(54) 发明名称

一种钠冷快堆中进行活化法辐照实验的系统及方法

(57) 摘要

本发明公开了一种钠冷快堆中进行活化法辐照实验的系统及方法，该方法首先利用定位支架将活化探测片固定在辐照装置中，并将辐照装置放入到燃料区辐照实验组件或反射层区的辐照实验组件的放置空间中，之后将燃料区辐照实验组件或反射层区的辐照实验组件转移至钠冷快堆的某一测量位置进行辐照。辐照结束后，将燃料区辐照实验组件或反射层区的辐照实验组件中的辐照装置取出，并将辐照装置中的活化探测片取出进行活度测量。通过该系统及方法，可以方便在快堆堆芯任意位置进行辐照实验，为中国实验快堆活化法测量堆芯物理参数提供了基础，取得了重要实验数据。
1. 一种钠冷快堆中进行活化法辐照实验的系统，包括辐照装置(A). 燃料区辐照实验组件(B) 和反射层区辐照实验组件(C)，其特征在于：所述辐照装置(A) 包括设置在上部的上部升头(1) 和设置在下部的用于放置活化探测片的空心薄壁不锈钢管(2)；所述燃料区辐照实验组件(B) 内部的中心位置设有用于放置辐照装置的放置空间 I (4)，放置空间 I (4) 周围以放置空间 I 中心对称设置有 54 根燃料组件捧(5)；所述反射层区辐照实验组件(C) 内部中心位设有用于放置辐照装置的放置空间 II (6)，放置空间 II (6) 的周围以放置空间 II 中心对称设有 6 根不锈钢棒(7)。

2. 如权利要求 1 所述的一种钠冷快堆中进行活化法辐照实验的系统，其特征在于：所述燃料区辐照实验组件(B) 的外形尺寸与快堆燃料组件相同。

3. 如权利要求 1 所述的一种钠冷快堆中进行活化法辐照实验的系统，其特征在于：所述反射层区辐照实验组件(C) 的外形尺寸与快堆反射层组件相同。

4. 一种钠冷快堆中进行活化法辐照实验的方法，包括以下步骤：
 (1) 利用定位支架将活化探测片固定在辐照装置中，并用氮气密封辐照装置；
 (2) 将辐照装置放入到燃料区辐照实验组件的放置空间 I 中；
 (3) 将燃料区辐照实验组件转移至钠冷快堆的某一测量位置进行辐照；
 (4) 辐照结束后，将燃料区辐照实验组件中的辐照装置取出，并将辐照装置中的活化探测片取出进行活度测量。

5. 如权利要求 4 所述的一种钠冷快堆中进行活化法辐照实验的方法，其特征在于：步骤(3) 中，在将燃料区辐照实验组件转移至钠冷快堆的某一测量位置进行辐照前，将该测量位置的快堆燃料组件转移至堆外或堆内的乏燃料储存井位置。

6. 如权利要求 4 或 5 所述的一种钠冷快堆中进行活化法辐照实验的方法，其特征在于：步骤(3) 中，辐照期间，利用数字化堆芯中子测量系统对堆芯中子通量水平进行记录。

7. 如权利要求 6 所述的一种钠冷快堆中进行活化法辐照实验的方法，其特征在于：步骤(4) 中，辐照结束后，首先将燃料区辐照实验组件转移至转换桶。

8. 一种钠冷快堆中进行活化法辐照实验的方法，包括以下步骤：
 1) 利用定位支架将活化探测片固定在辐照装置中，并用氮气密封辐照装置；
 2) 将辐照装置放入到反射层区辐照实验组件的放置空间 II 中；
 3) 将反射层区辐照实验组件转移至钠冷快堆的某一测量位置进行辐照；
 4) 将反射层区辐照实验组件中的辐照装置取出，并将辐照装置中的活化探测片取出进行活度测量。
说明 书

一种钠冷快堆中进行活化法辐照实验的系统及方法

技术领域
[0001] 本发明涉及反应堆辐照实验领域，具体涉及一种钠冷快堆中进行活化法辐照实验的系统及方法。

背景技术
[0002] 中国实验快堆是我国第一座钠冷快中子增殖堆，在中国实验快堆中开展活化法辐照实验，如核反应率分布测量等，获取堆芯物理参数，验证堆芯中子学设计。在传统的实验堆上，一般会在堆芯设计专用的实验孔道，方便进行堆芯辐照实验。中国实验快堆是座钠冷池式快堆，钠冷快中子堆不同于传统的水堆，在反应堆内很难设置专用的辐照孔道，并且钠冷快堆堆芯始终充满了高温的液态金属钠，这对开展辐照实验极为不利。中国实验快堆堆芯尺寸相对较小，堆芯上方被堆内换料机构和大小旋塞占据，无法设置固定孔道用于辐照实验。因此需要针对钠冷快堆的特点，设计一种在钠冷快堆中进行活化法辐照实验的方法，从而顺利开展快堆中子学的相关实验研究。

