(54) Title: LASER DISC PACKAGE

(57) Abstract

A one-piece integrally formed container or package (2) for an audio laser disc (40) or similar is provided in which the body portion (2) is divided into a base portion (6) and a cover portion (4) by a substantially centrally located hinge means (8). The hinge means (8) allows the cover portion (4) to move between two extreme positions; the first extreme position being a substantially closed position in which the cover portion (4) is in intimate contact with the base portion (6) and the second extreme position being a substantially open flat position in which the cover portion (4) is substantially planar with the base portion (6). Additionally, the base portion (6) is provided with an integrally formed laser disc retention means (20) having a plurality or multiplicity of fingers (34) resiliently deformable which cooperate with the alignment aperture (42) of the disc (40) to securely retain the disc safely in the package in use.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>FR</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LX</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
LASER DISC PACKAGE
The present invention relates to a container generally, and more particularly to a one-piece container or package moulded from a plastics material. Even more particularly the present invention relates to a novel one-piece container or package for a laser audio disc or compact disc and to an improved method of making the package as a one-piece moulding.

Although the present invention will be described with particular reference to a one-piece container moulded from plastics material for containing and packaging a laser audio disc or a compact disc it is to be noted that the scope of the present invention is
not so limited and may extend in scope to include other modifications for packaging compact discs or other similar products such as video discs or the like and to other methods of manufacturing the package.

Currently, compact discs or audio discs are packaged in a standard package which is common to the industry. This industry standard package has a number of inherent disadvantages or short coming which will be described below in detail. One major disadvantage or drawback is that the standard package is made up from a number of individual components which must be assembled together after their manufacture. At present three major plastic components are required to be manufactured individually and then assembled together. Presently, the standard industry package used consists of a base portion having an integrally moulded first hinge portion and a cover portion having an integrally moulded second hinge portion where the first hinge portion and second hinge portion are complementary to each other so that when the cover and base portion are assembled together the two hinge portions combine together to form the hinge so that the cover may freely pivot between a fully open position and a fully closed position with respect to the base portion. The third major component is a disc retention means which is separately manufactured and attached to the base portion during assembly of the package. The disc retention device is received on a complementary shaped boss of the base portion of the existing package. Since the three major components of the package must be manufactured separately and then assembled together the overall multi-component package is both costly and time consuming to produce.

In addition to having to separately make the individual components, each of the base portion and the cover portion of the existing package cannot be made in a single manufacturing step because of their somewhat
complex shape require a number of different manufacturing steps to make a single base or cover. Thus a number of separate manufacturing steps are required to make each of the base portion and the cover portion. The additional manufacturing steps to manufacture the cover and the base are both costly and time-consuming which adds to the overall cost of the package.

Other problems encountered with the current package is that access to the disc to remove it from the package is cumbersome and requires some prior knowledge and dexterity on the part of the user. The design of the fittings of the components of the standard package lends itself to the fittings being prone to easy breakage, especially the parts forming the combined hinge joining the two halves together and the closure pins for retaining the package in a closed condition. Additionally, the material from which the package is made is easily damaged and additionally because it is clear and easily scratched, the package may be damaged inadvertently which detracts from its appearance and appeal, particularly in a retail situation.

Thus, it is one aim of the present invention to provide a one-piece laser disc package which is less costly and time consuming to manufacture and which provides a number of advantages over the existing package.

It is a further aim of the present invention to provide a laser disc package which has additional features not found in existing laser disc packages.

A further aim of the present invention is to provide a package that can be made in one piece in a single manufacturing process.

According to the present invention there is provided a one-piece container or package comprising a one-piece body having a substantially centrally located hinge means dividing the body into a cover portion and a
base portion, said hinge means allowing the cover portion to move between a first position which is a substantially closed configuration and a second position which is a substantially open configuration allowing insertion or removal of the contents of the container, said base portion being provided with an integrally formed contents retention means for securely holding the contents of the package in use, said contents retention means comprising a multiplicity or plurality of spaced apart retaining fingers for cooperatively engaging with the contents of the package to securely locate the contents in the container in use.

Typically, the package is a laser audio disc or compact disc package.

Typically, the substantially centrally located hinge means is located intermediate the cover portion which extends to one side of the hinge means and the base portion which extends to the other side of the hinge means so that the cover may be folded upon the base to close the package.

Typically, the package is provided with a positive action locking means or closure means. More typically, the closure means comprises a tube and post arrangement. Preferably the post means is of a cruciform shape and the tube is hollow wherein the cruciform post is received in the tube.

