

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018205763 B2

(54) Title
Altered virus

(51) International Patent Classification(s)
C07K 16/28 (2006.01) **A61K 35/763** (2015.01)

(21) Application No: **2018205763** (22) Date of Filing: **2018.01.09**

(87) WIPO No: **WO18/127713**

(30) Priority Data

(31) Number
1700350.0 (32) Date
2017.01.09 (33) Country
GB

(43) Publication Date: **2018.07.12**
(44) Accepted Journal Date: **2025.01.23**

(71) Applicant(s)
Replimune Limited

(72) Inventor(s)
Coffin, Robert Stuart

(74) Agent / Attorney
Catalyst Intellectual Property, PO BOX Q1466 QUEEN VICTORIA BUILDING, Sydney, NSW, 1230, AU

(56) Related Art
T DU ET AL, CANCER GENE THERAPY, vol. 21, no. 8, 18 July 2014 (2014-07-18), pages 340 - 348, XP055214039, ISSN: 0929-1903, DOI: 10.1038/cgt.2014.34
WO 2016/008976 A1
WO 2007/123737 A2
WO 2015/128313 A1
WO 2015/059303 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/127713 A1

(43) International Publication Date
12 July 2018 (12.07.2018)

(51) International Patent Classification:
A61K 35/763 (2015.01) C07K 16/28 (2006.01)

(52) International Application Number:
PCT/GB2018/050048

(53) International Filing Date:
09 January 2018 (09.01.2018)

(54) Filing Language:
English

(55) Publication Language:
English

(56) Priority Data:
1700350.0 09 January 2017 (09.01.2017) GB

(71) Applicant: REPLIMUNE LIMITED [GB/GB]; 69 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RQ (GB).

(72) Inventor: COFFIN, Robert Stuart; c/o Replimune Limited, 69 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RQ (GB).

(74) Agent: TUXWORTH, Pamela Mary; J A Kemp, 14 South Square, Gray's Inn, London, Greater London WC1R 5JJ (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: ALTERED VIRUS

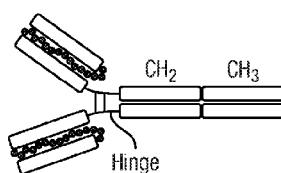
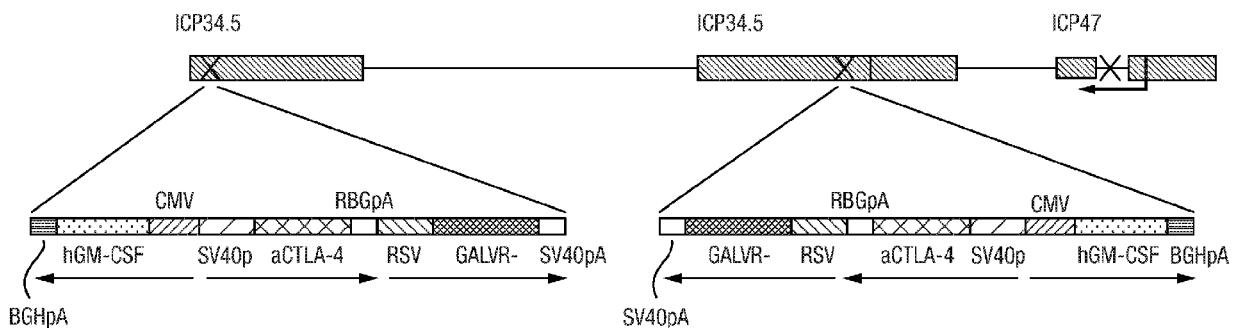



Fig. 3

(57) Abstract: The present invention relates to an oncolytic virus encoding a CTLA-4 inhibitor, such as an anti-CTLA-4 antibody, or an antigen binding fragment thereof.

ALTERED VIRUS

Field of the Invention

The invention relates to an oncolytic immunotherapeutic agent and to the use of the
5 oncolytic immunotherapeutic agent in treating cancer.

Background to the Invention

Viruses have a unique ability to enter cells at high efficiency. After entry into cells, viral genes are expressed and the virus replicates. This usually results in the death of the
10 infected cell and the release of the antigenic components of the cell as the cell ruptures as it dies. As a result, virus mediated cell death tends to result in an immune response to these cellular components, including both those derived from the host cell and those encoded by or incorporated into the virus itself and enhanced due to the recognition by the host of so called damage associated molecular patterns (DAMPs) which aid in the activation of the
15 immune response.

Viruses also engage with various mediators of the innate immune response as part of the host response to the recognition of a viral infection through e.g. toll-like receptors and cGAS/STING signalling and the recognition of pathogen associated molecular patterns (PAMPs) resulting in the activation of interferon responses and inflammation which are
20 also immunogenic signals to the host. These immune responses may result in the immunogenic benefit to cancer patients such that immune responses to tumor antigens provide a systemic overall benefit resulting in the treatment of tumors which have not been infected with the virus, including micro-metastatic disease, and providing vaccination against relapse.

25 The combined direct ('oncolytic') effects of the virus, and immune responses against tumor antigens (including non-self 'neo-antigens', i.e. derived from the particular mutated genes in individual tumors) is termed 'oncolytic immunotherapy'.

Viruses may also be used as delivery vehicles ('vectors') to express heterologous genes inserted into the viral genome in infected cells. These properties make viruses
30 useful for a variety of biotechnology and medical applications. For example, viruses expressing heterologous therapeutic genes may be used for gene therapy. In the context of oncolytic immunotherapy, delivered genes may include those encoding specific tumor

antigens, genes intended to induce immune responses or increase the immunogenicity of antigens released following virus replication and cell death, genes intended to shape the immune response which is generated, genes to increase the general immune activation status of the tumor, or genes to increase the direct oncolytic properties (i.e. cytotoxic effects) of the virus. Importantly, viruses have the ability to deliver encoded molecules which are intended to help to initiate, enhance or shape the systemic anti-tumor immune response directly and selectively to tumors, which may have benefits of e.g. reduced toxicity or of focusing beneficial effects on tumors (including those not infected by the virus) rather than off-target effects on normal (i.e. non-cancerous) tissues as compared to the systemic administration of these same molecules or systemic administration of other molecules targeting the same pathways.

It has been demonstrated that a number of viruses including, for example, herpes simplex virus (HSV) have utility in the oncolytic treatment of cancer. HSV for use in the oncolytic treatment of cancer must be disabled such that it is no longer pathogenic, but can still enter into and kill tumor cells. A number of disabling mutations to HSV, including disruption of the genes encoding ICP34.5, ICP6, and/or thymidine kinase, have been identified which do not prevent the virus from replicating in culture or in tumor tissue *in vivo*, but which prevent significant replication in normal tissue. HSVs in which only the ICP34.5 genes have been disrupted replicate in many tumor cell types *in vitro*, and replicate selectively in tumor tissue, but not in surrounding tissue, in mouse tumor models. Clinical trials of ICP34.5 deleted, or ICP34.5 and ICP6 deleted, HSV have also shown safety and selective replication in tumor tissue in humans.

As discussed above, an oncolytic virus, including HSV, may also be used to deliver a therapeutic gene in the treatment of cancer. An ICP34.5 deleted virus of this type additionally deleted for ICP47 and encoding a heterologous gene for GM-CSF has also been tested in clinical trials, including a phase 3 trial in melanoma in which safety and efficacy in man was shown. GM-CSF is a pro-inflammatory cytokine which has multiple functions including the stimulation of monocytes to exit the circulation and migrate into tissue where they proliferate and mature into macrophages and dendritic cells. GM-CSF is important for the proliferation and maturation of antigen presenting cells, the activity of which is needed for the activation of an anti-tumor immune response. The trial data demonstrated that tumor responses could be seen in injected tumors, and to a lesser extent

in uninjected tumors. Responses tended to be highly durable (months-years), and a survival benefit appeared to be achieved in responding patients. Each of these indicated engagement of the immune system in the treatment of cancer in addition to the direct oncolytic effect. However, this and other data with oncolytic viruses generally showed

5 that not all tumors respond to treatment and not all patients achieve a survival advantage. Thus, improvements to the art of oncolytic therapy are clearly needed.

Recently it has been shown that oncolytic immunotherapy can result in additive or synergistic therapeutic effects in conjunction with immune co-inhibitory pathway blockade (i.e. inhibition or ‘antagonism’ of immune checkpoint pathways, also termed immune co-10 inhibitory pathways). Immune co-inhibitory pathway blockade is intended to block host immune inhibitory mechanisms which usually serve to prevent the occurrence of auto-immunity. However, in cancer patients these mechanisms can also serve to inhibit the induction of or block the potentially beneficial effects of any immune responses induced to tumors.

15 Systemic blockade of these pathways by agents targeting cytotoxic T lymphocyte-associated molecule -4 (CTLA-4), PD-1 or PD-L1 have shown efficacy in a number of tumor types, including melanoma and lung cancer. However, unsurprisingly, based on the mechanism of action, off target toxicity can occur due to the induction of auto-immunity. Even so, these agents are sufficiently tolerable to provide considerable clinical utility.

20 Other immune co-inhibitory pathway and related targets for which agents (mainly antibodies) are in development include LAG-3, TIM-3, VISTA, CSF1R, IDO, CEACAM1, CD47. Optimal clinical activity of these agents, for example PD1, PDL1, LAG-3, TIM-3, VISTA, CSF1R, IDO, CD47, CEACAM1, may require systemic administration or presence in all tumors due to the mechanism of action, i.e. including targeting of the 25 interface of immune effector cells with tumors or other immune inhibitory mechanisms in/of tumors. In some cases, more localised presence in e.g. just some tumors or in some lymph nodes may also be optimally effective, for example agents targeting CTLA-4.

