

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/100682 A1

(43) International Publication Date

15 June 2017 (15.06.2017)

WIPO | PCT

(51) International Patent Classification:

C12N 15/86 (2006.01) C07K 14/705 (2006.01)
A61K 48/00 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2016/065984

(22) International Filing Date:

9 December 2016 (09.12.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/266,383 11 December 2015 (11.12.2015) US
62/269,440 18 December 2015 (18.12.2015) US

(71) Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 3160 Chestnut Street, Suite 200, Philadelphia, PA 19104 (US).

(72) Inventors: WILSON, James M.; 7 Fallbrook Lane, Glen Mills, PA 19342 (US). RADER, Daniel J.; 333 S. Smedley St., Philadelphia, PA 19103 (US).

(74) Agents: KODROFF, Cathy A. et al.; Howson & Howson LLP, 350 Sentry Parkway, Building 620, Suite 210, Blue Bell, PA 19422 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: GENE THERAPY FOR TREATING FAMILIAL HYPERCHOLESTEROLEMIA

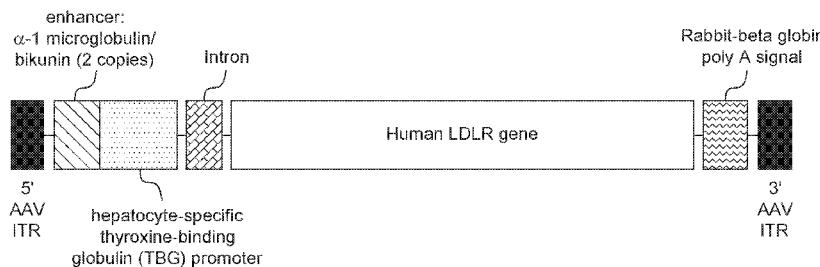


FIG. 7

(57) Abstract: Compositions and regimens useful in reducing one or more of: LDL-cholesterol, total cholesterol, and/or fasting triglycerides in a subject, and/or modifying fractional catabolic rate (FCR) of LDL apolipoprotein B (apoB) from baseline to a selected time point after rAAV administration are provided. The method involves administering to the human subject via a peripheral vein by infusion of a suspension of replication deficient recombinant adeno-associated virus (rAAV).

WO 2017/100682 A1

GENE THERAPY FOR TREATING FAMILIAL HYPERCHOLESTEROLEMIA

5 1. INTRODUCTION

The invention relates to a gene therapy for treating Familial Hypercholesterolemia (FH), and in particular, Homozygous FH (HoFH).

10 INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED IN ELECTRONIC FORM

Applicant hereby incorporates by reference the Sequence Listing material filed in electronic form herewith. This file is labeled "UPN-16-7717PCT_ST25.txt".

15 2. BACKGROUND OF THE INVENTION

Familial hypercholesterolemia (FH) is a life threatening disorder caused by mutations in genes that affect LDL receptor (LDLR) function (Goldstein et al. Familial hypercholesterolemia, in The Metabolic and Molecular Bases of Inherited Disease, C.R. Scriver, et al., Editors. 2001, McGraw-Hill Information Services Company: New York. p. 2863-2913 (2001)). It is estimated that >90% of patients with molecularly confirmed FH carry mutations in the gene encoding for the LDLR (LDLR, MIM 606945). The remainder of the patients carry mutations on three additional genes: APOB (MIM 107730) encoding apolipoprotein (apo) B, PCSK9 (MIM 607786) encoding proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLRAP1 (MIM 695747) encoding LDLR adapter protein 1. The latter is the only gene mutation that is associated with a recessive trait. Homozygosity is usually conferred by the presence of mutations in the 2 alleles of the same gene; however cases have been reported of patients with double heterozygosity (two heterozygous mutations, one each in two different genes). Based on prevalence rates of between 1 in 500 and 1 in 200 for heterozygous FH (Nordestgaard et al. Eur Heart J, 2013. 34(45): p. 3478-90a (2013), Sjouke et al. Eur Heart J, (2014)), it is estimated that between 7,000 and 43,000 people worldwide have homozygous FH (HoFH).

Characterization of mutant LDLR alleles has revealed a variety of mutations including deletions, insertions, missense mutations, and nonsense mutations (Goldstein

et al. 2001). More than 1700 LDLR mutations have been reported. This genotypic heterogeneity leads to variable consequences in the biochemical function of the receptor which are classified in four general groups. Class 1 mutations are associated with no detectable protein and are often caused by gene deletions. Class 2 mutations lead to 5 abnormalities in intracellular processing of the protein. Class 3 mutations specifically affect binding the ligand LDL, and Class 4 mutations encode receptor proteins that do not cluster in coated pits. Based on residual LDLR activity assessed using patients cultured fibroblasts, mutations are also classified as receptor negative (<2% residual activity of the LDLR) or receptor-defective (2-25% residual activity). Patients that are 10 receptor-defective have, on average, lower LDL-C levels and a less malignant cardiovascular course.

As a consequence of impaired LDL receptor function, untreated total plasma cholesterol levels in patients with HoFH are typically greater than 500 mg/dl, resulting in premature and aggressive atherosclerosis often leading to cardiovascular disease (CVD) 15 before age 20 and death before age 30 (Cuchel et al. Eur Heart J, 2014. 35(32): p. 2146-2157 (2014), Goldstein et al. 2001). Early initiation of aggressive treatment for these patients is therefore essential (Kolansky et al. 2008). The available options are limited. Statins are considered the first line for pharmacological treatment. Even at maximal doses, only a 10-25% reduction in LDL-C plasma levels is observed in most patients 20 (Marais et al. Atherosclerosis, 2008. 197(1): p. 400-6 (2008); Raal et al. Atherosclerosis, 2000. 150(2): p. 421-8 (2000)). The addition of the cholesterol absorption inhibitor, ezetimibe, to statin therapy may result in a further 10-20% reduction in LDL-C levels (Gagne et al. Circulation, 2002. 105 (21): p. 2469-2475 (2002)). Use of other cholesterol lowering medications, including bile acid sequestrants, niacin, fibrates, and probucol 25 have been used successfully in the pre-statin era and can be considered to achieve further LDL-C reduction in HoFH; however, their use is limited by tolerability and drug availability. This approach has been shown to reduce CVD and all-cause mortality (Raal et al. Circulation, 2011. 124(20): p. 2202-7). Despite the implementation of an aggressive multi-drug therapy approach, the LDL-C levels of HoFH patients remain 30 elevated and their mean life expectancy remains approximately 32 years (Raal et al. 2011). Several non-pharmacological options have also been tested over the years.

Surgical interventions, such as portacaval shunting (Bilheimer Arteriosclerosis, 1989. 9(1 Suppl): p. I158-I163 (1989); Forman et al. Atherosclerosis, 1982. 41(2-3): p. 349-361 (1982)) and ileal bypass (Deckelbaum et al. N. Engl. J. Med. 1977;296:465-470 1977. 296(9): p. 465-470 (1977)), have resulted only in partial and transient LDL-C 5 lowering and are now considered nonviable approaches. Orthotopic liver transplantation has been demonstrated to substantially reduce LDL-C levels in HoFH patients (Ibrahim et al. J Cardiovasc Transl Res, 2012. 5(3): p. 351-8 (2012); Kucukkartallar et al. 2 Pediatr Transplant, 2011. 15(3): p. 281-4 (2011)), but disadvantages and risks limit the use of this approach, including the high risk of post-transplantation surgical 10 complications and mortality, the scarcity of donors, and the need for life-long treatment with immunosuppressive therapy (Malatack Pediatr Transplant, 2011. 15(2): p. 123-5 (2011); Starzl et al. Lancet, 1984. 1(8391): p. 1382-1383 (1984)). The current standard of care in HoFH includes lipoprotein apheresis, a physical method of purging the plasma 15 of LDL-C which can transiently reduce LDL-C by more than 50% (Thompson Atherosclerosis, 2003. 167(1): p. 1-13 (2003); Vella et al. Mayo Clin Proc, 2001. 76(10): p. 1039-46 (2001)). Rapid re-accumulation of LDL-C in plasma after treatment sessions (Eder and Rader Today's Therapeutic Trends, 1996. 14: p. 165-179 (1996)) necessitates 20 weekly or biweekly apheresis. Although this procedure may delay the onset of atherosclerosis (Thompson et al. Lancet, 1995. 345: p. 811-816; Vella et al. Mayo Clin Proc, 2001. 76(10): p. 1039-46 (2001)), it is laborious, expensive, and not readily available. Furthermore, although it is a procedure that is generally well tolerated, the 25 fact that it requires frequent repetition and intravenous access can be challenging for many HoFH patients.

Recently three new drugs have been approved by the FDA as add-on therapy 25 specifically for HoFH. Two of them, lomitapide and mipomersen, inhibit the assembly and secretion of apoB-containing lipoproteins, although they do so via different molecular mechanisms (Cuchel et al. N Engl J Med, 2007. 356(2): p. 148-156 (2007);, Raal et al. Lancet, 2010. 375(9719): p. 998-1006 (2010)). This approach results in a 30 significant reduction of LDL-C that reaches an average of ~50% with lomitapide (Cuchel et al. 2013) and ~25% with mipomersen (Rall et al. 2010). However their use is associated with an array of adverse events that may affect tolerance and long term

adherence and that include liver fat accumulation, the long term consequences of which have not yet been fully clarified.

The third is part of a novel class of lipid-lowering drugs, monoclonal antibodies against proprotein convertase subtilisin/kexin 9 (PCSK9) that have been shown to be effective in lowering LDL-C levels with an apparently favorable safety profile in patients with heterozygous FH (Raal et al. Circulation, 2012. 126(20): p. 2408-17 (2012), Raal et al. The Lancet, 2015. 385(9965): p. 341-350 (2015); Stein et al. Circulation, 2013. 128(19): p. 2113-20 (2012)). Treatment of HoFH with the PCSK9 inhibitor evolocumab 420 mg every 4 weeks for 12 weeks has been shown to provide about a 30% reduction in LDL-C as compared with placebo (Raal et al. 2015). Efficacy of PCSK9 inhibitors is, however, dependent on the residual LDLR activity, with no effect in patients with no residual LDLR activity (Raal et al. 2015, Stein et al. Circulation, 2013. 128(19): p. 2113-20 (2013)). Although the addition of PCSK9 inhibitors may become standard of care for FH and may provide an additional further reduction to lower hypercholesterolemia in a sub-set of HoFH patients, they will not dramatically impact the clinical management of this condition.

Therefore, there remains an unmet medical need for new medical therapies for HoFH.

20 3. SUMMARY OF THE INVENTION

This invention relates to the use of a replication deficient adeno-associated virus (AAV) to deliver a human Low Density Lipoprotein Receptor (hLDLR) gene to liver cells of patients (human subjects) diagnosed with HoFH. The recombinant AAV vector (rAAV) used for delivering the LDLR gene (“rAAV.hLDLR”) should have a tropism for the liver (*e.g.*, a rAAV bearing an AAV8 capsid), and the hLDLR transgene should be controlled by liver-specific expression control elements. Such rAAV.hLDLR vectors can be administered by intravenous (IV) infusion over a 20 to 30 minute period to achieve therapeutic levels of LDLR expression in the liver. Therapeutically effective doses of the rAAV.hLDLR range from 2.5×10^{12} to 7.5×10^{12} genome copies (GC)/kg body weight of the patient. In a preferred embodiment, the rAAV suspension has a potency such that a dose of 5×10^{11} GC/kg administered to a double knockout LDLR-/-

Apobec-/- mouse model of HoFH (DKO mouse) decreases baseline cholesterol levels in the DKO mouse by 25% to 75%.

The goal of the treatment is to functionally replace the patient's defective LDLR via rAAV-based liver-directed gene therapy as a viable approach to treat this disease and 5 improve response to current lipid-lowering treatments. The invention is based, in part, on the development of therapeutic compositions and methods that allow for the safe delivery of efficacious doses; and improved manufacturing methods to meet the purification production requirement for efficacious dosing in human subjects.

Efficacy of the therapy may be assessed after treatment, *e.g.*, post-dosing, using 10 plasma LDL-C levels as a surrogate biomarker for human LDLR transgene expression in the patient. For example, a decrease in the patient's plasma LDL-C levels after the gene therapy treatment would indicate the successful transduction of functional LDLRs. Additionally, or alternatively, other parameters that can be monitored include, but are not limited to measuring changes in total cholesterol (TC), non-high density lipoprotein 15 cholesterol (non-HDL-C), HDL-C, fasting triglycerides (TG), very low density lipoprotein cholesterol (VLDL-C), lipoprotein(a) (Lp(a)), apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I) compared to baseline, as well as LDL kinetic studies (metabolic mechanism assessment) prior to vector and after vector administration, or combinations thereof.

20 Patients who are candidates for treatment are preferably adults (male or female ≥ 18 years of age) diagnosed with HoFH carrying two mutations in the *LDLR* gene; *i.e.*, patients that have molecularly defined LDLR mutations at both alleles in the setting of a clinical presentation consistent with HoFH, which can include untreated LDL-C levels, *e.g.*, LDL-C levels >300 mg/dl, treated LDL-C levels, *e.g.*, LDL-C levels <300 mg/dl 25 and/or total plasma cholesterol levels greater than 500 mg/dl and premature and aggressive atherosclerosis. Candidates for treatment include HoFH patients that are undergoing treatment with lipid-lowering drugs, such as statins, ezetimibe, bile acid sequestrants, PCSK9 inhibitors, and LDL and/or plasma apheresis.

Prior to treatment, the HoFH patient should be assessed for neutralizing 30 antibodies (NAb) to the AAV serotype used to deliver the hLDLR gene. Such NAbs can interfere with transduction efficiency and reduce therapeutic efficacy. HoFH patients

that have a baseline serum NAb titer \leq 1:5 are good candidates for treatment with the rAAV.hLDLR gene therapy protocol. Treatment of HoFH patients with titers of serum NAb $>$ 1:5 may require a combination therapy, such as transient co-treatment with an immunosuppressant before and/or during treatment with rAAV.hLDLR vector delivery.

5 Additionally, or alternatively, patients are monitored for elevated liver enzymes, which may be treated with transient immunosuppressant therapy (e.g., if at least about 2x baseline levels of aspartate transaminase (AST) or alanine transaminase (ALT) are observed). Immunosuppressants for such co-therapy include, but are not limited to, steroids, antimetabolites, T-cell inhibitors, and alkylating agents.

10 The invention is illustrated by way of examples that describe a protocol for the AAV8.LDLR treatment of human subjects (Section 6, Example 1); pre-clinical animal data demonstrating efficacy of the treatment in animal models of disease (Section 7, Example 2); the manufacture and formulation of therapeutic AAV.hLDLR compositions (Sections 8.1 to 8.3, Example 3); and methods for characterization of the AAV vector 15 (Section 8.4, Example 3).

3.1. DEFINITIONS

As used herein, "AAV8 capsid" refers to the AAV8 capsid having the encoded amino acid sequence of GenBank accession:YP_077180, which is incorporated by 20 reference herein, and reproduced in SEQ ID NO: 5. Some variation from this encoded sequence is encompassed by the present invention, which may include sequences having about 99% identity to the referenced amino acid sequence in GenBank accession:YP_077180; US Patent 7,282,199, 7,790,449; 8,319,480; 8,962,330; US 8,962,332, (*i.e.*, less than about 1% variation from the referenced sequence). In another 25 embodiment, the AAV8 capsid may have the VP1 sequence of the AAV8 variant described in WO2014/124282, which is incorporated by reference herein. Methods of generating the capsid, coding sequences therefore, and methods for production of rAAV viral vectors have been described. *See, e.g.*, Gao, et al, Proc. Natl. Acad. Sci. U.S.A. 100 (10), 6081-6086 (2003), US 2013/0045186A1, and WO 2014/124282.

30 As used herein, the term "NAb titer" refers to a measurement of how much neutralizing antibody (e.g., anti-AAV NAb) is produced which neutralizes the physiologic effect of its targeted epitope (e.g., an AAV). Anti-AAV NAb titers may be

measured as described in, *e.g.*, Calcedo, R., et al., Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses. *Journal of Infectious Diseases*, 2009. 199(3): p. 381-390, which is incorporated by reference herein.

The terms “percent (%) identity”, “sequence identity”, “percent sequence identity”, or “percent identical” in the context of amino acid sequences refers to the residues in the two sequences which are the same when aligned for correspondence. Percent identity may be readily determined for amino acid sequences over the full-length of a protein, polypeptide, about 32 amino acids, about 330 amino acids, or a peptide fragment thereof or the corresponding nucleic acid sequence coding sequencers. A suitable amino acid fragment may be at least about 8 amino acids in length, and may be up to about 700 amino acids. Generally, when referring to “identity”, “homology”, or “similarity” between two different sequences, “identity”, “homology” or “similarity” is determined in reference to “aligned” sequences. “Aligned” sequences or “alignments” refer to multiple nucleic acid sequences or protein (amino acids) sequences, often containing corrections for missing or additional bases or amino acids as compared to a reference sequence. Alignments are performed using any of a variety of publicly or commercially available Multiple Sequence Alignment Programs. Sequence alignment programs are available for amino acid sequences, *e.g.*, the “Clustal X”, “MAP”, “PIMA”, “MSA”, “BLOCKMAKER”, “MEME”, and “Match-Box” programs. Generally, any of these programs are used at default settings, although one of skill in the art can alter these settings as needed. Alternatively, one of skill in the art can utilize another algorithm or computer program which provides at least the level of identity or alignment as that provided by the referenced algorithms and programs. See, *e.g.*, J. D. Thomson et al, *Nucl. Acids. Res.*, “A comprehensive comparison of multiple sequence alignments”, 27(13):2682-2690 (1999).

As used herein, the term “operably linked” refers to both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.

A “replication-defective virus” or “viral vector” refers to a synthetic or artificial viral particle in which an expression cassette containing a gene of interest is packaged in a viral capsid or envelope, where any viral genomic sequences also packaged within the

viral capsid or envelope are replication-deficient; *i.e.*, they cannot generate progeny virions but retain the ability to infect target cells. In one embodiment, the genome of the viral vector does not include genes encoding the enzymes required to replicate (the genome can be engineered to be "gutless" - containing only the transgene of interest 5 flanked by the signals required for amplification and packaging of the artificial genome), but these genes may be supplied during production. Therefore, it is deemed safe for use in gene therapy since replication and infection by progeny virions cannot occur except in the presence of the viral enzyme required for replication.

It is to be noted that the term "a" or "an" refers to one or more. As such, the terms 10 "a" (or "an"), "one or more," and "at least one" are used interchangeably herein.

The words "comprise", "comprises", and "comprising" are to be interpreted inclusively rather than exclusively. The words "consist", "consisting", and its variants, are to be interpreted exclusively, rather than inclusively. While various embodiments in the specification are presented using "comprising" language, under other circumstances, 15 a related embodiment is also intended to be interpreted and described using "consisting of" or "consisting essentially of" language.

As used herein, the term "about" means a variability of 10% from the reference given, unless otherwise specified.

Unless defined otherwise in this specification, technical and scientific terms used 20 herein have the same meaning as commonly understood by one of ordinary skill in the art and by reference to published texts, which provide one skilled in the art with a general guide to many of the terms used in the present application.

4. BRIEF DESCRIPTION OF THE DRAWINGS

25 FIGs 1A - 1H. Impact of pre-existing AAV8 NAb on EGFP expression levels in macaque livers. Macaques of different types and ages were injected via a peripheral vein with 3×10^{12} GC/kg of AAV8.TBG.EGFP and were sacrificed 7 days later and analyzed for hepatocyte transduction in several ways. FIGS 1A - 1E are micrographs which show 30 representative sections of liver from animals with various levels of pre-existing neutralizing antibodies to AAV8 (<1:5, 1:5, 1:10 and 1:20, respectively). FIG 1F shows a quantitative morphometric analysis of the transduction efficiency based on percent

transduction of hepatocytes. FIG 1G shows quantitative morphometric analysis of the transduction efficiency based on relative EGFP intensity. FIG 1H shows quantification of EGFP protein in liver lysate by ELISA. Adult cynomolgus macaques (n = 8, closed circle), adult rhesus macaques (n = 8, open triangle), juvenile rhesus macaques (n = 5, open square).

5 FIG 2. Long-term expression of mLDR in DKO mice. DKO mice were dosed with 10^{11} GC/mouse (5×10^{12} GC/kg) of AAV8.TBG.mLDR (n = 10) or AAV8.TBG.nLacZ (n = 10). Cholesterol levels in serum were monitored on a regular basis. Statistically significant differences between the two groups were realized as early 10 as day 7 (p < 0.001) and have remained throughout the duration of the experiment. Mice were sacrificed at day 180 after vector administration.

15 FIGs 3A - 3F. Regression of atherosclerosis in DKO mice following AAV8.TBG.mLDR. FIG 3A is a set of three panels with En face Sudan IV staining. Mouse aortas were pinned and stained with Sudan IV, which stains neutral lipids. Representative aortas from animals treated with 10^{11} GC/mouse of AAV8.nLacZ (5×10^{12} GC/kg) (middle), 10^{11} GC/mouse of AAV8.TBG.mLDR (5×10^{12} GC/kg) (right) at day 60 after vector administration (day 120 on high fat diet), or at baseline (day 60 on high fat diet) (left) are shown. FIG 3B is a bar chart showing the results of morphometric analyses quantified the percent of aorta stained with Oil Red O along the entire length of 20 the aorta. FIGS 3C-3K show the aortic roots from these mice were stained with Oil Red O. FIG 3L is bar chart showing the percent Sudan IV staining of the total aortic surface in baseline (n = 10), AAV.TBG.nLacZ (n = 9), and AAV8.TBG.mLDR (n = 10) was determined. Quantification was conducted on Oil Red O lesions. Atherosclerotic lesion area data were subjected to a 1-way ANOVA. Experimental groups were 25 compared with the baseline group by using the Dunnett test. Repeated-measures ANOVA was used to compare cholesterol levels among different groups of mice over time after gene transfer. Statistical significance for all comparisons was assigned at P < 0.05. Graphs represent mean SD values. *p < 0.05, **p < 0.01, ‡ p < 0.001.

30 FIG 4. Cholesterol levels in test or control article injected DKO mice. DKO mice were injected IV with 7.5×10^{11} GC/kg, 7.5×10^{12} GC/kg or 6.0×10^{13} GC/kg of AAV8.TBG.mLDR or 6.0×10^{13} GC/kg of AAV8.TBG.hLDR or vehicle control (100

μl PBS). Cholesterol levels expressed as mean ± SEM. Each group demonstrated a statistically significant reduction in serum cholesterol relative to PBS controls from the same necropsy time point.

FIGs 5A - 5B. Cholesterol levels in test article injected DKO mice. FIG 5A 5 shows cholesterol levels (mg/mL) in mice treated with varying doses of vector as measured on day 0, day 7 and day 30. Values expressed as mean ± SEM. $P<0.05$.

FIGs 6A - 6C. Peripheral T cell responses in vector injected rhesus macaques. Data presented show the time course of T cell response and AST levels for macaques 19498 (FIG 6A), 090-0287 (FIG 6B), and 090-0263 (FIG 6C). For each Study Day, T 10 cell responses to no stimulation, AAV8 and hLDLR measured as spot-forming unit (SFU) per million PBMCs were plotted from left to right in each figure. Macaques 19498 and 090-0287 developed a positive peripheral T cell response to and/or the hLDLR transgene, whereas 090-0263 did not. * denotes positive capsid responses that were significantly above background.

FIG 7. Schematic representation of AAV8.TBG.hLDLR vector.

FIGs 8A - 8B. AAV cis plasmid constructs. A) Linear representation of the paternal *cis* cloning plasmid, pENN-AAV.TBG.PI, containing the liver specific TBG promoter and chimeric intron flanked by AAV2 ITR elements. B) Linear representation of the human LDLR *cis* plasmid, pENN-AAV.TBG.PI.hLDLR.RBG.KanR, in which the 20 human LDLR cDNA was cloned into pENN-AAV.TBG.PI between the intron and the poly A signal and the ampicillin resistance gene was replaced by the kanamycin resistance gene.

FIGs 9A - 9B. AAV trans plasmids. FIG 9A is a Linear representation of the AAV8 *trans* packaging plasmid, p5E18-VD2/8, with the ampicillin resistance gene. FIG 25 9B is a linear representation of the AAV8 trans packaging plasmid, pAAV2/8 with the kanamycin resistance gene.

FIGs 10A - 10B. Adenovirus helper plasmid. FIG 10A illustrates derivation of the ad-helper plasmid, pAdΔF6, from the parental plasmid, pBHG10, through intermediates pAdΔF1 and pAdΔF5. FIG 10B is a linear representation of the ampicillin resistance gene in pAdΔF6 was replaced by the kanamycin resistance gene to create pAdΔF6(Kan).

FIGs 11A - 11B. Flow Diagram showing AAV8.TBG.hLDLR vector manufacturing process.

5. DETAILED DESCRIPTION OF THE INVENTION

5 A replication deficient rAAV is used to deliver a hLDLR gene to liver cells of patients (human subjects) diagnosed with HoFH. The rAAV.hLDLR vector should have a tropism for the liver (e.g., an rAAV bearing an AAV8 capsid) and the hLDLR transgene should be controlled by liver-specific expression control elements.

10 Such rAAV.hLDLR vectors can be administered by intravenous (IV) infusion over about a 20 to about 30 minute period to achieve therapeutic levels of LDLR expression in the liver. In other embodiments, shorter (e.g., 10 to 20 minutes) or longer (e.g., over 30 minutes to 60 minutes, intervening times, e.g., about 45 minutes, or longer) may be selected. Therapeutically effective doses of the rAAV.hLDLR range from at least about 2.5×10^{12} to 7.5×10^{12} genome copies (GC)/kg body weight of the patient.

15 In a preferred embodiment, the rAAV suspension has a potency such that a dose of 5×10^{11} GC/kg administered to a double knockout LDLR-/-Apobec-/- mouse model of HoFH (DKO mouse) decreases baseline cholesterol levels in the DKO mouse by 25% to 75%. Efficacy of treatment can be assessed using Low density lipoprotein cholesterol (LDL-C) levels as a surrogate for transgene expression. Primary efficacy assessments

20 include LDL-C levels at 1 to 3 months (e.g., week 12) post treatment, with persistence of effect followed thereafter for at least about 1 year (about 52 weeks). Long term safety and persistence of transgene expression may be measured post-treatment.

25 Patients who are candidates for treatment are preferably adults (male or female ≥ 18 years of age) diagnosed with HoFH carrying two mutations in the *LDLR* gene; i.e., patients that have molecularly defined LDLR mutations at both alleles in the setting of a clinical presentation consistent with HoFH, which can include untreated LDL-C levels, e.g., LDL-C levels >300 mg/dl, treated LDL-C levels, e.g., LDL-C levels <300 mg/dl and/or total plasma cholesterol levels greater than 500 mg/dl and premature and aggressive atherosclerosis. Candidates for treatment include HoFH patients that are

30 undergoing treatment with lipid-lowering drugs, such as statins, ezetimibe, bile acid sequestrants, PCSK9 inhibitors, and LDL and/or plasma apheresis.

Prior to treatment, the HoFH patient should be assessed for neutralizing antibodies (NAb) to the AAV serotype used to deliver the hLDLR gene. Such NAb can interfere with transduction efficiency and reduce therapeutic efficacy. HoFH patients that have a baseline serum NAb titer $\leq 1:5$ are good candidates for treatment with the 5 rAAV.hLDLR gene therapy protocol. Treatment of HoFH patients with titers of serum NAb $>1:5$ may require a combination therapy, such as transient co-treatment with an immunosuppressant before/during treatment with rAAV.hLDLR. Additionally, or alternatively, patients are monitored for elevated liver enzymes, which may be treated with transient immunosuppressant therapy (e.g., if at least about 2x baseline levels of 10 aspartate transaminase (AST) or alanine transaminase (ALT) are observed).

5.1 Gene Therapy Vectors

The rAAV.hLDLR vector should have a tropism for the liver (e.g., an rAAV bearing an AAV8 capsid) and the hLDLR transgene should be controlled by liver-specific expression control elements. The vector is formulated in a buffer/carrier suitable 15 for infusion in human subjects. The buffer/carrier should include a component that prevents the rAAV, from sticking to the infusion tubing but does not interfere with the rAAV binding activity *in vivo*.

5.1.1. The rAAV.hLDLR Vector

Any of a number of rAAV vectors with liver tropism can be used. Examples of 20 AAV which may be selected as sources for capsids of rAAV include, e.g., rh10, AAVrh64R1, AAVrh64R2, rh8 [See, e.g., US Published Patent Application No. 2007-0036760-A1; US Published Patent Application No. 2009-0197338-A1; EP 1310571]. See also, WO 2003/042397 (AAV7 and other simian AAV), US Patent 7790449 and US 25 Patent 7282199 (AAV8), WO 2005/033321 and US 7,906,111 (AAV9), WO 2006/110689 and WO 2003/042397 (rh10), AAV3B; US 2010/0047174 (AAV-DJ).

The hLDLR transgene can include, but is not limited to one or more of the sequences provided by SEQ ID NO:1, SEQ ID NO: 2, and/or SEQ ID NO: 4, which are provided in the attached Sequence Listing, which is incorporated by reference herein. With reference to SEQ ID NO:1, these sequences include a signal sequence located at 30 about base pair 188 to about base pair 250 and the mature protein for variant 1 spans about base pair 251 to about base pair 2770. SEQ ID NO: 1 also identifies exons, at least

one of which is absent in the known alternative splice variants of hLDLR. Additionally, or optionally, a sequence encoding one or more of the other hLDLR isoforms may be selected. See, *e.g.*, isoforms 2, 3, 4, 5 and 6, the sequences of which are available, *e.g.*, from <http://www.uniprot.org/uniprot/P01130>. For example, common variants lack exon 5 4 (bp (255)..(377) or exon 12 (bp (1546)..(1773)) of SEQ ID NO: 1). Optionally, the transgene may include the coding sequences for the mature protein with a heterologous signal sequence. SEQ ID NO: 2 provides the cDNA for human LDLR and the translated protein (SEQID NO: 3). SEQ ID NO: 4 provides an engineered cDNA for human LDLR. Alternatively or additionally, web-based or commercially available computer programs, 10 as well as service based companies may be used to back translate the amino acids sequences to nucleic acid coding sequences, including both RNA and/or cDNA. See, *e.g.*, backtranseq by EMBOSS, <http://www.ebi.ac.uk/Tools/st/>; Gene Infinity (http://www.geneinfinity.org/sms-/sms_backtranslation.html); ExPasy (<http://www.expasy.org/tools/>).

15 In a specific embodiment described in the Examples, *infra*, the gene therapy vector is an AAV8 vector expressing an hLDLR transgene under control of a liver-specific promoter (thyroxine-binding globulin, TBG) referred to as rAAV8.TBG.hLDLR (see Figure 6). The external AAV vector component is a serotype 8, $T = 1$ icosahedral capsid consisting of 60 copies of three AAV viral proteins, VP1, VP2, and VP3, at a 20 ratio of 1:1:18. The capsid contains a single-stranded DNA rAAV vector genome.

The rAAV8.TBG.hLDLR genome contains an hLDLR transgene flanked by two AAV inverted terminal repeats (ITRs). The hLDLR transgene includes an enhancer, promoter, intron, an hLDLR coding sequence and polyadenylation (polyA) signal. The ITRs are the genetic elements responsible for the replication and packaging of the 25 genome during vector production and are the only viral *cis* elements required to generate rAAV. Expression of the hLDLR coding sequence is driven from the hepatocyte-specific TBG promoter. Two copies of the alpha 1 microglobulin/bikunin enhancer element precede the TBG promoter to stimulate promoter activity. A chimeric intron is present to further enhance expression and a rabbit beta globin polyadenylation (polyA) 30 signal is included to mediate termination of hLDLR mRNA transcripts.

An illustrative plasmid and vector described herein uses the liver-specific promoter thyroxin binding globulin (TBG). Alternatively, other liver-specific promoters may be used [see, e.g., The Liver Specific Gene Promoter Database, Cold Spring Harbor, <http://nulai.schl.edu/LSPD>, alpha 1 anti-trypsin (A1AT); human albumin Miyatake et al., 5 J. Virol., 71:5124 32 (1997), humAlb; and hepatitis B virus core promoter, Sandig *et al.*, Gene Ther., 3:1002 9 (1996)]. TTR minimal enhancer/promoter, alpha-antitrypsin promoter, LSP (845 nt)25(requires intron-less scAAV). Although less desired, other promoters, such as viral promoters, constitutive promoters, regulatable promoters [see, e.g., WO 2011/126808 and WO 2013/04943], or a promoter responsive to physiologic 10 cues may be used may be utilized in the vectors described herein.

In addition to a promoter, an expression cassette and/or a vector may contain other appropriate transcription initiation, termination, enhancer sequences, efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak 15 consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. Examples of suitable polyA sequences include, e.g., SV40, bovine growth hormone (bGH), and TK polyA. Examples of suitable enhancers include, e.g., the alpha fetoprotein enhancer, the TTR minimal promoter/enhancer, LSP (TH-binding globulin promoter/alpha1- 20 microglobulin/bikunin enhancer), amongst others.

