
US 20210360009A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0360009 A1

David et al . (43) Pub . Date : Nov. 18 , 2021
)

Publication Classification (54) CENTRALIZED CONTROLLER
MANAGEMENT AND ANOMALY
DETECTION

(71) Applicant : Karamba Security Ltd. , Hod Hasharon
(IL)

(72) Inventors : Tal Efraim Ben David , Hogla (IL) ;
Assaf Harel , Ramat Hasharon (IL) ;
Amiram Dotan , Birmingham , MI (US) ;
David Barzilai , Hod Hasharon (IL)

(51) Int . Ci .
H04L 29/06 (2006.01)
H04L 12/26 (2006.01)
G06F 21/51 (2006.01)
H04L 12/40 (2006.01)
H04W 12/128 (2006.01)

(52) U.S. CI .
CPC H04L 63/1416 (2013.01) ; H04L 63/145

(2013.01) ; H04L 43/06 (2013.01) ; H04L
63/0236 (2013.01) ; G06F 21/51 (2013.01) ;
H04L 2209/84 (2013.01) ; H04L 63/1425

(2013.01) ; H04L 63/1441 (2013.01) ; H04W
12/128 (2021.01) ; H04L 2012/40215

(2013.01) ; H04L 12/40 (2013.01)

(73) Assignee : Karamba Security Ltd. , Hod Hasharon
(IL)

(21) Appl . No .: 17 / 302,936

(22) Filed : May 17 , 2021 (57) ABSTRACT

2

Related U.S. Application Data
(63) Continuation of application No. 16 / 441,229 , filed on

Jun . 14 , 2019 , now Pat . No. 11,012,451 , which is a
continuation of application No. 16 / 012,139 , filed on
Jun . 19 , 2018 , now Pat . No. 10,375,092 , which is a
continuation of application No. PCT / IB2017 / 051967 ,
filed on Apr. 5 , 2017 .

(60) Provisional application No. 62 / 346,895 , filed on Jun .
7 , 2016 , provisional application No. 62 / 319,178 , filed
on Apr. 6 , 2016 .

In one implementation , a method for providing security on
externally connected controllers includes receiving , at a
server system , operation information for a plurality of
instances of a controller , the plurality of instances being
installed across a plurality of devices ; statistically analyzing ,
by the server system , the operation information ; identifying ,
by the server system , one or more anomalous controller
behaviors based on the statistical analysis ; and providing , by
the server system , information regarding the one or more
anomalous controller behaviors on the controller as potential
security threats .

500

Receive Reports from
Multiple Different Devices / Controllers

502

Aggregate Reports in Database
504

Statistically Analyze Reports
and Device / Controller Behavior

506

Determine Baseline Device / Controller Behavior
508

Identify Anomalies
510

Generate Modification to Security Policy
512

Provide Security Policy Updates
to Devices / Controllers

514

128

100

120

126
E

Detect Anomalies

102

Malware

Provide Real - Time Controller / Device Information

Patent Application Publication

Controller Software

5 112

122

110

OT Device

* 114

o

104

B

Load Software and Security Policy

Controller

124

102

102

E

Policy Generation Computer System

Report Information on Controller Operation

Management Computer System

< / >

108

?

0

130

8

Nov. 18 , 2021 Sheet 1 of 7

User Interface
Device Status

106

108

132

?

116

C

Securely Operate According to Security Policy

1187
D

Block Malware Attempts

?

?

C1

C2

C3

Generate Custom Security Policy Automatically for Controller

?

?

?

108

C5

C6

134-7

C4 Malware Blocked - malware
A
- malware B

US 2021/0360009 A1

FIG . 1A

160a

1600

160C

150

A
: 1 >

< /

160n

Patent Application Publication

< / >

156a

152

ECU ,

ECU2
Security Layer Security Layer and Policy : and Policy

1566 1586

158a

ECUR

154

156n 158n

Security Layer and Policyn

Nov. 18 , 2021 Sheet 2 of 7

162

168
S

Real - Time Reporting

170

will 0 11:03 PM

166

164

Real - Time Status Information

Vehicle Status ECU :: OK
- 2 malware blocked

ECU2 : OK
- 1 malware blocked

Management Computer System

ECUN : OK
- 1 malware blocked

US 2021/0360009 A1

FIG . 1B

Device
231a

Device
231b

Device
231n

2002

Controller

Controller 230a

Controller 230b

230n

262

Patent Application Publication

220

Controller Device Report

Incident Report (s) 232a

Incident Report (s) 2325

Incident Report (s) 232n

Management System
210

Incident Report Aggregator 222

252
Aggregated) Anonymized Data

Network (s)
250

Anomaly Detector
224

260

212

Nov. 18 , 2021 Sheet 3 of 7

Security Policy Modifier
226

240

Report Transmitter228

Central Database

US 2021/0360009 A1

FIG . 2

3007

-318

Unknown Executable Blocked

Patent Application Publication

302

320

me day 17 2016 OB 34.12
Type : Unknown Executable senion Blocked

afetaria 2014

308

Malyore details :
File name : evil - app

304

306

exploit details :

Infects protec . Mic diwnloader

incidents

Recent activity :

310

Nov. 18 , 2021 Sheet 4 of 7

Connections :

316

312

Files created : lopp (frum music ... downxader

314

Active process

US 2021/0360009 A1

. 3
FIG . 3

Patent Application Publication Nov. 18 , 2021 Sheet 5 of 7 US 2021/0360009 A1

400

Receive Reports from
Multiple Different Devices / Controllers

402

Aggregate Reports in Database
404

Identify Malware Threats and Code Vulnerabilities
406

Determine Real - Time Status
of Population of Devices / Controllers

408

Generate Report
410

Transmit Report
412

FIG . 4

Patent Application Publication Nov. 18 , 2021 Sheet 6 of 7 US 2021/0360009 A1

500

Receive Reports from
Multiple Different Devices / Controllers

502

Aggregate Reports in Database
504

Statistically Analyze Reports
and Device / Controller Behavior

506

Determine Baseline Device / Controller Behavior
508

Identify Anomalies
510

Generate Modification to Security Policy
512

Provide Security Policy Updates
to Devices / Controllers

514 S4

FIG . 5

600

2919

608

606

604

612

620

Patent Application Publication

602

622

6107

maan
1

W

614

624 21

??

Nov. 18 , 2021 Sheet 7 of 7

680

670

666

899

674 672

664

09
?????

682

660 658
656

654

652
662

650

US 2021/0360009 A1

FIG . 6

US 2021/0360009 A1 Nov. 18 , 2021
1

CENTRALIZED CONTROLLER
MANAGEMENT AND ANOMALY

DETECTION

bug , research and learn how to exploit it in order to gain
control , and use the control to run the malware code .

SUMMARY
CROSS - REFERENCE TO RELATED

APPLICATION

[0001] This application is a continuation of PCT Applica
tion No. PCT / IB2017 / 051967 filed Apr. 5 , 2017 , which
claims priority to U.S. Application Ser . No. 62 / 319,178 , filed
on Apr. 6 , 2016 , and U.S. Application Ser . No. 62 / 346,895 ,
filed Jun . 7 , 2016 , the disclosures of which are incorporated
herein by reference .

TECHNICAL FIELD

[0002] This specification generally relates to security for
computer - based controllers , such as controllers for Internet
of Things (IoT) devices .