An alternative approach to increasing the anti-tumor immune response in cancer patients is to target (activate) immune co-stimulatory pathways, i.e. in contrast to inhibiting 30 immune co-inhibitory pathways. These pathways send activating signals into T cells and other immune cells, usually resulting from the interaction of the relevant ligands on antigen presenting cells (APCs) and the relevant receptors on the surface of T cells and other

immune cells. These signals, depending on the ligand/receptor, can result in the increased activation of T cells and/or APCs and/or NK cells and/or B cells, including particular subtypes, increased differentiation and proliferation of T cells and/or APCs and/or NK cells and/or B cells, including particular subtypes, or suppression of the activity of immune

5 inhibitory T cells such as regulatory T cells. Activation of these pathways would therefore be expected to result in enhanced anti-tumor immune responses, but it might also be expected that systemic activation of these pathways, i.e. activation of immune responses generally rather than anti-tumor immune responses specifically or selectively, would result in considerable off target toxicity in non-tumor tissue, the degree of such off target toxicity
10 depending on the particular immune co-stimulatory pathway being targeted. Nevertheless agents (mainly agonistic antibodies, or less frequently the soluble ligand to the receptor in question) targeting immune co-stimulatory pathways, including agents targeting GITR, 4-1-BB, OX40, CD40 or ICOS, and intended for systemic use (i.e. intravenous delivery) are in or have been proposed for clinical development.

15 For many of these approaches targeting immune co-inhibitory or co-inhibitory pathways to be successful, pre-existing immune responses to tumors are needed, i.e. so that a pre-existing immune response can be potentiated or a block to an anti-tumor immune response can be relieved. The presence of an inflamed tumor micro-environment, which is indicative of such an ongoing response, is also needed. Pre-existing immune responses to
20 tumor neo-antigens appear to be particularly important for the activity of immune co-inhibitory pathway blockade and related drugs. Only some patients may have an ongoing immune response to tumor antigens including neoantigens and/or an inflamed tumor microenvironment, both of which are required for the optimal activity of these drugs. Therefore, oncolytic agents which can induce immune responses to tumor antigens,
25 including neoantigens, and/or which can induce an inflamed tumor microenvironment are attractive for use in combination with immune co-inhibitory pathway blockade and immune potentiating drugs. This likely explains the promising combined anti-tumor effects of oncolytic agents and immune co-inhibitory pathway blockade in mice and humans that have so far been observed.

30 The above discussion demonstrates that there is still much scope for improving oncolytic agents and cancer therapies utilising oncolytic agents, anti-tumor immune responses and drugs which target immune co-inhibitory or co-stimulatory pathways.

Summary of the Invention

The present invention provides oncolytic viruses expressing an inhibitor of CTLA-4. The virus may further comprise other immunomodulatory agents. In particular the virus may comprise GM-CSF and/or at least one molecule targeting an immune co-stimulatory pathway. The CTLA-4 inhibitor acts to block a co-inhibitory pathway, i.e. interferes with the interaction between CTLA-4 and B7. GM-CSF aids in the induction of an inflammatory tumor micro-environment and stimulates the proliferation and maturation of antigen presenting cells, including dendritic cells, aiding the induction of an anti-tumor immune responses. These immune responses may be amplified through activation of an immune co-stimulatory pathway or pathways using an immune co-stimulatory pathway activating molecule or molecules also delivered by the oncolytic virus.

Oncolytic viruses replicate within tumors, causing lysis of tumor cells and release of tumor antigens, combined with local inflammation and activation of innate immune responses, all of which are beneficial for the activation of an anti-tumor immune response and for the activity of inhibitors of the CTLA-4/B7 interaction.

Delivery of molecules that inhibit the CTLA-4/B7 interaction directly into an immune response initiating-tumor, including where it would be expected to traffic to draining lymph nodes, focuses immune potentiation by the inhibitor on the tumor and therefore on tumor antigens present within it, reduces systemic toxicity and blocks regulatory T cell (Treg) activation that would otherwise inhibit T-cell activation at the site of immune response initiation. The use of an oncolytic virus to deliver molecules targeting CTLA-4, and optionally molecules targeting immune co-stimulatory pathways to tumors focuses the amplification of immune effects on anti-tumor immune responses, and reduces the amplification of immune responses to non-tumor antigens. Thus, immune cells in tumors and tumor draining lymph nodes are selectively affected by the molecules expressed by the virus rather than immune cells in general. This results in enhanced efficacy of immune cell stimulation, and can also result in reduced off target toxicity. It is also important for focusing the effects of combined systemic immune co-inhibitory pathway blockade and immune co-stimulatory pathway activation on tumors, i.e. such that the amplified immune responses from which co-inhibitory blocks are released are antitumor immune responses rather than responses to non-tumor antigens.

The invention utilizes the fact that, when delivered by an oncolytic virus, the site of action of CTLA-4 blockade and optionally co-stimulatory pathway activation and of GM-CSF expression is in the tumor and/or tumor draining lymph node, but the results of such activation (an amplified systemic anti-tumor-immune response) are systemic. This targets 5 tumors generally, and not only tumors to which the oncolytic virus has delivered the immunomodulatory molecule or molecules. Oncolytic viruses of the invention therefore provide improved treatment of cancer through the generation of improved tumor focused immune responses. The oncolytic virus of the invention also offers improved anti-tumor immune stimulating effects such that the immune-mediated effects on tumors which are 10 not destroyed by oncolysis, including micro-metastatic disease, are enhanced, resulting in more effective destruction of these tumors, and more effective long term anti-tumor vaccination to prevent future relapse and improve overall survival.

Anti-tumor efficacy is improved when an oncolytic virus of the invention is used as a single agent and also when the virus is used in combination with other anti-cancer 15 modalities, including chemotherapy, treatment with targeted agents, radiation and, in preferred embodiments, immune checkpoint blockade drugs (i.e. antagonists of an immune co-inhibitory pathway, for example antibodies against PD1 or PD-L1) and/or agonists of an immune co-stimulatory pathway.

Accordingly, the present invention provides an oncolytic virus encoding a CTLA-4 20 inhibitor. The CTLA-4 inhibitor is preferably an anti-CTLA-4 antibody or antibody like molecule, or an antigen binding fragment thereof.

The virus may further comprise: (i) a GM-CSF-encoding gene; and/or (ii) an immune co-stimulatory pathway activating molecule or immune co-stimulatory pathway activating molecule-encoding gene. The virus may encode more than one immune co- 25 stimulatory pathway activating molecule/gene.

The immune co-stimulatory pathway activating molecule is preferably GITRL, 4-1-BBL, OX40L, ICOSL or CD40L or a modified version of any thereof. Examples of modified versions include agonists of a co-stimulatory pathway that are secreted rather than being membrane bound, and/or agonists modified such that multimers of the protein are formed.

30 The virus may be a modified clinical isolate, such as a modified clinical isolate of a virus, wherein the clinical isolate kills two or more tumor cell lines more rapidly and/or at

a lower dose *in vitro* than one or more reference clinical isolates of the same species of virus.

The virus is preferably a herpes simplex virus (HSV), such as HSV1. The HSV typically does not express functional ICP34.5 and/or functional ICP47 and/or expresses the 5 US11 gene as an immediate early gene.

The invention also provides:

- a pharmaceutical composition comprising a virus of the invention and a pharmaceutically acceptable carrier or diluent;
- the virus of the invention for use in a method of treating the human or animal body 10 by therapy;
- the virus of the invention for use in a method of treating cancer, wherein the method optionally comprises administering a further anti-cancer agent;
- a product of manufacture comprising a virus of the invention in a sterile vial, ampoule or syringe;
- 15 - a method of treating cancer, which comprises administering a therapeutically effective amount of a virus or a pharmaceutical composition of the invention to a patient in need thereof, wherein the method optionally comprises administering a further anti-cancer agent;
- use of a virus of the invention in the manufacture of a medicament for use in a 20 method of treating cancer, wherein the method optionally comprises administering a further anti-cancer agent.

The present invention also provides an oncolytic herpes simplex virus (HSV) encoding a CTLA-4 inhibitor, wherein:

- (a) the virus further comprises a GM-CSF-encoding gene; and/or
- 25 (b) the virus further comprises an immune co-stimulatory pathway activating molecule-encoding gene encoding CD40 ligand (CD40L), ICOS ligand, GITR ligand, 4-1-BB ligand, OX40 ligand, TL1A, CD30 ligand, CD27 or flt3 ligand; and/or
- (c) the virus further comprises an immune co-stimulatory pathway activating 30 molecule-encoding gene, wherein the immune co-stimulatory pathway activating molecule is encoded by a codon optimized sequence so as to increase expression levels in target cells; and/or

(d) the virus further comprises a fusogenic protein-encoding gene; and/or
(e) the CTLA-4 inhibitor is encoded by a codon optimized sequence so as to increase expression levels in target cells; and/or
(f) the virus does not express functional ICP34.5, does not express functional ICP47, and expresses the US11 gene as an immediate early gene

Brief Description of the Figures

Figure 1 depicts the structures of the viruses used to construct exemplary viruses of the invention that comprise anti-mouse or anti-human CTLA-4 constructs that are codon optimized secreted scFv molecules linked to human or mouse IgG1 Fc regions. The scFvs contain light and heavy variable chains from 9D9 (the initial mouse antibody initially used to validate CTLA-4; WO2007/123737: mouse version) or from ipilimumab. (WO2014/066532; human version) linked by the 15-mer $[G_4S]_3$ (GGGGSGGGGSGGGGS). The viruses are modified versions of strain HSV1 RH018A (clinical strain 18). The ICP34.5 and ICP47 genes are inactivated in the viruses. The US11 gene is placed under the control of the ICP47 immediate early gene promoter by deletion of the ICP47 promoter. An expression cassette is inserted into the ICP34.5 gene loci. In virus 17, the expression cassette includes the human GM-CSF gene under the control of a CMV promoter and the GALV gene under the control of a RSV promoter. Virus 16 is the same as virus 17, except that human GM-CSF is included instead of mouse GM-CSF. Viruses 25 and 29 are the same as viruses 16 and 17, respectively, except that they each additionally comprise a GFP gene under the control of a MMLV promoter in the expression cassette. Viruses 27 and 31 are the same as viruses 25 and 29, respectively, except that the GFP gene is replaced with mouse anti-CTLA4 and human anti-CTLA4, respectively.

