a2 United States Patent

Mongiovi

US008285847B1

US 8,285,847 B1
*Oct. 9, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(63)

(1)

(52)
(58)

METHOD, SYSTEM, AND STORAGE
MEDIUM FOR COLLECTING SNMP
BANDWIDTH DATA

Inventor: Roy Mongiovi, Tucker, GA (US)

Assignee:

Open Invention Network LLC,
Durham, NC (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/338,385

Filed: Dec. 28, 2011

Related U.S. Application Data

Continuation of application No. 13/080,905, filed on
Apr. 6, 2011, now Pat. No. 8,127,006, which is a
continuation of application No. 12/414,557, filed on
Mar. 30, 2009, now Pat. No. 7,937,466, which is a
continuation of application No. 11/842,646, filed on
Aug. 21, 2007, now Pat. No. 7,631,075, which is a
continuation of application No. 10/643,407, filed on
Aug. 18, 2003, now Pat. No. 7,260,630.

Int. CI.

GO6F 11/00 (2006.01)

US.CL . 709/224; 714/11; 714/13
Field of Classification Search 709/224,

709/223,203; 714/11,13,4.1
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,460,055 B1 10/2002 Midgley et al.
6,502,125 B1 12/2002 Kenner et al.
6,526,418 Bl 2/2003 Midgley et al.
6,587,432 Bl 7/2003 Putzolu et al.
6,625,623 Bl 9/2003 Midgley et al.
6,704,755 B2 3/2004 Midgley et al.
6,779,003 Bl 8/2004 Midgley et al.
6,847,984 Bl 1/2005 Midgley et al.
6,985,944 B2 1/2006 Aggarwal
7,203,176 B2 4/2007 Golikeri et al.
7,260,630 Bl 8/2007 Mongiovi
7,631,075 B2 12/2009 Mongiovi
7,801,130 B2 9/2010 Sheppard et al.
7,937,466 B2 5/2011 Mongiovi
8,127,006 B2* 2/2012 Mongioviccccecvevene 709/224

* cited by examiner

Primary Examiner — Kenneth R Coulter
(74) Attorney, Agent, or Firm — Haynes and Boone, LL.P

(57) ABSTRACT

A method, system, and storage medium for collecting band-
width data is provided. The method includes producing mas-
ter and slave text files in response to simultaneous collection
of data samples from a network device by servers. The
method also includes generating a clean data file by sorting
data in the master and slave text files by the network device
port, sorting data samples for the port by collection time, and
for each of the samples: adding a designated interval of time
to a time on the network device resulting in a target network
device time whereby the time on the network device corre-
sponds to a time the data sample was collected, examining
data samples in the master and slave text files corresponding
to the time the respective data samples were collected, select-
ing from one of the master and slave text files the sample with
a collection time most closely matching the target network
device time, and storing the selected sample in the clean data
file.

20 Claims, 6 Drawing Sheets

SORT LOCAL & REMOTE DATA |-—302

ADD 5 MIN TO NETWORK
DEVICE TIME/SAMPLE

|—504

!

COMPARE TO SAMPLES COLLECTED BY |~ 506
LOCAL & REMOTE SERVER

|

SELECT & RECORD DATA POINT CLOSEST
TO NETWORK TIME OF STEP 404

—508

STORE CLEAN DATA FILE
IN MASTER SERVER 512

COMPUTE DELTA VALUES
FOR CLEAN FILE

514

I

APPEND DELTA VALUES TO
OELTA VALUE TABLE

516

US 8,285,847 B1

Sheet 1 of 6

Oct. 9, 2012

U.S. Patent

booId

301A30

SL1—]

JU4 HIOT

[t e e e

' Nv3ID L

T S

AHYOMIAN

+01

(e)

801

EJIERNREIR
vV 43IAH3S

oL

34 4X31
g 43AYIS

0ot

J8vL 3INTVA

2 -

Jigvi
JOYINOD

MY 1SV
5 m \ 38Vl
3NVA V1130
it

\

gt

Y Y3A¥3S

/

34 MO0 ~G1|
u._ﬁ%_wé .
3 Wanias 0t
v s 80!

ozt]

W3LSAS IN3ND

HOLVULSININGY MHOMI3N

U.S. Patent Oct. 9, 2012 Sheet 2 of 6 US 8,285,847 B1

208
216

202 204 N208) 5p 214
;

1057078500,bss Oatl,Ly,is,((,402986\5080,8,40298?5080 A\
1057078500,bss00atl,6,26,0,4029865080,0,402986 5080
1057078500,bss00atl,6,27,0,4029865080,0,4029865080 \
1057078500, hrsOeatl,6,1,0,2349289072,0,2349289072
10570783500,bss00atl,6,28,0,4029865080,0,4029865080
1057078500,hrs0eatl,6,2,0,2349289072,0,2349289072
1057078500,bss00atl,6,29,0,4029865080,0,4029865080
1057078500, hrs0eatl,6,3,0,2349289072,0,2349289072 5 MINUTE

