PCT

(21) International Application Number:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 9/24

(11) International Publication Number: WO 96/36700

(43) International Publication Date: 21 November 1996 (21.11.96)

(22) International Filing Date:

0557/95

0558/95

PCT/DK96/00216 15 May 1996 (15.05.96)

(30) Priority Data:

16 May 1995 (16.05.95) DK 16 May 1995 (16.05.95) DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsvaerd (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DRABORG, Henriette [DK/DK]; Kollerød Bygade 21C, DK-3450 Alleroed (DK). CHRISTGAU, Stephan [DK/DK]; Raeveskovsvej 10A, DK-2820 Gentofte (DK).
- (74) Common Representative: NOVO NORDISK A/S; Corporate Patents, Novo Allé, DK-2880 Bagsvaerd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: AN ENZYME WITH EXOCHITINASE ACTIVITY

(57) Abstract

The invention relates to a DNA construct comprising a DNA sequence encoding an enzyme exhibiting exochitinase activity, which DNA sequence comprises the DNA sequence shown in SEQ ID No. 1 or SEQ ID No. 3, or analogues of the DNA sequences encoding polypeptides which are derived from *Saccharomyces cerevisiae* DSM No. 9944 or *Saccharomyces cerevisiae* DSM No. 9945. Further, the invention relates to a method of producing said enzyme, an enzyme preparation containing said enzyme, and the use of said exochitinase or said enzyme preparation for a number of purposes. Also claimed is the use of the DNA construct of the invention for producing transgenic plants. Finally, an isolated substantially pure culture of the deposited microorganisms is claimed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	us	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

1

AN ENZYME WITH EXOCHITINASE ACTIVITY

FIELD OF INVENTION

- The present invention relates to an enzyme with exochitinase activity, a DNA construct encoding said enzyme, a method of producing said enzyme, and an enzyme preparation containing said enzyme.
- 10 Further the invention relates to the use of said exochitinase or said enzyme preparation for a number of purposes.

BACKGROUND OF THE INVENTION

15

Considerable amount of chitin is found in the cells wall of most true fungal cells, in the exoskeleton of insects and crustaceans, and in nematodes (Cabib E., (1987) Adv. Enzymol., 59, 59-101; Gooday G., (1990), Microbial Ecol., 10, 397-431).

20

25

30

35

Native occurring chitin consist of a chemically stable insoluble polymer substance composed of β -1,4-N-acetyl glucosamine molecules of varying length, stabilized by hydrogen bonds to a higher ordered crystalline structure (Cabib E., (1987), Adv. Enzymol., 59, 59-101).

The polymer molecules of chitin are bound by β -1,4 linkages, and are in fungal cell walls often associated with β -1,3 glucan or β -1,6 glucan, polymers of glucose with β -1,3 and β -1,6 linkages, as well as various intrinsic cell wall components

Chitin is known to be hydrolysed by chitinases, including exoand endochitinases, which is present in most fungi, yeasts, plants and certain procaryotes (Cabib E., (1987), Adv. Enzymol., 59, 59-101; Gooday G., (1990), Microbial Ecol., 10, 397-431).

Exochitinases are enzymes that exolytically hydrolyse the β -1,4-linkage between two consecutive N-acetylglucosamines from the non-reducing end of chitin.

5

30

WO 96/36700

Exochitinases are also referred to as chitobiosidases or β -N-acetylhexosaminidases (E.C. 3.2.1.52, Enzyme Nomenclature, Academic Press, Inc., 1992).

10 Endochitinases (E.C. 3.4.1.14) are enzymes which randomly hydrolyse N-acetyl- β -D-glucosaminide 1,4- β -linkages of chitin and chitodextrins.

Chitinases, are thought to play an important role in the cell division and differentiation of fungi, and in the mycoparasitic activity displayed by several fungi, such as Gliocladium virens, Aphanocladium album and Trichoderma harzianum (De La Cruz et al. (1992) Eur. J. Biochem., 206, 859-867; Blaiseau and Lafay, (1992), Elsevier science publisher B.V., 243-248; Di Pietro et al., (1993), Mol. Plant Pathology 83, 308-313). Although many fungal chitinases have been reported, only few of them have been cloned and characterized at molecular level (Harman et al., (1993), Mol. Plant Pathology 83, 313-318; Blaiseau and Lafay, (1992), supra; Gracia, (1994), Current Genetics 27, 83-89.

A number of readily available commercial enzyme products useful in the enzymatic lysis of fungal cells comprise chitinase. Beside chitinase(s) such products normally also comprise multiple enzymatic activities, e.g. including β -1,3- and β -1,6-glucanase, cellulase, protease, mannase and other enzymes capable of degrading cell wall components.

WO 92/22314 (Cornell Research Foundation, INC) describes two chitinases from *Trichoderma harzianum* P1 (ATCC 74058) which inhibit chitin containing fungus and insects. The first is an

3

endochitinase having a molecular weight of 36 kDa and an isoelectric point of about 5.3. The second is an exochitinase having a molecular weight of 36 kDa and an isoelectric point of about 4.4.

5

10

30

WO 94/24288 and WO 94/02598 (Cornell Research Foundation, INC) discloses two chitinases from *Trichoderma harzianum* P1 (ATCC 74058) which inhibit chitin containing fungus and insects. The first is an endochitinase and the other is an chitobiosidase. Both have molecular weights of 40 kDa and isoelectric points of about 3.9.

EP 440.304 concerns plants exhibiting a relative overexpression of at least one gene encoding intracellular chitinase and intra- or extracellular β -1,3 glucanase. Further, the recombinant polynucleotides are disclosed.

Comments to prior art

In general enzyme preparations containing chitinases also contain a number of other enzyme activities. This may in certain cases be a drawback.

Said drawback may be remedied by using single-component enzymes (i.e. substantially without any side activity) exhibiting chitinase activity.

Consequently there exists a need for providing novel chitinases, preferably in single-component form, which may be used for applications where a single or dominating chitinolytic activity is desirable.

25

30

SUMMARY OF THE INVENTION

- The present inventors have now surprisingly succeeded in isolating and characterizing two DNA sequences which encode enzymes exhibiting exochitinase activity, thereby making it possible to prepare single-component exochitinases.
- 10 Accordingly, in a first aspect the invention relates to a DNA construct comprising a DNA sequence encoding an enzyme exhibiting exochitinase activity, which DNA sequence
 - a) comprises the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3, or
- b) comprises an analogue of the DNA sequence shown in SEQ ID no. 1 or SEQ ID no 3, which
 - i) is homologous with the DNA sequences shown in SEQ ID no. 1 or SEQ ID no. 3, and/or
 - ii) hybridizes with the same oligonucleotide probe as the DNA sequence shown in SEQ ID no. 1 or SEQ ID no. 3, and/or
 - iii) encodes a polypeptide which is homologous with the polypeptide encoded by a DNA sequence comprising the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3, and/or
 - iv) encodes a polypeptide which is immunologically reactive with an antibody raised against a purified exochitinase shown in SEQ ID no. 2 derived from Saccharomyces cerevisiae DSM no. 9944 or against a purified Exochitinase shown in SEQ ID no. 4 derived from Saccharomyces cerevisiae DSM no. 9945.

In a second aspect the invention relates to a DNA construct comprising a DNA sequence encoding an enzyme exhibiting exochitinase activity, which DNA sequence comprises at least a partial sequence of the DNA sequence shown in SEQ ID no. 1 or SEQ ID no. 3.

In the present context, the "analogue" of the DNA sequence shown in SEQ ID no. 1 or SEQ ID no. 3 is intended to indicate any DNA sequence encoding an enzyme exhibiting exochitinase activity, which has the properties i)-vi). The analogous DNA sequence

- may be isolated from any organism producing the enzyme with exochitinase activity on the basis of a partial DNA sequence comprised in the DNA sequence shown in SEQ ID no. 1 or SEQ ID no. 3, e.g. using the procedures described herein, and thus, e.g. be an allelic or species variant of the DNA sequence shown herein,

15 - may be constructed on the basis of a partial DNA sequence comprised in the DNA sequences shown in SEQ ID no. 1 or SEQ ID no. 3, e.g. by introduction of nucleotide substitutions which do not give rise to another amino acid sequence of the exochitinase encoded by the DNA sequence, but which correspond to the codon usage of the host organism intended for production 20 of the enzyme, or by introduction of nucleotide substitutions which may give rise to a different amino acid sequence. However, in the latter case amino acid changes are preferably of minor nature, that is conservative amino substitutions that do not significantly affect the folding or 25 activity of the protein, small deletions, typically of one to about 30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small exten-30 sion that facilitates purification, such as a poly-histidine tract, an antigenic epitope or a binding domain. See in general Ford et al., (1991), Protein Expression and Purification, 2, 95-107. Examples of conservative substitutions are within the group of basic amino acids (such as arginine, lysine, histidine), acidic amino acids (such as glutamic acid and aspartic 35 acid), polar amino acids (such as glutamine and asparagine), hydrophobic amino acids (such as leucine, isoleucine, valine), aromatic amino acids (such as phenylalanine, tryptophan, tyrosine) and small amino acids (such as glycine, alanine, serine, threonine, methionine).