Figure 2 depicts the structures of the plasmids used to construct the exemplary viruses of the invention.

Figure 3 shows the structure of anti-mouse or human CTLA-4 constructs that are codon optimized secreted scFv molecules linked to human or mouse IgG1 Fc regions. The scFvs contain the linked $([G_4S]_3)$ light and heavy variable chains from 9D9 (the initial mouse antibody initially used to validate CTLA-4; US2011044953: mouse version) or

from ipilimumab (US20150283234; human version). The resulting structure of the CTLA-4 inhibitor is also shown.

Figure 4 is a western blot demonstrating that anti-mouse CTLA-4 is expressed from virus 27. The gel used was a reduced denatured PVDF membrane tris-glycine gel. Anti-
5 CTLA-4 was detected using an alkaline phosphatase-tagged anti-mouse IgG1 antibody. Lane 1: spectra broad range ladder; lane 2 virus 27 neat supernatant; lane 3 virus 27 supernatant diluted 1 in 2; lane 4 virus 27 supernatant diluted 1 in 4; lane 5 virus 27 supernatant diluted 1 in 8; lane 6 virus 27 supernatant diluted 1 in 16; lane 7 virus 27 supernatant diluted 1 in 32; lane 8 negative control virus (neat supernatant). The expected
10 size of anti-CTLA-4 (reduced) is 57kDa.

Figure 5 shows the superior tumor control and shrinkage in uninjected tumors of a virus expressing anti-mCTLA-4 (virus 27) compared to an otherwise identical virus that does not express CTLA-4 (virus 16). The dose of virus used was 5×10^4 pfu (50ul of 1×10^6 pfu/ml in each case), given three times over one week. This dose level of virus is
15 subtherapeutic for uninjected tumors for virus 16, which allows the benefits of the delivery of the additional molecule encoded by virus 27 to clearly be seen.

Figure 6 shows the superior tumor control and shrinkage in both injected and uninjected tumors of a virus expressing anti-mCTLA-4 (virus 27) compared to an otherwise identical virus that does not express CTLA-4 (virus 16). The dose of the virus
20 used was 5×10^4 pfu over one week into the right tumor of a virus expressing anti-mCTLA-4 (virus 27) compared to an otherwise identical virus that does not express CTLA-4 (virus 16). Each line represents a different mouse.

Figure 7 shows the effect of combined treatment of bilateral mouse A20 tumors using anti-PD1 and virus 27 expressing mGM-CSF, GALVR and anti-mCTLA-4. The top
25 panel shows the effect of anti-PD1 alone on both injected (right) and uninjected (left) tumors. The middle panel shows the effect of virus 27 alone on both injected (right) and uninjected (left) tumors. The bottom panel shows the superior tumor control and shrinkage achieved when anti-PD1 and virus 27 are both injected into the right tumor. The improved anti-tumor effect of the combined treatment is observed in both injected (right) and
30 uninjected (left) tumors. Each line represents a different mouse.

Figure 8 shows the superior tumor control and shrinkage effects of virus 31 expressing hGM-CSF, GALVR and anti-human CTLA-4 compared to virus 17 expressing

only hGM-CSF and GALVR in mouse MC38 tumors in knock-in mice expressing human CTLA-4. The anti-tumor effects of virus 31 are observed when the virus is administered alone or in combination with anti-PD1. Superior tumor control and shrinkage in injected tumors is obtained with virus 31 which expresses anti-human CTLA-4 compared with an otherwise identical virus that does not express anti-human CTLA-4 (left panel). This effect is further enhanced when treatment with the virus is combined with anti-PD1 treatment. Superior tumor control and shrinkage is also observed in uninjected tumors (right panel) when treatment with either virus is combined with anti-PD1 treatment. This improvement is more marked for the virus 31 that expresses anti CTLA-4 than for virus 17 which does not. Each line represents a different mouse.

Brief Description of the Sequence Listing

SEQ ID NO: 1 is the light chain variable region amino acid sequence of the human CTLA-4 antibody used in the Examples.

SEQ ID NOs: 2 is the complete light chain amino acid sequence comprising the light chain variable region amino acid sequence of the human CTLA-4 antibody used in the Examples.

SEQ ID NO: 3 is the heavy chain variable region amino acid sequence of the human CTLA-4 antibody used in the Examples.

SEQ ID NO: 4 is the heavy chain CH1 amino acid sequence of the human CTLA-4 antibody used in the Examples.

SEQ ID NO: 5 is the heavy chain CH2/3 amino acid sequence of the human CTLA-4 antibody used in the Examples.

SEQ ID NO: 6 is the complete heavy chain amino acid sequence of the human CTLA-4 antibody used in the Examples.

SEQ ID NO: 7 is the amino acid sequence of the signal peptide present in the CTLA-4 antibodies of the Examples.

SEQ ID NO: 8 is the amino acid sequence of the linker present between the light chain variable region and the heavy chain variable region in the CTLA-4 antibodies of the Examples.

SEQ ID NO: 9 is the amino acid sequence of the human scFv CTLA-4 antibody of the Examples.

SEQ ID NO: 10 is the nucleotide sequence of the human scFv CTLA-4 antibody of the Examples.

SEQ ID NO: 11 is the light chain variable region amino acid sequence of the murine CTLA-4 antibody used in the Examples.

5 SEQ ID NO: 12 is the heavy chain variable region amino acid sequence of the murine CTLA-4 antibody used in the Examples.

SEQ ID NO: 13 is the complete heavy chain amino acid sequence of the murine CTLA-4 antibody used in the Examples.

10 SEQ ID NO: 14 is the amino acid sequence of the murine scFv CTLA-4 antibody of the Examples.

SEQ ID NO: 15 is the nucleotide sequence of the murine scFv CTLA-4 antibody of the Examples.

15 SEQ ID NO: 16 is the nucleotide sequence of the murine scFv CTLA-4 antibody of the Examples with inserted restriction sites for cloning purposes located at the N and C terminals, that is present in the exemplary virus. The restriction sites are the first six and last eight nucleotides of the sequence.

20 SEQ ID NO: 17 is the nucleotide sequence of the human scFv CTLA-4 antibody of the Examples with inserted restriction sites for cloning purposes located at the N and C terminals, that is present in the exemplary virus. The restriction sites are the first six and last eight nucleotides of the sequence.

SEQ ID NO: 18 is the nucleotide sequence of mouse GM-CSF.

SEQ ID NO: 19 is the nucleotide sequence of a codon optimized version of mouse GM-CSF.

SEQ ID NO: 20 is the nucleotide sequence of human GM-CSF.

25 SEQ ID NO: 21 is the nucleotide sequence of a codon optimized version of human GM-CSF.

SEQ ID NO: 22 is the amino acid sequence of mouse GM-CSF.

SEQ ID NO: 23 is the amino acid sequence of human GM-CSF.

SEQ ID NO: 24 is the nucleotide sequence of GALV-R-.

30 SEQ ID NO: 25 is the nucleotide sequence of a codon optimized version of GALV-R-.

SEQ ID NO: 26 is the amino acid sequence of GALV-R-.

SEQ ID NO: 27 is the nucleotide sequence of a codon optimized version of a human/mouse hybrid membrane bound version of CD40L.

SEQ ID NO: 28 is the amino acid sequence of a human/mouse hybrid membrane bound version of CD40L .

5 SEQ ID NO: 29 is the nucleotide sequence of a codon optimized version of a multimeric secreted version of human CD40L.

SEQ ID NO: 30 is the amino acid sequence of a multimeric secreted version of human CD40L.

10 SEQ ID NO: 31 is the nucleotide sequence of a codon optimized version of a multimeric secreted version of mouse CD40L.

SEQ ID NO: 32 is the amino acid sequence of a multimeric secreted version of mouse CD40L.

SEQ ID NO: 33 is the nucleotide sequence of wild-type human CD40L.

SEQ ID NO: 34 is the amino acid sequence of wild-type human CD40L.

15 SEQ ID NO: 35 is the nucleotide sequence of wild-type mouse CD40L.

SEQ ID NO: 36 is the amino acid sequence of wild-type mouse CD40L.

SEQ ID NO: 37 is the nucleotide sequence of the CMV promoter.

SEQ ID NO: 38 is the nucleotide sequence of the RSV promoter.

SEQ ID NO: 39 is the nucleotide sequence of BGH polyA.

20 SEQ ID NO: 40 is the nucleotide sequence of SV40 late polyA.

SEQ ID NO: 41 is the nucleotide sequence of rabbit beta-globulin polyA.

SEQ ID NO: 42 is the nucleotide sequence of GFP.

SEQ ID NO: 43 is the nucleotide sequence of retroviral LTR from MMLV.

SEQ ID NO: 44 is the nucleotide sequence of EF1a promoter.

25 SEQ ID NO: 45 is the nucleotide sequence of SV40 promoter.

SEQ ID NO: 46 is the nucleotide sequence of HGH polyA.

Detailed Description of the Invention

Oncolytic Virus

30 The virus of the invention is oncolytic. An oncolytic virus is a virus that infects and replicates in tumor cells, such that the tumor cells are killed. Therefore, the virus of the invention is replication competent. Preferably, the virus is selectively replication

competent in tumors. A virus is selectively replication competent in tumor tissue if it replicates more effectively in tumor tissue than in non-tumor tissue. The ability of a virus to replicate in different tissue types can be determined using standard techniques in the art.

The virus of the invention may be any virus which has these properties, including a herpes virus, pox virus, adenovirus, retrovirus, rhabdovirus, paramyxovirus or reovirus, or any species or strain within these larger groups. Viruses of the invention may be wild type (i.e. unaltered from the parental virus species), or with gene disruptions or gene additions. Which of these is the case will depend on the virus species to be used. Preferably the virus is a species of herpes virus, more preferably a strain of HSV, including strains of HSV1 and HSV2, and is most preferably a strain of HSV1. In particularly preferred embodiments the virus of the invention is based on a clinical isolate of the virus species to be used. The clinical isolate may have been selected on the basis of it having particular advantageous properties for the treatment of cancer.