: INTERVAL

#
*

1057078500,bss00atl,6,20,0,4029865080,0,402986 5080
1057078500,bss00atl,6,21,0,4029865080,0,4029865080
1057078500,bss00at],6,22,0,4029865080,0,4029865080
1057078500,bss00at],6,23,0,4029865080,0,4029865080]
1057078500,bss00atL,6,24,0,4029865080,0,4029865080 _

1057078500,bss00at,1,1,21658569386232,4029894782,259154417765719,4029894782
1057078500, bss00at], 1,2,987492443 140,4029894782,130889375955323,4029894782
1057078500,bss00atl, 15,1,3626280411,4029894782,0,4029894782
1057078500,bss00at],3,1,267462255790100,4029894782,6588215188433,4029894782
1057078500,bss00atl,3,2,66,4029894782,66,4029894782
1057078500,bss00atl,3,3,1314393,4029894782,66,4029894782

1057078500,bss00at],3,4,13255257446409,4029894782,2732623491216,4029894782 S MINUTE
* INTERVAL

*
®

1057078500,hrs13atl,9,48,52552836968,3890892546,1311625801,3890892546
1057078500,hrs13atl,2,1,3534658483,3800892546,783485301,3890892546
1057078500,hrs13at],2,2,967,3890892546,967,3890892546 AJ/

FiG. 2

U.S. Patent

Oct. 9,2012 Sheet 3 of 6

COLLECT DATA SAMPLE

502

4

COPY DATA SAMPLE
TO TEXT FILE

306

<

| Yes

304

BEGIN NEW TEXT FILE

308

COPY FINAL RAW DATA
POINT TO NEW TEXT FILE

¥

CREATE CLEAN DATA FILE
(SEE FIGS. 4 & 5)

——311

COMPLETED TEXT FILE
(SEE FIG. 6)

COMPUTE DELTA VALUES FOR

| — 312

Y

STORE DELTA VALUES IN
DELTA VALUE TABLE
(SEE FIG. 6)

L~ 314

FIG. 3

US 8,285,847 B1

U.S. Patent Oct. 9, 2012 Sheet 4 of 6 US 8,285,847 B1

IEOPY TEXT FILES TO PARTNER SERVER|-—402

L
A& B aueRr P 404

S FLE/MASTER [—————— 4/22
SERVER
MS LOOKS FOR QUERY CONTROL FILE
TEXT FILES A & B[4006 FOR HOURLY UPDATE

408

414

T

RECORD NAME | -432

ISSUE | -416 IN CONTROL FILE
MESSAGE
A
; UPDATE TIME OF LAST | -434
RECORD TIME OF 418 HOURLY RUN
L—{CURRENT HOURLY RUN}" IN CONTROL FILE

IN CONTROL TABLE

3
[[LooK FOR TEXT FILES]~436

GENERATE CLEAN |—420
DATA FILE (SEE FIG. 5) {438

DATA
PRESENT?
No

[1SSUE ERROR MESSAGE 440

GENERATE CLEAN
DATA FILE (SEE FIG. 5) 442

FIG. 4

U.S. Patent Oct. 9, 2012 Sheet 5 of 6 US 8,285,847 B1

SORT LOCAL & REMOTE DATA f——3502

f

_— 504
ADD 5 MIN TO NETWORK |,
DEVICE TIME/SAMPLE

Y

COMPARE TO SAMPLES COLLECTED BY |— 506
LOCAL & REMOTE SERVER

f

SELECT & RECORD DATA POINT CLOSEST
TO NETWORK TIME OF STEP 404 9508

510
No

FINISRED?

STORE CLEAN DATA FILE
IN MASTER SERVER |—912

| J

COMPUTE DELTA VALUES
FOR CLEAN FILE (SEE FIG. 6) |14

v

APPEND DELTA VALUES TO
DELTA VALUE TABLE (FIG. 6) {216

FIG. §

U.S. Patent Oct. 9, 2012 Sheet 6 of 6

TABLE INTO ARRAY

LOAD LAST RAW VALUE {602

1

US 8,285,847 B1

READ A DATA POINT FROM INPUT FILE

r

SEARCH ARRAY FOR
PREVIOUS DATA POINT

DISCARD DATA POINT

[

COMPUTE DELTA VALUES

APPEND TO DELTA VALUE TABLE

&

_— 606

y

|-—612

REPLACE DATA POINT FROM STEP 604
WITH NEW DATA POINT FROM STEP 612

—614

616

No

INPUT FILE
FINISHED?

REPLACE VALUES IN LAST RAW VALUE
TABLE WITH NEW CONTENTS OF ARRAY

_— 518

FiG. 6

US 8,285,847 B1

1

METHOD, SYSTEM, AND STORAGE
MEDIUM FOR COLLECTING SNMP
BANDWIDTH DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 13/080,905, filed Apr. 6, 2011, now U.S.
Pat. No. 8,127,006, which is a continuation of U.S. patent
application Ser. No. 12/414,557, filed Mar. 30, 2009, now
U.S. Pat. No. 7,937,466, which is a continuation of U.S.
patent application Ser. No. 11/842,646, filed Aug. 21, 2007,
now U.S. Pat. No. 7,631,075, which is a continuation of U.S.
patent application Ser. No. 10/643,407, filed Aug. 18, 2003,
now U.S. Pat. No. 7,260,630, the contents of which are incor-
porated by reference herein in their entirety.

