20097151481 A2 I 00 0 010 A U I

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 NI0POA 1.0 00 Y 0 0 O A
ernational Bureau S,/ ‘ 0 |
. . . ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
17 December 2009 (17.12.2009) WO 2009/151481 A2
(51) International Patent Classification: (74) Agents: MASON, Kevin, M. et al.; Ryan, Mason &
HO3M 13/29 (2006.01) Lewis, LLP, 1300 Post Road- Suite 205, Fairtield, CT
06824 (US).

(21) International Application Number:
PCT/US2008/088221 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
23 December 2008 (23.12.2008) CA, CH. CN, CO. CR, CU. CZ, DE, DK, DM, DO, DZ,
(25) Filing Language: English EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
. HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
12/138,920 13 June 2008 (13.06.2008) US NZ, OM, PG, PH, PL, PT, RO, RS, RU;, SC, SD, SE, 8G,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
(71) Applicant (for all designated States except US): LSI UG, US, UZ, VC, VN, ZA, ZM, ZW.
CORPORATION [US/US]; 1621 Barber Lane, Milpitas, . L
CA 95035 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(75) Inventors/Applicants (for US orly): ANDREEV, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Alexander [US/US]; 2774 Glen First Drive, San Jose, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
CA 95133 (US). GRIBOK, Sergey [RU/US]; 2390 Lu- ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
cretia Avenue - #505, San Jose, CA 95122 (US). IZYU- MC, MT, NL, NO, PL, PT, RO, SE, SL SK, TR), OAPI
MIN, Oleg [RU/US]; 631 Vasona Ct., Los Gatos, CA (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
95032 (US). SCEPANOVIC, Ranko [US/US]; 14153 NE, SN, TD, TG).
Ten Acres Court, Saratoga, CA 95070 (US). Published:
VIKHLIANTSEV, Igor [RU/US]; 7224 Sleepy Creek Uonsned:
Drive, San Jose, CA 95120 (US). VUKOVIC, Vojislav — without international search report and to be republished
[ME/US];, 48 Washington Street #7, Santa Clara, CA upon receipt of that report (Rule 48.2(g))

95050 (US).

(54) Title: METHODS AND APPARATUS FOR PROGARAMMABLE DECODING OF A PLURALITY OF CODE TYPES

FIG. 1

PRIOR ART o
110 Jar JaL.
Iy B p—
140

CHANNEL NOISE
170 160 /150
gy M —

(57) Abstract: Methods and apparatus are provided for programmable decoding of a plurality of code types. A method is provided
for decoding data encoded using one of a plurality of code types, where each of the code types correspond to a communication
standard. The code type associated with the data is identified and the data is allocated to a plurality of programmable parallel de-
coders. The programmable parallel decoders can be recontigured to decode data encoded using each of the plurality of code types.
A method is also provided for interleaving data among M parallel decoders using a communications network. An interleaver table
is employed, wherein each entry in the interleaver table identifies one of the M parallel decoders as a target decoder and a target
address of a communications network for interleaved data. Data is interleaved by writing the data to the target address of the com-
munications network. The communications network can comprise, for example, a cross-bar switch and/or one or more first- in-
first-out butfers.

15

20

30

WO 2009/151481 PCT/US2008/088221

METHODS AND APPARATUS FOR PROGRAMMABLE DECODING OF A
PLURALITY OF CODE TYPES

Field of the Invention

The present invention relates generally to error correction coding techniques for
digital communications, and more particularly, to techniques for parallel decoding and

interleaving of a plurality of codes, such as convolutional and turbo codes.

Background of the Invention

FIG. 1 is a block diagram of a typical digital communication 100. As shown in
FIG. 1, a digital source 110 produces a sequence of binary messages. Thereafter, an exemplary
channel encoder 120 uses a forward error-correction coding scheme, to increase the redundancy
of the source messages and to transform the source messages into encoded messages (often
referred to as codewords). Generally, the error correction coding provides increased resilience to
channel noise. A modulator 130 transforms the encoded messages into signals that are
appropriate for transmission over a channel 140. These signals enter the channel 140 and are
typically corrupted by noise and interference on the channel.

At the receiver, a demodulator 150 receives the noisy signals from the channel
140 and converts the received signals into blocks of symbols. A channel decoder 160 exploits
the redundancy introduced by the channel encoder 120 to attempt to correct any errors added by
the channel 140 and to restore the original messages. A number of different decoding techniques
have been proposed or suggested to decode signals encoded using error correction codes.

Error correction encoding techniques for wireless communication systems often
employ convolutional or turbo coding of the data before the signal is modulated so that errors
introduced by noise and interference on the channel may be corrected. Generally, a
convolutional code is an error correction code where each m-bit string is transformed into an n-
bit symbol, where m/n is the code rate (n is greater than or equal to m) and the transformation is
a function of the previous k information symbols, where k is the constraint length of the code.
Turbo codes are another class of error correction codes that are said to approach the theoretical
limits imposed by Shannon's theorem with reduced decoding complexity relative to the

convolutional codes that would be required for similar performance.