These control sequences are “operably linked” to the hLDLR gene sequences.

The expression cassette may be engineered onto a plasmid which is used for production of a viral vector. The minimal sequences required to package the expression cassette into an AAV viral particle are the AAV 5' and 3' ITRs, which may be of the 25 same AAV origin as the capsid, or of a different AAV origin (to produce an AAV pseudotype). In one embodiment, the ITR sequences from AAV2, or the deleted version thereof (Δ ITR), are used for convenience and to accelerate regulatory approval. However, ITRs from other AAV sources may be selected. Where the source of the ITRs is from AAV2 and the AAV capsid is from another AAV source, the resulting vector 30 may be termed pseudotyped. Typically, an expression cassette for an AAV vector comprises an AAV 5' ITR, the hLDLR coding sequences and any regulatory sequences,

and an AAV 3' ITR. However, other configurations of these elements may be suitable. A shortened version of the 5' ITR, termed Δ ITR, has been described in which the D-sequence and terminal resolution site (trs) are deleted. In other embodiments, the full-length AAV 5' and 3' ITRs are used.

5 The abbreviation "sc" refers to self-complementary. "Self-complementary AAV" refers a plasmid or vector having an expression cassette in which a coding region carried by a recombinant AAV nucleic acid sequence has been designed to form an intra-molecular double-stranded DNA template. Upon infection, rather than waiting for cell mediated synthesis of the second strand, the two complementary halves of scAAV will 10 associate to form one double stranded DNA (dsDNA) unit that is ready for immediate replication and transcription. See, *e.g.*, D M McCarty et al, "Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis", Gene Therapy, (August 2001), Vol 8, Number 16, Pages 1248-1254. Self-complementary AAVs are described in, *e.g.*, U.S. Patent Nos. 15 6,596,535; 7,125,717 and 7,456,683, each of which is incorporated herein by reference in its entirety.

5.1.2. rAAV.hLDLR Formulation

The rAAV.hLDLR formulation is a suspension containing an effective amount of rAAV.hLDLR vector suspended in an aqueous solution containing buffering saline, a 20 surfactant, and a physiologically compatible salt or mixture of salts adjusted to an ionic strength equivalent to about 100 mM sodium chloride (NaCl) to about 250 mM sodium chloride, or a physiologically compatible salt adjusted to an equivalent ionic concentration. In one embodiment, the formulation may contain, *e.g.*, about 1.5×10^{11} GC/kg to about 6×10^{13} GC/kg, or about 1×10^{12} to about 1.25×10^{13} GC/kg, as 25 measured by optimized qPCR (oqPCR) or digital droplet PCR (ddPCR) as described in, *e.g.*, M. Lock et al, *Hu Gene Therapy Methods*, *Hum Gene Ther Methods*. 2014 Apr;25(2):115-25. doi: 10.1089/hgtb.2013.131. Epub 2014 Feb 14, which is incorporated herein by reference. For example, a suspension as provided herein may contain both 30 NaCl and KCl. The pH may be in the range of 6.5 to 8, or 7 to 7.5. A suitable surfactant, or combination of surfactants, may be selected from among a Poloxamers, *i.e.*, nonionic triblock copolymers composed of a central hydrophobic chain of

polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)), SOLUTOL HS 15 (Macrogol-15 Hydroxystearate), LABRASOL (Polyoxy caprylic glyceride), polyoxy 10 oleyl ether, TWEEN (polyoxyethylene sorbitan fatty acid esters), ethanol and polyethylene glycol.

- 5 In one embodiment, the formulation contains a poloxamer. These copolymers are commonly named with the letter "P" (for poloxamer) followed by three digits: the first two digits x 100 give the approximate molecular mass of the polyoxypropylene core, and the last digit x 10 gives the percentage polyoxyethylene content. In one embodiment Poloxamer 188 is selected. The surfactant may be present in an amount up to about
- 10 0.0005 % to about 0.001% of the suspension. In one embodiment, The rAAV. hLDLR formulation is a suspension containing at least 1×10^{13} genome copies (GC)/mL, or greater, as measured by qPCR or digital droplet PCR (ddPCR) as described in, e.g., M. Lock et al, *Hu Gene Therapy Methods*, *Hum Gene Ther Methods*. 2014 Apr;25(2):115-25. doi: 10.1089/hgtb.2013.131. Epub 2014 Feb 14, which is incorporated herein by reference. In one embodiment, the vector is suspended in an aqueous solution containing 180 mM sodium chloride, 10 mM sodium phosphate, 0.001% Poloxamer 188, pH 7.3. The formulation is suitable for use in human subjects and is administered intravenously. In one embodiment, the formulation is delivered via a peripheral vein by infusion over 20 minutes (± 5 minutes). However, this time may be adjusted as needed or desired.
- 15
- 20 In order to ensure that empty capsids are removed from the dose of AAV. hLDLR that is administered to patients, empty capsids are separated from vector particles during the vector purification process, e.g., using cesium chloride gradient ultracentrifugation as discussed in detail herein at Section 8.3.2.5. In one embodiment, the vector particles containing packaged genomes are purified from empty capsids using
- 25 the process described in US Patent Appln No. 62/322,093, filed April 13, 2016 and US Patent Appln No. 62/266,341, filed on December 11, 2015, and entitled "Scalable Purification Method for AAV8", which is incorporated by reference herein. Briefly, a two-step purification scheme is described which selectively captures and isolates the genome-containing rAAV vector particles from the clarified, concentrated supernatant of
- 30 a rAAV production cell culture. The process utilizes an affinity capture method performed at a high salt concentration followed by an anion exchange resin method

performed at high pH to provide rAAV vector particles which are substantially free of rAAV intermediates.

In certain embodiments, the method separates recombinant AAV8 viral particles containing DNA comprising pharmacologically active genomic sequences from genome-deficient(empty) AAV8 capsid intermediates. The method involves (a) forming a loading suspension comprising: recombinant AAV8 viral particles and empty AAV8 capsid intermediates which have been purified to remove non-AAV materials from an AAV producer cell culture in which the particles and intermediates were generated; and a Buffer A comprising 20 mM Bis-Tris propane (BTP) and a pH of about 10.2; (b) loading the suspension of (a) onto a strong anion exchange resin, said resin being in a vessel having an inlet for flow of a suspension and/or solution and an outlet permitting flow of eluate from the vessel; (c) washing the loaded anion exchange resin with Buffer 1% B which comprises 10mM NaCl and 20mM BTP with a pH of about 10.2; (d) applying an increasing salt concentration gradient to the loaded and washed anion exchange resin, wherein the salt gradient ranges from 10 mM to about 190 mM NaCl, inclusive of the endpoints, or an equivalent; and (e) collecting the rAAV particles from eluate, said rAAV particles being purified away from intermediates.

In one embodiment, the pH used is from 10 to 10.4 (about 10.2) and the rAAV particles are at least about 50% to about 90% purified from AAV8 intermediates, or a pH of 10.2 and about 90% to about 99% purified from AAV8 intermediates. In one embodiment, this is determined by genome copies. A stock or preparation of rAAV8 particles (packaged genomes) is "substantially free" of AAV empty capsids (and other intermediates) when the rAAV8 particles in the stock are at least about 75% to about 100%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least 99% of the rAAV8 in the stock and "empty capsids" are less than about 1%, less than about 5%, less than about 10%, less than about 15% of the rAAV8 in the stock or preparation.

In one embodiment, the formulation is characterized by an rAAV stock having a ratio of "empty" to "full" of 1 or less, preferably less than 0.75, more preferably, 0.5, preferably less than 0.3.

In a further embodiment, the average yield of rAAV particles is at least about 70%. This may be calculated by determining titer (genome copies) in the mixture loaded onto the column and the amount presence in the final elutions. Further, these may be determined based on q-PCR analysis and/or SDS-PAGE techniques such as those 5 described herein or those which have been described in the art.

For example, to calculate empty and full particle content, VP3 band volumes for a selected sample (e.g., an iodixanol gradient-purified preparation where # of GC = # of particles) are plotted against GC particles loaded. The resulting linear equation ($y = mx + c$) is used to calculate the number of particles in the band volumes of the test article 10 peaks. The number of particles (pt) per 20 μ L loaded is then multiplied by 50 to give particles (pt) /mL. Pt/mL divided by GC/mL gives the ratio of particles to genome copies (pt/GC). Pt/mL–GC/mL gives empty pt/mL. Empty pt/mL divided by pt/mL and x 100 gives the percentage of empty particles.

Generally, methods for assaying for empty capsids and AAV vector particles 15 with packaged genomes have been known in the art. See, e.g., Grimm et al., *Gene Therapy* (1999) 6:1322-1330; Sommer et al., *Molec. Ther.* (2003) 7:122-128. To test for denatured capsid, the methods include subjecting the treated AAV stock to SDS- 20 polyacrylamide gel electrophoresis, consisting of any gel capable of separating the three capsid proteins, for example, a gradient gel containing 3-8% Tris-acetate in the buffer, then running the gel until sample material is separated, and blotting the gel onto nylon or nitrocellulose membranes, preferably nylon. Anti-AAV capsid antibodies are then used 25 as the primary antibodies that bind to denatured capsid proteins, preferably an anti-AAV capsid monoclonal antibody, most preferably the B1 anti-AAV-2 monoclonal antibody (Wobus et al., *J. Virol.* (2000) 74:9281-9293). A secondary antibody is then used, one that binds to the primary antibody and contains a means for detecting binding with the 30 primary antibody, more preferably an anti-IgG antibody containing a detection molecule covalently bound to it, most preferably a sheep anti-mouse IgG antibody covalently linked to horseradish peroxidase. A method for detecting binding is used to semi-quantitatively determine binding between the primary and secondary antibodies, preferably a detection method capable of detecting radioactive isotope emissions, electromagnetic radiation, or colorimetric changes, most preferably a chemiluminescence

detection kit. For example, for SDS-PAGE, samples from column fractions can be taken and heated in SDS-PAGE loading buffer containing reducing agent (e.g., DTT), and capsid proteins were resolved on pre-cast gradient polyacrylamide gels (e.g., Novex). Silver staining may be performed using SilverXpress (Invitrogen, CA) according to the manufacturer's instructions. In one embodiment, the concentration of AAV vector genomes (vg) in column fractions can be measured by quantitative real time PCR (Q-PCR). Samples are diluted and digested with DNase I (or another suitable nuclease) to remove exogenous DNA. After inactivation of the nuclease, the samples are further diluted and amplified using primers and a TaqMan™ fluorogenic probe specific for the DNA sequence between the primers. The number of cycles required to reach a defined level of fluorescence (threshold cycle, Ct) is measured for each sample on an Applied Biosystems Prism 7700 Sequence Detection System. Plasmid DNA containing identical sequences to that contained in the AAV vector is employed to generate a standard curve in the Q-PCR reaction. The cycle threshold (Ct) values obtained from the samples are used to determine vector genome titer by normalizing it to the Ct value of the plasmid standard curve. End-point assays based on the digital PCR can also be used.

In one aspect, an optimized q-PCR method is provided herein which utilizes a broad spectrum serine protease, e.g., proteinase K (such as is commercially available from Qiagen). More particularly, the optimized qPCR genome titer assay is similar to a standard assay, except that after the DNase I digestion, samples are diluted with proteinase K buffer and treated with proteinase K followed by heat inactivation. Suitably samples are diluted with proteinase K buffer in an amount equal to the sample size. The proteinase K buffer may be concentrated to 2 fold or higher. Typically, proteinase K treatment is about 0.2 mg/mL, but may be varied from 0.1 mg/mL to about 1 mg/mL. The treatment step is generally conducted at about 55 °C for about 15 minutes, but may be performed at a lower temperature (e.g., about 37 °C to about 50 °C) over a longer time period (e.g., about 20 minutes to about 30 minutes), or a higher temperature (e.g., up to about 60 °C) for a shorter time period (e.g., about 5 to 10 minutes). Similarly, heat inactivation is generally at about 95 °C for about 15 minutes, but the temperature may be lowered (e.g., about 70 to about 90 °C) and the time

extended (e.g., about 20 minutes to about 30 minutes). Samples are then diluted (e.g., 1000 fold) and subjected to TaqMan analysis as described in the standard assay.

Additionally, or alternatively, droplet digital PCR (ddPCR) may be used. For example, methods for determining single-stranded and self-complementary AAV vector 5 genome titers by ddPCR have been described. See, e.g., M. Lock et al, *Hu Gene Therapy Methods*, *Hum Gene Ther Methods*. 2014 Apr;25(2):115-25. doi: 10.1089/hgtb.2013.131. Epub 2014 Feb 14.

5.1.3 Manufacturing

The rAAV.hLDLR vector can be manufactured as shown in the flow diagram 10 shown in Fig. 11. Briefly, cells (e.g. HEK 293 cells) are propagated in a suitable cell culture system and transfected for vector generation. The rAAV.hLDLR vector can then be harvested, concentrated and purified to prepare bulk vector which is then filled and finished in a downstream process.

Methods for manufacturing the gene therapy vectors described herein include 15 methods well known in the art such as generation of plasmid DNA used for production of the gene therapy vectors, generation of the vectors, and purification of the vectors. In some embodiments, the gene therapy vector is an AAV vector and the plasmids generated are an AAV cis-plasmid encoding the AAV genome and the gene of interest, an AAV trans-plasmid containing AAV rep and cap genes, and an adenovirus helper 20 plasmid. The vector generation process can include method steps such as initiation of cell culture, passage of cells, seeding of cells, transfection of cells with the plasmid DNA, post-transfection medium exchange to serum free medium, and the harvest of vector-containing cells and culture media. The harvested vector-containing cells and culture media are referred to herein as crude cell harvest.

The crude cell harvest may thereafter be subject method steps such as 25 concentration of the vector harvest, diafiltration of the vector harvest, microfluidization of the vector harvest, nuclease digestion of the vector harvest, filtration of microfluidized intermediate, purification by chromatography, purification by ultracentrifugation, buffer exchange by tangential flow filtration, and formulation and filtration to prepare bulk vector.

In certain embodiments, methods similar to those of FIG 11 may be used in conjunction with other AAV producer cells. Numerous methods are known in the art for production of rAAV vectors, including transfection, stable cell line production, and infectious hybrid virus production systems which include Adenovirus-AAV hybrids, 5 herpesvirus-AAV hybrids and baculovirus-AAV hybrids. See, e.g., G Ye, et al, *Hu Gene Ther Clin Dev*, 25: 212-217 (Dec 2014); RM Kotin, *Hu Mol Genet*, 2011, Vol. 20, Rev Issue 1, R2-R6; M. Mietzsch, et al, *Hum Gene Therapy*, 25: 212-222 (Mar 2014); T Virag et al, *Hu Gene Therapy*, 20: 807-817 (August 2009); N. Clement et al, *Hum Gene Therapy*, 20: 796-806 (Aug 2009); DL Thomas et al, *Hum Gene Ther*, 20: 861-870 (Aug 10 2009). rAAV production cultures for the production of rAAV virus particles all require; 1) suitable host cells, including, for example, human-derived cell lines such as HeLa, A549, or 293 cells, or insect-derived cell lines such as SF-9, in the case of baculovirus production systems; 2) suitable helper virus function, provided by wild type or mutant adenovirus (such as temperature sensitive adenovirus), herpes virus, baculovirus, or a 15 nucleic acid construct providing helper functions in trans or in cis; 3) functional AAV rep genes, functional cap genes and gene products; 4) a transgene (such as a therapeutic transgene) flanked by AAV ITR sequences; and 5) suitable media and media components to support rAAV production.

A variety of suitable cells and cell lines have been described for use in 20 production of AAV. The cell itself may be selected from any biological organism, including prokaryotic (e.g., bacterial) cells, and eukaryotic cells, including, insect cells, yeast cells and mammalian cells. Particularly desirable host cells are selected from among any mammalian species, including, without limitation, cells such as A549, WEHI, 3T3, 10T1/2, BHK, MDCK, COS 1, COS 7, BSC 1, BSC 40, BMT 10, VERO, WI38, 25 HeLa, a HEK 293 cell (which express functional adenoviral E1), Saos, C2C12, L cells, HT1080, HepG2 and primary fibroblast, hepatocyte and myoblast cells derived from mammals including human, monkey, mouse, rat, rabbit, and hamster. In certain embodiments, the cells are suspension-adapted cells. The selection of the mammalian species providing the cells is not a limitation of this invention; nor is the type of 30 mammalian cell, i.e., fibroblast, hepatocyte, tumor cell, etc.

In a specific embodiment, the methods used for manufacturing the gene therapy vectors are described in Example 3 at Section 8, *infra*.

5.2 Patient Population

Patients who are candidates for treatment are preferably adults (male or female
5 ≥ 18 years of age) diagnosed with HoFH carrying two mutations in the *LDLR* gene; *i.e.*, patients that have molecularly defined *LDLR* mutations at both alleles in the setting of a clinical presentation consistent with HoFH, which can include untreated LDL-C levels, *e.g.*, LDL-C levels >300 mg/dl, treated LDL-C levels, *e.g.*, LDL-C levels <300 mg/dl and/or total plasma cholesterol levels greater than 500 mg/dl and premature and
10 aggressive atherosclerosis. In some embodiments, a patient <18 years of age can be treated. In some embodiments, the patient that is treated is a male ≥ 18 years of age. In some embodiments, the patient that is treated is a female ≥ 18 years of age. Candidates for treatment include HoFH patients that are undergoing treatment with lipid-lowering drugs, such as statins, ezetimibe, bile acid sequestrants, PCSK9 inhibitors, and LDL
15 and/or plasma apheresis.

Prior to treatment, the HoFH patient should be assessed for NAb to the AAV serotype used to deliver the h*LDLR* gene. Such NAbs can interfere with transduction efficiency and reduce therapeutic efficacy. HoFH patients that have a baseline serum NAb titer $\leq 1:5$ are good candidates for treatment with the rAAV.h*LDLR* gene therapy
20 protocol. Treatment of HoFH patients with titers of serum NAb $>1:5$ may require a combination therapy, such as transient co-treatment with an immunosuppressant. Immunosuppressants for such co-therapy include, but are not limited to, steroids, antimetabolites, T-cell inhibitors, and alkylating agents. For example, such transient treatment may include a steroid (*e.g.*, prednisole) dosed once daily for 7 days at a
25 decreasing dose, in an amount starting at about 60 mg, and decreasing by 10 mg/day (day 7 no dose). Other doses and medications may be selected.

Subjects may be permitted to continue their standard of care treatment(s) (*e.g.*, LDL apheresis and/or plasma exchange, and other lipid lowering treatments) prior to and concurrently with the gene therapy treatment at the discretion of their caring physician.
30 In the alternative, the physician may prefer to stop standard of care therapies prior to administering the gene therapy treatment and, optionally, resume standard of care

treatments as a co-therapy after administration of the gene therapy. Desirable endpoints of the gene therapy regimen are low density lipoprotein cholesterol (LDL-C) reduction and change in fractional catabolic rate (FCR) of LDL apolipoprotein B (apoB) from baseline up to 12 weeks after administration of the gene therapy treatment. Other desired endpoints include, e.g., reduction in one or more of: total cholesterol (TC), non-high density lipoprotein cholesterol (non-HDL-C), decrease in fasting triglycerides (TG), and changes in HDL-C (e.g., increased levels are desirable), very low density lipoprotein cholesterol (VLDL-C), lipoprotein(a) (Lp(a)), apolipoprotein B (apoB), and/or apolipoprotein A-I (apoA-I).

10 In one embodiment, patients achieve desired LDL-C thresholds (e.g., LDL-C <200, <130, or <100, mg/dl) after treatment with AAV8.hLDLR, alone and/or combined with the use of adjunctive treatments over the duration of the study.

Nevertheless, patients having one or more of the following characteristics may be excluded from treatment at the discretion of their caring physician:

- 15
- Heart failure defined by the NYHA classification as functional Class III with history of hospitalization(s) within 12 weeks of the baseline visit or functional Class IV.
 - History within 12 weeks of the baseline visit of a myocardial infarction (MI), unstable angina leading to hospitalization, coronary artery bypass graft surgery (CABG), percutaneous coronary intervention (PCI), uncontrolled cardiac arrhythmia, carotid surgery or stenting, stroke, transient ischemic attack, carotid revascularization, endovascular procedure or surgical intervention.
 - 20 • Uncontrolled hypertension defined as: systolic blood pressure >180 mmHg, diastolic blood pressure > 95 mmHg.
 - History of cirrhosis or chronic liver disease based on documented histological evaluation or non-invasive imaging or testing.
 - 25 • Documented diagnosis of any of the following liver diseases: Nonalcoholic steatohepatitis (biopsy-proven); Alcoholic liver disease; Autoimmune hepatitis; Liver cancer; Primary biliary cirrhosis; Primary sclerosing cholangitis; Wilson's disease; Hemochromatosis; α_1 anti-trypsin deficiency.

- Abnormal LFTs at screening (AST or ALT >2x upper limit of normal (ULN) and/or Total Bilirubin of >1.5x ULN unless patient has unconjugated hyperbilirubinemia due to Gilbert's syndrome).
- Hepatitis B as defined by positive for HepB SAg, or Hep B Core Ab, and/or viral DNA, or Chronic active Hepatitis C as defined by positive for HCV Ab and viral RNA.
- History of alcohol abuse within 52 weeks.
- Certain prohibited medications known to be potentially hepatotoxic, especially those that can induce microvesicular or macrovesicular steatosis. These include but are not limited to: acutane, amiodarone, HAART medications, heavy acetaminophen use (2g/day > 3 x q week), isoniazid, methotrexate, tetracyclines, tamoxifen, valproate.
- Current use of systemic corticosteroids or active tuberculosis, systemic fungal disease, or other chronic infection.
- History of immunodeficiency diseases, including a positive HIV test result.
- Chronic renal insufficiency defined as estimated GFR < 30 mL/min.
- History of cancer within the past 5 years, except for adequately treated basal cell skin cancer, squamous cell skin cancer, or in situ cervical cancer.
- Previous organ transplantation.
- Any major surgical procedure occurring less than 3 months prior to determination of baselines and/or treatment.

A baseline serum AAV8 NAb titer > 1:5. In other embodiments, a caring physician may determine that the presence of one or more of these physical characteristics (medical history) should not preclude treatment as provided herein.

25 5.3. Dosing & Route of Administration

Patients receive a single dose of rAAV.hLDLR administered via a peripheral vein by infusion; *e.g.*, over about 20 to about 30 minutes. The dose of rAAV.hLDLR administered to a patient is at least 2.5×10^{12} GC/kg or 7.5×10^{12} GC/kg, or at least 5×10^{11} GC/kg to about 7.5×10^{12} GC/kg (as measured by qPCR or ddPCR). However, other doses may be selected. In a preferred embodiment, the rAAV suspension used has a potency such that a dose of 5×10^{11} GC/kg administered to a double knockout LDLR-/-

Apobec-/- mouse model of HoFH (DKO mouse) decreases baseline cholesterol levels in the DKO mouse by 25% to 75%.

In some embodiments, the dose of rAAV.hLDLR administered to a patient is in the range of 2.5×10^{12} GC/kg to 7.5×10^{12} GC/kg. Preferably, the rAAV suspension used has a potency such that a dose of 5×10^{11} GC/kg administered to a double knockout LDLR-/-Apobec-/- mouse model of HoFH (DKO mouse) decreases baseline cholesterol levels in the DKO mouse by 25% to 75%. In specific embodiments, the dose of rAAV.hLDLR administered to a patient is at least 5×10^{11} GC/kg, 2.5×10^{12} GC/kg, 3.0×10^{12} GC/kg, 3.5×10^{12} GC/kg, 4.0×10^{12} GC/kg, 4.5×10^{12} GC/kg, 5.0×10^{12} GC/kg, 5.5×10^{12} GC/kg, 6.0×10^{12} GC/kg, 6.5×10^{12} GC/kg, 7.0×10^{12} GC/kg, or 7.5×10^{12} GC/kg.

In some embodiments, rAAV.hLDLR is administered in combination with one or more therapies for the treatment of HoFH. In some embodiments, rAAV.hLDLR is administered in combination with standard lipid-lowering therapy that is used to treat HoFH, including but not limited to statin, ezetimibe, ezetria, bile acid sequestrants, LDL apheresis, plasma apheresis, plasma exchange, lomitapide, mipomersen, and/or PCSK9 inhibitors. In some embodiments, rAAV.hLDLR is administered in combination with niacin. In some embodiments, rAAV.hLDLR is administered in combination with fibrates.

20 5.4. Measuring Clinical Objectives

Safety of the gene therapy vector after administration can be assessed by the number of adverse events, changes noted on physical examination, and/or clinical laboratory parameters assessed at multiple time points up to about 52 weeks post vector administration. Although physiological effect may be observed earlier, e.g., in about 1 day to one week, in one embodiment, steady state levels expression levels are reached by about 12 weeks.

LDL-C reduction achieved with rAAV.hLDLR administration can be assessed as a defined percent change in LDL-C at about 12 weeks, or at other desired time points, compared to baseline.

30 Other lipid parameters can also be assessed at about 12 weeks, or at other desired time points, compared to baseline values, specifically percent change in total cholesterol

(TC), non-high density lipoprotein cholesterol (non-HDL-C), HDL-C, fasting triglycerides (TG), very low density lipoprotein cholesterol (VLDL-C), lipoprotein(a) (Lp(a)), apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I). The metabolic mechanism by which LDL-C is reduced can be assessed by performing LDL kinetic studies prior to rAAV.hLDLR administration and again 12 weeks after administration. The primary parameter to be evaluated is the fractional catabolic rate (FCR) of LDL apoB.

As used herein, the rAAV.hLDLR vector herein "functionally replaces" or "functionally supplements" the patients defective LDLR with active LDLR when the patient expresses a sufficient level of LDLR to achieve at least one of these clinical endpoints. Expression levels of hLDLR which achieve as low as about 10% to less than 100% of normal wild-type clinical endpoint levels in a non-FH patient may provide functional replacement.

In one embodiment, expression may be observed as early as about 8 hours to about 24 hours post-dosing. One or more of the desired clinical effects described above may be observed within several days to several weeks post-dosing.

Long term (up to 260 weeks) safety and efficacy can be assessed after rAAV.hLDLR administration.

Standard clinical laboratory assessments and other clinical assays described in Sections 6.4.1 through 6.7 *infra*, can be used to monitor adverse events, efficacy endpoints that assess percent change in lipid parameters, pharmacodynamic assessments, lipoprotein kinetics, ApoB-100 concentrations, as well as immune responses to the rAAV.hLDLR vector.

The following examples are illustrative only and are not intended to limit the present invention.

EXAMPLES

6. Example 1: Protocol for Treating Human Subjects

This Example relates to a gene therapy treatment for patients with genetically confirmed homozygous familial hypercholesterolemia (HoFH) due to mutations in the low density lipoprotein receptor (LDLR) gene. In this example, the gene therapy vector, AAV8.TBG.hLDLR, a replication deficient adeno-associated viral vector 8 (AAV8) expressing hLDLR is administered to patients with HoFH. Efficacy of treatment can be assessed using Low density lipoprotein cholesterol (LDL-C) levels as a surrogate for transgene expression. Primary efficacy assessments include LDL-C levels at about 12 weeks post treatment, with persistence of effect followed thereafter for at least 52 weeks. Long term safety and persistence of transgene expression may be measured post-treatment in liver biopsy samples.

6.1. Gene Therapy Vector

The gene therapy vector is an AAV8 vector expressing the transgene human low density lipoprotein receptor (hLDLR) under control of a liver-specific promoter (thyroxine-binding globulin, TBG) and is referred to in this Example as AAV8.TBG.hLDLR (see Figure 7). The AAV8.TBG.hLDLR vector consists of the AAV vector active ingredient and a formulation buffer. The external AAV vector component is a serotype 8, $T = 1$ icosahedral capsid consisting of 60 copies of three AAV viral proteins, VP1, VP2, and VP3, at a ratio of 1:1:18. The capsid contains a single-stranded DNA recombinant AAV (rAAV) vector genome. The genome contains an hLDLR transgene flanked by two AAV inverted terminal repeats (ITRs). An enhancer, promoter, intron, hLDLR coding sequence and polyadenylation (polyA) signal comprise the hLDLR transgene. The ITRs are the genetic elements responsible for the replication and packaging of the genome during vector production and are the only viral *cis* elements required to generate rAAV. Expression of the hLDLR coding sequence is driven from the hepatocyte-specific TBG promoter. Two copies of the alpha 1 microglobulin/bikunin enhancer element precede the TBG promoter to stimulate promoter activity. A chimeric intron is present to further enhance expression and a rabbit beta globin polyadenylation (polyA) signal is included to mediate termination of hLDLR mRNA transcripts. The

sequence of pAAV.TBG.PI.hLDLRco.RGB which was used to produce this vector is provided in SEQ ID NO: 6.

The formulation of the investigational agent is at least 1×10^{13} genome copies (GC)/mL in aqueous solution containing 180 mM sodium chloride, 10 mM sodium phosphate, 0.001% Poloxamer 188, pH 7.3 and is administered via a peripheral vein by infusion over 20 minutes (± 5 minutes).

6.2. Patient Population

Patients treated are adults with homozygous familial hypercholesterolemia (HoFH) carrying two mutations in the LDLR gene. The patients can be males or females that are 18 years old or older. The patients have molecularly defined LDLR mutations at both alleles in the setting of a clinical presentation consistent with HoFH, which can include untreated LDL-C levels, e.g., LDL-C levels >300 mg/dl, treated LDL-C levels, e.g., LDL-C levels <300 mg/dl and/or total plasma cholesterol levels greater than 500 mg/dl and premature and aggressive atherosclerosis. The treated patients can be concurrently undergoing treatment with lipid-lowering drugs, such as statins, ezetimibe, bile acid sequestrants, PCSK9 inhibitors, and LDL and/or plasma apheresis.

Patients that are treated can have a baseline serum AAV8 neutralizing antibody (NAb) titer $\leq 1:5$. If a patient does not have a baseline serum AAV8 neutralizing antibody (NAb) titer $\leq 1:5$, the patient can be transiently co-treated with an immunosuppressant during the transduction period. Immunosuppressants for co-therapy include, but are not limited to, steroids, antimetabolites, T-cell inhibitors, and alkylating agents.

Subjects may be permitted to continue their standard of care treatment(s) (e.g., LDL apheresis and/or plasma exchange, and other lipid lowering treatments) prior to and concurrently with the gene therapy treatment at the discretion of their caring physician. In the alternative, the physician may prefer to stop standard of care therapies prior to administering the gene therapy treatment and, optionally, resume standard of care treatments as a co-therapy after administration of the gene therapy. Desirable endpoints of the gene therapy regimen are low density lipoprotein cholesterol (LDL-C) reduction and change in fractional catabolic rate (FCR) of LDL apolipoprotein B (apoB) from baseline up to about 12 weeks after administration of the gene therapy treatment.

6.3. Dosing & Route of Administration

Patients receive a single dose of AAV8.TBG.hLDLR administered via a peripheral vein by infusion. The dose of AAV8.TBG.hLDLR administered to a patient is 5 about 2.5×10^{12} GC/kg or 7.5×10^{12} GC/kg. In order to ensure that empty capsids are removed from the dose of AAV8.TBG.hLDLR that is administered to patients, empty capsids are separated from vector particles by cesium chloride gradient ultracentrifugation or by ion exchange chromatography during the vector purification process, as discussed in Section 8.3.2.5.

10 **6.4. Measuring Clinical Objectives**

- LDL-C reduction achieved with AAV8.TBG.hLDLR administration can be assessed as a defined percent change in LDL-C at about 12 weeks compared to baseline.
- Other lipid parameters can be assessed at about 12 weeks compared to baseline values, specifically percent change in total cholesterol (TC), non-high density lipoprotein cholesterol (non-HDL-C), HDL-C, fasting triglycerides (TG), very low density lipoprotein cholesterol (VLDL-C), lipoprotein(a) (Lp(a)), apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I).
- The metabolic mechanism by which LDL-C is reduced can be assessed by performing LDL kinetic studies prior to vector administration and again at about 12 weeks after administration. The primary parameter to be evaluated is the fractional catabolic rate (FCR) of LDL apoB.
- Long term (up to 52 weeks or up to 260 weeks) safety and efficacy can be assessed after AAV8.TBG.hLDLR administration

25 **6.4.1. Standard Clinical Laboratory Assessments that can be performed:**

The following clinical profiles can be tested before and after treatment:

- Biochemical Profile: sodium, potassium, chloride, carbon dioxide, glucose, blood urea nitrogen, lactate dehydrogenase (LDH) creatinine, creatinine phosphokinase, calcium, total protein, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, total bilirubin, GGT.

- CBC: white blood cell (WBC) count, hemoglobin, hematocrit, platelet count, red cell distribution width, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration.
- Coagulation: PT, INR, PTT (at screening and baseline, and as needed).
- 5 • Urinalysis: urinary color, turbidity, pH, glucose, bilirubin, ketones, blood, protein, WBC's.