BACKGROUND OF THE INVENTION

The present invention relates to network monitoring and
management systems, and more particularly, the present
invention relates to a method, system, and storage medium for
collecting SNMP bandwidth data for a network device.

The present invention relates to network monitoring and
management systems, and more particularly, the present
invention relates to a method, system, and storage medium for
collecting SNMP bandwidth data for a network device.

Many businesses today are transferring their network man-
agement activities to third parties, such as backbone provid-
ers, who are better skilled to build and maintain complex
network configurations. Such activities include web hosting,
VPN access, and other data transport activities, to name a few.
These third parties often rely on Simple Network Manage-
ment Protocol (SNMP) to track and monitor the network
devices they host. SNMP is used to collect statistics from
various types of network equipment. SNMP governs network
management and the monitoring of network devices and their
functions by sending messages to different parts of a network.
SNMP-compliant devices, called agents, store data about
themselves in Management Information Bases (MIBs) and
return this data to the SNMP requesters. SNMP is based on
user datagram protocol (UDP), which is an inherently unre-
liable protocol. As a result, current systems have not been
capable of guaranteeing the capture of all data samples.
Despite the use of timeouts and retransmissions, SNMP
request and response packets are not guaranteed to arrive at
their destination.

Backbone service providers require high quality data sam-
pling of network devices in order to generate accurate band-
width billing for these electronic business services. Raw data
tracked from network devices is often inaccurate or incom-
plete. Consequently, these providers often lose a significant
amount of their billing revenue.

What is needed, therefore, is a way to comprehensively
track the SNMP data received from network devices.

SUMMARY OF THE INVENTION

Exemplary embodiments of the invention relate to a
method, system, and storage medium for collecting band-
width data is provided. The method includes producing mas-
ter and slave text files in response to simultaneous collection
of data samples from a network device by servers. The
method also includes generating a clean data file by sorting
data in the master and slave text files by the network device
port, sorting data samples for the port by collection time, and

20

25

30

35

40

45

50

55

60

65

2

for each of the samples: adding a designated interval of time
to a time on the network device resulting in a target network
device time whereby the time on the network device corre-
sponds to a time the data sample was collected, examining
data samples in the master and slave text files corresponding
to the time the respective data samples were collected, select-
ing from one of the master and slave text files the sample with
a collection time most closely matching the target network
device time, and storing the selected sample in the clean data
file.

Other systems, methods, and/or computer program prod-
ucts according to embodiments will be or become apparent to
one with skill in the art upon review of the following drawings
and detailed description. It is intended that all such additional
systems, methods, and/or computer program products be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are
numbered alike in the several FIGURES:

FIG. 1 is a block diagram of a system upon which the data
collection system is implemented in an exemplary embodi-
ment;

FIG. 2 is a sample text file comprising two S-minute data
samples collected from a network device;

FIG. 3 is a flowchart describing a high-level view of the
data collection and computation activities performed by the
data collection system in an exemplary embodiment;

FIG. 4 is a flowchart describing the process of handling the
redundant data of text files produced from via the data col-
lection system in an exemplary embodiment;

FIG. 5 is a flowchart describing the process of generating a
clean data file via the data collection system in an exemplary
embodiment; and

FIG. 6 is a flowchart describing the process of computing
delta values for clean data files and computing bandwidth
usage via the data collection system in an exemplary embodi-
ment.

DETAILED DESCRIPTION OF THE INVENTION

The data collection system of the invention is a network
monitoring device that can be used for Ethernet, Token Ring,
FDDI, and other suitable networks. It can monitor a single
LAN or may be used in a distributed network with multiple
complex LANs and WANSs. Further, the data collection sys-
tem tracks data from various types of SNMP-enabled devices
and displays Web-based results. A network administrator of
the data collection system can view network traffic in near
real time, and resolve issues before they become disabling to
the network. An alert system tracks the performance of the
equipment monitoring the network devices and sends a mes-
sage to a network administrator when the equipment is not
responding.

The data collection system allows for two or more collect-
ing servers to collect SNMP data samples and to use one
server’s data to repair gaps in the data collected by the other
if any should occur. In theory, single values from one server’s
data could be plugged into the gaps in the other server’s data.
Because the two or more data collection servers are running
with synchronized time-of-day clocks, they should be collect-
ing data at precisely the same time. In practice, however, each
of' their system clocks will not be perfectly synchronized and
the load on the servers will not be identical, so they will not

US 8,285,847 B1

3

retrieve SNMP information from the network devices being
monitored at precisely the same time. Therefore, the gap
between samples when switching from one server’s datato a
partner server’s data will not produce an exact five-minute
interval. The process of plugging the holes in one server’s
data with samples from the other server(s) essentially
switches the data stream from one server to the other(s) and
then immediately back, resulting in jitter that occurs twice for
each gap filled in the five-minute sample—once upon switch-
ing over to the partner server, and again upon switching back
to the original collecting server. The data collection system of
the invention minimizes the occurrence of switching between
servers, resulting in fewer incidences of jitter in the resultant
bandwidth data.

