

J. C. HOUSTON. LITHOGRAPHIC PRINTING.

APPLICATION FILED NOV. 15, 1915. 1,185,506.





Inventor

Josse ( Houston

## UNITED STATES PATENT OFFICE.

JESSE C. HOUSTON, OF WASHINGTON, DISTRICT OF COLUMBIA.

## LITHOGRAPHIC PRINTING.

1,185,506.

Specification of Letters Patent.

Patented May 30, 1916.

Application filed November 15, 1915. Serial No. 61,677.

To all whom it may concern:

Be it known that I, Jesse C. Houston, a citizen of the United States of America, residing at Washington, in the District of Columbia, have invented certain new and useful Improvements in Lithographic Printing, of which the following is a specification.

ing, of which the following is a specification.

This invention relates to lithographic printing and has for its object to provide a process for transferring an image such as an illustration, drawing, etc., directly without the use of a negative or copy on transfer paper as is now the practice to the surface of a prepared metallic plate, or any other plate or stone used in lithographic work, and then fixing the image on the plate in such a manner that ink may be applied thereto and innumerable copies of the original obtained by pressing upon the plate or the plate upon sheets of ordinary paper in the usual manner.

I have illustrated in the accompanying drawing several views showing the different steps by which my process is carried out and various paraphernalia incidental thereto in

which drawings:

Figure 1 is a diagrammatic perspective view of a light translucent or transparent paper having a drawing inscribed upon its 30 surface. Fig. 2 is a view of the plate after its exposure to actinic light and covered with anilin dye. Fig. 3 is a similar view of

the plate after development.

In lithographic processes heretofore em-35 ployed, it has been necessary to first make a negative, then to make a print of this negative upon sensitized transfer paper, and finally retransfer the image from the transfer paper to a lithographic stone. When it is desired to make large lithographic prints containing much detail by the aforesaid process, it becomes necessary to make the print in sections because of the fact that a large glass negative the same size of the print desired is expensive and difficult to handle, and therefore a number of glass negatives are made of sections of the original image and then transferred to a stone. With line designs a tracing is made and used in the transfer. 50 Each case entails considerable work and opens up opportunity for errors to arise in many ways and consumes much time.

My process enables me to obviate the above disadvantages because I do not use a 55 negative, tracing or copy on transfer paper, to transfer the original to the lithographic

stone or plate. As metallic plates are obtainable of any size at a comparatively small cost, these features are of obvious advantages and, furthermore, the image is fixed 60 upon this plate which becomes an impression plate, the only remaining steps necessary are to ink this plate and to impress upon it ordinary paper to obtain duplicate copies of the original. My process therefore 65 is of inestimable value when making copies of large map drawings, machine drawings or the like.

In carrying out my invention to the best advantage, it is preferable that the original 70 drawing be upon some translucent or transparent substance such as tracing paper, linen, or the like, designated 1 in the draw-A metallic plate, usually zinc, designated 2, but other metals such as aluminum, 75 copper or tin may be employed, is prepared by flowing over it a sensitized solution prepared according to the following formula. I have found the following formula to give excellent results, but it is understood that 80 changes of proportion of the ingredients may be made without departing from the spirit of my invention. 2 ounces clarified glue (preferably Le Page's), ½ ounce ammonium bichromate, 16 ounces water, ½ ounce 85 spirits of ammonia.

A suitable coating of the solution is placed. upon the plate and dried. The original drawing is then superposed upon the plate now sensitized, and the whole exposed to 90 actinic light in a suitable frame. The time for exposure to obtain the image is best determined by experiment for it is effected by both the quality of light and the light transmitting property of the material upon which 95 the original has been drawn or placed and visual examination of the plate to note progress of the printing is not entirely dependable in view of a later developing process required, which brings out the images 100 more clearly. The chief object of this exposure is to create a condition upon the plate whereby lithographic ink will be caused to become adhered to certain portions of the plate and expelled at others.

After the plate is sufficiently exposed it is placed in a developing bath prepared as follows; 1 ounce anilin dye, 16 ounces water.

Any colored dye may be used which is soluble in water.

negative, tracing or copy on transfer paper, to transfer the original to the lithographic those portions of the sensitized surface of

the plate which have been exposed to light to absorb the coloring matter of the developer, and as a consequence those portions of the sensitized surface which have been hid-5 den from the light beneath the lines of the drawing will be sharply defined because of the washing away of the unaffected glue. After this development the plate is dried and a solution poured over its surface, which 10 solution is prepared as follows: 1 lb. of best asphaltum, 4 ounces of white beeswax, and 4 ounces of mutton tallow, heated and melt-ed together, and while this mixture is still hot the following ingredients are added: 15 5 pints of turpentine, 1 ounce of oil of lavender, and ½ ounce of terpene, and the whole thoroughly mixed. After the plate is coated with the asphaltum mixture and dried, it is placed in a bath made up of 1 ounce hydro-20 chloric acid, and 30 ounces water. As a result of this treatment the anilin tinted surfaces of the developed plate will be washed free of color and the asphaltum filled lines of the plate sharply defined. The plate is 25 now ready for printing, which is accomplished by applying lithograph ink to the plate by means of a roller and then laying a sheet of ordinary paper down upon the plate and applying pressure in the usual press

The effect upon the ink when applied to the plate is to become adhered to the asphaltum filled lines and to become expelled from surfaces not coated with asphaltum, thereby giving a positive print in fac-simile

35 of the original drawings.