6.4.2. Adverse Events of Interest

The following clinical assays can be used to monitor toxicity:

- Liver injury
 - 10 o CTCAE v4.0 grade 3 or higher lab result for bilirubin or liver enzymes (AST, ALT, AlkPhos).
 - o Bilirubin and AlkPhos CTCAE v4.0 grade 2 (bilirubin $>1.5 \times \text{ULN}$; AlkPhos $>2.5 \times \text{ULN}$).
- Hepatotoxicity (i.e., meet criteria for "Hy's law")
 - 15 o $\geq 3 \times \text{ULN}$ (Upper limit of normal) for AST or ALT, and
 - o $> 2 \times \text{ULN}$ serum total bilirubin without elevated alkaline phosphatase, and
 - o No other reason can be found to explain the increased transaminase levels combined with increased total bilirubin.

20

6.5. Efficacy Endpoints

Assessment of the percent change in lipid parameters at about 12 weeks following administration of AAV8.TBG.hLDLR can be assessed and compared to baseline. This includes:

- 25 • Percent changes in LDL-C directly measured (primary efficacy endpoint).
- Percent changes in Total Cholesterol, VLDL-C, HDL-C, calculated non-HDL-cholesterol, Changes in triglycerides, apoA-I, apoB, and Lp(a).

Baseline LDL-C value can be calculated as the average of LDL-C levels obtained under fasting condition in 2 separate occasions before administration of 30 AAV8.TBG.hLDLR to control for laboratory and biological variability and ensure a reliable efficacy assessment.

6.5.1. Pharmacodynamic/ Efficacy Assessments

The following efficacy laboratory tests can be evaluated under fasting conditions:

- 5 • LDL-C directly measured
• Lipid panel: total cholesterol, LDL-C, non-HDL-C, HDL-C, TG, Lp(a)
• Apolipoproteins: apoB and apoA-I.

10 Additionally optional LDL apoB kinetics may be determined prior to and 12 weeks after treatment. Lipid lowering efficacy may be assessed as percent changes from baseline at about 12, 24 and 52 weeks post vector administration. Baseline LDL-C values are calculated by averaging the LDL-C levels obtained under fasting condition in 2 separate occasions before administration. The percent change from baseline in LDL-C at 12 weeks post vector administration is the primary measure of gene transfer efficacy.

6.6. Lipoprotein Kinetics

15 Lipoprotein kinetic studies may be performed prior to vector administration and again 12 weeks after to assess the metabolic mechanism by which LDL-C is reduced. The primary parameter to be evaluated is the fractional catabolic rate (FCR) of LDL-apoB. Endogenous labeling of apoB is achieved by intravenous infusion of deuterated leucine, followed by blood sampling over a 48 hour period.

20 6.6.1. ApoB-100 isolation

VLDL, IDL and LDL are isolated by sequential ultracentrifugation of timed samples drawn after the D3-leucine infusion. Apo B-100 is isolated from these lipoproteins by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS PAGE) using a Tris-glycine buffer system. ApoB concentrations within individual 25 apoB species are determined by enzyme-linked immunosorbent assay (ELISA). The total apoB concentration is determined using an automated immunoturbidimetric assay.

6.6.2. Isotopic Enrichment Determinations

ApoB-100 bands are excised from polyacrylamide gels. Excised bands are hydrolyzed in 12N HCl at 100°C for 24 hours. Amino acids are converted to the N-isobutyl ester and N-heptafluorobutyramide derivatives before analysis using a gas chromatograph/mass spectrometer. Isotope enrichment (percentage) is calculated from

the observed ion current ratios. Data in this format are analogous to specific radioactivity in radiotracer experiments. It is assumed that each subject remains in steady state with respect to apoB-100 metabolism during this procedure.

6.7. Pharmacokinetics and Immune Response to AAV8 Assessments

5 The following tests can be used to evaluate pharmacokinetics, pre-immunity to the AAV vector and immune response to the AAV vector:

- Immune response monitoring: AAV8 NAb titer; T-cell responses to AAV8 vector; T-cell responses to hLDLR.
- Vector concentration: AAV8 concentrations in plasma, measured as 10 vector genomes by PCR.
- Human Leukocyte Antigen Typing (HLA type): HLA type is assessed in deoxyribonucleic acid (DNA) from peripheral blood mononuclear cells (PBMCs) by high resolution evaluation of HLA-A, HLA-B, HLA-C for Class I and HLA DRB1/DRB345, DQB1 and DPB1 for Class II. This information allows for correlation 15 of the potential T cell immune response to AAV8 capsid or to LDLR transgene with a specific HLA allele, helping to explain individual variability in the intensity and timing of T cell responses.

6.8 Xanthoma Assessment

Physical exams include identification, examination and description of any 20 xanthomas. Documentation of xanthoma location and type is determined, i.e., cutaneous, palpebral (eye), tuberous, and/or tendinous. Where possible, metric rulers or calipers are used to document size of xanthomas (largest and smallest extents) during physical exam. If possible, digital photographs of xanthomas that are most extensive and readily 25 identifiable are made with placement of a tape ruler (metric with millimeters) next to the lesion.

7. Example 2: Pre-Clinical Data

Nonclinical studies were undertaken to study the effects of AAV8.TBG.hLDLR on animal models for HoHF and pre-existing humoral immunity. Multiple single dose 30 pharmacology studies were conducted in small and large animal models measuring decreases in cholesterol. Additionally, regression in atherosclerosis was measured in the Double Knock-Out LDLR-/- Apobec1-/- mouse model (DKO), which is deficient in both

LDLR and Apobec1, develops severe hypercholesterolemia due to elevations in apoB-100-containing LDL even on a chow diet, and develops extensive atherosclerosis. These data were used to determine a minimally effective dose and to adequately justify dose selection for human studies. To further characterize the appropriate dose for human 5 studies and identify potential safety signals, toxicology studies were conducted in non-human primates (NHPs) and a mouse model of HoFH.

7.1 Pre-existing humoral immunity: Effect on AAV-mediated gene transfer to liver

The goal of this study was to evaluate the impact of pre-existing humoral 10 immunity to AAV on liver directed gene transfer using AAV8 encapsidated vectors in rhesus and cynomolgus macaques. Twenty-one rhesus and cynomolgus macaques were selected from a larger population of animals who were pre-screened for levels of pre-existing immunity against AAV8. Animals represented a wide age distribution and all were male. These studies focused on animals with low to undetectable levels of 15 neutralizing antibodies (NAb) while including a more limited number with AAV8 NAb titers up to 1:160. Animals were infused with 3×10^{12} GC/kg of AAV8 vector expressing enhanced green fluorescent protein (EGFP) from the liver-specific tyroxine binding globulin (TBG) promoter via a peripheral vein infusion. Animals were necropsied 7 days later and tissues were evaluated for EGFP expression and liver targeting of AAV8 vector 20 genomes (Figure 1). Pre-existing NAb to AAV8 in NHP sera were assessed using an *in vitro* transduction inhibition assay, as well as in the context of passive transfer experiments, in which sera from NHP was infused into mice prior to and at the time of vector administration to evaluate the impact of pre-existing AAV8 NAb on liver directed gene transfer *in vivo* (Wang et al., 2010 Molecular Therapy 18(1): 126-134).

25 Animals with undetectable to low levels of pre-existing NAb to AAV8 displayed high level transduction in liver, as evidenced by EGFP detection by fluorescent microscopy (Figure 1) and ELISA, as well as vector DNA quantification in the liver. The most useful measure of transduction in terms of efficacy in HoFH is percent of hepatocytes transduced, which in the absence of pre-existing NAb was 17% (range of 4.4% 30 to 40%). This is very close to the efficiency observed in mice at the same dose of vector. T threshold titer of pre-existing NAb significantly impacting transduction of liver cells

was $\leq 1:5$ (i.e., titers of 1:10 or greater substantially reduced transduction). Antibody-mediated inhibition of liver transduction correlated directly with diminished AAV genomes in liver. Human sera were screened for evidence of pre-existing NAb to AAV8 and results suggest that about 15% of adults have NAb to AAV8 that are in excess of \leq

5 1:5. Also, it was shown that higher levels of NAb are associated with a change in the
biodistribution of the vector, such that NAb decreases liver gene transfer while
increasing deposition of the vector genome into the spleen, without increasing spleen
transduction.

7.2 Effect of AAV8.TBG.mLDLR on Serum Cholesterol in a Mouse Model of HoFH

DKO mice (6 to 12 week old males) were injected IV with AAV8.TBG.mLDLR and followed for metabolic correction and reversal of pre-existing atherosclerosis lesions. Animals were also evaluated for gross clinical toxicity and abnormalities in serum transaminases. The mouse version of LDLR was utilized for vector administration into the DKO mouse.

Mice that received 10^{11} GC/mouse (5×10^{12} GC/kg) showed a near complete normalization of hypercholesterolemia that was stable for 180 days (Figure 2). No elevation in ALT levels or abnormal liver biochemistry were observed for up to 6 months post-vector injection at the highest doses in rodents (Kassim et al., 2010, PLoS

7.3 Effect of AAV8.TBG.mLDLR on Atherosclerotic Lesions in a Mouse Model of HoFH on a High-fat Diet

Given that AAV8-mediated delivery of LDLR induced significant lowering of total cholesterol, AAV8-mediated expression of mLDR was examined in a proof-of-concept study to determine whether it had an effect on atherosclerotic lesions (Kassim et al., 2010, PLoS One 5(10): e13424). Three groups of male DKO mice were fed a high-fat diet to hasten the progression of atherosclerosis. After two months, one group of mice received a single IV injection of 5×10^{12} GC/kg of control AAV8.TBG.nLacZ vector, one group received a single IV injection of 5×10^{12} GC/kg of AAV8.TBG.mLDR vector, while a third non-intervention group were necropsied for atherosclerosis lesion

quantification. The mice which received vectors were maintained on the high-fat diet for an additional 60 days at which time they were necropsied.

5 Animals that received the AAV8.TBG.mLDLR vector realized a rapid drop in total cholesterol from 1555 ± 343 mg/dl at baseline to 266 ± 78 mg/dl at day 7 and to 67 ± 13 mg/dl by day 60 after treatment. By contrast, the plasma cholesterol levels of AAV8.TBG.nLacZ treated mice remained virtually unchanged from 1566 ± 276 mg/dl at baseline to 1527 ± 67 mg/dl when measured 60 days after vector. All animals developed slight increases in serum transaminases following the two months on the high-fat diet, which remained elevated following treatment with the AAV8.TBG.nLacZ vector but 10 diminished three-fold to normal levels after treatment with the AAV8.TBG.mLDLR vector.

15 Evolution of pre-existing atherosclerotic lesions was assessed by two independent methods. In the first method the aortas were opened from the arch to the iliac bifurcation and stained with Oil Red O (Figure 3A); morphometric analyses quantified the percent of aorta stained with Oil Red O along the entire length of the aorta (Figure 3B). Oil Red O is a lysochrome (fat-soluble dye) diazo dye used for staining of neutral triglycerides and lipids on frozen sections. Staining of the aorta with this dye allows for the visualization 20 of lipid laden plaques. As seen in Figure 3, two months of high fat diet resulted in extensive atherosclerosis covering 20% of the aorta reflecting the baseline disease at the time of vector; this increased to 33% over an additional two month period following treatment with the AAV8.TBG.nLacZ vector, representing a 65% further progression in atherosclerosis. In contrast, treatment with the AAV8.TBG.mLDLR vector led to a regression of atherosclerosis by 87% over two months, from 20% of the aorta covered by 25 atherosclerosis at baseline to only 2.6% of the aorta covered by atherosclerosis 60 days after vector administration.

30 In the second method, total lesion area was quantified in the aortic root (Figure 3C-F). This analysis revealed the same overall trends, with AAV8.TBG.nLacZ injected mice showing a 44% progression over 2 months compared to baseline mice, while AAV8.TBG.mLDLR injected mice demonstrating a 64% regression in lesion compared with baseline mice. In summary, expression of LDLR via injection of AAV8.TBG.mLDLR induced marked reduction in cholesterol and substantial regression

of atherosclerosis over two months as assessed by two independent methods of quantification at two different sites within the aorta.

7.4 Assessment of Minimal Effective Dose in a Mouse Model of HoFH

Extensive studies of the correlations between phenotypes and genotype in

- 5 HoFH populations have demonstrated that differences in LDL and total cholesterol of only 25-30% translate to substantial differences in clinical outcome (Bertolini et al. 2013, Atherosclerosis 227(2): 342-348; Kolansky et al. 2008, Am J Cardiol 102(11): 1438-1443; Moorjani et al. 1993, The Lancet 341(8856): 1303-1306). Furthermore, lipid-lowering treatment associated with LDL-C reduction lower than 30%, translates to 10 delayed cardiovascular events and prolonged survival in patients with HoFH (Raal et al. 2011, Circulation 124(20): 2202-2207). Recently, the FDA approved the drug mipomersen for the treatment of HoFH in which the primary endpoint was a reduction of LDL-C of 20 to 25% from baseline (Raal et al. 2010, Lancet 375(9719): 998-1006).

15 Against this background, the minimal effective dose (MED) in the gene therapy mouse studies discussed below was defined as the lowest dose of vector that lead to a statistically significant and stable reduction of total cholesterol in the serum that is at least 30% lower than baseline. The MED has been evaluated in a number of different studies and a brief description of each experiment is provided below.

7.4.1. POC Dose-ranging study of AAV8.TBG.mLDLR in DKO mice

20 A proof-of-concept dose-ranging study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in DKO mice was conducted to identify suitable doses for further study. In these studies, DKO male mice were injected IV with different doses of AAV8.TBG.mLDLR ranging from 1.5 to 500x10¹¹ GC/kg and followed for reductions in 25 plasma cholesterol (Kassim et al., 2010, PLoS One 5(10): e13424). The GC doses used in these research experiments (1.5 to 500 x 10¹¹) were based on quantitative PCR (qPCR) titer. Statistically significant reductions of plasma cholesterol of up to 30% were observed at day 21 at a dose of AAV8.TBG.mLDLR of 1.5x10¹¹ GC/kg, with greater reductions achieved in proportion to larger doses of vector (Kassim et al., 2010, PLoS One 5(10): e13424). Analyses of liver tissues harvested subsequent to metabolic 30

correction revealed levels of mouse LDLR transgene and protein in proportion to the dose of vector. Thus, a dose-response correlation was observed.

7.4.2. Dose-ranging study of AAV8.TBG.hLDLR in DKO and LAHB mice

5 Similar proof-of-concept studies in the DKO mouse were performed with a vector that contained the human LDL receptor (hLDLR) gene rather than the mouse LDLR gene. The results with the hLDLR vector were very similar to those observed with the mLDR in that the dose of vector was proportional to expression of the transgene and deposition of vector genomes in liver (Kassim et al. 2013, Hum Gene Ther 24(1): 10 19-26). The major difference was in its efficacy – the human LDLR vector was less potent in this model. Reductions of cholesterol close to at least 30% were achieved at 5×10^{12} GC/kg and 5×10^{11} GC/kg, (doses based on qPCR titer) although statistical significance was achieved only at the higher dose.

15 The reduced efficacy observed was attributable to the diminished affinity of human LDLR for the mouse ApoB. To by-pass this problem, studies were repeated using the LAHB mouse model that expresses the human ApoB100 and, therefore, more authentically models the interaction of human apoB100 with human LDLR relevant to human studies. Male mice of both strains (DKO vs. LAHB) received a tail vein injection of one of three vector doses of AAV8.TBG.hLDLR (0.5×10^{11} GC/kg, 1.5×10^{11} GC/kg, 20 and 5.0×10^{11} GC/kg based on qPCR titer). Animals from each cohort were bled on day 0 (prior to vector administration), day 7, and day 21 and evaluation of serum cholesterol level was performed. The human LDLR was much more effective in the LAHB mouse as compared to mLDR in the DKO mouse: a 30% reduction of serum cholesterol was achieved at a dose of 1.5×10^{11} GC/kg, which is the same efficacy achieved with previous 25 studies of the mouse LDLR construct in the DKO animals (Kassim et al. 2013, Hum Gene Ther 24(1): 19-26).

7.4.3. Non-clinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of HoFH

30 Male and female DKO mice (n = 280, 140 male and 140 female) 6-22 weeks of age received a tail vein injection of one of three vector doses of

AAV8.TBG.mLDLR (7.5×10^{11} GC/kg, 7.5×10^{12} GC/kg, 6.0×10^{13} GC/kg) or one dose of the intended gene therapy vector AAV8.TBG.hLDLR (6.0×10^{13} GC/kg). Animals were dosed based on genome copies (GC) per kilogram body weight using the oqPCR titration method, which is described herein at Section 8.4.1. An additional cohort of animals 5 received PBS as a vehicle control. Animals from each cohort were sacrificed on day 3, day 14, day 90, and day 180 and blood was collected for evaluation of serum cholesterol levels (Figure 4).

10 A rapid and significant reduction of cholesterol at all necropsy time points in all groups of treated mice was observed. This reduction appeared to be less in females than in males at low dose of vector at early time points, although this difference decreased with time and eventually there was no detectable difference between the sexes. Each group demonstrated a statistically significant reduction in serum cholesterol of at least 30% relative to PBS controls at the same necropsy time point. Therefore, the determination of the MED based on this study is $\leq 7.5 \times 10^{11}$ GC/kg.

15 **7.4.4. Efficacy Study of AAV8.TBG.hLDLR in a Mouse Model of
Homozygous Familial Hypercholesterolemia**

20 Male DKO mice (n=40) 12-16 weeks of age were administered IV with one of four doses (1.5×10^{11} GC/kg, 5.0×10^{11} GC/kg, 1.5×10^{12} GC/kg, 5.0×10^{12} GC/kg) of AAV8.TBG.hLDLR (doses based on the oqPCR titration method). Animals were bled on day 0 (prior to vector administration), day 7, and day 30 and evaluation of serum cholesterol (Figure 5). A rapid and significant reduction of cholesterol was observed on days 7 and 30 in groups of mice treated with $\geq 5.0 \times 10^{11}$ GC/kg. The determination of the MED based on this study is between 1.5×10^{11} GC/kg and 5.0×10^{11} GC/kg.

25 **7.5. Effects of AAV8.TBG.rhLDLR in LDLR+/- Rhesus Macaques on a
High-fat Diet**

Studies designed to evaluate AAV8-LDLR gene transfer in the FH macaque were conducted. Following administration of 10^{13} GC/kg of AAV8.TBG.rhAFP (a control vector; dose based on qPCR titration method) into either fat-fed or chow fed wild type rhesus macaques, no elevations in aspartate 30 aminotransferase (AST) or alanine aminotransferase (ALT) values were seen. This

suggests that AAV8 capsid itself is not responsible for triggering an inflammatory or injurious hepatic process.

7.6. Pilot Biodistribution Study of AAV8.TBG.hLDLR in a Mouse Model of HoFH

5 In order to assess the safety and pharmacodynamics properties of gene therapy for HoFH, pilot biodistribution (BD) studies were conducted in DKO mice. These studies examined vector distribution and persistence in five female DKO mice systemically administered 5×10^{12} GC/kg (dose based on qPCR titration method) of AAV8.TBG.hLDLR vector via one of two routes: 1) IV injection into the tail vein or 2) 10 intra-portal injection. At two different time points (day 3 and day 28), a panel of tissues was harvested and total cellular DNA was extracted from harvested tissues. In these pilot studies, both the IV and intra-portal routes resulted in a comparable BD profile, supporting the rationale to infuse the gene therapy vector in patients and animals via peripheral vein.

15 7.7. Toxicology

In order to assess the potential toxicity of gene therapy for HoFH, pharmacology/toxicology studies were conducted in DKO mice (a mouse model of HoFH), and wild type and LDLR $^{+/-}$ rhesus macaques. The studies include an examination of the role of LDLR transgene expression in vector associated toxicity in 20 chow-fed wild type and LDLR $^{+/-}$ Rhesus Macaques, a pharmacology/toxicology study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a mouse model of HoFH, and an examination of the non-clinical biodistribution of AAV8.TGB.hLDLR in a mouse model of HoFH. These studies are described in detail below.

25 7.8. Non-Clinical Study Examining the Role of LDLR Transgene Expression in Vector Associated Toxicity in Chow-fed Wild Type and LDLR $^{+/-}$ Rhesus Macaques

Four wild type and four LDLR $^{+/-}$ rhesus macaques were administered IV with 1.25×10^{13} GC/kg of AAV8.TBG.hLDLR (dose based on oqPCR titration method), Non human primates (NHPs) were monitored for up to one year post-vector 30 administration. Four animals (two wild type and two LDLR $^{+/-}$) were necropsied at day

28 post-vector administration to assess acute vector-associated toxicity and vector distribution and four animals (two wild type and two LDLR⁺⁻) were necropsied at day 364/365 post-vector administration to assess long-term vector-associated pathology and vector distribution. Each cohort of wild type and LDLR⁺⁻ macaques had two males and 5 two females.

The animals tolerated the infusion of vector well without long-term or short-term clinical sequelae. Biodistribution studies demonstrated high level and stable targeting of liver with far less, but still detectable, extrahepatic distribution, which declined over time. These data suggested that the target organ for efficacy, the liver, is 10 also the most likely source of potential toxicity. A detailed review of tissues harvested at necropsy performed 28 and 364/365 days post-vector administration revealed some minimal to mild findings in liver and some evidence of atherosclerosis in the LDLR⁺⁻ macaques. The nature of the liver pathology and the fact that similar pathology was observed in one of the two untreated wild type animals suggested to the pathologist that 15 they were unrelated to the test article.

One animal had persistent elevations in alanine aminotransferase (ALT) prior to vector administration, which continued after vector administration at levels that ranged from 58 to 169 U/L. The remaining animals demonstrated either no elevations in transaminases or only transient and low level increases in aspartate 20 aminotransferase (AST) and ALT, never exceeding 103 U/L. The most consistent abnormalities were found after vector injection, suggesting they were related to the test article. Activation of T cells to human LDLR or to AAV8 capsid was assessed for correlation with AST/ALT increases. Figure 6 presents the AAV capsid ELISPOT data and serum AST levels in three selected animals that demonstrated relevant findings. 25 Only one animal showed a correlation in which an increase in AST to 103 U/L corresponded to the appearance of T cells against capsid (Figure 6, animal 090-0263); the capsid T cell response persisted while the AST returned immediately to normal range.

Analysis of tissue-derived T cells for presence of capsid and transgene-specific T cells showed that liver derived T cells became responsive to capsid 30 from both genotypes (wild type and LDLR⁺⁻) by the late time point while T cells to human LDLR were detected in the LDLR⁺⁻ animals at this late time point. This

suggests that PBMCs are not reflective of the T cell compartment in the target tissue. Liver tissue harvested at days 28 and at 364/365 was analyzed for expression of the transgene by RT-PCR and did appear to be affected by the abnormalities in clinical pathology or the appearance of T cells.

- 5 Neither the wild type nor LDLR⁺⁻ animals developed hypercholesterolemia on chow diet. Dose-Limiting Toxicities (DLTs) were not observed at a dose of 1.25×10^{13} GC/kg (based on oqPCR), implying that the maximal tolerated dose (MTD) would be equal to or greater than this dose. Test article related elevations in transaminases were observed, which were low and transient but nevertheless present.
- 10 Accordingly, the no-observed-adverse-effect-level (NOAEL) is less than the single high dose evaluated in Example 1 herein.

15 7.9. Non-Clinical Pharmacology/Toxicology Study of
 AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of
 HoFH

This study was conducted in the DKO mice because using this strain would allow, 1) evaluation of proof-of-concept efficacy in parallel with toxicity, and 2) evaluation of vector-associated toxicity in the setting of any pathology associated with the defect in LDLR and the associated dyslipidemia and its sequelae, such as steatosis.

- 20 The study was designed to test AAV8.TBG.hLDLR at the highest dose, which is 8-fold higher than the highest dose for administration to human subjects with HoFH, as set forth in Example 1. A version of the vector that expresses the murine LDLR was tested at this high dose, as well as two lower doses, to provide an assessment of the effect of dose on toxicity parameters, as well as reduction in cholesterol. The dose-25 response experiment was performed with the vector expressing murine LDLR to be more reflective of the toxicity and efficacy that would be observed in humans using the human LDLR vector.

In this study, male and female DKO mice aged 6-22 weeks were administered with one of the doses of AAV8.TBG.mLDLR (7.5×10^{11} GC/kg, 7.5×10^{12} GC/kg and 6.0×10^{13} GC/kg) or 6.0×10^{13} GC/kg of the vector (AAV8.TBG.hLDLR) (doses based on the oqPCR titration method). Animals were necropsied at day 3, day 14,

day 90, and day 180 post-vector administration; these times were selected to capture the vector expression profile of the test article as well as acute and chronic toxicity. Efficacy of transgene expression was monitored by measurement of serum cholesterol levels.

5 Animals were evaluated for comprehensive clinical pathology, immune reactions to the vector (cytokines, NAbs to AAV8 capsid, and T cell responses against both capsid and transgene), and tissues were harvested for a comprehensive histopathological examination at the time of necropsy.

The key toxicology findings from this study are as follows:

- 10 • No clinical sequelae were observed in the treated groups
- Clinical pathology:
 - o *Transaminases*: Abnormalities were limited to elevations of the liver function tests AST and ALT that ranged from 1-4x ULN and were primarily found at day 90 of all doses of murine LDLR vector. There was no elevation of transaminases in the group administered high dose human LDLR vector, except for <2x ULN of ALT in a few male animals. The abnormalities associated with the mouse vector were mild and not dose-dependent and, therefore, were not believed to be related to vector. There were essentially no findings associated with the high dose human vector. There was no evidence of treatment related toxicity based on these findings, meaning that the no adverse effect level (NOAEL) based on these criteria is 6.0×10^{13} GC/kg.
 - *Pathology*: There were no gross pathology findings. Histopathology was limited to minimal or mild findings in liver as follows:
 - o Animals administered with PBS had evidence of minimal and/or mild abnormalities according to all criteria evaluated. In assessing treatment related pathology we focused on any finding categorized as mild that was above that found in PBS injected animals.
 - o Mild bile duct hyperplasia and sinusoidal cell hyperplasia was observed in high dose female mice administered the mouse and human LDLR vectors. This could represent vector related effects observed only at the high dose.

o Centrilobular hypertrophy was mild, only in males and not at high doses of vector arguing that it not vector related.

o Minimal necrosis was found in 1/7 males and 3/7 females at day 180 in the high dose human LDLR vector.

5 o Based on the finding of mild bile duct and sinusoidal hyperplasia at the high dose of vector, and a few examples of minimal necrosis in the high dose human LDLR vector, that the NOAEL based on these criteria is between 7.5×10^{12} GC/kg and 6.0×10^{13} GC/kg.

• *Other findings:* The animals developed an increase in NAbs to AAV8 and 10 evidence of very low T cell response based on an IFN- γ ELISPOT to capsid and LDLR following administration of the high dose of the human LDLR vector. There was little evidence of an acute inflammatory response based on analysis of serum 3 and 14 days after vector; a few cytokines did show modest and transient elevations although there was no increase in IL6.

15 One notable finding was that toxicity was not worse in DKO mice treated with the mouse LDLR vector than with the human LDLR vector, which could have been the case if the human LDLR was more immunogenic in terms of T cells than the mouse transgene. ELISPOT studies did show some activation of LDLR-specific T cells in mice administered with the high dose vector expressing the human transgene, although they 20 were low and in a limited number of animals supporting the toxicity data, which suggested this mechanism of host response would unlikely contribute to safety concerns.

In conclusion, there were no dose-limited toxicities, meaning the maximally tolerated dose was higher than the highest dose tested which was 6.0×10^{13} GC/kg. Based 25 on mild and reversible findings in liver pathology at the highest dose, the NOAEL is somewhere between 6.0×10^{13} GC/kg, where in liver mild reversible pathology was observed, down to 7.5×10^{12} GC/kg, where there was no clear indication of vector related findings.

7.10. Non-Clinical Biodistribution of AAV8.TGB.hLDLR in a Mouse Model of HoFH

30 Male and female DKO mice 6-22 weeks of age were administered IV with 7.5×10^{12} GC/kg (dose measured by oqPCR titration method) of

AAV8.TBG.hLDLR, the highest dose for treating human subjects in Example 1 f. Animals were necropsied for biodistribution assessment on day 3, day 14, day 90, and day 180 post-vector administration. In addition to blood, 20 organs were harvested. The distribution of vector genomes in organs was assessed by quantitative, sensitive PCR analysis of total genomic DNA harvested. One sample of each tissue included a spike of control DNA, including a known amount of the vector sequences, in order to assess the adequacy of the PCR assay reaction.

The vector GC number in liver was substantially higher in liver than in other organs/tissues, which is consistent with the high hepatotropic properties of the AAV8 capsid. For example, vector genome copies in the liver were at least 100-fold greater than that found in any other tissue at day 90. There was no significant difference between male or female mice at the first three time points. GC number decreased over time in the liver until day 90, where it then stabilized. A similar trend of decline was observed in all tissues but the decline in vector copy number was more rapid in tissues with higher cell turnover rate. Low but detectable levels of vector genome copies were present in the gonads of both genders and the brain.

The biodistribution of AAV8.TBG.hLDLR in DKO mice was consistent with published results with AAV8. Liver is the target primary target of gene transfer following IV infusion and genome copies in liver do not decline significantly over time. Other organs are targeted for vector delivery, although the levels of gene transfer in these non-hepatic tissues are substantially lower and decline over time. Therefore, the data presented here suggest that the primary organ system to be evaluated is the liver.

7.11. Conclusions from Non-clinical Safety Studies

The rhesus macaque and DKO mouse studies confirmed that high dose vector is associated with low level, transient, and asymptomatic liver pathology evident by transient elevations in transaminases in NHPs, and in mice by transient appearance of mild bile duct and sinusoidal hypertrophy. No other toxicity felt to be due to the vector was observed.

There were no DLTs observed at doses as high as 1.25×10^{13} GC/kg in macaques and 6×10^{13} GC/kg in DKO mice. Determination of the NOAEL focus primarily on liver toxicity as reflected in elevations in transaminases in macaques and

histopathology in DKO mice. This translated to an NOAEL of less than 1.25×10^{13} GC/kg in macaques and less than 6×10^{13} GC/kg but greater than 7.5×10^{12} GC/kg in DKO mice. The doses were based on the oqPCR titration method.

5 7.12. Overall assessment of non-clinical data to support human treatment

The key findings that emerged from the pharmacology and toxicology studies that have informed the dose selection and design for the clinical study, are the following:

- Minimal Effective Dose (MED): The MED was defined in nonclinical studies as a GC/kg dose that resulted in a 30% reduction in serum cholesterol. Two IND-enabling nonclinical studies established the MED to be between 1.5 to 5.0×10^{11} GC/kg. The mouse pharmacology/toxicology study demonstrated a statistically significant reduction in serum cholesterol of at least 30% relative to PBS controls, allowing estimation of a MED $\leq 7.5 \times 10^{11}$ GC/kg. The observed dose-response relationship allowed determination of the MED to be between 1.5 to 5.0×10^{11} GC/kg as determined by oqPCR.
- Maximum Tolerated Dose (MTD): The MTD was defined in nonclinical studies as the GC/kg dose that did not result in a dose limiting toxicity (DLT). DLTs were not observed in the toxicology studies at the highest doses tested, which were 6.0×10^{13} GC/kg in DKO mice and 1.25×10^{13} GC/kg in macaques as determined by oqPCR. Our results suggested that the actual MTD is higher than these doses.
- No Observed Adverse Event Level (NOAEL): This was determined to be 7.5×10^{12} GC/kg in the DKO mice. This was based on minimal to mild histopathologic findings, predominantly in the liver (bile duct and sinusoidal hyperplasia, minimal necrosis), observed at higher doses of the human LDLR (hLDLR) transgene. Only one dose was tested in macaques; however the toxicity at 1.25×10^{13} GC/kg was mild, including transient and low level increases in AST and ALT, suggesting the true NOAEL would be achieved at a dose lower than the dose tested.

Based on these data, we arrived at two doses: a single dose of 2.5×10^{12} GC/kg or a single dose of 7.5×10^{12} GC/kg (doses based on the oqPCR titration method). The highest dose proposed to test in the clinic is lower than the highest dose tested in the macaque toxicology study and 8- fold lower than the highest dose tested in DKO mice – 5 neither of which was considered to be the MTD. A dose that is at least 5-fold higher than the MED is proposed, suggesting that patients who participate in the low dose cohort could potentially obtain some benefit. The lower dose is also approximately 3-fold lower than the NOAEL dose in DKO mice and 5-fold lower than the dose tested in macaques.

10 8. Example 3: Manufacture of AAV8.TBG.hLDLR

The AAV8.TBG.hLDLR vector consists of the AAV vector active ingredient and a formulation buffer. The external AAV vector component is a serotype 8, $T = 1$ icosahedral capsid consisting of 60 copies of three AAV viral proteins, VP1, VP2, and VP3, at a ratio of 1:1:18. The capsid contains a single-stranded DNA recombinant 15 AAV (rAAV) vector genome (Figure 7). The genome contains a human low density lipoprotein receptor (LDLR) transgene flanked by the two AAV inverted terminal repeats (ITRs). An enhancer, promoter, intron, human LDLR coding sequence and polyadenylation (polyA) signal comprise the human LDLR transgene. The ITRs are the genetic elements responsible for the replication and packaging of the genome during 20 vector production and are the only viral *cis* elements required to generate rAAV. Expression of the human LDLR coding sequence is driven from the hepatocyte-specific thyroxine-binding globulin (TBG) promoter. Two copies of the alpha 1 microglobulin/bikunin enhancer element precede the TBG promoter to stimulate promoter activity. A chimeric intron is present to further enhance expression and a 25 rabbit beta globin polyA signal is included to mediate termination of human LDLR mRNA transcripts. The vector is supplied as a suspension of AAV8.TBG.hLDLR vector in formulation buffer. The formulation buffer is 180 mM NaCl, 10 mM sodium phosphate, 0.001% Poloxamer 188, pH 7.3.