It will be apparent to persons skilled in the art that such 5 substitutions can be made outside the regions critical to the function of the molecule and still result in an active polypeptide. Amino acids essential to the activity of the polypeptide encoded by the DNA construct of the invention, and therefore preferably not subject to substitution, may be 10 identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning (Cunningham and Wells, (1989), Science, 244, 1081-1085). In the latter technique mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological (i.e. exochitinolytic) activity to identify amino acid residues that are critical to the activity of the molecule. Sites of substrate-enzyme interaction can also be determined by analysis of crystal structure as determined by such techniques as nuclear magnetic resonance, crystallography 20 or photoaffinity labelling. See, for example, de Vos et al., (1992), Science, 255, 306-312; Smith et al., (1992), J. Mol. Biol., 224, 899-904; Wlodaver et al., (1992) FEBS Lett., 309, 59-64.

25

It will be understood that any partial sequences comprised in the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3 may be used for isolating the entire DNA sequence encoding the enzyme with exochitinase activity, e.g. the DNA sequence shown in SEQ ID No. 1. DNA sequences encoding at least about 6 amino acids of the sequence shown in SEQ ID No. 2 or SEQ ID no. 4 are comtemplated as partial sequences according to the invention. The term "analogue" is intended to include said entire DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3, or parts thereof. The amino acid sequences (as deduced from the DNA sequence shown in SEQ ID No. 1 and SEQ ID no. 3) are shown in SEQ ID No. 2 and SEQ ID no. 4.

WO 96/36700

7

The homology referred to in i) above is determined as the degree of identity between the two sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art such as GAP provided in the GCG program package (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, p. 443-453). Using GAP with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the DNA sequence exhibits a degree of identity of at least 70%, preferably at least 80%, especially at least 90%, with the coding region of the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3.

15

20

25

30

35

10

The hybridization referred to in ii) above is intended to indicate that the analogous DNA sequence hybridizes to the same probe as the DNA sequence encoding the exochitinase under certain specified conditions which are described in detail in the Materials and Methods section hereinafter.

Normally, the analogous DNA sequence is highly homologous to the DNA sequence such as at least 70% homologous to the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3 encoding exochitinases of the invention, such as at least 75%, at least 80%, at least 85%, at least 90% or even at least 95% homologous to said DNA sequence

The homology referred to in iii) above is determined as the degree of identity between the two sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art such as GAP provided in the GCG program package (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, p. 443-453). Using GAP with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the DNA sequence exhibits a degree of

identity of at least 70%, preferably at least 80%, especially at least 90%, with the coding region of the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3.

- The term "derived from" in connection with property vi) above is intended not only to indicate an exochitinase produced by the above mentioned deposited strain Saccharomyces cerevisiae DSM no. 9944 or DSM no. 9945, but also an exochitinase encoded by a DNA sequence isolated from the deposited strain DSM no.
- 10 9944 or DSM no. 9945 and produced in a host organism transformed with said DNA sequence. The immunological reactivity may be determined by the method described in the Materials and Methods section below.
- In further aspects the invention relates to an expression vector harbouring a DNA construct of the invention, a cell comprising the DNA construct or expression vector and a method of producing an enzyme exhibiting exochitinase activity which method comprises culturing said cell under conditions permitting the production of the enzyme, and recovering the enzyme from the culture.

In a still further aspect the invention relates to an enzyme exhibiting exochitinase activity, which enzyme

- 25 a) is encoded by a DNA construct of the invention
 - b) produced by the method of the invention, and/or
 - c) is immunologically reactive with an antibody raised against a purified exochitinase shown in SEQ ID No. 2 derived from Saccharomyces cerevisiae DSM no. 9944 or against a purified exochitinase shown in SEQ ID no. 4 derived from Saccharomyces cerevisiae DSM 9945.

In a still further aspect, the present invention relates to an enzyme preparation useful for the degradation or modification of fungal, invertebrate, or nematode cell wall components, said preparation being enriched with an enzyme exhibiting exochitinase activity as described above.

30

The invention also relates to the use of an exochitinase of the invention or an enzyme preparation of the invention comprising an exochitinase of the invention for plant protection and pharmaceutical purposes.

Finally the invention relates to an isolated substantially pure culture of the deposited strain of Saccharomyces cerevisiae DSM no. 9944 or DSM no. 9945, transformed with a plasmid-DNA comprising the DNA sequences shown in SEQ ID No. 1 and SEQ ID no. 3, respectively or a partial DNA sequence of these two sequences.

15 DETAILED DESCRIPTION OF THE INVENTION

The DNA sequence of the invention encoding an enzyme exhibiting exochitinase activity may be isolated by a general method involving

- cloning, in suitable vectors, a cDNA library from e.g. a strain of Saccharomyces sp., Aspergillus sp., Trichoderma sp., Penicillium sp., Fusarium sp., Gliocladium sp., Aphanocladium sp., or Humicola sp.,
 - transforming suitable yeast host cells with said vectors,
- 25 culturing the host cells under suitable conditions to express any enzyme of interest encoded by a clone in the DNA library,
 - screening for positive clones by determining any exochitinase activity of the enzyme produced by such clones, and
 - isolating the enzyme encoding DNA from such clones.

The general method is further disclosed in WO 93/11249 the contents of which are hereby incorporated by reference. A more detailed description of the screening method is given in Example 2 below.

10

Two isolates of Saccharomyces cerevisiae transformed with the expression plasmid pYES 2.0 (Invitrogen), comprising the cDNA sequences, shown in SEQ ID No. 1 and SEQ ID No 3, respectively, encoding exochitinases of the invention, have been deposited with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-3300 Braunschweig, Federal Republic of Germany, (DSM), for the purposes of patent procedure on the date indicated below. DSM being an international depository under the Budapest Treaty affords permanence of the deposit in accordance with rule 9 of said treaty.

Deposit date : 27.04.95 Depositor's ref.: NN14684

CBS designation : DSM No. 9944

15

30

10

Deposit date : 27.04.95
Depositor's ref.: NN14685

CBS designation : DSM No. 9945

The two plasmid-DNA isolates of the fungus Saccharomyces cerevisiae DSM no. 9944 (NN14684) and DSM no. 9945 (NN14685), respectively have been deposited under conditions that assure that access to the isolated yeast will be available during the pendency of this patent application to one determined by the commissioner of Patents and Trademarks to be entitled thereto under 37 C.F.R. § 1.14 and 35 U.S.C § 122.

Further the above mentioned depositions of the yeast Saccharomyces cerevisiae DSM no. 9944 and DSM no. 9945 have been done to fulfil the requirements of a European patent applications under Rule 28 of the European Patent Convention.

The deposits represent substantially pure cultures of the two isolated yeast. The deposits are available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny are filed. However, it should be understood that the availability of the deposits does

not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action.

A DNA sequence coding for the enzyme exhibiting exochitinase activity can for instance be isolated from the above mentioned deposited strains as described in Example 1.

Further said DNA sequence may be isolated by screening a cDNA library of e.g. the above mentioned group of fungi, and selecting for clones expressing the appropriate enzyme activity (i.e. exochitinase activity as defined by the ability of the enzyme to hydrolyse the β -1,4-linkage of a suitable substrate, such as the synthetic chitin substrate 4-methylumbelliferyl N-acetylglucosaminide (MUF-GlcNAc), cf. the Materials and Methods section herein after). The appropriate DNA sequence may then be isolated from the clone by standard procedures.

10

15

20

25

30

It is expected that a DNA sequence coding for a homologous enzyme, i.e. an analogous DNA sequence, is obtainable from other microorganisms. For instance, the DNA sequence may be derived by screening a cDNA library of another microorganism, such as in particular a fungus, such as a strain of an Aspergillus sp., in particular a strain of A. aculeatus or A. niger, a strain of another Trichoderma sp., in particular a strain of T. reesie, T. viride, T. longibrachiatum, T. harzianum or T. koningii or a strain of a Fusarium sp., in particular a strain of F. oxysporum, or a strain of Gliocladium sp., in particular Gliocladium virens, or a strain of Aphanocladium, in particular Aphanocladium album, or a strain of a Humicola sp., or a strain of Beauveria sp., in particular Beauveria bassiana, or a strain of Metarhizium sp., in particular Metarhizium anisopliae, or a strain of Mucor sp., in particular Mucor rouxii, or a mutant thereof capable of producing a compound of the invention.

35 Alternatively, the DNA coding for an exochitinase of the invention may, in accordance with well-known procedures, conveniently be isolated from DNA from a suitable source, such

12

as any of the above mentioned organisms, by use of synthetic oligonucleotide probes prepared on the basis of a DNA sequence disclosed herein. For instance, a suitable oligonucleotide probe may be prepared on the basis of the nucleotide sequences shown in SEQ ID No. 1 or SEQ ID no. 3, or a partial sequence thereof, or the amino acid sequences shown in SEQ ID No. 2 or SEQ ID no. 4, or any suitable subsequence thereof.

The DNA sequence may subsequently be inserted into a recombinant expression vector. This may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

20

25

30

35

10

15

In the vector, the DNA sequence encoding the exochitinase should be operably connected to a suitable promoter and terminator sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. The procedures used to ligate the DNA sequences coding for the exochitinase, the promoter and the terminator, respectively, and to insert them into suitable vectors are well known to persons skilled in the art (cf., for instance, Sambrook et al., (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, NY).

