A dialysis machine having a haemodialysis filter; an inlet branch carrying a dialysis solution to the filter; an outlet branch carrying the dialysis solution from the filter; an artery line carrying blood from a patient to the filter; a vein line carrying blood from the filter to the patient; a number of pumps for circulating both the blood and the dialysis solution; and a glucose concentration measuring device fitted to a circuit portion in which a solution containing the dialysate- treated blood, or components of it, circulates.
ABSTRACT

A dialysis machine having a haemodialysis filter; an inlet branch carrying a dialysis solution to the filter; an outlet branch carrying the dialysis solution from the filter; an artery line carrying blood from a patient to the filter; a vein line carrying blood from the filter to the patient; a number of pumps for circulating both the blood and the dialysis solution; and a glucose concentration measuring device fitted to a circuit portion in which a solution containing the dialysis-treated blood, or components of it, circulates.

(Figure 1)
DIALYSIS MACHINE WITH GLYCAEMIA CONTROL

The present invention relates to a dialysis machine with glycaemia control.

Dialysis is a blood-purifying method for restoring the water-salt balance of the blood, and for eliminating surplus water and toxins accumulating in the body as a result of renal failure, by releasing them to an electrolytic liquid similar to that of normal plasma not containing them, and which hereinafter is referred to as a "dialysis solution". The method itself comprises feeding blood from the patient's arm along a so-called artery line into the dialyzer, and feeding the purified blood from the dialyzer along a so-called vein line back to the patient.

In hemodiafiltration, to which the following description refers purely by way of example, blood is purified by both diffusion and convection. Purification by diffusion is achieved by balancing the concentrations of the blood and the dialysis solution flowing from opposite sides of a semipermeable membrane; while
purification by convection is achieved by forming a pressure gradient between the dialysis solution compartment and the blood compartment, in favour of the latter, so that plasma flows through the semipermeable membrane, taking with it also any toxins dissolved in it.

The dialysis solution contains none of the substances to be eliminated from the blood, such as urea, uric acid, creatinine, phosphorous, etc., but contains a precise quantity of other substances to be balanced, such as sodium, calcium, magnesium, potassium, etc.

As is known, many patients requiring dialysis treatment suffer from diabetes, in which case, it is vital to also ensure a correct balance of the glucose in the blood during dialysis treatment.

It is an object of the present invention to provide a dialysis machine designed to control the glucose level in the patient's blood during dialysis treatment.

According to the present invention, there is provided a dialysis machine comprising a haemodialysis filter; an inlet branch carrying a dialysis solution to said filter; an outlet branch carrying the dialysis solution from said filter; an artery line carrying blood from a patient to the filter; a vein line carrying blood from the filter to the patient; and a number of pumps for circulating both the blood and the dialysis solution; said machine being characterized by comprising a glucose concentration measuring device fitted to a circuit
portion in which a solution comprising the dialysis-treated blood, or components of it, circulates.

In a first preferred embodiment of the dialysis machine according to the present invention, the measuring device is fitted to the dialysis solution outlet branch.

In a second preferred embodiment, the dialysis machine according to the present invention comprises an isolated-ultrafiltration device located along the artery line of the patient's blood, and from which originates a branch line carrying the blood components and fitted with the glucose concentration measuring device.

Non-limiting embodiments of the invention will be described by way of example with reference to the accompanying drawings, in which:

Figure 1 shows a schematic of part of a first preferred embodiment of the dialysis machine according to the present invention;

Figure 2 shows a schematic of part of a second preferred embodiment of the dialysis machine according to the present invention.

Number 1 in Figure 1 indicates as a whole a first preferred embodiment of the dialysis machine (only shown partly) according to the present invention.

Machine 1 comprises a haemodialysis filter 2 (known and not described in detail); an artery line 3 carrying blood from a patient P to filter 2; a pump 3a fitted to artery line 3 to ensure blood flow; a vein line 4
carrying blood from filter 2 to patient P; an inlet branch 5 and outlet branch 6 carrying a dialysis solution to and from filter 2 respectively; a dialysis solution preparation device 7 connected to inlet branch 5; a glucose concentration measuring device 8 fitted to outlet branch 6; two pumps 9 and 10 fitted to dialysis solution inlet branch 5 and outlet branch 6 respectively; an infusion device 11 for injecting patient P with insulin; and a central control unit 12.