The virus may be a modified clinical isolate, wherein the clinical isolate kills two or more tumor cell lines more rapidly and/or at a lower dose *in vitro* than one or more reference clinical isolate of the same species of virus. Typically, the clinical isolate will kill two or more tumor cell lines within 48 hours, preferably within 24 hours, of infection at multiplicities of infection (MOI) of less than or equal to 0.1. Preferably the clinical isolate will kill a broad range of tumor cell lines, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or, for example, all of the following human tumor cell lines: U87MG (glioma), HT29 (colorectal), LNCaP (prostate), MDA-MB-231 (breast), SK-MEL-28 (melanoma), Fadu (squamous cell carcinoma), MCF7 (breast), A549 (lung), MIAPACA-2 (pancreas), CAPAN-1(pancreas), HT1080 (fibrosarcoma).

In a preferred embodiment, the virus of the invention is a strain selected from: strain RH018A having the accession number ECCAC 16121904; strain RH004A having the accession number ECCAC 16121902; strain RH031A having the accession number ECCAC 16121907; strain RH040B having the accession number ECCAC 16121908; strain RH015A having the accession number ECCAC 16121903; strain RH021A having the accession number ECCAC 16121905; strain RH023A having the accession number ECCAC 16121906; and strain RH047A having the accession number ECCAC 16121909.

More preferably, the virus of the invention is a strain selected from:
strain RH018A having the accession number ECCAC 16121904;
strain RH004A having the accession number ECCAC 16121902;
strain RH031A having the accession number ECCAC 16121907;
5 strain RH040B having the accession number ECCAC 16121908; and
strain RH015A having the accession number ECCAC 16121903.

Most preferably, the virus of the invention is strain RH018A having the accession number EACC 16121904. Any one of the deposited strains may be modified as defined herein.

10 An HSV of the invention is capable of replicating selectively in tumors, such as human tumors. Typically, the HSV replicates efficiently in target tumors but does not replicate efficiently in non-tumor tissue. This HSV may comprise one or more mutations in one or more viral genes that inhibit replication in normal tissue but still allow replication in tumors. The mutation may, for example, be a mutation that prevents the expression of 15 functional ICP34.5, ICP6 and/or thymidine kinase by the HSV.

In one preferred embodiment, the ICP34.5-encoding genes are mutated to confer selective oncolytic activity on the HSV. Mutations of the ICP34.5-encoding genes that prevent the expression of functional ICP34.5 are described in Chou *et al.* (1990) *Science* 250:1262-1266, Maclean *et al.* (1991) *J. Gen. Virol.* 72:631-639 and Liu *et al.* (2003) *Gene* 30:292-303, which are incorporated herein by reference. The ICP6-encoding gene and/or thymidine kinase-encoding gene may also be inactivated, as may other genes provided that such inactivation does not prevent the virus infecting or replicating in tumors.

25 The HSV may contain a further mutation or mutations which enhance replication of the HSV in tumors. The resulting enhancement of viral replication in tumors not only results in improved direct ‘oncolytic’ tumor cell killing by the virus, but also enhances the level of heterologous (i.e. a gene inserted into the virus, in the case of viruses of the invention genes encoding a CTLA-4 inhibitor, GM-CSF and/or an immune co-stimulatory pathway activating molecule(s)) gene expression and increases the amount of tumor 30 antigen released as tumor cells die, both of which may also improve the immunogenic properties of the therapy for the treatment of cancer. For example, in a preferred embodiment of the invention, deletion of the ICP47-encoding gene in a manner that places

the US11 gene under the control of the immediate early promoter that normally controls expression of the ICP47 encoding gene leads to enhanced replication in tumors (see Liu *et al.*, 2003, which is incorporated herein by reference).

Other mutations that place the US11 coding sequence, which is an HSV late gene, 5 under the control of a promoter that is not dependent on viral replication may also be introduced into a virus of the invention. Such mutations allow expression of US11 before HSV replication occurs and enhance viral replication in tumors. In particular, such mutations enhance replication of an HSV lacking functional ICP34.5-encoding genes.

Accordingly, in one embodiment the HSV of the invention comprises a US11 gene 10 operably linked to a promoter, wherein the activity of the promoter is not dependent on viral replication. The promoter may be an immediate early (IE) promoter or a non-HSV promoter which is active in mammalian, preferably human, tumor cells. The promoter may, for example, be a eukaryotic promoter, such as a promoter derived from the genome of a mammal, preferably a human. The promoter may be a ubiquitous promoter (such as a 15 promoter of β -actin or tubulin) or a cell-specific promoter, such as tumor-specific promoter. The promoter may be a viral promoter, such as the Moloney murine leukaemia virus long terminal repeat (MMLV LTR) promoter or the human or mouse cytomegalovirus (CMV) IE promoter. HSV immediate early (IE) promoters are well known in the art. The HSV IE promoter may be the promoter driving expression of ICP0, 20 ICP4, ICP22, ICP27 or ICP47.

The genes referred to above, the functional inactivation of which provides the 25 property of tumor selectivity to the virus, may be rendered functionally inactive by any suitable method, for example by deletion or substitution of all or part of the gene and/or control sequence of the gene or by insertion of one or more nucleic acids into or in place of the gene and/or the control sequence of the gene. For example, homologous recombination methods, which are standard in the art, may be used to generate the virus of the invention. Alternatively bacterial artificial chromosome (BAC)-based approaches may be used.

As used herein, the term “gene” is intended to mean the nucleotide sequence 30 encoding a protein, i.e. the coding sequence of the gene. The various genes referred to above may be rendered non-functional by mutating the gene itself or the control sequences flanking the gene, for example the promoter sequence. Deletions may remove one or more portions of the gene, the entire gene or the entire gene and all or some of the control

sequences. For example, deletion of only one nucleotide within the gene may be made, resulting in a frame shift. However, a larger deletion may be made, for example at least about 25%, more preferably at least about 50% of the total coding and/or non-coding sequence. In one preferred embodiment, the gene being rendered functionally inactive is

5 deleted. For example, the entire gene and optionally some of the flanking sequences may be removed from the virus. Where two or more copies of the gene are present in the viral genome both copies of the gene are rendered functionally inactive.

A gene may be inactivated by substituting other sequences, for example by substituting all or part of the endogenous gene with a heterologous gene and optionally a 10 promoter sequence. Where no promoter sequence is substituted, the heterologous gene may be inserted such that it is controlled by the promoter of the gene being rendered non-functional. In an HSV of the invention it is preferred that the ICP34.5 encoding-genes are rendered non-functional by the insertion of a heterologous gene or genes and a promoter sequence or sequences operably linked thereto, and optionally other regulatory elements 15 such as polyadenylation sequences, into each the ICP34.5-encoding gene loci.

A virus of the invention is used to express a CTLA-4 inhibitor, and optionally GM-CSF and/or an immune co-stimulatory pathway activating molecule, in tumors. This is typically achieved by inserting a heterologous gene encoding a CTLA-4 inhibitor, and optionally a heterologous gene encoding GM-CSF and/or a heterologous gene encoding 20 the immune co-stimulatory pathway activating molecule, in the genome of a selectively replication competent virus wherein each gene is under the control of a promoter sequence. As replication of such a virus will occur selectively in tumor tissue, expression of the CTLA-4 inhibitor and, if present, expression of the GM-CSF and/or the immune co-stimulatory activating protein by the virus, is also enhanced in tumor tissue as compared to 25 non-tumor tissue in the body. Enhanced expression occurs where expression is greater in tumors as compared to other tissues of the body. Proteins expressed by the oncolytic virus would also be expected to be present in oncolytic virus-infected tumor draining lymph nodes, including due to trafficking of expressed protein and of virus in and on antigen presenting cells from the tumor. Accordingly, the invention provides benefits of expression 30 of the CTLA-4 inhibitor and any co-expressed GM-CSF and/or immune co-stimulatory pathway activating molecule selectively in tumors and tumor draining lymph nodes combined with the anti-tumor effect provided by oncolytic virus replication.

The virus of the invention comprises a CTLA-4 inhibitor. The CTLA-4 inhibitor is a molecule, typically a peptide or protein that binds to CTLA-4 and reduces or blocks signalling through CTLA-4. By reducing CTLA-4 signalling, the inhibitor reduces or removes the block of immune stimulatory pathways by CTLA-4.

5 The CTLA-4 inhibitor is preferably an antibody or an antigen binding fragment thereof.

The term "antibody" as referred to herein includes whole antibodies and any antigen binding fragment (*i.e.*, "antigen-binding portion") or single chains thereof. An antibody refers to a glycoprotein comprising at least two heavy (H) chains and two light 10 (kappa)(L) chains inter-connected by disulfide bonds, or an antigen binding portion thereof. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The variable regions of the heavy and light chains contain a binding domain that interacts with 15 an antigen. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (*e.g.*, effector cells) and the first component 20 (Clq) of the classical complement system.

The antibody is typically a monoclonal antibody. The antibody may be a chimeric antibody. The antibody is preferably a humanised antibody and is more preferably a human antibody.

The term "antigen-binding fragment" of an antibody refers to one or more 25 fragments of an antibody that retain the ability to specifically bind to CTLA-4. The antigen-binding fragment also retains the ability to inhibit CTLA-4 and hence to reduce or remove the CTLA-4 blockade of a stimulatory immune response. Examples of suitable fragments include a Fab fragment, a F(ab')₂ fragment, a Fab' fragment, a Fd fragment, a Fv fragment, a dAb fragment and an isolated complementarity determining region (CDR). 30 Single chain antibodies such as scFv and heavy chain antibodies such as VHH and camel antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. In a preferred embodiment, the antibody is an scFv. Examples of suitable

scFv molecules are disclosed in, for example, WO2007/123737 and WO2014/066532, which are incorporated herein by reference.

