CD-ROMs, hard drives, or any other com 
puter-readable storage medium, wherein, when the computer 
program code is loaded into and executed by a computer, the 
computer becomes an apparatus for practicing the invention. 
The present invention can also be embodied in the form of 
computer program code, for example, whether stored in a 
storage medium, loaded into and/or executed by a computer, 
or transmitted over Some transmission medium, Such as over 
electrical wiring or cabling, through fiber optics, or via elec 
tromagnetic radiation, wherein, when the computer program 
code is loaded into and executed by a computer, the computer 
becomes an apparatus for practicing the invention. When 
implemented on a general-purpose microprocessor, the com 
puter program code segments configure the microprocessor 
to create specific logic circuits. 

While the invention has been described with reference to 
exemplary embodiments, it will be understood by those 
skilled in the art that various changes may be made and 
equivalents may be substituted for elements thereof without 
departing from the scope of the invention. In addition, many 
modifications may be made to adapt a particular situation or 
material to the teachings of the invention without departing 
from the essential scope thereof. Therefore, it is intended that 
the invention not be limited to the particular embodiments 
disclosed for carrying out this invention, but that the invention 
will include all embodiments falling within the scope of the 
claims. 

What is claimed is: 
1. A computer program product, Stored on a non-transitory 

computer medium including instructions for: 
producing a master text file via a master server and pro 

ducing a slave text file via at least one slave server; and 
generating a clean data file by filling in data missing in the 

master text file using data from the slave text file, com 
prising: 
Sorting, by a network device communicably coupled to 

the master server and the at least one slave server, data 
in the master text file and the slave text file; 

Sorting, by the network device, data samples by time of 
data collection; and 

for each of the data samples adding a designated interval 
of time to a time on the network device resulting in a 
target network device time, the time on the network 
device corresponding to a time the data sample was 
collected. 

2. The computer program product of claim 1, wherein the 
master text file and the slave text file each comprise: 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
a time on respective master and slave servers at which each 

of the data samples was gathered; and 
an identification of the network device. 
3. The computer program product of claim 2, comprising 

computing delta Values for the data samples in the clean data 
file, wherein computing the delta values comprising: 

for each data sample in the clean data file, Subtracting a 
number of bytes for a data sample from a number of 
bytes for a preceding data sample resulting in a delta 
value; 

using the delta values from consecutive corresponding data 
samples in the clean data file to determine a number of 
bytes received by, and transmitted from, the network 
device between the data sampling time intervals; and 

updating the clean data file with results of the determina 
tion. 

4. The computer program product of claim 3, comprising 
instructions for: 

for each data sampling run, defined by the data samples 
collected at predetermined time intervals, and over a 
predetermined time period, performing: 
querying a control table by the master server and the at 

least one slave server operable for determining which 
server assumes control over generating the clean data 
file; and 

querying the control table by the at least one slave server 
operable for determining whether the master server 
updated a current hourly run for a given text file. 

5. The computer program product of claim 4, comprising 
instructions for, if the current hourly run has not been updated 
upon reaching a predetermined time limit, updating the con 
trol table with an identification of a slave server and a current 
hourly run by the slave server, wherein the updating the 
control table is operable for notifying the master server that 
control is transferred to the slave server. 

6. The computer program product of claim 1, wherein the 
master text file and the slave text file each comprise: 

a number of bytes received on the network device for each 
of the data samples; and 

a time on the network device at which the number of bytes 
was received. 

7. The computer program product of claim 1, wherein the 
master text file and the slave text file each comprise: 

a number of bytes transmitted on the network device for 
each of the data samples; and 

a time on the network device at which the number of bytes 
was transmitted. 

8. The computer program product of claim 1, wherein 
producing a master text file by the master server and produc 
ing a slave text file by the at least one slave server comprises: 

scanning a recently completed master text file for a final 
sampled value and recording the final sampled value in a 
subsequent text file for the master server; 

using the final sampled value to concatenate consecutive 
master text files; and 

discarding the final sampled value if its time of collection 
exceeds a designated time limit. 