BACKGROUND

a

[0003] More devices are becoming “ smarter ” with hard
ware and software that permit them to communicate via the
internet , such as through cellular wireless networks , Wi - Fi ,
and Bluetooth . These internet - connected devices are often
identified as being part of the “ Internet of Things ” (IoT) ,
which is a term that broadly encompasses internet - connected
devices configured to transmit and receive information
related to their operation , such as status information . For
example , many consumer products are now IoT devices with
internet - connected features , such as home automation
devices (e.g. , wirelessly controllable light switches) , appli
ances (e.g. , smart refrigerators able to transmit images of the
fridge's contents) , and automobiles (e.g. , internet - connected
components , such as infotainment and navigation devices) .
For instance , modern vehicles can have over 100 controllers ,
or Electronic Control Units (ECUs) , that are responsible for
running most of the car's functions , such as the steering
wheel , engine , braking system , airbags , and navigation
systems .
[0004] Like any other externally connected computers ,
IoT devices (e.g. , ECUs in connected cars) are vulnerable to
cyber attack and have become targets for hackers . For
example , controllers on several makes and models of cars ,
such as the JEEP CHEROKEE , TOYOTA PRIUS , TESLA
MODEL S , and NISSAN LEAF , have been successfully
targeted and exploited by white hat hackers . Those hackers
were able to compromise the vehicles and take command of
nearly all of the control aspects , ranging from turning on the
radio and windshield wipers to killing the engine while the
car drove on the freeway . These exploits caused some of
these car manufacturers to issue a recall on affected vehicles .
[0005] Cyber attacks come in many forms and flavors , but
they generally share the same basic concepts : find a preex
isting security bug (vulnerability) in the system's software ,
exploit it , and run malware . A common security bugs is
neglecting to verify the size of input buffers , which hackers
can exploit by passing long buffers that get out of the
boundaries allocated for that buffer on the software stack . By
getting out of the buffer boundaries , hackers may be able to
access and change the pointer structure that controls the
functional flow of code , which hackers can use to direct the
controller to execute malware code . Although malware code
can vary (e.g. , keylogger , ransomware , e - mail spam) , the
exploitation mechanism is often similar — find a security

[0006] This document generally describes a technological
solution that hardens externally connected controllers (e.g. ,
ECUs) within an IoT device (e.g. , connected automobile)
against hackers . Customized security policies for controllers
can be automatically generated and added to controllers with
security layers without having to modify the underlying
controller software . Such security policies and layers be
implemented on controllers to ensure that only valid code
and valid behaviors are allowed to run on the controllers ,
which can maintain secure operation and prevent the attacks
from ever infiltrating the IoT device's infrastructure , such as
a car's Controller Area Network (CAN Bus) .
[0007] By focusing on hardening the controllers within
IoT devices / systems that are open to external access (via the
Internet , WiFi , Bluetooth , etc .) — meaning restricting the
operations and behavior of the controllers to a set of
expected operations and behaviors — the controllers can be
transformed from potential security vulnerabilities into gates
that prevent and block hacker attempts to get into the
controller's internal infrastructure , essentially stopping
hacker attacks on IoT devices . Endpoint security layers can
stop attacks on controller by blocking hackers at the gate
meaning an externally facing entry point into a device and / or
system , such as at externally facing ECUs in an automobile
that , if compromised , could provide access to the CAN Bus .
As a result , attacks cannot make it inside of an IoT device /
system , which can prevent access to and control of an IoT
device / system's functions .
[0008] This document describes four general aspects .
First , automatic security policy generation which includes
automatically generating custom security policies that can
be implemented on controllers without manual design . Sec
ond , secure controller operation and malware prevention
using custom security policies that have been incorporated
into controllers . Third , securely logging and reporting infor
mation on controller operation , such as the curr status of
a controller and blocked malware attempts , back to a central
management computer system in real time without affecting
controller performance / operation . Fourth , providing a cen
tralized computer system to aggregate information from
multiple devices using the same controllers , to provide for
global device / controller views and analytics , including iden
tifying and detecting anomalous controller operation .
[0009] While this document describes all four of these
aspects , this document focuses the fourth aspect — a central
ized computer system to aggregate information from mul
tiple devices using the same controllers , to provide for
global device / controller views and analytics , including iden
tifying and detecting anomalous controller operation .
[0010] In one implementation , a method for providing
security on externally connected controllers includes receiv
ing , at a server system , operation information for a plurality
of instances of a controller , the plurality of instances being
installed across a plurality of devices ; statistically analyzing ,
by the server system , the operation information ; identifying ,
by the server system , one or more anomalous controller
behaviors based on the statistical analysis ; and providing , by
the server system , information regarding the one or more
anomalous controller behaviors on the controller as potential
security threats .

a

a

US 2021/0360009 A1 Nov. 18 , 2021
2

a

a

[0011] Such a method can optionally include one or more
of the following features , which can be combined in each
possible sub - combination of features . The method can fur
ther include updating , by the server system , one or more
security policies to exclude performance of the one or more
anomalous controller behaviors in response to the informa
tion ; and pushing out the updated one or more security
policies to the plurality of devices . The plurality of instances
of the controller can block the one or more anomalous
controller behaviors from being performed on the controller
using the updated one or more security policies . The plu
rality of instances of the controller can include a security
middleware layer that is incorporated into operating systems
on the plurality of instances of the controller . The security
middleware layer can be positioned to restrict one or more
kernel processes of the operating system to operations that
are permitted according to the updated one or more security
policies . Updating the one or more security policies can
include removing information corresponding to the one or
more anomalous controller behaviors from one or more
whitelists that are part of the one or more security policies .
The one or more whitelists can define the operations that are
permitted . The one or more anomalous controller behaviors
can include a particular sequence of function calls . The
information removed from the one or more whitelists can
include function mappings outlining the particular sequence
of function calls . The one or more anomalous controller
behaviors can include receipt or transmission of a particular
network packet . The information removed from the one or
more whitelists can include one or more of : an IP address
specified in the particular network packet , a network port
specified in the particular network packet , and a payload
content type for the particular network packet . The one or
more anomalous controller behaviors can include execution
of a particular process . The information removed from the
one or more whitelists can include information identifying
the particular process . The controller can be an automotive
controller and the device is a vehicle . The operation infor
mation can include malware reports that identify malware
blocked on the plurality of instances of the controller , the
malware reports including copies of the blocked malware .
[0012] In another implementation , a method for providing
security on externally connected controllers can include
receiving , at a server system , real - time information identi
fying malware blocked by a security middleware layer
running on a controller that is part of a device ; aggregating ,
by the server system , the real - time information with real
time information from other controllers ; determining , by the
server system , aggregate information related to the blocked
malware on the controller ; generating , by the server system ,
a report that includes information identifying the blocked
malware on the controller and the aggregate information ;
and transmitting , by the server system and in real - time , the
report to a client computing device for a user who is
associated with the controller .
[0013] Such a method can optionally include one or more
of the following features , which can be combined in each
possible sub - combination of features . The real - time infor
mation can include a malware report that identify the
blocked malware , a portion of an operating system on the
controlled that was exploited by the blocked malware , and
a copy of the blocked malware . The report can include
information identifying the blocked malware , the exploited
portion of the operating system , and the copy of the blocked

malware . The aggregate information can include informa
tion regarding a current status of other instances of the
controller running on other devices . The aggregate informa
tion can include information regarding other instances of the
malware being blocked on other controllers . The controller
can be an automotive controller and the device is a vehicle .
[0014] Certain implementations can provide one or more
of the following advantages . For example , endpoint control
ler security can us an operating system (OS) agnostic
security agent and is built with an OS - specific middleware
and a general purpose security agent . Such a security agent
can be deployed in externally connected controllers to
perform a variety of security - related functions , such as enforcing automatically generated security policies , collect
ing forensics information and upload it to the cloud , and / or
providing anti - tampering features to prohibit hackers from
circumventing the security agents . Such OS - agnostic agents
can allow for endpoint security to be readily configured and
deployed across a wide variety of vehicle controllers and OS
environments .
[0015] In another example , the system can be integrated
with the OEM / manufacturer build environment for control
lers to automatically generate security agents and policies
that are specific to the controllers , which can then be
deployed to harden controllers and prevent security
breaches . For instance , a client (or other software applica
tion / module) integrated into a build environment for a
controller can scan the code and the binary for the controller ,
and automatically generate a security policy that is specific
to the controller . Such scanning and automatic generation
can include , for example , using static analysis tools and
techniques to identify the universe of permitted processes ,
binaries , scripts , network usage , and / or other controller
behaviors that are used to generate a customized security
policy for the controller . Such as security policy can include ,
for example , a whitelist (e.g. , identification of permitted
processes , binaries , functions , operations) , network firewall
(e.g. , identification of permitted network ports , IP
addresses) , functional graph (e.g. , mapping and / or sequence
of functions performed by a controller) , and / or additional
features that model permitted / designed behavior of the con
troller . Such automatic security policy generation (e.g. ,
during build , due to static analysis (and other tools , such as
simply signing on binaries to add to a whitelist)) can permit
for endpoint security to be added to controllers with little to
no effort on behalf of controller manufacturers / vendors , who
can simply run the automated security policy generator prior
to deployment in order to add endpoint security to their
controller .
[0016] In a further example , a server system (e.g. , cloud
base system) can be used to manage and monitor controllers
that are hardened with endpoint security . Such as server
system can processes and generate reports regarding con
trollers , such as information on detected and blocked mal
ware , the current state of controllers in a vehicle , and / or
other relevant information . Such reports can be at any of a
variety of levels of granularity , from vehicle - specific views
to manufacturer - specific views to the industry - wide views ,
which can be based on aggregated and anonymized user /
vehicle / manufacturer information . For instance , a server
system can collect forensics information in order to display
incident reports based on malware detection , to calculate
anomaly detection , to display current state of cars on the
roads , to provide a management console in order to enhance