The antibody encoding sequences typically encode an antibody or antibody fragment having a N-terminal signal sequence. The signal sequence may have the amino acid sequence shown in SEQ ID NO: 7. For example, this signal sequence is included in a scFv having the amino acid sequence shown in SEQ ID NO: 9 and encoded by the nucleotide sequence shown in SEQ ID NO: 10, and in a scFv having the amino acid sequence shown in SEQ ID NO: 14 and encoded by the nucleotide sequence shown in SEQ ID NO: 15.

10 In the antibody or antibody fragment, the light chain and heavy chain sequences may be joined by an amino acid linker. The linker typically comprises from about 15 to about 25 amino acids, such as about 18 or 20 amino acids. Any suitable linker may be used, such as linkers comprising glycine and serine residues, for example the amino acid sequence shown in SEQ ID NO: 8. For example, this linker is included in a scFv having 15 the amino acid sequence shown in SEQ ID NO: 9 and encoded by the nucleotide sequence shown in SEQ ID NO: 10, and in a scFv having the amino acid sequence shown in SEQ ID NO: 14 and encoded by the nucleotide sequence shown in SEQ ID NO: 15. Both are preferred antibody fragments for use in the invention.

Other antibody fragments having similar structures are also preferred. Accordingly 20 the virus of the invention may encode an antibody or fragment comprising, or consisting essentially of, a light chain variable region, a linker a heavy chain variable region, a heavy chain CH1 domain, a heavy chain CH2 domain and a heavy chain CH3 domain. The virus may further encode a signal sequence at the N-terminus of the antibody.

The antibodies or antibody fragments of the invention may preferably comprise an 25 Fc region which is an IgG1, IgG2, IgG3 or IgG4 region, more preferably an IgG1 region. Preferably, the antibody is an scFv antibody in which the scFv is linked to IgG heavy chain CH2 and CH3 domains.

A preferred CTLA-4 antibody or fragment comprises the heavy chain variable region shown in SEQ ID NO:3 and/or the light chain variable region shown in SEQ ID 30 NO: 1 or the heavy chain variable region shown in SEQ ID NO:11 and/or the light chain variable region shown in SEQ ID NO: 12. The antibody may comprise the heavy chain CH1 domain having the amino acid sequence shown in SEQ ID NO: 4 and/or the

CH2/CH3 domains shown in SEQ ID NO: 5. The antibody may comprise the light chain amino acid sequence shown in SEQ ID NO: 2. An antibody of the invention may alternatively comprise a variant of one of these heavy or light chain variable regions or CDR sequences. For example, a variant may be a substitution, deletion or addition variant of any of the above amino acid sequences.

A variant antibody may comprise 1, 2, 3, 4, 5, up to 10, up to 20, up to 30 or more amino acid substitutions and/or deletions from the specific sequences and fragments discussed above, whilst maintaining the activity of the antibodies described herein.

“Deletion” variants may comprise the deletion of, for example, 1, 2, 3, 4 or 5 individual

10 amino acids or of one or more small groups of amino acids such as 2, 3, 4 or 5 amino acids. “Substitution” variants preferably involve the replacement of one or more amino acids with the same number of amino acids and making conservative amino acid substitutions. For example, an amino acid may be substituted with an alternative amino acid having similar properties, for example, another basic amino acid, another acidic amino acid, another neutral amino acid, another charged amino acid, another hydrophilic amino acid, another hydrophobic amino acid, another polar amino acid, another aromatic amino acid or another aliphatic amino acid.

The virus of the invention comprises one or more polynucleotide sequence encoding the CTLA-4 inhibitor. The polynucleotide sequence is under the control of a suitable promoter. The virus may comprise a first polynucleotide sequence encoding an antibody heavy chain variable region and a second polynucleotide encoding an antibody light chain variable region. The first polynucleotide may encode a full length heavy chain and/or the second polynucleotide may encode a full length light chain. The first and second polynucleotide may be under the control of a single promoter, optionally with an IRES, or may be under the control of two separate promoters. The separates promoters may be the same or different.

The first polynucleotide may comprise, consist essentially of or consist of the heavy chain variable region encoding sequence shown in SEQ ID NO: 9 and/or the second polynucleotide may comprise, consist essentially of or consist of the heavy chain variable region encoding sequence shown in SEQ ID NO: 10. The first polynucleotide may comprise, consist essentially of or consist of the heavy chain variable region encoding sequence shown in SEQ ID NO: 19 and/or the second polynucleotide may comprise,

consist essentially of or consist of the heavy chain variable region encoding sequence shown in SEQ ID NO: 20.

5 A first and/or second polynucleotide sequences may be a variant of SEQ ID NO: 9, 10, 19 or 20. For example, a variant may be a substitution, deletion or addition variant of either of these nucleic acid sequences. A variant polynucleotide may comprise 1, 2, 3, 4, 5, up to 10, up to 20, up to 30, up to 40, up to 50, up to 75 or more nucleic acid substitutions and/or deletions from SEQ ID NO: 9, 10, 19 or 20.

10 Suitable variants may be at least 70% homologous to a polynucleotide of any one of nucleic acid sequences disclosed herein, preferably at least 80 or 90% and more preferably at least 95%, 97% or 99% homologous thereto. Preferably homology and identity at these levels is present at least with respect to the coding regions of the polynucleotides. Methods of measuring homology are well known in the art and it will be understood by those of skill in the art that in the present context, homology is calculated on the basis of nucleic acid identity. Such homology may exist over a region of at least 15, 15 preferably at least 30, for instance at least 40, 60, 100, 200 or more contiguous nucleotides. Such homology may exist over the entire length of the unmodified polynucleotide sequence.

20 Methods of measuring polynucleotide homology or identity are known in the art. For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (e.g. used on its default settings) (Devereux *et al* (1984) Nucleic Acids Research 12, p387-395).

The PILEUP and BLAST algorithms can also be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul S.F. (1993) J Mol Evol 36:290-300; Altschul, S, F *et al* (1990) J Mol Biol 215:403-10.

25 Software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul *et al*, *supra*). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the

cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the 5 sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89:10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm performs a statistical analysis of the similarity between two 10 sequences; see e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in 15 comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

In one embodiment, a variant sequence may vary from the specific sequences given 20 in the sequence listing by virtue of the redundancy in the genetic code. The DNA code has 4 primary nucleic acid residues (A, T, C and G) and uses these to “spell” three letter codons which represent the amino acids the proteins encoded in an organism’s genes. The linear sequence of codons along the DNA molecule is translated into the linear sequence of amino acids in the protein(s) encoded by those genes. The code is highly degenerate, with 61 codons coding for the 20 natural amino acids and 3 codons representing “stop” signals. 25 Thus, most amino acids are coded for by more than one codon - in fact several are coded for by four or more different codons. A variant polynucleotide of the invention may therefore encode the same polypeptide sequence as another polynucleotide of the invention, but may have a different nucleic acid sequence due to the use of different codons to encode the same amino acids. The codons may be optimized so as to increase 30 expression levels of the encoded proteins in target cells as compared to if the unaltered sequence is used.

The virus of the invention preferably comprises GM-CSF. The sequence of the gene encoding GM-CSF may be codon optimized so as to increase expression levels of the respective proteins in target cells as compared to if the unaltered sequence is used.

The virus of the invention preferably comprises one or more immune co-stimulatory pathway activating molecules and/or one or more genes encoding an immune co-stimulatory pathway activating molecule. Immune co-stimulatory pathway activating molecules include proteins and nucleic acid molecules (e.g. aptamer sequences). Examples of immune co-stimulatory pathway activating molecules include CD40 ligand, GITR ligand, 4-1-BB ligand, OX40 ligand, ICOS ligand, flt3 ligand, TL1A, CD30 ligand, CD70 and single chain antibodies targeting the respective receptors for these molecules (CD40, GITR, 4-1-BB, OX40, ICOS, flt3, DR3, CD30, CD27).

Activators of immune co-stimulatory pathway include mutant or wild type, soluble, secreted and/or membrane bound ligands, and agonistic antibodies including single chain antibodies. Viruses of the invention preferably encode one or more of CD40L, ICOSL, 4-1-BBL, GITRL or OX40L.

Viruses of the invention may encode one or more immune co-stimulatory pathway activating molecules, preferably 1, 2, 3 or 4 immune co-stimulatory pathway activating molecules, more preferably 1 or 2 immune co-stimulatory pathway activating molecules.

The sequence of the gene encoding the immune co-stimulatory activating molecule may be codon optimized so as to increase expression levels of the respective protein(s) in target cells as compared to if the unaltered sequence is used.

The virus of the invention may comprise one or more further heterologous genes in addition to a CTLA-4 inhibitor, and GM-CSF and/or an immune co-stimulatory pathway activating molecule. In a preferred embodiment, the virus may further comprise a fusogenic protein such as GALVR-.

The fusogenic protein may be any heterologous protein capable of promoting fusion of a cell infected with the virus of the invention to another cell. A fusogenic protein, preferably a wild type or modified viral glycoprotein (i.e. modified to increase its fusogenic properties), is a protein which is capable in inducing the cell to cell fusion (syncitia formation) of cells in which it is expressed. Examples of fusogenic glycoproteins include VSV-G, syncitin-1 (from human endogenous retrovirus-W (HERV-W)) or syncitin-2 (from HERVFRDE1), paramyxovirus SV5-F, measles virus-H, measles virus-F,

RSV-F, the glycoprotein from a retrovirus or lentivirus, such as gibbon ape leukemia virus (GALV), murine leukemia virus (MLV), Mason-Pfizer monkey virus (MPMV) and equine infectious anemia virus (EIAV) with the R transmembrane peptide removed (R- versions). In a preferred embodiment the fusogenic protein is from GALV and has the R- peptide removed (GALV-R-).

The virus of the invention may optionally comprise multiple copies of the fusogenic protein-encoding gene, preferably 1 or 2 copies. The virus may comprise two or more different fusogenic proteins, including any of the fusogenic proteins listed above.