The host cell which is transformed with the DNA sequence encoding the enzyme of the invention is preferably an eukaryotic cell, in particular a fungal cell such as a yeast or filamentous fungal cell. In particular, the cell may belong to a species of *Trichoderma*, preferably *Trichoderma* harzianum or

13

Trichoderma reesie, or a species of Aspergillus, preferably Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. The use of Aspergillus as a host microorganism is described in EP 238 023 (of Novo Nordisk A/S), the contents of which are hereby incorporated by reference. The host cell may also be a yeast cell, e.g. a Saccharomyces, strain of in particular Saccharomyces cerevisiae, Saccharomyces kluyveri or Saccharomyces uvarum, a strain of Schizosaccharomyces sp., such as Schizosaccharomyces pombe, a strain of Hansenula sp. Pichia sp., Yarrowia sp. such Yarrowia lipolytica, or Kluyveromyces sp. Kluyveromyces lactis.

15

20

25

30

10

In a still further aspect, the present invention relates to a method of producing an enzyme according to the invention, wherein a suitable host cell transformed with a DNA sequence encoding the enzyme is cultured under conditions permitting the production of the enzyme, and the resulting enzyme is recovered from the culture.

The medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question. The expressed exochitinase may conveniently be secreted into the culture medium and may be recovered there from by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

In a still further aspect, the present invention relates to an enzyme preparation useful for the degradation or modification of fungal cell wall components, said preparation being enriched in an enzyme exhibiting exochitinase activity as described

above.

In the present context, the term "enriched" is intended to indicate that the exochitinase activity of the enzyme preparation has been increased, e.g. with an enrichment factor of at least 1.1, conveniently due to addition of an enzyme of the invention prepared by the method described above.

Alternatively, the enzyme preparation enriched in an enzyme exhibiting exochitinase activity may be one which comprises an enzyme of the invention as the major enzymatic component, e.g. a single-component enzyme preparation.

The enzyme preparation may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry preparation. For instance, the enzyme preparation may be in the form of a granulate or a microgranulate. The enzyme to be included in the preparation may be stabilized in accordance with methods known in the art.

20

25

35

The enzyme preparation of the invention may, in addition to an exochitinase of the invention, contain one or more other fungal, invertebrate, such as crustacean, and/or nematode cell wall degrading enzymes, for instance those with proteolytic, β -glucanolytic, mannanolytic, chitinolytic activities, such as protease, β -glucanase, β -mannosidase, mannanase, β -glucosidase, endochitinase, and mannan acetyl esterase. The additional enzyme(s) may be producible by means of a microorganism belonging to the genus Aspergillus, preferably Aspergillus niger, Aspergillus aculeatus, Aspergillus awamori or Aspergillus oryzae, or Trichoderma sp..

Examples are given below of preferred uses of the enzyme preparation of the invention. The dosage of the enzyme preparation of the invention and other conditions under which the preparation is used may be determined on the basis of methods known in the art.

15

25

30

The enzyme preparation according to the invention may be used as an agent for degradation or modification of fungal, invertebrate and/or nematode cell walls, or for making protoplasts from fungi.

Further exochitinases of the invention may advantageously be used for protecting plants against nematode eggs and generally against fungal infection, e.g. by coating the seeds, or by spraying the plants.

In connection with combating fungal microorganisms on plants a DNA sequence encoding the exochitinase of the invention may be used for producing transgenic plants, by introducing said DNA sequence into a plant. This may increase the plants resistance against microorganisms of fungal origin.

Another advantageous use of exochitinases of the invention include modification of chitin for use for pharmaceutical purposes, e.g. for wound dressing.

Finally the invention relates to substantially pure cultures of the deposited microorganisms *Saccharomyces cerevisiae* DSM no. 9944 and DSM no. 9945, which comprises the above described DNA construct of the invention, containing a DNA sequence encoding an exochitinase of the invention.

The invention is described in further detail in the following examples which are not in any way intended to limit the scope of the invention as claimed.

MATERIALS AND METHODS

35 Deposited organisms:

Saccharomyces cerevisiae DSM no. 9944 transformed with the DNA sequence shown in SEQ ID No. 1, encoding the exochitinase of

16

the invention, comprised in the expression plasmid pYES 2.0.

Saccharomyces cerevisiae DSM no. 9945 transformed with the DNA sequence shown in SEQ ID No. 3, encoding the exochitinase of the invention, comprised in the expression plasmid pYES 2.0.

Plasmids:

5

pYES 2.0 (Invitrogen)

pClEXC1: SEQ ID. no. 1 sequence in pYES 2.0

10 pClEXC2: SEQ ID. no. 3 sequence in pYES 2.0

Isolation of the the DNA sequence shown in SEQ ID no. 1 and SEQ ID no. 3

The yeast expression vectors of the type pYES 2.0 containing the exochitinase cDNA sequences shown in SEQ ID no. 1 and SEQ ID no. 3, respectively, can be isolated from the deposited organism Saccharomyces cerevisiae DSM no. 9944 and DSM 9945, restectively by extraction of plasmid cDNA by methods known in the art.

20

The deposited organisms may be cultured on agar plates containing SC + 2% galactose and incubated at 30°C for 3-5 days as described below.

25

30

35

Hybridization conditions (to be used in evaluating property i) of the DNA construct of the invention):

Suitable conditions for determining hybridization between an oligonucleotide probe and an "analogous" DNA sequence involves presoaking of the filter containing the DNA sequences to hybridize in 5xSSC and prehybridizing the sequences for 1 h at $^55^{\circ}$ C in a solution of 2xSSC, 5xDenhardt's solution, 50 mM sodium phosphate, pH 6.8, and 50 μ g of denatured sonicated calf thymus DNA, followed by hybridization in the same solution supplemented with 50 μ Ci 32-P-dCTP labelled probe for 18 h at $^55^{\circ}$ C followed by washing in 2xSSC (2x15 minutes), 2xSSC, 0.2% SDS (1x30)

minutes), 0.2xSSC, 0.5% SDS (1x30 minutes), 2xSSC (2x15 minutes) at 55° C.

A suitable oligonucleotide probe to be used in the hybridization may be prepared on the basis of the DNA sequences shown in SEQ ID No. 1 and SEQ ID no. 3, respectively, or partial sequences thereof.

Immunological cross-reactivity: Antibodies to be used in determining immunological cross-reactivity may be prepared by use of 10 a purified exochitinase. More specifically, antiserum against the exochitinase of the invention may be raised by immunizing rabbits (or other rodents) according to the procedure described Axelsen et al. in: Α Manual of Quantitative 15 Immunoelectrophoresis, Blackwell Scientific Publications, 1973, Chapter 23, or A. Johnstone and R. Thorpe, Immunochemistry in Practice, Blackwell Scientific Publications, (1982)specifically p. 27-31). Purified immunoglobulins may obtained from the antisera, for example by salt precipitation 20 (NH₄)₂SO₄), followed by dialysis and ion chromatography, e.g. on DEAE-Sephadex. Immunochemical characterization of proteins may be done either by Outcherlony double-diffusion analysis (O. Ouchterlony in: Handbook of Experimental Immunology (D.M. Weir, Ed.), Blackwell Scientific 25 Publications, (1967), p. 655-706), by crossed immunoelectrophoresis (N. Axelsen et al., supra, Chapters 3 and 4), or by rocket immunoelectrophoresis (N. Axelsen et al., Chapter 2).

30 Media

35

5

SC-URA: 90 ml 10 x Basal salt, 22.5 ml 20% casamino acids, 9 ml 1% tryptophan, H_2O ad 806 ml, autoclaved, 3.6 ml 5% threonine and 90 ml 20% glucose or 20% galactose added.

SC-H broth: 7.5 g/l yeast nitrogen base without amino acids, 11.3 g/l succinic acid, 6.8 g/l NaOH, 5.6 g/l casamino acids

without vitamins, 0.1 g/l tryptophan. Autoclaved for 20 min. at 121°C. After autoclaving, 10 ml of a 30% galactose solution, 5 ml of a 30% glucose solution and 0.4 ml of a 5% threonine solution were added per 100 ml medium.

5

SC-H agar: 7.5 g/l yeast nitrogen base without amino acids, 11.3 g/l succinic acid, 6.8 g/l NaOH, 5.6 g/l casamino acids without vitamins, 0.1 g/l tryptophan, and 20 g/l agar (Bacto). Autoclaved for 20 min. at 121°C. After autoclaving, 55 ml of a 22% galactose solution and 1.8 ml of a 5% threonine solution were added per 450 ml agar.

4-methylumbelliferyl N-acetylglucosaminide (MUF-GlcNAc) (Sigma, USA)

15

10

MUF-N, N'-diacetylchitobioside (MUF-(GlcNAc)₂) (Sigma, USA)

MUF-N,N',N''-tridiacetylchitotrioside (MUF-(GlcNAc)₃) (Sigma, USA)

20

Qiagen purified plasmid DNA (Qiagen, USA),

Sequenase®kit (U.S.Biochemical corp., USA)

25 Remazol Brilliant Violet colloidal chitin (Sigma, USA)

Random hexanucleotide primers (Gibco BRL, USA)

30 EXAMPLE 1

Characterization of enzyme from yeast

Saccharomyces cerevisiae DSM No. 9944 and DSM no. 9945 were cultured separetly on SC-glucose plates for 3-4 days at 40°C. The plates were replicated onto a set of four selective agar plates containing 2% galactose. One of the plates was also supplemented with 0.2% Remazol Brilliant Violet colloidal

chitin.