FIG. 1 illustrates a block diagram of a system upon which
the data collection system of the invention is implemented.
System 100 includes data collection servers 102 and 106 (also
referred to as “collecting servers”) that perform simultaneous
data sampling of a network device 104 and store the data
internally in text files 108 and 110, respectively. Servers 102
and 106 may comprise any suitable multi-processing devices
typically used in a data-sampling environment. While the
invention is described with respect to two servers, it will be
understood by those skilled in the art that multiple servers
may be utilized in the data sampling and bandwidth compu-
tation processes described herein.

A sample text file with sampling data is illustrated in FIG.
2. Text files 108 and 110 store raw data received from the data
sampling activities, including collection times and dates, the
identification of the device being monitored, and the number
of'bytes received and transmitted by the network device. The
data in text file 108 have been collected via server A 102 and
the data in text file 110 have been collected by server B 106.
At a predetermined time, text file 110 is copied to server A
102 and text file 108 is copied to server B 106 as will be
described further herein. The server charged with processing
the raw data into clean data files is referred to herein as the
“master” server, while the partner server (referred to herein as
“slave” server), in an auxiliary capacity, performs little func-
tion unless the master server fails in its duties. For illustrative
purposes, server A 102 is initially deemed the master server.
It is important to note that the active server is also referred to
as the “local” server, while the inactive server will be referred
to as the “remote” server.

Computed delta values for the raw data collected in text
files 108 and 110 are held in database 112. Computed delta
values are described further herein. Database 112 is prefer-
ably a relational database utilizing a relational database man-
agement system (DBMS) for allowing data to be stored in the
form of related tables and which allow the data to be viewed
in a variety of ways. Database 112 further houses a control
table 116, a delta value table 118, and a last raw value table
119, each of which is utilized by the data collection system.
Control table 116 stores the name or identification of the
server charged with updating database 112 (i.e., the master
server) as well as the time of the hourly run by which the
database was last updated. Delta value table 118 stores delta
value computations of clean files produced by the data col-
lection system. Last raw value table 119 stores the last raw
data point for a previous text file that is used in computing the
data in delta value table 118. This is described further herein.

Each of servers 102 and 106 also stores its own copy of a
lock file 115 that is used to facilitate the serialization of hourly
runs on each server. An hourly run refers to a completed text
file that is awaiting or has completed computational process-
ing. Because the slave server may have had to wait up to an
hour to actually begin operation, and because of uncertainties

20

25

30

35

40

45

50

55

60

65

4

regarding the speed of database 112 and the amount of time it
takes for the hourly run to complete, the data collection sys-
tem uses lock file 115 to ensure that the current hourly run has
completed before the next hourly run is allowed to begin.
Lock file 115 records the nominal time of each hourly process
currently running along with its process ID. The lock file is
maintained and sorted by nominal time, and only the process
listed first in the file is allowed to run. As each hourly process
completes on each of servers 102 and 106, it is removed from
the respective lock files 115 and the next hourly process
begins.

Either of servers 102 and 106, when acting in the capacity
of master server, will store a clean data file 114. Clean data file
114 is generated by reviewing the text file of the master server
and filling in any missing information using information pro-
vided in the text file of the slave server. As described above,
the master server refers to the server that is determined by the
data collection system to have master control over the data
computation process that occurs for each hourly run. A time
stamp associated with the network system being monitored
(see FIG. 2, fields 212 and 216) is provided in the text files to
enable the data collection system to cross-reference the cor-
responding data samples between the text files. When the data
collection system determines that the master server is not
performing, the data collection system turns master control
over to the slave server to continue processing data samples
provided in the hourly run. By relinquishing master control
only upon such malfunction, and by limiting the transfer of
control between data collection servers, the integrity of the
data collected can be maximized since there will be fewer
offsets that are otherwise caused by incidences of jitter.

Network device 104 represents the device to be monitored.
Network device 104 may include components generally asso-
ciated with computer network architecture such as a router, a
switch, a gateway, a hub, etc. Data is collected from each
physical port on the network device. Although not necessary
to realize the advantages of the invention, network devices are
typically located remotely from data collection servers. Mul-
tiple network devices may be monitored utilizing the data
collection system.

Servers 102 and 106 may be connected to network device
104 via any suitable communications link including wired or
wireless technologies operable for receiving digital data. In a
preferred embodiment, database 112 is stored in a data reposi-
tory and exists independently of servers 102 and 106 and is
logically addressable from servers 102 and 106.

Servers 102 and 106 perform simultaneous and redundant
data sampling of network device 104, and the results are
processed by the data collection system. As described above,
the data collection system maintains one master server for
directing and managing the computation processes but also
possesses the intelligence to determine when to switch over to
the remote server to avoid data loss. This intelligence ensures
minimization of data error caused by jitter and system fail-
ures.

Data collection system also includes two independent alert
and safety mechanisms that monitor the collection process
and generate messages when necessary to minimize loss of
data due to system malfunctions or data corruption. These
alert mechanisms are further described herein.