The fusogenic protein or proteins optionally expressed by a virus of the invention 10 may be identical to a naturally occurring protein, or may be a modified protein.

The fusogenic protein-encoding gene (fusogenic gene) may have a naturally occurring nucleic acid sequence or a modified sequence. The sequence of the fusogenic gene may, for example, be modified to increase the fusogenic properties of the encoded protein, or to provide codon optimisation and therefore increase the efficiency of 15 expression of the encoded protein.

The invention also provides a virus, such as a pox virus or a HSV, preferably HSV1, which expresses at least three heterologous genes, wherein each of the three heterologous genes is driven by a different promoter selected from the CMV promoter, the RSV promoter, the EF1a promoter, the SV40 promoter and a retroviral LTR promoter.

20 The virus may, for example, express four heterologous genes, wherein each of the four heterologous genes is driven by a different promoter selected from the CMV promoter, the RSV promoter, the EF1a promoter, the SV40 promoter and a retroviral LTR promoter.

The retroviral LTR is preferably from MMLV. The heterologous genes may be terminated by polyadenylation sequences. The polyadenylation sequences may be the same or

25 different. Preferably each heterologous gene is terminated by a different polyadenylation sequence, which is preferably selected from the BGH, SV40, HGH and RBG polyadenylation sequences.

The invention also provides a virus, such as a pox virus or a HSV, preferably HSV1, which expresses at least three heterologous genes, wherein each of the three heterologous genes is terminated by a different polyadenylation sequence selected

30 from the BGH, SV40, HGH and RBG polyadenylation sequences. The virus may, for example, express four heterologous genes terminated by each of the BGH, SV40, HGH and RBG polyadenylation sequences, respectively.

The at least three heterologous genes may, for example, be selected from a CTLA-4 inhibitor, a gene encoding GM-CSF, a gene encoding an immune co-stimulatory pathway activating molecule and a fusogenic gene. Examples of the three heterologous genes are a CTLA-4 inhibitor, a gene encoding GM-CSF and a gene encoding an immune co-
5 stimulatory pathway activating molecule; a CTLA-4 inhibitor, a gene encoding GM-CSF and a fusogenic gene; and a CTLA-4 inhibitor, a gene encoding an immune co-stimulatory pathway activating molecule and a fusogenic gene. The four heterologous genes may, for example, be a CTLA-4 inhibitor, a gene encoding GM-CSF, a gene encoding an immune co-stimulatory pathway activating molecule and a fusogenic gene. The three or four
10 heterologous genes may comprise, for example, two or more genes encoding immune co-stimulatory pathway activating molecules and/or two or more fusogenic genes.

In one embodiment, the promoters controlling expression of the three heterologous genes are the CMV, RSV and MMLV promoters. For example, a preferred virus may comprise a GM-CSF gene under the control of a CMV promoter, a GALV gene under the
15 control of a RSV promoter and a CTLA-4 inhibitor under the control of a MMLV promoter.

In one embodiment, the polyadenylation sequence terminating the at least three heterologous genes are SV40, BGH and RBG polyadenylation sequences. controlling expression of the three heterologous genes are the CMV, RSV and MMLV promoters. For
20 example, a preferred virus may comprise a GM-CSF gene terminated by a BGH polyadenylation sequence, a GALV gene terminated by a SV40 polyadenylation sequence and a CTLA-4 inhibitor terminated by a RGB polyadenylation sequence.

Any combination of the various promoters and polyadenylation sequences may be used with any of the heterologous genes. For example, a preferred virus may comprise a
25 GM-CSF gene under the control of a CMV promoter and terminated by a BGH polyadenylation sequence, a GALV gene under the control of a RSV promoter and terminated by a SV40 polyadenylation sequence, and a CTLA-4 inhibitor under the control of a MMLV promoter terminated by a RGB polyadenylation sequence.

30 *Production of Virus*

Viruses of the invention are constructed using methods well known in the art. For example plasmids (for smaller viruses and single and multiple genome component RNA

viruses) or BACs (for larger DNA viruses including herpes viruses) encoding the viral genome to be packaged, including the genes encoding the fusogenic and immune stimulating molecules under appropriate regulatory control, can be constructed by standard molecular biology techniques and transfected into permissive cells from which

5 recombinant viruses can be recovered.

Alternatively, in a preferred embodiment plasmids containing DNA regions flanking the intended site of insertion can be constructed, and then co-transfected into permissive cells with viral genomic DNA such that homologous recombination between the target insertion site flanking regions in the plasmid and the same regions in the parental 10 virus occur. Recombinant viruses can then be selected and purified through the loss or addition of a function inserted or deleted by the plasmid used for modification, e.g. insertion or deletion of a marker gene such as GFP or lacZ from the parental virus at the intended insertion site. In a most preferred embodiment the insertion site is the ICP34.5 locus of HSV, and therefore the plasmid used for manipulation contains HSV sequences 15 flanking this insertion site, between which are an expression cassette encoding GM-CSF and the immune co-stimulatory pathway activating molecule. In this case, the parental virus may contain a cassette encoding GFP in place of ICP34.5 and recombinant virus plaques are selected through the loss of expression of GFP. In a most preferred embodiment the US11 gene of HSV is also expressed as an IE gene. This may be 20 accomplished through deletion of the ICP47-encoding region, or by other means.

The CTLA-4 inhibitor, and optionally the GM-CSF encoding sequences and immune co-stimulatory pathway activating molecule encoding sequences and/or additional protein encoding sequence, such as a sequence encoding a fusogenic protein such as GALVR-, are inserted into the viral genome under appropriate regulatory control. This 25 may be under the regulatory control of natural promoters of the virus species of the invention used, depending on the species and insertion site, or preferably under the control of heterologous promoters. Suitable heterologous promoters include mammalian promoters, such as the IEF2a promoter or the actin promoter. More preferred are strong 30 viral promoters such as the CMV IE promoter, the RSV LTR, the MMLV LTR, other retroviral LTR promoters, or promoters derived from SV40. Preferably each exogenous gene (e.g. encoding the GM-CSF and immune co-stimulatory pathway activating molecule) will be under separate promoter control, but may also be expressed from a single

RNA transcript, for example through insertion of an internal ribosome entry sites (IRES) between protein coding sequences. RNA derived from each promoter is typically terminated using a polyadenylation sequence (e.g. mammalian sequences such as the bovine or human growth hormone (BGH) poly A sequence, synthetic polyadenylation sequences, the rabbit betaglobin polyadenylation sequence, or viral sequences such as the SV40 early or late polyadenylation sequence).

Each of the heterologous genes in the virus is typically under the control of a promoter. The promoters controlling expression of the heterologous genes may be the same or different. For example, the anti-CTLA-4, and one or more of the GM-CSF, 5 fusogenic gene and immune co-stimulatory pathway activating molecule-encoding gene may each be under the control of the CMV promoter, the RSV promoter, the EF1a promoter, the SV40 promoter or a retroviral LTR promoter. Alternatively, for example, the anti-CTLA-4 may be under the control of a retroviral LTR promoter such as the MMLV promoter, the GM-CSF gene may be under the control of the CMV promoter 10 and/or the fusogenic gene, such as GALVR- may be under the control of the RSV promoter. 15

Pharmaceutical Compositions

The invention provides a pharmaceutical composition comprising the virus and a 20 pharmaceutically acceptable carrier or diluent. Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline. The composition may further comprise other constituents such as sugars or proteins to improve properties such as stability of the product. Alternatively a lyophilized formulation may be used, which is reconstituted in a pharmaceutically acceptable carrier or diluent before use.

25 The choice of carrier, if required, is frequently a function of the route of delivery of the composition. Within this invention, compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents are those used in compositions suitable for intra-tumoral administration, intravenous/intraarterial administration, administration into the brain or administration into 30 a body cavity (e.g. bladder, pleural cavity or by intraperitoneal administration). The composition may be administered in any suitable form, preferably as a liquid.

The present invention also provides a product of manufacture comprising a virus of the invention in a sterile vial, ampoule or syringe.

Medical Uses/Methods of Treatment

5 The invention provides the virus of the invention for use in the treatment of the human or animal body by therapy, particularly for use in a method of treating cancer. The cancer is typically in a mammal, preferably in a human. The virus kills infected tumour cells by lysis and by causing infected tumor cells to fuse with one another. The virus of the invention also elicits a systemic anti-tumor immune response, augmented through the
10 expression of the CTLA-4 inhibitor, and optionally GM-CSF and the immune co-stimulatory pathway activating molecule, which also kills cancer cells.

The invention also provides a method of treating cancer, the method comprising administering a therapeutically effective amount of the virus of the invention to an individual in need thereof.

15 The invention additionally provides the use of the virus of the invention in the manufacture of a medicament for treating cancer.

The virus of the invention is particularly useful in treating any solid tumor including any adenocarcinoma, carcinoma, melanoma or sarcoma. For example, the virus of the invention is useful in treating head and neck, prostate, breast, ovarian, lung, liver, endometrial, bladder, gall bladder, pancreas, colon, kidney, stomach/gastric, esophageal, or cervical cancers, mesothelioma, melanoma or other skin cancer, lymphoma, glioma or other cancer of the nervous system, or sarcomas such as soft tissue sarcoma.

20 The virus of the invention may be used to treat malignant tumors, including tumors that have metastasised from the site of the original tumor. In this embodiment, the virus may be administered to the primary tumor or to one or more secondary tumors.

25 The virus of the invention may be administered in combination with other therapeutic agents, including chemotherapy, targeted therapy, immunotherapy (including immune checkpoint blockade, i.e. administration of one or more antagonist of an immune co-inhibitory pathway, and/or one or more agonist of an immune co-stimulatory pathway) and/or in combination with radiotherapy and/or in combination with any combination of these. The therapeutic agent is preferably an anti-cancer agent.

The virus of the invention may be administered in combination with a second virus, such as a second oncolytic virus.