a

a

US 2021/0360009 A1 Nov. 18 , 2021
3

[0022] FIG . 1B is a conceptual diagram of an example
system for implementing generating and implementing cus
tom security policies on example ECUs that are part of an
example vehicle .
[0023] FIG . 2 is a diagram of an example system for
detecting and reporting anomalies across a population of
controllers
[0024] FIG . 3 depicts an example interface for providing
an incident report for a controller .
[0025) FIG . 4 depicts an example process for generating
and transmitting real - time report data for a population of
controllers .
[0026] FIG . 5 depicts an example process for detecting
anomalies across a population of controllers .
[0027] FIG . 6 is a block diagram of example computing
devices .
[0028] Like reference numbers and designations in the
various drawings indicate like elements .

DETAILED DESCRIPTION

a

policies (in production and during build — i.e . the cloud
system is also connected to the project while it's being
developed) , and / or other relevant features . Such features can
allow for manufacturers , vendors , and / or other interested /
authorized parties (e.g. , government agencies) to better
understand both the micro and the macro security threats
that are posed by externally connected controllers as well as
the current security status (e.g. , secure , under attack) of
vehicles on the road . Such features can additionally permit
for anomaly detection based prevention , such as through
analyzing device measurements (e.g. , CPU load , memory
usage , I / O usage , etc.) that , by themselves , are not statisti
cally significant , but when analyzed over time can indicate
anomalies . For example , taking device measurements over
time , average values (e.g. , avg . CPU load , avg . memory
usage , avg . I / O usage , etc.) can be determined , and when
N > x , the standard deviation of the average is so small (e.g. ,
alpha < 0.00001) that it can serve as a base line for anomaly
prevention and not just detection — meaning it can be accu
rate enough to block anomalies before / while they are occur
ring instead of after they have occurred .
[0017] In another example , endpoint controller security
can permit detection that is much earlier than network - based
solutions , which often are not able to detect that malware has
compromised a controller until after the malware has had a
chance to run . In contrast , endpoint security detects the
malware before it has a chance to run on a controller , which
not only prevents the malware from ever being executed but
also determines that an operation is malware before it has
been executed .

[0018] In a further example , endpoint security can readily
be retrofitted for existing externally connected controllers
that were not originally designed or manufactured with
endpoint security in mind . This is possible through the
automatic security policy generation features described
above , which allow for security policies to be generated and
readily deployed for controllers with little effort from manu
facturers / vendors , and allow for endpoint security to be
added to controllers through simple controller updates .
Retrofitting can enhance security versions for existing
vehicles on the road today , regardless of whether they were
originally designed to include endpoint security .
[0019] In another example , rather than looking for hackers
that are already in an IoT device / system's internal network
(e.g. , CAN Bus , internally - facing controllers) , the disclosed
technology can detect and stop an attack from getting into
the internal network (e.g. , CAN Bus , other controllers) in the
first place . For example , the disclosed end - point solution can
provide an early intrusion detection system that can protect
externally connected controllers , which can allow for early
intrusion detection and identification of threats targeting the
IoT device / system and blocking exploits from infiltrating its
internal components , which can ensure device / system and / or
user safety .
[0020] Additional and / or alternative advantages are also
possible , as described below .

a

[0029] FIG . 1A is a conceptual diagram of an example
system 100 for generating and implementing a custom
security policy on an example controller . The example
system 100 includes a policy generation computer system
104 (e.g. , computer server system , cloud computing system ,
client computing device) that is programmed to automati
cally generate a custom security policy for a controller , an
example IoT device 112 (e.g. , ECU) that includes an
example controller 114 that will use the generated security
policy to operate securely and to prevent malware , and a
management computer system 122 (e.g. , computer server
system , cloud computing system , client computing device)
that is programmed to receive real - time controller informa
tion , to detect anomalous controller behavior , and to provide
an interface for users to view real - time controller / device
status information . Although not depicted , the system 104 ,
the IoT device 112 , and the system 122 can communicate
over one or more communication networks , such as the
internet , local area networks (LAN) , wide area networks
(WAN) , virtual private networks (VPN) , wired networks ,
wireless networks , mobile data networks , or any combina
tion thereof .
[0030] The policy generation computer system 104 can
receive controller software 102 , which can include an oper
ating system and / or applications that are to be run on a
controller . The controller software 102 can include binary
code , for example , which can be disassembled (e.g. , by the
policy generation computer system 104) prior to being
analyzed to generate a custom security policy . The policy
generation computer system 104 can use the controller
software to automatically generate a custom security policy
108 for the controller that is to execute the software 102 , as
indicated by step A (106) . For example , the computer system
104 can analyze the software 102 to determine a set of
operations and behaviors that are expected during operation
of a controller according to the software 102 , and can
incorporate those operations and behaviors into the custom
security policy 108 , which may include one
whitelists of permitted operations and / or behaviors . Gener
ating the security policy can additionally include generating
one or more signatures for components of the controller
software 102 , such as processes / functions that are part of the
software 102 , that can be used to verify that the code being
executed as part of the software 102 is authentic and has not

or more

BRIEF DESCRIPTION OF THE ATTACHMENTS

[0021] FIG . 1A is a conceptual diagram of an example
system for generating and implementing a custom security
policy on an example controller .

US 2021/0360009 A1 Nov. 18 , 2021
4

been modified / altered / replaced by malware . By automati
cally generating a security policy 108 from the controller
software 102meaning without needing manual design for
implementation / generation — the system 100 can reduce the
burden , cost , and time to generate and implement security
layers on controllers , which can increase controller security .
[0031] The policy generation can be performed by the
computer system 104 in a way that does not necessitate any
sort of modification to the controller software 102. For
example , the custom policy 108 can be separate from and
not rely on modification of the software 102 in order to
operate . By generating and implementing the security policy
108 without having to modify or alter the controller software
102 , the system 100 can additionally reduce the burden on
security layer implementation , which can increase security
layer implementation and overall controller security . For
example , if the controller software 102 were to be modified
in significant ways in order to incorporate the security policy
108 , the software 102 would need to be verified and tested
again after the security policy 108 has been integrated into
the system , which can slow time to deployment and can
delay the incorporation of security layers on controllers .
[0032] The computer system 104 (and / or other computer
systems , such as original equipment manufacturers (OEM))
can load the software 102 and the security policy 108 for the
controller 114 of the IoT device 112 , as indicated by step B
(110) . For example , the controller software 102 and the
security policy 108 can be flashed onto the controller 114 .
[0033] The controller 114 can securely operate using the
controller software 102 , which is confined to operating
within the confines of the security policy 108 , as indicated
by step C (116) . For example , the security policy 108 can
include whitelists (and other information) that designate
authorized behaviors and operations for the controller 114
that are within expected behavior according to the controller
software 102. Behaviors / operations that deviate from those
authorized behaviors / operations can be prevented from
occurring based on the security policy 108 hardening the
controller 114 against such behaviors / operations .
[0034] For example , the controller software 102 can
include one or more portions of code that make the control
ler 114 unsecure , which can potentially affect the security of
not only the controller 114 but the device 112 (and other
devices to which it is connected) . As described above ,
security vulnerabilities can come in any of a variety of
different types , such as buffer overrun vulnerabilities
through which a hacker could potentially modify the soft
ware stack to cause malware 120 to be loaded onto and
executed by the controller 114. By operating according the
security policy 108 on the controller 114 , such ma are
attempts can be blocked before the malware 120 is loaded /
executed by the controller 114 , as indicated by step D (118) .
[0035] Such hardening of the controller 114 meaning
restriction of the controller 114 to specific behaviors / opera
tions outlined in the security policy 108 can provide
endpoint security that provides an early intrusion detection
system with a variety of benefits . For example , it can allow
for early intrusion detection and warning of attacks by
identifying attack attempts before they are able to install / run
the malware 120 on the controller 114. It can also stops
attacks at the gate meaning preventing attacks from mak
ing it onto the controller 114 and the device 112 (as opposed
to other security solutions that attempt to identify malware
once it has already been installed / run on a controller) . It can