Network administrator client system 120 refers to a com-
puter device operated by a network administrator or other
system specialist. A network administrator of the data collec-
tion system can view network traffic in near real time, and
resolve issues before they become disabling to the network
via an alert system. Client system 120 receives email or
similar communications from servers 102 and 106 via the

US 8,285,847 B1

5

data collection system. These communications include alerts
and error messages as described further herein.

The data collection method uses two or more servers each
running an identical set of processes to provide a reliable,
redundant data collection service. A process to sample band-
width data via SNMP is run periodically (e.g., every five
minutes on a five minute boundary) for each of the data
collection servers retrieving the same data from the same set
of network device. Data is collected from every physical port
on each network device which is then appended to a text file.
Each text file may comprise multiple sequential data samples
(e.g., one hour’s worth of five minute data sampling).

FIG. 2 illustrates a sample text file 200 comprising two
S-minute data samplings of a network device. The first field
202 of text file 200 indicates the time on the collecting server
when the sample was gathered in standard UNIX time format
(i.e., in seconds beginning Jan. 1, 1970). This is the nominal
data collection time. That is, due to system load, etc., the data
collection process started at 08:15:00 might not actually
begin until 08:15:03. The time recorded in the text file would
be 08:15:00, as this is the intended time of this sample.

Fields 204-208 indicate the name, module, and index (re-
spectively) of the network device from which this data point
was collected. Thus, fields 204-208 together describe a single
physical port on a network device.

Field 210 indicates the number of bytes received on this
port since the port’s free-running counter was last reset. This
may be expressed as a 64-bit unsigned integer. Field 212
represents the time on the network device at which the num-
ber of bytes from field 210 was sent.

Field 214 indicates the number of bytes transmitted on this
port by this single connection, since the port’s free-running
counter was last reset. This may be expressed as a 64-bit
unsigned integer. Field 216 refers to the time on the network
device at which the number of bytes of field 214 was trans-
mitted.

The data collection system uses the data in fields 202-216
to determine the number of bytes received and transmitted in
the interval between data samples. This number is referred to
herein as a “delta value” and is used to monitor network traffic
and bandwidth use. Successive values from sampled data are
subtracted for the same physical port in determining these
delta values. Additionally, text files can be stored as standal-
one files or can be concatenated by the data collection system
as described further herein.

FIG. 3 describes a high-level view of the data sampling
process and subsequent computations for determining band-
width usage. A detailed description of how the data collection
system generates a clean data file (step 311) is described in
FIGS. 4 and 5, while a detailed description of the delta value
computation process (step 312) is described in FIG. 6. At step
302, a data sample is collected simultaneously by servers 102
and 106 at a designated time period. The data sample is
written to corresponding first text files 108 and 110, respec-
tively, at step 304. Periodic samples continue to be collected
at designated time intervals such as five-minute intervals. At
step 306, the data collection process determines whether
additional samples are to be collected for the text files. This
will depend upon the interval of collection as well as the size
of the text file. For illustrative purposes, each text file com-
prises five-minute samples for a sixty-minute duration (also
referred to as an hourly run). If there are additional samplings
needed for the text file at step 306, the process returns to step
302. If the text file is complete at step 306, the data collection
process begins a new text file at step 308 and the process
repeats.

20

25

30

40

45

55

60

6

The last raw data point from the first or previous text file is
copied over to the new text file at step 310. Because it is
possible that some ports were not sampled in the current run,
step 310 is performed by scanning the current text file and
recording the final sampled value for each port. For example,
when a network device stops responding, the final values
received from it are carried forward from one hourly run to the
next. In order to prevent this from continuing ad infinitum, the
values carried forward are discarded if they were collected
more than 24 hours ago or more than some other designated
time period. At step 311, a clean data file is generated by the
data collection process utilizing the two completed text files.
As indicated above, step 311 is described in further detail in
FIGS. 4 and 5. At step 312, delta values for the data samples
for the previous or completed raw text files are computed. The
computational process of step 312 is described further in FIG.
6. By carrying over the last raw data point for each text file to
the next text file, the data collection system allows for delta
values to be computed for a completed text file without the
need to access the entire previous text file. This feature also
allows the text files to be concatenated for ongoing analysis of
bandwidth usage. Computed delta values are stored in delta
value table 118 at step 314.

FIG. 4 is a flowchart describing the process of handling the
redundant data of text files produced from the method
described in FIG. 3. At step 402, the text file 110 for a
completed hourly run is copied over to server 102 and the text
file 108 is copied over to server 106. Servers 102 and 106
query control table 116 to determine which server is the
master server at step 404. This determination may be initially
made by recording an identification of the preferred server in
control table 116. Once this determination has been made,
control of the data collection process preferably remains with
the same server unless a failure or malfunction occurs. For
purposes of illustration, the master server determined in step
402 is server A 102. Steps 406-420 represent actions taken by
server 102 in its capacity as master server. Steps 422-430
represent actions taken by server 106 in its capacity as slave
server. Steps 432-442 represent actions taken by server 106
upon taking control as master server.