For example, the therapeutic agent may comprise an immunogen (including a recombinant or naturally occurring antigen, including such an antigen or combination of 5 antigens delivered as DNA or RNA in which it/they are encoded), to further stimulate an immune response, such as a cellular or humoral immune response, to tumor cells, particularly tumor neoantigens. The therapeutic agent may be an agent intended to increase or potentiate an immune response, such as a cytokine, an agent intended to inhibit an immune checkpoint pathway or stimulate an immune potentiating pathway or an agent 10 which inhibits the activity of regulatory T cells (Tregs) or myeloid derived suppressor cells (MDSCs).

The therapeutic agent may be an agent known for use in an existing cancer therapeutic treatment. The therapeutic agent may be radiotherapy or a chemotherapeutic agent. The therapeutic agent may be selected from cyclophosphamide, alkylating-like 15 agents such as cisplatin or melphalan, plant alkaloids and terpenoids such as vincristine or paclitaxel (Taxol), antimetabolites such as 5-fluorouracil, topoisomerase inhibitors type I or II such as camptothecin or doxorubicin, cytotoxic antibiotics such as actinomycin, anthracyclines such as epirubicin, glucocorticoids such as triamcinolone, inhibitors of protein, DNA and/or RNA synthesis such as methotrexate and dacarbazine, histone 20 deacetylase (HDAC) inhibitors, or any other chemotherapy agent.

The therapeutic agent may be one, or a combination of: immunotherapeutics or immunomodulators, such as TLR agonists; agents that down-regulate T-regulatory cells such as cyclophosphamide; or agents designed to block immune checkpoints or stimulate immune potentiating pathways, including but not limited to monoclonal antibodies, such as 25 a CTLA-4 inhibitor, a PD-1 inhibitor, a PD-L1 inhibitor, a LAG-3 inhibitor, a TIM-3 inhibitor, a VISTA inhibitor, a CSF1R inhibitor, an IDO inhibitor, a CEACAM1 inhibitor, a GITR agonist, a 4-1-BB agonist, a KIR inhibitor, a SLAMF7 inhibitor, an OX40 agonist, a CD40 agonist, an ICOS agonist or a CD47 inhibitor. In a preferred embodiment, the therapeutic agent is a CTLA-4 inhibitor such as an anti-CTLA-4 antibody, a PD1 inhibitor, 30 such as an anti-PD-1 antibody or a PD-L1 inhibitor such as an anti-PD-L1 antibody. Such inhibitors, agonists and antibodies can be generated and tested by standard methods known in the art.

Immunotherapeutic agents may also include bi-specific antibodies, cell based-therapies based on dendritic cells, NK cells or engineered T cells such CAR-T cells or T cells expressing engineered T cell receptors. Immunotherapeutic agents also include agents that target a specific genetic mutation which occurs in tumors, agents intended to 5 induce immune responses to specific tumor antigens or combinations of tumor antigens, including neoantigens and/or agents intended to activate the STING/cGAS pathway, TLR or other innate immune response and/or inflammatory pathway, including intra-tumoral agents.

For example, a virus of the invention may be used: in combination with 10 dacarbazine, a BRAF inhibitor and/or PD1 or PD-L1 blockade to treat melanoma; in combination with taxol, doxorubicin, vinorelbine, cyclophosphamide and/or gemcitabine to treat breast cancer; in combination with 5-fluorouracil and optionally leucovorin, irinotecan and/or oxaliplatin to treat colorectal cancer; in combination with taxol, carboplatin, vinorelbine and/or gemcitabine, PD-1 or PD-L1 blockade to treat lung cancer; 15 in combination with cisplatin and/or radiotherapy to treat head and neck cancer.

The therapeutic agent may be an inhibitor of the idoleamine 2,3-dioxygenase (IDO) pathway. Examples of IDO inhibitors include epacadostat (INCB024360), 1-methyl-tryptophan, indoximod (1-methyly-D-tryptophan), GDC-0919 or F001287.

The mechanism of action of IDO in suppressing anti-tumor immune responses may 20 also suppress immune responses generated following oncolytic virus therapy. IDO expression is induced by toll like receptor (TLR) activation and interferon- γ both of which may result from oncolytic virus infection. One embodiment of the use of oncolytic virus therapy for cancer treatment includes combination of an oncolytic virus, including a virus expressing a CTLA-4 inhibitor, and optionally GM-CSF and/or an immune co-stimulatory 25 pathway activating molecule or molecules and/or one or more additional protein encoding sequences, such as a sequence encoding a fusogenic protein such as GALVR-, with an inhibitor of the IDO pathway and optionally a further antagonist of an immune co-inhibitory pathway and/or one or more agonist of an immune co-stimulatory pathway, including those targeting PD-1 and/or PD-L1.

30 Where a therapeutic agent and/or radiotherapy is used in conjunction with a virus of the invention, administration of the virus and the therapeutic agent and/or radiotherapy may be contemporaneous or separated by time. The composition of the invention may be

administered before, together with or after the therapeutic agent or radiotherapy. The method of treating cancer may comprise multiple administrations of the virus of the invention and/or of the therapeutic agent and/or radiotherapy. In preferred embodiments, in the case of combination with immune checkpoint blockade or other immune potentiating agents, the virus of the invention is administered once or multiple times prior to the concurrent administration of the immune checkpoint blockade or other immune potentiating agent or agents thereafter, or concurrent with the administration of the immune checkpoint blockade or other immune potentiating agent or agents without prior administration of the virus of the invention.

10 The virus of the invention may be administered to a subject by any suitable route. Typically, a virus of the invention is administered by direct intra-tumoral injection. Intra-tumoral injection includes direct injection into superficial skin, subcutaneous or nodal tumors, and imaging guided (including CT, MRI or ultrasound) injection into deeper or harder to localize deposits including in visceral organs and elsewhere. The virus may be 15 administered into a body cavity, for example into the pleural cavity, bladder or by intra-peritoneal administration. The virus may be injected into a blood vessel, preferably a blood vessel supplying a tumor.

20 Therapeutic agents which may be combined with a virus of the invention can be administered to a human or animal subject *in vivo* using a variety of known routes and techniques. For example, the composition may be provided as an injectable solution, suspension or emulsion and administered via parenteral, subcutaneous, oral, epidermal, intradermal, intramuscular, interarterial, intraperitoneal, intravenous injection using a conventional needle and syringe, or using a liquid jet injection system. The composition may be administered topically to skin or mucosal tissue, such as nasally, intratracheally, 25 intestinally, sublingually, rectally or vaginally, or provided as a finely divided spray suitable for respiratory or pulmonary administration. In preferred embodiments, the compositions are administered by intravenous infusion, orally, or directly into a tumor.

30 The virus and/or therapeutic agent may be administered to a subject in an amount that is compatible with the dosage composition that will be therapeutically effective. The administration of the virus of the invention is for a “therapeutic” purpose. As used herein, the term “therapeutic” or “treatment” includes any one or more of the following as its objective: the prevention of any metastasis or further metastasis occurring; the reduction or

elimination of symptoms; the reduction or complete elimination of a tumor or cancer, an increase in the time to progression of the patient's cancer; an increase in time to relapse following treatment; or an increase in survival time.

Therapeutic treatment may be given to Stage I, II, III, or IV cancers, preferably

5 Stage II, III or IV, more preferably Stage III or IV, pre- or post-surgical intervention (i.e. following recurrence or incomplete removal of tumors following surgery), preferably before any surgical intervention (either for resection of primary or recurrent/metastatic disease), or following recurrence following surgery or following incomplete surgical removal of disease, i.e. while residual tumor remains.

10 Therapeutic treatment may be carried out following direct injection of the virus composition into target tissue which may be the tumor, into a body cavity, or a blood vessel. As a guide, the amount of virus administered is in the case of HSV in the range of from 10^4 to 10^{10} pfu, preferably from 10^5 to 10^9 pfu. In the case of HSV, an initial lower dose (e.g. 10^4 to 10^7 pfu) may be given to patients to seroconvert patients who are

15 seronegative for HSV and boost immunity in those who are seropositive, followed by a higher dose then being given thereafter (e.g. 10^6 to 10^9 pfu). Typically up to 20ml of a pharmaceutical composition consisting essentially of the virus and a pharmaceutically acceptable suitable carrier or diluent may be used for direct injection into tumors, or up to 50ml for administration into a body cavity (which may be subject to further dilution into an

20 appropriate diluent before administration) or into the bloodstream. However for some oncolytic therapy applications larger or smaller volumes may also be used, depending on the tumor and the administration route and site.

The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of

25 administration and dosage. The dosage may be determined according to various parameters, especially according to the location of the tumor, the size of the tumor, the age, weight and condition of the patient to be treated and the route of administration. Preferably the virus is administered by direct injection into the tumor or into a body cavity. The virus may also be administered by injection into a blood vessel. The optimum route of

30 administration will depend on the location and size of the tumor. Multiple doses may be required to achieve an immunological or clinical effect, which, if required, will be typically administered between 2 days to 12 weeks apart, preferably 3-days to 3 weeks apart.

Repeat doses up to 5 years or more may be given, preferably for up to one month to two years dependent on the speed of response of the tumor type being treated and the response of a particular patient, and any combination therapy which may also be being given.

The following Examples illustrate the invention.

5

Example 1. Construction of a virus of the invention

The virus species used to exemplify the invention is HSV, specifically HSV1.

Diagrams of the plasmids used are shown in Figure 2. Diagrams of the viruses are shown in Figure 1. All viruses were constructed using HSV1 Strain RH018A. The 10 plasmids used for virus construction were generated by a combination of gene synthesis and subcloning, conducted by Genscript Inc.

Viruses expressing anti-mouse CTLA4 together with mouse GM-CSF and GALV were constructed by co-transfection of Plasmid 77 with Virus 16 DNA, so as to insert GFP into Virus 16 by selection of plaques expressing GFP to give Virus 25. GFP was then 15 knocked out of Virus 25 by co-transfection of Virus 25 DNA with Plasmid 119. This gave Virus 27.