After incubation at 30°C for three days SC-agar plates with 2% galactose were overlayerd with 10 ml 1% agarose, 0.1 M citric acid/sodium citrate buffer, pH 5.0, containing 1 mg of MUF-(GlcNAc), MUF-(GlcNAc)₂ or MUF-(GlcNAc)₃ each.

The release of 4-methylumbelliferyl by chitinases was visualized under UV-light.

10

15

20

25

35

The recombinant yeast harbouring the plasmids pClEXC1 showed activity on MUF-GlcNAc immediately after the agarose overlayer was spread over the yeast colonies, whereas activities on MUF-(GlcNAc)₂ and MUF-(GlcNAc)₃ were visualized only after 5 and 10 minutes of incubation, respectively. By comparison, the recombinant yeast strain showed no activity on the hydrated colloidal chitin.

The recombinant yeast harbouring the plasmids pClEXC2 showed activity on MUF-GlcNAc immediately after the agarose overlayer was spread over the yeast colonies, whereas activities on MUF-(GlcNAc)₂ and MUF-(GlcNAc)₃ were visualized only after 5 and 10 minutes of incubation, respectively. By comparison, the recombinant yeast strain showed no activity on the hydrated colloidal chitin.

EXAMPLE 2

30 Construction and screening of the cDNA library

Total RNA was prepared from frozen, powdered mycelium of a *Trichoderma harzianum* strain by extraction with guanidinium thiocyanate followed by ultracentrifugation through a 5.7 M CsCl cushion (Chirgwin et al., (1979), Biochemistry, 18, 5294-5299). Poly(A)+RNA was isolated by oligo(dT)cellulose affinity chromatography (Aviv and Leder, (1972), Proc. Natl. Acad. Sci. U.S.A., 69, 1408-1412). Double-stranded cDNA was synthesized

from 5 μ g of poly(A)+RNA as described (Gubler and Hoffman, (1983), Gene, 25, 263-269; Sambrook et al., (1989), Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York, Cold Spring Harbot Laboratory) except that 25 ng of random hexanucleotide primers (Gibco BRL, USA) were included in the first strand synthesis. A cDNA library consisting of 1.5 x 10° clones was constructed in the yeast expression vector pYES 2.0 as described previously (Kofod et al., (1994), J. Biol. Chem., 261, 8407-8413). Plasmid DNA from a cDNA library pool was transformed into S. cerevisiae W3124 (van den Hazel et al., 10 (1992), Eur. J. Biochem., 207, 277-283) by electroporation (Becker and Guarente, (1991), Methods Enzymol., 194, 182-187) and the transformants were plated on SC agar (Sherman, (1991), Methods Enzymol. 194, 3-21) containing 2% glucose. After incubation at 30°C for 3 to 4 days, the colonies were 15 replicated onto SC agar plates containing 2% galactose and incubated for 3 days at 30°C before the yeast colonies were overlayered with 1% agarose containing 0.1 M citric acid/sodium citrate buffer pH 5.0 and 0.001% 4-methylumbelliferyl N-20 acetylglucosamine (MUF-GlcNAc).

Exochitinase positive clones were identified under UV-light by the formation of fluorescent halos. Total DNA from the positive yeast colonies was isolated and the insert containing pYES 2.0 clones were rescued by transformation of *E. coli* MC 1061 (Meissner et al., (1987), Proc. Natl. Acad. Sci. U.S.A., 84, 4171-4176) to ampicillin resistance.

Nucleotide sequence analysis

25

The nucleotide sequence of the cDNA insert was determined from both strands by the dideoxy chain termination method (Sanger et al., (1977), Proc. Natl. Acad. Sci. U.S.A., 74, 5463-5467) using Qiagen purified plasmid DNA, the Sequenase®kit or synthetic oligonucleotide primers. Analysis of the sequence date were performed according to Devereux et al., (1984), Nucleic Acids Res., 12, 387-395). The full length cDNA sequences are shown in SEQ ID no. 1 and SEQ ID No. 3,

respectively, and the corresponding amino acid sequences in SEQ ID No. 2 and SEQ ID no. 4, respectively.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (A) NAME: Novo Nordisk A/S (B) STREET: Novo Alle (C) CITY: Bagsvaerd (E) COUNTRY: Denmark (F) POSTAL CODE (ZIP): DK-2800 (G) TELEPHONE: +45 4444 8888 (H) TELEFAX: +45 4449 3256	
15	(ii) TITLE OF INVENTION: An enzyme with exochitinase activity	
	(iii) NUMBER OF SEQUENCES: 4	
20	<pre>(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30B (EPO)</pre>	
25	(2) INFORMATION FOR SEQ ID NO: 1:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2000 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: cDNA	
33	<pre>(vi) ORIGINAL SOURCE: (B) STRAIN: Trichoderma harzianum CBS 243.71</pre>	
40	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:861819	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GACATCTCCA CCATAGAGTC GACTCATTGC TGGCATACGG AGCATTCCAA TCTTACTCGT	60
50	AGTAGTGTTA TTGCCATCGC TCATC ATG CTG CCC AAG GCG ATC ATC GCG ATT Met Leu Pro Lys Ala Ile Ile Ala Ile 1 5	112
55	GCC GCA TTG GCT TTC AGC CCA GCA AAT GCG CTG TGG CCC ATT CCT CAG Ala Ala Leu Ala Phe Ser Pro Ala Asn Ala Leu Trp Pro Ile Pro Gln 10 15 20 25	160
55	AAG ATC TCG ACC GGA GAC AGC GTG CTC TTT ATT GAC CAG GCT GTT AGG Lys Ile Ser Thr Gly Asp Ser Val Leu Phe Ile Asp Gln Ala Val Arg 30 35 40	208
60	GTG ACT TAC AAT GGA GTA CCG ATC ATC CCT ATC GGC TAC AAC CCA CCG Val Thr Tyr Asn Gly Val Pro Ile Ile Pro Ile Gly Tyr Asn Pro Pro 45 50 55	256
65	GCC AGC TCC AAC TTC GAC AGC AGG CAA ATC GTC CAG GCG GCT GTC TCG Ala Ser Ser Asn Phe Asp Ser Arg Gln Ile Val Gln Ala Ala Val Ser 60 65 70	304
	CGC GCT TTC CAA AAC ATC TTC AGC ACC AAC TAT GTG CCA TGG AAG CTT	352

	Arg	Ala 75	Phe	Gln	Asn	Ile	Phe 80	Ser	Thr	Asn	Tyr	Val 85	Pro	Trp	Lys	Leu	
5	CAC His 90	CCG Pro	CGT Arg	AAC Asn	AGC Ser	AAC Asn 95	TTT Phe	GAG Glu	CCG Pro	AAG Lys	GTG Val 100	GCC Ala	CCT Pro	CAG Gln	AAC Asn	CGA Arg 105	400
10	ATC Ile	CAG Gln	TCC Ser	ATC Ile	TCA Ser 110	ATT Ile	CAG Gln	CAG Gln	ACT Thr	GGA Gly 115	AAG Lys	GAT Asp	ACG Thr	TCC Ser	AAG Lys 120	ACG Thr	448
15	TTC Phe	AAG Lys	CCG Pro	CGC Arg 125	GCC Ala	GGA Gly	GAC Asp	GTT Val	GAT Asp 130	GAG Glu	TCG Ser	TAC Tyr	TCT Ser	TTG Leu 135	Thr	ATT Ile	496
15	TCC Ser	AAG Lys	AAT Asn 140	GGA Gly	CAG Gln	GTC Val	AAC Asn	ATC Ile 145	AGT Ser	GCC Ala	AAG Lys	TCT Ser	TCT Ser 150	ACT Thr	GGT Gly	GTG Val	544
20	CTG Leu	CAC His 155	GCC Ala	CTC Leu	GAG Glu	ACC Thr	TTC Phe 160	TCG Ser	CAG Gln	CTT Leu	TTC Phe	TAC Tyr 165	AAG Lys	CAC His	TCT Ser	GCT Ala	592
25	GGA Gly 170	CCT Pro	TTC Phe	TAC Tyr	TAT Tyr	ACG Thr 175	ACT Thr	CAG Gln	GCT Ala	CCC Pro	GTG Val 180	TCC Ser	ATC Ile	ACA Thr	GAC Asp	GCT Ala 185	640
30	CCC Pro	AAA Lys	TAT Tyr	CCC Pro	CAC His 190	CGT Arg	GGC Gly	ATC Ile	ATG Met	CTT Leu 195	GAC Asp	CTT Leu	GCC Ala	CGT Arg	AAC Asn 200	TAT Tyr	688
35	CAA Gln	ACC Thr	ATT Ile	GAT Asp 205	GAC Asp	ATC Ile	AAG Lys	AGG Arg	ACC Thr 210	ATT Ile	GAC Asp	GCC Ala	ATG Met	TCG Ser 215	TGG Trp	AAC Asn	736
	AAG Lys	CTT Leu	AAC Asn 220	CGC Arg	CTG Leu	CAC His	TTG Leu	CAC His 225	ATC Ile	ACC Thr	GAC Asp	TCT Ser	CAG Gln 230	TCG Ser	TGG Trp	CCG Pro	784
40	CTG Leu	GTG Val 235	ATC Ile	CCC Pro	TCG Ser	CTG Leu	CCT Pro 240	AAG Lys	CTG Leu	TCC Ser	CAG Gln	GCC Ala 245	GGT Gly	GCC Ala	TAC Tyr	CAC His	832
45	CCC Pro 250	AGC Ser	CTC Leu	GTC Val	TAC Tyr	ACT Thr 255	CCC Pro	GCA Ala	GAC Asp	CTT Leu	GCT Ala 260	GGC Gly	ATT Ile	TTC Phe	CAG Gln	TAC Tyr 265	* 880
50			GCC Ala														928
			GGT Gly														976
55	GAA Glu	GAG Glu	ATG Met 300	CCT Pro	TAC	CAG Gln	TAC Tyr	TAC Tyr 305	TGC Cys	GCC Ala	GAG Glu	CCA Pro	CCT Pro 310	TGC Cys	GGT Gly	GCC Ala	1024
60	TTT Phe	TCC Ser 315	ATC Ile	AAC Asn	AAC Asn	ACC Thr	AAG Lys 320	GTG Val	TAC Tyr	AGC Ser	TTC Phe	CTC Leu 325	GAT Asp	ACC Thr	CTG Leu	TTC Phe	1072
65	GAC Asp 330	GAC Asp	CTT Leu	TTG Leu	CCT Pro	CGC Arg 335	GTC Val	GCT Ala	CCT Pro	TAC Tyr	AGC Ser 340	GCG Ala	TAC Tyr	TTC Phe	CAC His	ACC Thr 345	1120
	GGT	GGT	GAC	GAG	CTC	AAC	GCT	AAC	GAC	TCC	ATG	CTC	GAC	TCT	CAC	ATC	1168