At step 406, master server 102 checks for the existence of
text files 108 and 110. If the data of the slave server text file
110 is present (e.g., all data was received from server 106),
then master server 102 records the time of the current hourly
run in control table 116 at step 418 and proceeds to generate
a clean data file at step 420. If the data from slave server 106
is incomplete at step 408, master server 102 waits a predeter-
mined time period (e.g., 30 minutes) at step 410 in order to
give slave server 106 time to provide its data. Once the wait is
more than 10 minutes or some similar predetermined time
limit at step 412, an alert is generated and sent to network
administrator client system 120 at step 414, and master server
102 continues to check to see if the data is received at step
408. Alerts continue to be sent periodically throughout the
wait period. This waiting continues until the predetermined
time limit has been reached at step 412, whereupon master
server 102 issues a message to network administrator client
system 120 that the data was never received from slave server
106 at step 416. Master server 102 then records the time of the
current hourly run in control table 116 at step 418 in order to
inform the slave server that it is updating database 112 and
generates a clean data file utilizing the information in the text
files 108 and 110, if present, at step 420. The time of the
current hourly run is a nominal time indicating the time that
the hourly run was scheduled, not necessarily the time that the
hourly run was performed. The generation of a clean data file

US 8,285,847 B1

7

is described further in FIG. 5, while the computational pro-
cess is further described in FIG. 6.

Upon determining that server 106 is the slave server at step
404, slave server 106 enters a loop waiting for master server
102 to update the time of the last hourly run in control table
116. Slave server 106 queries control table 116 to determine
whether master server 102 recorded the hourly update at step
422. Ifthe hourly update is confirmed at step 424, slave server
106 exits at step 425 because it knows that master server 102
will complete the computational process. If, however, the
query reveals that an hourly update has not occurred at step
424, slave server 106 waits a predetermined amount of time
(e.g. 60 minutes) at step 426 to allow master server 102 to
update control table 116. Once the wait is more than 10
minutes or some predetermined time limit at step 428, slave
server 106 periodically sends alerts to network administrator
client system 120 at step 430 as notification that master server
102 has not updated control table 116. If the wait has reached
sixty minutes at step 428 and no confirmation of the control
table 116 hourly run update has been received, slave server
106 records its host name or identification in control table 116
at step 432 and updates the time of the last hourly run at step
434. The slave server 106 now assumes the role as master
server. As the master server, server 106 checks for the exist-
ence of text files 108 and 110 at step 436 and determines if the
data from server 102’s text file 108 is present at step 438. If
both data files are not present at step 438, server 106 issues an
error message to network administrator client system 120 at
step 440 and proceeds. Server 106 then generates a clean file
for the hourly run at step 442 as described in FIG. 5.

As described in FIG. 1, lock file 115 is used by the data
collection system in conjunction with control table 116 and
locking mechanisms of database 112 to ensure that the cur-
rently hourly run has completed before the next hourly run is
allowed to begin.

The master server generates a clean data file by comparing
the two text files 108 and 110, filling in missing information,
if any, and merging the data as described further in FIG. 5. At
step 502 the local and remote data is sorted by port identifi-
cation and then by time within each port. This transforms each
hourly run text file into a number of small sections of data
each of which contains the hour’s data for one port. The data
collection process starts with the initial sample gathered for
the port from the local server. At step 504 the data collection
system adds a designated time interval (e.g., 30,000 Yiooths of
a second, or five minutes in the units of time used by the
network device) to the time on the network device when that
sample was gathered. This is the exact desired time of the next
sample of five minutes (also referred to as “target network
device time”). The data collection process examines the
samples collected by the local and remote servers at step 506,
and selects the one whose network device time most closely
corresponds to the desired time at step 508. This process in
steps 504-508 repeats until all data points in the text files have
been processed at step 510 resulting in a clean text file. In this
manner, the data collection process selects from the two
streams of data a set of points whose times best approximate
the desired five-minute intervals. This clean data file is then
stored in a flat file in the master server that produced it at step
512. Delta values are computed at step 514 and appended to
delta value table 118 at step 516. Steps 514 and 516 are
described in further detail in FIG. 6.

The data collection system takes the clean data file from the
master server and subtracts subsequent values for each port to
compute delta values which are then appended to a delta value
table in database 112. To minimize database table size, only
the samples which have non-zero delta values are stored in the

20

25

30

35

40

45

50

55

60

65

8

database 112. This automatically removes unused network
ports from the recorded data and reduces table space to a
manageable level. The last raw value table 119 contains the
last raw data point that was used in a computation for each
port being monitored. As indicated above, these values are
also stored in the raw data files (text files) themselves so that
these files can be processed in a stand-alone manner if nec-
essary, in the event of a catastrophic system failure. In the
delta computation process of FIG. 6, the previous values in
last raw value table 119 in database 112 are used to insure that
when the slave server has to take over, it continues the delta
computation from the point where the previous master left
off. Any data points in the new file that precede in time the
values of those in delta value table 118 are automatically
ignored. This provides the ability to store redundant points in
the raw data files as well as to concatenate raw data files for
ease of storage.