-1-

10

15

20

25

WO 2009/151481 PCT/US2008/088221

Increasingly, communication devices must support multiple communication
standards. For example, each of the WIMAX (Worldwide Interoperability for Microwave
Access) (an I[EEE 802.16 wireless broadband standard), LTE (Long Term Evolution) (a 3GPP
4G technology), UMB (Ultra Mobile Broadband) (a CDMA Development Group and 3rd
Generation Partnership Project 2) and WCDMA (Wideband Code Division Multiple Access)
communication standards require support tor at least one convolutional encoding technique and
at least one convolutional turbo encoding technique (or a combination thereof), at one or more
rates.

Thus, a need exists for reconfigurable or programmable decoders that can support
multiple communication standards. A further need exists for a programmable coder/decoder
(codec) that supports encoding or decoding (or both) and symbol processing functions for a

number of different existing and future communication standards.

Summary of the Invention

Generally, methods and apparatus are provided for programmable decoding of a
plurality of code types. According to one aspect of the invention, a method is provided for
decoding data encoded using one of a plurality of code types, where each of the code types
correspond to a communication standard. The decoding method comprises the steps of
identifying the code type associated with the data; allocating the data to a plurality of
programmable parallel decoders, wherein the programmable parallel decoders can be
reconfigured to decode data encoded using each of the plurality of code types; and providing the
data and the associated code type to the allocated programmable parallel decoders. Program
code (for example, from a local memory) can be loaded into one or more of the programmable
parallel decoders based on the identified code type.

According to another aspect of the invention, a method is provided for generating
one or more interleaver tables for use by M parallel decoders that decode data of at least one
code type. The interleaver table generation method comprises the steps of generating a first
interleaver table based on a communication standard for the at least one code type; and dividing
the first interleaver table by M to create a second interleaver table having M clusters, wherein

each entry in the second interleaver table indicates one of the M parallel decoders as a target

o

10

15

25

WO 2009/151481 PCT/US2008/088221

decoder and a target address for interleaved data. The data can then be interleaved among the M
parallel decoders using a communications network.

According to yet another aspect of the invention, a method is provided for
interleaving data among M parallel decoders. The interleaving method comprises the steps of
reading data to be decoded; accessing an interleaver table, wherein each entry in the interleaver
table identifies one of the M parallel decoders as a target decoder and a target address of a
communications network for interleaved data; and writing the data to the target address of the
communications network. The communications network can comprise, for example, a cross-bar
switch and/or one or more first-in-first-out buffer.

A more complete understanding of the present invention, as well as further
features and advantages of the present invention, will be obtained by reference to the following

detailed description and drawings.

Brief Description of the Drawings

FIG. 1 is a block diagram of a typical digital communication system;

FIG. 2 is a schematic block diagram of an exemplary trellis employed by a
conventional MAP decoder for decoding convolutional codes;

FIG. 3 is a block diagram of an exemplary conventional iterative conventional
algorithm 300 for decoding turbo codes;

FIG. 4 is a schematic block diagram of a decoder incorporating features of the
present invention;

FIG. 5 is a schematic block diagram of an exemplary computation cluster of FIG.
4 that incorporates features of the present invention; and

FIGS. 6A through 6D illustrate four sample interleaving tables.

Detailed Description

Aspects of the present invention provide programmable decoders that support a
plurality of communication standards. According to one aspect of the present invention, the
conventional channel decoder 160 of FIG. 1 is modified to provide a decoder function for a

plurality of encoding techniques. In one exemplary embodiment, the conventional channel

3.

10

15

20

25

WO 2009/151481 PCT/US2008/088221

decoder 160 of FIG. 1 is modified to provide a decoder function for the WiMAX, LTE and UMB
error correction protocols. According to another aspect of the invention, the conventional
channel decoder 160 of FIG. | performs a number of symbol processing functions, such as
puncturing and de-puncturing, cyclic redundancy check (CRC) generation and checking,
interleaving and de-interleaving, and multiplexing and de-multiplexing, that are required by the
supported communication standards.

For a general discussion of encoding techniques using convolutional and turbo
codes, see, for example, IEEE 802.16 Wireless Broadband Standard, as described in:

http://standards.iece.org/getieee802/download/802.16-2004.pdf, or

http://standards.ieee.org/getieee802/download/802.16e-2005.pdf (WiMAX); or
the 3rd Generation Partnership Project Technical Specification, as described in:

http://'www.3gpp.org/ttp/Specs/archive/36 series/36.212/36212-810.zip (LTE), or

http://www.3gpp2.org/Public_html/specs/C.S0084-001-0_v2.0_070904.pdf (UMB),
each incorporated by reference herein.