eliminate false positives (incorrect identification of attacks)
by restricting operation of the controller 114 to only the code
and applications that have explicit permission to run on the
controller , which can eliminate potential ambiguity (e.g. ,
either the code is part of the factory settings or not) . It can
also eliminates risk of the policy 108 becoming security
vulnerability itself by being outdated . For instance , by
custom generating the security policy 108 to match the
current version of the controller software 102 , the security
policy 108 can continue to harden the controller 114 as the
controller software 102 is updated over time . Additionally ,
this is in contrast to other security policies that may use
blacklists seeking to identify and prevent particular mal
ware . Such blacklists may require constant updating and
may continually run the risk of being outdated , which can
expose the controller 114 to potential vulnerabilities . By
using whitelists in the security policy 108 that outline
permitted behaviors / operations , the security policy 108 can
continue to protect the controller 114 even when new and yet
unknown malware attempts are launched against the con
troller 114 and device 112. Quality checks can also be
minimized , which can reduce time for deployment and
updates . For example , endpoint security layers can be iso
lated within the controller 114 , so there may not be a need
to rest the operation of the entire device 112 (or other
devices connected to the device 112) as part of the security
layer deployment .
[0036] The controller 114 can log information about its
operation , including blocked malware attempts as well as
information on secure operation of the controller 114 over
time . Traces of blocked malware attempts can include a
variety of information , such as the malware itself , the origin
of the malware (e.g. , IP address from which the malware
originated) , and information identifying the code segment
that provided the malware exploit . The controller 114 report
information on controller operation , as indicated by step E
(124) . Such reporting can be provided in real - time . For
example , the controller 114 can report malware traces in
response to the malware 120 is attempt being blocked . The
controller 114 can balance reporting with controller perfor
mance against the timeliness of reporting for less critical
information , such as information about secure operation of
the controller 114 during periods of time when no malware
attacks were attempted / blocked . For instance , such reports
can be delayed until periods of time when the controller 114
and / or the device 112 have at least a sufficient amount of
processing capacity and / or network bandwidth available .
[0037] The management computer system 122 can receive
reports from the controller 114 as well as from multiple other
controllers and devices , and can aggregate the reports into a
central database system . The reports can be used to provide
real - time controller / device information , as indicated by step
E (126) . For example , the computer system 122 can transmit
real - time information that is presented on client computing
devices (e.g. , mobile computing devices , laptops , desktop
computers) in user interfaces , such as the example user
interface 130 that includes status information 132 for
example controllers C1 - C6 and malware information 134
that identifies particular malware that has been blocked by
these controllers . The real - time information can be at any of
various levels of granularity , such as a device - level (status
information for a specific device) and / or a population - level
(status information across multiple devices / systems) .

US 2021/0360009 A1 Nov. 18 , 2021
5

[0038] The computer system 122 can additionally use the
information reported by controllers to detect anomalies , as
indicated by step E (128) . For example , the computer system
122 can use statistical analysis to identify operation / behav
iors that are outside of the normal operation of a controller ,
such as identifying a sequence of function calls that are a
statistical outlier outside of the normal operation of a
controller .
[0039] FIG . 1B is a conceptual diagram of an example
system 150 for implementing generating and implementing
custom security policies on example ECUs that are part of
an example vehicle 152. The example system 150 is an
example implementation of the system 100 to a specific IoT
context , which in this example is the vehicle 152. The
system 100 and the system 150 can be implemented in a
variety of other IoT contexts .
[0040] In this example , the vehicle 152 includes a control
system 154 that includes multiple ECUs 156a - n that each
have their own custom security policy 158a - n . Although not
depicted , the security policies 158a - n can be generated in a
similar manner described above with regard to FIG . 1A and
the policy generation computer system 104. The security
policies 158a - n can harden the ECUs 156a - n and can
effectively block malware attempts 160a - n , which can be
attempts by hackers to find a way into the CAN Bus of the
vehicle 152. While the vehicle 152 can include over a
hundred ECUs connected to the CAN Bus , only a few may
be open externally accessible to external networks outside
of the vehicle 152 , such as the internet) . These external
ECUs (e.g. , ECUs 156a - n) can be the gateways into the car
and the security policies 158a - n can stop attackers at these
gateways , which can significantly reduce , if not eliminate ,
the risk of attacks penetrating the car's network , which can
disrupt the car's operation .
[0041] For example , the security policies 158a - n can
include whitelists for permitted program binaries , processes ,
scripts , network behavior , and / or other devices , and can be
embedded within the ECUs 156a - n to ensure only explicitly
allowed code and behavior may run on it . By using the
security policies 158a - n that are specific to the ECUS
156a - n , any processes or functions that are outside of the
ECUs permitted / designed operating behavior can be imme
diately detected and stopped from running on the ECUS
156a - n . This can allow for the ECUs 156a - n to stop mali
cious code from ever being executed by and possibly taking
control of an ECUs ' operation .
[0042] For instance , hackers targeting the vehicle 152 can
use a “ dropper , ” which is a small piece of code or operation ,
to try to exploit a vulnerability and implant the malware
160a - n . The malware 160a - n is the code that ultimately
tampers with or takes control of the function of the vehicle
152 , which can cause significant damage and put the safety
of the driver and others on the road at risk . By adding an
endpoint security layers and policies 158a - n to ECUS
156a - n so that they use policies outlining whitelists of
permitted processes , binaries , etc. , the ECUs 156a - n are able
to provide an early intrusion detection system capable of
early detection of unexpected behavior or operation of a
dropper (example intrusions) and immediately report on the
attack attempt in real - time , as indicated by step 162. The
early intrusion detection and warning can give the original
equipment manufacturers (OEMs) and system providers of
the vehicle 152 (and its subparts) time to address the threat ,
as indicated by the computer system 164 providing real - time