30 Details of the vector manufacturing and characterization of the vectors, are described in the sections below.

8.1. Plasmids used to Produce AAV8.TBG.hLDLR

The plasmids used for production of AAV8.TBG.hLDLR are as follows:

5

8.1.1 Cis plasmid (vector genome expression construct):

pENN.AAV.TBG.hLDLR.RBG.KanR containing the human LDLR expression cassette (Figure 8). This plasmid encodes the rAAV vector genome. The polyA signal for the expression cassette is from the rabbit β globin gene. Two copies of the alpha 1 microglobulin /bikunin enhancer element precede the TBG promoter.

10

To generate the *cis* plasmid used for production of AAV8.TBG.hLDLR, the human LDLR cDNA was cloned into an AAV2 ITR-containing construct, pENN.AAV.TBG.PI to create pENN.AAV.TBG.hLDLR.RBG. The plasmid backbone in pENN.AAV.TBG.PI was originally from, pZac2.1, a pKSS-based plasmid. The ampicillin resistance gene in pENN.AAV.TBG.hLDLR.RBG was excised and replaced 15 with the kanamycin gene to create pENN.AAV.TBG.hLDLR.RBG.KanR. Expression of the human LDLR cDNA is driven from the TBG promoter with a chimeric intron (Promega Corporation, Madison, Wisconsin). The polyA signal for the expression cassette is from the rabbit β globin gene. Two copies of the alpha 1 microglobulin /bikunin enhancer element precede the TBG promoter.

20

Description of the Sequence Elements

1. *Inverted terminal repeats (ITR)*: AAV ITRs (GenBank # NC001401) are sequences that are identical on both ends, but found in opposite orientation. The AAV2 ITR sequences function as both the origin of vector DNA replication and the packaging signal for the vector genome, when AAV and adenovirus (ad) helper 25 functions are provided in *trans*. As such, the ITR sequences represent the only *cis* acting sequences required for vector genome replication and packaging.
2. *Human alpha 1 microglobulin/bikunin enhancer* (2 copies; 0.1Kb) ; Genbank # X67082) This liver specific enhancer element serves to lend liver-specificity and enhance expression from the TBG promoter.
- 30 3. *Human thyroxine-binding globulin (TBG) promoter* (0.46Kb; Gen bank # L13470) This hepatocyte-specific promoter drives the expression of the human LDLR

coding sequence

4. *Human LDLR cDNA* (2.58Kb; Genbank # NM000527, complete CDS). The human LDLR cDNA encodes a low density lipoprotein receptor of 860 amino acids with a predicted molecular weight of 95kD and an apparent molecular weight of 130 kD

5 by SDS-PAGE.

5. *Chimeric intron* (0.13Kb; Genbank # U47121; Promega Corporation, Madison, Wisconsin) The chimeric intron consists of a 5'-donor site from the first intron of the human β -globin gene and the branch and 3'-acceptor site from the intron located between the leader and body of an immunoglobulin gene heavy chain variable region.

10 The presence of an intron in an expression cassette has been shown to facilitate the transport of mRNA from the nucleus to the cytoplasm, thus enhancing the accumulation of the steady level of mRNA for translation. This is a common feature in gene vectors intended to mediate increased levels of gene expression.

6. *Rabbit beta-globin polyadenylation signal*: (0.13Kb; GenBank # V00882.1) The 15 rabbit beta-globin polyadenylation signal provides *cis* sequences for efficient polyadenylation of the antibody mRNA. This element functions as a signal for transcriptional termination, a specific cleavage event at the 3' end of the nascent transcript followed by addition of a long polyadenyl tail.

20 8.1.2 Trans plasmid (packaging construct): pAAV2/8(Kan), containing the AAV2 *rep* gene and AAV8 *cap* gene (Figure 9).

The AAV8 *trans* plasmid pAAV2/8(Kan) expresses the AAV2 replicase (*rep*) gene and the AAV8 capsid (*cap*) gene encoding virion proteins, VP1, VP2 and VP3. The AAV8 capsid gene sequences were originally isolated from heart DNA of a rhesus monkey (GenBank accession AF513852). To create the chimeric packaging constructs, 25 plasmid p5E18, containing AAV2 *rep* and *cap* genes, was digested with *Xba*I and *Xho*I to remove the AAV2 *cap* gene. The AAV2 *cap* gene was then replaced with a 2.27Kb *Spe*I/*Xho*I PCR fragment of the AAV8 *cap* gene to create plasmid p5E18VD2/8 (Figure 9a). The AAV p5 promoter, which normally drives *rep* expression is relocated in this construct from the 5' end of *rep* gene to the 3' end of the *cap* gene. This arrangement 30 serves to down-regulate expression of *rep* in order to increase vector yields. The plasmid backbone in p5E18 is from pBluescript KS. As a final step, the ampicillin resistance

gene was replaced by the kanamycin resistance gene to create pAAV2/8(Kan) (FIG 9B). The entire pAAV2/8(Kan) *trans* plasmid has been verified by direct sequencing.

8.1.3 Adenovirus helper plasmid: pAdΔF6(Kan)

Plasmid pAdΔF6(Kan) is 15.7Kb in size and contains regions of the adenoviral genome that are important for AAV replication, namely E2A, E4, and VA RNA. pAdΔF6(Kan) does not encode any additional adenoviral replication or structural genes and does not contain *cis* elements, such as the adenoviral ITRs, that are necessary for replication, therefore, no infectious adenovirus is expected to be generated. Adenoviral E1 essential gene functions are supplied by the HEK293 cells in which the rAAV vectors are produced. pAdΔF6(Kan) was derived from an E1, E3 deleted molecular clone of Ad5 (pBHG10, a pBR322 based plasmid). Deletions were introduced in the Ad5 DNA to remove unnecessary adenoviral coding regions and reduce the amount of adenoviral DNA from 32Kb to 12Kb in the resulting ad-helper plasmid. Finally, the ampicillin resistance gene was replaced by the kanamycin resistance gene to create pAdΔF6(Kan) (Figure 10). DNA plasmid sequencing was performed by Qiagen Sequencing Services, Germany and revealed 100% homology between the reference sequence for pAdDeltaF6(Kan) and the following adenoviral elements: p1707FH-Q: E4 ORF6 3.69-2.81Kb; E2A DNA binding protein 11.8–10.2Kb; VA RNA region 12.4–13.4Kb.

Each of the *cis*, *trans* and ad-helper plasmids described above contains a kanamycin-resistance cassette, therefore, β -lactam antibiotics are not used in their production.

8.1.4 Plasmid Manufacturing

All plasmids used for the production of vectors were produced by Puresyn Inc. (Malvern, PA). All growth media used in the process is animal free. All components used in the process, including fermentation flasks, containers, membranes, resin, columns, tubing, and any component that comes into contact with the plasmid, are dedicated to a single plasmid and are certified BSE-free. There are no shared components and disposables are used when appropriate.

8.2. Cell Banks

AAV8.TBG.hLDLR vector was produced from a HEK293 working cell bank which was derived from a fully characterized master cell bank. The manufacturing and 5 testing details of both cell banks appears below.

8.2.1 HEK293 Master Cell Bank

HEK293 Master Cell Bank (MCB) is a derivative of primary human embryonic kidney cells (HEK) 293. The HEK293 cell line is a permanent line transformed by sheared human adenovirus type 5 (Ad5) DNA (Graham et al., 1977, Journal of General 10 Virology 36(1): 59-72). The HEK293 MCB has been tested extensively for microbial and viral contamination. The HEK293 MCB is currently stored in liquid nitrogen. Additional testing was performed on the HEK293 MCB to demonstrate the absence of specific pathogens of human, simian, bovine, and porcine origin. The human origin of the HEK293 MCB was demonstrated by isoenzyme analysis.

15 Tumorigenicity testing was also performed on the HEK293 MCB by evaluating tumor formation in nude (nu/nu) athymic mice following subcutaneous injection of the cell suspension. In this study, fibrosarcoma was diagnosed at the injection site in ten of ten positive control mice and carcinoma was diagnosed at the injection site in ten of ten test article mice. No neoplasms were diagnosed in any of the negative control mice. The 20 HEK293 MCB L/N 3006-105679 was also tested for the presence of Porcine Circovirus (PCV) Types 1 and 2. The MCB was found negative for PCV types 1 and 2.

8.2.2 HEK293 Working Cell Bank

The HEK293 Working Cell Bank (WCB) was manufactured using New Zealand sourced Fetal Bovine Serum, FBS (Hyclone PN SH30406.02) certified for suitability in 25 accordance with the European Pharmacopea monograph. The HEK293 WCB was established using one vial (1mL) of the MCB as seed material. Characterization tests were performed and the test results are listed in Table 4.1.

Table 4.1 Characterization of HEK293 WCB.

Test	Method	Study Number	Result
Test for the	<i>In vivo</i>	BioReliance	No mycoplasma

Test	Method	Study Number	Result
presence of agar-cultivable and non-agar cultivable mycoplasma USP, EP, 1993 PTC		AD61FS.102063GMP.BSV	detected
Qualification of the test for agar-cultivable and non-agar cultivable mycoplasma USP, EP, 1993 PTC/JP	<i>In vivo</i>	BioReliance AD61FS.102062GMP.BSV	No Mycoplasmastasis observed
Isolator sterility testing, USP <71>, 21 CFR 610.12	Direct inoculation	BioReliance AD61FS.510120GMP.BSV	No bacterial or fungal growth
Test for presence of inapparent viruses	<i>In vivo</i>	BioReliance AD61FS.005002GMP.BSV	Negative
28-day assay for the presence of viral contaminants	<i>In vitro</i>	BioReliance AD61FS.003800.BSV	Negative
Cell culture identification and characterization	Isoenzyme analysis	BioReliance AD61FS.380801.BSV	Human

8.3. Vector Manufacturing

General descriptions of the vector manufacturing processes are given below and are also reflected in a flow diagram in Figure 11.

8.3.1 Vector Generation Process (Upstream Process)

5 8.3.1.1 Initiation of HEK293 WCB cell culture into a T-flask (75cm²)
One vial of HEK293 cells from the WCB containing 10⁷ cells in 1mL is thawed
at 37 °C and seeded in a 75 cm² tissue culture flask containing DMEM High Glucose
supplemented with 10% fetal bovine serum (DMEM HG/10% FBS). The cells are then
placed in a 37 °C /5% CO₂ incubator, and grown to ~70% confluence with daily direct
10 visual and microscopic inspection to assess cell growth. These cells are designated
Passage 1, and are passaged to generate a cell seed train for vector biosynthesis for up to
~10 weeks as described below. The passage number is recorded at each passage and the
cells are discontinued after passage 20. If additional cells are required for vector
biosynthesis, a new HEK293 cell seed train is initiated from another vial of the HEK293
15 WCB.

8.3.1.2 Passage of cells into ~2 T-flasks (225 cm²)

When the HEK293 cells growing in the T75 flask are ~70% confluent, the cells
are detached from the surface of the flask using recombinant trypsin (TrypLE), and
seeded in two T225 flasks containing DMEM HG/10% FBS. Cells are placed in the
20 incubator and grown to ~70% confluence. Cells are monitored for cell growth, absence
of contamination, and consistency by visual inspection and using a microscope.

8.3.1.3 Passage of cells into ~10 T-flasks (225 cm²)

When the HEK293 cells growing in the two T225 flask are ~70% confluent, the
cells are detached using recombinant trypsin (TrypLE), and seeded at a density of ~3x10⁶
25 cells per flask in ten 225cm² T-flasks containing DMEM HG/10% FBS. Cells are placed
in a 37°C/5% CO₂ incubator and grown to ~70% confluence. Cells are monitored for cell
growth, absence of contamination, and consistency by direct visual inspection and using
a microscope. Cells are maintained by serial passaging in T225 flasks to maintain the cell
seed train and to provide cells for expansion to support manufacture of subsequent vector
30 batches.

8.3.1.4 Passage of cells into ~10 roller bottles

- When the HEK293 cells growing in ten T225 flasks are ~70% confluent, the cells are detached using recombinant trypsin (TrypLE), counted and seeded in 850cm² roller bottles (RB) containing DMEM HG/10% FBS. The RBs are then placed in the RB incubator and the cells grown to ~70% confluence. RBs are monitored for cell growth, absence of contamination, and consistency by direct visual inspection and using a microscope.
- 5

8.3.1.5 Passage of cells into ~100 roller bottles

- When the HEK293 cells growing in RBs prepared as described in the previous process step are ~70% confluent, they are detached using recombinant trypsin (TrypLE), counted and seeded in 100 RBs containing DMEM/10% FBS. The RBs are then placed in the RB incubator (37 °C, 5% CO₂) and grown to ~70% confluence. Cells are monitored for cell growth, absence of contamination, and consistency by direct visual inspection and using a microscope.
- 10

15 8.3.1.6 Transfection of cells with plasmid DNA

- When the HEK293 cells growing in 100 RBs are ~70% confluent, the cells are transfected with each of the three plasmids: the AAV serotype-specific packaging (*trans*) plasmid, the ad-helper plasmid, and vector *cis* plasmid containing the expression cassette for the human LDLR gene flanked by AAV inverted terminal repeats (ITRs).
- 20 Transfection is carried out using the calcium phosphate method (For plasmid details, see Section 4.1.1). The RBs are placed in the RB incubator (37°C, 5% CO₂) overnight.

8.3.1.7. Medium exchange to serum free medium

- After overnight incubation of 100 RBs following transfection, the DMEM/10% FBS culture medium containing transfection reagents is removed from each RB by aspiration and replaced with DMEM-HG (without FBS). The RBs are returned to the RB incubator and incubated at 37 °C, 5% CO₂ until harvested.
- 25

8.3.1.8. Vector Harvest

- RBs are removed from the incubator and examined for evidence of transfection (transfection-induced changes in cell morphology, detachment of the cell monolayer) and

for any evidence of contamination. Cells are detached from the RB surface by agitation of each RB, and then harvested by decanting into a sterile disposable funnel connected to a BioProcess Container (BPC). The combined harvest material in the BPC is labeled ‘Product Intermediate: Crude Cell Harvest’ and samples are taken for (1) in-process 5 bioburden testing and (2) bioburden, mycoplasma, and adventitious agents product release testing. The Product Intermediate batch labeled as Crude Cell Harvest (CH) is stored at 2–8°C until further processed.

8.3.2 Vector Purification Process (Downstream Process)

While a common, ‘platform’ purification process is used for all of the AAV 10 serotypes (i.e. incorporating the same series and order of steps), each serotype requires unique conditions for the chromatography step, a requirement that also impacts some details (buffer composition and pH) of the steps used to prepare the clarified cell lysate applied to the chromatography resin.

8.3.2.1 AAV8 Vector Harvest Concentration and Diafiltration by TFF

15 The BPC containing Crude CH is connected to the inlet of the sanitized reservoir of a hollow fiber (100k MW cut-off) TFF apparatus equilibrated with phosphate-buffered saline. The Crude CH is applied to the TFF apparatus using a peristaltic pump and concentrated to 1-2 L. The vector is retained (retentate) while small molecular weight 20 moieties and buffer pass through the TFF filter pore and are discarded. The harvest is then diafiltered using the AAV8 diafiltration buffer. Following diafiltration, the concentrated vector is recovered into a 5L BPC. The material is labeled ‘Product Intermediate: Post Harvest TFF’, and a sample taken for in-process bioburden testing. The concentrated harvest is further processed immediately or stored at 2-8C until further processing.

25 8.3.2.2 Microfluidization and Nuclease Digestion of Harvest

The concentrated and diafiltered harvest is subjected to shear that breaks open 30 intact HEK293 cells using a microfluidizer. The microfluidizer is sanitized with 1N NaOH for a minimum of 1h after each use, stored in 20% ethyl alcohol until the next run, and rinsed with WFI prior to each use. The crude vector contained in the BPC is attached to the sanitized inlet port of the microfluidizer, and a sterile empty BPC is attached to the

outlet port. Using air pressure generated by the microfluidizer, vector-containing cells are passed through the microfluidizer interaction chamber (a convoluted 300 μ m diameter pathway) to lyse cells and release vector. The microfluidization process is repeated to ensure complete lysis of cells and high recovery of vector. Following the repeat passage 5 of the product intermediate through the microfluidizer, the flowpath is rinsed with ~500mL of AAV8 Benzonase Buffer. The 5L BPC containing microfluidized vector is detached from the outlet port of the microfluidizer. The material is labeled ‘Product Intermediate: Final Microfluidized’, and samples are taken for in-process bioburden testing. The microfluidized product intermediate is further processed immediately or 10 stored at 2-8 °C until further processing. Nucleic acid impurities are removed from AAV8 particles by additional of 100 U/mL Benzonase®. The contents of the BPC are mixed and incubated at room temperature for at least 1 hour. Nuclease digested product intermediate is processed further.

8.3.2.3 Filtration of Microfluidized Intermediate

15 The BPC containing microfluidized and digested product intermediate is connected to a cartridge filter with a gradient pore size starting at 3 μ m going down to 0.45 μ m. The filter is conditioned with AAV Benzonase Buffer. Using the peristaltic pump, the microfluidized product intermediate is passed through the cartridge filter and collected in the BPC connected to the filter outlet port. Sterile AAV8 Benzonase Buffer 20 is pumped through the filter cartridge to rinse the filter. The filtered product intermediate is then connected to a 0.2 μ m final pore size capsule filter conditioned with AAV8 Benzonase Buffer. Using the peristaltic pump, the filtered intermediate is passed through the cartridge filter and collected in the BPC connected to the filter outlet port. A volume of sterile AAV8 Benzonase Buffer is pumped through the filter cartridge to rinse the 25 filter. The material is labeled ‘Product Intermediate: Post MF 0.2 μ m Filtered’, and samples taken for in-process bioburden testing. The material is stored overnight at 2-8°C until further processing. An additional filtration step may be performed on the day of chromatography prior to application of the clarified cell lysate to the chromatography column.

8.3.2.4 Purification by Anion-Exchange Chromatography

The 0.2 μ m filtered Product Intermediate is adjusted for NaCl concentration by adding Dilution Buffer AAV8. The cell lysate containing vector is next purified by ion exchange chromatography using ion exchange resin. The GE Healthcare AKTA Pilot chromatography system is fitted with a BPG column containing approximately 1L resin bed volume. The column is packed using continuous flow conditions and meets established asymmetry specifications. The system is sanitized according to the established procedure and is stored in 20% ethyl alcohol until the next run. Immediately prior to use, the system is equilibrated with sterile AAV8 Wash Buffer. Using aseptic techniques and sterile materials and components, the BPC containing clarified cell lysate is connected to the sanitized sample inlet port, and BPC's containing bioprocessing buffers listed below are connected to sanitized inlet ports on the AKTA Pilot. All connections during the chromatography procedure are performed aseptically. The clarified cell lysate is applied to the column, and rinsed using AAV8 Wash Buffer.

Under these conditions, vector is bound to the column, and impurities are rinsed from the resin. AAV8 particles are eluted from the column by application of AAV8 Elution buffer and collected into a sterile plastic bottle. The material is labeled 'Product Intermediate' and samples are taken for in-process bioburden testing. The material is further processed immediately.

8.3.2.5 Purification by CsCl Gradient Ultracentrifugation

The AAV8 particles purified by anion exchange column chromatography as described above contain empty capsids and other product related impurities. Empty capsids are separated from vector particles by cesium chloride gradient ultracentrifugation. Using aseptic techniques, cesium chloride is added to the vector 'Product Intermediate' with gentle mixing to a final concentration corresponding to a density of 1.35 g/mL. The solution is filtered through a 0.2 μ m filter, distributed into ultracentrifugation tubes, and subjected to ultracentrifugation in a Ti50 rotor for approximately 24h at 15°C. Following centrifugation, the tubes are removed from the rotor, wiped with Septihol, and brought into the BSC. Each tube is clamped in a stand and subjected to focused illumination to assist in visualization of bands. Two major bands are typically observed, the upper band corresponding to empty capsids, and the

lower band corresponding to vector particles. The lower band is recovered from each tube with a sterile needle attached to a sterile syringe. Vector recovered from each tube is combined, and samples are taken for in-process bioburden, endotoxin, and vector titer.

The pooled material is distributed into sterile 50mL polypropylene conical tubes labeled

- 5 'Product Intermediate: Post CsCl Gradient', and stored immediately at -80°C until the next process step.

8.3.2.6 Buffer Exchange by Tangential Flow Filtration

- After testing and release for pooling, batches of vector purified through the CsCl banding process step are combined and subjected to diafiltration by TFF to produce the
- 10 Bulk Vector. Based on titering of samples obtained from individual batches, the volume of the pooled vectors is adjusted using calculated volume of sterile diafiltration buffer. Depending on the available volume, aliquots of the pooled, concentration adjusted vector are subjected to TFF with single use, TFF devices. Devices are sanitized prior to use and then equilibrated in Diafiltration buffer. Once diafiltration process is complete, the vector
- 15 is recovered from the TFF apparatus in a sterile bottle. The material is labeled "Pre-0.2 µm Filtration Bulk". The material is further processed immediately.

8.3.2.7 Formulation and 0.2µm Filtration to Prepare Bulk Vector

- Batches prepared by individual TFF units are pooled together and mixed by gentle swirling in a 500mL sterile bottle. The pooled material is then passed through a
- 20 0.22µm filter to prepare the Bulk Vector. The pooled material is sampled for Bulk Vector and reserved QC testing, and then aliquoted into sterile 50mL polypropylene tubes, labeled 'Bulk Vector', and stored at -80°C until the next step.

8.4. Testing of Vector

- Characterization assays including serotype identity, empty particle content and transgene
- 25 product identity are performed. Descriptions of all the assays appear below.

8.4.1 Genomic Copy (GC) Titer

An optimized quantitative PCR (oqPCR) assay is used to determine genomic copy titer by comparison with a cognate plasmid standard. The oqPCR assay utilizes sequential digestion with DNase I and Proteinase K, followed by qPCR analysis to

measure encapsidated vector genomic copies. DNA detection is accomplished using sequence specific primers targeting the RBG polyA region in combination with a fluorescently tagged probe hybridizing to this same region. Comparison to the plasmid DNA standard curve allows titer determination without the need of any post-PCR sample manipulation. A number of standards, validation samples and controls (for background and DNA contamination) have been introduced into the assay. This assay has been qualified by establishing and defining assay parameters including sensitivity, limit of detection, range of qualification and intra and inter assay precision. An internal AAV8 reference lot was established and used to perform the qualification studies.

10 8.4.2 Potency Assay

An *in vivo* potency assay was designed to detect human LDLR vector-mediated reduction of total cholesterol levels in the serum of a double knock-out (DKO) LDLR-/- Apobec-/- mouse model of HoFH. The basis for the development of the *in vivo* potency assay is described in section 4.3.5.11. To determine the potency of the 15 AAV8.TBG.hLDLR vector, 6-20 week old DKO mice are injected IV (via tail vein) with 5×10^{11} GC/kg per mouse of the vector diluted in PBS. Animals are bled by retroorbital bleeds and serum total cholesterol levels are evaluated before and after vector administration (day 14 and 30) by Antech GLP. Total cholesterol levels in vector-administered animals are expected to decline by 25% - 75% of baseline by day 14 based 20 on previous experience with vector administration at this dose. The 5×10^{11} GC/kg per mouse dose was chosen for the clinical assay based on the anticipated range of total cholesterol reduction which would allow for the evaluation of changes in vector potency over the course of stability testing.

8.4.3 Vector Capsid Identity: AAV Capsid Mass spectrometry of VP3

25 Confirmation of the AAV2/8 serotype of the vector is achieved by an assay based upon analysis of peptides of the VP3 capsid protein by mass spectrometry (MS). The method involves multi-enzyme digestion (trypsin, chymotrypsin and endoproteinase Glu-C) of the VP3 protein band excised from SDS-PAGE gels followed by characterization on a UPLC-MS/MS on a Q-Exactive Orbitrap mass spectrometer to 30 sequence the capsid protein. A tandem mass spectra (MS) method was

developed that allows for identification of certain contaminant proteins and deriving peptide sequence from mass spectra.

8.4.4 Empty to Full Particle Ratio

5 Vector particle profiles using analytical ultracentrifugation (AUC) Sedimentation velocity as measured in an analytical ultracentrifuge are an excellent method for obtaining information about macromolecular structure heterogeneity, difference in confirmation and the state of association or aggregation. Sample was loaded into cells and sedimented at 12000 RPM in a Beckman Coulter Proteomelab XL-I analytical ultracentrifuge. Refractive index scans were recorded every two minutes for 3.3 hours. Data are analyzed by a c(s) model (Sedfit program) and calculated sedimentation coefficients plotted versus normalized c(s) values. A major peak representing the monomeric vector should be observed. The appearance of peaks migrating slower than the major monomeric peak indicate empty/misassembled particles. The sedimentation coefficient of the empty particle peak is established using empty AAV8 particle preparations. Direct quantitation of the major monomeric peak and preceding peaks allow for the determination of the empty to full particle ratio.

10

15

8.4.5 Infectious Titer

The infectious unit (IU) assay is used to determine the productive uptake and replication of vector in RC32 cells (rep2 expressing HeLa cells). Briefly, RC32 cell in 20 96 well plates are co-infected by serial dilutions of vector and a uniform dilution of Ad5 with 12 replicates at each dilution of rAAV. Seventy-two hours after infection the cells are lysed, and qPCR performed to detect rAAV vector amplification over input. An end-point dilution TCID50 calculation (Spearman-Karber) is performed to determine a 25 replicative titer expressed as IU/ml. Since “infectivity” values are dependent on particles coming into contact with cells, receptor binding, internalization, transport to the nucleus and genome replication, they are influenced by assay geometry and the presence of appropriate receptors and post-binding pathways in the cell line used. Receptors and post-binding pathways critical for AAV vector import are usually 30 maintained in immortalized cell lines and thus infectivity assay titers are not an absolute measure of the number of “infectious” particles present. However, the ratio

of encapsidated GC to “infectious units” (described as GC/IU ratio) can be used as a measure of product consistency from lot to lot. The variability of this *in vitro* bioassay is high (30-60 % CV) likely due to the low infectivity of AAV8 vectors *in vitro*.

8.4.6 Transgene Expression Assay

5 Transgene expression is evaluated in livers harvested from LDLR-/- Apobec-/- mice that receive 1×10^{10} GC (5×10^{11} GC/kg) of the AAV8.TBG.hLDLR vector. Animals dosed 30 days earlier with vector are euthanized, livers harvested and homogenized in RIPA buffer. 25-100 ug of total liver homogenate is electrophoresed on a 4-12% denaturing SDS-PAGE gel and probed using antibodies against human LDLR to 10 determine transgene expression. Animals that receive no vector or an irrelevant vector is used as controls for the assay. Animals treated with vector are expected to show a band migrating anywhere from 90- 160 kDa due to post-translational modifications. Relative expression levels are determined by quantifying the integrated intensity of the bands.

(Sequence Listing Free Text)

15 The following information is provided for sequences containing free text under numeric identifier <223>.

SEQ ID NO: (containing free text)	Free text under <223>
1	<p><221> misc_feature <222> (188)..(2770) <223> LDLR isoform 1 encoded by full-length CDS, 188-2770; other variants encoded by alternative splice variants missing an exon; most common variant missing fourth exon or twelfth exon</p> <p><220> <221> misc_signal <222> (188)..(250)</p> <p><220> <221> misc_feature <222> (251)..(2767) <223> Mature protein of isoform 1</p>

SEQ ID NO: (containing free text)	Free text under <223>
4	<p><223> Artificial hLDLR</p> <p><220></p> <p><221> misc_feature</p> <p><222> (1)..(2583)</p> <p><223> Artificial hLDLR coding sequence</p>
5	<p><223> Adeno-associated virus 8 vp1 capsid protein</p>
6	<p><223> pAAV.TBG.PI.hLDLRco.RGB</p> <p><220></p> <p><221> repeat_region</p> <p><222> (1)..(130)</p> <p><223> 5' ITR</p> <p><220></p> <p><221> enhancer</p> <p><222> (221)..(320)</p> <p><223> Alpha mic/bik</p> <p><220></p> <p><221> enhancer</p> <p><222> (327)..(426)</p> <p><223> Alpha mic/bik</p> <p><220></p> <p><221> promoter</p> <p><222> (442)..(901)</p> <p><223> TBG</p> <p><220></p> <p><221> TATA_signal</p> <p><222> (885)..(888)</p> <p><223> TATA</p> <p><220></p> <p><221> CDS</p> <p><222> (969)..(3551)</p> <p><223> codon optimized hLDLR</p> <p><220></p> <p><221> polyA_signal</p>

SEQ ID NO: (containing free text)	Free text under <223>
	<222> (3603)..(3729) <223> Rabbit globin poly A <220> <221> repeat_region <222> (3818)..(3947) <223> 3' ITR <220> <221> rep_origin <222> (4124)..(4579) <223> f1 ori <220> <221> misc_feature <222> (4710)..(5567) <223> AP(R) <220> <221> rep_origin <222> (5741)..(6329) <223> Origin of replication
7	<223> Synthetic Construct

All publications cited in this specification are incorporated herein by reference in their entirety, as are US Provisional Patent Application No. 62/269,440, filed December 18, 2015 and US Provisional Patent Application No. 62/266,383, filed December 11,

- 5 2015 Similarly, the SEQ ID NOs which are referenced herein and which appear in the appended Sequence Listing are incorporated by reference. While the invention has been described with reference to particular embodiments, it will be appreciated that modifications can be made without departing from the spirit of the invention. Such modifications are intended to fall within the scope of the appended claims.

CLAIMS:

1. A pharmaceutical composition suitable for peripheral vein infusion in human subjects, comprising a suspension of replication deficient recombinant adeno-associated virus (rAAV) in a formulation buffer, wherein:
 - (a) the rAAV comprises a vector genome comprising AAV ITRs and a nucleic acid sequence encodes a human LDL receptor (hLDLR) operably linked to a liver specific promoter, said vector genome packaged in an AAV8 capsid;
 - (b) the formulation buffer comprises an aqueous solution of phosphate buffered saline and a Poloxamer; and
 - (c) one or more of:
 - (i) the rAAV Genome Copy (GC) titer is at least 1×10^{13} GC/ml;
 - (ii) the rAAV is at least about 95% free of empty capsids as determined by qPCR or ddPCR;
 - (iii) the Empty:Full particle ratio is between 0:4 to 1:4; and
 - (iv) a dose of 5×10^{11} GC/kg of the rAAV suspension decreases baseline cholesterol levels in a double knockout (DKO) LDLR-/Apobec-/ mouse model of Homozygous Familial Hypercholesterolemia (HoFH) by 25% to 75%.
2. The composition according to claim 1, wherein the rAAV is *AAV8.TBG.hLDLR*.
3. The composition according to claim 1 or 2, wherein the formulation buffer is 180mM NaCl, 10mM Na phosphate, 0.001% Poloxamer 188, pH 7.3.
4. A pharmaceutical composition according to any one of claims 1 to 3 suitable for use in treating a human subject diagnosed with Familial Hypercholesterolemia (FH).
5. The composition according to any one of claims 1 to 4, wherein the composition is administrable to the human subject via a peripheral vein by infusion of a suspension of replication deficient recombinant adeno-associated virus (rAAV) at a dose of (a) at least about 5×10^{11} Genome Copies/kg or (b) 2.5×10^{12} Genome Copy (GC)/kg to 7.5×10^{12}

Genome Copy (GC)/kg body weight of the human subject as determined by oqPCR or ddPCR

6. The composition according to claim 4 or 5, wherein the rAAV is AAV8.TBG.hLDLR.

7. The composition according to any one of claims 4 to 6, wherein the formulation buffer is 180mM NaCl, 10mM Na phosphate, 0.001% Poloxamer 188, pH 7.3.

8. The composition according to any one of claims 4 to 7, wherein the subject has been diagnosed with Homozygous FH (HoFH).

9. The composition according to any one of claims 4 to 7, wherein the subject has been diagnosed with Heterozygous FH (HeFH).

10. A pharmaceutical composition according to any one of claims 1 to 3 suitable for use in reducing one or more of: LDL-cholesterol, total cholesterol, and/or fasting triglycerides in a human subject, and/or modifying fractional catabolic rate (FCR) of LDL apolipoprotein B (apoB) from baseline to a selected time point after rAAV administration.

11. The pharmaceutical composition according to claim 10, wherein the composition is administrable to the human subject via a peripheral vein by infusion of a suspension of replication deficient recombinant adeno-associated virus (rAAV) at a dose of (a) at least about 5×10^{11} Genome Copies/kg or (b) 2.5×10^{12} Genome Copy (GC)/kg to 7.5×10^{12} Genome Copy (GC)/kg body weight of the human subject as determined by oqPCR or ddPCR.