	Gly Gl	Asp	Glu	Leu 350	Asn	Ala	Asn	Asp	Ser 355	Met	Leu	Asp	Ser	His 360	Ile	
5	AAG AGG Lys Sea															1216
10	AAC TT															1264
15	TGG GAG Trp Gli	ı Glu														1312
15	GTC GTT Val Val 410															1360
20	AGC GGG Ser Gly															1408
25	TGC GGG Cys Gl															1456
30	ACC TAC	TAC Tyr 460	CCA Pro	TTC Phe	AAC Asn	GAC Asp	TGG Trp 465	TGC Cys	CAG Gln	CCC Pro	ACC Thr	AAG Lys 470	AAC Asn	TGG Trp	AGG Arg	1504
35	CTC ATC Leu Ile 47	Yyr														1552
	AAG AAG Lys Ass 490															1600
40	GCC AGG															1648
45	GAG GT															1696
50	CAG CTO															1744
55	GCT CG Ala Arc 55!	g Gly														1792
55	CTC AAG Leu Ass 570								TAAC	TCT?	AAG 1	ATGA	CTTT:	r T		1839
60	CTTTTA:	TGG	GCAG	GTT:	rt t	CTA	r tt t:	CAC	CGTAT	TAT	CAT	PAGTO	GTA (CAGTO	ATTAA	1899
	AACAGG'	TATG	GCTT	AAGA	GG A	CTG	GAGG	G GT?	ATCC	GCT	TGG	GCGC	STA :	TATTA	ATTAAC	1959
65	TGTATA'	TAAT	TCAA	ATTC	AT C	raca:	TATA?	r GTT	ratg <i>i</i>	AAA	A					2000

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

_			(I	3) T	YPE:	amir GY:	no a	cid	acio	is						
5			MOI SE				-		SEQ :	ID NO	D: 2	:				
10	Met 1	Leu	Pro	Lys	Ala 5	Ile	Ile	Ala	Ile	Ala 10	Ala	Leu	Ala	Phe	Ser 15	Pro
	Ala	Asn	Ala	Leu 20	Trp	Pro	Ile	Pro	Gln 25	Lys	Ile	Ser	Thr	Gly 30	Asp	Ser
15	Val	Leu	Phe 35	Ile	Asp	Gln	Ala	Val 40	Arg	Val	Thr	Tyr	Asn 45	Gly	Val	Pro
20	Ile	Ile 50	Pro	Ile	Gly	Tyr	Asn 55	Pro	Pro	Ala	Ser	Ser 60	Asn	Phe	Asp	Ser
	Arg 65	Gln	Ile	Val	Gln	Ala 70	Ala	Val	Ser	Arg	Ala 75	Phe	Gln	Asn	Ile	Phe 80
25	Ser	Thr	Asn	Tyr	Val 85	Pro	Trp	Lys	Leu	His 90	Pro	Arg	Asn	Ser	Asn 95	Phe
	Glu	Pro	Lys	Val 100	Ala	Pro	Gln	Asn	Arg 105	Ile	Gln	Ser	Ile	Ser 110	Ile	Gln
30	Gln	Thr	Gly 115	Lys	Asp	Thr	Ser	Lys 120	Thr	Phe	Lys	Pro	Arg 125	Ala	Gly	Asp
35	Val	Asp 130	Glu	Ser	Tyr	Ser	Leu 135	Thr	Ile	Ser	Lys	Asn 140	Gly	Gln	Val	Asn
33	Ile 145	Ser	Ala	Lys	Ser	Ser 150	Thr	Gly	Val	Leu	His 155	Ala	Leu	Glu	Thr	Phe 160
40	Ser	Gln	Leu	Phe	Tyr 165	Lys	His	Ser	Ala	Gly 170	Pro	Phe	Tyr	Tyr	Thr 175	Thr
	Gln	Ala	Pro	Val 180	Ser	Ile	Thr	Asp	Ala 185	Pro	Lys	Tyr	Pro	His 190	Arg	Gly
45	Ile	Met	Leu 195	Asp	Leu	Ala	Arg	Asn 200	Tyr	Gln	Thr	Ile	Asp 205	Asp	Ile	Lys
50	Arg	Thr 210	Ile	Asp	Ala	Met	Ser 215	Trp	Asn	Lys	Leu	Asn 220	Arg	Leu	His	Leu
	His 225	Ile	Thr	Asp	Ser	Gln 230	Ser	Trp	Pro	Leu	Val 235	Ile	Pro	Ser	Leu	Pro 240
55	Lys	Leu	Ser	Gln	Ala 245	Gly	Ala	Tyr	His	Pro 250	Ser	Leu	Val	Tyr	Thr 255	Pro
	Ala	Asp	Leu	Ala 260	Gly	Ile	Phe	Gln	Tyr 265	Gly	Val	Ala	Arg	Gly 270	Val	Glu
60	Val	Ile	Thr 275	Glu	Ile	Asp	Met	Pro 280	Gly	His	Ile	Gly	Val 285	Ile	Glu	Leu
65	Ala	Tyr 290	Ser	Asp	Leu	Ile	Val 295	Ala	Tyr	Glu	Glu	Met 300	Pro	Tyr	Gln	Tyr
J.J	Tyr 305	Cys	Ala	Glu	Pro	Pro 310	Cys	Gly	Ala	Phe	Ser 315	Ile	Asn	Asn	Thr	Lys

	Val	Tyr	Ser	Phe	Leu 325	Asp	Thr	Leu	Phe	330	Asp	Leu	Leu	Pro	Arg 335	Val
5	Ala	Pro	Tyr	Ser 340	Ala	Tyr	Phe	His	Thr 345	Gly	Gly	Asp	Glu	Leu 350	Asn	Ala
,	Asn	Asp	Ser 355	Met	Leu	Asp	Ser	His 360	Ile	Lys	Ser	Asn	Glu 365	Thr	Ser	Val
10	Leu	Gln 370	Pro	Leu	Leu	Gln	Lys 375	Phe	Ile	Asn	Phe	Ala 380	His	Ser	Lys	Val
15	Arg 385	Ala	Ala	Gly	Leu	Ser 390	Pro	Phe	Val	Trp	Glu 395	Glu	Met	Val	Thr	Thr 400
	Trp	Asn	Leu	Thr	Leu 405	Gly	Ser	Asp	Thr	Val 410	Val	Gln [']	Ser	Trp	Leu 415	Gly
20	Gly	Asp	Ala	Val 420	Lys	Asn	Leu	Ala	Glu 425	Ser	Gly	His	Lys	Val 430	Ile	Asp
	Thr	Asp	Tyr 435	Asn	Phe	Tyr	Tyr	Leu 440	Asp	Cys	Gly	Arg	Gly 445	Gln	Trp	Val
25	Asn	Phe 450	Pro	Pro	Gly	Asp	Ser 455	Tyr	Asn	Thr	Tyr	Tyr 460	Pro	Phe	Asn	Asp
30	Trp 465	Cys	Gln	Pro	Thr	Lys 470	Asn	Trp	Arg	Leu	Ile 475	Tyr	Ser	His	Asp	Pro 480
	Ala	Ala	Asn	Val	Ser 485	Ala	Ser	Ala	Ala	Lys 490	Asn	Val	Leu	Gly	Gly 495	Glu
35	Leu	Ala	Ile	Trp 500	Ser	Glu	Met	Ile	Asp 505	Ala	Ser	Asn	Leu	Asp 510	Asn	Ile
	Ile	Trp	Pro 515	Arg	Gly	Ser	Ala	Ala 520	Gly	Glu	Val	Trp	Trp 525	Ser	Gly	Asn
40	Thr	Asp 530	Ala	Ser	Gly	Glu	Gln 535	Arg	Ser	Gln	Leu	Asp 540	Val	Val	Pro	Arg
45	Leu 545	Asn	Glu	Phe	Arg	Glu 550	Arg	Leu	Leu	Ala	Arg 555	Gly	Val	Ser	Ala	Phe 560
	Pro	Ile	Gln	Met	Thr 565	Tyr	Сув	Thr	Gln	Leu 570	Asn	Ala	Thr	Ala	Cys 575	Thr
50	Leu	Phe														