According to yet another aspect of the present invention, a plurality of
programmable “thread processors” are employed to support a number of convolutional and
turbo-like codes. In addition, a communication network is used for interleaving instead of one or
more dedicated interleaver/de-interleaver modules to reduce the processing time.

Decoding Basics

A decoder, such as the decoder 160 of FI1G. 1, can process codewords on a frame-
by-frame basis. Each frame is comprised of several codewords that require the same code
operation type. Codewords are added to a frame in the order that they are received and the
results are returned in the same order.

Decoding Convolutional Codes

A number of algorithms exist for decoding convolutional codes. For relatively
small values of k (where k is the constraint length of the code.), the Viterbi algorithm is
frequently used, since it provides maximum likelihood performance and allows a parallel
implementation. Generally, for longer codewords, a codeword can be divided into parts and
decoded in parallel, as is well known to those of ordinary skill in the art. Parallel decoding is

typically done to improve the decoding rate. Typically, overlapping windows are employed,

4

10

15

20

WO 2009/151481 PCT/US2008/088221

where the codeword is divided into parts and decoded in parallel by a number of decoding units.
Therefore, the decoder distributes the decoding tasks between a number of constituent decoding
units. The decoder receives several code blocks and assigns the code blocks into the decoding
units. The decoding units perform the decoding tasks in parallel and then the decoder retrieves
the decoding results.

For a detailed discussion of techniques for assigning code blocks to constituent
decoding units in a turbo decoding system having parallel decoding units, see, United States
Patent Application Serial No. | entitled “System and Method for Assigning Code Blocks to
Constituent Decoder Units in a Turbo Decoder System Having Parallel Decoding Units,”
(Attorney Docket No. 08-0240), incorporated by reference herein.

For larger values of k, the codes are typically decoded with one of several known
sequential decoding algorithms, such as the well-known Fano algorithm. See, for example, R.M.
Fano “A heuristic Discussion of Probabilistic Decoding” (1963), incorporated by reference
herein. Unlike Viterbi decoding, sequential decoding techniques do not employ maximum
likelihood techniques, but the complexity increases only slightly with constraint length, allowing
the use of strong, long-constraint-length codes.

Viterbi and sequential decoding algorithms generate hard-decisions, indicating the
bits that form the most likely codeword. An approximate contidence measure can optionally be
added to each bit by use of the well-known Soft Output Viterbi Algorithm (SOVA). Maximum a
posteriori (MAP) soft-decisions for each bit can be obtained by use of the BCJR algorithm
(Bahl-Cocke-Jelinek-Raviv Algorithm). See, for example, L. Bahl et al., “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate,” (March, 1974), incorporated by reference
herein.

FIG. 2 is a schematic block diagram of an exemplary trellis 200 employed by a
conventional MAP decoder for decoding convolutional codes. The exemplary trellis 200 can be
used, for example, by a MAP decoder that computes a forward state metric 210 and a backward
state metric 220, in a known manner, to calculate an output L-value. FIG. 2 illustrates the
computation of such path metrics for a number of encoder states, sy through s;, for a number of

input bits, such as bits uy through us.

10

15

b
LA

WO 2009/151481 PCT/US2008/088221

As shown in FIG. 2, the branch metrics, y,(s',s), may be computed as follows:

f ¢ I t
%(“Lf” -y, =y 150} = {50}
H i K¢ 1 i o
1 SL) =y, +), {s.0) = {s)]}
}//(S‘S)z i in 5] 1 1
SHL +y =), {sLl > {50}

LEL +y) +), s - (sl
The forward metric, «,(s), may be computed as follows:
J 0, s=0

1-«0@, s#0
. (8) = max*[y,(s],8) +a,(s])), 7,(s,.8) + a,(s))]

a,(s)=

The backward metric, f,(s"), may be computed as follows:

0, s=0

ﬁk’(s):{—cm s %0

B (s")y =max*[y,(s",s)+ f,,(s,).7, ("5)+ B (s)]

The Output L-value, L(u;), may be computed as follows:

L()l[_fz(__,_l_l_z}

P(u,=-1|r)
L) =max* (B, +7,(s"5)+a(s")]
- max*m,ﬁﬂdj (B (s)+y,(s',s)+a,(s")]

max*(x,y)=In(e" +¢") =max(x, y) +In(l+e¢ ")

Decoding Turbo Codes

FIG. 3 is a block diagram of an exemplary conventional iterative conventional
algorithm 300 for decoding turbo codes. As previously indicated, turbo codes are used in a
number of data communication standards, such as 3G, 4G and [EEE 802.16. In the exemplary
embodiment shown in FIG. 3, the received code block is divided into 3 parts: (vo, vi, y2).
Vectors (yp, yi) are sent to a first MAP-decoder 310. The MAP-decoder 310 produces a vector

L' ue where L'y is the output L-value of'i-th decoder (a posteriori L-value).