12. The pharmaceutical composition according to claim 11, wherein said human subject is co-treated with one or more of a PCSK9 inhibitors; a statin; niacin; ezetimibe, or bile acid sequestrants.

13. A method of treating a human subject diagnosed with Familial Hypercholesterolemia (FH), comprising administering to the human subject via a peripheral vein by infusion of a suspension of replication deficient recombinant adeno-associated virus (rAAV) at a dose of (a) at least about 5×10^{11} Genome Copies/kg or (b) 2.5×10^{12} Genome Copy (GC)/kg to 7.5×10^{12} Genome Copy (GC)/kg body weight of the human subject as determined by oqPCR or ddPCR, wherein:

- (a) the rAAV comprises a vector genome comprising AAV ITRs and a nucleic acid sequence encodes a wild-type human LDL receptor (hLDLR) operably linked to a liver specific promoter, said vector genome packaged in an AAV8 capsid, and
- (b) the rAAV suspension has a potency such that a dose of 5×10^{11} GC/Kg administered to a double knockout LDLR-/-Apobec-/- mouse model of HoFH (DKO mouse) decreases baseline cholesterol levels in the DKO mouse by 25% to 75%; and
- (c) one or more of:
 - (i) the rAAV is at least about 95% free of empty capsids as determined by oqPCR or ddPCR; and
 - (ii) the rAAV Empty:Full particle ratio is between 0:4 to 1:4.

14. The method according to claim 13, wherein the rAAV is *AAV8.TBG.hLDLR*.

15. The method according to claim 13, wherein the formulation buffer is 180mM NaCl, 10mM Na phosphate, 0.001% Poloxamer 188, pH 7.3.

16. The method according to any one of claims 13 to 15, wherein the subject has been diagnosed with Homozygous FH (HoFH).

17. The method according to any one of claims 13 to 15, wherein the subject has been diagnosed with Heterozygous FH (HeFH).

18. A method of reducing one or more of: LDL-cholesterol, total cholesterol, and/or fasting triglycerides in a subject, and/or modifying fractional catabolic rate (FCR) of

LDL apolipoprotein B (apoB) from baseline to a selected time point after rAAV administration, said method comprising administering to the human subject via a peripheral vein by infusion of a suspension of replication deficient recombinant adeno-associated virus (rAAV) at a dose of (a) at least about 5×10^{11} Genome Copies/kg or (b) 2.5×10^{12} Genome Copy (GC)/kg to 7.5×10^{12} Genome Copy (GC)/kg body weight of the human subject as determined by oqPCR or ddPCR.

19. The method according to claim 18, wherein said human subject is co-treated with one or more of a PCSK9 inhibitors; a statin; niacin; ezetimibe, or bile acid sequestrants.

