

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 November 2003 (20.11.2003)

PCT

(10) International Publication Number
WO 03/095422 A2

(51) International Patent Classification⁷: **C07C 303/02**,
309/80, 315/00, 317/04

(21) International Application Number: PCT/US03/07886

(22) International Filing Date: 13 March 2003 (13.03.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/137,165 2 May 2002 (02.05.2002) US

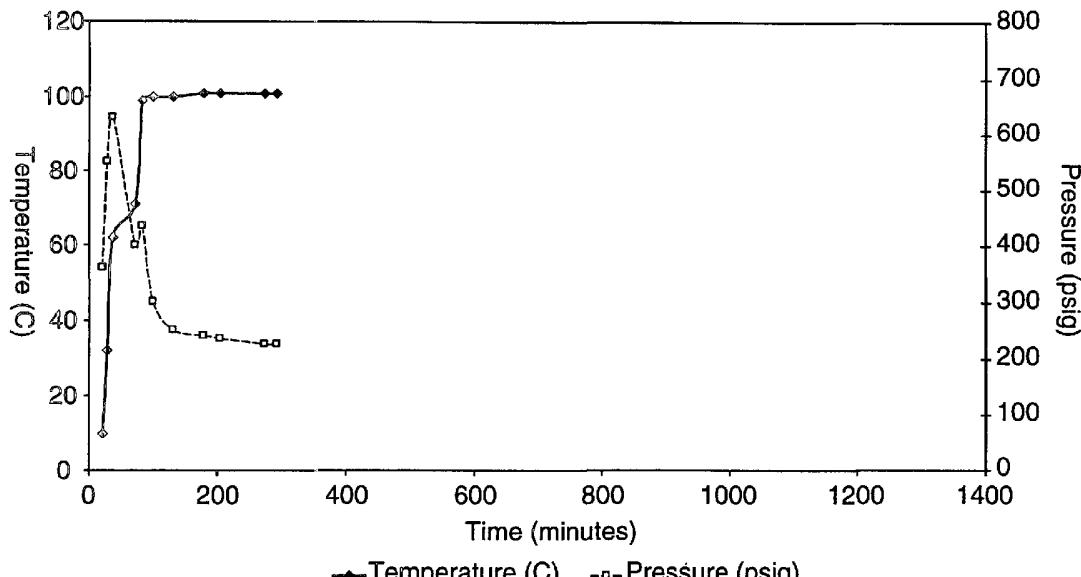
(71) Applicant: **3M INNOVATIVE PROPERTIES COMPANY** [US/US]; 3M Center, Post Office Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventors: **LAMANNA, William M.**; Post Office Box 33427, Saint Paul, MN 55133-3427 (US). **BARRERA, Michael D.**; Post Office Box 33427, Saint Paul, MN 55133-3427 (US). **BAUER, Gerald L.**; Post Office Box 33427, Saint Paul, MN 55133-3427 (US). **CHEBURKOV, Yuri**; Post Office Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: **FAGAN, Lisa M.**, et al.; Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, MN 55133-3427 (US).

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: CATALYTIC PROCESS FOR PREPARING PERFLUOROETHANESULFONYL FLUORIDE AND/OR PERFLUORODIETHYLSULFONE

WO 03/095422 A2

(57) Abstract: The present invention provides a catalytic process for preparing perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone using a two-part catalytic process comprising a metal fluoride and a crown ether.

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5 **CATALYTIC PROCESS FOR PREPARING PERFLUOROETHANESULFONYL
FLUORIDE AND/OR PERFLUORODIETHYLSULFONE**

Field of Invention

10 This invention relates to an improved process for manufacturing perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone. More particularly, the present invention relates to using a two-part catalytic system for preparing perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone.

Background of Invention

15 Perfluoroethanesulfonyl fluoride (PESF) and perfluorodiethylsulfone (PDES) may be used in a variety of applications. For example perfluoroethanesulfonyl fluoride is an intermediate in the manufacture of lithium bisperfluoroethanesulfonylimide (the BETI salt, available from 3M Company as FC-130), which is used as an electrolyte commercially in rechargeable lithium batteries. PESF may also be used as an intermediate in the
20 manufacture of perfluoroethanesulfonate and various methide anions such as ${}^7\text{C}(\text{SO}_2\text{C}_2\text{F}_5)_3$. Perfluorodiethylsulfone may be used as a solvent, heat exchange fluid or as a reactive intermediate in the manufacture of perfluoroethanesulfonate and perfluoroethanesulfonyl amide. Perfluorodiethylsulfone may also be used as an initiator for preparing amorphous copolymers of tetrafluoroethylene (TFE) with
25 hexafluoropropylene (HFP). (See, U.S. Patent No. 5,637,663).

Fluoride catalyzed reactions of fluoroolefins, such as TFE and HFP, with SO_2F_2 to produce perfluoroethanesulfonyl fluoride (PESF), perfluorodiethylsulfone (PDES), and perfluoro-iso-propanesulfonyl fluoride, respectively, are known in the art. Whereas the reaction of HFP with SO_2F_2 to produce perfluoro-iso-propanesulfonyl fluoride proceeds
30 readily under moderate reaction conditions (50-100°C) using conventional one-part metal fluoride catalysts (e.g., KF and CsF), the corresponding metal fluoride-catalyzed reaction of TFE with SO_2F_2 to produce PESF and PDES is relatively sluggish. Generally, the latter reaction requires high temperatures ($\geq 100^\circ\text{C}$), long reaction times and/or very high catalyst loadings to achieve reasonable conversions or practical rates of reaction.

For example, in J. Org. Chem., 33(1), 344 (1968) and GB Patent No. 1,189,561, S. Temple describes the catalytic reaction of TFE with SO_2F_2 using CsF as the catalyst and diglyme as the solvent to produce PDES. Under 100°C, this reaction is impractically slow. High temperatures (and pressures) and high catalyst loadings are required to achieve 5 practical rates of conversion.

U.S. Patent No. 3,542,864 ((Koshar) discloses the reaction of TFE with SO_2F_2 in a solvent such as dimethylformamide or acetonitrile using an alkali metal fluoride such as CsF to produce PESF. But at moderate reaction temperatures (and pressures) this reaction is impractically slow.

10 U.S. Patent No. 5,780,682 (Zavilla et al.) discloses the preparation of fluorinated alkyl sulphonyl halides by reacting a fluorinated unsaturated hydrocarbon with a sulfonyl halide. The reaction is carried out in the presence of at least a catalytic amount of fluoride in a solvent comprising an alkyl sulfonyl or alkylsulfoxide compound. No reactions of TFE are exemplified.

15 Thus, for economic reasons and due to pressure limitations of process equipment used in large scale manufacturing, the need exists for a more active catalyst system that accelerates the rate of reaction of TFE with SO_2F_2 and allows preparation of PESF and PDES at lower temperatures and pressures and at a reasonable rate while also providing control of the PESF/PDES product distribution.

20

Summary of the Invention

The present invention provides a process for preparing perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone using a two-part catalytic system. Advantageously, the catalytic system of the present invention provides higher catalytic activity and 25 significantly faster rates of reaction under a given set of reaction conditions versus known one-part catalysts.

The present invention comprises a method of preparing perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone from tetrafluoroethylene (TFE) and sulfonyl fluoride (SO_2F_2). The present invention comprises a catalytic process for the preparation 30 of perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone comprising the steps of:

- (a) reacting in the presence of a two-part catalyst system in a polar aprotic organic solvent:

(i.) tetrafluoroethylene, and

(ii.) sulfonyl fluoride;

wherein said two-part catalyst system comprises a metal fluoride and a

crown ether; and

5 (b) recovering perfluoroethanesulfonyl fluoride or perfluorodiethylsulfone, or a

mixture thereof.

Another embodiment of the present invention is a process further comprising
combining an immiscible, highly fluorinated co-solvent with the polar aprotic organic
10 solvent.

Brief Description of the Drawings

Figure 1 is a graph of reaction temperature and pressure versus time for Example

14.

15 Figure 2 is a graph of reaction temperature and pressure versus time for Example

19.

Figure 3 is a graph of reaction temperature and pressure versus time for Example

20.

Figure 4 is a graph of reaction temperature and pressure versus time for Example

20 C12.

Figure 5 is a graph of reaction temperature and pressure versus time for Example

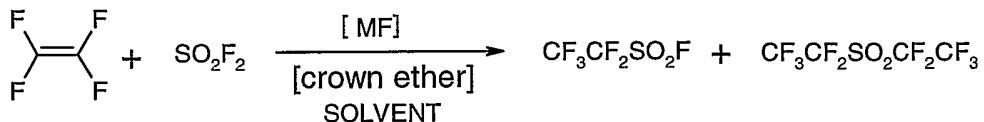
C18.

Figure 6 is a graph of reaction temperature and pressure versus time for Example

C22.

25 Figure 7 is a bar graph of the average rates of reaction expressed as percent

conversion of TFE per unit time for Examples 14, 19, and 20 and Comparative Examples

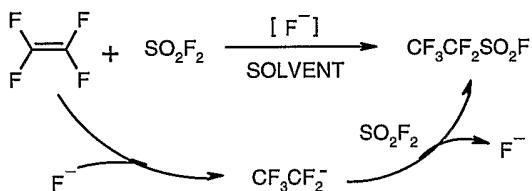

C12, C18, and C22.