-6-

10

15

25

30

WO 2009/151481 PCT/US2008/088221

The vector L', is added by an adder 320 to a vector L', generated by a de-
interleaver 340 (discussed below) to generate a vector L' Licx is the extrinsic L-value of i-th
decoder (extrinsic a posteriori L-value). L‘}n is the input L-value of i-th decoder. The vector L'
is applied to an interleaver 330. Generally, the interleaver 330 performs some mixing of the
vector components. The output of the interleaver 330 is a vector L%,. The vector L%, and
vectors (yo, y2) are applied to a second MAP-decoder 380. The MAP-decoder 380 produces a
vector Lzom. The vector LzOm is added by an adder 350 to the vector Lzm generated by interleaver
330 to generate a vector L. The vector L% is applied to the de-interleaver 340. The de-
interleaver 340 performs a transformation that is an inverse to the operation performed by
interleaver 330. The output of the de-interleaver 340 is the vector L', discussed above. The
vector le and vectors (yo, vi) are applied to the first MAP-decoder 310 and continues in an
iterative manner. The vector Lzout generated by the MAP-decoder 380 is also applied to a second
de-interleaver 370, which generates the bit decisions. This iterative process stops after a fixed
number of iterations or if some specific stopping criteria is satisfied.

For a more detailed discussion of suitable decoding algorithms 300, see, for
example, Shu Lin, Daniel Costello, “Error Control Coding,” (2d Ed., 2004), incorporated by
reference herein. Generally, the decoding algorithms 300 typically support code blocks of
different sizes. For example, according to the 3GPP standard, the source message size can vary
from 40 to 5114 bits. The decoding algorithms 300 should efficiently handle a data flow that
consists of code blocks of different sizes. In addition, the total time needed to decode a code
block is proportional to the code block size. The total size of the random-access memory inside
the decoder 160 is proportional to the size of maximum code block that the decoder 160 can
support.

Programmable Decoder

FIG. 4 is a schematic block diagram of a decoder 400 incorporating features of
the present invention. As shown in FIG. 4, the decoder 400 comprises a soft decoding engine
(SDE) 410, an input first-in-first-out (FIFO) buffer 420, a load engine 430, an interleaver
computation unit 440, a thread processor 450-, an upload engine 460 and an output FIFO buffer
470. In addition, as shown in FIG. 4, the soft decoding engine 410 comprises a communication

network 480, used for interleaving in a manner discussed below, and a plurality of computation

7.

10

15

20

WO 2009/151481 PCT/US2008/088221

clusters 500-1 through 500-N (collectively referred to herein as computation clusters 500),
discussed further below in conjunction with FIG. 5.

The soft decoding engine 410 decodes a plurality of codes in accordance with an
aspect of the present invention, such as turbo codes, convolution codes, and LDPC codes. In
addition, the soft decoding engine 410 may be configured to simultaneously decode several code
words at the same time.

The input FIFO buffer 420 stores the data that is coming into the decoder 400
trom an input port 405. The load engine 430 receives the input data for several codewords from
the FIFO 420. In addition, the load engine 430 reads the interleaved addresses for the data from
the interleaver computation unit 440 by means of connection 432, receives control signals from
the thread processor 450 by means of connection 435 and sends the data to the communication
network 480. The thread processor 450 may be implemented, for example, using a Coware
processor (see, http://www.coware.com/).

The interleaver computation unit 440 generates one or more interleaver tables
600, discussed further below in conjunction with FIGS. 6A through 6D, containing destination
addresses that are used by the computation clusters 500 to write the data for the next half
iteration.

As previously indicated, the thread processor 450 generates a command stream
for the decoding algorithms in the computation clusters 500 based on the program memory
content. The thread processor 450 receives control information from input port 445 with the data
that is received on port 405. The control information comprises headers and configuration data
that defines the communication standard that was used to encode the data. For example, the
control information may specify the type of code (code type identifier), the number of codewords
in a frame and the codeword length. As discussed hereinafter, the thread processor 450 provides
the appropriate information to the computation clusters 500 via the communication network 480.
If the thread processor 450 determines that a new code type needs to be decoded the thread
processor 450 will send the parameters to the computation clusters 500 with a code type
identifier. As discussed further below in conjunction with FIG. 5, the computation clusters 500
will load the appropriate program code, if needed. to decode the codeword based on the code

type identifier.

10

15

20

3
L

WO 2009/151481 PCT/US2008/088221

The input FIFO buffer 420 stores the data that is coming into the decoder 400
from an input port 405. The upload engine 460 receives the decoded data from the
communication network 480 and applies it to the output FIFO butter 470.