Typically, the contents retention means is a compact disc retention means having a plurality of outwardly extending fingers which cooperatively interact with the centrally located alignment aperture of a compact disc. More typically the fingers are resilient so that their respective free ends are resiliently inwardly deformable to adopt a position abutting against the circumference of the alignment aperture.
The present invention will now be described by way of example with reference to the accompanying drawings in which:

Figure 1 is a perspective view of one form of the laser disc package of the present invention in a substantially open configuration;

Figure 2 is a perspective view in detail of the disc retention means of Figure 1;

Figure 3 is a detailed plan view of the disc retaining means of Figure 2 showing a fragmentary portion of a disc in situ;

Figure 4 is a cross-sectional view along the line 4 to 4 of Figure 3; and

Figure 5 is a perspective view of an alternative form of the disc retention means of the present invention.

In the drawings is shown one form of the laser disc package of the present invention generally denoted as 2, comprising a body of substantially two halves; one half of the body being a cover 4, while the other half of the body is a base 6. The package 2 is moulded as a single-piece moulding from any suitable material such as for example a clear thermoplastic resin or similar. A preferred material is clear polypropylene. Preferably, the clear polymeric material is mar-proof or scratch resistant in order to preserve the attractive appearance of the package. However it is to be noted that the package may be made from any suitable or convenient plastics material. A centrally located hinge 8 is provided intermediate the cover 4 and base 6. The centrally located hinge 8 extends the full width of the adjacent cover 4 and base 6 to allow a full range of movement of the cover with respect to the base such as from being fully opened as shown in Figure 1 to being fully closed (not shown). Hinge 8 may be of a conventionally moulded type which may be in the "at rest
position" when the base and cover are in intimate contact with each other to define the closed configuration or may be the "at rest position" when the cover is spaced apart from the base to a greater or lesser amount so as to adopt any configuration between being just open when the cover is resting upon the base to being fully open as shown in Figure 1. The full width integrally moulded hinge 8 is employed for simplicity of construction and to eliminate the need for separate cover and base to be assembled together. Hinge 8 in one embodiment offers lateral stability and alignment features while enabling the package to assume an open-flat configuration naturally. In one form the hinge 8 is so designed and manufactured such that it retains a natural spring tendency after the package is closed so as to provide assistance in the opening sequence of the package such that as soon as the cover is released from the base, the hinge provides a bias to slightly "pop" open the cover. Additionally, it is to be noted that hinge 8 is not deformed permanently by repeated operation through opening and closing cycles.

Cover 4 is provided with a pair of spaced apart hollow tubes 10, 10a located towards the free-end edge or distal edge of the cover forming the closure end. Base 6 is provided with a pair of spaced apart generally cruciform shaped posts 12, 12a located towards the free end edge or distal edge of cover 6 which is the closure end. In use, when the cover is brought into intimate contact with the base and pressure applied to the cruciform posts 12, 12a are received in tubes 10, 10a respectively to form the package is in the closed configuration. Since the external dimensions of cross arms of the cruciform posts 12, 12a are ever so slightly larger than the internal diameter of the tubes, when the posts are received in the corresponding tubes respectively the posts are slightly compressibly deformed
so that the posts are held in the tubes by friction to
retain the cover and base in the closed configuration.
In addition to providing a positive securing means for
the package the combination of the posts and tubes
provide means for three plane alignment. In one
embodiment the force exerted by the tube/post combination
forming the closure means is sufficient to overcome the
natural spring of the integral hinge means 8 and ensures
that the package will remain closed during handling and
transportation of the package. The free or distal ends
of the cruciform posts are slightly bevelled or tapered
to facilitate alignment of the posts for being received
in the tubes. It is to be noted that any suitable
closure means may be employed in the package of the
present invention.

A pair of tabs 14a, 14b are located along one
longitudinal side of the cover 4 and a pair of identical
tabs 14c, 14d are located along the other longitudinal
side of cover 4. The four tabs are provided to retain in
place any insert or sleeve of printed matter that may be
added to the package in preparation for sale. Such
inserts may take the form of an information sheet or
similar. Stops 16 are located in a row adjacent hinge 8
to retain the information sheet in place once it has been
inserted between the tabs 14. A recess or cut away 15 is
formed in the distal edge of the cover 4 as one part of
the opening means for the package.