	(2) INFORMATION FOR SEQ ID NO: 3:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2239 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	
15	(B) STRAIN: Trichoderma harzianum CBS 243.71 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:2822086	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	CTGAGAAGCG GCACTTGCTG ATCTGCGTGG AACTTGGGGT TACAACGCAC CGGATAGCTC	60
	ATCTCCCCAG GACCCCGGAA CTGGAGCTGG AACTGGAATT GGAGCTGGAG CGGACCCAGG	120
25	CCGGAGACGA GAAACACAGT GAATCACTCC TGCAAGGGGC GGGACAGGAA CGTGGACAGT	180
	ATTTAGTTTA AGCAGCTGTC CCAGAGCTGT TCGCCCTGCT TCCAAGCTCG TGTGGCCTGA	240
30	CCCTGTATAA ACTCATTACG ACCATCAGCT CACAGCCGAC A ATG TTT TCC AGG Met Phe Ser Arg 1	293
35	GCC ATT GTC GCC GCA TTG GCC CTG AGC GGC CCG GCT TTT GCC CTG TGG Ala Ile Val Ala Ala Leu Ala Leu Ser Gly Pro Ala Phe Ala Leu Trp 5 10 15 20	341
40	CCC GTG CCT AAA CAC TCC TCG ACC GGC AAT GAC ACG CTC TTT ATT GAC Pro Val Pro Lys His Ser Ser Thr Gly Asn Asp Thr Leu Phe Ile Asp 25 30 35	389
	CAG ACG GTC CAG GTT ACC TAC AAT GGT GAA CAG GTG TGG TGG ACT CCT Gln Thr Val Gln Val Thr Tyr Asn Gly Glu Gln Val Trp Thr Pro 40 45 50	437
45	CCA TAT GAT GAC CCC GGA TCC CCG GAC TTT GCT GAG ACC AGG ATC GAT Pro Tyr Asp Asp Pro Gly Ser Pro Asp Phe Ala Glu Thr Arg Ile Asp 55 60 65	485
50	GAC CAA CAG GTT ACT TAC ACG GCC GGC TAC GTG CCT CCC AGC GGA CCG Asp Gln Gln Val Thr Tyr Thr Ala Gly Tyr Val Pro Pro Ser Gly Pro 70 75 80	533
55	CAT TTC ACC AGC AAG GAA ATC GTT CAA GGC GGC GTC TCG CGG ACA TTC His Phe Thr Ser Lys Glu Ile Val Gln Gly Gly Val Ser Arg Thr Phe 85 90 95 100	581
60	GGC GCC ATC TTC CAG CAG GGC TTT GTG CCG TGG ATG CTG CGT GAA CGT Gly Ala Ile Phe Gln Gln Gly Phe Val Pro Trp Met Leu Arg Glu Arg 105 115	629
60	GAT TCG AAC TCT GAA CCG AAT CTA GGC GGA ACG CGG ATC CGG ACA CTG Asp Ser Asn Ser Glu Pro Asn Leu Gly Gly Thr Arg Ile Arg Thr Leu 120 125 130	677
65	CAG ATT ATA CAG ACT CAG CAC GAT TCT GCG AAT ACC TTC AAG CCT CTG Gln Ile Ile Gln Thr Gln His Asp Ser Ala Asn Thr Phe Lys Pro Leu 135 140 145	725

						GAA Glu											773
5						GCT Ala 170											821
10						CTC Leu											869
15						CCT Pro											917
20						TTG Leu											965
						ATC Ile											1013
25	CTG Leu 245	CAT His	CTG Leu	CAC His	GCT Ala	ACT Thr 250	GAC Asp	ACG Thr	CAG Gln	TCA Ser	TGG Trp 255	CCG Pro	CTG Leu	GAG Glu	ATT Ile	CCA Pro 260	1061
30						GCT Ala											1109
35						CTT Leu											1157
40						GTA Val											1205
	GAC Asp	AAG Lys 310	GCA Ala	TAC Tyr	CCC Pro	GGG Gly	CTT Leu 315	AGC Ser	AAC Asn	GCC Ala	TAC Tyr	GGA Gly 320	GTC Val	AAC Asn	CCG Pro	TGG Trp	1253
45						CAG Gln 330											1301
50	ACG Thr	GAT Asp	GTC Val	GAA Glu	AAG Lys 345	TTC Phe	ATT Ile	GAC Asp	AAG Lys	CTG Leu 350	TTT Phe	GAA Glu	GAT Asp	TTG Leu	CTG Leu 355	CCG Pro	1349
55	CGT Arg	CTT Leu	TCG Ser	CCG Pro 360	TAC Tyr	TCG Ser	GCC Ala	TAC Tyr	TTT Phe 365	CAC His	ACT Thr	GGT Gly	GGC Gly	GAT Asp 370	GAG Glu	TAC Tyr	1397
60	AAG Lys	GCG Ala	AAC Asn 375	AAC Asn	TCG Ser	CTG Leu	CTC Leu	GAC Asp 380	CCG Pro	GCC Ala	CTT Leu	CGC Arg	ACA Thr 385	AAC Asn	GAC Asp	ATG Met	1445
						ATG Met											1493
65	AAA Lys 405	GTT Val	CGT Arg	GAT Asp	CTG Leu	GGA Gly 410	CTC Leu	GTT Val	CCC Pro	ATG Met	GTT Val 415	TGG Trp	GAA Glu	GAA Glu	ATG Met	ATT Ile 420	1541

										GAT Asp 430							1589
5	CTT Leu	GGC Gly	GGA Gly	GGA Gly 440	GCG Ala	ATT Ile	CAG Gln	AAG Lys	CTT Leu 445	GCT Ala	CAG Gln	GCT Ala	GGA Gly	TAC Tyr 450	AAG Lys	GTT Val	1637
10	ATT Ile	GAC Asp	AGC Ser 455	AGC Ser	AAT Asn	GAC Asp	TTT Phe	TAC Tyr 460	TAT Tyr	CTC Leu	GAC Asp	TGT Cys	GGT Gly 465	CGT Arg	GGT Gly	GAG Glu	1685
1 5																	1733
20	CTC Leu 485	GAC Asp	TGG Trp	TGC Cys	GAC Asp	CCG Pro 490	ACC Thr	AAA Lys	AAC Asn	TGG Trp	AAG Lys 495	CTC Leu	ATG Met	TAC Tyr	TCA Ser	CAC His 500	1781
20																	1829
25	GGC Gly	GAA Glu	GTT Val	GCT Ala 520	GTC Val	TGG Trp	ACT Thr	GAG Glu	ACC Thr 525	ATC Ile	GAT Asp	CCG Pro	ACC Thr	AGC Ser 530	TTG Leu	GAC Asp	1877
Trp Leu Asp Phe Ala Asn Gly Asp Pro Phe Asn Asn Asn Tyr Pro Phe 475 CTC GAC TGG TGC GAC CCG ACC AAA AAC TGG AAG CTC ATG TAC TCA CAC Leu Asp Trp Cys Asp Pro Thr Lys Asn Trp Lys Leu Met Tyr Ser His 485 490 GAG CCC ACG GAC GGC GTG TCC GAT GAT CTC AAG AAG AAT GTC ATT GGA Glu Pro Thr Asp Gly Val Ser Asp Asp Leu Lys Lys Asn Val Ile Gly 505 GGC GAA GTT GCT GTC TGG ACT GAG ACC ATG GAT CCG ACC AGC TTG GAC Gly Glu Val Ala Val Trp Thr Glu Thr Ile Asp Pro Thr Ser Leu Asp 530 TCC ATC ATC TGG CCG CGA GGC GGA GCG GGC GCC GCT GAG ATT TGG TGC TCG Ser Ile Ile Trp Pro Arg Ala Gly Ala Ala Ala Glu Ile Trp Trp Ser 535 GGC AAG ATC GAT GAG AAG GGC CAG AAC CAG ATG TAC CAG ATT TGG TGG Gly Lys Ile Asp Glu Lys Gly Gln Asn Arg Ser Gln Ile Asp Ala Arg 565 CCA AGA TTA TCG GAC CAG CAG GAG CCC ATG TTG GCG AGG ATT TCG Arg Leu Ser Glu Gln Arg Glu Arg Met Leu Ala Arg Gly Val Arg 565 GGA ACG CCG ATT ACG CAG CTG TGG TGT AGT CAG GTT GAT GTT CAT AAC Gly Thr Pro Ile Thr Gln Leu Trp Cys Ser Gln Val Asp Val His Asn 600 TGTGGTATATA ATGAATGTTT CTTTTTCACG CTGCTGTTAA AGGCCGGGGA CGTCTCGTTT 2 GTGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 22 CTC ATGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 22 ATT CGTGGTATATA ATGAATGTTT CTTTTTCACG CTGCTGTTAA AGGCCGGGGA CGTCTCGTTT 2 GTGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 22 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 22 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 23 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 24 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 25 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAAA 26 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 27 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 27 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAA 27 CTC AGGATGACGG TTAGACTGAA AATCACTTAT AATGAATTCA AGTCATTCAA GATGAAAAAAA 27 CTC AGGATGACGG TTA	1925																
35	GGC Gly	Lys	ATC Ile	GAT Asp	GAG Glu	AAG Lys	Gly	CAG Gln	AAC Asn	CGA Arg	TCA Ser	Gln	ATT Ile	GAT Asp	GCA Ala	CGG Arg	1973
40	Pro	AGA Arg	TTA Leu	TCG Ser	GAG Glu	Gln	CGA Arg	GAG Glu	CGC Arg	ATG Met	Leu	GCG Ala	AGG Arg	GGA Gly	GTT Val	Arg	2021
40	GGA Gly	ACG Thr	CCG Pro	ATT Ile	Thr	CAG Gln	CTG Leu	TGG Trp	TGT Cys	Ser	CAG Gln	GTT Val	GAT Asp	GTT Val	His	AAC Asn	2069
45	TGC Cys	GAG Glu	TCT Ser	Gly	AAT Asn	TA C	CTGA	rgcgo	G TI	GATO	BAACF	A AAC	STATO	STAA			2116
50																	2176
		11GA) 	LTAGA	ACTG	M M	TCAC	JITAT	r AA1	(GAA)	TCA	AGT	CATTO	CAA C	ATG	AAAAA	2236 2239
55	(2)	INFO	ORMA!	CION	FOR	SEQ	ID 1	NO: 4	1 :								
60		•	(2 (1	A) LI 3) Ti	engti (Pe :	4: 60 amin	01 ar	nino cid									
65	Vot			QUENC	CE DI	ESCR	PTIC	ON: S	_	ID NO): 2: 	; T ====	0	6 1	Desc	3 1.	