1/14

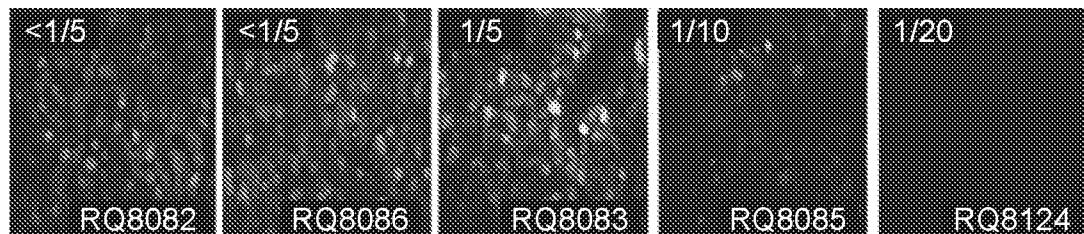


FIG. 1A FIG. 1B FIG. 1C FIG. 1D FIG. 1E

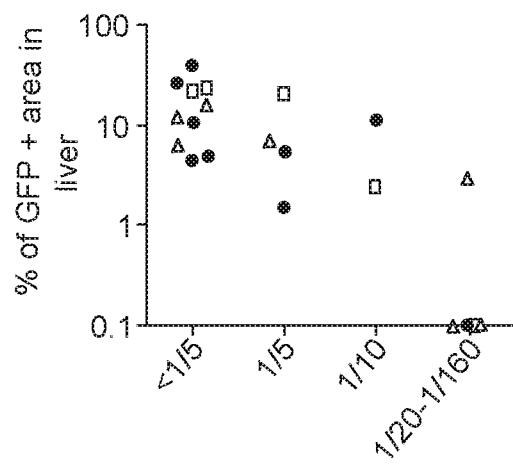


FIG. 1F

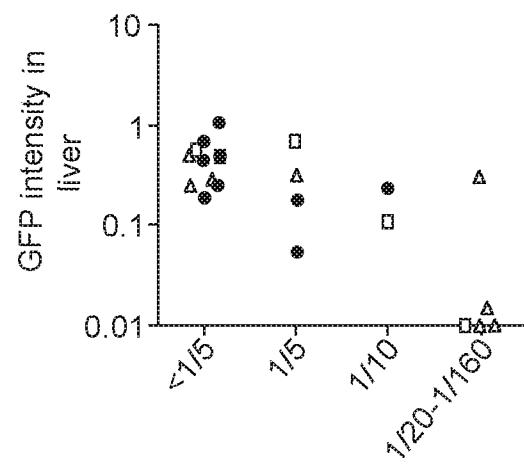


FIG. 1G

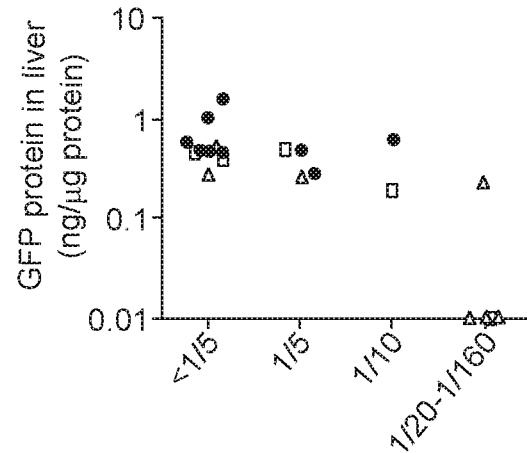


FIG. 1H

2/14

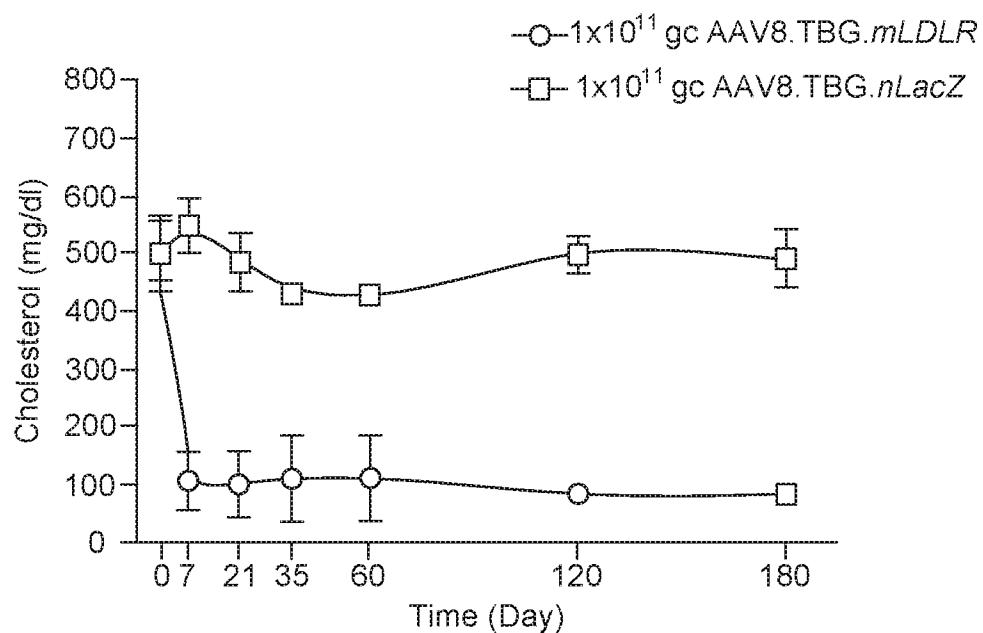


FIG. 2

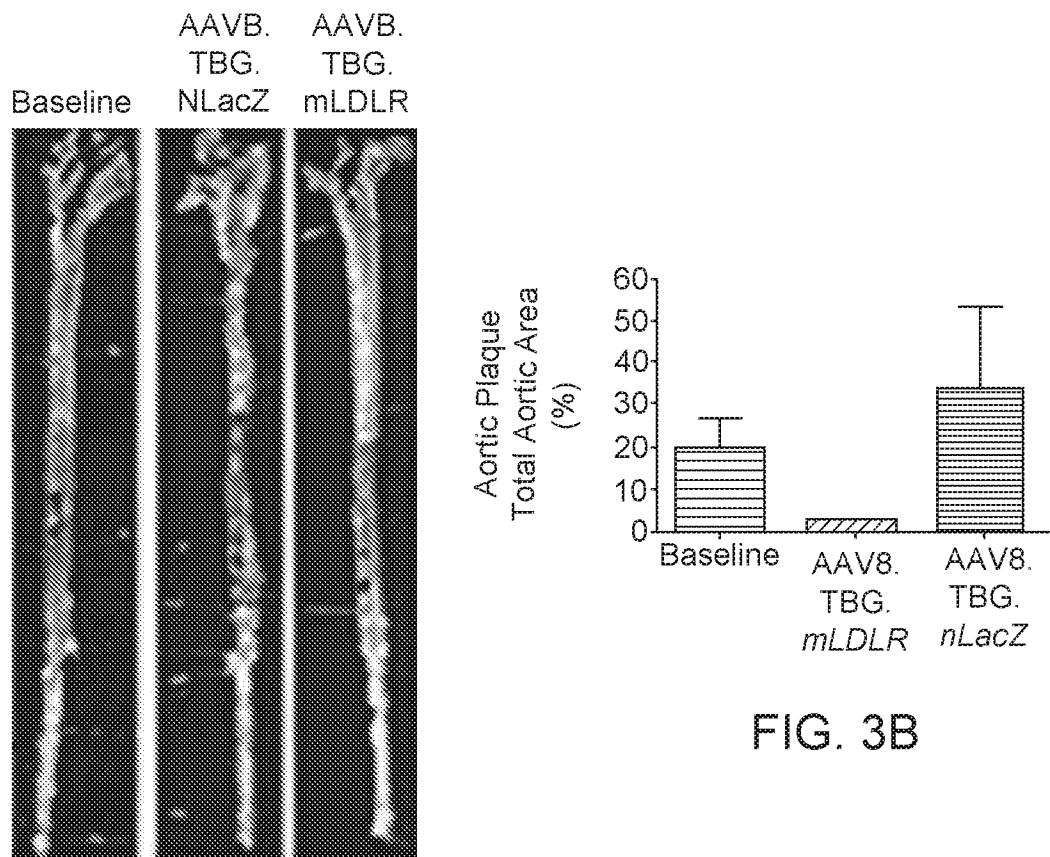


FIG. 3A

FIG. 3B

3/14

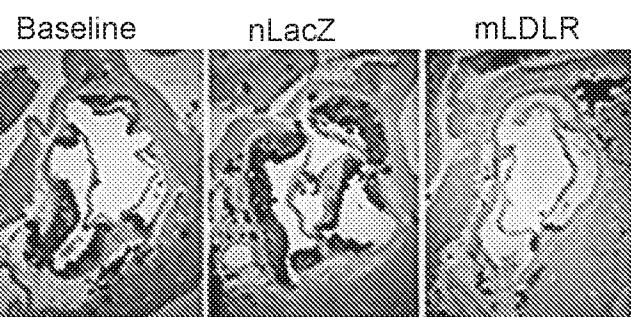


FIG. 3C FIG. 3D FIG. 3E

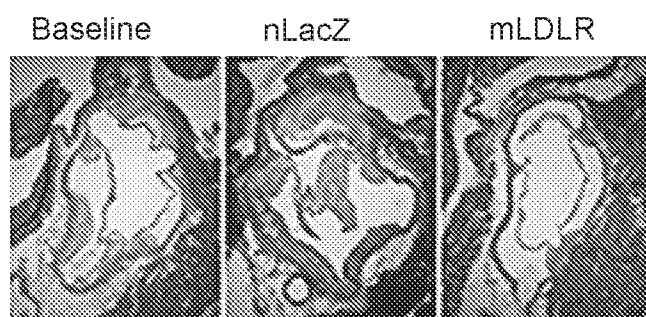


FIG. 3F FIG. 3G FIG. 3H

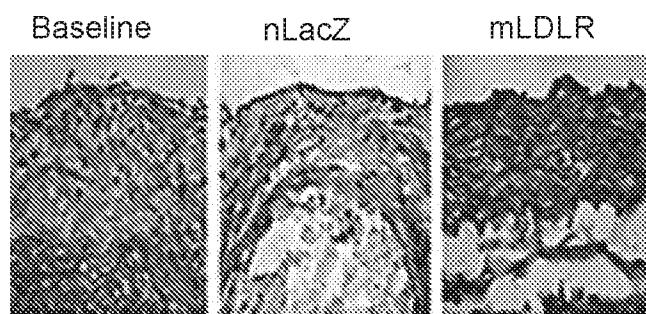


FIG. 3I FIG. 3J FIG. 3K

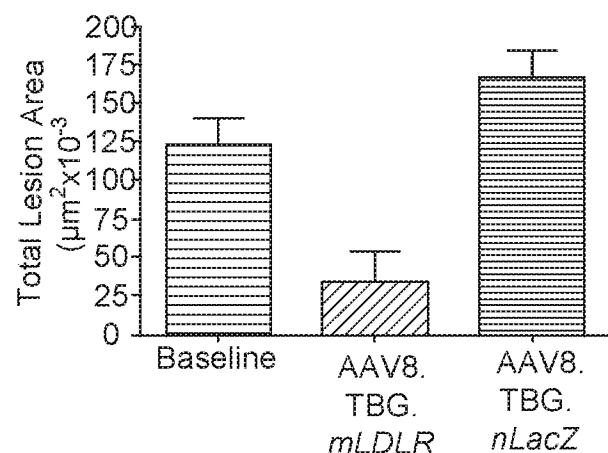


FIG. 3L

4/14

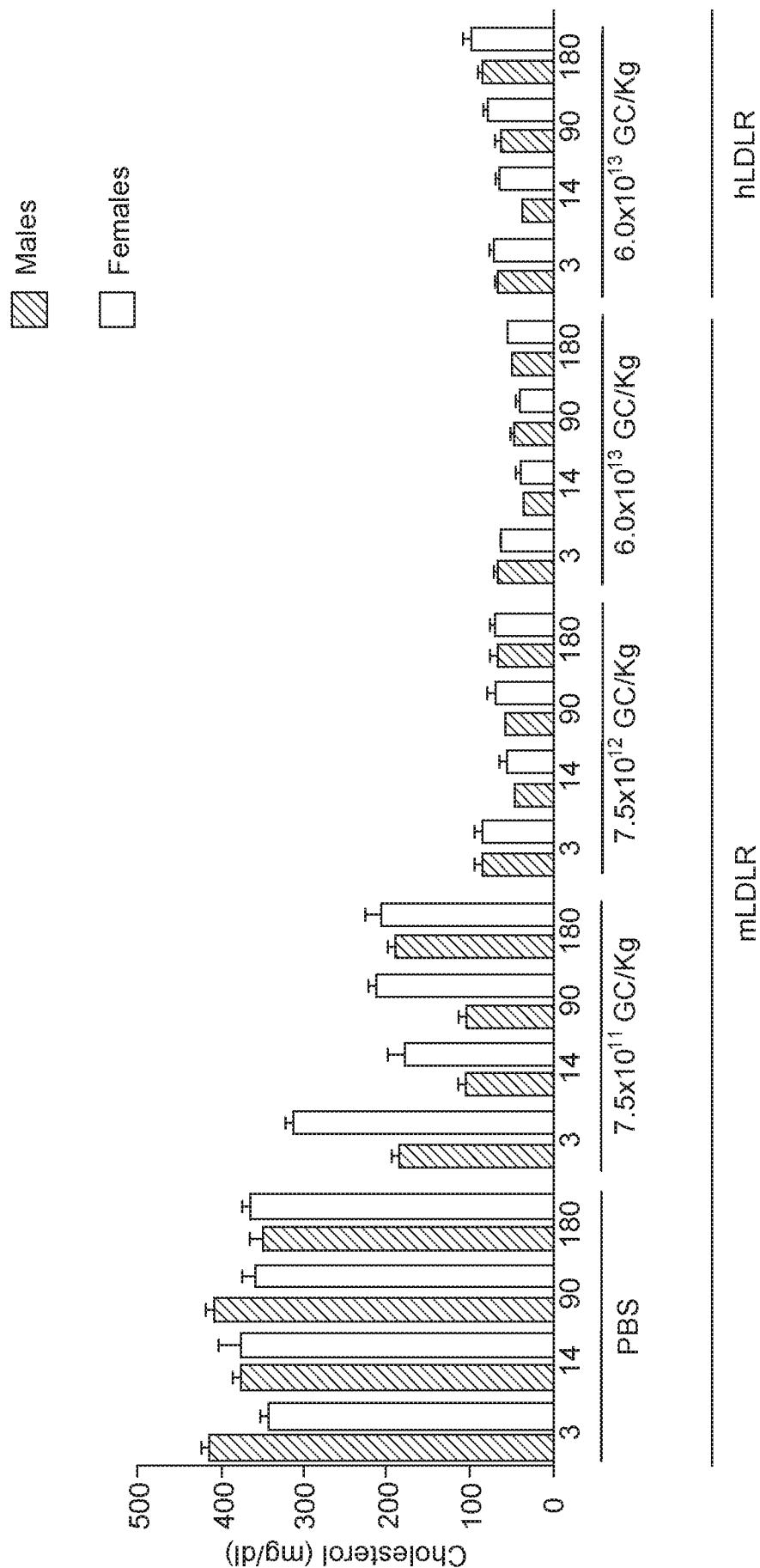


FIG. 4

5/14

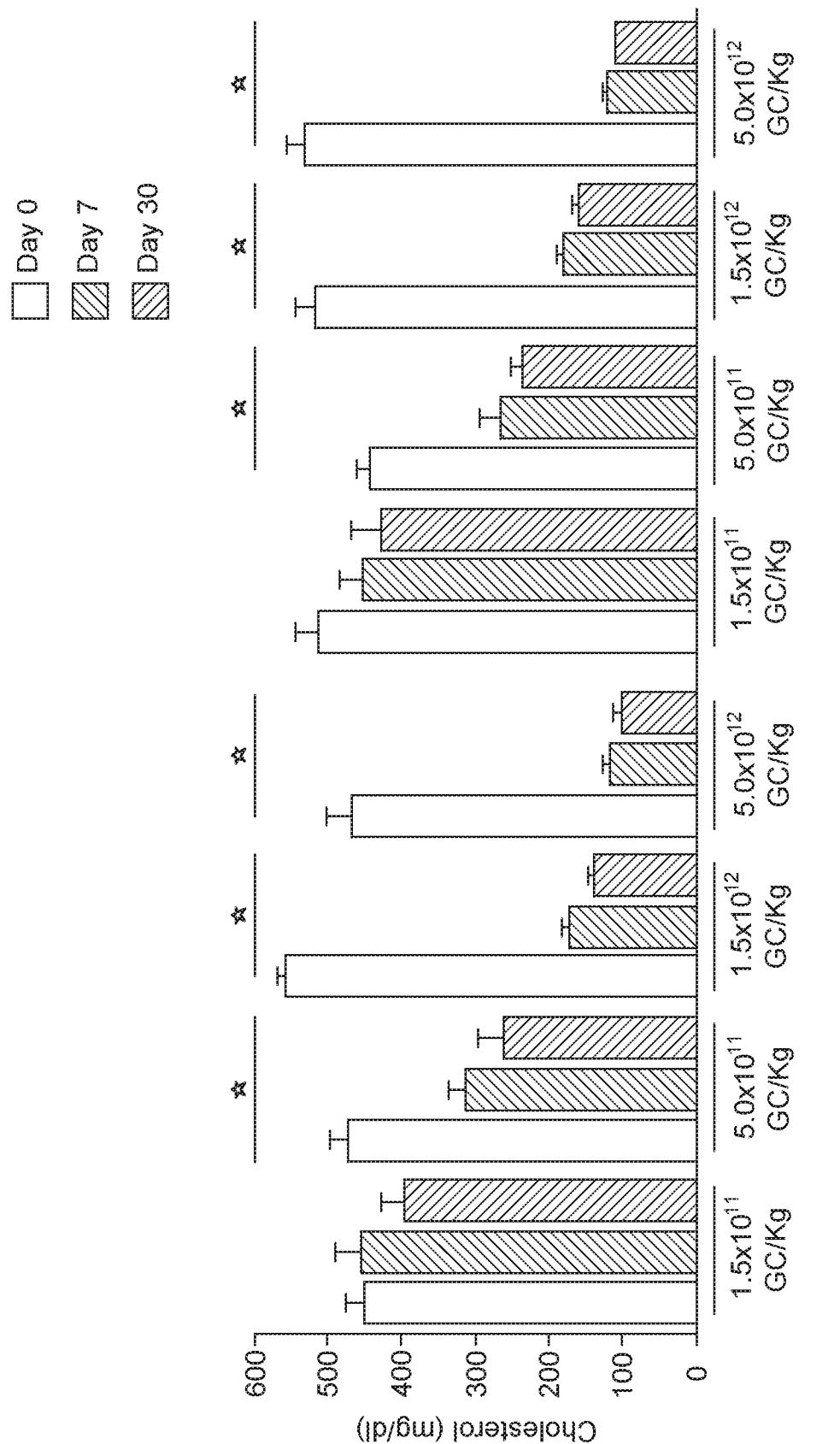


FIG. 5

6/14

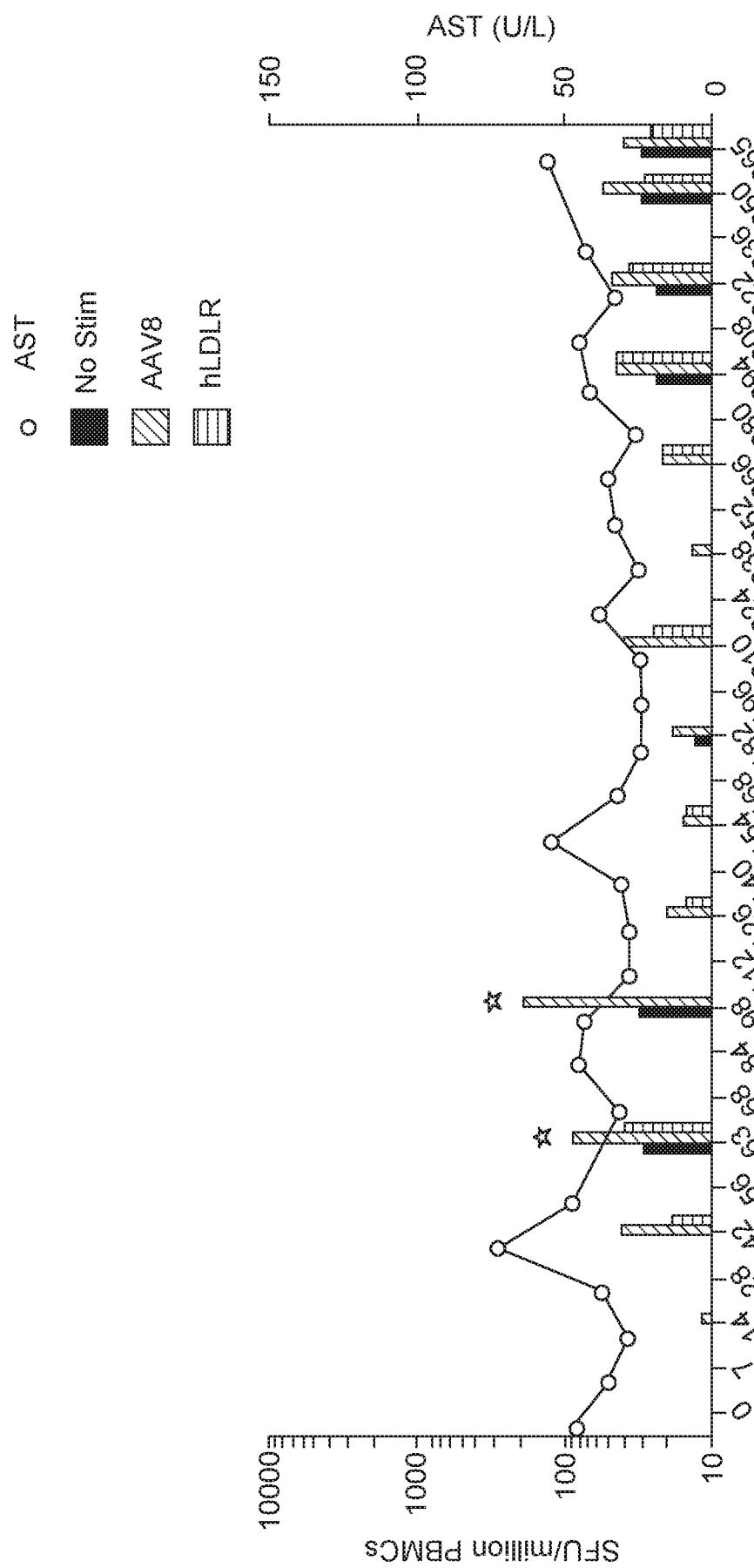


FIG. 6A

7/14

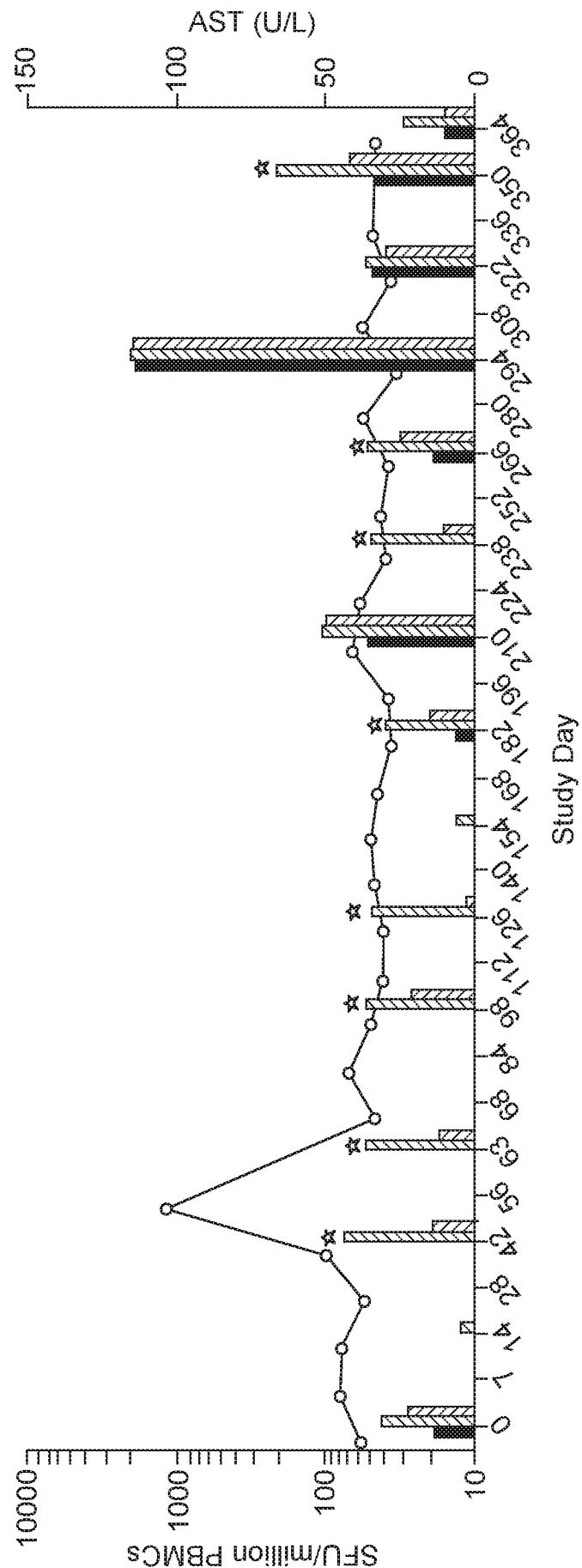


FIG. 6B

FIG. 6C

9/14

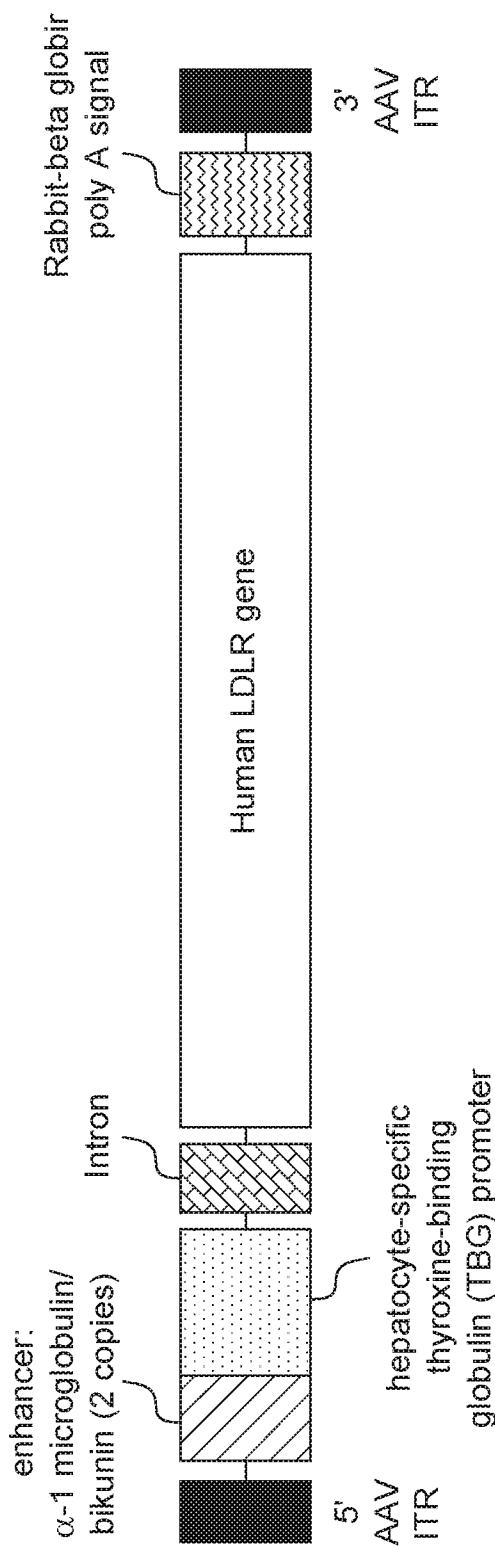


FIG. 7

10/14

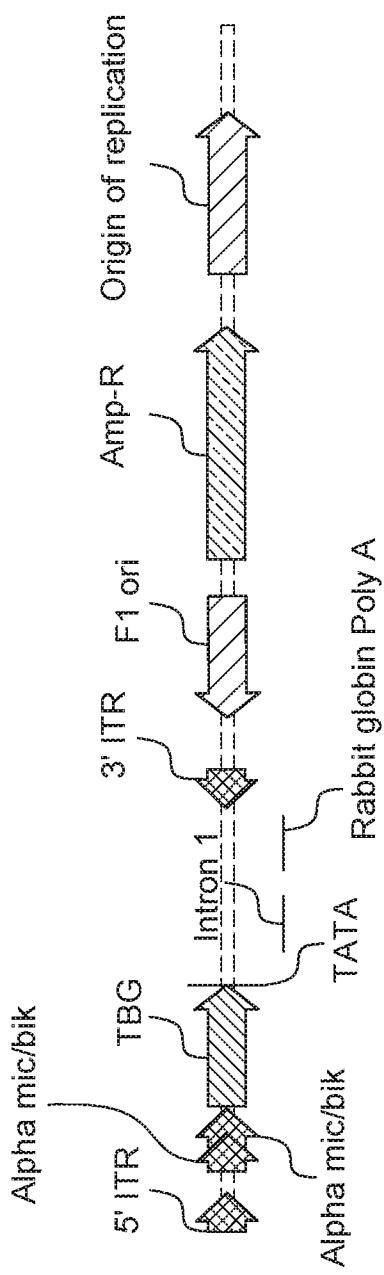


FIG. 8A

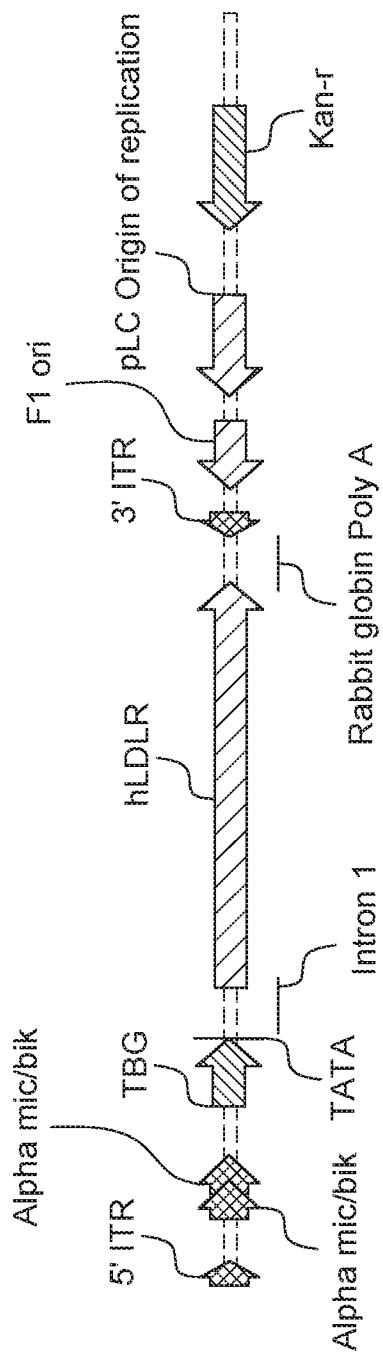


FIG. 8B

11/14

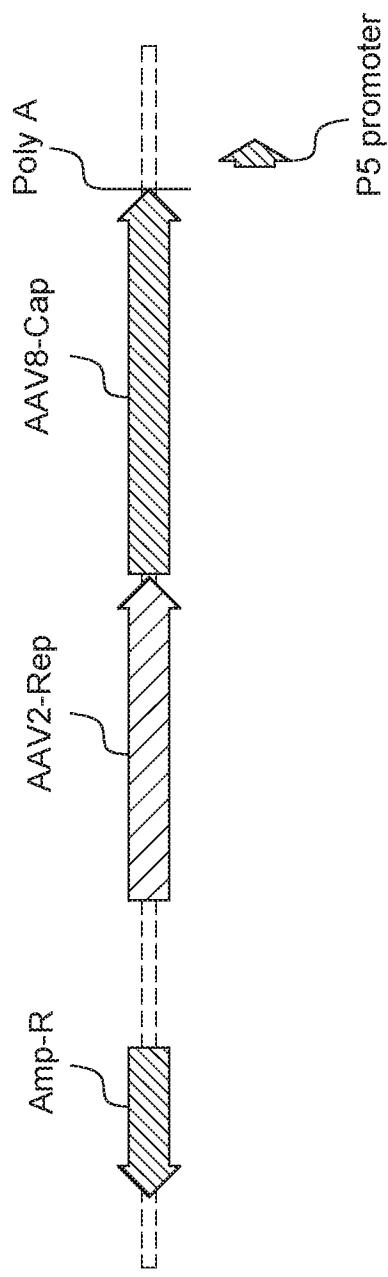


FIG. 9A

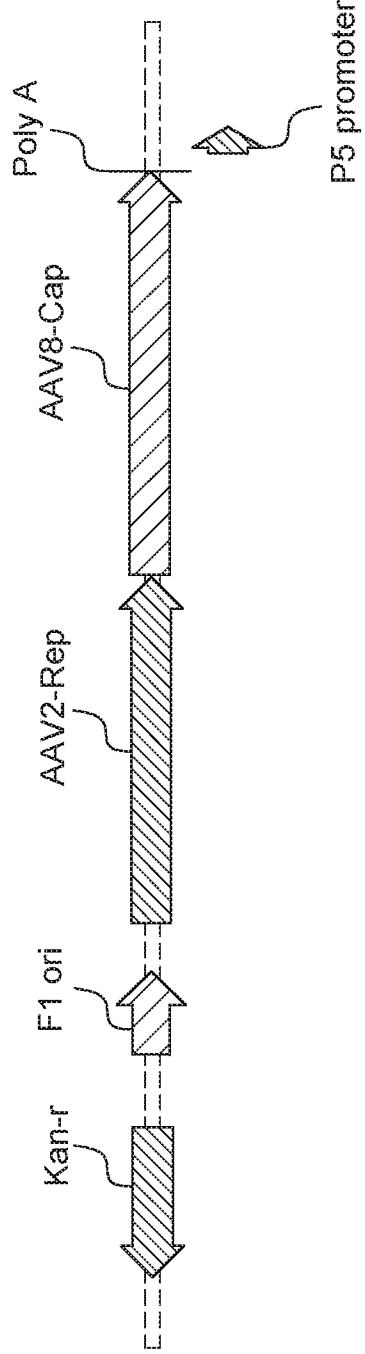
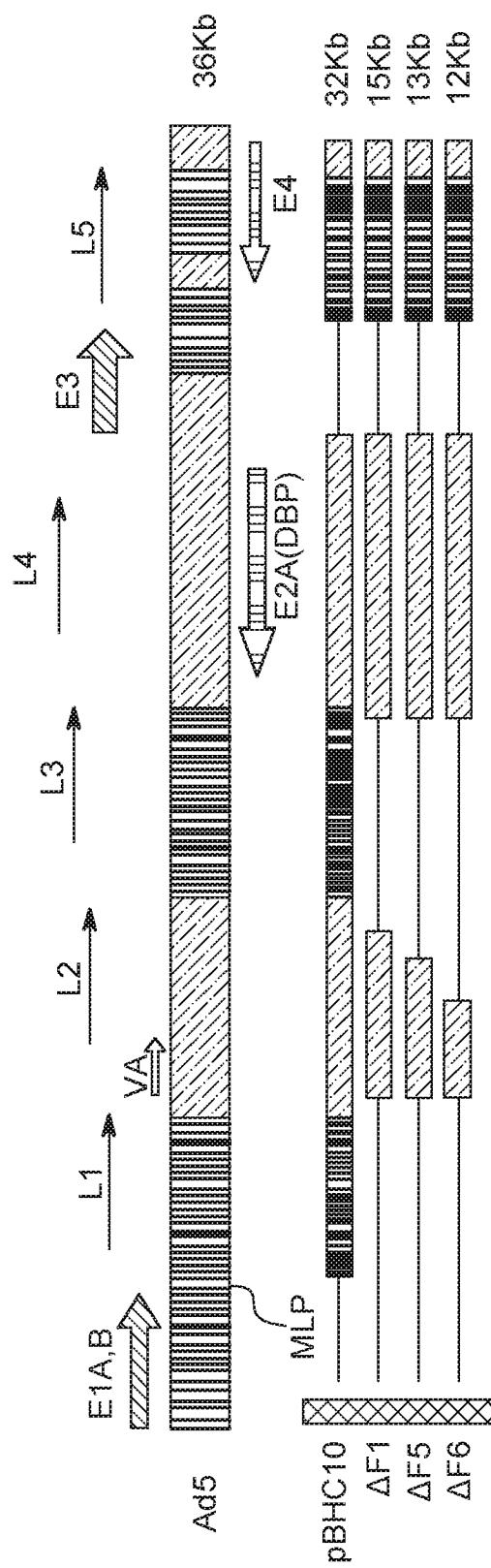



FIG. 9B

12/14

$\Delta F1 = pBHC10$ minus $MspI$ to $Sall$, and $PmeI/VspI$ fragments

$\Delta F5 = \Delta F1$ minus $NRuI/NruI$ (2.3Kb) fragment

$\Delta F6 = \Delta F5$ minus $RsrII/NruI$ (0.5Kb) fragment

FIG. 10A

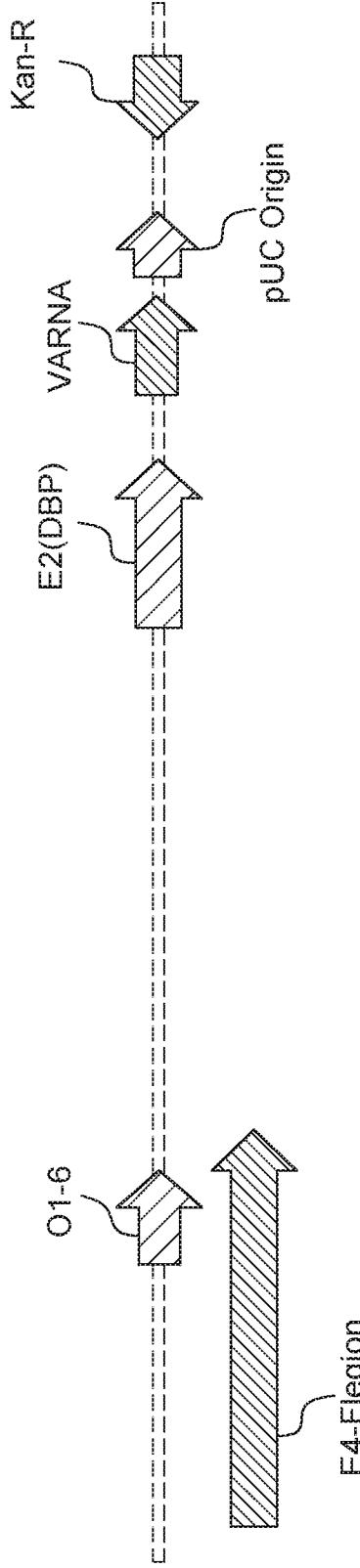


FIG. 10B

13/14

Vector Generation Process (upstream process)**Brief Description:**

1. Initiation of HEK293 from a Cell Bank vial into T75 flask
↓
2. Passage of cells into ~2T225 flasks
↓
3. Passage of cells into ~10T225 flasks
↓
4. Seeding of HEK293 cells in roller bottles
↓
5. Passage of cells into ~100 roller bottles
↓
6. Transfection of HEK203 cells for vector generation
↓
7. Post- transfection medium exchange to serum free medium
↓
8. Harvest of vector-containing cells and culture media
(CRUDE CELL HARVEST)

FIG. 11A

14/14

Vector Purification Process (downstream process)**Brief Description:**

9. AAV8 vector harvest concentration and diafiltration by TFF

10. Microfluidized and nuclease digestion of harvest

11. Filtration of microfluidized intermediate (final 0.2m)

12. AAV8 vector purification by ion exchange chromatography

13. AAV8 vector purification by gradient ultracentrifugation

14. Buffer exchange by tangential flow to prepare Bulk Vector

15. Formulation and 0.2 m filtration to prepare Bulk Vector

Vector Purification Process (downstream process)**Brief Description:**

16. Final Vector Product Fill and Finish

FIG. 11B

UPN-16-7717PCT_ST25. txt
SEQUENCE LISTING

<110> The Trustees of the University of Pennsylvania
<120> GENE THERAPY FOR TREATING FAMILIAL HYPERCHOLESTEROLEMIA
<130> UPN-16-7717PCT
<150> US 62/269, 440
<151> 2015-12-18
<150> US 62/266, 383
<151> 2015-12-11
<160> 7
<170> PatentIn version 3.5
<210> 1
<211> 5292
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (1).. (254)

<220>
<221> misc_feature
<222> (188).. (2770)
<223> LDR isoform 1 encoded by full-length CDS, 188-2770; other variants encoded by alternative splice variants missing an exon; most common variant missing fourth exon or twelfth exon

<220>
<221> misc_signal
<222> (188).. (250)

<220>
<221> misc_feature
<222> (251).. (2767)
<223> Mature protein of isoform 1

<220>
<221> exon
<222> (255).. (377)

<220>
<221> exon
<222> (378).. (500)

<220>
<221> exon
<222> (501).. (881)

<220>
<221> exon
<222> (882).. (1004)

<220>
<221> exon
<222> (1005).. (1127)

<220>
<221> exon
<222> (1128).. (1247)

UPN-16-7717PCT_ST25. txt

<220>
<221> exon
<222> (1248).. (1373)

<220>
<221> exon
<222> (1374).. (1545)

<220>
<221> exon
<222> (1546).. (1773)

<220>
<221> exon
<222> (1774).. (1892)

<220>
<221> exon
<222> (1893).. (2032)

<220>
<221> exon
<222> (2033).. (2174)

<220>
<221> exon
<222> (2175).. (2327)

<220>
<221> exon
<222> (2328).. (2498)

<220>
<221> pol yA_si gnal
<222> (5252).. (5257)

<220>
<221> pol yA_si te
<222> (5284).. (5284)

<400> 1		
ctc ttg cag tga ggt gaa gac att tga aaa tca ccc cac tgc aaa ctc		
Leu Leu Glu 5	Leu Glu Asp 10	Leu His Cys Lys Leu
ctc ccc ctg cta gaa acc tca cat tga aat gct gta aat gac gtg ggc		
Leu Pro Leu Glu 15	Leu Thr Ser His Asn 20	Leu Val Asn Asp Val Glu 25
ccc gag tgc aat cgc ggg aag cca ggg ttt cca gct agg aca cag cag		
Pro Glu Cys Asn Arg Glu 30	Lys Pro Glu Phe 40	Pro Ala Arg Thr Glu Glu 45
gtc gtg atc cgg gtc ggg aca ctg cct ggc aga ggc tgc gag cat ggg		
Val Val Ile Arg Val Glu 50	Val Thr Leu Pro Glu 55	Val Cys Glu His Glu 60
gcc ctg ggg ctg gaa att gcg ctg gac cgt cgc ctt gct cct cgc cgc		
Ala Leu Glu 65	Ile Ala Leu Asp 70	Ala Arg Leu Ala Pro Arg Arg 75
ggc ggg gac tgc ag t ggg cga cag atg cga aag aaa cga gtt cca gtg		
Glu Glu Asp Cys Ser 80	Glu Arg Glu Met Arg 85	Arg Lys Lys Arg Val Pro Val 90
cca aga cgg gaa atg cat ctc cta caa gtg ggt ctg cga tgg cag cgc		
Pro Arg Arg Glu Met His 95	Leu Leu Glu Val Glu 100	Leu Arg Trp Glu Arg 105

UPN-16-7717PCT_ST25. txt

tga	gtg	cca	gga	tgg	ctc	tga	tga	gtc	cca	gga	gac	gtg	ct	t	gtc	tgt		384
Val	Pro	Gly	Trp	Leu			Val	Pro	Gly	Asp	Val	Leu		Val	Cys			
110					115						120							
cac	ctg	caa	atc	cg	gga	ctt	cag	ctg	tgg	ggg	ccg	tgt	caa	ccg	ctg		432	
His	Leu	Gln	Ile	Arg	Gly	Leu	Gln	Leu	Trp	Gly	Pro	Cys	Gln	Pro	Leu			
125						130					135							
cat	tcc	tca	gtt	ctg	gag	gtg	cga	tgg	cca	agt	gga	ctg	cga	caa	ccg		480	
His	Ser	Ser	Val	Leu	Glu	Val	Arg	Trp	Pro	Ser	Gly	Leu	Arg	Gln	Arg			
140					145					150								
ctc	aga	cga	gca	agg	ctg	tc	c	ccc	caa	gac	gtg	ctc	cca	gga	cga	gtt	528	
Leu	Arg	Arg	Ala	Arg	Leu	Ser	Pro	Gln	Asp	Val	Leu	Pro	Gly	Arg	Val			
155						160				165					170			
tcg	ctg	cca	cga	tgg	gaa	gtg	cat	ctc	tcg	gca	gtt	cgt	ctg	tga	ctc		576	
Ser	Leu	Pro	Arg	Trp	Glu	Val	His	Leu	Ser	Ala	Val	Arg	Leu		Leu			
175						180					185							
aga	ccg	gga	ctg	ctt	gga	cg	ctc	aga	cga	ggc	ctc	ctg	ccc	gg	gct		624	
Arg	Pro	Gly	Leu	Leu	Gly	Arg	Leu	Arg	Arg	Gly	Leu	Leu	Pro	Gly	Ala			
190						195					200							
cac	ctg	tgg	tcc	cgc	cag	ctt	cca	gtg	caa	cag	ctc	cac	ctg	cat	ccc		672	
His	Leu	Trp	Ser	Arg	Gln	Leu	Pro	Val	Gln	Gln	Leu	His	Leu	His	Pro			
205						210					215							
cca	gct	gtg	ggc	ctg	cga	caa	cga	ccc	cga	ctg	cga	aga	tgg	ctc	gga		720	
Pro	Ala	Val	Gly	Leu	Arg	Gln	Arg	Pro	Arg	Leu	Arg	Arg	Trp	Leu	Gly			
220						225					230							
tga	gtg	gcc	gca	g	ctg	tg	gg	tct	tta	cgt	gtt	cca	agg	gga	cag		768	
Val	Ala	Ala	Ala	Leu			Gly	Ser	Leu	Arg	Val	Pro	Arg	Gly	Gln			
235						240					245							
tag	ccc	ctg	ctc	ggc	ctt	cga	gtt	cca	ctg	cct	aag	tgg	cga	gtg	cat		816	
Pro	Leu	Leu	Gly	Leu	Arg	Val		Pro	Leu	Pro	Lys	Trp	Arg	Val	His			
250						255					260							
cca	ctc	cag	ctg	g	ctg	tg	gg	tgg	ccc	cga	ctg	caa	gga	caa	atc		864	
Pro	Leu	Gln	Leu	Ala	Leu			Trp	Trp	Pro	Arg	Leu	Gln	Gly	Gln	Ile		
265						270					275							
tga	cga	gga	aaa	ctg	cg	c	tgt	ggc	cac	ctg	tcg	ccc	tga	cga	att	cca		912
Arg	Gly	Lys	Leu	Arg			Cys	Gly	His	Leu	Ser	Pro		Arg	Ile	Pro		
280						285					290							
gtg	ctc	tga	tgg	aaa	ctg	cat	cca	tgg	cag	ccg	gca	gtg	tga	ccg	gga		960	
Val	Leu	Trp	Lys	Leu	His	Pro	Trp	Gln	Pro	Ala	Val		Pro	Gly				
295						300					305							
ata	tga	ctg	caa	gga	cat	gag	cga	tga	agt	tgg	ctg	cgt	taa	tg	t	gac		1008
Ile	Leu	Gln	Gly	His	Gl	u	Arg		Ser	Trp	Leu	Arg		Cys		Asp		
310																		
act	ctg	cga	ggg	acc	caa	caa	gtt	caa	gtg	tca	cag	cg	ccg	cga	atg	cat		1056
Thr	Leu	Arg	Gly	Thr	Gln	Gln	Val	Gln	Val	Ser	Gln	Arg	Arg	Arg	Met	His		
320						325					330							
cac	cct	gga	caa	agt	ctg	caa	cat	ggc	tag	aga	ctg	ccg	gga	ctg	gtc		1104	
His	Pro	Gly	Gln	Ser	Leu	Gln	Hi	g	Arg		Leu	Pro	Gly	Leu	Val			
335						340					345							
aga	tga	acc	cat	caa	aga	gtg	cg	g	gac	caa	cga	atg	ctt	gga	caa	caa		1152
Arg		Thr	Hi	s	Gln	Arg	Val	Arg	Asp	Gln	Arg	Met	Leu	Gly	Gln	Gln		
350						355					360							

UPN-16-7717PCT_ST25. txt

cg ^g	cg ^g	ct ^g	tt ^c	cc ^a	cg ^t	ct ^g	ca ^a	t ^g a	c ^c t	ta ^a	ga ^t	cg ^g	ct ^a	cg ^a	gt ^g		1200
Arg	Arg	Leu	Phe	Pro	Arg	Leu	Gl ⁿ		Pro		Asp	Arg	Leu	Arg	Val		
365		370									375						
c ^c t	gt ^g	cc ^c	cg ^a	cg ^g	ct ^t	cc ^a	g ^c t	gg ^t	gg ^c	cc ^a	g ^c g	a ^a g	at ^g	cg ^a	ag ^a	a	1248
Pro	Val	Pro	Arg	Arg	Leu	Pro	Al ^a	Gl ^y	Gl ^y	Pro	Al ^a	Lys	Met	Arg	Arg		
380			385								390						
ta ^t	cg ^a	t ^g a	gt ^g	t ^c a	g ^g a	t ^c c	cg ^a	ca ^c	ct ^g	ca ^g	g ^c t	ct ^g	cg ^t	ga ^a		1296	
Tyr	Arg		Val	Ser	Gl ^y	Ser	Arg	Hi ^s	Leu	Gl ⁿ	Pro	Al ^a	Leu	Arg	Gl ^u		
395				400						405							
c ^c t	gg ^a	gg ^g	t ^g g	ct ^a	ca ^a	gt ^g	cc ^a	gt ^g	t ^g a	gg ^a	ag ^g	ct ^t	cc ^a	g ^c t	gg ^a		1344
Pro	Gl ^y	Gl ^y	Trp	Leu	Gl ⁿ	Val	Pro	Val		Gl ^y	Arg	Leu	Pro	Al ^a	Gl ^y		
410				415						420							
cc ^c	cc ^a	ca ^c	ga ^a	gg ^c	ct ^g	ca ^a	gg ^c	t ^g t	gg ^g	g	ct ^c	ca ^t	cg ^c	ct ^a	c ^c t	ct ^t	1392
Pro	Pro	Hi ^s	Gl ^u	Gl ^y	Leu	Gl ⁿ	Gl ^y	Cys	Gl ^y	Leu	Hi ^s	Arg	Leu	Pro	Leu		
425				430						435					440		
ct ^t	ca ^c	ca ^a	cc ^g	g ^c a	cg ^a	gg ^t	ca ^g	ga ^a	ga ^t	ga ^c	g ^c t	gg ^a	cc ^g	ga ^g	cg ^a		1440
Leu	Hi ^s	Gl ⁿ	Pro	Al ^a	Arg	Gl ^y	Gl ⁿ	Gl ^u	Asp	Asp	Al ^a	Gl ^y	Pro	Gl ^u	Arg		
				445					450					455			
gt ^a	ca ^c	ca ^g	c ^c t	ca ^t	cc ^c	ca ^a	c ^c t	ga ^g	ga ^a	cg ^t	gg ^t	cg ^c	t ^c t	gg ^a	ca ^c		1488
Val	Hi ^s	Gl ⁿ	Pro	Hi ^s	Pro	Gl ⁿ	Pro	Gl ^u	Gl ^u	Arg	Gl ^y	Arg	Ser	Gl ^y	Hi ^s		
				460				465					470				
gg ^a	gg ^t	gg ^c	ca ^g	ca ^a	ta ^g	aa ^t	ct ^a	ct ^g	tg ^a	c ^c t	gt ^c	cc ^a	ga ^g	aa ^t		1536	
Gl ^y	Gl ^y	Gl ^y	Gl ⁿ	Gl ⁿ		Asn	Leu	Leu	Val		Pro	Val	Pro	Gl ^u	Asn		
				475				480					485				
ga ^t	ct ^g	ca ^c	ca ^g	cc ^a	gt ^c	ta ^g	ca ^g	ag ^c	cc ^a	cg ^g	cg ^t	ct ^c	tc ^t	ct ^a	t ^g a		1584
Asp	Leu	Gl ⁿ	Hi ^s	Pro	Al ^a		Gl ⁿ	Ser	Pro	Arg	Arg	Leu	Phe	Leu			
				490				495					500				
ca ^c	cg ^t	ca ^t	ca ^g	ca ^g	ag ^a	ca ^t	cc ^a	gg ^c	cc ^c	cg ^a	cg ^g	gt ^t	gg ^a	t ^g t	gg ^a		1632
Hi ^s	Arg	Hi ^s	Gl ⁿ	Gl ⁿ	Arg	Hi ^s	Pro	Gl ^y	Pro	Arg	Arg	Al ^a	Gl ^y	Cys	Gl ^y		
				505				510					515				
ct ^g	ga ^t	cc ^a	ca ^g	ca ^a	ca ^t	ct ^g	ga ^c	cg ^a	ct ^c	t ^g t	c ^c t	gg ^g	ca ^c	t ^g t		1680	
Leu	Asp	Pro	Gl ⁿ	Gl ⁿ	Hi ^s	Leu	Leu	Asp	Arg	Leu	Cys	Pro	Gl ^y	Hi ^s	Cys		
				520				525					530				
ct ^c	t ^g t	t ^c g	gg ^a	ta ^c	ca ^a	gg ^g	cg ^t	ga ^a	ga ^g	aa ^c	gt ^t	at ^t	ca ^g	gg ^a		1728	
Leu	Cys	Cys	Gl ^y	Tyr	Gl ⁿ	Gl ^y	Arg	Gl ^u	Gl ^u	Gl ^u	Asn	Val	Ile	Gl ⁿ	Gl ^y		
				535				540				545					
ga ^a	cg ^g	ct ^c	ca ^a	gg ^c	aa ^g	gg ^c	ca ^t	cg ^t	gg ^a	t ^c c	t ^g t	tc ^t	ta ^c	t ^g g	ct ^t		1776
Gl ^u	Arg	Leu	Gl ⁿ	Al ^a	Lys	Gl ^y	Hi ^s	Arg	Gl ^y	Gl ^y	Ser	Cys	Ser	Trp	Leu		
				550				555				560					
ca ^t	gt ^a	ct ^g	ga ^c	ta ^g	ct ^g	gg ^a	aa ^c	t ^c c	cg ^c	ca ^a	gt ^t	ca ^a	ga ^g	ag ^g	gg ^a		1824
Hi ^s	Val	Leu	Asp		Leu	Gl ^y	Asn	Ser	Arg	Gl ⁿ	Asp	Gl ⁿ	Gl ^u	Arg	Gl ^y		
				565				570			575						
c ^c t	ga ^a	t ^g g	t ^t g	gg ^a	ca ^t	ct ^a	ct ^c	gt ^t	ga ^c	t ^g a	aa ^a	ca ^t	tc ^a	gt ^g		1872	
Pro	Gl ^u	Trp	Cys	Gl ^y	Hi ^s	Leu	Leu	Al ^a	Gl ^y	Asp	Lys	Hi ^s	Ser	Val			
				580				585			590						
gg ^c	ca ^a	t ^g g	ca ^t	ca ^c	ct ^t	gg ^a	ta ^c	t ^c c	ca ^g	t ^g g	cc ^g	c ^c t	ct ^a	ct ^g	gg ^t		1920
Al ^a	Gl ⁿ	Trp	Hi ^s	Hi ^s	Pro	Arg	Ser	Pro	Gl ⁿ	Trp	Pro	Pro	Leu	Leu	Gl ^y		
				595				600			605			610			
t ^g a	ct ^c	ca ^a	ac ^t	t ^c a	ct ^c	ca ^t	ct ^c	aa ^g	ca ^t	cg ^a	t ^g t	ca ^a	cg ^g	gg ^a	ca ^a		1968
Leu	Gl ⁿ	Thr	Ser	Leu	Hi ^s	Leu	Lys	Hi ^s	Arg	Cys	Gl ⁿ	Arg	Gl ^y	Gl ⁿ			
				615				620			625						

UPN-16-7717PCT_ST25. txt

ccg gaa gac cat ctt gga gga tga aaa gag gct ggc cca ccc ctt ctc	2016
Pro Glu Asp His Leu Gly Gly Lys Glu Ala Gly Pro Pro Leu Leu	
630 635 640	
ctt ggc cgt ctt tga g ga caa agt att ttg gac aga tat cat caa cga	2064
Leu Gly Arg Leu Gly Glu Ser Ile Leu Asp Arg Tyr His Glu Arg	
645 650 655	
agc cat ttt cag tgc caa ccc cct cac agg ttc cga tgt caa ctt gtt	2112
Ser His Phe Glu Cys Glu Pro Pro His Arg Phe Arg Cys Glu Leu Val	
660 665 670	
ggc tga aaa cct act gtc ccc aga gga tat ggt tct ctt cca caa cct	2160
Gly Lys Pro Thr Val Pro Arg Gly Tyr Glu Ser Leu Pro Glu Pro	
675 680 685	
cac cca gcc aag ag g agt gaa ctg gtg tga gag gac cac cct gag caa	2208
His Pro Ala Lys Arg Ser Glu Leu Val Glu Asp His Pro Glu Glu	
690 695 700	
tgg cgg ctg cca gta tct gtg cct ccc tgc ccc gca gat caa ccc cca	2256
Trp Arg Leu Pro Val Ser Val Pro Pro Cys Pro Ala Asp Glu Pro Pro	
705 710 715	
ctc gcc caa gtt tac ctg cgc ctg ccc gga cgg cat gct gct ggc cag	2304
Leu Ala Glu Val Tyr Leu Arg Leu Pro Glu Arg His Ala Ala Gly Glu	
720 725 730	
gga cat gag gag ctg cct cac ag a ggc tga ggc tgc agt ggc cac cca	2352
Gly His Glu Glu Leu Pro His Arg Glu Cys Ser Glu His Pro	
735 740 745	
gga gac atc cac cgt cag gct aaa ggt cag ctc cac agc cgt aag gac	2400
Gly Asp Ile His Arg Glu Ala Lys Gly Glu Leu His Ser Arg Lys Asp	
750 755 760	
aca gca cac aac cac ccg acc tgt tcc cga cac ctc ccg gct gcc tgg	2448
Thr Ala His Asn His Pro Thr Cys Ser Arg His Leu Pro Ala Ala Trp	
765 770 775 780	
ggc cac ccc tgg gct cac cac ggt gga gat agt gac aat gtc tca cca	2496
Gly His Pro Trp Ala His His Glu Gly Asp Ser Asp Asn Val Ser Pro	
785 790 795	
ag ctctggcgca cgttgtggc agaggaatg agaagaagcc cagtagcgtg	2548
aggctctgt ccattgtcct cccatcggt ctcctcgct tccttcgcct ggggtcttc	2608
cttctatgga agaactggcg gcttaagaac atcaacagca tcaacttga caacccgtc	2668
tatcagaaga ccacagagga tgaggtccac atttgcaca accaggacgg ctacagctac	2728
ccctcgagac agatggtcag tctggaggat gacgtggcgt gaacatctgc ctggagtccc	2788
gtccctgccc agaacccttc ctgagacctc gccggcctt ttttattcaa agacagagaa	2848
gaccaaagca ttgcctgcca gagcttgtt ttatataattt attcatctgg gaggcagaac	2908
aggcttcgga cagtccccat gcaatggctt ggggtggat ttgggttct tccttcctc	2968
gtgaaggata agagaaacag gcccgggggg accaggatga cacctccatt tctctccagg	3028
aagtttgag tttctctcca ccgtgacaca atcctcaaac atgaaagatg aaagggggagg	3088
ggatgtcagg cccagagaag caagtggctt tcaacacaca acagcagatg gcaccaacgg	3148
gacccctgg ccctgcctca tccaccaatc tctaagccaa acccctaaac tcaggagtca	3208

UPN-16-7717PCT_ST25. txt

acgtgtttac ctcttctatg caagcctgc tagacagcca ggtaggcctt tgccctgtca	3268
cccccaatc atgacccacc cagtgtctt cgaggtgggt ttgtacccctc cttaaagccag	3328
gaaaggatt catggcgtcg gaaatgatct ggctgaatcc gtgggtggcac cgagacaaa	3388
ctcattcacc aaatgatgcc acttcccaga ggcagagcct gagtcactgg tcaccctaa	3448
tatattattaa gtgcctgaga cacccgtta ccttggcgt gaggacacgt ggcctgcacc	3508
caggtgtggc tgtcaggaca ccagcctggt gcccattc cccacttcca	3568
ttccctgtgtt ctccttgac tttctcagtt cagagtgtta cactgtgtac atttggcatt	3628
tgtgttattaa ttttgcactg ttttctgtcg tgtgtgttgg gatgggatcc caggccaggg	3688
aaagccctg tcaatgaatg ccggggacag agagggcag gttagccgg acttcaaagc	3748
cgtgatcgtg aatatcgaga actgccatttgcgtcttgcgtccactgtcttgcgtccacttgcgt	3808
cacttctatg caaatgcctc caagccatttgcgtccacttgcgtccactgtcttgcgtccacttgcgt	3868
tgtttaaaac atgcacggtg aggccggcgtc cagtgctca cgcctgttaat cccagcacttgcgt	3928
tgggaggccg aggccgggtgg atcatgaggt caggagatcg agaccatcct ggtaaacacg	3988
tgaaaccccg tctctactaa aaatacaaaa aattagccgg gcgtgttggc gggcacctgt	4048
agtcccagct actcgggagg ctgaggcagg agaatgtgt gaacccggga agcggagcgttgcgt	4108
gcagtgagcc gagattgcgc cactgcagtc cgcagtcgg cctggcgcac agagcgagac	4168
tccgtctcaa aaaaaaaaaa caaaaaaaaaa ccatgcatttgcgtccactgtcttgcgtccacttgcgt	4228
tctggccagg catggcgagg ctgagggtgg aggatgttt gagtcagggc atttggcgt	4288
gtcgtgagct atgattatgc cactgcttc cagcctggc aacatagtaa gacccatct	4348
cttaaaaaat gaatttggcc agacacaggt gcctcagcc tgaatccca gcactttggg	4408
aggctgagct ggatcacttgcgtccactgtcttgcgtccactgtcttgcgtccacttgcgt	4468
atcccatctc tacaaaaacc aaaaagttaa aaatcagctg ggtacgggtgg cacgtgccttgcgt	4528
tgatcccagc tacttggag gctgaggcag gaggatcgcc tgagccagg aggtggaggt	4588
tgcagtgagc catgatcgag ccactgcact ccagcctggc caacagatga agaccatttgcgt	4648
tcagaaatac aactataaaa aaataaataa atcctccagt ctggatcgtt tgacggact	4708
tcaggttctt tctgaaatgc ccgtgttact gttgcactga tgtccggaga gacagtgaca	4768
gcctccgtca gactcccgcg tgaagatgtc acaaggatt ggcaattgtc cccagggaca	4828
aaacactgtg tccccccag tgcagggAAC cgtgataAGC ctttctgggt tcggagcact	4888
taaatgcgtc cctgtacaga tagtgggat ttttgggtt gttgcactt tgtatattgg	4948
ttgaaactgt tatcacttat atatataat atacacacat atatataaaa tctattttat	5008
tttgc当地 acc ctgggtgctg tatttgcgttca gtgactattc tcggggccct gtgttaggggg	5068
ttattgcctc tgaatgcct cttcttgcgttca gtgactattc tcggggccct gtgttaggggg	5128
gtgcaacgct ttttggaga atgatgtccc cgttgcgttca gtgactattc tcggggccct gtgttaggggg	5188
gggtgtact ttttaacca ctgtatagaa gggtttgttgcgtccactgtcttgcgtccacttgcgt	5248