Base 6 is provided with an integrally moulded
laser disc retention means 20 which comprises a number of
integrally formed and interrelated components. One part
of the disc retention means 20 comprises a plurality of
radially arranged strengthening ribs 24 which extend
outwardly from a centrally located upstanding boss 26.
Boss 26 provides support for the laser disc 40 in use
when it is stored in the package (which will be described
in more detail later). Ribs 24 are provided to
strengthen base 6 to strengthen the package so as to further protect the laser disc from damage during storage. Boss 26 which is moulded as a circular indentation in the wall of base 6 extends inboardly into the interior of the package and at the same time forms a corresponding circular depression on the outside surface of base 6. A second set of strengthening ribs (not shown) are located in the circular depression outboardly of the wall of base 6 to provide additional rigidity for the package. Boss 26 comprises a plateau surface 28 and a sloping wall 30. Plateau 28 is substantially planar to the plane of base 6 and provides support for the compact disc when it is in the package as can be seen in Figure 4. ribs 24 are integrally formed into the sloping wall 30 at more or less regularly spaced locations around boss 26. A plurality or multiplicity of substantially rounded elongate or ovaloid apertures 32 are located at more or less regularly spaced apart locations around the outer portion of plateau 28. Apertures 32 may be of any desirable or convenient shape and are particularly provided with curved ends. Although six such apertures are illustrated it is to be noted that any number of apertures may be located at more or less regularly spaced locations in plateau 28. Resilient fingers 34 are integrally formed on plateau 28 close to apertures 32 and are provided to retain the laser disc in place. Each of the fingers 34 is associated with each of the apertures 32. The outwardly extending fingers 34 which are more or less regularly spaced around the plateau also extend axially upwards from the boss 26 to extend into the container. The fingers 34 are mounted so as to extend outwardly from the plateau at an angle between being radially arranged and being tangentially arranged. Generally the fingers collectively extend from the plateau in a manner similar to the vanes of an impeller or turbine. The inboard ends 36 of the fingers are each
securely attached to the plateau by being integrally formed with the plateau whereas the free ends 38 of the fingers extend outwardly to at least partially overlie the apertures 32 and are thus free to move. Thus, the outboard or distal ends 38 of each finger are resiliently deformable from their natural at rest position. Since the fingers are secured at their respective inboard ends 36 and are free at their respective outboard ends 38 the fingers 34 are free to pivot or otherwise deflect, deform or the like at their respective free ends in a plane parallel to the base 6 in response to a deforming force. The respective free ends 36 of the fingers are each formed into a complex curve in which the axial upper edge in use is provided with a guide radius 44 which is curved so as to allow the compact disc to slip easily over the ends of the fingers and to align the disc with respect to the disc retention means. Additionally the free ends of the fingers are bevelled to provide clearance for the finger in the alignment aperture 44 of the compact disc 40 when the disc is being tilted over the fingers. Typically, the angle of bevel is about the same as the angle at which the fingers extend from the boss 26. With particular reference to Figure 3, in use, the free ends 38 deflect slightly under pressure from the alignment aperture 42 of the laser disc 40 when the disc is fitted over them and are resiliently biased to return to their natural position. In being urged to return to their natural at rest position the respective free ends 36 of the fingers 34 bear against the circumference of the alignment aperture 42 of the compact disc and thus hold the compact disc 40 securely in place. Pressure exerted vertically by the disc 40 over the fingers 34, causes lateral displacement of the ends 36 of the fingers 34 at their peripheries radially inwardly along an arc inboard of the disc alignment aperture 42. After the disc 40 has passed over the guide radii 44 the vertical walls of the
finger tips, while trying to assume their natural at rest position when unloaded apply a light secure clamping pressure to the inner edge of the disc alignment aperture 42.

In use, removal of the disc is effected simply by exerting a light upward pressure to the edge of the disc, causing it to slide up and off the ends of the fingers.

In one embodiment there are six outwardly extending fingers and of course six underlaying apertures. The six fingers are arranged around the circumference in three pairs at regularly spaced apart intervals.

The two fingers consisting a single pair of fingers are both parallel to each other but extend in opposite directions. Although this arrangement of fingers is illustrated and described it is to be noted that other arrangements are possible and fall within the scope of the present invention.

With particular reference to Figure 4, in one embodiment the height that the plateau is raised above the wall of base 6, is such that when the laser disc is placed over the disc retention means the underneath surface of the disc is protected from damage by being slightly spaced about the inboard surface of ribs 24. Which is to say that the height of the sloping wall 28 is greater than the thickness of ribs 24 so that when the compact disc is placed on the plateau its underneath surface is slightly spaced from the inboard edge of the ribs 24.