The communication network 480 provides arbitrary configurable connections
between components, such as the thread processor 450 and the computation clusters 500. In one
exemplary embodiment, the communication network 480 can be implemented as a cross-bar
switch or FIFOs. The operation of the communication network 480 is discussed further below in
the section entitled ““Parallel Interleaving.”

FIG. 5 is a schematic block diagram of an exemplary computation cluster 500 that
incorporates features of the present invention. As previously indicated, a plurality of
computation clusters 500 decodes the data in parallel. As shown in FIG. 5, the exemplary
computation cluster 500 comprises a thread processor 510, a data memory 520, an arithmetic unit
530 and a memory controller 540.

As previously indicated, the thread processor 450 of FIG. 4 provides the
appropriate control information to the computation clusters 500 via the communication network
480. If the thread processor 450determines that a new code type needs to be decoded, the thread
processor 450 will send the parameters to the computation clusters 500 with a code type
identifier. Based on the code type identifier, the thread processor 510 in the computation cluster
500 will load the appropriate program code, if needed, from the data memory 520 (via the
memory controller 540) to decode the codeword based on the code type identifier. The decoding
operations performed by the thread processor 510 are discussed further below in a section
entitled “Parallel Decoding.” Generally, reads are local and writes are performed according to
interleaver tables 700. The data memory 520 stores a plurality of programs for decoding
codewords associated with a plurality of different communication standards.

The thread processor 510 interprets a program and according to the program
provides instructions for the arithmetic unit 530. Generally, based on the identified
communication standard, such as LTE, the thread processor 510 in each cluster 500 is loaded
with the appropriate program code from the data memory 520, as well as the interleaver tables

700 and other parameters for the identified standard (based on, for example, the indicated

-9

10

15

20

WO 2009/151481 PCT/US2008/088221

codeword size). Thereafter, the computation cluster 500 can decode all codewords received that
have been encoded with the same standard.
Parallel Decoding

As discussed above in conjunction with FIG. 3, the decoding process is typically
an iterative process. In the exemplary embodiment of the present invention, there are four
computation clusters 500 operating in parallel, and the computation clusters 500 perform two
sets of operations during each iteration. During the first half iteration (Decoder 1 in FIG. 3), the
computation clusters 500 read their own local port of data (e.g., the received vector, for example,
from the data memory 520) and L';, (see FIG. 3) and obtain the target address of the data cluster
from the interleaver table(s) 700 (Table 3), as discussed further below in the following section.
Thereafter, the computation clusters 500 interleave the data in accordance with the present
invention by writing the data to the communication network 480 using the indicated target
address. In this manner, the data is decoded by the computation clusters 500 and sent to the
communication network 480, but is not stored locally by the computation clusters 500. The data
is sent to the target address and is not needed until the next half iteration.

During the second half iteration (Decoder 2 in FIG. 3), the computation clusters
500 again read their own local port of data (e.g., the received vector, for example, from the data
memory 520) and L%, (see FIG. 3) and obtain the target address of the data cluster from the
interleaver table(s) 700 (Table 4), as discussed further below in the following section.
Thereafter, the computation clusters 500 de-interleave the data in accordance with the present
invention by writing the data to the communication network 480 using the indicated target
address.

Parallel Interleaving Using Communications Network

FIGS. 6A through 6D illustrate four sample interleaving tables 600. FIGS. 6A
and 6B illustrate conventional interleaver and de-interleaver tables for LTE Turbo codes having
a codeword size, K=248. The tables in FIGS. 6A and 6B are generated based on the
corresponding standard document. The exemplary tables were generated using the algorithm

specified in Section 5.1.3.2.3 of http://www.3gpp.org/ftp/Specs/archive/36 series/36.212/36212-

-10-

10

15

WO 2009/151481 PCT/US2008/088221

810.zip. The parameters 7, and £, depend on the block size K and are summarized in Table
5.1.3-3 of the LTE standards document.

In this example, the codeword size, Ki, is 248, and thus Table 5.1.3-3 from the
standards document specifies that parameters f1=33 and 12=62. These values are used to
populate the interleaver table of FIG. 6A and the de-interleaver table of FIG. 6B. Therefore,
input index 1 and output index j of the interleaver table 600 satisfies the following equation:

i=(33%j+62*) mod 248

The exemplary interleaver table of FIG. 6A (Table 1) has two columns. The first
column is an input data index. The second column is an output (interleaved) data index. For
example, the first two rows of the table in FIG. 6A are:

0 0

1 171

This notation indicates that after the interleaving (i.e., writing to the
communications network 480 in accordance with the present invention), the 0-th data word
remains at index 0 while the first (1-st) data word goes to index 171.