发明内容
[0003] 针对现有技术中存在的缺陷及实际应用的需要，本发明的目的在于提供一种钠冷快堆中进行活化法辐照实验的系统及方法，实现在钠冷快堆中不同位置进行辐照实验。
[0004] 为实现上述目的，本发明采用的技术方案如下：
[0005] 一种钠冷快堆中进行活化法辐照实验的系统，包括辐照装置、燃料区辐照实验组件和反射层区辐照实验组件，所述辐照装置包括设置在上部的上部抓头和设置在下部的用于放置活化探测片的空心薄壁不锈钢管，所述燃料区辐照实验组件内部的中心位置设有用于放置辐照装置的放置空间 I，放置空间 I 周围以放置空间 I 中心对称设置有 54 根燃料组件棒，所述反射层区辐照实验组件内部中心位置设有用于放置辐照装置的放置空间 II，放置空间 II 的周围以放置空间 II 中心对称设置有 6 根不锈钢棒。
[0006] 进一步，如上所述的一种钠冷快堆中进行活化法辐照实验的系统，所述燃料区辐照实验组件的外形尺寸与快堆燃料组件相同。
[0007] 再进一步，如上所述的一种钠冷快堆中进行活化法辐照实验的系统，所述反射层区辐照实验组件的外形尺寸与快堆反射层组件相同。
[0008] 一种钠冷快堆中进行活化法辐照实验的方法，包括以下步骤：
[0009] (1) 利用定位支架将活化探测片固定在辐照装置中，并用氩气密封辐照装置；
[0010] (2) 将辐照装置放入到燃料区辐照实验组件的放置空间 I 中；
[0011] (3) 将燃料区辐照实验组件转至钠冷快堆的某一测量位置进行辐照；
[0012] (4) 辐照结束后，将燃料区辐照实验组件中的辐照装置取出，并将辐照装置中的活化探测片取出进行活度测量。
[0013] 进一步，如上所述的一种钠冷快堆中进行活化法辐照实验的方法，步骤(3)中，在将燃料区辐照实验组件转至钠冷快堆的某一测量位置进行辐照前，将该测量位置的快堆
燃料组件转移至堆外或堆内的乏燃料储存井位置。

[0014] 进一步，如上所述的一种钠冷却堆中进行活化法辐照实验的方法，步骤（3）中，辐照期间，利用数字化堆芯中子测量系统对堆芯中子通量水平进行记录。

[0015] 进一步，如上所述的一种钠冷却堆中进行活化法辐照实验的方法，步骤（4）中，辐照结束后，首先将燃料区辐照实验组件转移至转换桶。

[0016] 一种钠冷却堆中进行活化法辐照实验的方法，包括以下步骤：

[0017] 1）利用定位支架将活化探测片固定在辐照装置中，并用气密密封辐照装置；

[0018] 2）将辐照装置放入到反射层区辐照实验组件的放置空间11中；

[0019] 3）将反射层区辐照实验组件转移至钠冷却堆的某一测量位置进行辐照；

[0020] 4）将反射层区辐照实验组件中的辐照装置取出，并将辐照装置中的活化探测片取出进进行活度测量。

[0021] 本发明的有益效果在于：本发明所述的系统及方法，针对钠冷却堆的特点，设计了专用的辐照实验装置，通过该装置可以方便地在快堆堆芯任意位置进行辐照实验，顺利开展快堆中子学的相关实验研究，并能够尽可能低的减少辐照实验对堆芯安全造成的影响。

附图说明

[0022] 图1为本发明一种钠冷却堆中进行活化法辐照实验系统的辐照装置的结构示意图；

[0023] 图2为本发明一种钠冷却堆中进行活化法辐照实验系统的燃料区辐照实验组件结构示意图；

[0024] 图3为本发明一种钠冷却堆中进行活化法辐照实验系统的反射层区辐照实验组件结构示意图；

[0025] 图4为本发明采用本发明系统进行活化法辐照实验时的整体结构成装示意图

[0026] 图5为本发明一种钠冷却堆中进行活化法辐照实验的方法的流程图。

具体实施方式

[0027] 下面结合说明书附图与具体实施方式对本发明做进一步的详细说明。

[0028] 本发明根据钠冷却堆的特点，设计了一种利用实验组件开展堆芯低功率辐照实验的系统及方法，利用该系统及方法可以方便地在快堆堆芯任意位置进行辐照实验，并能尽可能低地减少辐照实验对堆芯安全造成的影响。该钠冷却堆中进行活化法辐照实验的系统主要包括辐照装置A、燃料区辐照实验组件B和反射层区辐照实验组件C，图1、图2和图3分别示出了辐照装置A、燃料区辐照实验组件B和反射层区辐照实验组件C的结构示意图。

[0029] 由图1可以看出，辐照装置A包括上部抓头1和下部空心不锈钢薄壁管2，上部抓头1方便抓起对辐照装置和燃料组件的操作，下部空心不锈钢薄壁管2用于放置活化探测片3。