Typically the number of radially outwardly extending fingers is from four to eight, preferably six. However, it is to be noted that any number of fingers may be present. The complete disc retention means may be manufactured in a single manufacturing step. Cover 4, adjacent to the closure edge and running transversely the
full width of the package is angled to facilitate the manner in which the package is loaded into storage systems, racks and the like such as between adjacent articles and displays. The outer edges of the package in this region are also angled inboard to assist in the manner.

A cut-out feature located at or adjacent the closure edge facilitates finger access for opening the package while a ribbed surface on the base 6 provide a non-slip area, together with an optional indicator, such as for example, an arrow moulded into the base indicates the area of access. Cut-outs provided in the two opposing walls of the base combined with angled ribs in the base, improve access for positioning and retrieving the disc.

Other modifications can be made to the laser disc package of the present invention including the following.

The major portions of the cover and base outer walls are recessed to provide protection for the edges of a printed matter sleeve and protective plastic film.

An alternative embodiment of the disc retention means 20 of the present invention is shown in Figure 5. Like reference numerals for like features will be used in the description of this embodiment as those used in the description of the previous embodiment.

Base 6 is provided with a plurality of ribs 24. Ribs 24 provide strength and rigidity for the package. Some of ribs 24 are provided with support shoulders 48 whereas others may not be so provided. The compact disc 40 rests on the support shoulders 48 when securely retained in place. Ribs 24 are integrally formed with the upstanding wall 52 of slotted cylinder 50 having a number of slots located around the wall of the cylinder at regularly spaced apart locations. A retaining ring 56 is integrally formed around the top inboard edge of the
cylinder walls. As cylinder 50 is integrally formed with base 6, the base of the wall is fixed whereas the free end or top inboard edge is free to deflect or deform resiliently. In use compact disc 40 is placed over the 5 top of the cylinder 50 with the alignment aperture 42 spanning the top edge of the cylinder walls. Since the circumference of the top edge of the cylinder walls is slightly less than the diameter of the alignment aperture the disc contacts the wall intermediate the upper edge 10 and the retaining ring 56. Slight pressure is applied vertically downwards to the disc which forces the walls of the cylinder to be slightly compressed inwardly so that the alignment aperture clears the retaining ring to allow the disc to be located on the shoulders 48 of ribs 15 24 where provided. To release the disc 40, the peripheral edges of the disc are grasped by the fingers and the disc raised vertically which causes the alignment aperture to slightly compress the slotted walls radially inwards thus clearing the perimeter of the alignment 20 aperture and allowing the disc to be lifted free.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A one-piece integrally formed container or package characterised in that it comprises a one-piece body having a substantially centrally disposed hinge means separating the body into a cover portion and a base portion, said hinge portion allowing movement of the cover portion relative to the base portion between a first position in which the base portion and cover portion are in intimate contact with each other to define a closed configuration and a second position in which the cover portion is spaced apart from the base portion to define an open configuration, said base portion being provided with an integrally formed contents retention means having a plurality of fingers wherein the fingers cooperatively engage with the contents of the package to securely retain the contents in place in the package.

2. A one-piece integrally formed package for a laser disc or similar characterised in that it comprises a generally rectangular one-piece body having a substantially centrally located transverse hinge means separating the body into a base portion and a cover portion, said cover portion being substantially planar and said base portion being substantially planar and being provided with a laser disc retaining means comprising a plurality of radially extending strengthening ribs arranged in a spoke-like manner around a centrally located upstanding boss, said boss being provided with a plurality of radially outwardly extending and axially upwardly extending fingers for cooperatively interacting with the alignment aperture of the laser disc to retain the laser disc securely in place in the package during use of the package.

3. A one-piece package according to any preceding claim characterised in that the disc retention means includes an integrally formed upstanding boss having a plateau and a slopping side wall, said plateau being
substantially in a place parallel to the plane of the base portion, said plateau defining a support surface for the disc when stored in the package.

4. A one-piece package according to any preceding claim characterised in that the plateau is provided with a plurality of outwardly extending fingers which extend substantially outwardly at an angle in one plane and extend axially upwardly from the plateau in another plane.

5. A one-piece package according to any preceding claim characterised in that the plateau is provided with a plurality of apertures located at more or less regularly spaced apart locations around the outer peripheral portion of the plateau.