status information to a client computing device 168 with
information 170 on malware that has been blocked across
the ECUs 156a - n (step 166) . For example , an alert on the
malware 160a - n can include the complete trail of the attack
on the ECUs 156a - n , including its source and path , so
vulnerabilities can be fixed and blocked to prevent any
malware from infiltrating the CAN Bus on the vehicle 152 .
[0043] Dropper and other hacker attempts to introduce the
malware 160a - n on the externally connected ECUs 156a - n
can be detected by the endpoint security layers and policies
158a - n as foreign code and can be blocked when they
attempts to run . For instance , such droppers and other hacker
attempts are not part of the factory settings for the ECUS
156a - n , so they can be blocked from running by the security
layers and policies 158a - n , which can stop them from
running and prevent them from doing anything to disrupt the
safe operation of the vehicle 152. If a dropper does succeed
in dropping the malware 160a - n onto the externally con
nected ECUs 156a - n , when the malware 160a - n attempt to
run on the ECUs 156a - n , the endpoint security layer and
policies 158a - n can detect it as foreign code and block its
attempts to run .
[0044] Endpoint security layers (e.g. , security policy 108 ,
security layer and policies 158a - n) can be implemented on
newly deployed controllers and can be retrofitted on previ
ously released controllers that may not have previously
included security layers . Such retrofitting can improve the
security of devices already in use and can be added as part
of regular software updates that drivers receive during
regular maintenance and updating . Once retrofitted , previ
ously deployed controllers can be protected with endpoint
security will be hardened against the cyber threats targeting
them .
[0045] FIG . 2 is a diagram of an example system 200 for
centrally managing a population of controllers and detecting
controller anomalies . The example system 200 can be simi
lar to the systems 122 and 164 described above with regard
to FIGS . 1A - B .
[0046] The system 200 can aggregate operation informa
tion , including reports of blocked malware and operational
logs , from multiple controllers and devices into a central
database , and can use the information to provide real - time
reports on device and controller security status . Real - time
reports can include , for example , current status information
across a population of controllers and devices / systems ,
including forensic information identify of malware attacks
and the security vulnerabilities in controller code that the
malware was attempting to exploit .
[0047] The system 200 can also use the aggregated opera
tional information to detect anomalies in controller and
device performance , which can be used to update security
policies . For example , a particular sequence of functions
may permitted under a custom security policy for a particu
lar controller , but may only occur infrequently and during
times when malware attacks are being blocked . Accordingly ,
the system 200 can determine that such a particular sequence
may be an anomaly that is a possible exploit to be used by
hackers , and can be removed from a process map providing
approved / validated sequences of processes that are used as
part of a custom security policy .
[0048] As shown in FIG . 2 , the example system 200
includes a management system 220. The management sys
tem 220 , for example , can be implemented using one or
more computer servers (s) 210. In some examples , the com

US 2021/0360009 A1 Nov. 18 , 2021
6

an

puting server (s) 210 can represent various forms of servers ,
including , but not limited to a network server , a web server ,
an application server , or a server farm . The computing
server (s) 210 may be configured to execute application code
associated with a variety of software components (e.g. ,
modules , objects , libraries , services , etc.) and / or hardware
components , including an incident report aggregator 222 ,
anomaly detector 224 , a security policy modifier 226 , and a
report transmitter 228. Two or more of the components 222 ,
224 , 226 , and 228 may be implemented on the same com
puting device , or on different devices , such as devices
included in a computer network , a peer - to - peer network , or
on a special purpose computer or special purpose processor .
Operations performed by each of the components 222 , 224 ,
226 , and 228 may be performed by a single computing
device , or may be distributed to multiple devices .
[0049] The example system 200 can include one or more
computing device (s) (e.g. , computing devices 212 and 262)
employed by users for sending data to and receiving data
from the security policy generation system 220. The com
puting devices 212 and 262 , for example , may be any
suitable type of computing device (e.g. , laptop or desktop
computer , tablet computer , smartphone , personal digital
assistant , or other stationary or portable device) . Among
other components , the computing devices 212 and 262 can
include one or more processors , computer readable media
that store software applications , input device (s) (e.g. , touch
screens , keyboards , computer mice , motion sensors , micro
phones , etc.) , output device (s) (e.g. , display screens , speak
ers , etc.) , and communications interfaces .
[0050] Various data sources (e.g. , databases , file systems ,
etc.) may maintain data used by the example system 200 and
its components . For example , the system 200 includes a
central database 240 that can include aggregated controller /
device information . The central database 240 , for example ,
can implement databases , file systems , and the like to add ,
remove , and maintain data used by the system 200 .
[0051] The computing server (s) 210 , the computing
devices 212 and 262 , and the central database 240 included
in the example system 200 can communicate over one or
more networks 250. The network (s) 250 may include a local
area network (LAN) , a WiFi network , a mobile telecommu
nications network , an intranet , the Internet , or any other
suitable network or any appropriate combination thereof .
[0052] The system 200 can include a plurality of control
lers 230a - n that , in this example , are spread across a
plurality of devices 231a - n (devices / systems may each
include more than one controller) . The controllers 230a - n
can transmit incident reports 232a - n to the computer system
210 , such as reports of malware attempts blocked , opera
tional logs (e.g. , operations performed on the controllers
230a - n , resource usage information at various times during
controller operation) , alerts regarding possible security risks
(e.g. , alerts regarding potential tampering with custom secu
rity layers on the controllers 230a - n) , and / or other appro
priate information . The incident report aggregator 222 of the
computer system 210 can receive and aggregate the infor
mation in a central database 240 (e.g. , cloud data storage
system) . The incident report aggregator 222 can anonymize
the data stored in the central database 240 so that it is able
to provide relevant and usable information for addressing
specific security threats without revealing personally iden
tifying information for users associated with the devices
231a - n .

[0053] In addition to storing reports , logs , and other infor
mation , the computer system 210 can maintain malware
code that has been blocked on the controllers 230a - n in the
central database 240. The computer system 210 and the
central database 240 can take additional precautions to
ensure that the malware code is segregated from any code
for generating or inclusion in security policies . The com
puter system 210 can analyze malware code samples to
identify operating system vulnerabilities on controllers and
can provide malware samples to manufacturers / developers
to better understand and patch these vulnerabilities .
[0054] The incident report aggregator 222 can additionally
be programmed to identify malware threats and code vul
nerabilities across population of similar devices 231a - n
and / or controllers 230a - n . For example , the report aggrega
tor 222 can be programmed to identify trends , such as
particular malware attack attempts (based on identification
of similar malware code samples from the central database
240) and particular controllers that include software bugs
providing potential exploits . The report aggregator 222 can ,
for instance , identify that a particular controller is vulnerable
to a particular attack , but that other controllers are not
susceptible to such an attack (i.e. , other controllers do not
include software bug providing potential exploit) .
[0055] The computer system 210 includes an anomaly
detector 224 that is programmed to detect anomalies and
improve security policy across population of similar devices
231a - n and / or controllers 230a - n . For example , the anomaly
detector 224 can detect anomalies in controller performance
and operation that , when viewed in isolation may not
indicate potential malware vulnerabilities , but when viewed
across a population of similar controllers can indicate
anomalous behavior that is an indicator of a potential
security threat . The anomaly detector 224 can use statistical
analysis on the data contained within the central database
240 to identify statistical outliers in controller performance ,
and can provide those outliers to a security policy modifier
226 , which can compare those outliers against controller
security policies to identify modifications to prohibit (carve
out) the anomalous behavior . For instance , a particular
controller security policy may permit function A to call
function X to call function C. However , such a sequence of
function calls may be performed infrequently and , when
coupled with blocked malware attacks (before , during , or
after the sequence of functions calls) , can indicate that such
a sequence is a malware vulnerability and should be
removed from the security policy (removed from the func
tion mapping for the controller) . The security policy modi
fier 226 can be programmed to modify corresponding secu
rity policies to remove anomalous features from being
permitted under the policy , and can cause policy updates to
be provided to relevant devices .
[0056] The report transmitter 228 can be programmed to
generate and transmit reports to computing devices that are
associated with manufacturers / developers , such as the com
puting device 260. The reports can include a variety of
information , such the status across a population of devices
231a - n and / or controllers 230a - n , current security attacks ,
code bugs that are providing attack vulnerabilities , compari
son of the population of devices 231a - n and / or controllers
230a - n against other groups of devices / controllers (e.g. ,
other versions of those devices and / or controllers , such as
versions provided by other manufacturers) . The reports can
include real - time information that is conveyed from the

US 2021/0360009 A1 Nov. 18 , 2021
7

controllers 230a - n in real - time to the computer system 210 ,
and relayed to the computing device 260 in real - time .
Manufacturers / developers (and other authorized users) of
the device 260 can additionally use report interface to drill
down into the specifics of particular security vulnerabilities
on a controller . Reports 262 can be output in various user
interfaces on the computing device 260 , such as graphical
user interfaces (GUI) , such as web browser interfaces ,
mobile app interfaces , and / or other appropriate interfaces .
[0057] FIG . 3 depicts an example interface 300 for pro
viding an incident report for a controller . Referring to FIG .
2 , for example , the example interface 300 can be presented
on a client computing device , such as the computing device
212 and / or the computing device 262 and can be used to
provide incident report information (e.g. , incident report (s)
232a , 232b , and 232c) received from controller / devices
(e.g. , controller (s) 230a , 230b , and 230c) . The information
in the interface 300 can be provided by a management
computer system , such as the management computer system
122 , the management computer system 164 , and / or the
management computer system 210 .
[0058] In the present example , the interface 300 includes
incident report information for a particular controller ,
including incident details 302 , such as a timestamp when the
incident occurred , a type of malware blocked (e.g. , execut
able , script) , and actions that was taken by the security layer
on the controller (e.g. , blocked , restarted controller) . The
interface 300 can also present malware information 304 ,
such as a name of the malware that was blocked (e.g. ,
malware file name) and a type of file (e.g. , executable ,
script) , as well as information on the exploit (security
vulnerability) on the controller that was used by the malware
in the attack (306) , such as a name of the infected / vulnerable
process and a specific function that was exploited by the
malware . The interface 300 can additionally include a fea
ture 308 through which a user of the interface 300 can
download the actual malware that was blocked .
[0059] The interface 300 can additionally include a section
of information that provides context for the malware attack
on the controller , including recent network activity infor
mation 310 (e.g. , recent network connections with host
identifications , transmission protocols , and ports) , informa
tion on files that have been recently created (312) , and
information on active processes that are currently running on
the controller (314) . The interface 300 can also include a
feature 316 through which a user can download an activity
log for the controller .
[0060] The interface 300 can also include features through
which other incidents and controllers within a device or
system can be viewed (e.g. , view information on other
controllers and / or incidents within a vehicle) , such as a link
to view an incident list (318) and links 320 to view other
groupings of controller - related information . Other interfaces
are also possible , such as the example interfaces 130 and 170
described above with regard to FIGS . 1A - B . Additionally ,
global / regional views of groups of controllers can also be
provided , such as maps , charts , and / or graphs depicting the
status , in aggregate , of the same controller installed across a
group of devices / systems . Similar views can also be pro
vided on a device / system level based on aggregate views of
controller (s) status .
[0061] FIG . 4 is a flowchart of an example technique 400
for reporting real - time controller information to client com
puting devices . The example technique 400 can be per

formed by any of a variety of management computer sys
tems , such as the management computer system 122 , the
management computer system 164 , and / or the management
computer system 210 .
[0062] Reports and other controller information can be
received from multiple different devices and controllers
(402) . The reports and controller information can be aggre
gated in a central database (404) . For example , the computer
system 210 can receive reports , logs , and other controller
information from the controllers 230a - n , which the com
puter system 210 can aggregate and organize in the central
database in one or more data structures to permit for ready
identification of related information and fast recall . For
example , the central database 240 may store information in
one or more hash tables where hashing is based on one or
more parameters that may be relevant to reports , such as
identifiers for types of controller and / or devices (to permit
for information relevant to a particular type of controller /
device to be retrieve quickly) . The central database 240 can
timestamp reports , logs , and other information received
from the controllers 230a - n , and may use techniques to
maintain the most recent information in storage locations
with faster recall (e.g. , flash memory) and can relegate older
information to cheaper storage locations with slower recall
(e.g. , hard drives) .
[0063] Malware threats and code vulnerabilities on con
trollers can be identified from the aggregated information
(406) . For example , for each particular instance in which
malware attempts are blocked , information about the par
ticular malware that was blocked can be identified (e.g. , file
name , type) and code exploits that were used by the malware
can be identified (e.g. , process , function , process / function
version , controller , device / system) . Some of this informa
tion can be included in malware reports that are received by
the computer system 210 from controllers 230a - n , and other
portions of the information can be determined from infor
mation included in the reports . Suggested code modifica
tions / fixes can be determined , such as through analysis of
the malware and the controller code that was the source of
the exploit . An example of such information is presented in
the interface 300 as information 304-306 .
[0064] In addition to determining information about a
specific blocked malware instance , the computer system 210
can determine a global context for the malware , such as
determining a prevalence of the malware attack on other
controllers and devices / systems (e.g. , frequency of blocked
instances over time on the same type of controller or
device / system , frequency of blocked instances across other
types of controllers or devices / systems) . The central data
base 240 can provide a pool of relevant information make
broader determinations about malware outside of a specific
instance . The computer system 210 can , for example , gen
erate statistics for a blocked malware instance , such as
statistics on which devices / systems and / or controllers are
affected , a context when attacks occurred (e.g. , network
connection , geolocation , operational state) , specific code
segments that are providing exploits , types of network
connections over which the malware is transmitted (e.g. ,
Wi - Fi , BLUETOOTH , cellular networks) , and / or IP
addresses / geolocations from which attacks originate . Addi
tionally , the computer system 210 can determine connec
tions and relationships between different malwares , such as
through comparing code segments and / or functional opera
tions that are included in malware obtained through reports .

a

US 2021/0360009 A1 Nov. 18 , 2021
8

a

2

a

Such relationships can additionally be used to provide a
global context for a malware attack . Such global information
can additionally be provided in an interface , such as the
interface 300 .
[0065] Real - time status for a population of devices / sys
tems and / or controllers can be determined (408) . For
example , the same controller may be installed on many
devices / systems . The computer system 210 can generate an
aggregate view of the status of controllers in this population
through accessing information contained in the central data
base 240. Status information can include , for instance , a
ratio of the number of controllers and / or devices / systems
that are under attack versus those not under attack .
[0066] Reports can be generated (410) . For example , the
computer system 210 can generate reports that include one
or more portions of the information described above with
regard to steps 402-408 . For instance , a report can include
real - time information on malware threats and code vulner
abilities , including identification of the malware attack ,
information on the malware attack , identification of the code
vulnerability and suggested fixes , a copy of the malware ,
global malware information , and real - time population infor
mation for the controller and / or device / system that experi
enced the attack . An example report is depicted in FIG . 3 .
The generated report can be transmitted to a client device for
presentation (412) .
[0067] FIG . 5 is a flowchart of an example technique 500
for detecting anomalies in controller operation that may
indicate malware attacks . The example technique 500 can be
performed by any of a variety of management computer
systems , such as the management computer system 122 , the
management computer system 164 , and / or the management
computer system 210 .
[0068] Report , logs , and other controller information from
multiple different devices and / or controllers can be received
(502) and aggregated into a central database (504) . Statis
tical analysis can be performed on the aggregated informa
tion (506) and can be used to determine baseline device)
system and / or controller behavior (508) . For example , the
computer system 210 can use the anomaly detector 224 to
identify baseline behavior for particular controller types ,
device / system types , and / or combinations of the two across
one or more facets , such as process / function sequences ,
network packet (e.g. , IP address , port , payload) , process /
function call frequency , device / system context (e.g. , opera
tional state , geolocation , network connection type) , and / or
resource usage (e.g. , CPU usage , memory allocations) . From
these baselines , anomalies can be identified (510) . For
example , the computer system 210 can identify behavior
that deviates from the baseline by at least a threshold
statistical deviation (e.g. , two or more standard deviations) .
From the identified anomalies , modifications to the security
policy can be generated (512) . For example , the computer
system 210 can use the security policy modifier 226 to
modify whitelists that are part of the security policy for a
controller to remove portions of the whitelist that permit the
anomalous behavior . Security policy updates can be pushed
out to devices / systems with controllers using the security
policy (514) .
[0069] FIG . 6 is a block diagram of example computing
devices 600 , 650 that may be used to implement the systems
and methods described in this document , as either a client or
as a server or plurality of servers . Computing device 600 is
intended to represent various forms of digital computers ,