Detailed Description of Illustrative Embodiments

30 The present invention provides a process for manufacturing

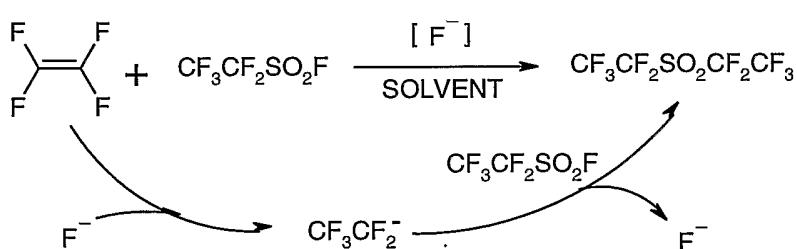
perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone using a two-part catalyst

system. The process involves the fluoride-catalyzed reaction of tetrafluoroethylene with sulfonyl fluoride. Overall, the reaction can be set forth as follows:



5

The reaction proceeds according to the following steps, wherein the crown ether co-catalyst serves to activate the metal fluoride catalyst, MF, presumably by complexing the metal cation and thereby generating a more reactive form of fluoride anion, F^- .


10

Step 1

15

Step 2

20

In the case where PDES is the desired product, Step 2 can be performed independent of Step 1 by using TFE and PESF as the reactants. Step 2 can also be performed using a different fluoroalkanesulfonyl fluoride, $\text{R}_f\text{SO}_2\text{F}$ (where R_f is a fluorinated alkyl having from 1 to 10 carbon atoms) as a reactant instead of $\text{CF}_3\text{CF}_2\text{SO}_2\text{F}$. This substitution produces a mixed fluoroalkyl sulfone containing a single perfluoroethyl group and a second fluoroalkyl chain.

25

Sulfonyl fluoride is available commercially from Dow-AgroSciences (Indianapolis, IN). Tetrafluoroethylene is available commercially from Daikin (Decatur, AL) or 3M Company (St. Paul, MN).

Catalyst System

The present invention provides a two-part catalyst system comprising a metal fluoride and a crown ether. This catalyst system provides higher catalytic activity and significantly faster rates of reaction under a given set of reaction conditions than other known catalysts. For example, the two-part catalyst system of the present invention comprising KF and 18-crown-6 in a polar aprotic organic solvent provides rates of reaction between TFE and SO_2F_2 that are at least 2 to 5 times faster than CsF under similar conditions and catalyst loadings, regardless of solvent used with the CsF.

The higher catalytic activity associated with the two-part catalyst system of the present invention provides advantages including, but not limited to, processing advantages such as lower temperature operation, lower pressure operation, decreased cycle times, lower processing costs, greater safety, and fewer by-products. Additionally, the two-part catalyst system of the present invention can be reused multiple times. Therefore, the reactor productivity is increased and the cost of the relatively expensive crown ether co-catalyst can be mitigated. For example, in one embodiment of the present invention, a two-part catalyst system comprising KF and 18-crown-6 in dimethyl formamide can be reused a total of at least seven times without an unacceptable loss in catalytic activity.

Particularly suitable metal fluorides include alkali metal fluorides, including but not limited to: NaF, KF, and CsF. Preferably, the metal fluoride is KF. KF is a less costly alternative to CsF and is also easier to dry and handle in anhydrous form. Suitable metal fluorides are available commercially from Sigma-Aldrich (Milwaukee, WI).

The crown ether co-catalyst can be any crown ether having a high binding constant for the metal cation of the metal fluoride catalyst (i.e., stability constant $\text{Log}_{10}K$ (in liters/mole at 25°C) greater than 2, preferably greater than 4). Suitable crown ethers are available commercially from Sigma-Aldrich or Parish Chemical (Orem, UT).

Suitable crown ethers include the general classes of monocyclic and bicyclic crowns (or cryptates) described by Gokel and Durst in *Synthesis*, 168 (1976). Specific examples include, but are not limited to: 18-crown-6, dibenzo-18-crown-6, dicyclohexane-18-crown-6, and dibenzo-24-crown-8. When KF is used as a catalyst, 18-crown-6 is a preferred co-catalyst.

Generally, the metal fluoride catalyst and the crown ether co-catalyst are each present at between 1 to 10 wt% in the polar aprotic solvent. The crown ethers are generally completely soluble in the polar aprotic solvent at these levels, whereas the metal fluorides may be soluble, but are usually only very slightly soluble, even in the presence of the crown ether. Thus the metal fluoride catalyst may be only partially dissolved in the polar aprotic solvent during the course of the catalytic reaction. It is preferable from the standpoint of efficiency and cost to maximize the number of catalytic turnovers per mole of catalyst and co-catalyst. Therefore, the combined catalyst charge (metal fluoride + crown ether) is generally less than 20%, preferably less than 5% and most preferably less than 1% of the total combined SO_2F_2 plus TFE charge (by wt.) used in a run or series of runs (if the catalyst is reused). The mole ratio of metal fluoride to crown ether may vary between 10:1 and 1:10, but is preferably between 2:1 and 1:2. The preferred mole ratio of TFE to SO_2F_2 depends on the desired product and mode of operation, but is generally 1:10 to 10:1 and typically between 2:1 and 1:2.

15

Polar Aprotic Organic Solvent

The two-part catalyst system is dissolved or suspended in a polar aprotic organic solvent. A polar solvent is defined herein as one that has a dielectric constant greater than 25 at room temperature. An aprotic solvent is defined herein as a solvent that does not 20 donate protons readily. These solvents have no active hydrogen atom (e.g., a hydroxy, carboxy, sulfoxide, or amino functionality).

Solvents useful in the present invention generally have a dielectric constant at room temperature greater than 25, preferably greater than 30.

The solvents of the present invention are generally liquid at temperatures less than 25 50°C.

Examples of suitable polar aprotic organic solvents include, but are not limited to, acetonitrile, dimethylformamide (DMF), dimethylacetamide (DMA), sulfolane, dimethylsulfoxide (DMSO), propylene carbonate (PC), 1,3-dimethyl imidazolidin-2-one (DMEU), 1,3-dimethyl-2-oxohexahydropyrimidine (DMPU), gamma-butyrolactone, 30 nitromethane, 1-methyl-2-pyrrolidinone (NMP), dimethylsulfone, hexamethylphosphoramide (HMPA), and the like.

Co-Solvent

An immiscible, highly fluorinated co-solvent may optionally be combined with the polar aprotic organic solvent. Immiscible is defined herein as forming a separate liquid phase with the polar aprotic solvent. Highly fluorinated is defined herein as having a F:H ratio greater than 3, preferably greater than 5. Preferably the highly fluorinated co-solvent is perfluorinated or contains only Cl and F bound to carbon. Most preferably, the highly fluorinated co-solvent is perfluorinated. The incorporation of this co-solvent improves the PESF yield and selectivity toward PESF versus perfluorodiethylsulfone. In addition, the presence of this co-solvent suppresses the overall vapor pressure of the reaction mixture (i.e., lowers operating pressures) without adversely affecting the rate of reaction.

Highly fluorinated co-solvents suitable for the present invention include, but are not limited to, perfluorocarbons such as perfluorooctane and perfluorohexane, perfluorinated tertiary amines such as perfluorotributyl amine and perfluorotriamylamine, perfluorinated ether-amines such as perfluoro-N-methyl morpholine, cyclic and acyclic perfluorinated ethers such as C_4F_9 -c- C_4F_7O , and perfluoropolyethers, and various hydrofluorocarbons and chlorofluorocarbons. In addition, the liquid by-product, PDES, can be used as the highly fluorinated co-solvent for the process to manufacture PESF.

20 **Inhibitor**

Optionally, a sufficient amount of inhibitor may be present to prevent free radical polymerization of the tetrafluoroethylene. An example of a suitable inhibitor is limonene.

Catalytic Process

25 The catalytic process of the present invention may be performed in any suitable reaction vessel, although a pressurized vessel is preferred. The process may be carried out by adding the two-part catalyst system to the polar aprotic organic solvent (and optionally an immiscible highly fluorinated co-solvent). The reactor contents are then agitated at a temperature ranging from 0 to 150°C, preferably from 50 to 100°C. Sulfuryl fluoride may 30 be batch charged or gradually added. The TFE amount is preferably added gradually to the reactor in a continuous or semi-continuous manner after the SO_2F_2 has been charged or

simultaneously with the SO₂F₂. The desired product(s), PESF and/or PDES may then be recovered by distillation from the reaction mixture or by draining the immiscible lower liquid product phase from the reactor.

5 In another embodiment of the present invention, the two-part catalyst system may be reused two or more times by recharging the TFE and SO₂F₂ starting materials after product from an earlier run has been selectively removed and collected.

In yet another embodiment, the catalytic process may be conducted in a continuous manner by employing continuous product removal as the starting materials are being fed.

10 The catalytic process of the present invention can be tailored to produce primarily PESF or PDES. The reactant stoichiometry, reaction conditions, solvent, co-solvent, and percent conversion can be altered to favor either PESF or PDES. Generally, PESF is favored by a high SO₂F₂ : TFE ratio, (greater than 1.0), low reaction temperatures, (less than 80°C), low percent conversions (less than 90% of limiting reagent), and the use of a highly fluorinated co-solvent. The opposite is generally preferable for the manufacture of 15 primarily PDES.

20 The catalytic process of the present invention is sensitive to moisture. Water tends to reduce catalytic activity and can, at sufficiently high levels, completely de-activate the catalyst system. Thus, precautions to exclude moisture from all reaction components, including the two-part catalyst system, polar aprotic organic solvent, TFE and SO₂F₂ reactants, and the reactor itself are desirable. Standard techniques known in the art for drying and handling common anhydrous materials and for pre-drying a reactor are suitable. 25 Generally, commercially available anhydrous solvents, TFE, SO₂F₂, and crown ethers are adequately dry as purchased for use in the present process, although precautions are recommended to avoid additional moisture uptake. Metal fluorides generally require vacuum drying at elevated temperatures (100-180°C) prior to use in the present process.