6. A one-piece package according to any preceding claim characterised in that the number of apertures corresponds to the number of fingers and said fingers are arranged on said plateau so that the respective inboard ends of the fingers are integrally formed with the plateau and the respective outboard ends of the finger overhang the apertures at least in part.

7. A one-piece package according to any preceding claim characterised in that the fingers are substantially resilient along their lengthwise extending axis so that the free ends are resiliently deflectable or deformable arcuately inwardly to accommodate being received in the alignment aperture of the laser disc.

8. A one-piece package according to any preceding claim in which the cover portion is provided with a first part of a closure means and the base portion is provided with a second part of the closure means, said first and second parts of the closure means being complementary to each other so as to co-operately interact to maintain the package in a substantially closed configuration.
9. A one-piece package according to any preceding claim in which the first part of the closure means is a hollow tubular member and the second part is a generally cruciform shaped post member, said post member being ever so slightly larger in dimensions than the internal diameter of the tube member, so that the past member is slightly resiliently compressible when received in the tube member in use thereby retaining the package in a closed condition.

10. A one-piece package according to any preceding claim, characterised in that the hinge means is a substantially transverse full width hinge.

11. A one-piece package according to any preceding claim characterised in that the hinge means is at rest naturally when the package is substantially flat in which the cover portion and base portion are substantially coplanar.

12. A one-piece package according to any preceding claim, characterized in that the hinge means may adopt a natural at rest position at any position between the two extreme positions.

13. A one-piece package according to any preceding claim characterised in that the cover portion is provided with a first portion of an opening means in the form of a recess and the base portion is provided with a second portion of an opening means in the form of a ribbed portion, said ribbed portion and said recess being complementary and co-operately interacting to facilitate opening of the package.

14. A one-piece package according to any preceding claim characterised in that the contents retention means is an integrally formed cylinder extending from the base portion inboard into the package and having a slotted wall arrangement dividing the wall into segments, said
segments being resiliently deformable at their respective distal ends for cooperatively interacting with the alignment aperture of a laser disc.

15. A one-piece package substantially as hereinbefore described with reference to the accompanying drawings.
1. A one-piece integrally formed container or package characterised in that it comprises a one-piece body having a substantially centrally disposed hinge means separating the body into a cover portion and a base portion, said hinge portion allowing movement of the cover portion relative to the base portion between a first position in which the base portion and cover portion are in intimate contact with each other to define a closed configuration and a second position in which the cover portion is spaced apart from the base portion to define an open configuration, said base portion being provided with an integrally formed contents retention means having a plurality of fingers wherein the fingers yieldingly and frictionally cooperatively engage with the contents of the package to securely retain the contents in place in the package, said fingers being substantially resilient along their lengthwise extending axis so that the respective free ends are resiliently deflectable or deformable arcuately inwardly in the common plane containing the plurality of fingers to accommodate the fingers engaging the contents of the package.

2. A one-piece integrally formed package for a laser disc or similar characterised in that it comprises a generally rectangular one-piece body having a substantially centrally located transverse hinge means separating the body into a base portion and a cover portion, said cover portion being substantially planar and said base portion being substantially planar and being provided with a laser disc retaining means comprising a plurality of radially extending strengthening ribs arranged in a spoke-like manner around a centrally located upstanding boss, said boss being provided with a plurality of radially outwardly extending and axially upwardly extending fingers for cooperatively
interacting with the alignment aperture of the laser disc to retain the laser disc securely in place in the package during use of the package.

3. A one-piece package according to any preceding claim characterised in that the disc retention means includes an integrally formed upstanding boss having a plateau and a slopping side wall, said plateau being substantially in a plane parallel to the plane of the base portion, said plateau defining a support surface for the disc when stored in the package.

4. A one-piece package according to any preceding claim characterised in that the plateau is provided with a plurality of outwardly extending fingers which extend substantially outwardly at an angle in one plane and extend axially upwardly from the plateau in another plane.

5. A one-piece package according to any preceding claim characterised in that the plateau is provided with a plurality of apertures located at more or less regularly spaced apart locations around the outer peripheral portion of the plateau.

6. A one-piece package according to any preceding claim characterised in that the number of apertures corresponds to the number of fingers and said fingers are arranged on said plateau so that the respective inboard ends of the fingers are integrally formed with the plateau and the respective outboard ends of the finger overhang the apertures at least in part.