such as laptops , desktops , workstations , personal digital
assistants , servers , blade servers , mainframes , and other
appropriate computers . Computing device 600 is further
intended to represent any other typically non - mobile
devices , such as televisions or other electronic devices with
one or more processers embedded therein or attached
thereto . Computing device 650 is intended to represent
various forms of mobile devices , such as personal digital
assistants , cellular telephones , smartphones , and other com
puting devices . The components shown here , their connec
tions and relationships , and their functions , are meant to be
examples only , and are not meant to limit implementations
of the inventions described and / or claimed in this document .
[0070] Computing device 600 includes a processor 602 ,
memory 604 , a storage device 606 , a high - speed controller
608 connecting to memory 604 and high - speed expansion
ports 610 , and a low - speed controller 612 connecting to
low - speed bus 614 and storage device 606. Each of the
components 602 , 604 , 606 , 608 , 610 , and 612 , are intercon
nected using various busses , and may be mounted on a
common motherboard or in other manners as appropriate .
The processor 602 can process instructions for execution
within the computing device 600 , including instructions
stored in the memory 604 or on the storage device 606 to
display graphical information for a GUI on an external
input / output device , such as display 616 coupled to high
speed controller 608. In other implementations , multiple
processors and / or multiple buses may be used , as appropri
ate , along with multiple memories and types of memory .
Also , multiple computing devices 600 may be connected ,
with each device providing portions of the necessary opera
tions (e.g. , as a server bank , a group of blade servers , or a
multi - processor system) .
[0071] The memory 604 stores information within the
computing device 600. In one implementation , the memory
604 is a computer - readable medium . In one implementation ,
the memory 604 is a volatile memory unit or units . In
another implementation , the memory 604 is a non - volatile
memory unit or units .
[0072] The storage device 606 is capable of providing
mass storage for the computing device 600. In one imple
mentation , the storage device 606 is a computer - readable
medium . In various different implementations , the storage
device 606 may be a floppy disk device , a hard disk device ,
an optical disk device , or a tape device , a flash memory or
other similar solid state memory device , or an array of
devices , including devices in a storage area network or other
configurations . In one implementation , a computer program
product is tangibly embodied in an information carrier . The
computer program product contains instructions that , when
executed , perform one or more methods , such as those
described above . The information carrier is a computer- or
machine - readable medium , such as the memory 604 , the
storage device 606 , or memory on processor 602 .
[0073] The high - speed controller 608 manages band
width - intensive operations for the computing device 600 ,
while the low - speed controller 612 manages lower band
width - intensive operations . Such allocation of duties is an
example only . In one implementation , the high - speed con
troller 608 is coupled to memory 604 , display 616 (e.g. ,
through a graphics processor or accelerator) , and to high
speed expansion ports 610 , which may accept various
expansion cards (not shown) . In the implementation , low
speed controller 612 is coupled to storage device 606 and

a

US 2021/0360009 A1 Nov. 18 , 2021
9

expansion memory 674 may provide extra storage space for
computing device 650 , or may also store applications or
other information for computing device 650. Specifically ,
expansion memory 674 may include instructions to carry out
or supplement the processes described above , and may
include secure information also . Thus , for example , expan
sion memory 674 may be provide as a security module for
computing device 650 , and may be programmed with
instructions that permit secure use of computing device 650 .
In addition , secure applications may be provided via the SIM
cards , along with additional information , such as placing
identifying information on the SIM card in a non - hackable
manner .

2

low - speed bus 614. The low - speed bus 614 (e.g. , a low
speed expansion port) , which may include various commu
nication ports (e.g. , USB , Bluetooth® , Ethernet , wireless
Ethernet) , may be coupled to one or more input / output
devices , such as a keyboard , a pointing device , a scanner , or
a networking device such as a switch or router , e.g. , through
a network adapter .
[0074] The computing device 600 may be implemented in
a number of different forms , as shown in the figure . For
example , it may be implemented as a standard server 620 , or
multiple times in a group of such servers . It may also be
implemented as part of a rack server system 624. In addition ,
it may be implemented in a personal computer such as a
laptop computer 622. Alternatively , components from com
puting device 600 may be combined with other components
in a mobile device (not shown) , such as computing device
650. Each of such devices may contain one or more of
computing devices 600 , 650 , and an entire system may be
made up of multiple computing devices 600 , 650 commu
nicating with each other .
[0075] Computing device 650 includes a processor 652 ,
memory 664 , an input / output device such as a display 654 ,
a communication interface 666 , and a transceiver 668 ,
among other components . The computing device 650 may
also be provided with a storage device , such as a micro - drive
or other device , to provide additional storage . Each of the
components 650 , 652 , 664 , 654 , 666 , and 668 , are intercon
nected using various buses , and several of the components
may be mounted on a common motherboard or in other
manners as appropriate .
[0076] The processor 652 can process instructions for
execution within the computing device 650 , including
instructions stored in the memory 664. The processor may
also include separate analog and digital processors . The
processor may provide , for example , for coordination of the
other components of the computing device 650 , such as
control of user interfaces , applications run by computing
device 650 , and wireless communication by computing
device 650 .
[0077] Processor 652 may communicate with a
through control interface 658 and display interface 656
coupled to a display 654. The display 654 may be , for
example , a TFT LCD display or an OLED display , or other
appropriate display technology . The display interface 656
may comprise appropriate circuitry for driving the display
654 to present graphical and other information to a user . The
control interface 658 may receive commands from a user
and convert them for submission to the processor 652. In
addition , an external interface 662 may be provided in
communication with processor 652 , so as to enable near area
communication of computing device 650 with other devices .
External interface 662 may provide , for example , for wired
communication (e.g. , via a docking procedure) or for wire
less communication (e.g. , via Bluetooth® or other such
technologies) .
[0078] The memory 664 stores information within the
computing device 650. In one implementation , the memory
664 is a computer - readable medium . In one implementation ,
the memory 664 is a volatile memory unit or units . In
another implementation , the memory 664 is a non - volatile
memory unit or units . Expansion memory 674 may also be
provided and connected to computing device 650 through
expansion interface 672 , which may include , for example , a
subscriber identification module (SIM) card interface . Such

[0079] The memory may include for example , flash
memory and / or MRAM memory , as discussed below . In one
implementation , a computer program product is tangibly
embodied in an information carrier . The computer program
product contains instructions that , when executed , perform
one or more methods , such as those described above . The
information carrier is a computer- or machine - readable
medium , such as the memory 664 , expansion memory 674 ,
or memory on processor 652 .
[0080] Computing device 650 may communicate wire
lessly through communication interface 666 , which may
include digital signal processing circuitry where necessary .
Communication interface 666 may provide for communica
tions under various modes or protocols , such as GSM voice
calls , SMS , EMS , or MMS messaging , CDMA , TDMA ,
PDC , WCDMA , CDMA2000 , or GPRS , among others .
Such communication may occur , for example , through trans
ceiver 668 (e.g. , a radio - frequency transceiver) . In addition ,
short - range communication may occur , such as using a
Bluetooth® , WiFi , or other such transceiver (not shown) . In
addition , GPS receiver module 670 may provide additional
wireless data to computing device 650 , which may be used
as appropriate by applications running on computing device
650 .