Central control unit 12 is connected to, and supplied with data from, glucose concentration measuring device 8, is connected to dialysis solution preparation device 7 to meter glucose into the solution as a function of the data from measuring device 8, and is connected to infusion device 11 to inject patient P with a quantity of insulin as a function of the data from measuring device 8.

Figure 1 shows two possible variations, in which the glucose concentration measuring device is indicated by dash lines. More specifically, a first variation comprises a measuring device 8a fitted along artery line 3, and a second possible variation comprises a measuring device 8b fitted along vein line 4.

Number 13 in Figure 2 indicates as a whole a second preferred embodiment of the dialysis machine (only shown partly) according to the present invention. Parts of machine 13 identical to those of machine 1 are indicated
using the same reference numbers, with no further description.

Machine 13 substantially differs from machine 1 by comprising an isolated-ultrafiltration device 14 located along artery line 3 to produce a quantity of ultrafiltrated plasma, which is fed into an artery branch line 15 fitted with a pump 16. Artery branch line 15 normally comprises an adsorption purifying device, and reconnects with artery line 3 along the portion extending between isolated-ultrafiltration device 14 and haemodialysis filter 2.

Alternatively, plasma water as opposed to ultrafiltrated plasma may be fed into artery branch line 15.

As shown in Figure 2, in machine 13, glucose concentration measuring device 8 is fitted to artery branch line 15 and connected, as in machine 1, to central control unit 12.

Measuring device 8 has a measuring sensitivity of 20-600 mg/dL, and operates on the basis of an electrochemical principle using the transformation of glucose by an oxidase glucose enzyme and the consequent production of free electrons. As will be obvious from the above description, the type of measuring device is in no way binding and therefore non-limiting.

The dialysis machine according to the present invention provides for continuously monitoring the
glucose concentration in the dialysis patient's blood. Moreover, machine 1 intervenes immediately to avoid subjecting the dialysis patient to clinical complications caused by too high or too low glucose levels in the blood. For which purpose, the machine comprises an intervention system comprising infusion device 11 and dialysis solution preparation device 7.

The machine according to the present invention may comprise an intervention system comprising infusion device 11 only, or preparation device 7 only.

In actual use, during dialysis treatment, central control unit 12 receives the glucose values in the patient's blood from measuring device 8, and, after comparing them with preset values, accordingly controls preparation device 7 and/or infusion device 11 on the basis of appropriate algorithms.
CLAIMS

1) A dialysis machine comprising a haemodialysis filter; an inlet branch carrying a dialysis solution to said filter; an outlet branch carrying the dialysis solution from said filter; an artery line carrying blood from a patient to the filter; a vein line carrying blood from the filter to the patient; a number of pumps for circulating both the blood and the dialysis solution; an isolated-ultrafiltration device located along the artery line of the patient's blood, and from which originates a branch line wherein ultrafiltrated plasma or plasma water circulates; and a glucose concentration measuring device fitted to said branch line; wherein said machine comprises a central control unit connected to both said measuring device to receive data relative to the glucose concentration in the blood, and to an intervention system for restoring a correct glucose concentration in the patient's blood as a function of the data from the measuring device; said intervention system comprising a dialysis solution preparation device for metering glucose into the dialysis solution and an insulin infusion device for injecting insulin into the patient undergoing dialysis.
2) A dialysis machine comprising a haemodialysis filter; an inlet branch carrying a dialysis solution to said filter; an outlet branch carrying the dialysis solution from said filter; an artery line carrying blood from a patient to the filter; a vein line carrying blood from the filter to the patient; a number of pumps for circulating both the blood and the dialysis solution; and a glucose concentration measuring device fitted to said vein line or to said arterial line or to dialysate outflow line; wherein said machine comprises a central control unit connected to both said measuring device to receive data relative to the glucose concentration in the blood, and to an intervention system for restoring a correct glucose concentration in the patient's blood as a function of the data from the measuring device; said intervention system comprising a dialysis solution preparation device for metering glucose into the dialysis solution and an insulin infusion device for injecting insulin into the patient undergoing dialysis.