30 For example, a metal fluoride, such as KF, can be dried in a vacuum oven at 160°C and 10⁻² Torr and then stored and dispensed in a nitrogen-filled dry box. Crown ethers can be purchased, stored, and dispensed in a dry box without further treatment. Solvents can be purchased in anhydrous form and either stored over 3A molecular sieves or used without further treatment.

In one embodiment of the present invention, a 100 mL Parr reactor is dried by rinsing with acetone after aqueous clean-up and then heating for at least a few hours at 100°C prior to evacuation in a dry box antechamber. The reactor is then loaded with the two-part catalyst system and polar aprotic organic solvent in the dry box and sealed.

5 SO₂F₂ and TFE are then charged to the reactor in the desired amounts from pressurized gas cylinders.

In another embodiment of the present invention, a 1 gallon (3.8 liters) stainless steel pressure reactor is dried after aqueous clean-up using one or two acetone boil-outs followed by acetone discharge and vacuum drying at elevated temperature (approximately 10 80 to 100°C and 1 to 10 Torr). Under standby conditions, the reactor is maintained under a nitrogen atmosphere and all reagents are charged to the reactor from a nitrogen-pressurized stainless steel cylinder that is precharged in a dry box with minimal or no exposure to ambient moisture. A column packed with carbon may optionally be used to scavenge the limonene inhibitor from the TFE.

15 In one embodiment of the present invention, PESF is made practically using the catalytic process of the present invention at a reaction temperature of about 70°C and a maximum reaction pressure of about 240 psia (1.65 MPa). PESF and PDES yields of 75% and 15% respectively (based on SO₂F₂) are achieved with a solvent/catalyst mixture that includes an immiscible highly fluorinated co-solvent. The solvent/catalyst mixture is 20 reused for at least 7 reactions before being replaced.

Examples

The following examples illustrate various specific features, advantages, and other details of the invention. The particular materials and amounts recited in these examples, 25 as well as other conditions and details, should not be construed in a manner that would unduly limit the scope of this invention. All parts, percentages, and ratios are by weight unless otherwise specified.

As used in the examples that follow: "ppm" means parts per million, and the prefix "perfluoro" denotes substitution of all carbon-bonded hydrogen atoms by fluorine atoms.

Table of Components

Component	Description	Available From
Tetrafluoroethylene	CF ₂ =CF ₂	DuPont, Wilmington, DE
Sulfuryl fluoride	SO ₂ F ₂	Dow AgroSciences, Indianapolis, IN
N,N-dimethylformamide	DMF, anhydrous (water < 0.005%)	Sigma-Aldrich, Milwaukee, WI
18-crown-6	18-C-6	Parish Chemical Company, Orem, UT
Potassium Fluoride,	KF, spray dried, oven dried at 160°C and 0.01 Torr after purchase	Sigma-Aldrich
FC-1	Mixture of perfluorinated amines, including (C ₅ F ₁₁) ₃ N	Prepared by electrochemical fluorination of (C ₅ H ₁₁) ₃ N; see column 18, U.S. Patent No. 2,519,983
FLUORAD™ FC43		3M Company, St. Paul, MN
FLUORAD™ FC3255		3M
FLUORAD™ FC-104		3M
Cesium fluoride	CsF (anhydrous), oven dried at 160°C, 0.01 Torr after purchase	Sigma-Aldrich or ARC (Advanced Research Chemicals), Catoosa, OK
Sodium fluoride	NaF	Sigma-Aldrich
Dibenzo-18-crown-6	DB-18-C-6	Parish Chemical Company
Dicyclohexano-18-crown-6	DC-18-C-6	Parish Chemical

		Company
Trimethyl amine	Me ₃ N	Sigma-Aldrich
1,8-bis(dimethylamino)naphthalene	PROTON-SPONGE™	Sigma-Aldrich
Potassium iodide	KI	Sigma-Aldrich
Tetraethyleneglycol ether	Tetraglyme	Sigma-Aldrich
N,N-dimethylacetamide	DMA, anhydrous	Sigma-Aldrich
2-methyoxyethyl ether	Diglyme, anhydrous	Sigma-Aldrich
Acetonitrile	CH ₃ CN, anhydrous	Sigma-Aldrich
1,2-dichlorobenzene	o-DCB, anhydrous	Sigma-Aldrich
Tetramethylene sulfone	Sulfolane, 99%	Sigma-Aldrich
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone	DMPU, 98%	Sigma-Aldrich
Propylene carbonate	PC, anhydrous	Sigma-Aldrich
Tetrabutylammonium bis(trifluoromethanesulfonyl) imide	Bu ₄ N ⁺ N(SO ₂ CF ₃) ₂	See synthesis of Compound 5, Columns 16 – 17, in U.S. Patent No. 6,372,829
Triethylamine trihydrofluoride	Et ₃ N-3HF	Sigma-Aldrich
Tetrakis(dimethylamino)ethylene	(Me ₂ N) ₂ C=C(NMe ₂) ₂ , 97%	Sigma-Aldrich

General Procedure

An oven-dried, 100 milliliter (mL), stainless steel Parr reactor, (Parr Instrument Company, Moline, IL) equipped with a mechanical magnedrive stirrer, thermocouple probe, pressure gauge, and rupture disk, was transferred to a Vacuum Atmosphere's dry box maintained under a dry nitrogen atmosphere and charged with anhydrous metal fluoride catalyst (typically 0.5 to 2.0 grams (g)), crown ether co-catalyst (typically 0.5 to 2.0 grams, if present), and solvent (typically about 32 mL total). Once charging was complete, the reactor was assembled, all valves were closed, and the reactor was removed from the dry box, preweighed, and secured in the Parr reactor support stand with

connections made to all plumbing, mechanical, and electrical peripherals. The reaction mixture was chilled to about -10 to -25°C with stirring using a dry ice bath to cool the reactor body. While chilling the reactor, all gas lines were purged by repeated evacuation and back flush with house nitrogen to remove air. Sulfuryl fluoride from a tared cylinder 5 was gradually charged to the chilled reactor with stirring while monitoring the weight change of the SO₂F₂ cylinder using a balance. Once charging was complete, the reactor was isolated by closing the inlet valve and the residual SO₂F₂ in the transfer line was eliminated by evacuation. The SO₂F₂ cylinder was disconnected from the gas inlet line 10 and reweighed to obtain an accurate value for the total amount of SO₂F₂ charged (typically about 10 to 15 grams). Based upon the actual amount of SO₂F₂ charged, the number of grams of TFE required to give an equimolar amount was calculated.

While continuing to chill the reactor in dry ice, a tared cylinder containing limonene-inhibited TFE was connected to the gas inlet line that was then purged as before to remove air. While holding the reaction solution temperature at about 0 to 10°C, the 15 reactor was gradually charged with approximately the calculated amount of TFE with stirring. Once the TFE was charged, the reactor gas inlet valve was closed, the transfer line was evacuated to eliminate residual TFE, and the TFE cylinder was disconnected and reweighed to get an accurate value for the actual amount of TFE added (typically about 10 to 15 grams, calculated by difference). The fully charged reactor was reweighed, and then 20 the reaction temperature was rapidly stepped up in approximately 20°C increments with stirring until a maximum temperature of about 100°C or a maximum pressure of about 700 psi (4.82 MPa) was reached.

A record of reaction time, temperature, and pressure was made regularly because this data profile was useful in estimating and comparing rates of reaction.

Upon completion of the reaction, the reactor was cooled to approximately room 25 temperature with stirring, all peripherals were disconnected, and the Parr reactor was reweighed to verify that no mass was lost (through leakage) during the reaction. While the reaction solution was at approximately room temperature, a small headspace vapor sample was removed by venting to a TEFLOTM bag equipped with a gas-tight valve. The 30 headspace sample was analyzed by gas chromatography on a Supelco CarboPack C column (available from Supelco, Bellefonte, PA) to determine headspace composition,

which provides a qualitative measure of percent conversion. A warm water bath was then applied to the reactor bottom and all volatiles were distilled from the reactor (through the gas inlet valve on the reactor head) between about 25 and about 60°C (bath temperature) and collected in a tared dry ice trap. Once all volatiles were collected, the cold trap and reactor were reweighed to calculate the mass balance. The contents of the trap were 5 allowed to warm to 0°C while permitting the low boiling volatiles to vent through an oil bubbler. The vent gasses emitted from the trap, the liquid remaining in the trap after warming to 0°C, and the residual nonvolatile liquid in the Parr reactor were all analyzed by GC, as before, to estimate how much SO₂F₂, TFE, PESF, and PDES were present at the 10 end of the reaction. This information was used to calculate PESF and PDES yields, PESF/PDES mole ratios (selectivity), and percent TFE consumed. The reactor was cleaned with water and acetone and dried in an oven at 100°C in preparation for the next run.