Of course it will be understood that if it be desired to carry out my process in connection with offset printing, the print is made positive on the plate and is then trans-40 ferred to a blanket or the like, from which duplicates can be made in the usual manner.

Thus it will be seen that I have disclosed a process for obtaining a plate adapted for printing a positive copy from an original 45 drawing or design without the intervening preparation of a negative or the transfer of

print to an impression surface.

It is to be further understood that while I have given specific directions for carrying out my process and have specified certain materials I do not wish to limit myself to the exact means described, but I wish to obtain the benefit of all modifications of the above described process without departing 55 from the spirit of my invention or the scope of the appended claims.

Having thus described my invention what

I claim is:

1. A process for preparing plates for 60 printing which consists in exposing a metallic sensitized plate under a translucid medium containing the original image, treating the plate with a chemical which will cause the exposed part thereof to become repellent es to a greasy substance, treating the plate with

a greasy substance and washing said plate to remove the unexposed sensitive medium, whereby ink will adhere only to the unexposed portions defined by the image.

2. A process for preparing plates for 70 printing which consists in exposing a sensitized plate under a translucid medium containing the original image, treating the plate with a developer containing anilin dye which causes the exposed part thereof to be- 75 come repellent to a greasy substance, treating the plate with a greasy substance and washing said plate to remove the unexposed sensitive medium, whereby ink will adhere only to the unexposed portions defined by sc

3. A process for preparing plates for printing which consists in exposing a metallic plate sensitized with glue and ammonium bichromate under a translucid drawing, 85 treating the plate in a solution containing anilin dye which will cause the exposed part thereof to become repellent to a greasy substance, washing the plate, applying a greasy substance to the plate, and then 90 washing the plate in diluted hydrochloric acid, whereby ink will adhere only to the unexposed portions defined by the image.

4. A process for developing bichromated plates used for an impression printing sur- 95 face, which plate has been previously exposed under a translucid drawing or the like, consisting in treating the exposed plate with a solution of anilin dye, further treating the plate to cause ink to adhere only to 100 the unexposed portions, then washing the plate in diluted hydrochloric acid.

5. A process for preparing plates to be used for lithograph printing which consists in developing a sensitized plate which has 105 been exposed beneath a transparent drawing or the like whereby the lines of the drawing are defined on the plate and treating the plate with anilin dye and then with greasy material, whereby the lines become filled 110 with said material and offer a surface adapted to absorb ink.

6. A process for preparing plates to be used for lithograph printing which consists in coating said plates with a sensitizing solution made of glue, ammonium bichromate, water and spirits of ammonia, and exposing same, then developing said plate in a developing dye solution and subsequently subjecting the plate to a line filling material made 126 of greasy substance, and finally washing the plate in a developer remover containing acid.

7. A process for preparing plates to be used for lithograph printing which consists in coating said plates with a sensitizing solution including bichromated colloid, then exposing the plate and developing the plate in a solution of anilin dye and water, and subsequently treating the plate with a line filling material composed of greasy sub- 188 stance, and finally washing the plate in a developer remover containing acid.

8. A process for preparing plates to be used for lithograph printing which consists in coating said plates with a solution containing sensitized glue, exposing the plate, and then subjecting the plate to a developing dye solution, and subsequently treating the plate with a line filling material made of asphaltum, beeswax, mutton tallow, turpentine, oil, and terpene, and finally washing the plate with a developer remover containing acid.

9. A process for preparing plates to be used for lithograph printing which consists in coating said plates with a solution containing sensitized glue, exposing the plate, then subjecting the plates after exposure to a developing dye solution, then treating the plate to a line filling material made of

greasy substance, and finally washing the plate in a developer remover of hydrochloric acid and water.

10. A process for preparing plates to be used for lithograph printing which consists in coating said plate with a sensitized colloid solution, subjecting the plate after exposure to a developing dye solution, subsequently treating the developed plate to a solution composed of sixteen parts of asphaltum, 30 four parts of beeswax, four parts of mutton tallow, sixty parts of turpentine, two parts of oil, and one part of terpene.

In testimony whereof I affix my signature

in the presence of two witnesses.

## JESSE C. HOUSTON.

Witnesses:

J. M. IMIRIE, F. M. MEYER.