	Phe	Ala	Leu	Trp 20	Pro	Val	Pro	ГЛЗ	His 25	Ser	Ser	Thr	Gly	Asn 30	Asp	Thr
5	Leu	Phe	Ile 35	Asp	Gln	Thr	Val	Gln 40	Val	Thr	Tyr	Asn	Gly 45	Glu	Gln	Val
	Trp	Trp 50	Thr	Pro	Pro	Tyr	Asp 55	Asp	Pro	Gly	Ser	Pro 60	Asp	Phe	Ala	Glu
10	Thr 65	Arg	Ile	Asp	Asp	Gln 70	Gln	Val	Thr	Tyr	Thr 75	Ala	Gly	Tyr	Val	Pro 80
15	Pro	Ser	Gly	Pro	His 85	Phe	Thr	Ser	Lys	Glu 90	Ile	Val	Gln	Gly	Gly 95	Val
13	Ser	Arg	Thr	Phe 100	Gly	Ala	Ile	Phe	Gln 105	Gln	Gly	Phe	Val	Pro 110	Trp	Met
20	Leu	Arg	Glu 115	Arg	Asp	Ser	Asn	Ser 120	Glu	Pro	Asn	Leu	Gly 125	Gly	Thr	Arg
ì	Ile	Arg 130	Thr	Leu	Gln	Ile	Ile 135	Gln	Thr	Gln	His	Asp 140	Ser	Ala	Asn	Thr
25	Phe 145	Lys	Pro	Leu	Asn	Gly 150	Ala	Val	Asn	Glu	Ser 155	Tyr	Ala	Leu	Asp	Val 160
30	Asp	Ala	Lys	Gly	His 165	Ala	Ser	Leu	Thr	Ala 170	Pro	Ser	Ser	Thr	Gly 175	Ile
30	Leu	Arg	Gly	Leu 180	Glu	Thr	Phe	Ser	Gln 185	Leu	Phe	Phe	Lys	His 190	Ser	Ser
35	Gly	Thr	Ala 195	Trp	Tyr	Thr	Gln	Leu 200	Ala	Pro	Val	Ser	Ile 205	Arg	Asp	Glu
	Pro	Lys 210	Tyr	Pro	His	Arg	Gly 215	Leu	Leu	Leu	Asp	Val 220	Ser	Arg	His	Trp
40	Phe 225	Glu	Val	Ser	Asp	Ile 230	Glu	Arg	Thr	Ile	Asp 235	Ala	Leu	Ala	Met	Asn 240
45	Lys	Met	Asn	Val	Leu 245	His	Leu	His	Ala	Thr 250	Asp	Thr	Gln	Ser	Trp 255	Pro
73	Leu	Glu	Ile	Pro 260	Ser	Leu	Pro	Leu	Leu 265		Glu	Lys	Gly	Ala 270		His
50	Lys	Gly	Leu 275	Ser	Tyr	Ser	Pro	Ser 280	Asp	Leu	Ala	Ser	Ile 285	Gln	Glu	Tyr
	Gly	Val 290	His	Arg	Gly	Val	Gln 295	Val	Ile	Val	Glu	Ile 300	Asp	Met	Pro	Gly
55	His 305	Val	Gly	Ile	Asp	Lys 310	Ala	Tyr	Pro	Gly	Leu 315	Ser	Asn	Ala	Tyr	Gly 320
60	Val	Asn	Pro	Trp	Gln 325	Trp	Tyr	Cys	Ala	Gln 330	Pro	Pro	Cys	Gly	Ser 335	Phe
00	Lys	Leu	Asn	Asn 340	Thr	Asp	Val	Glu	Lys 345	Phe	Ile	Asp	Lys	Leu 350	Phe	Glu
65	Asp	Leu	Leu 355	Pro	Arg	Leu	Ser	Pro 360	Tyr	Ser	Ala	Tyr	Phe 365	His	Thr	Gly
	Gly	Asp 370	Glu	Tyr	Lys	Ala	Asn 375	Asn	Ser	Leu	Leu	Asp 380	Pro	Ala	Leu	Arg

	Thr 385	Asn	Asp	Met	Asn	Thr 390	Leu	Gln	Pro	Met	Leu 395	Gln	Arg	Phe	Leu	Asp 400
5	His	Val	His	Gly	Lys 405	Val	Arg	Asp	Leu	Gly 410	Leu	Val	Pro	Met	Val 415	Trp
10	Glu	Glu	Met	Ile 420	Leu	Asp	Trp	Asn	Ala 425	Thr	Leu	Gly	Lys	Asp 430	Val	Val
	Ala	Gln	Thr 435	Trp	Leu	Gly	Gly	Gly 440	Ala	Ile	Gln	Lys	Leu 445	Ala	Gln	Ala
1 5	Gly	Tyr 450	Lys	Val	Ile	Asp	Ser 455	Ser	Asn	Asp	Phe	Tyr 460	Tyr	Leu	Asp	Cys
	Gly 465	Arg	Gly	Glu	Trp	Leu 470	Asp	Phe	Ala	Asn	Gly 475	Asp	Pro	Phe	Asn	Asn 480
20	Asn	Tyr	Pro	Phe	Leu 485	Asp	Trp	Cys	Asp	Pro 490	Thr	Lys	Asn	Trp	Lys 495	Leu
25	Met	Tyr	Ser	His 500	Glu	Pro	Thr	Asp	Gly 505	Val	Ser	Asp	Asp	Leu 510	Lys	Lys
20	Asn	Val	Ile 515	Gly	Gly	Glu	Val	Ala 520	Val	Trp	Thr	Glu	Thr 525	Ile	Asp	Pro
30	Thr	Ser 530	Leu	Asp	Ser	Ile	Ile 535	Trp	Pro	Arg	Ala	Gly 540	Ala	Ala	Ala	Glu
	Ile 545	Trp	Trp	Ser	Gly	Lys 550	Ile	Asp	Glu	Lys	Gly 555	Gln	Asn	Arg	Ser	Gln 560
35	Ile	Asp	Ala	Arg	Pro 565	Arg	Leu	Ser	Glu	Gln 570	Arg	Glu	Arg	Met	Leu 575	Ala
40	Arg	Gly	Val	Arg 580	Gly	Thr	Pro	Ile	Thr 585	Gln	Leu	Trp	Cys	Ser 590	Gln	Val
. •	Asp	Val	His 595	Asn	Суз	Glu	Ser	Gly 600	Asn							

PCT/DK96/00216

CLAIMS

10

15

20

WO 96/36700

- 1. A DNA construct comprising a DNA sequence encoding an enzyme exhibiting exochitinase activity, which DNA sequence
- 5 a) comprises the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3, or
 - b) comprises an analogue of the DNA sequence shown in SEQ ID no. 1 or SEQ ID no 3, which
 - i) is homologous with the DNA sequences shown in SEQ ID no. 1 or SEQ ID no. 3, and/or
 - ii) hybridizes with the same oligonucleotide probe as the DNA sequence shown in SEQ ID no. 1 or SEQ ID no. 3, and/or
 - iii) encodes a polypeptide which is homologous with the polypeptide encoded by a DNA sequence comprising the DNA sequence shown in SEQ ID No. 1 or SEQ ID no. 3, and/or
 - iv) encodes a polypeptide which is immunologically reactive with an antibody raised against a purified exochitinase shown in SEQ ID no. 2 derived from Saccharomyces cerevisiae DSM no. 9944 or against a purified exochitinase shown in SEQ ID no. 4 derived from Saccharomyces cerevisiae DSM no. 9945.
- 25 2. A DNA construct comprising a DNA sequence encoding an enzyme exhibiting exochitinase activity, which DNA sequence comprises at least a partial sequence of the sequence shown in SEQ ID No. 1 or SEO ID no. 3.
- 30 3. The DNA construct according to claim 1 or 2, in which the DNA sequence encoding an enzyme exhibiting exochitinase activity is obtainable from a microorganism.
- 4. The DNA construct according to claim 3, in which the DNA sequence is obtainable from a filamentous fungus or a yeast.
 - 5. The DNA construct according to claim 4, in which is the DNA

sequence is obtainable from a strain of Saccharomyces, Aspergillus, Trichoderma, Penicillium, Fusarium, Gliocladium, Aphanocladium, or Humicola, or a mutant thereof.