TABLE 1

Example #	Catalyst (Conc. Wt% in Solvent)	Solvent (E)	TFE/ SO ₂ F ₂ Molar Charge Ratio	Rxn Temp (°C)	Rxn Time (hrs)	% TFE Consumed	% Yield PESF*	% Yield Sulfone*	PESF/Sulfone Mole Ratio
C1	KF (0.6.7%) anhyd, sd	Diglyme (7.2)	0.73	50-100	5	NR	NA	NA	NA
C2	CsF (7.0%) anhyd	Diglyme (7.2)	1.09	64-100	12	63%	52%	8.4%	6.2
C3	KF (6.4%) anhyd, sd	Diglyme (7.2)	0.67	81-91	14.5	NR	NA	NA	NA
4	KF (4.2%) anhyd, sd; 18-C-6 (8.4%)	CH ₃ CN (36.6)	0.94	90-102	5.5	67%	54%	4.7%	11.4
C5	(Me ₂ N)2C = C(NMe ₂) ₂	None	0.74	42-55	9.0	NR	NA	NA	NA
6	KF (3.9%) anhyd, sd; 18-C-6 (7.9%); Bu ₄ N ⁺	CH ₃ CN (36.6)	1.38	70	9.0	~41%	~50%	3.7%	13.5

Example #	Catalyst (Conc. Wt% in Solvent)	Solvent (E)	TFE/ SO ₂ F ₂ Molar Charge Ratio	Rxn Temp (°C)	Rxn Time (hrs)	% TFE Consumed	% Yield PESF*	% Yield Sulfone*	PESF/Sulfone Mole Ratio
	-N(SO ₂ CF ₃) ₂ (3.9%)								
C7	KF (7.4%) anhyd, sd	CH ₃ CN (36.6)	1.14	85-90	6.2	NR	NA	NA	NA
C8	NaF (1.7%) DB-18-C-6 (6.3%)	o-DCB (10.1)	1.01	100	8.0	NR	NA	NA	NA
C9	Me ₃ N (1.1%)	FC-43 (1.9)	1.14	100	4.0	NR	NA	NA	NA
C10	KF (3.2%) anhyd, sd; 18-C-6 (6.4%)	Diglyme (7.2)	0.97	70-75	5.5	NR	NA	NA	NA
C11	PROTON- SPONGE TM (4.0%); Et ₃ N-3HF (1.0%)	Diglyme (7.2)	0.97	100	5.5	NR	NA	NA	NA
C12	CsF (8.1%)	CH ₃ CN	0.78	100	21.5	41%	29%	1.8%	16.1

Example #	Catalyst (Conc. Wt% in Solvent)	Solvent (E)	TFE/ SO ₂ F ₂ Molar Charge Ratio	Rxn Temp (°C)	Rxn Time (hrs)	% TFE Consumed	% Yield PESF*	% Yield Sulfone*	PESF/Sulfone Mole Ratio
	anhyd	(36.6)					(37% based on TFE)		
C13	KF (4.8%) anhyd, sd; Tetraglyme (32.3%)	CH ₃ CN (36.6)	0.94	100	21.0	NR	NA	NA	NA
14	KF (2.5%) anhyd, sd; 18-C-6 (5.0%)	Sulfolane (42.2)	0.98	100	3.5	104%	44%	29%	1.5
15	KF (2.9%) anhyd, sd; 18-C-6 (5.7%)	DMPU (36.6)	0.93	100-120	5.5	81%	51%	12%	4.2
16	KF (2.4%) anhyd, sd; 18-C-6 (4.8%)	PC (66.1)	0.97	100	5.0	70%	39%	14.5%	2.6

Example #	Catalyst (Conc. Wt% in Solvent)	Solvent (E)	TFE/ SO ₂ F ₂ Molar Charge Ratio	Rxn Temp (°C)	Rxn Time (hrs)	% TFE Consumed	% TFE PESF*	% Yield Sulfone*	PESF/Sulfone Mole Ratio
17	KF (3.8%) anhyd, sd; DC-18-C-6 (7.7%)	CH3CN (36.6)	1.00	100	5.0	51%	42%	4.3%	9.7
C18	CsF (6.4%) ARC anhyd	Diglyme (7.2)	1.13	85	6.5	Very Low Conversion	NA	NA	NA
19	KF (3.2%) anhyd, sd; 18-C-6 (6.3%)	DMF (38.2)	1.15	100	3.5	83%	61%	17.4%	3.5
20	KF (2.1%) anhyd, sd; 18-C-6 (4.2%)	DMF/ FC-104	1.12	100	4.0	90.2%	70.4%	15.6%	4.5
C21	KF (6.7%) wet, sd	DMF (38.2)	1.22	80-113	15.0	38%	33%	7%	4.7
C22	KF (6.2%) anhyd, sd	DMF (38.2)	0.93	82-111	14.0	75%	48%	11%	4.3
23	KF (2.1%) anhyd, sd;	DMF/ FC-104	1.31	88-101	7.0	80%	61%	22%	2.7

Example #	Catalyst (Conc. Wt% in Solvent)	Solvent (E)	TFE/ SO ₂ F ₂ Molar Charge Ratio	Rxn Temp (°C)	Rxn Time (hrs)	% TFE Consumed	% PESF*	% Yield PESF*	% Yield Sulfone*	PESF/Sulfone Mole Ratio
	18-C-6 (1%)									
24	KF (2.1%) anhyd, sd; 18-C-6 (0.5%)	DMF/ FC-104	1.02	90-120	14.0	86%	64%	12%	5.3	
25	KF (3.6%) wet, sd; 18-C-6 (1.7%) wet	DMA (38.3)	0.62	100-101	11.0	67%	36% (58% based on TFE)	2.7%	13.3	
26	KF (3.2%) anhyd, sd; 18-C-6 (1.6%)	DMA (38.3)	0.99	100	8.0	73%	53%	10%	5.3	
C27	KF (3.0%) anhyd, sd; Me ₄ N ⁺ -C(SO ₂ CF ₃) ₃ (6.0%)	DMF (38.2)	1.08	90-100	8.0	>42% ***	>37.5% ***	>4%	9.1	
C28	KI (3.7%) wet	DMF (38.2)	1.11	82-85	6.0	NR	NR	NR	NA	

Example #	Catalyst (Conc. Wt% in Solvent)	Solvent (E)	TFE/ SO ₂ F ₂ Molar Charge Ratio	Rxn Temp (°C)	Rxn Time (hrs)	% TFE Consumed	% PESF*	% Yield Sulfone*	PESF/Sulfone Mole Ratio
C29	KI (3.5%) anhyd 18-C-6 (5.1%)	DMF (38.2)	1.09	81-82	7.0	NR	NR	NR	NA

NR is no reaction

* % Yield of PESF and Sulfone is based on the amount of SO₂F₂ charged.

** In each case, a total of 32 mL of solvent was employed.

*** Minor product losses in exit gases not measured.

5 sd = spray-dried, E = dielectric constant, wet means reactor was loaded in ambient air and reactants and catalysts were unprotected from atmospheric moisture.

10 Comparative Examples C1, C2, C3, C7, C12, C18, C21, and C22 illustrate the relatively low catalytic activity of metal fluoride catalysts alone (with no crown ether co-catalyst).

Comparative Example C13 illustrates the relatively low catalytic activity of metal fluoride catalysts when combined with acyclic polyether co-catalyst.

Comparative Example C27 illustrates the relatively low catalytic activity of metal fluoride catalysts when combined with a quaternary ammonium co-catalyst.

15 Comparative Examples C21-C22 and Examples 25-26 illustrate the detrimental effect of water on catalytic activity.

Comparative Examples C28-C29 illustrate the very low catalytic activity of KI, even when a crown ether co-catalyst is employed.

20 Examples 19 and 20 illustrate the advantages in PESF yield and selectivity when a highly fluorinated co-solvent is employed.

Examples 20, 23, and 24 illustrate how catalytic activity decreases as the concentration of crown ether co-catalyst is lowered.

25 Comparative Examples C8 and C10 illustrate the relatively low catalytic activity obtained with metal fluoride/crown ether catalyst mixtures if solvents of low dielectric constant are employed.

Comparative Examples C5, C9, and C11 show that (Me₂N)₂C=C(NMe₂)₂, Me₃N and PROTON-SPONGE™/Et₃N-3HF are ineffective catalysts.

30 Examples 4, 14, 15, 16, 17, 19, 20, 23, 24, and 26 illustrate the improved conversions, rates, and product yields obtained with anhydrous metal fluoride catalyst/crown ether co-catalyst mixtures of the present invention when high dielectric constant solvents and their mixtures with highly fluorinated co-solvents are employed.

Example 6 demonstrates that further addition of an anhydrous quaternary ammonium salt to the catalyst mixture of the present invention has little or no impact on catalyst performance and offers no process advantages or disadvantages.

A further illustration of the improved reactivity of the two-part catalysts of the present invention versus one-part CsF or KF catalysts is provided in the comparative plots of reactor pressure and temperature versus reaction time (Figures 1 to 6) for examples C12 (Figure 4), C18 (Figure 5), C22 (Figure 6), 14 (Figure 1), 19 (Figure 2), and 20 (Figure 3) and a bar graph comparing the average rates of TFE conversion (Figure 7). It is apparent from the plots in Figures 1 to 6 that the two-part catalysts of the present invention produce a relatively rapid drop in reactor pressure over time (from conversion of gaseous TFE and SO₂F₂ reagents to liquid products), whereas the comparative one-part metal fluoride catalysts produce a much slower drop in reactor pressure at comparable or higher temperatures. The rate of pressure drop in these examples is a direct measure of the rate of reaction of TFE with SO₂F₂ to produce PESF and/or PDES. The relatively high activity of the two-part catalysts of the present invention compared to known one-part metal fluoride catalysts is also apparent from the bar graph in Figure 7 showing average rates of TFE conversion. The latter rates were calculated by taking the percent TFE conversion measured at the end of the reaction and dividing by the total reaction time in hours.

20 Examples 27 - 46

The catalytic reaction of the present invention was run in two different modes. The “pre-charge” mode was used for Examples 27-28 and the “co-feed” mode was used for the Examples 29-47. These Examples were organized into five series where each series was run with one batch of solvent/catalyst mixture.

25 A 1-gallon (3.8 liter) volume, stirred tank reactor with a 400-psig-(2.86 MPa) rupture disk setting and a connection to a 375-psi (2.59 MPa) nitrogen supply and a vacuum was used. The reactor had a water jacket for temperature control. A controller was used to operate a steam-water ratio valve to control the jacket temperature.