[0030] 燃料区辐照实验组件B的外形尺寸与快堆燃料组件一致，这样能保证其可以放置到堆芯燃料区任意位置进行实验。由图2可以看出，燃料区辐照实验组件内部的中心位置设有用于放置辐照装置的放置空间14，放置空间14周围以放置空间1中心对称设置有54根燃料组件棒5。中国实验快堆运行装载只有79盒燃料组件，每盒燃料组件内含有61根燃
料元件棒，每盒组件的价值均较大。为了防止由于实验组件替换堆芯燃料组件造成堆芯反应性变化较大的后果，在实验组件内部仍然布置了54根燃料元件棒，在实验组件最中心的位置用来放置含有活化法探测片的辐照装置。这样的设计也有利于减少辐照装置及探测片对堆芯中子场特性的影响，以便更加准确地测量相关堆芯物理参数。

0031 镀层反射区辐照实验组件 C 的外形尺寸与快堆反射层组件一致，可以放置到堆芯反射层位置进行实验。反射层区辐照实验组件中心是放置有辐照样品的辐照装置，由图 3 可以看出，反射层区辐照实验组件内部中心通过用于放置辐照装置的放置空间 II 6，放置空间 II 6 的周围以放置空间 II 中心对称设有 6 根不锈钢棒 7。

0032 图 4 示出了采用上述系统进行活化法辐照实验时的结构图示意图，该图中示出的是将辐照装置 A 放置在燃料区辐照实验组件 B 进行燃料区辐照实验时的结构示意图，当然如果是进行反射层区的辐照实的，实验时的结构示意图只需将图 4 中的燃料区辐照实验组件 B 由反射层区辐照实验组件 C 替换即可。

0033 图 5 示出了基于上述钠冷快堆中进行活化法辐照实验的系统的一种钠冷快堆中进行活化法辐照实验的方法的流程图，该方法包括以下步骤：

0034 步骤 S11: 将活化探测片固定在辐照装置中；

0035 利用定位支架将活化探测片固定在图 1 所示的辐照装置 A 中。为降低辐照后的活度及避免在快堆中引入慢化材料，定位支架选用非的不锈钢丝。为防止探测片在堆芯的高温环境下氧化，辐照装置内填充氧气并密封。

0036 步骤 S12 : 将辐照装置放入到辐照实验组件的放置空间中；

0037 步骤 S13 : 辐照实验组件转移至钠冷快堆的某一测量位置进行辐照；

0038 将装有活化探测片的辐照装置 A 放入燃料区辐照实验组件 B 或反射层实验组件 C 中，利用中国实验快堆的堆内外换料系统将燃料区辐照实验组件 B 或反射层区辐照实验组件 C 转移至堆内某一测量位置进行辐照，在将组件转移至堆内之前要将测量位置的燃料组件或反射层组件转移至堆外或堆内的乏燃料储存并位置。辐照期间，利用数字化堆芯中子测量系统对堆芯中子通量水平进行实时记录，便于不同时刻辐照实验的功率归一。

0039 步骤 S14 : 将辐照装置中的活化探测片取出进行活度测量。

0040 辐照完成后，利用堆内外换料系统将燃料区辐照实验组件 B 或反射层实验组件 C 转移至转换桶。由于辐照后辐照装置具有较高的放射性活度，且表面可能沾有放射性钠，因此不能立刻将转移至堆外。一般化法辐照实验都是在低功率下进行，计算表明，等待 24 小时后，占绝大部分的短半衰期核素已衰减完。由于辐照装置由不锈钢制成，表面光洁，经过 1 天的等待，大部分液态钠均流至转换桶的接收盘中。此时利用专用工具将辐照装置从辐照实验组件中取出。利用剂量仪表对辐照组件表面剂量进行监测，确保符合剂量防护要求后将其转移至专用的拆卸平台进行拆卸，取出其中的活化探测片，送至实验室进行活度测量。拆卸后剩余的辐照装置及定位支架仍然具有一定的放射性，要放入固体废物存储间进行暂存。

0041 目前，本发明所述的系统及方法已被使用在中国实验快堆的物理启动中，用于活化法测量中国实验快堆的堆芯物理参数，如热反应率分布，中子能谱测量及截面比测量等实验中。共进行了 65 根辐照装置的低功率辐照，取得了中国实验快堆堆芯物理参数的重要实验数据。
显然，本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的精神和范围。这样，倘若本发明的这些修改和变形属于本发明权利要求及其同等技术的范围之内，则本发明也意图包含这些改动和变形在内。
图5

开始

将活化探测片固定在辐照装置

S11

将辐照装置放入到辐照实验组件的放置空间中

S12

辐照实验组件转移至钠冷快堆的某一测量位置进行辐照

S13

将辐照装置中的活化探测片取出进行活度测量

S14

结束