UPN-16-7717PCT_ST25. txt

tcaattaaat ttcttaatg aaccaatttg tctaaaaaaaaaaa aaaa 5292

<210> 2
<211> 2583
<212> DNA
<213> *Homo sapiens*

<220>
<221> CDS
<222> (1)..(2583)

```

<400> 2
atg ggg ccc tgg ggc tgg aaa ttg cgc tgg acc gtc gcc ttg ctc ctc
Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu Leu Leu
1          5          10          15

```

gcc	gcg	gct	ggg	act	gca	gtg	ggc	gac	aga	tgt	gaa	aga	aac	gag	ttc	96
Al a	Al a	Al a	Gl y	Thr	Al a	Val	Gl y	Asp	Arg	Cys	Gl u	Arg	Asn	Gl u	Phe	
20					25						30					

cag tgc caa gac ggg aaa tgc atc tcc tac aag tgg gtc tgc gat ggc
 Gl n Cys Gl n Asp Gl y Lys Cys Ile Ser Tyr Lys Trp Val Cys Asp Gl y
 35 40 45 144

tct gtc acc tgc aaa tcc ggg gac ttc agc tgt ggg ggc cgt gtc aac 240
 Ser Val Thr Cys Lys Ser Gl y Asp Phe Ser Cys Gl y Gl y Arg Val Asn
 65 70 75 80 85

cgc tgc att cct cag ttc tgg agg tgc gat ggc caa gtg gac tgc gac 288
 Arg Cys Ile Pro Gln Phe Trp Arg Cys Asp Gly Gln Val Asp Cys Asp
 85 90 95

aac ggc tca gac gag caa ggc tgt ccc ccc aag acg tgc tcc cag gac	336
Asn Glu Ser Asp Glu Glu Gln Glu Cys Pro Pro Lys Thr Cys Ser Glu Gln Asp	
100 105 110	

gag ttt cgc tgc cac gat ggg aag tgc atc tct cgg cag ttc gtc tgt 384
 Glu Phe Arg Cys His Asp Gly Lys Cys Ile Ser Arg Gln Phe Val Cys
 115 120 125

gac tca gac cgg gac tgc ttg gac ggc tca gac gag gcc tcc tgc ccg	432
Asp Ser Asp Arg Asp Cys Leu Asp Glu Ser Asp Glu Ala Ser Cys Pro	
130 135 140	

gtg ctc acc tgt ggt ccc gcc agc ttc cag tgc aac agc tcc acc tgc
 Val Leu Thr Cys Gly Pro Ala Ser Phe Gln Cys Asn Ser Thr Ser Cys
 145 150 155 160 480

atc ccc cag ctg tgg gcc tgc gac aac gac ccc gac tgc gaa gat ggc
 Ile Pro Gln Leu Trp Ala Cys Asp Asn Asp Pro Asp Cys Glu Asp Glu
 165 170 175 528

tcg gat gag tgg ccg cag cgc tgt agg ggt ctt tac gtg ttc caa ggg	576		
Ser Asp Glu Trp Pro Gln Arg Cys Arg Gly Leu Tyr Val Phe Gln Gly			
180	185	190	

gac agt agc ccc tgc tcg gcc ttc gag ttc cac tgc cta agt ggc gag 624
 Asp Ser Ser Pro Cys Ser Ala Phe Glu Phe His Cys Leu Ser Gly Glu
 195 200 205

tgc atc cac tcc agc tgg cgc tgt gat ggt ggc ccc gac tgc aag gac 672
Page 7

UPN-16-7717PCT_ST25.txt

Cys	Ile	His	Ser	Ser	Trp	Arg	Cys	Asp	Gly	Gly	Pro	Asp	Cys	Lys	Asp	
210					215		220									
aaa	tct	gac	gag	gaa	aac	tgc	gct	gtg	gcc	acc	tgt	cgc	cct	gac	gaa	720
Lys	Ser	Asp	Glu	Glu	Asn	Cys	Ala	Val	Ala	Thr	Cys	Arg	Pro	Asp	Glu	
225			230						235						240	
ttc	cag	tgc	tct	gat	gga	aac	tgc	atc	cat	ggc	agc	cgg	cag	tgt	gac	768
Phe	Gln	Cys	Ser	Asp	Gly	Asn	Cys	Ile	His	Gly	Ser	Arg	Gln	Cys	Asp	
				245				250						255		
cgg	gaa	tat	gac	tgc	aag	gac	atg	agc	gat	gaa	gtt	ggc	tgc	gtt	aat	816
Arg	Glu	Tyr	Asp	Cys	Lys	Asp	Met	Ser	Asp	Glu	Val	Gly	Cys	Val	Asn	
				260			265					270				
gtg	aca	ctc	tgc	gag	gga	ccc	aac	aag	tgc	aag	tgt	cac	agc	ggc	gaa	864
Val	Thr	Leu	Cys	Glu	Gly	Pro	Asn	Lys	Phe	Lys	Cys	His	Ser	Gly	Glu	
				275			280					285				
tgc	atc	acc	ctg	gac	aaa	gtc	tgc	aac	atg	gct	aga	gac	tgc	cgg	gac	912
Cys	Ile	Thr	Leu	Asp	Lys	Val	Cys	Asn	Met	Ala	Arg	Asp	Cys	Arg	Asp	
				290			295			300						
tgg	tca	gat	gaa	ccc	atc	aaa	gag	tgc	ggg	acc	aac	gaa	tgc	ttg	gac	960
Trp	Ser	Asp	Glu	Pro	Ile	Lys	Glu	Cys	Gly	Thr	Asn	Glu	Cys	Leu	Asp	
				305			310			315				320		
aac	aac	ggc	ggc	tgt	tcc	cac	gtc	tgc	aat	gac	ctt	aag	atc	ggc	tac	1008
Asn	Asn	Gly	Gly	Cys	Ser	His	Val	Cys	Asn	Asp	Leu	Lys	Ile	Gly	Tyr	
				325			330						335			
gag	tgc	ctg	tgc	ccc	gac	ggc	ttc	cag	ctg	gtg	gcc	cag	cga	aga	tgc	1056
Glu	Cys	Leu	Cys	Pro	Asp	Gly	Phe	Gln	Leu	Val	Ala	Gln	Arg	Arg	Cys	
				340			345					350				
gaa	gat	atc	gat	gag	tgt	cag	gat	ccc	gac	acc	tgc	agc	cag	ctc	tgc	1104
Glu	Asp	Ile	Asp	Glu	Cys	Gln	Asp	Pro	Asp	Thr	Cys	Ser	Gln	Leu	Cys	
				355			360					365				
gtg	aac	ctg	gag	ggt	ggc	tac	aag	tgc	cag	tgt	gag	gaa	ggc	ttc	cag	1152
Val	Asn	Leu	Glu	Gly	Gly	Tyr	Lys	Cys	Gln	Cys	Glu	Glu	Gly	Phe	Gln	
				370			375			380						
ctg	gac	ccc	cac	acg	aag	gcc	tgc	aag	gct	gtg	ggc	tcc	atc	gcc	tac	1200
Leu	Asp	Pro	His	Thr	Lys	Ala	Cys	Lys	Ala	Val	Gly	Ser	Ile	Ala	Tyr	
				385			390			395				400		
ctc	ttc	ttc	acc	aac	cg	cac	gag	gtc	agg	aag	atg	acg	ctg	gac	cg	1248
Leu	Phe	Phe	Thr	Asn	Arg	His	Glu	Val	Arg	Lys	Met	Thr	Leu	Asp	Arg	
				405			410						415			
agc	gag	tac	acc	agc	ctc	atc	ccc	aac	ctg	agg	aac	gtg	gtc	gct	ctg	1296
Ser	Glu	Tyr	Thr	Ser	Leu	Ile	Pro	Asn	Leu	Arg	Asn	Val	Val	Ala	Leu	
				420			425					430				
gac	acg	gag	gtg	gcc	agc	aat	aga	atc	tac	tgg	tct	gac	ctg	tcc	cag	1344
Asp	Thr	Glu	Val	Ala	Ser	Asn	Arg	Ile	Tyr	Trp	Ser	Asp	Leu	Ser	Gln	
				435			440					445				
aga	atg	atc	tgc	agc	acc	cag	ctt	gac	aga	gcc	cac	ggc	gtc	tct	tcc	1392
Arg	Met	Ile	Cys	Ser	Thr	Gln	Leu	Asp	Arg	Ala	His	Gly	Val	Ser	Ser	
				450			455			460						
tat	gac	acc	gtc	atc	agc	agg	gac	atc	cag	gcc	ccc	gac	ggg	ctg	gct	1440
Tyr	Asp	Thr	Val	Ile	Ser	Arg	Asp	Ile	Gln	Ala	Ala	Pro	Asp	Gly	Leu	
				465			470			475				480		
gtg	gac	tgg	atc	cac	agc	aac	atc	tac	tgg	acc	gac	tct	gtc	ctg	ggc	1488

UPN-16-7717PCT_ST25.txt

Val	Asp	Trp	Ile	His	Ser	Asn	Ile	Tyr	Trp	Thr	Asp	Ser	Val	Leu	Gly	
485									490					495		
act	gtc	tct	gtt	gcg	gat	acc	aag	ggc	gtg	aag	agg	aaa	acg	tta	ttc	1536
Thr	Val	Ser	Val	Ala	Asp	Thr	Lys	Gly	Val	Lys	Arg	Lys	Thr	Leu	Phe	
								505					510			
agg	gag	aac	ggc	tcc	aag	cca	agg	gcc	atc	gtg	gtg	gat	cct	gtt	cat	1584
Arg	Glu	Asn	Gly	Ser	Lys	Pro	Arg	Ala	Ile	Val	Val	Asp	Pro	Val	His	
								520					525			
ggc	ttc	atg	tac	tgg	act	gac	tgg	gga	act	ccc	gcc	aag	atc	aag	aaa	1632
Gly	Phe	Met	Tyr	Trp	Thr	Asp	Trp	Gly	Thr	Pro	Ala	Lys	Ile	Lys	Lys	
								535			540					
ggg	ggc	ctg	aat	ggt	gtg	gac	atc	tac	tcg	ctg	gtg	act	gaa	aac	att	1680
Gly	Gly	Leu	Asn	Gly	Val	Asp	Ile	Tyr	Ser	Leu	Val	Thr	Glu	Asn	Ile	
					550					555			560			
cag	tgg	ccc	aat	ggc	atc	acc	cta	gat	ctc	ctc	agt	ggc	cgc	ctc	tac	1728
Gln	Trp	Pro	Asn	Gly	Ile	Thr	Leu	Asp	Leu	Leu	Ser	Gly	Arg	Leu	Tyr	
					565					570			575			
tgg	gtt	gac	tcc	aaa	ctt	cac	tcc	atc	tca	agc	atc	gat	gtc	aat	ggg	1776
Trp	Val	Asp	Ser	Lys	Leu	His	Ser	Ile	Ser	Ser	Ile	Asp	Val	Asn	Gly	
					580			585					590			
ggc	aac	cg	aag	acc	atc	t	gag	gat	gaa	aag	agg	ctg	gcc	cac	ccc	1824
Gly	Asn	Arg	Lys	Thr	Ile	Leu	Glu	Asp	Glu	Lys	Arg	Leu	Ala	His	Pro	
					595			600				605				
ttc	tcc	ttg	gcc	gtc	ttt	gag	gac	aaa	gta	ttt	tgg	aca	gat	atc	atc	1872
Phe	Ser	Leu	Ala	Val	Phe	Glu	Asp	Lys	Val	Phe	Trp	Thr	Asp	Ile	Ile	
					610			615			620					
aac	gaa	gcc	att	ttc	agt	gcc	aac	cgc	ctc	aca	ggt	tcc	gat	gtc	aac	1920
Asn	Glu	Ala	Ile	Phe	Ser	Ala	Asn	Arg	Leu	Thr	Gly	Ser	Asp	Val	Asn	
					625			630			635			640		
ttg	ttg	gct	gaa	aac	cta	ctg	tcc	cca	gag	gat	atg	gtc	ctc	ttc	cac	1968
Leu	Leu	Ala	Glu	Asn	Leu	Leu	Ser	Pro	Glu	Asp	Met	Val	Leu	Phe	His	
					645			650				655				
aac	ctc	acc	cag	cca	aga	gga	gtg	aac	tgg	tgt	gag	agg	acc	acc	ctg	2016
Asn	Leu	Thr	Gln	Pro	Arg	Gly	Val	Asn	Trp	Cys	Glu	Arg	Thr	Thr	Leu	
					660			665				670				
agc	aat	ggc	ggc	tgc	cag	tat	ctg	tgc	ctc	cct	gcc	ccg	cag	atc	aac	2064
Ser	Asn	Gly	Gly	Cys	Gln	Tyr	Leu	Cys	Leu	Pro	Ala	Pro	Gln	Ile	Asn	
					675			680				685				
ccc	cac	tcg	ccc	aag	ttt	acc	tgc	gcc	tgc	ccg	gac	ggc	atg	ctg	ctg	2112
Pro	His	Ser	Pro	Lys	Phe	Thr	Cys	Ala	Cys	Pro	Asp	Gly	Met	Leu	Leu	
					690			695			700					
gcc	agg	gac	atg	agg	agc	tgc	ctc	aca	gag	gct	gag	gct	gca	gtg	gcc	2160
Ala	Arg	Asp	Met	Arg	Ser	Cys	Leu	Thr	Glu	Ala	Glu	Ala	Ala	Val	Ala	
					705			710			715			720		
acc	cag	gag	aca	tcc	acc	gtc	agg	cta	aag	gtc	agc	tcc	aca	gcc	gta	2208
Thr	Gln	Glu	Thr	Ser	Thr	Val	Arg	Leu	Lys	Val	Ser	Ser	Thr	Ala	Val	
					725			730				735				
agg	aca	cag	cac	aca	acc	acc	cgg	cct	gtt	ccc	gac	acc	tcc	cgg	ctg	2256
Arg	Thr	Gln	His	Thr	Thr	Arg	Pro	Val	Pro	Asp	Thr	Ser	Arg	Leu		
					740			745			750					
cct	ggg	gcc	acc	cct	ggg	ctc	acc	acg	gtg	gag	ata	gtg	aca	atg	tct	2304

UPN-16-7717PCT_ST25.txt

Pro	Gly	Ala	Thr	Pro	Gly	Leu	Thr	Thr	Val	Glu	Ile	Val	Thr	Met	Ser	
755							760						765			
cac	caa	gct	ctg	ggc	gac	gtt	gct	ggc	aga	gga	aat	gag	aag	aag	ccc	2352
His	Gln	Ala	Leu	Gly	Asp	Val	Ala	Gly	Arg	Gly	Asn	Glu	Lys	Lys	Pro	
770							775					780				
agt	agc	gtg	agg	gct	ctg	tcc	att	gtc	ctc	ccc	atc	gtg	ctc	ctc	gtc	2400
Ser	Ser	Val	Arg	Ala	Leu	Ser	Ile	Val	Leu	Pro	Ile	Val	Leu	Leu	Val	
785							790					795			800	
ttc	ctt	tgc	ctg	ggg	gtc	ttc	ctt	cta	tgg	aag	aac	tgg	cgg	ctt	aag	2448
Phe	Leu	Cys	Leu	Gly	Val	Phe	Leu	Leu	Trp	Lys	Asn	Trp	Arg	Leu	Lys	
805							810					815				
aac	atc	aac	agc	atc	aac	ttt	gac	aac	ccc	gtc	tat	cag	aag	acc	aca	2496
Asn	Ile	Asn	Ser	Ile	Asn	Phe	Asp	Asn	Pro	Val	Tyr	Gln	Lys	Thr	Thr	
820							825					830				
gag	gat	gag	gtc	cac	att	tgc	cac	aac	cag	gac	ggc	tac	agc	tac	ccc	2544
Glu	Asp	Glu	Val	His	Ile	Cys	His	Asn	Gln	Asp	Gly	Tyr	Ser	Tyr	Pro	
835							840					845				
tcg	aga	cag	atg	gtc	agt	ctg	gag	gat	gac	gtg	gcg	tag				2583
Ser	Arg	Gln	Met	Val	Ser	Leu	Glu	Asp	Asp	Val	Ala					
850							855					860				

<210> 3
<211> 860
<212> PRT
<213> Homo sapiens

<400> 3

Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu Leu Leu
1 5 10 15

Ala Ala Ala Glu Thr Ala Val Gly Asp Arg Cys Glu Arg Asn Glu Phe
20 25 30

Gln Cys Gln Asp Gly Lys Cys Ile Ser Tyr Lys Trp Val Cys Asp Glu
35 40 45

Ser Ala Glu Cys Gln Asp Glu Ser Asp Glu Ser Gln Glu Thr Cys Leu
50 55 60

Ser Val Thr Cys Lys Ser Glu Asp Phe Ser Cys Glu Glu Arg Val Asn
65 70 75 80

Arg Cys Ile Pro Gln Phe Trp Arg Cys Asp Glu Gln Val Asp Cys Asp
85 90 95

Asn Glu Ser Asp Glu Gln Glu Cys Pro Pro Lys Thr Cys Ser Gln Asp
100 105 110

Glu Phe Arg Cys His Asp Glu Lys Cys Ile Ser Arg Gln Phe Val Cys
115 120 125

Asp Ser Asp Arg Asp Cys Leu Asp Glu Ser Asp Glu Ala Ser Cys Pro
Page 10

UPN-16-7717PCT_ST25. txt

130

135

140

Val 145 Leu Thr Cys Glu Pro 150 Ala Ser Phe Glu Cys 155 Asn Ser Ser Thr Cys 160

Ile Pro Gln Leu Trp Ala Cys Asp Asn Asp 165 Pro Asp Cys Glu Asp 170 Glu 175 Gly

Ser Asp Glu Trp Pro Glu Arg Cys Arg Glu Leu Tyr Val Phe Glu Gly
180 185 190

Asp Ser Ser Pro Cys Ser Ala Phe Glu Phe His Cys Leu Ser Glu Glu
195 200 205

Cys Ile His Ser Ser Trp Arg Cys Asp Gly Gly Pro Asp Cys Lys Asp
210 215 220

Lys 225 Ser Asp Glu 230 Glu Asn Cys 235 Ala Val Ala Thr Cys Arg Pro Asp Glu 240

Phe Glu Cys Ser Asp Glu Asn Cys Ile His Glu Ser Arg Glu Cys Asp
245 250 255

Arg Glu Tyr Asp Cys Lys Asp Met Ser Asp Glu Val Glu Cys Val Asn
260 265 270

Val Thr Leu Cys Glu Glu Pro Asn Lys Phe Lys Cys His Ser Gly Glu
275 280 285

Cys Ile Thr Leu Asp Lys Val Cys Asn Met Ala Arg Asp Cys Arg Asp
290 295 300

Trp Ser Asp Glu Pro Ile Lys Glu Cys Gly Thr Asn Glu Cys Leu Asp
305 310 315 320

Asn Asn Gly Gly Cys Ser His Val Cys Asn Asp Leu Lys Ile Gly Tyr
325 330 335

Gl u Cys Leu Cys Pro Asp Gly Phe Gl n Leu Val Al a Gl n Arg Arg Cys
340 345 350 355

Gl u Asp Ile Asp Gl u Cys Gl n Asp Pro Asp Thr Cys Ser Gl n Leu Cys
355 360 365

Val Asn Leu Glu Glu Gly Tyr Lys Cys Glu Cys Glu Glu Gly Phe Glu
370 375 380

Leu Asp Pro His Thr Lys Ala Cys Lys Ala Val Gly Ser Ile Ala Tyr
385 390 395 400

405

410

415

Ser Glu Tyr Thr Ser Leu Ile Pro Asn Leu Arg Asn Val Val Ala Leu
 420 425 430

Asp Thr Glu Val Ala Ser Asn Arg Ile Tyr Trp Ser Asp Leu Ser Glu
 435 440 445

Arg Met Ile Cys Ser Thr Glu Leu Asp Arg Ala His Glu Val Ser Ser
 450 455 460

Tyr Asp Thr Val Ile Ser Arg Asp Ile Glu Ala Pro Asp Glu Leu Ala
 465 470 475 480

Val Asp Trp Ile His Ser Asn Ile Tyr Trp Thr Asp Ser Val Leu Glu
 485 490 495

Thr Val Ser Val Ala Asp Thr Lys Glu Val Lys Arg Lys Thr Leu Phe
 500 505 510

Arg Glu Asn Glu Ser Lys Pro Arg Ala Ile Val Val Asp Pro Val His
 515 520 525

Glu Phe Met Tyr Trp Thr Asp Trp Glu Thr Pro Ala Lys Ile Lys Lys
 530 535 540

Glu Glu Leu Asn Glu Val Asp Ile Tyr Ser Leu Val Thr Glu Asn Ile
 545 550 555 560

Glu Trp Pro Asn Glu Ile Thr Leu Asp Leu Leu Ser Glu Arg Leu Tyr
 565 570 575

Trp Val Asp Ser Lys Leu His Ser Ile Ser Ser Ile Asp Val Asn Glu
 580 585 590

Glu Asn Arg Lys Thr Ile Leu Glu Asp Glu Lys Arg Leu Ala His Pro
 595 600 605

Phe Ser Leu Ala Val Phe Glu Asp Lys Val Phe Trp Thr Asp Ile Ile
 610 615 620

Asn Glu Ala Ile Phe Ser Ala Asn Arg Leu Thr Glu Ser Asp Val Asn
 625 630 635 640

Leu Leu Ala Glu Asn Leu Leu Ser Pro Glu Asp Met Val Leu Phe His
 645 650 655

Asn Leu Thr Glu Pro Arg Glu Val Asn Trp Cys Glu Arg Thr Thr Leu
 660 665 670

Ser Asn Glu Glu Cys Glu Tyr Leu Cys Leu Pro Ala Pro Glu Ile Asn
 Page 12

UPN-16-7717PCT_ST25.txt
 675 680 685

Pro His Ser Pro Lys Phe Thr Cys Ala Cys Pro Asp Gly Met Leu Leu
 690 695 700 705

Ala Arg Asp Met Arg Ser Cys Leu Thr Glu Ala Glu Ala Ala Val Ala
 705 710 715 720

Thr Gln Glu Thr Ser Thr Val Arg Leu Lys Val Ser Ser Thr Ala Val
 725 730 735

Arg Thr Gln His Thr Thr Arg Pro Val Pro Asp Thr Ser Arg Leu
 740 745 750

Pro Gly Ala Thr Pro Gly Leu Thr Thr Val Glu Ile Val Thr Met Ser
 755 760 765

His Gln Ala Leu Gly Asp Val Ala Gly Arg Gly Asn Glu Lys Lys Pro
 770 775 780 785

Ser Ser Val Arg Ala Leu Ser Ile Val Leu Pro Ile Val Leu Leu Val
 785 790 795 800

Phe Leu Cys Leu Gly Val Phe Leu Leu Trp Lys Asn Trp Arg Leu Lys
 805 810 815

Asn Ile Asn Ser Ile Asn Phe Asp Asn Pro Val Tyr Gln Lys Thr Thr
 820 825 830

Glu Asp Glu Val His Ile Cys His Asn Gln Asp Gly Tyr Ser Tyr Pro
 835 840 845

Ser Arg Gln Met Val Ser Leu Glu Asp Asp Val Ala
 850 855 860

<210> 4

<211> 2583

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial hLDLR

<220>

<221> misc_feature

<222> (1)..(2583)

<223> Artificial hLDLR coding sequence

<400> 4

atgggacctt ggggttgaa actccgctgg acagtggctc tgctcctggc agcagcagga

60

acagccgtgg gagatcgctg cgaaaggaac gagttccagt gccaggacgg caagtgcatt

120

agcttacaagt gggtctgcga cggttagcga gagtgtcagg acggaagcga cgaaagccag

180

UPN-16-7717PCT_ST25.txt

gagacttgcc	tgagcgtgac	ttgcaagtcc	ggcgacttct	cttgccggagg	cagagtgaac	240
cgctgcatcc	ctcagtttg	gcgggtgcac	ggccagggtgg	attgcgataa	cggaagcgcac	300
gagcagggtt	gccctcctaa	gacttgcagc	caggacgaat	tccgctgtca	cgacggcaag	360
tgcatcagca	ggcagttcgt	ctgcgacagc	gacaggatt	gtctggacgg	aagcgcacgag	420
gcctcttgc	ctgtgctgac	tttgtggcca	gccagcttcc	agtgcactc	cagcacttgc	480
atcccacagc	tctgggcttgc	cgacaacgcac	ccagattgcg	aggacggatc	agacgagtgg	540
ccacagcgct	gcagaggcct	gtacgtgttt	cagggcgatt	ccagcccttgc	cagcgctttt	600
gagttccact	gcctgagcgg	cgagtgcatt	cactcttctt	ggaggtgcga	cggtgccca	660
gattgcaagg	acaagagcga	cgaggagaat	tgcgccgtgg	ctacttgcag	accagacgaa	720
ttccagtgca	gcgacggcaa	ttgcatccac	ggctctaggc	agtgcgacag	ggagtacgat	780
tgcaaggaca	tgagcgcacga	agtcggttgc	gtgaacgtca	ccctctgcga	gggtcccaat	840
aagttcaagt	gccacagcgg	cgagtgcatt	accctggaca	aggtctgcaa	catggccagg	900
gattgccgg	attggagcga	cgagcctatc	aaggagtgcg	gcaccaacga	gtgcctggat	960
aacaacggcg	gctgcagcca	cgtgtcaat	gacctgaaga	tcggctacga	gtgcctctgc	1020
ccagacggat	tccagctgg	ggctcagaga	cgctgcgaag	acatgcacga	gtgccaggat	1080
cccgacactt	gcagccagct	gtgcgtgaat	ctggaggag	gctacaagtgc	ccagtgcgaa	1140
gagggattcc	agctggaccc	tcacaccaag	gcttgtaaag	ccgtggcag	catcgctac	1200
ctgttcttca	ccaacagaca	cgaagtgcgg	aagatgaccc	tggatcggag	cgagtacacc	1260
agcctgatcc	ctaacctgcg	gaacgtgg	gccctggata	cagaagtggc	cagcaacagg	1320
atctatttga	gcfacctgag	ccagcggat	atttgagca	cccagctgga	cagagccac	1380
ggagtgtcca	gctacgacac	cgtgtcagc	agagacatcc	aggctccaga	cggactggca	1440
gtggatttga	tccacagcaa	catctactgg	accgactcag	tgctggaaac	agtgtccgt	1500
gccgatacaa	agggcgtgaa	gcggaagacc	ctgttgcag	agaacggcag	caagcccagg	1560
gctattgtgg	tggatcccg	gcacggcttc	atgtatttga	ccgattgggg	caccccgct	1620
aagatcaaga	agggcggcct	gaacggcgt	gacatctaca	gcctggtgac	cgagaacatc	1680
cagtggccca	acgaaattac	cctggacctg	ctgagcggca	gactgtatttgc	ggtggacagc	1740
aagctgcaca	gcatcagcag	catgcacgt	aacggcggaa	accggaagac	catcctggag	1800
gacgagaaga	gactggccca	cccttcagc	ctggccgtgt	tcgaggacaa	ggtcttctgg	1860
accgacatca	tcaacgaggc	catttcagc	gccaacaggc	tgacaggaag	cgacgtgaac	1920
ctgctggcag	agaatctgt	gtctcccgag	gacatggtgc	tgttccacaa	cctgacccag	1980
cccgaggcg	tcaatttgg	cgagagaacc	accctgagca	acggaggtttgc	ccagtacctg	2040
tgccctgccc	cccctcagat	taaccctcac	agccccaaat	tcacttgcgc	ttgcccagac	2100
ggcatgctgc	tggccagaga	tatgcgtct	tgtctgacag	aagccgaagc	cgctgtggct	2160
acacaggaga	caagcaccgt	gcggctgaag	gtgtctagca	cagccgtgag	aacccagcac	2220

UPN-16-7717PCT_ST25.txt

acaaccacca	gaccgtgcc	agataccagc	agactccag	gagctacacc	aggactgacc	2280
accgtggaga	tcgtgaccat	gagccaccag	gctctggag	acgtggcagg	aagagaaac	2340
gagaagaagc	ctagcagcgt	gagagccctg	tctatcgtgc	tgcccatcgt	gctgctggtg	2400
ttccctctgtc	tggcgtgtt	cctcctctgg	aagaattggc	ggctgaagaa	catcaacagc	2460
atcaacttcg	acaacccgt	gtaccagaag	accaccgagg	acgaggtgca	catttgcac	2520
aaccaggacg	gctacagcta	ccctagcagg	cagatggtgt	ccctggaaga	cgacgtggct	2580
tga						2583

<210> 5
<211> 738
<212> PRT
<213> Artificial Sequence

<220>
<223> Adeno-associated virus 8 vp1 capsid protein

<400> 5

Met	Ala	Ala	Asp	Gly	Tyr	Leu	Pro	Asp	Trp	Leu	Gl u	Asp	Asn	Leu	Ser
1			5				10				15				

Gl u	Gl y	Ile	Arg	Gl u	Trp	Trp	Ala	Leu	Lys	Pro	Gl y	Ala	Pro	Lys	Pro
20				25							30				

Lys	Ala	Asn	Gln	Gln	Lys	Gln	Asp	Asp	Gly	Arg	Gly	Leu	Val	Leu	Pro
35					40						45				

Gly	Tyr	Lys	Tyr	Leu	Gly	Pro	Phe	Asn	Gly	Leu	Asp	Lys	Gly	Gl u	Pro
50				55						60					

Val	Asn	Ala	Ala	Asp	Ala	Ala	Ala	Leu	Gl u	His	Asp	Lys	Ala	Tyr	Asp
65				70					75						80

Gln	Gln	Leu	Gln	Ala	Gly	Asp	Asn	Pro	Tyr	Leu	Arg	Tyr	Asn	His	Ala
85									90				95		

Asp	Ala	Gl u	Phe	Gln	Gl u	Arg	Leu	Gl n	Gl u	Asp	Thr	Ser	Phe	Gly	Gly
100							105						110		

Asn	Leu	Gly	Arg	Ala	Val	Phe	Gln	Ala	Lys	Lys	Arg	Val	Leu	Gl u	Pro
115							120					125			

Leu	Gl y	Leu	Val	Gl u	Gl u	Gly	Ala	Lys	Thr	Ala	Pro	Gly	Lys	Lys	Arg
130										140					

Pro	Val	Gl u	Pro	Ser	Pro	Gln	Arg	Ser	Pro	Asp	Ser	Ser	Thr	Gly	Ile
145										155				160	

Gly	Lys	Lys	Gly	Gln	Gln	Pro	Ala	Arg	Lys	Arg	Leu	Asn	Phe	Gly	Gln
165									170					175	

UPN-16-7717PCT_ST25. txt

Thr Gl y Asp Ser Gl u Ser Val Pro Asp Pro Gl n Pro Leu Gl y Gl u Pro
180 185 190

Pro Al a Al a Pro Ser Gl y Val Gl y Pro Asn Thr Met Al a Al a Gl y Gl y
195 200 205

Gl y Al a Pro Met Al a Asp Asn Asn Gl u Gl y Al a Asp Gl y Val Gl y Ser
210 215 220

Ser Ser Gl y Asn Trp His Cys Asp Ser Thr Trp Leu Gl y Asp Arg Val
225 230 235 240

Ile Thr Thr Ser Thr Arg Thr Trp Al a Leu Pro Thr Tyr Asn Asn His
245 250 255

Leu Tyr Lys Gl n Ile Ser Asn Gl y Thr Ser Gl y Gl y Al a Thr Asn Asp
260 265 270

Asn Thr Tyr Phe Gl y Tyr Ser Thr Pro Trp Gl y Tyr Phe Asp Phe Asn
275 280 285

Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gl n Arg Leu Ile Asn
290 295 300

Asn Asn Trp Gl y Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn
305 310 315 320

Ile Gl n Val Lys Gl u Val Thr Gl n Asn Gl u Gl y Thr Lys Thr Ile Al a
325 330 335