30 TFE was supplied through a carbon absorption column to remove the limonene inhibitor.

At the end of an example, crude PESF and PDES product was collected by venting the reactor to an evacuated cylinder placed in a dry ice bath. The cold cylinder pulled and condensed the unreacted TFE and SO_2F_2 and the product PESF and PDES from the reactor. As the flow to the product cylinder tended to stall out at 25 to 50 psia (172 to 344 kPa) a second evacuated product cylinder was needed to get a good material balance for each example. To start each series of examples the reactor was rinsed and boiled out at about 100°C with DI water twice, then with acetone at about 100°C, and finally, with inert perfluorinated fluid, at about 100°C. After each rinse and boil-out the reactor was evacuated to evaporate as much water as possible. After the rinse and boil-out procedure was completed, the reactor was charged with the next solvent/catalyst mixture from a 2.25 liter stainless steel cylinder. After the completion of a series, the reactor was drained, cleaned out as before, and then charged with the next batch of solvent/catalyst.

A summary of the solvent/catalyst batches used in the 5 series of examples is listed in Table 2.

15

TABLE 2: Solvent/Catalyst Batches

Series No.	Number of Catalytic Examples per Series	Description of Solvent/Catalyst Mixture
1	7	1.890 Kg DMF, 125 g. 18-crown-6 (anhyd), 62.5 g. KF (anhyd)
2	3	0.944 Kg DMF, 62.5 g. 18-crown-6 (anhyd), 31.2 g. KF (anhyd), 1.909 Kg FC-1
3	5	0.944 Kg DMF, 62.5 g. 18-crown-6 (anhyd), 31.2 g. KF (anhyd), 1.845 Kg FC43
4	2	0.944 Kg DMF, 62.5 g. 18-crown-6 (anhyd), 31.2 g. KF (anhyd), 1.773 Kg FC3255
5	3	1.888 Kg DMF, 62.5 g. 18-crown-6 (anhyd), 31.2 g. KF (anhyd)

20

Precharge Mode

The first two catalytic reactions were carried out in the precharge mode. In this mode of operation, the reactor was heated to the run temperature and then charged with all

the SO_2F_2 used in the reaction. Next, TFE was charged to raise the pressure to the desired run pressure and the reaction was started. As the reaction proceeded, the pressure dropped as reactants were consumed. Each time the pressure dropped by 10 psi (69 kPa) more TFE was fed to the reactor to bring the pressure back to the target run pressure. When the 5 prescribed amount of TFE had been fed, the TFE feed was stopped and the reactor pressure was allowed to drop as the reaction went to completion.

All reactions following Example 28 were done in the co-feed mode at 240 psia (1.65 MPa).

10 Co-Feed Mode

In the co-feed reaction mode the initially evacuated, preheated reactor was first charged to approximately half the desired run pressure with SO_2F_2 , and then TFE was added to bring the pressure up to the run pressure, usually 240 psia (1.65 MPa). As the 15 reaction proceeds, SO_2F_2 and TFE were alternately added to maintain the reactor pressure at the desired run pressure until the total feed of reactants for that run had been reached. Because the two feed gases had differing solubilities in the solvent/catalyst mixture, SO_2F_2 was usually added in about 10 psi (69 kPa) intervals, and TFE was usually added in about 13 psi (90 kPa) intervals. When all SO_2F_2 and TFE for a run had been added, the pressure 20 was allowed to run down until the reaction reached completion.

At the end of each run a cylinder sample of headspace gas, and a liquid sample from each product cylinder were collected for GC analysis. The liquid samples were held in dry ice to prevent them from evaporating. Still, a small amount of TFE and SO_2F_2 were lost from the first sample cylinder from each example because even at -78°C the material 25 collected in the first product cylinder has a vapor pressure of 20 to 50 psia (138 to 345 kPa).

Samples were analyzed on an HP 5890 Gas Chromatograph equipped with a 30 packed 9' X 1/8" (275 cm x .32 cm) stainless steel Supelco 60/80 Carbo pack C column, and a thermal conductivity detector. The oven was ramped from 0 to 250°C at 15°C per minute with no initial isothermal hold. Low boiling samples were analyzed by cold-injection using a 10-microliter syringe pre-chilled to dry-ice temperatures in a plastic bag to prevent frosting. Gas samples were introduced using a disposable 1 ml plastic syringe.

Area percent responses by GC were assumed proportional to mass percent concentrations from the product samples.

A summary of conditions and results for these Examples are shown in Table 3 below.

TABLE 3

Example	Run Data																			
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
Temperature, °C	100	80	72	70	70	50	100	70	70	70	70	70	70	70	70	70	70	70	70	70
Pressure, psia (MPa)	330 (2.28)	340 (2.34)	280 (1.93)	240 (1.65)	280 (1.93)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	240 (1.65)	
Solvent/ Catalyst Charge (Series #)	1	1	1	1	1	1	1	1	1	2	2	2	3	3	3	3	3	4	4	5
Feed Method	Pre-charge	Pre-charge	Co-Feed																	
TFE/ SO ₂ F ₂ Feed Ratio	1	1	1.1	1.1	1.1	1	1	1	1	1.1	1.2	1	1.2	1	1.2	1.2	1.10	1.2	1.1	1.3
Gas Feed Rate, g/min avg.																				
Run Length, hr.	5	12	14	15	20	29	9	17	20	28	14	18	22	28	33	15	24	9	11	16
% TFE Consumed	97	97	99	96	97	88	98	97	95	94	98	98	98	96	98	97	98	98	99	99
% SO ₂ F ₂ Consumed	86	78	87	88	76	70	78	83	89	88	79	91	91	89	82	91	84	81	92	92
PESF Yield (recov'd, S basis), %	63	64	68	58	59	55	70	73	75	80	69	74	75	74	74	74	67	64	65	
PDES Yield (recov'd, S basis)	20	15	19	20	18	12	16	7	11	14	10	11	17	17	15	10	18	18	17	27
Combined Yield	83	78	87	87	76	71	71	78	84	90	89	80	91	91	89	84	92	85	81	92

<u>Example</u>	<u>Run Data</u>																			
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
(recov'd, S basis)																				
PDES/ PESF (mole ratio)	0.31	0.23	0.28	0.29	0.31	0.21	0.30	0.11	0.15	0.19	0.12	0.16	0.23	0.22	0.20	0.14	0.24	0.28	0.27	0.42
Total SO ₂ F ₂ Charge (g)	682	752	753	751	750	752	751	752	754	756	753	702	752	753	476	751	752	753	750	751
Total TFE Charge (g)	671	738	812	810	736	737	736	737	814	888	885	688	884	885	560	810	884	886	809	958

5 In Examples 27 and 28, the catalytic reaction appears to reach equilibrium at long times with 1 to 2 percent of the TFE and somewhat more of the SO₂F₂ charged remaining unreacted. The run length in Table 3 is the time required to get 99 percent of the way to equilibrium based on feeds charged and the drop in pressure as the reaction runs down.

In some series, the reaction slowed down with each consecutive catalytic reaction using the same catalyst/solvent system. For example, in the five run series, Examples 37 through 41, the reaction time (i.e., run time) for Example 37 was 14 hours and the reaction time for Example 41 was 33 hours.

10 As Table 3 indicates, a continuous feed process can be used to achieve high conversions and high yields of PESF and PDES while maintaining relatively low system pressure.

The catalyst system may also be reused multiple times.

15

What is claimed is:

1. A catalytic process for the preparation of perfluoroethanesulfonyl fluoride and/or perfluorodiethylsulfone comprising the steps of:
 - 5 a) reacting in the presence of a two-part catalyst system in a polar aprotic organic solvent:
 - i) tetrafluoroethylene (TFE), and
 - ii) sulfonyl fluoride (SO_2F_2);wherein said two-part catalyst system comprises a metal fluoride, and a crown ether; and
 - 10 b) recovering perfluoroethanesulfonyl fluoride or perfluorodiethylsulfone or a mixture thereof.
2. The catalytic process according to claim 1, wherein said metal fluoride is an alkali metal fluoride.
- 15 3. The catalytic process according to claim 2, wherein said alkali metal fluoride is selected from the group consisting of NaF , KF , and CsF .
- 20 4. The catalytic process according to claim 1, wherein a sufficient amount of inhibitor is present to prevent free radical polymerization of the tetrafluoroethylene.
5. The catalytic process according to claim 1, wherein said crown ether is selected from the group consisting of 18-crown-6, dibenzo-18-crown-6, dicyclohexano-18-crown-6, and dibenzo-24-crown-8.
- 25 6. The catalytic process according to claim 1, wherein said polar aprotic organic solvent is selected from the group consisting of: acetonitrile, dimethylformamide, dimethylacetamide, sulfolane, dimethylsulfoxide, propylene carbonate, 1,3-dimethylimidazolidin-2-one, 1,3-dimethyl-2-oxohexahdropyrimidine, gamma-butyrolactone, nitromethane, 1-methyl-2-pyrrolidinone, dimethylsulfone, and hexamethylphosphoroamide.