FIG. 6 describes how the data collection process computes
the delta values for clean data files. Last raw value table 119
is loaded into an array at step 602. The data collection process
reads a data point from the input file (text file) at step 604 and
then searches the array for the previous data point for the same
port at step 606. Atstep 608, it is determined whether the time
stamp on the data point from the file is the same or earlier than
the value in the array. If so, the data point is redundant and is
discarded at step 610. If the time stamp is later than the value
in the array, the delta values are computed and appended to
delta value table 118 at step 612. The new data point from the
file then replaces the value in the array to prepare for the next
data point at step 614. This process repeats until all data points
have been processed at step 616. After the input file has been
completely processed at step 616, the new contents of the
array replace the values in the last raw value table 119 so that
the next hourly run can be processed at step 618.

As described in FIG. 4, the data collection process will
issue error messages and alerts in the event that a problem is
encountered. One drawback to these types of alerts is that if
the process doesn’t run at all no alerts are generated. To
remedy this problem, an independent and distinct monitoring
process is run continuously to ensure that data continues to be
collected. The five-minute sampling process and the hourly
computational run may be started by the UNIX “cron” pro-
cess which allows the exact hour and minute when each
process runs to be specified. The monitoring process may be
run by the master UNIX process “init” with the “respawn”
flag which ensures that the monitoring process will be
restarted in the event it dies, provided that the UNIX server is
operating. The conditions checked by the monitoring process
may include:

it has been no longer than 1.5 time periods (1.5*5 min-
utes=7.5 minutes) since data has been stored in the raw local
data file by the five-minute sampling process;

the remote data file has been set by the partner server if it is
more than 10 minutes after the hour;

a connection to database 112 can be established;

log in attempts to database 112 are confirmed;

it has been no longer than 1.5 hours since the last hourly
update run began; and

if there is data in database 112 for a particular network
device within the last 24 hours, or some other predetermined
time period, then it has not been more than two hours since the
last time data was received from that device; should contact
be lost with a network device, it will be two hours before an
entity takes action; once 24 hours have elapsed, however, it is
assumed that the device has been deprovisioned and will stop
generating alerts.

US 8,285,847 B1

9

The redundant operations of the data collection system
coupled with its other features, allows for greater accuracy in
the capture of data so that backbone providers can increase
their profits without adding a new service or a new customer.
The data collection system gathers data in five-minute inter-
vals every hour, processes it in real time, and delivers it to
billing applications.

The data collection system tracks data from various types
of SNMP-enabled devices and displays Web based reports.
Network traffic can be viewed in near real time, whereby an
administrator can work to resolve issues at the time they are
detected. The redundant data sampling and alert system
facilitates greater accuracy in data collection, which provides
enhanced reliability in the organization’s billing structure.

As described above, the present invention can be embodied
in the form of computer-implemented processes and appara-
tuses for practicing those processes. The present invention
can also be embodied in the form of computer program code
containing instructions embodied in tangible media, such as
floppy diskettes, CD-ROMs, hard drives, or any other com-
puter-readable storage medium, wherein, when the computer
program code is loaded into and executed by a computer, the
computer becomes an apparatus for practicing the invention.
The present invention can also be embodied in the form of
computer program code, for example, whether stored in a
storage medium, loaded into and/or executed by a computer,
or transmitted over some transmission medium, such as over
electrical wiring or cabling, through fiber optics, or via elec-
tromagnetic radiation, wherein, when the computer program
code is loaded into and executed by a computer, the computer
becomes an apparatus for practicing the invention. When
implemented on a general-purpose microprocessor, the com-
puter program code segments configure the microprocessor
to create specific logic circuits.

While the invention has been described with reference to
exemplary embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the invention without departing
from the essential scope thereof. Therefore, it is intended that
the invention not be limited to the particular embodiments
disclosed for carrying out this invention, but that the invention
will include all embodiments falling within the scope of the
claims.

What is claimed is:
1. A computer program product, stored on a non-transitory
computer medium including instructions for:
producing a master text file via a master server and pro-
ducing a slave text file via at least one slave server; and
generating a clean data file by filling in data missing in the
master text file using data from the slave text file, com-
prising:
sorting, by a network device communicably coupled to
the master server and the at least one slave server, data
in the master text file and the slave text file;
sorting, by the network device, data samples by time of
data collection; and
for each of the data samples adding a designated interval
of time to a time on the network device resulting in a
target network device time, the time on the network
device corresponding to a time the data sample was
collected.
2. The computer program product of claim 1, wherein the
master text file and the slave text file each comprise:

5

20

25

30

35

40

45

50

65

10

atime on respective master and slave servers at which each

of the data samples was gathered; and

an identification of the network device.

3. The computer program product of claim 2, comprising
computing delta values for the data samples in the clean data
file, wherein computing the delta values comprising:

for each data sample in the clean data file, subtracting a

number of bytes for a data sample from a number of
bytes for a preceding data sample resulting in a delta
value;
using the delta values from consecutive corresponding data
samples in the clean data file to determine a number of
bytes received by, and transmitted from, the network
device between the data sampling time intervals; and

updating the clean data file with results of the determina-
tion.