Asn Asn Leu Thr Ser Thr Ile Gl n Val Phe Thr Asp Ser Gl u Tyr Gl n
340 345 350

Leu Pro Tyr Val Leu Gl y Ser Al a His Gl n Gl y Cys Leu Pro Pro Phe
355 360 365

Pro Al a Asp Val Phe Met Ile Pro Gl n Tyr Gl y Tyr Leu Thr Leu Asn
370 375 380

Asn Gl y Ser Gl n Al a Val Gl y Arg Ser Ser Phe Tyr Cys Leu Gl u Tyr
385 390 395 400

Phe Pro Ser Gl n Met Leu Arg Thr Gl y Asn Asn Phe Gl n Phe Thr Tyr
405 410 415

Thr Phe Gl u Asp Val Pro Phe His Ser Ser Tyr Al a His Ser Gl n Ser
420 425 430

Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gl n Tyr Leu Tyr Tyr Leu
435 440 445

UPN-16-7717PCT_ST25. txt

Ser Arg Thr Glu Thr Thr Glu Glu Thr Ala Asn Thr Glu Thr Leu Glu
450 455 460

Phe Ser Glu Glu Gly Pro Asn Thr Met Ala Asn Glu Ala Lys Asn Trp
465 470 475 480

Leu Pro Glu Pro Cys Tyr Arg Glu Glu Arg Val Ser Thr Thr Thr Glu
485 490 495

Glu Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Glu Thr Lys Tyr His
500 505 510

Leu Asn Glu Arg Asn Ser Leu Ala Asn Pro Glu Ile Ala Met Ala Thr
515 520 525

His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Glu Ile Leu Ile
530 535 540

Phe Glu Lys Glu Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val
545 550 555 560

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr
565 570 575

Glu Glu Tyr Glu Ile Val Ala Asp Asn Leu Glu Glu Glu Asn Thr Ala
580 585 590

Pro Glu Ile Glu Thr Val Asn Ser Glu Glu Ala Leu Pro Glu Met Val
595 600 605

Trp Glu Asn Arg Asp Val Tyr Leu Glu Glu Pro Ile Trp Ala Lys Ile
610 615 620

Pro His Thr Asp Glu Asn Phe His Pro Ser Pro Leu Met Glu Glu Phe
625 630 635 640

Glu Leu Lys His Pro Pro Pro Glu Ile Leu Ile Lys Asn Thr Pro Val
645 650 655

Pro Ala Asp Pro Pro Thr Thr Phe Asn Glu Ser Lys Leu Asn Ser Phe
660 665 670

Ile Thr Glu Tyr Ser Thr Glu Glu Val Ser Val Glu Ile Glu Trp Glu
675 680 685

Leu Glu Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Glu Tyr Thr
690 695 700

Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu
705 710 715 720

UPN-16-7717PCT_ST25. txt

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg
725 730 735

Asn Leu

<210> 6
<211> 6768
<212> DNA
<213> Artificial Sequence

<220>
<223> pAAV. TBG. PI. hLDLRco. RGB

<220>
<221> repeat_region
<222> (1)..(130)
<223> 5' ITR

<220>
<221> enhancer
<222> (221)..(320)
<223> Alphameric/bik

<220>
<221> enhancer
<222> (327)..(426)
<223> Alphameric/bik

<220>
<221> promoter
<222> (442)..(901)
<223> TBG

<220>
<221> TATA_signal
<222> (885)..(888)
<223> TATA

<220>
<221> CDS
<222> (969)..(3551)
<223> codon optimized hLDLR

<220>
<221> polyA_signal
<222> (3603)..(3729)
<223> Rabbit globin poly A

<220>
<221> repeat_region
<222> (3818)..(3947)
<223> 3' ITR

<220>
<221> rep_origin
<222> (4124)..(4579)
<223> f1 ori

<220>
<221> misc_feature
<222> (4710)..(5567)
<223> AP(R)

UPN-16-7717PCT_ST25. txt

<220>
 <221> rep_origin
 <222> (5741)..(6329)
 <223> Origin of replication

<400> 6
 ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccggcgctcg ggcgaccctt 60
 ggtcgcccg cctcagttag cgagcgagcg cgcatcgagg gagtggccaa ctccatcact 120
 aggggttcct ttagttat gattaacccg ccatgctact tatctaccag ggtatgggg 180
 atcctctaga actatagcta gaattcgccc ttaagctagc aggttaattt ttaaaaagca 240
 gtcaaaagtc caagtggccc ttggcagcat ttactctc tggctgtct ggttaataat 300
 ctcaggagca caaacattcc agatccaggt taattttaa aaagcagtca aaagtccaag 360
 tggcccttgg cagcatttac tctctgtt tgctctggaa aataatctca ggagcacaaa 420
 cattccagat ccggcgccg aggctggaa gctaccttg acatcatttc ctctgcgaat 480
 gcatgtataa ttctacaga acctattaga aaggatcacc cagcctctgc ttttgacaa 540
 cttdccctta aaaaactgcc aattccactg ctgtttggcc caatagttag aacttttcc 600
 tgctgcctct tggcttttgc gcctatggcc cctattctgc ctgctgaaga cactcttgcc 660
 agcatggact taaaccctc cagctctgac aatcctctt ctctttgtt ttacatgaag 720
 ggtctggcag ccaaagcaat cactcaaagt tcaaaccctt tcatttttg ctggcttcct 780
 cttdcccttgg ttttgatac ttagcttga aaataccatc ccagggttaa tgctgggtt 840
 aatttataac taagagtct ctagtttgc aatacaggac atgctataaa aatggaaaga 900
 tgttgcttgc tgagagacag ctttattgcg gtatgttac acagttaaat tgctaacgca 960
 gacgttgc atg gga cct tgg ggt tgg aaa ctc cgc tgg aca gtg gct ctg 1010
 Met Gly Pro Trp Gly Trp Lys Leu Arg Trp Thr Val Ala Leu
 1 5 10

ctc ctg gca gca gca gga aca gcc gtg gga gat cgc tgc gaa agg aac 1058
 Leu Leu Ala Ala Ala Gly Thr Ala Val Gly Asp Arg Cys Glu Arg Asn
 15 20 25 30

gag ttc cag tgc cag gac ggc aag tgc atc agc tac aag tgg gtc tgc 1106
 Glu Phe Gln Cys Gln Asp Gly Lys Cys Ile Ser Tyr Lys Trp Val Cys
 35 40 45

gac ggt agc gca gag tgg cag gac gga agc gac gaa agc cag gag act 1154
 Asp Gly Ser Ala Glu Cys Gln Asp Gly Ser Asp Glu Ser Glu Glu Thr
 50 55 60

tgc ctg agc gtg act tgc aag tcc ggc gac ttc tct tgc gga ggc aga 1202
 Cys Leu Ser Val Thr Cys Lys Ser Gly Asp Phe Ser Cys Gly Gly Arg
 65 70 75

gtg aac cgc tgc atc cct cag ttt tgg cgg tgc gac ggc cag gtg gat 1250
 Val Asn Arg Cys Ile Pro Gln Phe Trp Arg Cys Asp Gly Glu Val Asp
 80 85 90

tgc gat aac gga agc gac gag cag ggt tgc cct cct aag act tgc agc 1298
 Cys Asp Asn Gly Ser Asp Glu Gln Gly Cys Pro Pro Lys Thr Cys Ser
 95 100 105 110

cag gac gaa ttc cgc tgg cac gac ggc aag tgc atc agc agg cag ttc 1346
 Glu Asp Gln Phe Arg Cys His Asp Gly Lys Cys Ile Ser Arg Glu Phe

UPN-16-7717PCT_ST25.txt

115

120

125

gtc tgc gac agc gac agg gat tgt ctg gac gga agc gac gag gcc tct	Val Cys Asp Ser Asp Arg Asp Cys Leu Asp Glu Ser Asp Glu Ala Ser	1394
130 135 140		
tgt cct gtg ctg act tgt ggc cca gcc agc ttc cag tgc aac tcc agc	Cys Pro Val Leu Thr Cys Gly Pro Ala Ser Phe Glu Cys Asn Ser Ser	1442
145 150 155		
act tgc atc cca cag ctc tgg gct tgc gac aac gac cca gat tgc gag	Thr Cys Ile Pro Glu Leu Trp Ala Cys Asp Asn Asp Pro Asp Cys Glu	1490
160 165 170		
gac gga tca gac gag tgg cca cag cgc tgc aga ggc ctg tac gtg ttt	Asp Glu Ser Asp Glu Trp Pro Glu Arg Cys Arg Glu Leu Tyr Val Phe	1538
175 180 185 190		
cag ggc gat tcc agc cct tgc agc gct ttt gag ttc cac tgc ctg agc	Glu Glu Asp Ser Ser Pro Cys Ser Ala Phe Glu Phe His Cys Leu Ser	1586
195 200 205		
ggc gag tgc att cac tct tct tgg agg tgc gac ggt ggc cca gat tgc	Glu Glu Cys Ile His Ser Ser Trp Arg Cys Asp Glu Glu Pro Asp Cys	1634
210 215 220		
aag gac aag agc gac gag aat tgc gcc gtg gct act tgc aga cca	Lys Asp Lys Ser Asp Glu Glu Asn Cys Ala Val Ala Thr Cys Arg Pro	1682
225 230 235		
gac gaa ttc cag tgc agc gac ggc aat tgc atc cac ggc tct agg cag	Asp Glu Phe Glu Cys Ser Asp Glu Asn Cys Ile His Glu Ser Arg Glu	1730
240 245 250		
tgc gac agg gag tac gat tgc aag gac atg agc gac gaa gtc ggt tgc	Cys Asp Arg Glu Tyr Asp Cys Lys Asp Met Ser Asp Glu Val Glu Cys	1778
255 260 265 270		
gtg aac gtc acc ctc tgc gag ggt ccc aat aag ttc aag tgc cac agc	Val Asn Val Thr Leu Cys Glu Glu Pro Asn Lys Phe Lys Cys His Ser	1826
275 280 285		
ggc gag tgc att acc ctc gac aag gtc tgc aac atg gcc agg gat tgc	Glu Glu Cys Ile Thr Leu Asp Lys Val Cys Asn Met Ala Arg Asp Cys	1874
290 295 300		
cgg gat tgg agc gac gag cct atc aag gag tgc ggc acc aac gag tgc	Arg Asp Trp Ser Asp Glu Pro Ile Lys Glu Cys Glu Thr Asn Glu Cys	1922
305 310 315		
ctg gat aac aac ggc ggc tgc agc cac gtg tgc aat gac ctg aag atc	Leu Asp Asn Asn Glu Glu Cys Leu Cys Pro Asp Glu Phe Glu Leu Lys Ile	1970
320 325 330 335		
ggc tac gag tgc ctc tgc cca gac gga ttc cag ctg gtg gct cag aga	Glu Tyr Glu Cys Leu Cys Pro Asp Glu Phe Glu Leu Val Ala Glu Arg	2018
340 345 350		
cgc tgc gaa gac atc gac gag tgc cag gat ccc gac act tgc agc cag	Arg Cys Glu Asp Ile Asp Glu Cys Glu Asp Pro Asp Thr Cys Ser Glu	2066
355 360 365		
ctg tgc gtg aat ctg gag gga ggc tac aag tgc cag tgc gaa gag gga	Leu Cys Val Asn Leu Glu Glu Glu Tyr Lys Cys Glu Cys Glu Glu Glu	2114
370 375 380		
ttc cag ctg gac cct cac acc aag gct tgt aaa gcc gtg ggc agc atc	Phe Glu Leu Asp Pro His Thr Lys Ala Cys Lys Ala Val Glu Glu Glu	2162

UPN-16-7717PCT_ST25. txt
 385 390 395

gcc tac ctg ttc ttc acc aac aac aga cac gaa gtg cgg aag atg acc ctg	Ala Tyr Leu Phe Phe Thr Asn Arg His Glu Val Arg Lys Met Thr Leu	2210
400 405 410		
gat cgg agc gag tac acc agc ctg atc cct aac ctg cgg aac gtg gtg	Asp Arg Ser Glu Tyr Thr Ser Leu Ile Pro Asn Leu Arg Asn Val Val	2258
415 420 425 430		
gcc ctg gat aca gaa gtg gcc agc aac agg atc tat tgg agc gac ctg	Ala Leu Asp Thr Glu Val Ala Ser Asn Arg Ile Tyr Trp Ser Asp Leu	2306
435 440 445		
agc cag cgg atg att tgc agc acc cag ctg gac aga gcc cac gga gtg	Ser Glu Arg Met Ile Cys Ser Thr Glu Leu Asp Arg Ala His Glu Val	2354
450 455 460		
tcc agc tac gac acc gtg atc agc aga gac atc cag gct cca gac gga	Ser Ser Tyr Asp Thr Val Ile Ser Arg Asp Ile Glu Ala Pro Asp Glu	2402
465 470 475		
ctg gca gtg gat tgg atc cac agc aac atc tac tgg acc gac tca gtg	Leu Ala Val Asp Trp Ile His Ser Asn Ile Tyr Trp Thr Asp Ser Val	2450
480 485 490		
ctg gga aca gtg tcc gtg gcc gat aca aag ggc gtg aag cgg aag acc	Leu Glu Thr Val Ser Val Ala Asp Thr Lys Glu Val Lys Arg Lys Thr	2498
495 500 505 510		
ctg ttc aga gag aac ggc agc aag ccc agg gct att gtg gtg gat ccc	Leu Phe Arg Glu Asn Glu Ser Lys Pro Arg Ala Ile Val Val Asp Pro	2546
515 520 525		
gtg cac ggc ttc atg tat tgg acc gat tgg ggc acc ccc gct aag atc	Val His Glu Phe Met Tyr Trp Thr Asp Trp Glu Thr Pro Ala Lys Ile	2594
530 535 540		
aag aag ggc ggc ctg aac ggc gtg gac atc tac agc ctg gtg acc gag	Lys Lys Glu Glu Leu Asn Glu Val Asp Ile Tyr Ser Leu Val Thr Glu	2642
545 550 555		
aac atc cag tgg ccc aac gga att acc ctg gac ctg ctg agc ggc aga	Asn Ile Glu Trp Pro Asn Glu Ile Thr Leu Asp Leu Leu Ser Glu Arg	2690
560 565 570		
ctg tat tgg gtg gac agc aag ctg cac agc atc agc agc atc gac gtg	Leu Tyr Trp Val Asp Ser Lys Leu His Ser Ile Ser Ser Ile Asp Val	2738
575 580 585 590		
aac ggc gga aac cgg aag acc atc ctg gag gac gag aag aga ctg gcc	Asn Glu Glu Asn Arg Lys Thr Ile Leu Glu Asp Glu Lys Arg Leu Ala	2786
595 600 605		
cac cct ttc agc ctg gcc gtg ttc gag gac aag gtc ttc tgg acc gac	His Pro Phe Ser Leu Ala Val Phe Glu Asp Lys Val Phe Trp Thr Asp	2834
610 615 620		
atc atc aac gag gcc atc ttc agc gcc aac agg ctg aca gga agc gac	Ile Ile Asn Glu Ala Ile Phe Ser Ala Asn Arg Leu Thr Glu Ser Asp	2882
625 630 635		
gtg aac ctg ctg gca gag aat ctg ctg tct ccc gag gac atg gtg ctg	Val Asn Leu Leu Ala Glu Asn Leu Leu Ser Pro Glu Asp Met Val Leu	2930
640 645 650		
ttc cac aac ctg acc cag ccc aga ggc gtc aat tgg tgc gag aga acc	Phe His Asn Leu Thr Glu Pro Arg Glu Val Asn Trp Cys Glu Arg Thr	2978

UPN-16-7717PCT_ST25.txt

655	660	665	670													
acc	ctg	agc	aac	gga	ggt	tgc	cag	tac	ctg	tgc	ctg	cca	gcc	cct	cag	3026
Thr	Leu	Ser	Asn	Gly	Gly	Cys	Gl n	Tyr	Leu	Cys	Leu	Pro	Al a	Pro	Gl n	
				675				680					685			
att	aac	cct	cac	agc	ccc	aag	ttc	act	tgc	gct	tgc	cca	gac	ggc	atg	3074
Il e	Asn	Pro	Hi s	Ser	Pro	Lys	Phe	Thr	Cys	Al a	Cys	Pro	Asp	Gly	Met	
				690			695					700				
ctg	ctg	gcc	aga	gat	atg	cgg	tct	tgt	ctg	aca	gaa	gcc	gaa	gcc	gct	3122
Leu	Leu	Al a	Arg	Asp	Met	Arg	Ser	Cys	Leu	Thr	Gl u	Al a	Gl u	Al a	Al a	
				705			710				715					
gtg	gct	aca	cag	gag	aca	agc	acc	gtg	cgg	ctg	aag	gtg	tct	agc	aca	3170
Val	Al a	Thr	Gl n	Gl u	Thr	Ser	Thr	Val	Arg	Leu	Lys	Val	Ser	Ser	Thr	
				720		725				730						
gcc	gtg	aga	acc	cag	cac	aca	acc	acc	aga	ccc	gtg	cca	gat	acc	agc	3218
Al a	Val	Arg	Thr	Gl n	Hi s	Thr	Thr	Thr	Arg	Pro	Val	Pro	Asp	Thr	Ser	
				735		740			745			750				
aga	ctg	cca	gga	gct	aca	cca	gga	ctg	acc	acc	gtg	gag	atc	gtg	acc	3266
Arg	Leu	Pro	Gly	Al a	Thr	Pro	Gly	Leu	Thr	Thr	Val	Gl u	Il e	Val	Thr	
				755			760					765				
atg	agc	cac	cag	gct	ctg	gga	gac	gtg	gca	gga	aga	gga	aac	gag	aag	3314
Met	Ser	Hi s	Gl n	Al a	Leu	Gly	Asp	Val	Al a	Gl y	Arg	Gl y	Asn	Gl u	Lys	
				770			775					780				
aag	cct	agc	agc	gtg	aga	gcc	ctg	tct	atc	gtg	ctg	ccc	atc	gtg	ctg	3362
Lys	Pro	Ser	Ser	Val	Arg	Al a	Leu	Ser	Il e	Val	Leu	Pro	Il e	Val	Leu	
				785			790				795					
ctg	gtg	ttc	ctc	tgt	ctg	ggc	gtg	ttc	ctc	ctc	tgg	aag	aat	tgg	cgg	3410
Leu	Val	Phe	Leu	Cys	Leu	Gly	Val	Phe	Leu	Leu	Trp	Lys	Asn	Trp	Arg	
				800		805			810							
ctg	aag	aac	atc	aac	agc	atc	aac	ttc	gac	aac	ccc	gtg	tac	cag	aag	3458
Leu	Lys	Asn	Il e	Asn	Ser	Il e	Asn	Phe	Asp	Asn	Pro	Val	Tyr	Gl n	Lys	
				815		820			825			830				
acc	acc	gag	gac	gag	gtg	cac	att	tgc	cac	aac	cag	gac	ggc	tac	agc	3506
Thr	Thr	Gl u	Asp	Gl u	Val	His	Il e	Cys	His	Asn	Gl n	Asp	Gl y	Tyr	Ser	
				835			840					845				
tac	cct	agc	agg	cag	atg	gtg	tcc	ctg	gaa	gac	gac	gtg	gct	tga	3551	
Tyr	Pro	Ser	Arg	Gl n	Met	Val	Ser	Leu	Gl u	Asp	Asp	Val	Al a			
				850			855				860					
taagtgcacc	cggcgccct	cgaggacggg	gtgaactacg	cctgaggatc	cgatctttt											3611
ccctctgcc	aaaattatgg	ggacatcatg	aagcccttg	agcatctgac	ttctggctaa											3671
taaaggaaat	ttatttcat	tgcaatagt	tgttggatt	ttttgtgtct	ctcactcgga											3731
agcaattcgt	tgatctgaat	ttcgaccacc	cataataccc	attaccctgg	tagataagta											3791
gcatggcgg	ttaatcatta	actacaagga	acccttagtg	atggagttgg	ccactccctc											3851
tctgcgcgt	cgctcgctca	ctgaggccgg	gcgaccaaag	gtcgcccgac	gcccgccgtt											3911
tgcccgccg	gcctcagtga	gcgagcgcgc	gcgcagccctt	aattaaccta	attcactggc											3971
cgtcgttta	caacgtcg	actggaaaa	ccctggcg	acccaactta	atcgcc											4031
agcacatccc	ccttcgcca	gctggcgtaa	tagcgaagag	gcccgacccg	atcgcc											4091

UPN-16-7717PCT_ST25.txt

ccaacagttg	cgcagcctga	atggcgaatg	ggacgcgccc	tgttagcggcg	cattaagcgc	4151
ggcgggtgtg	gtggttacgc	gcagcgtgac	cgctacactt	gccagcgccc	tagcgcccgc	4211
tcctttcgct	ttcttccctt	ccttctcg	cacgttcgcc	ggcttcccc	gtcaagctct	4271
aaatcggggg	ctccctttag	ggttccgatt	tagtgctta	cggcacctcg	accccaaaaa	4331
acttgattag	ggtgatggtt	cacgtatgg	gccatcgccc	tgatagacgg	ttttcgccc	4391
tttgcgttg	gagtccacgt	tcttaatag	tggactctt	ttccaaactg	gaacaacact	4451
caaccctatc	tcggtctatt	ctttgattt	ataaggatt	ttgccgattt	cggcctattg	4511
gttaaaaaat	gagctgattt	aacaaaaatt	taacgcaat	tttaacaaaa	tattaacgct	4571
tacaatttag	gtggcacttt	tcggggaaat	gtgcgcgaa	cccttattt	tttattttc	4631
taaatacatt	caaatatgta	tccgctcatg	agacaataac	cctgataaaat	gcttcaataa	4691
tattgaaaaa	ggaagagtat	gagtattcaa	catttccgt	tcgcccatt	tcccttttt	4751
gcggcatttt	gccttcgt	tttgctcac	ccagaaacgc	tggtaaagt	aaaagatgct	4811
gaagatcagt	tgggtgcacg	agtggttac	atcgaactgg	atctcaacag	cggtaagatc	4871
ctttagagtt	ttcgccccga	agaacgttt	ccaatgatga	gcactttaa	agttctgcta	4931
tgtggcgcgg	tattatccc	tattgacgcc	gggcaagagc	aactcggtcg	ccgcatacac	4991
tatttcaga	atgacttgg	tgagttactca	ccagtcacag	aaaagcatct	tacggatggc	5051
atgacagtaa	gagaattatg	cagtgcgtcc	ataaccatga	gtgataaacac	tgcgccaac	5111
ttacttctga	caacgatcgg	aggaccgaag	gagctaaccg	ctttttgca	caacatgggg	5171
gatcatgtaa	ctcgccctga	tcgttggaa	ccggagctga	atgaagccat	accaaacgac	5231
gagcgtgaca	ccacgatgcc	tgttagcaatg	gcaacaacgt	tgcgcaaact	attaactggc	5291
gaactactta	ctctagcttc	ccggcaacaa	ttaatagact	ggatggaggc	ggataaaagtt	5351
gcaggaccac	ttctgcgctc	ggcccttccg	gctggctggt	ttattgctga	taaatctgga	5411
gccgggtgagc	gtgggtctcg	cggtatcatt	gcagcactgg	ggccagatgg	taagccctcc	5471
cgtatcgtag	ttatctacac	gacggggagt	caggcaacta	tggatgaacg	aatagacag	5531
atcgctgaga	taggtgcctc	actgattaag	cattggtaac	tgtcagacca	agtttactca	5591
tatatacttt	agattgattt	aaaacttcat	tttaattt	aaaggatcta	ggtgaagatc	5651
ctttttgata	atctcatgac	caaaatccct	taacgtgagt	tttcgttcca	ctgagcgtca	5711
gaccggtag	aaaagatcaa	aggatcttct	tgagatcctt	ttttctg	cgtaatctgc	5771
tgcttgcaaa	caaaaaaacc	accgctacca	gcggtggttt	gttgccgga	tcaagagcta	5831
ccaaactctt	ttccgaaggt	aactggcttc	agcagagcgc	agataccaa	tactgttctt	5891
ctagtgtagc	cgtatgttagg	ccaccacttc	aagaactctg	tagcaccgccc	tacataccctc	5951
gctctgctaa	tcctgttacc	agtggctgct	gccagtgccg	ataagtcgt	tcttaccggg	6011
ttggactcaa	gacgatagtt	accggataag	gcgcagcggt	cgggctgaac	ggggggttcg	6071
tgcacacagc	ccagcttgg	gcgaacgacc	tacaccgaac	tgagataacct	acagcgtgag	6131

ctatgagaaa	gcccacgct	tcccaaggg	agaaaggcg	acaggtatcc	ggtaagcggc	6191
agggtcgaa	caggagagcg	cacgagggag	cttccagggg	gaaacgcctg	gtatcttat	6251
agtccgtcg	ggttcgcca	cctctgactt	gagcgtcgat	tttgtgatg	ctcgtcaggg	6311
ggcggagcc	tatggaaaaa	cgcagcaac	gcggccttt	tacggttcct	ggcctttgc	6371
tggcctttg	ctcacatgtt	cttcctgcg	ttatccccgt	attctgtgga	taaccgtatt	6431
accgcctttg	agtgagctga	taccgctcgc	cgcagccaa	cgaccgagcg	cagcagtc	6491
gtgagcgagg	aagcggaga	gcgccaata	cgcaaaccgc	ctctcccccgc	gcgttggccg	6551
attcatataat	gcagctggca	cgacaggttt	cccgactgga	aagcgggcag	tgagcgaac	6611
gcaattaatg	tgagttagct	cactcattag	gcaccccagg	ctttacactt	tatgcttccg	6671
gctcgatgt	tgtgtgaaat	tgtgagcgga	taacaatttc	acacaggaaa	cagctatgac	6731
catgattacg	ccagatttaa	ttaaggcctt	aattagg			6768

<210> 7
 <211> 860
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic Construct

<400> 7

Met Gl y Pro Trp Gl y Trp Lys Leu Arg Trp Thr Val Al a Leu Leu Leu
 1 5 10 15

Al a Al a Al a Gl y Thr Al a Val Gl y Asp Arg Cys Gl u Arg Asn Gl u Phe
 20 25 30

Gl n Cys Gl n Asp Gl y Lys Cys Ile Ser Tyr Lys Trp Val Cys Asp Gl y
 35 40 45

Ser Al a Gl u Cys Gl n Asp Gl y Ser Asp Gl u Ser Gl n Gl u Thr Cys Leu
 50 55 60

Ser Val Thr Cys Lys Ser Gl y Asp Phe Ser Cys Gl y Gl y Arg Val Asn
 65 70 75 80

Arg Cys Ile Pro Gl n Phe Trp Arg Cys Asp Gl y Gl n Val Asp Cys Asp
 85 90 95

Asn Gl y Ser Asp Gl u Gl n Gl y Cys Pro Pro Lys Thr Cys Ser Gl n Asp
 100 105 110

Gl u Phe Arg Cys His Asp Gl y Lys Cys Ile Ser Arg Gl n Phe Val Cys
 115 120 125

Asp Ser Asp Arg Asp Cys Leu Asp Gl y Ser Asp Gl u Al a Ser Cys Pro
 130 135 140

UPN-16-7717PCT_ST25. txt

Val Leu Thr Cys Gl y Pro Al a Ser Phe Gl n Cys Asn Ser Ser Thr Cys
145 150 155 160

Ile Pro Gl n Leu Trp Al a Cys Asp Asn Asp Pro Asp Cys Gl u Asp Gl y
165 170 175

Ser Asp Gl u Trp Pro Gl n Arg Cys Arg Gl y Leu Tyr Val Phe Gl n Gl y
180 185 190

Asp Ser Ser Pro Cys Ser Al a Phe Gl u Phe His Cys Leu Ser Gl y Gl u
195 200 205

Cys Ile His Ser Ser Trp Arg Cys Asp Gl y Gl y Pro Asp Cys Lys Asp
210 215 220

Lys Ser Asp Gl u Gl u Asn Cys Al a Val Al a Thr Cys Arg Pro Asp Gl u
225 230 235 240

Phe Gl n Cys Ser Asp Gl y Asn Cys Ile His Gl y Ser Arg Gl n Cys Asp
245 250 255

Arg Gl u Tyr Asp Cys Lys Asp Met Ser Asp Gl u Val Gl y Cys Val Asn
260 265 270

Val Thr Leu Cys Gl u Gl y Pro Asn Lys Phe Lys Cys His Ser Gl y Gl u
275 280 285

Cys Ile Thr Leu Asp Lys Val Cys Asn Met Al a Arg Asp Cys Arg Asp
290 295 300

Trp Ser Asp Gl u Pro Ile Lys Gl u Cys Gl y Thr Asn Gl u Cys Leu Asp
305 310 315 320

Asn Asn Gl y Gl y Cys Ser His Val Cys Asn Asp Leu Lys Ile Gl y Tyr
325 330 335

Gl u Cys Leu Cys Pro Asp Gl y Phe Gl n Leu Val Al a Gl n Arg Arg Cys
340 345 350

Gl u Asp Ile Asp Gl u Cys Gl n Asp Pro Asp Thr Cys Ser Gl n Leu Cys
355 360 365

Val Asn Leu Gl u Gl y Gl y Tyr Lys Cys Gl n Cys Gl u Gl u Gl y Phe Gl n
370 375 380

Leu Asp Pro His Thr Lys Al a Cys Lys Al a Val Gl y Ser Ile Al a Tyr
385 390 395 400

Leu Phe Phe Thr Asn Arg His Gl u Val Arg Lys Met Thr Leu Asp Arg
405 410 415

UPN-16-7717PCT_ST25. txt

Ser Glu Tyr Thr Ser Leu Ile Pro Asn Leu Arg Asn Val Val Ala Leu
420 425 430

Asp Thr Glu Val Ala Ser Asn Arg Ile Tyr Trp Ser Asp Leu Ser Glu
435 440 445

Arg Met Ile Cys Ser Thr Glu Leu Asp Arg Ala His Glu Val Ser Ser
450 455 460

Tyr Asp Thr Val Ile Ser Arg Asp Ile Glu Ala Pro Asp Glu Leu Ala
465 470 475 480

Val Asp Trp Ile His Ser Asn Ile Tyr Trp Thr Asp Ser Val Leu Glu
485 490 495

Thr Val Ser Val Ala Asp Thr Lys Glu Val Lys Arg Lys Thr Leu Phe
500 505 510

Arg Glu Asn Glu Ser Lys Pro Arg Ala Ile Val Val Asp Pro Val His
515 520 525

Glu Phe Met Tyr Trp Thr Asp Trp Glu Thr Pro Ala Lys Ile Lys Lys
530 535 540

Glu Glu Leu Asn Glu Val Asp Ile Tyr Ser Leu Val Thr Glu Asn Ile
545 550 555 560

Glu Trp Pro Asn Glu Ile Thr Leu Asp Leu Leu Ser Glu Arg Leu Tyr
565 570 575

Trp Val Asp Ser Lys Leu His Ser Ile Ser Ser Ile Asp Val Asn Glu
580 585 590

Glu Asn Arg Lys Thr Ile Leu Glu Asp Glu Lys Arg Leu Ala His Pro
595 600 605

Phe Ser Leu Ala Val Phe Glu Asp Lys Val Phe Trp Thr Asp Ile Ile
610 615 620

Asn Glu Ala Ile Phe Ser Ala Asn Arg Leu Thr Glu Ser Asp Val Asn
625 630 635 640

Leu Leu Ala Glu Asn Leu Leu Ser Pro Glu Asp Met Val Leu Phe His
645 650 655

Asn Leu Thr Glu Pro Arg Glu Val Asn Trp Cys Glu Arg Thr Thr Leu
660 665 670

Ser Asn Glu Glu Cys Glu Tyr Leu Cys Leu Pro Ala Pro Glu Ile Asn
675 680 685

UPN-16-7717PCT_ST25. txt

Pro His Ser Pro Lys Phe Thr Cys Ala Cys Pro Asp Gly Met Leu Leu
690 695 700

Ala Arg Asp Met Arg Ser Cys Leu Thr Glu Ala Glu Ala Ala Val Ala
705 710 715 720

Thr Gln Glu Thr Ser Thr Val Arg Leu Lys Val Ser Ser Thr Ala Val
725 730 735

Arg Thr Gln His Thr Thr Arg Pro Val Pro Asp Thr Ser Arg Leu
740 745 750

Pro Gly Ala Thr Pro Gly Leu Thr Thr Val Glu Ile Val Thr Met Ser
755 760 765

His Gln Ala Leu Gly Asp Val Ala Gly Arg Gly Asn Glu Lys Lys Pro
770 775 780

Ser Ser Val Arg Ala Leu Ser Ile Val Leu Pro Ile Val Leu Leu Val
785 790 795 800

Phe Leu Cys Leu Gly Val Phe Leu Leu Trp Lys Asn Trp Arg Leu Lys
805 810 815

Asn Ile Asn Ser Ile Asn Phe Asp Asn Pro Val Tyr Gln Lys Thr Thr
820 825 830

Glu Asp Glu Val His Ile Cys His Asn Gln Asp Gly Tyr Ser Tyr Pro
835 840 845

Ser Arg Gln Met Val Ser Leu Glu Asp Asp Val Ala
850 855 860