7. The catalytic process according to claim 1, wherein said polar aprotic organic solvent has a dielectric constant at room temperature greater than 25.
- 5 8. The catalytic process according to claim 1, wherein the mixture of two-part catalyst and solvent(s) is reused multiple times.
9. The catalytic process according to claim 1, wherein the percent tetrafluoroethylene consumed is greater than 85% and the mole ratio of perfluorodiethylsulfone : 10 perfluoroethane sulfonyl fluoride in the final product is less than 0.35.
- 10 10. The catalytic process according to claim 1, wherein essentially all water has been excluded.
- 15 11. The catalytic process according to claim 1, wherein the maximum reactor pressure is less than 350 psia (62 kPa).
12. The catalytic process according to claim 1, wherein the maximum reactor temperature is less than 120°C.
- 20 13. The catalytic process according to claim 1, wherein the tetrafluoroethylene and the SO₂F₂ are continuously charged to the reactor.
14. The catalytic process according to claim 1, wherein the SO₂F₂ is precharged batch-wise to the reactor and the tetrafluoroethylene is fed continuously to the reactor.
- 25 15. The catalytic process according to claim 1, wherein the SO₂F₂ : tetrafluoroethylene mole ratio is greater than one.
- 30 16. The catalytic process according to claim 15, wherein the excess SO₂F₂ is recovered and recycled.

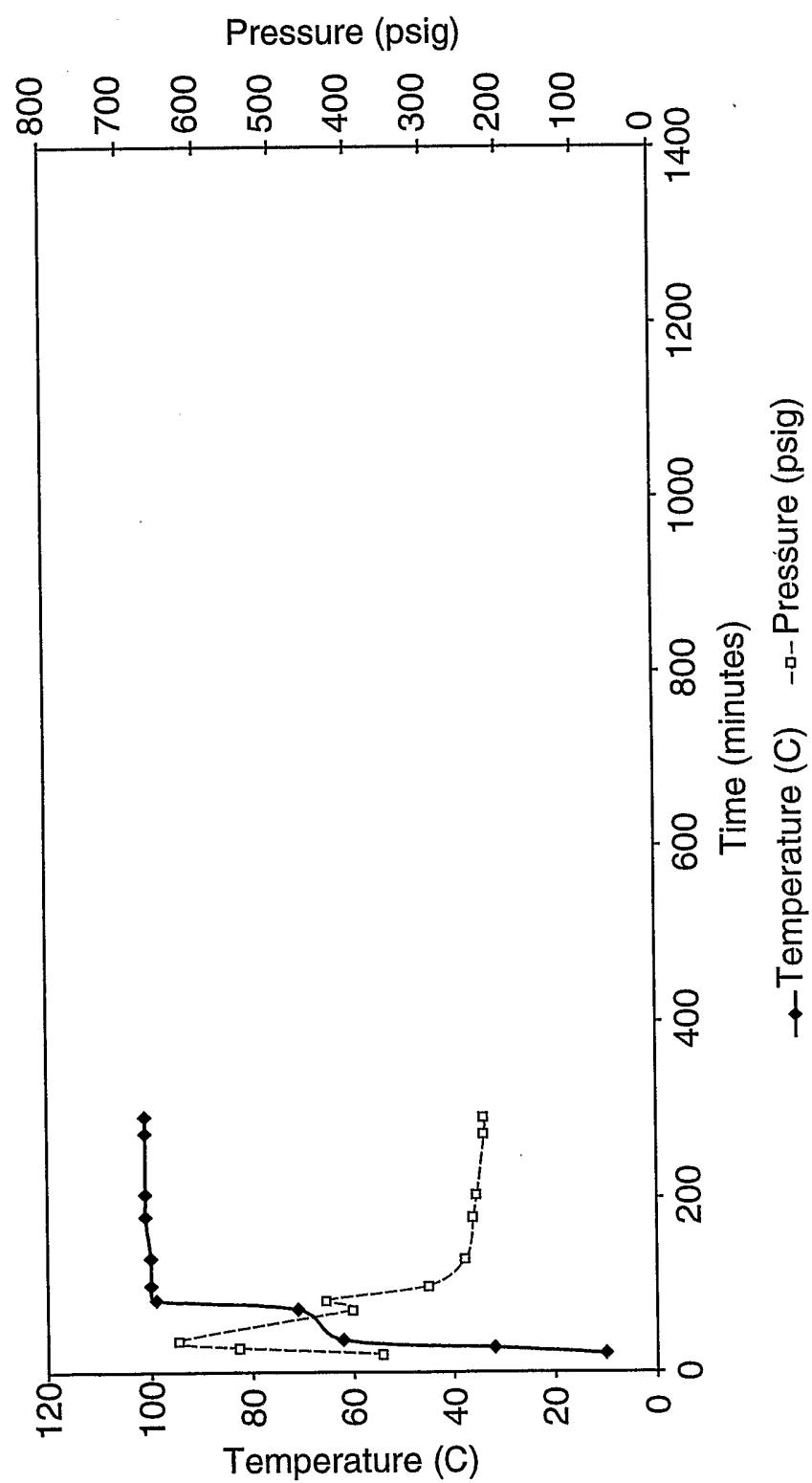
17. The catalytic process according to claim 1, wherein the SO₂F₂ : tetrafluoroethylene mole ratio is less than one.

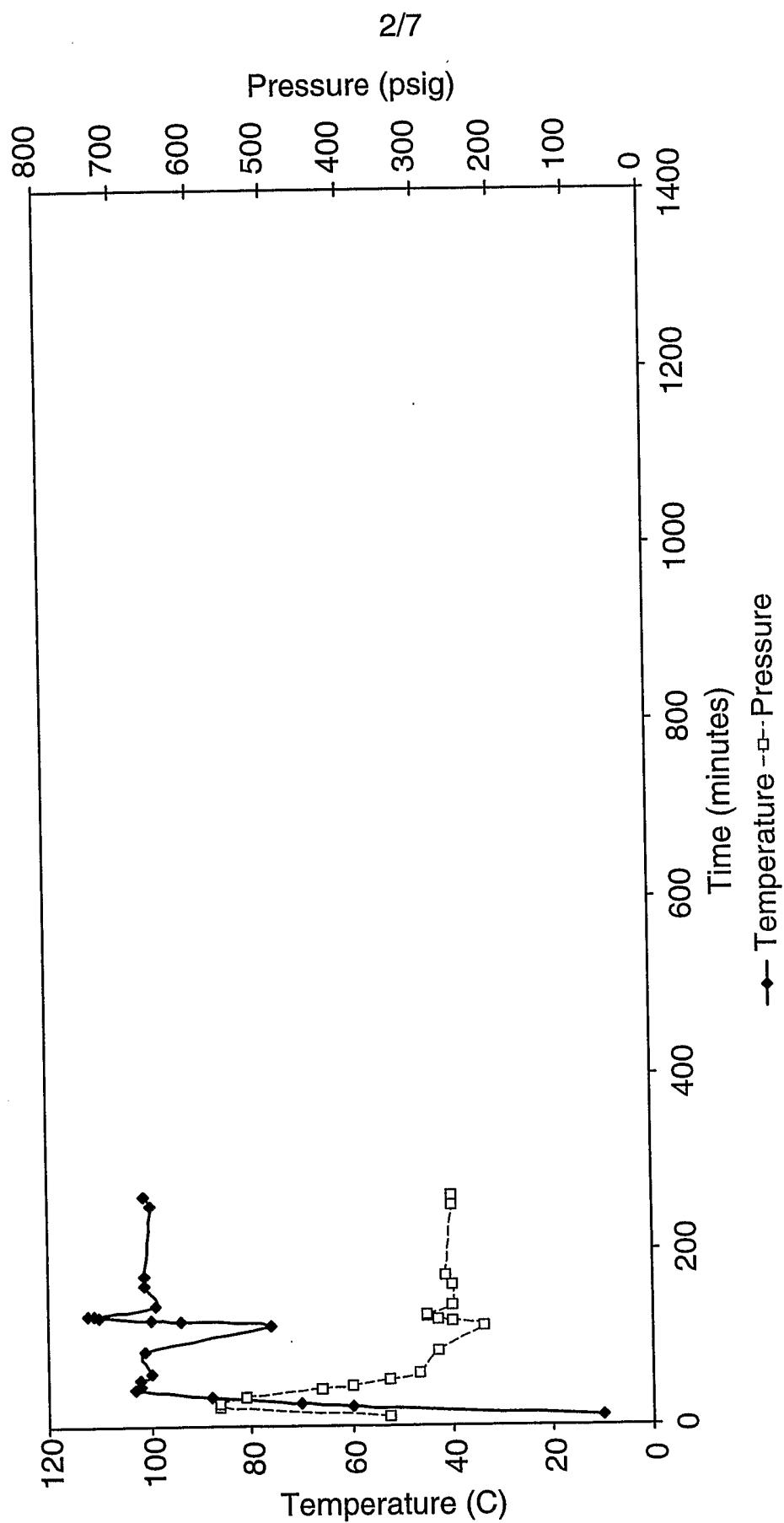
5 18. The catalytic process according to claim 1, wherein said process further comprises combining a fluorinated co-solvent with said polar aprotic organic solvent, wherein the fluorinated co-solvent and the polar aprotic organic solvent are immiscible.

10 19. The catalytic process according to claim 18, wherein said fluorinated co-solvent is selected from the group consisting of: perfluorocarbons, perfluorinated tertiary amines, perfluorinated ether-amines, cyclic and acyclic perfluorinated ethers, perfluoropolyethers, hydrofluorocarbons, and bisperfluoroalkylsulfones.