Likewise, the exemplary de-interleaver table of FIG. 6B (Table 2), often referred
to as a “reversed interleaver table,” is a reversed copy of the interleaver table of FIG. 6A. For
example, the first line (row two) of the interleaver table (FIG. 6A) is “1 171”. Therefore, the
I71-st line of the second table is “171 1. This notation indicates that after the de-interleaving
(i.e., writing to the communications network 480 in accordance with the present invention), the
171-st data word is written to index 1. As previously indicated, embodiments of the present
invention employ a plurality of parallel programmable thread processors 510 to support a
number of convolutional and turbo-like codes. In the exemplary embodiment, there are M equal
to 4 parallel computation clusters 500. In addition, a communication network 480 is used for
interleaving the decoding processes performed by the parallel thread processors 510.

FIGS. 6C and 6D illustrate interleaver and de-interleaver tables for LTE Turbo
codes having a codeword size, K=248, and a parallel decoder implementation, where M is equal
to 4. Generally, interleaver and de-interleaver tables in FIGS. 6C and 6D are generated by

dividing the original tables of FIGS. 6A and 6B by M (equal to 4) to create four clusters. In this

10

15

20

o]
(¥,

WO 2009/151481 PCT/US2008/088221

manner, the interleaver and de-interleaver tables of FIGS. 6C and 6D allow the interleaving
process to be divided for a parallel decoding implementation.

In FIG. 6C, the format is {<target cluster index> <target memory address>}.
Thus, in the notation of FIG. 6C, for example, the first entry 620 corresponds to the first entry of
FIG. 6A and again indicates that the 0-th data word remains at index 0 for Cluster 0. Likewise,
the second entry 625 indicates that the first word (correspond to row 1) goes to index 43 of
Cluster 2 (corresponding to the second entry of “1 171" from FIG. 6A for a mod 64 operation).

Likewise, the exemplary de-interleaver table of FIG. 6D (Table 4), often referred
to as a “reversed interleaver table for 4 computation clusters,” is a reversed copy of the
interleaver table of FIG. 6C. Generally, the de-interleaver table of FIG. 6D returns data to the
original position, in a known manner,

Functional Decoding Mode

A decoder 400 (FIG. 4) must typically be initialized before the decoders enters a
functional mode. During the initialization procedure, the decoder 400 is programmed for its
regular operations, in a known manner. Generally, during the initialization procedure, the thread
processors 510 (FIG. 5) are loaded with the appropriate programs for the communications
standard, as well as the data that will be decoded during the functional mode. As the boot data
start and continue to arrive to the input FIFO 420, the decoder initialization part reads the data
and loads the selected thread processors 510. When the boot process is finished, the decoder sets
its status register to a predefined value and is then ready to start processing received frames.

In the functional mode, an outside block typically sends a data frame to the
decoder and monitors the status register for the finish of the processing. When the results are
ready, they are taken outside and a new frame can be sent to the decoder.

As previously indicated, a frame is comprised of several codewords with
the same decoding operation type. To indicate that a new frame is ready, one or more
flags may be set for one clock cycle. Thereafter, the decoder 400 expects to receive a
set of headers followed by the data for every codeword in the frame.

In one exemplary embodiment, the first header that sent to the decoder 400 is a

frame title header (e.g., indicating operation type (format) and the number of codewords in the

WO 2009/151481 PCT/US2008/088221

frame). Thereatter, the decoder receives a group of headers, with one header for each codeword
in the frame.

An exemplary frame codeword header indicates:

Field Meaning

Codeword length A number of information bits in a codeword

Address A decoder memory address where the codeword will be
placed

Processor 1D ID of a first thread processor that will process the
codeword

Number of addresses A number of addresses that the codeword will occupy

Number ot processors A number of thread processors that will process the
codeword

Thread processor data The thread processor parameters used for the codeword
processing

After the codeword headers, headers can be sent containing the thread processor
parameters for all the thread processors 510 in the decoding engine. First, a title header can be
sent for as many cycles as necessary to specify the number of codewords each thread processor
510 is going to process:

An exemplary thread processor title header indicates:

Field Meaning
Number ot CWs
Processor [D ID of a thread processor
Number of codewords A number of codewords the thread processor will
process

Then, it is sent one header for each thread processor codeword

Field Meaning
Processor 1D ID of a thread processor
Codeword ID ID of a thread processor's codeword
Address Starting memory address of the codeword
Number of addresses A number of addresses that the codeword will occupy

10

15

20

WO 2009/151481 PCT/US2008/088221

| Thread processor data The thread processor parameters used for the codeword

processing

After all the headers are received, the decoder 400 receives the codeword data in
accordance with the information in the headers. It is assumed in the exemplary embodiment that
the soft values take 8 bits of the data so it is possible to receive at most 16 soft values in one
clock cycle. After the complete frame is decoded, the decoder sets the value of status register to
a predefined value, such as 'DONE', and the data can be taken from the output FIFO 470.