4. The computer program product of claim 3, comprising
instructions for:

for each data sampling run, defined by the data samples

collected at predetermined time intervals, and over a

predetermined time period, performing:

querying a control table by the master server and the at
least one slave server operable for determining which
server assumes control over generating the clean data
file; and

querying the control table by the at least one slave server
operable for determining whether the master server
updated a current hourly run for a given text file.

5. The computer program product of claim 4, comprising
instructions for, if the current hourly run has not been updated
upon reaching a predetermined time limit, updating the con-
trol table with an identification of a slave server and a current
hourly run by the slave server, wherein the updating the
control table is operable for notifying the master server that
control is transferred to the slave server.

6. The computer program product of claim 1, wherein the
master text file and the slave text file each comprise:

a number of bytes received on the network device for each

of the data samples; and

a time on the network device at which the number of bytes

was received.

7. The computer program product of claim 1, wherein the
master text file and the slave text file each comprise:

a number of bytes transmitted on the network device for

each of the data samples; and

a time on the network device at which the number of bytes

was transmitted.

8. The computer program product of claim 1, wherein
producing a master text file by the master server and produc-
ing a slave text file by the at least one slave server comprises:

scanning a recently completed master text file for a final

sampled value and recording the final sampled value in a
subsequent text file for the master server;

using the final sampled value to concatenate consecutive

master text files; and

discarding the final sampled value if its time of collection

exceeds a designated time limit.

9. The computer program product of claim 1, wherein
producing a slave text file by the at least one slave server
comprises:

scanning a recently completed slave server text file for a

final sampled value and recording the final sampled
value in a subsequent text file for the at least one slave
server;

using the final sampled value to concatenate consecutive

slave text files; and

US 8,285,847 B1

11

discarding the final sampled value if its time of collection

exceeds a designated time limit.
10. The computer program product of claim 1, comprising
instructions for examining data samples in the master text file
and the slave text file that correspond to the time the respec-
tive data samples was collected.
11. The computer program product of claim 1, comprising
instructions for selecting from one of the master text file and
the slave text file the data sample with a collection time most
closely matching the target network device time.
12. The computer program product of claim 1, comprising
instructions for storing the selected data sample in the clean
data file.
13. A computer application, that, when executed by a pro-
cessor in a computer:
generates a first text file from a first server and generates a
second text file from a second server wherein the first
server and the second server access a network device and
wherein the first text file and the second text file receive
time stamps and an identification of the network device;

compares the first text file with the second text file to
determine data contained in the second text file and not
contained in the first text file;

creates a third text file comprising contents of the first text

file supplemented with data contained in the second text
file and not contained in the first text file; and

adds a first interval of time to the first time on a network

device for each collection of text files wherein the result
comprises a target network device time.

14. The computer application of claim 13, wherein the first
server and the first text file are authoritative and wherein the
second server and the second text file become authoritative
upon a failure detected at the first server.

15. The computer application of claim 13, wherein the third
text file is a clean data file and receives data samples at each
occurrence of the target network device time and wherein
data samples are selected from one of'the first text file and the
second text file based on collection times most closely match-
ing the target network device time.

16. The computer application of claim 13, wherein the first
text file and the second text file each comprise a first quantity
of'bytes received on the network device and a second quantity
of’bytes transmitted on the network device for each of the data
samples and times on the network device at which the first
quantity of bytes was received and the second quantity of
bytes was transmitted.

17. The computer application of claim 13, wherein the
computer application:

20

25

30

40

45

12

subtracts a quantity of bytes for a data sample in the clean
data file from a number of bytes for a preceding data
sample, wherein the result is a delta value;

determines a number of bytes received by the network

device between the data sampling time intervals;
determines a number of bytes transmitted by the network
device between the data sampling time intervals; and
records the results of the determinations in the clean data
file.

18. The computer application of claim 13, wherein the
application scans a recently completed first text file for a final
sampled value, records the final sampled value in a subse-
quent first text file, and uses the final sampled value to con-
catenate consecutive first text files, wherein the final sampled
value is discarded if its time of collection exceeds a desig-
nated time limit.

19. The computer application of claim 13, wherein the
computer application is one of stored on a non-transitory
medium in the computer and provided electronically over a
transmission medium and wherein the data collected on the
network device is bandwidth data associated with the simple
network management protocol (SNMP).

20. A computer application, that, when executed by a pro-
cessor in a computer:

generates a first text file from a first server and generates a

second text file from a second server wherein the first
text file and the second text file collect data samples in
data sampling runs conducted at regular intervals from a
network device;

generates a clean data file by adding data missing from the

first text file using data from the second text file wherein
the first server is authoritative by default in generating
the clean data file;

queries a control table for each sampling run to determine

which server controls data computation activities, the
activities comprising generating the clean data file;
queries the control table to determine whether the first
server updated a current run for a given text file;
determines from the query of the control table that the
current run has not been updated by the first server upon
reaching a predetermined time limit; and
updates the control table with an identification of the sec-
ond server and a current run by the second server
wherein updating the control table notifies the first
server that control is transferred to the second server.