[0081] Computing device 650 may also communicate
audibly using audio codec 660 , which may receive spoken
information from a user and convert it to usable digital
information . Audio codec 660 may likewise generate
audible sound for a user , such as through a speaker , e.g. , in
a handset of computing device 650. Such sound may include
sound from voice telephone calls , may include recorded
sound (e.g. , voice messages , music files , etc.) and may also
include sound generated by applications operating on com
puting device 650 .
[0082] The computing device 650 may be implemented in
a number of different forms , as shown in the figure . For
example , it may be implemented as a cellular telephone 680 .
It may also be implemented as part of a smartphone 682 ,
personal digital assistant , or other mobile device .
[0083] Various implementations of the systems and tech
niques described here can be realized in digital electronic
circuitry , integrated circuitry , specially designed ASICs (ap
plication specific integrated circuits) , computer hardware ,
firmware , software , and / or combinations thereof . These
various implementations can include implementation in one
or more computer programs that are executable and / or
interpretable on a programmable system including at least
one programmable processor , which may be special or
general purpose , coupled to receive data and instructions

user

a

US 2021/0360009 A1 Nov. 18 , 2021
10

can

a

from , and to transmit data and instructions to , a storage
system , at least one input device , and at least one output
device .
[0084] These computer programs (also known as pro
grams , software , software applications or code) include
machine instructions for a programmable processor , and
be implemented in a high - level procedural and / or object
oriented programming language , and / or in assembly / ma
chine language . Other programming paradigms can be used ,
e.g. , functional programming , logical programming , or other
programming . As used herein , the terms “ machine - readable
medium ” “ computer - readable medium ” refers to any com
puter program product , apparatus and / or device (e.g. , mag
netic discs , optical disks , memory , Programmable Logic
Devices (PLDs)) used to provide machine instructions and /
or data to a programmable processor , including a machine
readable medium that receives machine instructions as a
machine - readable signal . The term “ machine - readable sig
nal ” refers to any signal used to provide machine instruc
tions and / or data to a programmable processor .
[0085] To provide for interaction with a user , the systems
and techniques described here can be implemented on a
computer having a display device (e.g. , a CRT (cathode ray
tube) or LCD (liquid crystal display) monitor) for displaying
information to the user and a keyboard and a pointing device
(e.g. , a mouse or a trackball) by which the user can provide
input to the computer . Other kinds of devices can be used to
provide for interaction with a user as well ; for example ,
feedback provided to the user can be any form of sensory
feedback (e.g. , visual feedback , auditory feedback , or tactile
feedback) ; and input from the user can be received in any
form , including acoustic , speech , or tactile input .
[0086] The systems and techniques described here can be
implemented in a computing system that includes a back end
component (e.g. , as a data server) , or that includes a middle
ware component (e.g. , an application server) , or that
includes a front end component (e.g. , a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here) , or any combination
of such back end , middleware , or front end components . The
components of the system can be interconnected by any
form or medium of digital data communication (e.g. , a
communication network) . Examples of communication net
works include a local area network (“ LAN ”) , a wide area
network (“ WAN ”) , and the Internet .
[0087] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client - server relationship to each other .
[0088] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any inventions or of what may be
claimed , but rather as descriptions of features specific to
particular implementations of particular inventions . Certain
features that are described in this specification in the context
of separate implementations can also be implemented in
combination in a single implementation . Conversely , vari
ous features that are described in the context of a single
implementation can also be implemented in multiple imple
mentations separately or in any suitable sub - combination .
Moreover , although features may be described above as

acting in certain combinations and even initially claimed as
such , one or more features from a claimed combination can
in some cases be excised from the combination , and the
claimed combination may be directed to a sub - combination
or variation of a sub - combination . a
[0089] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system components in the implementations
described above should not be understood as requiring such
separation in all implementations , and it should be under
stood that the described program components and systems
can generally be integrated together in a single software
product or packaged into multiple software products .
[0090] Thus , particular implementations of the subject
matter have been described . Other implementations are
within the scope of the following claims . In some cases , the
actions recited in the claims can be performed in a different
order and still achieve desirable results . In addition , the
processes depicted in the accompanying figures do not
necessarily require the particular order shown , or sequential
order , to achieve desirable results . In certain implementa
tions , multitasking and parallel processing may be advanta
geous .

1-25 . (canceled)
26. A system for providing controller security , the system

comprising :
a processor and computer - readable memory , the com

puter - readable memory comprising instructions that ,
when executed by the processor , cause the processor to
perform security operations comprising :
receiving operation information for a plurality of

instances of a controller , the plurality of instances
being installed across a plurality of devices ;

statistically analyzing the received operation informa
tion , wherein the statistically analyzing comprises
identifying an operation from the received operation
information that is outside of determined normal
operations of the controller , the identified operation
comprising at least one of :
a processor operation ;
a memory operation ; or
an input / output operation ;

identifying one or more anomalous controller behav
iors based on the statistical analysis ; and

identifying information regarding the one or more
anomalous controller behaviors on the controller as
a potential security threat .

27. The system of claim 26 , wherein the statistically
analyzing comprises analyzing at least one of : a process
sequence , a function sequence , a network packet , a process
frequency , a function frequency , a device context , a system
context , or a resource usage .

28. The system of claim 26 , wherein the plurality of
instances of the controller are of a common controller type .

29. The system of claim 28 , wherein the determined
normal operations of the controller comprise determined
normal operations for the common controller type .

30. The system of claim 26 , wherein the plurality of
devices are of a common device type .

a

a

US 2021/0360009 A1 Nov. 18 , 2021
11

tion that is outside of determined normal operations of
the controller , the identified operation comprising at
least one of :
a processor operation ;
a memory operation ; or
an input / output operation ;

identifying one or more anomalous controller behaviors
based on the statistical analysis ; and

identifying information regarding the one or more anoma
lous controller behaviors on the controller as a potential
security threat .

39. The method of claim 38 , wherein the statistically
analyzing comprises analyzing at least one of : a process
sequence , a function sequence , a network packet , a process
frequency , a function frequency , a device context , a system
context , or a resource usage .

40. The method of claim 38 , further comprising at least
one of :

2

31. The system of claim 26 , wherein the security opera
tions further comprise performing at least one of : generating
a security policy or modifying a security policy .

32. The system of claim 31 , wherein the security opera
tions further comprise modifying the security policy by
performing at least one of :

removing information corresponding to the one or more
anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing function mappings corresponding to the one or
more anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing an IP address corresponding to the one or more
anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing a network port corresponding to the one or
more anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing a payload content type corresponding to the one
or more anomalous controller behaviors from one or
more whitelists that are part of the security policy ; or

altering a process map that is part of the security policy .
33. The system of claim 26 , wherein the security opera

tions further comprise :
modifying an existing security policy ; and
pushing out the modified security policy to at least one of

the plurality of instances of the controller having the
existing security policy .

34. The system of claim 26 , wherein identifying the
operation that is outside of determined normal perations of
the controller comprises determining that the operation
deviates from a behavioral baseline by a threshold number
of standard deviations .

35. The system of claim 26 , wherein the operation infor
mation comprises at least one malware report that identifies
malware on at least one of the plurality of instances of the
controller .

36. The system of claim 35 , wherein the malware is
associated with the one or more anomalous controller behav
iors .

37. The system of claim 36 , wherein the security opera
tions further comprise :

modifying a security policy ; and
deploying the modified security policy to at least one of

the plurality of instances of the controller , wherein the
modified security policy is configured to cause the at
least one of the plurality of instances of the controller
to perform at least one of :
blocking the identified malware ; or
preventing the one or more anomalous controller

behaviors .
38. A method for providing controller security , the method

comprising :
receiving operation information for a plurality of

instances of a controller , the plurality of instances being
installed across a plurality of devices ;

statistically analyzing the received operation information ,
wherein the statistically analyzing comprises identify
ing an operation from the received operation informa

generating a security policy ; or
modifying a security policy .
41. The method of claim 40 , further comprising modify

ing the security policy by performing at least one of :
removing information corresponding to the one or more

anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing function mappings corresponding to the one or
more anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing an IP address corresponding to the one or more
anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing a network port corresponding to the one or
more anomalous controller behaviors from one or more
whitelists that are part of the security policy ;

removing a payload content type corresponding to the one
or more anomalous controller behaviors from one or
more whitelists that are part of the security policy ; or

altering a process map that is part of the security policy .
42. The method of claim 38 , further comprising :
modifying an existing security policy ; and
pushing out the modified security policy to at least one of

the plurality of instances of the controller having the
existing security policy .

43. The method of claim 38 , wherein the operation
information comprises at least one malware report that
identifies malware on at least one of the plurality of
instances of the controller .

44. The method of claim 43 , wherein the malware is
associated with the one or more anomalous controller behav
iors .

45. The method of claim 44 , further comprising :
modifying a security policy ; and
deploying the modified security policy to at least one of

the plurality of instances of the controller , wherein the
modified security policy is configured to cause the at
least one of the plurality of instances of the controller
to perform at least one of :
blocking the identified malware ; or
preventing the one or more anomalous controller

behaviors .