Conclusion

While exemplary embodiments of the present invention have been described with
respect to digital logic blocks, as would be apparent to one skilled in the art, various functions
may be implemented in the digital domain as processing steps in a software program, in
hardware by circuit elements or state machines, or in combination of both software and
hardware. Such software may be employed in, for example, a digital signal processor, micro-
controller, or general-purpose computer. Such hardware and software may be embodied within
circuits implemented within an integrated circuit.

Thus, the functions of the present invention can be embodied in the form of
methods and apparatuses for practicing those methods. One or more aspects of the present
invention can be embodied in the form of program code, for example, whether stored in a storage
medium, loaded into and/or executed by a machine, or transmitted over some transmission
medium, wherein, when the program code is loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing the invention. When implemented
on a general-purpose processor, the program code segments combine with the processor to
provide a device that operates analogously to specific logic circuits. The invention can also be
implemented in one or more of an integrated circuit, a digital signal processor, a microprocessor,
and a micro-controller.

A plurality of identical die are typically formed in a repeated pattern on a surface
of the wafer. Each die includes a device described herein, and may include other structures or

circuits. The individual die are cut or diced from the wafer, then packaged as an integrated

-14-

10

WO 2009/151481 PCT/US2008/088221

circuit. One skilled in the art would know how to dice wafers and package die to produce
integrated circuits. Integrated circuits so manufactured are considered part of this invention.

It is to be understood that the embodiments and variations shown and described
herein are merely illustrative of the principles of this invention and that various modifications
may be implemented by those skilled in the art without departing from the scope and spirit of the

invention.

-15-

15

20

WO 2009/151481 PCT/US2008/088221

We claim:

1. A method for decoding data encoded using one of a plurality of code types, each
of said code types corresponding to a communication standard, said method comprising:

identifying said code type associated with said data;

allocating said data to a plurality of programmable parallel decoders, wherein said
programmable parallel decoders can be reconfigured to decode data encoded using each of said
plurality of code types; and

providing said data and said associated code type to said allocated programmable

parallel decoders.

2. The method of claim 1, further comprising the step of loading program code into

one or more of said programmable parallel decoders based on said code type.

3. The method of claim 2, further comprising the step of obtaining program code
based on said code type from a local memory device for one or more of said programmable

parallel decoders.

4. The method of claim 1, further comprising the step of providing control

information to one or more of said programmable parallel decoders.

5. A method for generating one or more interleaver tables for use by M parallel
decoders that decode data of at least one code type, said method comprising the steps of:
generating a first interleaver table based on a communication standard for said at
least one code type; and
dividing said first interleaver table by M to create a second interleaver table
having M clusters, wherein each entry in said second interleaver table indicates one of said M

parallel decoders as a target decoder and a target address for interleaved data.

-16-

10

15

20

30

WO 2009/151481 PCT/US2008/088221

6. The method of claim 5, further comprising the step of interleaving said data

among said M parallel decoders.

7. The method of claim 5, further comprising the step of interleaving said data using

a communications network.

8. A method for interleaving data among M parallel decoders, said method
comprising the steps of:

reading data to be decoded;

accessing an interleaver table, wherein each entry in said interleaver table
identifies one of said M parallel decoders as a target decoder and a target address of a
communications network for interleaved data; and

writing said data to said target address of said communications network.

9. The method of claim 8, wherein said communications network comprises one or

more of a cross-bar switch and one or more first-in-first-out buffers.

10. The method of claim 8, wherein said M parallel decoders decode data encoded

using one of a plurality of code types.

1. An apparatus for decoding data encoded using one of a plurality of code types,
each of said code types corresponding to a communication standard, said apparatus comprising:

a memory; and

at least one processor, coupled to the memory, operative to:

identify said code type associated with said data;

allocate said data to a plurality of programmable parallel decoders, wherein said
programmable parallel decoders can be reconfigured to decode data encoded using each of said
plurality of code types; and

provide said data and said associated code type to said allocated programmable

parallel decoders.

-17-

10

15

20

5
AW

WO 2009/151481 PCT/US2008/088221

12. The apparatus of claim 11, wherein said processor is further configured to load

program code into one or more of said programmable parallel decoders based on said code type.

13. The apparatus of claim 12, wherein said processor is further configured to obtain
program code based on said code type from a local memory device for one or more of said

programmable parallel decoders.

14. The apparatus of claim 11, wherein said apparatus is implemented in one of an
integrated circuit, a digital signal processor, a microprocessor, a micro-controller, and a general-

purpose computer.

15. An apparatus for generating one or more interleaver tables for use by M parallel
decoders that decode data of at least one code type, said apparatus comprising:

a memory; and

at least one processor, coupled to the memory, operative to:

generate a first interleaver table based on a communication standard for said at

least one code type; and
divide said first interleaver table by M to create a second interleaver table having
M clusters, wherein each entry in said second interleaver table indicates one of said M parallel

decoders as a target decoder and a target address for interleaved data.