7. A one-piece package according to any preceding claim characterised in that the fingers are each integrally formed with the boss to extend upwardly and outwardly from the plateau so that the respective free ends of the fingers are resiliently deflectable or deformable arcuately inwardly in the plane parallel to the plane of the plateau to accommodate being received in the alignment aperture of the laser disc, each of said
fingers having a distal end which is formed into a complex curve to facilitate being received in and engaging against the alignment aperture of the laser disc.

8. A one-piece package according to any preceding claims characterized in that the distal free end of each of the respective fingers has a curved upper edge and is bevelled in the plane parallel to the plateau.

9. A one-piece package according to any preceding claim in which the cover portion is provided with a first part of a closure means and the base portion is provided with a second part of the closure means, said first and second parts of the closure means being complementary to each other so as to co-operately interact to maintain the package in a substantially closed configuration.

10. A one-piece package according to any preceding claim in which the first part of the closure means is a hollow tubular member and the second part is a generally cruciform shaped post member, said post member being ever so slightly larger in dimensions than the internal diameter of the tube member, so that the past member is slightly resiliently compressible when received in the tube member in use thereby retaining the package in a closed condition.

11. A one-piece package according to any preceding claim, characterised in that the hinge means is a substantially transverse full width hinge.

12. A one-piece package according to any preceding claim characterised in that the hinge means is at rest naturally when the package is substantially flat in which the cover portion and base portion are substantially coplanar.

13. A one-piece package according to any preceding claim, characterized in that the hinge means may adopt a natural at rest position at any position between the two extreme positions.
14. A one-piece package according to any preceding claim characterised in that the cover portion is provided with a first portion of an opening means in the form of a recess and the base portion is provided with a second portion of an opening means in the form of a ribbed portion, said ribbed portion and said recess being complementary and co-operately interacting to facilitate opening of the package.

15. A one-piece package according to any preceding claim characterised in that the contents retention means is an integrally formed cylinder extending from the base portion inboard into the package and having a slotted wall arrangement dividing the wall into segments, said segments being resiliently deformable at their respective distal ends for cooperatively interacting with the alignment aperture of a laser disc.

16. A one-piece package substantially as hereinbefore described with reference to the accompanying drawings.

17. A one-piece package according to any one of the preceding claims characterized in that the package is moulded in a single process step.

18. A method of making a one-piece package characterized in that the method comprises a single moulding step in which a complete package may be formed.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/AU 88/00066

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl. 4 B65D 85/57, G11B 23/033, 33/04

II. FIELDS SEARCHED

Classification System

<table>
<thead>
<tr>
<th>IPC</th>
<th>B65D 85/57, 85/02, G11B 23/033, 33/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Cl.</td>
<td>206-310</td>
</tr>
</tbody>
</table>

Minimum Documentation Searched

Documented Searched other than Minimum Documentation so to the extent that such Documents are included in the Fields Searched

AU: IPC B65D 85/57

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, P</td>
<td>GB, A 2187442 (HAVANT ASSOCIATES LTD) 9 September 1987 (09.09.87)</td>
<td>(1,3,4,7,9-13)</td>
</tr>
<tr>
<td>Y, P</td>
<td>EP, A 212377 (SIEMENS AG) 4 March 1987 (04.03.87)</td>
<td>(1,14).</td>
</tr>
<tr>
<td>Y</td>
<td>US, A 3825112 (SCHUMAKER AND HAY) 23 July 1974 (23.07.74)</td>
<td>(2,8)</td>
</tr>
<tr>
<td>Y</td>
<td>US, A 4176744 (BORZAK) 4 December 1979 (04.12.79)</td>
<td>(2,8)</td>
</tr>
<tr>
<td>A</td>
<td>US, A 4084690 (PULSE) 18 April 1978 (18.04.78)</td>
<td>(1,8, 10-12)</td>
</tr>
<tr>
<td>A</td>
<td>US, A 3948972 (PAUDRAS) 13 April 1976 (13.04.76)</td>
<td>(1,8, 10-12)</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date but not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 31 May 1988 (31.05.88)

Date of Mailing of this International Search Report: 10 June 1988 (10.06.88)

International Searching Authority: Australian Patent Office

Signature of Authorized Officer: R. KIRBY

Form PCT/ISA/210 (second sheet) (January 1985)
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4084690</td>
<td>DE 2735850</td>
</tr>
<tr>
<td></td>
<td>IT 1086300</td>
</tr>
</tbody>
</table>

| US 3949872 | AU 71321/74 | DE 2431637 | FR 2238211 |
| | IT 1016330 | JP 50039906 | NL 7409816 |

END OF ANNEX