- 5 6. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of *Trichoderma* in particular a strain of *T. harzianum*, or *T. reesei*, or *T. viride*, *T. longibrachiatum*, or *T. koningii*, or a mutant thereof.
- 7. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of Aspergillus, in particular a strain of A. aculeatus or A. niger, or a mutant thereof.
- 8. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of *Fusarium*, in particular a strain of *F. oxysporum*, or a mutant thereof.
- 9. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of Gliocladium, in particular Gliocladium virens, or a mutant thereof.
- 10. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of Aphanocladium, in particular Aphanocladium album, or a mutant thereof.
 - 11. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of *Humicola*, or a mutant thereof.
 - 12. The DNA construct according to claim 5, in which the DNA sequence is obtainable from a strain of Saccharomyces, in particular Saccharomyces cerevisiae, or a mutant thereof.
- 35 13. The DNA construct according to claim 12, in which the DNA sequence is isolated from Saccharomyces cerevisiae DSM No. 9944 or DSM no. 9945.

- 14. A recombinant expression vector comprising a DNA construct according to any of claims 1-13.
- 15. A cell comprising a DNA construct according to any of claims 1-13 or a recombinant expression vector according to claim 14.
- 16. A cell according to claim 15, which is an eukaryotic cell, in particular a fungal cell, such as a yeast cell or a 10 filamentous fungal cell.
 - 17. A cell according to claim 16, wherein the cell belongs to a strain of *Trichodrma*, in particular a strain of *Trichoderma* harzianum or *Trichoderma* reesie.

18. A method of producing an enzyme exhibiting exochitinase activity, the method comprising culturing a cell according to any of claims 15-17 under conditions permitting the production of the enzyme, and recovering the enzyme from the culture.

20

- 19. An enzyme exhibiting exochitinase activity, which enzyme
- a) is encoded by a DNA construct according to any of claims 1-13, and/or
- b) produced by the method according to claim 18, and/or
- 25 c) is immunologically reactive with an antibody raised against a purified exochitinase derived from Saccharomyces cerevisiae, DSM no. 9944 shown in SEQ ID no. 1 or DSM no. 9945 shown in SEQ ID no. 3.
- 20. An enzyme preparation useful for modification or degradation of fungal, crustacean, or nematode cell wall components, said preparation being enriched in an enzyme exhibiting exochitinase activity according to claim 19.
- 21. A preparation according to claim 20, which additionally comprises an enzyme with chitinolytic, proteolytic, β -glucanolytic, or mannanolytic activity.

22. Use of an enzyme according to claim 19 or an enzyme preparation according to claim 21 or 22 for modification or degradation of fungal, crustacean, or nematode cell wall components.

5

- 23. The use according to claim 22 for plant protection purposes.
- 24. The use according to claim 23 for coating seeds.

10

- 25. The use according to claim 23 for spraying plants.
- 26. The use according to claim 22 for pharmaceutical purposes.
- 15 27. The use according to claim 26 for wound dressing.
 - 28. Use of a DNA construct according to claims 1 to 13 or an expression vector according to claim 14 for producing transgenic plants.

20

- 29. An isolated substantially pure culture of Saccharomyces cerevisiae DSM no. 9944.
- 30. An isolated substantially pure culture of Saccharomyces 25 cerevisiae DSM no. 9945

International application No. PCT/DK 96/00216

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: C12N 9/24 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPODOC, MEDLINE, BIOSIS, DBA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	Dialog Information Services, File 155, MEDLINE, Dialog accession no. 09535466, Medline accession no. 96057066, Draborg H et al: "Molecular cloning and expression in S. cerevisiae of two exochitinases from Trichoderma harzianum"; & Biochem Mol Biol Int (AUSTRALIA) Jul 1995, 36 (4) p781-91	1-30
x	Dialog Information Services, File 154, MEDLINE, Dialog accession no. 09072207, Medline accession no. 95002207, Triggs-Raine BL et al: "Characteri- zation of the murine beta-hexosaminidase (HEXB) gene"; & Biochim Biophys Acta (NETHERLANDS) Oct 21 1994, 1227 (1-2) p79-86, Swissprot P20060	1-2,14-15,19

X	Further documents are listed in the continuation of Box	ι С.	X See patent family annex.
* *A*	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	۳۲۰۰	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
″₽″	eriter document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"X" "Y"	considered advel or cappor be considered to involve an inventive step when the document is taken alone document of particular relevance the claimed invention cannot be
O	document referring to an oral disclosure. use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"&"	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
Dat	e of the actual completion of the international search	Date	of mailing of the international search report

Authorized officer

Patrick Andersson

Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No. +46 8 666 02 86

Name and mailing address of the ISA/

Box 5055, S-102 42 STOCKHOLM

9 October 1996

Swedish Patent Office

International application No.

PCT/DK 96/00216

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
х	Dialog Information Services, File 154, MEDLINE, Dialog accession no. 08907843, Medline accession no. 94222843, Cannon RD et al: "Molecular cloning and expression of the Candida albicans beta-N- acetylglucosaminidase (HEXI) gene"; & J Bacteriol (UNITED STATES) May 1994, 176 (9) p2640-7, Swissprot P43077, Pir 2: A55588	1-4,14-16, 18-19
		·
x	Dialog Information Services, File 154, MEDLINE, Dialog accession no. 08206643, Medline accession no. 92344643, Beccari T et al: "Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme"; & Biochem J (ENGLAND) Jul 15 1992, 285 (Pt 2) p593-6, Pir 2: A55505, Swissprot P29416	1-2,14-15,19
×	Dialog Information Services, File 154, MEDLINE, Dialog accession no. 06910588, Medline accession no. 8912588, Neote K et al: "Characterization of the human HFXR gene encoding lysosomal betahexosaminidase"; &Genomics (UNITED STATES) Nov 1988, 3 (4) p279-86, Swissprot P07686	1-2,14-15,19
K	Dialog Information Services, File 154, MEDLINE, Dialog accession no. 06703625, Medline accession no. 89005625, Bapat B et al: "Cloning and sequence analysis of a cDNAencoding the beta-subunit of mouse beta-hexosaminidase"; & FEBS Lett (NETHER- LANDS) Sep 12 1988, 237 (1-2) p191-5, Pir 2: 854745	1-2,14-15,19
	Dialog Information Services, File 155, MEDLINE, Dialog accession no. 09288264, Medline accession no. 95218264, Nagamatsu Y et al: "Purification of a chitooligosaccharidolytic beta-N-acetylglucosa- minidase from Bombyx mori larvae during metamor- phosis and the nucleotide sequence of its cDNA"; & Biosci Biotechnol Biochem (JAPAN) Feb 1995, 59 (2) p219-25, Pir 2: JC2539, Swissprot P49010	1-2,14-15,19
	· •=	
1		

Inc. actional application No.
PCY/DK 96/00216

	PCI/DK 90/	302.20
C (Continu	nation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Caugory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	WO 9402598 A1 (CORNELL RESEARCH FOUNDATION, INC.), 3 February 1994 (03.02.94)	1-30
x :	WO 9424288 A1 (CORNELL RESEARCH FOUNDATION, INC.),	1-30
	27 October 1994 (27.10.94)	
X	WO 9222314 A1 (CORNELL RESEARCH FOUNDATION, INC.), 23 December 1992 (23.12.92)	1-30
X	WO 9424271 A1 (CORNELL RESEARCH FOUNDATION, INC.), 27 October 1994 (27.10.94)	1-30

International application No.

PCT/DK 96/00216

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(2) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(s).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Invention 1: DNA-construct comprising SEQ ID No. 1. and related enzymes, cells, methods and uses.
Invention 2: DNA-construct comprising SEQ ID No. 3. and related enzymes, cells methods and uses.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-29
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Information on patent family members

05/09/96

International application No. PCT/DK 96/00216

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO-A1-	9402598	03/02/94	EP-A- JP-T- US-A-	0656059 7509362 5378821	07/06/95 19/10/95 03/01/95
WO-A1-	9424288	27/10/94	US-A-	5378821	03/01/95
√0-A1-	9222314	23/12/92	EP-A- JP-T- US-A- US-A-	0590004 6508618 5173419 5378821	06/04/94 29/09/94 22/12/92 03/01/95
10-A1-	9424271	27/10/94	US-A-	5474926	12/12/95

Form PCT/ISA/210 (patent family annex) (July 1992)