16. The apparatus of claim 15, wherein said processor is further configured to

interleave said data among said M parallel decoders using a communications network.
17. The apparatus of claim 15, wherein said apparatus is implemented in one of an

integrated circuit, a digital signal processor, a microprocessor, a micro-controller, and a general-

purpose computer.

18-

9]

10

15

WO 2009/151481 PCT/US2008/088221

18. An apparatus for interleaving data among M parallel decoders, said apparatus
comprising:

a memory; and

at least one processor, coupled to the memory, operative to:

read data to be decoded;

access an interleaver table, wherein each entry in said interleaver table identifies
one of said M parallel decoders as a target decoder and a target address of a communications

network for interleaved data; and

write said data to said target address of said communications network.

19. The apparatus of claim 18, wherein said communications network comprises one

or more of a cross-bar switch and one or more first-in-first-out buffers.

20. The apparatus of claim 18, wherein said apparatus is implemented in one of an
integrated circuit, a digital signal processor, a microprocessor, a micro-controller, and a general-

purpose computer.

-19-

WO 2009/151481

/HO

DIGITAL
SOURCE

1/7

FIG.
PRIOR ART

/120

/

CHANNEL

/170

DIGITAL

ENCODER

PCT/US2008/088221

/160

CHANNEL

SINK

DECODER

NOISE

DEMODULATOR

PCT/US2008/088221

WO 2009/151481

2/7

omw\ NOLLYINDIVO JIALIN QYYMIIVE

EN\ NOLLYINOVI JI4LIN QuYMd04
SH8 1NdNI

A

I N VN N N

On

(‘s)y

14V 401
¢ 9Id

M

SIIVIS
43000N3

PCT/US2008/088221

WO 2009/151481

3/7

4 04

YIAVITYIINI
ewm\ YIAVINIINIG —— NOISIO30
Sm\
. Ly 0¢
¢ 4300234 I r/+ DET YIAVINIINIIC q
7 A 1 7 1
09¢ 1149
0z¢
dIAVITHIINI J\+/ } 4300330
zﬂ 53 ./\ soz _
oss)
0i¢
0 |
14V ¥0Idd

& OIA

PCT/US2008/088221

WO 2009/151481

4/7

1INN

0 INONT)
woTdN
0414
00y =1 1ndino

z@mmu%&g NOLLYLNMOD
s AN
05y
INION3
YSOMLIN NOLLYIINAANOD o
osr 7
¥31SM) o ¥31SM) 43157 0414
NOLLYLNdMOD NOLLYINdMOD | | NOTLVLNdMOD 1dNI
N-005 7 7-005 7 1-005 7
(30S) INIONI ONIG0DIQ L40S
o/
o)

vy OIAd

~ 00y

WO 2009/151481 PCT/US2008/088221

5/7
FIG. 5 o
DATA MEMORY
/510 540
THREAD
PROCESSOR
MEMORY
330 CONTROLLER
ARITHMETIC
UNIT
FIG. 64
PRIOR ART
600
J
INTERLEAVER
TABLE

0 0
Y
2 218
314
43 13
24 60
45 231
26 30
247 201

TABLE 1

PCT/US2008/088221

/ 600

S 600

PRIOR ART

FIG. 6B

WO 2009/151481

TABLE 3

[remany p— Pr—_—
e O e WD)
v Mo =
[
LE|T o2
s
B% ey g, i, pr—y | — oo vy ooty Yooy
<t =)} —_— M < O 00 U3 O W N
o |F3 S <+ M = DN - @
o= - oS QYo Q Bz o= oS e
— -
BZy| oo TR |~ == == — e~
sk e
i =t = = Mmooy N et
> 0 =< @0 EDi— I S R T = T T ==
tad Lad P MY e Y D P ~x Ci. St s el b bl s bl S s Anoonnird
[-t wt <+ < ~ | ey -MM [k k|
m LD v N M N N N OO — D e r——y prm—— L Rt B s Bt T dsamme B s
F S Jm ey o™ vy O LD O WD o e
= ooy —) N v O
O Yol laladl m o~ D e O DM
o
.ILO | R W |
L
.o 20 D O e N MY
O Jwe O U W) WD W G W
oW
o O
[T o e)

WO 2009/151481

7/1

FIG. 6D

LOCAL REVERSED INTERLEAVER TABLES

FOR 4 COMPUTATION CLUSTERS

0 1 2 3
0: [0,0] [20] [08] [28]
o [1,31) [3.31] [1,39] [3,39]
2 (17 [3,2] [1,10] [3,10]
3 [233] [041] [2.41] [049]
59: [0,25] [2,25] [0,33]
60: [3,52] [1,60] [0,4]
61 [1,27] [327] [1,35]
62 [0,62] [2.62] [1,6]
63 [2.29] [0,37] [2,37]

PCT/US2008/088221

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings