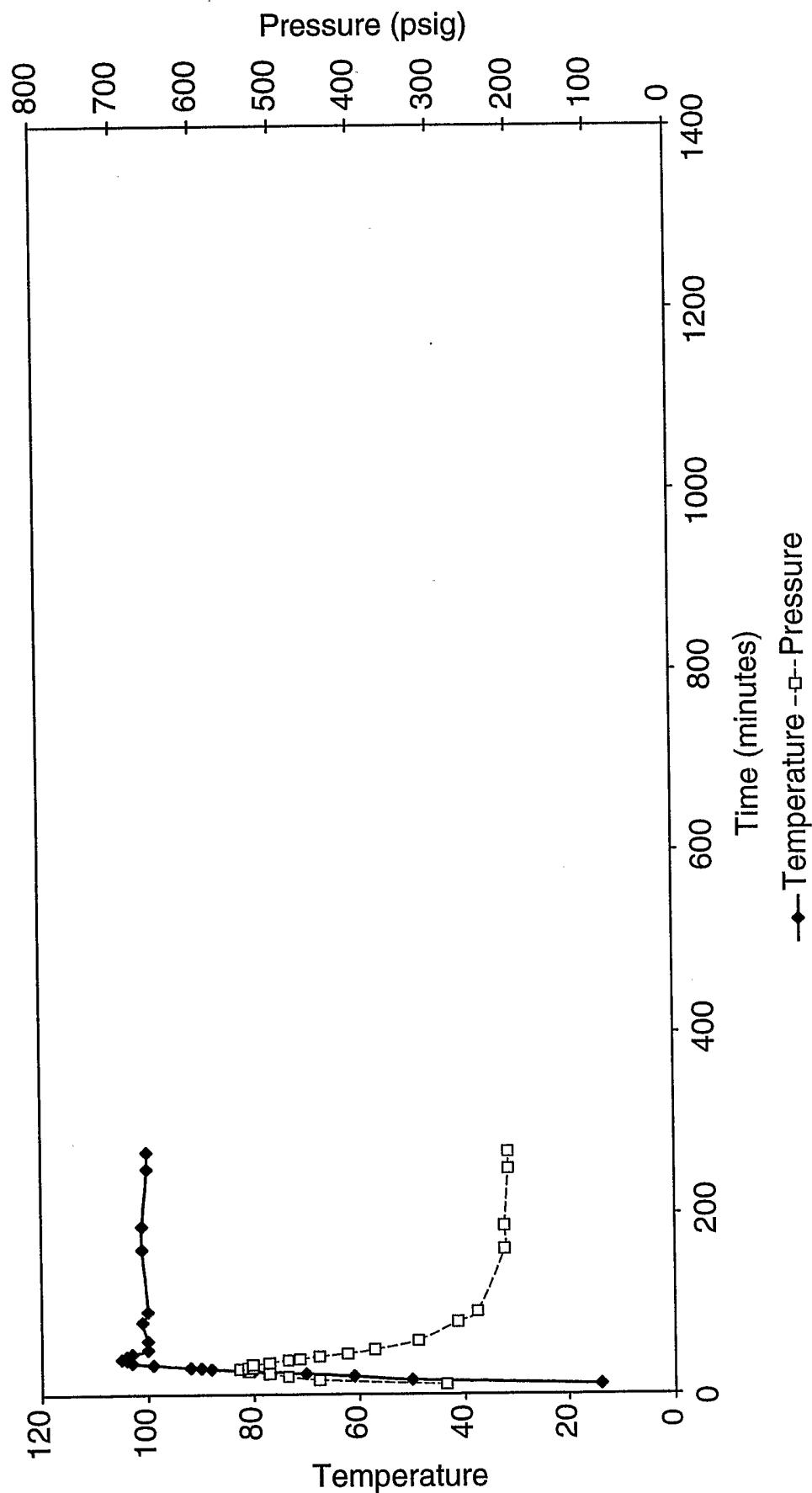
15 20. The catalytic process according to claim 18, wherein said fluorinated co-solvent is perfluorodiethylsulfone.

21. A catalytic process for the preparation of a perfluoroethanefluoroalkanesulfone comprising the steps of:

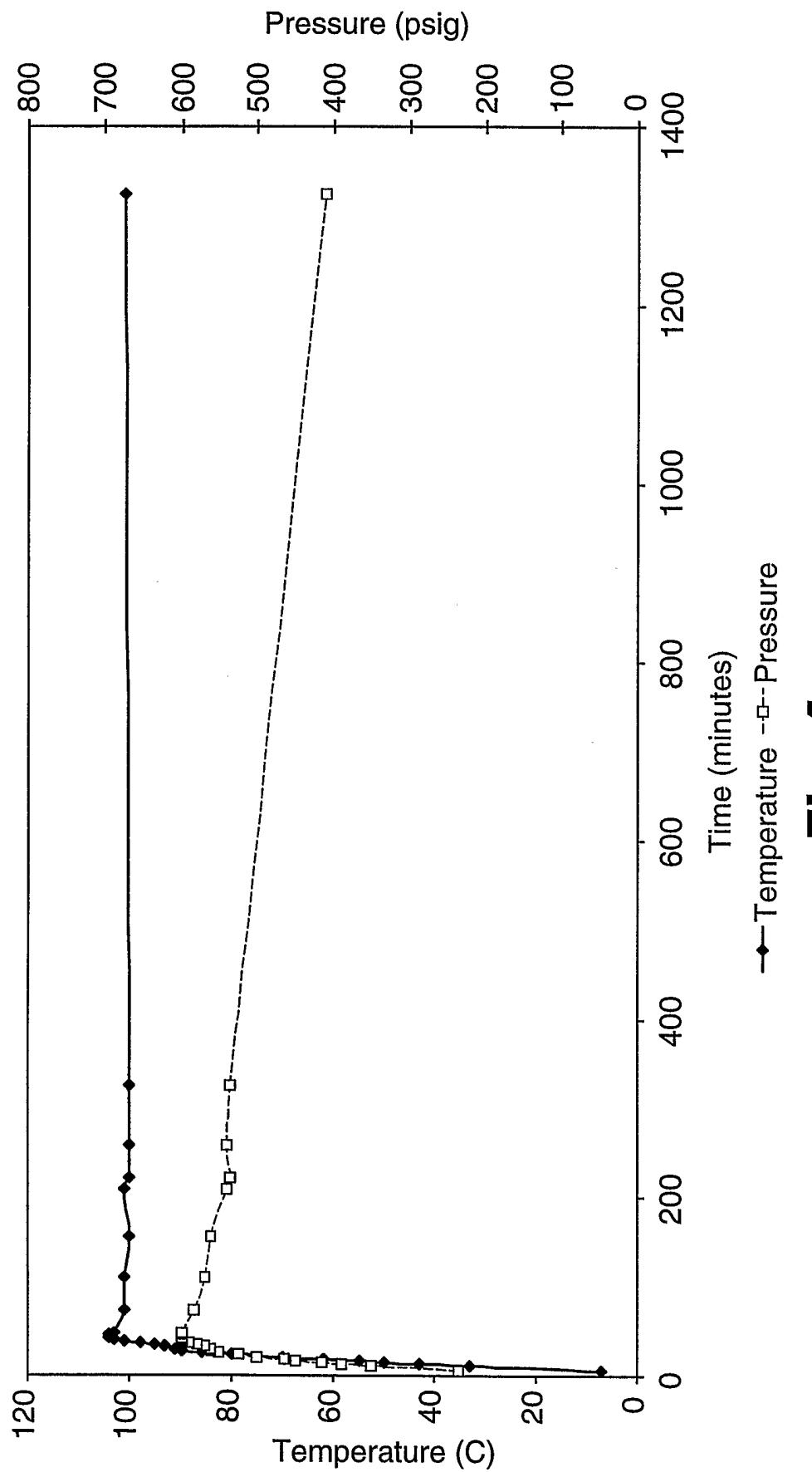

20 a) reacting in the presence of a two-part catalyst system in a polar aprotic organic solvent:

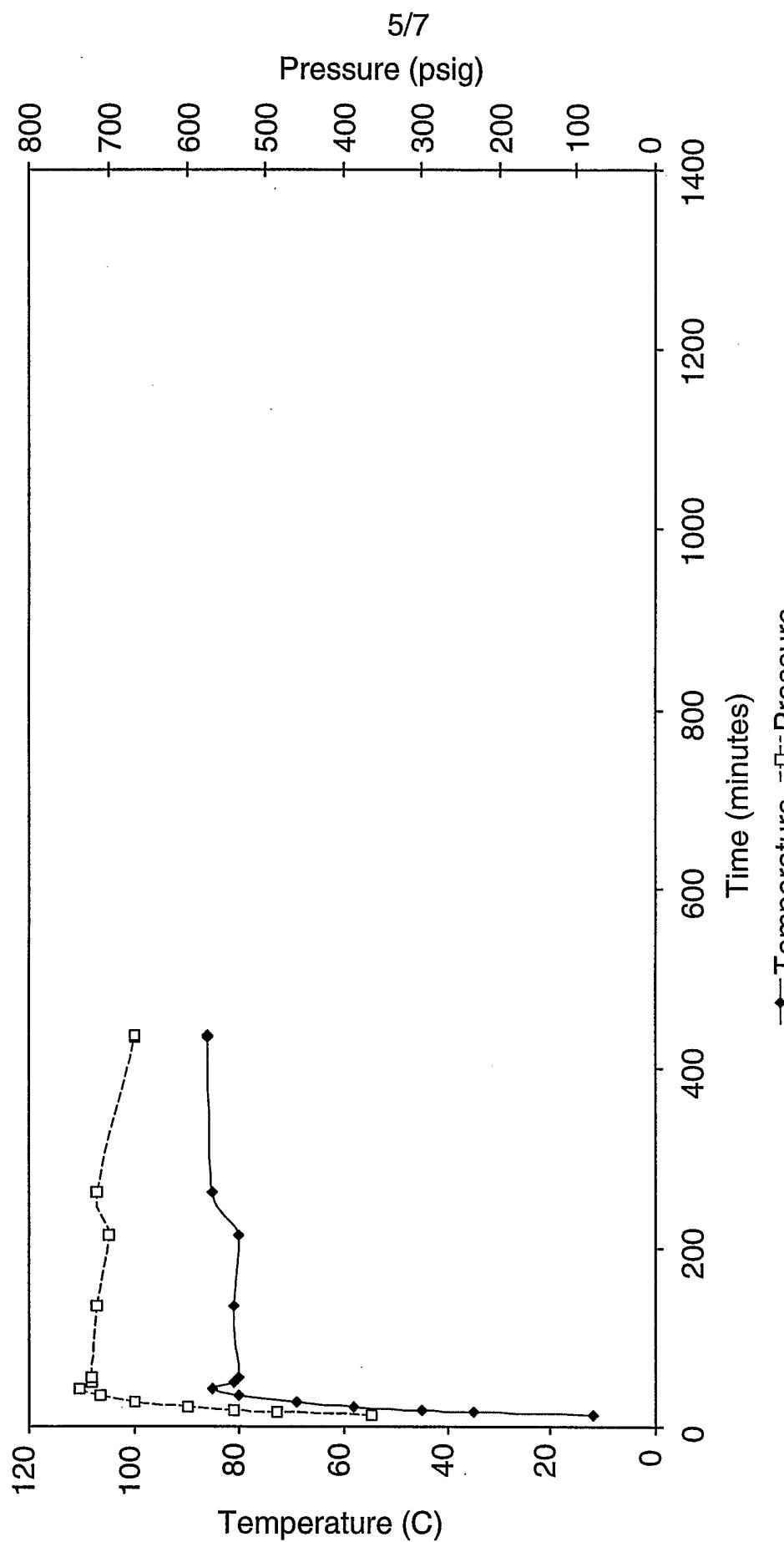

- i) tetrafluoroethylene, and
- ii) a fluoroalkanesulfonyl fluoride;

wherein said two-part catalyst system comprises a metal fluoride and a crown ether; and

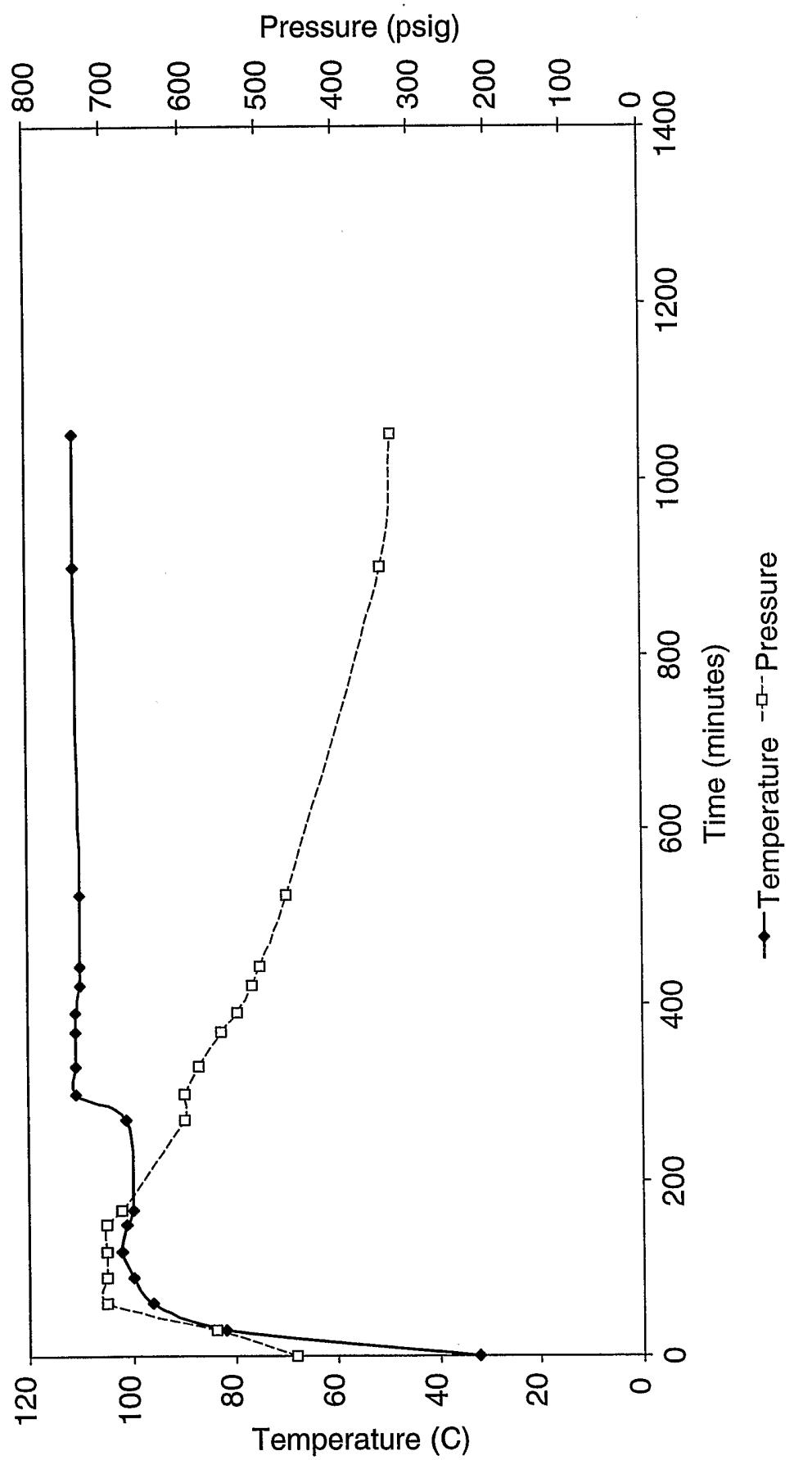

25 b) recovering the perfluoroethanefluoroalkanesulfone.

1/7


Fig. 1


Fig.2

3/7


Fig. 3

4/7

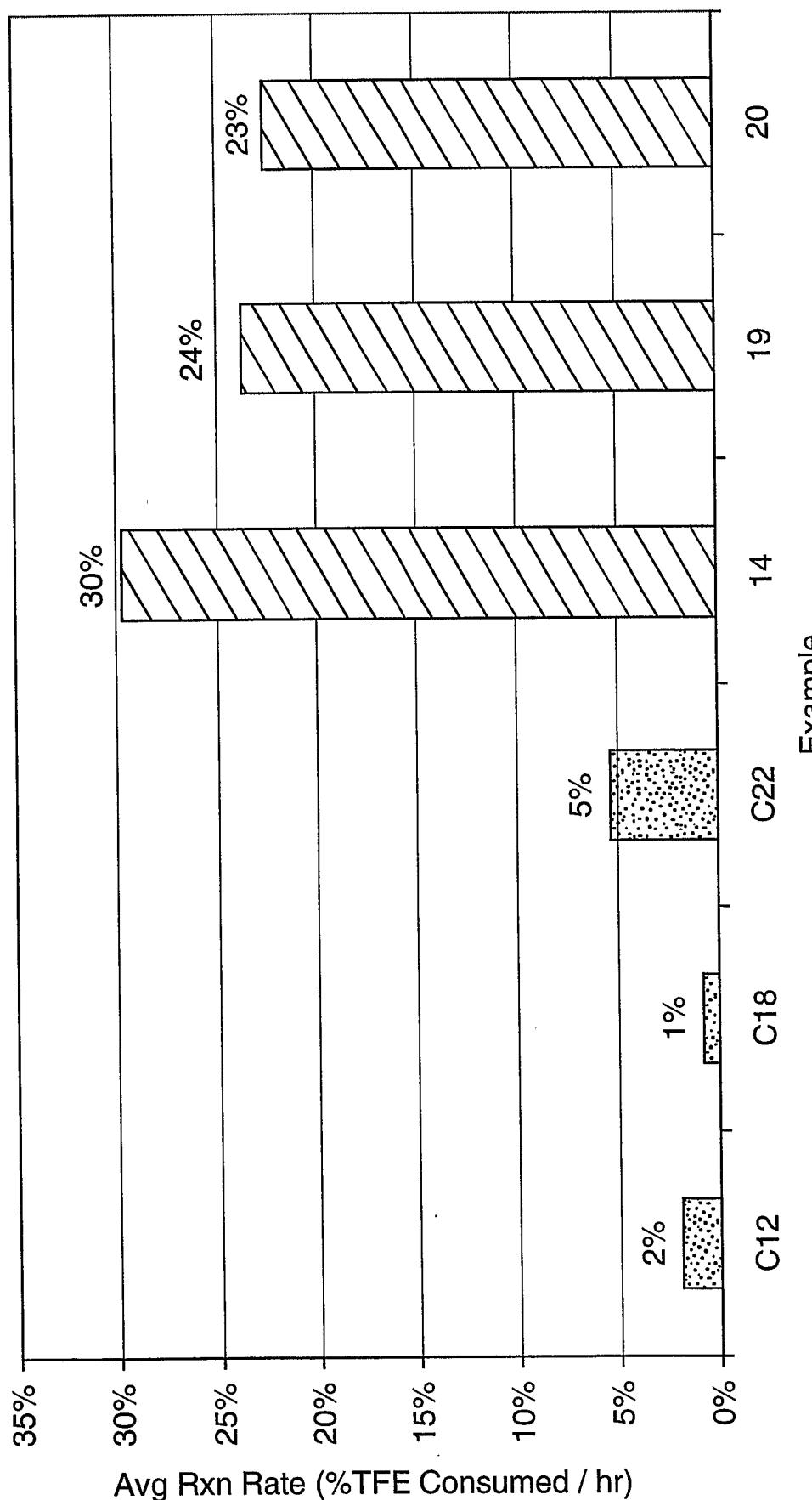

Fig. 4

Fig. 5

6/7

Fig. 6

7/7

Fig. 7