9. The computer program product of claim 1, wherein 
producing a slave text file by the at least one slave server 
comprises: 

scanning a recently completed slave server text file for a 
final sampled value and recording the final sampled 
value in a subsequent text file for the at least one slave 
server; 

using the final sampled value to concatenate consecutive 
slave text files; and 



US 8,285,847 B1 
11 

discarding the final sampled value if its time of collection 
exceeds a designated time limit. 

10. The computer program product of claim 1, comprising 
instructions for examining data samples in the master text file 
and the slave text file that correspond to the time the respec 
tive data samples was collected. 

11. The computer program product of claim 1, comprising 
instructions for selecting from one of the master text file and 
the slave text file the data sample with a collection time most 
closely matching the target network device time. 

12. The computer program product of claim 1, comprising 
instructions for storing the selected data sample in the clean 
data file. 

13. A computer application, that, when executed by a pro 
cessor in a computer: 

generates a first text file from a first server and generates a 
second text file from a second server wherein the first 
server and the second server access a network device and 
wherein the first text file and the second text file receive 
time stamps and an identification of the network device; 

compares the first text file with the second text file to 
determine data contained in the second text file and not 
contained in the first text file; 

creates a third text file comprising contents of the first text 
file Supplemented with data contained in the second text 
file and not contained in the first text file; and 

adds a first interval of time to the first time on a network 
device for each collection of text files wherein the result 
comprises a target network device time. 

14. The computer application of claim 13, wherein the first 
server and the first text file are authoritative and wherein the 
second server and the second text file become authoritative 
upon a failure detected at the first server. 

15. The computer application of claim 13, wherein the third 
text file is a clean data file and receives data samples at each 
occurrence of the target network device time and wherein 
data samples are selected from one of the first text file and the 
second text file based on collection times most closely match 
ing the target network device time. 

16. The computer application of claim 13, wherein the first 
text file and the second text file each comprise a first quantity 
of bytes received on the network device and a second quantity 
ofbytes transmitted on the network device for each of the data 
samples and times on the network device at which the first 
quantity of bytes was received and the second quantity of 
bytes was transmitted. 

17. The computer application of claim 13, wherein the 
computer application: 

10 

15 

25 

30 

35 

40 

45 

12 
Subtracts a quantity of bytes for a data sample in the clean 

data file from a number of bytes for a preceding data 
sample, wherein the result is a delta value; 

determines a number of bytes received by the network 
device between the data sampling time intervals; 

determines a number of bytes transmitted by the network 
device between the data sampling time intervals; and 

records the results of the determinations in the clean data 
file. 

18. The computer application of claim 13, wherein the 
application scans a recently completed first text file for a final 
sampled value, records the final sampled value in a Subse 
quent first text file, and uses the final sampled value to con 
catenate consecutive first text files, wherein the final sampled 
value is discarded if its time of collection exceeds a desig 
nated time limit. 

19. The computer application of claim 13, wherein the 
computer application is one of stored on a non-transitory 
medium in the computer and provided electronically over a 
transmission medium and wherein the data collected on the 
network device is bandwidth data associated with the simple 
network management protocol (SNMP). 

20. A computer application, that, when executed by a pro 
cessor in a computer: 

generates a first text file from a first server and generates a 
second text file from a second server wherein the first 
text file and the second text file collect data samples in 
data sampling runs conducted at regular intervals from a 
network device; 

generates a clean data file by adding data missing from the 
first text file using data from the second text file wherein 
the first server is authoritative by default in generating 
the clean data file; 

queries a control table for each sampling run to determine 
which server controls data computation activities, the 
activities comprising generating the clean data file; 

queries the control table to determine whether the first 
server updated a current run for a given text file; 

determines from the query of the control table that the 
current run has not been updated by the first server upon 
reaching a predetermined time limit; and 

updates the control table with an identification of the sec 
ond server and a current run by the second server 
wherein updating the control table notifies the first 
server that control is transferred to the second server. 