Viruses expressing anti-human CTLA4 together with human GM-CSF and GALV were constructed by co-transfection of Plasmid 78 with Virus 17 DNA, so as to insert GFP into Virus 17 by selection of plaques expressing GFP to give Virus 29. GFP was then 20 knocked out of Virus 29 by co-transfection of Virus 29 DNA with Plasmid 122. This gave Virus 31.

Viruses expressing anti-mouse CTLA-4 and co-stimulatory ligands together with mouse GM-CSF and GALV were constructed by co-transfection of a plasmid encoding GFP driven by an SV40 promoter between the mouse GM-CSF and anti-mouse CTLA-4 25 encoding sequences with Virus 27. GFP was then knocked out of the resulting virus with a plasmid encoding each of the individual mouse co-stimulatory ligands in place of GFP.

Viruses expressing anti-human CTLA-4 and co-stimulatory ligands together with human GM-CSF and GALV were constructed by co-transfection of a plasmid encoding GFP driven by an SV40 promoter between the human GM-CSF and anti-human CTLA-4 30 encoding sequences with Virus 31. GFP was then knocked out of the resulting virus with a plasmid encoding each of the individual human co-stimulatory ligands in place of GFP.

Figure 4 shows a western blot demonstrating expression of anti-mouse CTLA-4 from Virus 27.

Example 2. The effect of combined expression of GALV, GM-CSF and anti-CTLA4 from an oncolytic virus

The utility of the invention is demonstrated in the following way. A20 cells are administered into both flanks of Balb/c mice and the A20 tumors are allowed to grow to approximately 0.5cm in diameter.

10 The following treatments are then administered to groups of mice, into one flank of each mouse only (right tumor) 3 times per week for one week:

- 50µl of vehicle (1 group);
- 50µl of 10^6 pfu/ml of the HSV with only mouse GM-CSF and GALVR-inserted (Virus 16);
- 50µl of 10^6 pfu/ml of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted (Virus 27);

15 Effects on tumor growth are then observed for up to one month. The dose of virus used was 5×10^4 pfu (50ul of 1×10^6 pfu/ml in each case), given three times over one week. This dose level of virus is subtherapeutic for uninjected tumors for virus 16, which allows the benefits of the delivery of the additional molecules encoded by virus 27 to clearly be seen. Figures 5 and 6 show the superior tumor control and shrinkage in uninjected tumors with the virus expressing anti-CTLA-4 compared to with virus 16, which does not express CTLA-4.

Example 3. The effect of combined expression of GALV, GM-CSF and anti-CTLA4 from an oncolytic virus with anti-PD-1

A20 cells are administered into both flanks of Balb/c mice and the A20 tumors are allowed to grow to approximately 0.5cm in diameter.

25 The following treatments are then administered to groups of mice (10 per group), into one flank of each mouse only 3 times per week for one week:

- 50µl of vehicle;
- Intraperitoneal anti-mouse PD1 (Bioxcell RMP-1-14 10mg/kg every three days);

- 50µl of 10^7 pfu/ml of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted (Virus 27)
- 50µl of 10^7 pfu/ml, of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted (Virus 27) together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups).

5 Effects on tumor growth are then observed for up to 80 days. Superior tumor control and shrinkage in both injected and un-injected tumors when treatment with the virus is combined treatment with anti-PD1. This data is shown in Figure 7.

10 **Example 4. The effect of combined expression of GALV, GM-CSF and anti-humanCTLA4 from an oncolytic virus alone and in combination with anti-PD-1**

15 MC38 cells are administered into both flanks of C57BL/6 mice engineered by gene editing to express human rather than mouse CTLA-4. This renders the mice susceptible to anti-human CTLA-4 antibodies such as ipilimumab. The MC38 tumors are allowed to grow to approximately 0.5cm in diameter.

The following treatments are then administered to groups of mice (10 per group), into one flank of each mouse only 3 times per week for two weeks:

- 50µl of vehicle;
- 50µl of 10^8 pfu/ml of Virus 17 (i.e. expressing hGM-CSF and GALV);
- 20 50µl of 10^8 pfu/ml of Virus 31 (i.e. expressing hGM-CSF, GALV and anti-human CTLA-4);
- 50µl of 10^8 pfu/ml of Virus 17 together with intraperitoneal anti-mouse PD1 (10mg/kg every three days);
- 25 50µl of 10^8 pfu/ml of Virus 31 together with intraperitoneal anti-mouse PD1 (10mg/kg every three days).

Effects on tumor growth are then observed for up to 35 days. Superior tumor control and shrinkage in injected tumors with the virus expressing anti-human CTLA-4 is seen, which is further enhanced with combined treatment with anti-PD1. Superior tumor control and shrinkage is observed in un-injected tumors when treatment with either virus is combined with anti PD1 treatment. The improvement is more marked for the virus that expresses anti CTLA4. This data is shown in Figure 8.

Example 5. The effect of combined expression of GALV, GM-CSF and anti-CTLA4 from an oncolytic virus with anti-PD-1

A20 cells are administered into both flanks of Balb/c mice and the A20 tumors are allowed to grow to approximately 0.5cm in diameter.

5 The following treatments are then administered to groups of mice (10 per group), into one flank of each mouse only 3 times per week for two weeks:

- 50µl of vehicle (1 group);
- Intraperitoneal anti-mouse PD1 (Bioxcell RMP-1-14 10mg/kg every three days);
- 10 - 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with only mouse GM-CSF and GALVR- inserted (3 groups);
- 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups);
- 15 - 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with only mouse GM-CSF and GALVR- inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups);
- 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups);
- 20 - 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with only mouse GM-CSF and GALVR- inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups).

Effects on tumor growth are then observed for up to one month. Superior tumor control and shrinkage in both injected and uninjected tumors with the virus expressing anti-CTLA-4 is seen, which is further enhanced with combined treatment with anti-PD1, as compared to the other groups is observed, including through an improved dose response curve.

Example 6. The effect of combined expression of GALV, GM-CSF and anti-human CTLA4 from an oncolytic virus alone and in combination with anti-PD-1

MC38 cells are administered into both flanks of C57BL/6 mice engineered by gene 30 editing to express human rather than mouse CTLA-4. This renders the mice susceptible to anti-human CTLA-4 antibodies such as ipilimumab. The MC38 tumors are allowed to grow to approximately 0.5cm in diameter.

The following treatments are then administered to groups of mice (10 per group), into one flank of each mouse only 3 times per week for two weeks:

- 50µl of vehicle (1 group);
- Intraperitoneal anti-mouse PD1 (Bioxcell RMP-1-14 10mg/kg every three days);
- 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with only mouse GM-CSF and GALVR- inserted (3 groups);
- 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups);
- 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with only mouse GM-CSF and GALVR- inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups);
- 50µl of 10^5 pfu/ml, 10^6 pfu/ml, or 10^7 pfu/ml of the HSV with GALVR-, mouse GM-CSF and the anti-mouse CTLA-4 antibody inserted together with intraperitoneal anti-mouse PD1 (10mg/kg every three days) (3 groups).

Effects on tumor growth are then observed for up to one month. Superior tumor control and shrinkage in both injected and uninjected tumors with the virus expressing anti-CTLA-4 is seen, which is further enhanced with combined treatment with anti-PD1, as compared to the other groups is observed, including through an improved dose response curve.

Example 7. The effect of combined expression of GALV, GM-CSF, anti-CTLA4 and an immune co-stimulatory pathway activating molecule from an oncolytic virus

The experiment in Example 3 above is repeated but mice are dosed with the viruses additionally expressing the immune co-stimulatory pathway ligands as well as expressing GALV, mGM-CSF and anti-CTLA4.

More specifically, groups of mice receive:

- (1) Vehicle;
- (2) Intraperitoneal anti mouse PD1;
- (3) HSV with mGM-CSF, GALVR- and anti-CTLA4 inserted as in Example 2;
- (4) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse CD40L inserted;

- (5) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse 4-1BBL inserted;
- (6) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse GITRL inserted;
- (7) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse OX40L inserted;
- (8) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse ICOSL inserted;
- 5 (9) HSV with mGM-CSF, GALVR- and anti-CTLA4 inserted as in Example 2, together with intraperitoneal anti-PD1;
- (10) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse CD40L inserted together with intraperitoneal anti-PD1;
- 10 (11) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse 4-1BBL inserted together with intraperitoneal anti-PD1;
- (12) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse GITRL inserted together with intraperitoneal anti-PD1;
- (13) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse OX40L inserted together with intraperitoneal anti-PD1; or
- 15 (14) HSV with mGM-CSF, GALVR-, anti-CTLA4 and mouse ICOSL inserted together with intraperitoneal anti-PD1.

Superior tumor control is seen with the viruses expressing the immune co-stimulatory ligands.

20 Deposit Information

The following HSV1 strains were deposited at the ECACC, Culture Collections, Public Health England, Porton Down, Salisbury, SP4 0JG, United Kingdom on 19 December 2016 by Replimune Limited and were allocated the indicated accession numbers:

RH004A – Accession Number 16121902

RH015A – Accession Number 16121903

RH018A – Accession Number 16121904

30 RH021A – Accession Number 16121905

RH023A – Accession Number 16121906

RH031A – Accession Number 16121907

RH040B – Accession Number 16121908
RH047A – Accession Number 16121909.

CLAIMS

1. An oncolytic herpes simplex virus (HSV) encoding a CTLA-4 inhibitor, wherein:
 - (a) the virus further comprises a GM-CSF-encoding gene; and/or
 - (b) the virus further comprises an immune co-stimulatory pathway activating molecule-encoding gene encoding CD40 ligand (CD40L), ICOS ligand, GITR ligand, 4-1-BB ligand, OX40 ligand, TL1A, CD30 ligand, CD27 or flt3 ligand; and/or
 - (c) the virus further comprises an immune co-stimulatory pathway activating molecule-encoding gene, wherein the immune co-stimulatory pathway activating molecule is encoded by a codon optimized sequence so as to increase expression levels in target cells; and/or
 - (d) the virus further comprises a fusogenic protein-encoding gene; and/or
 - (e) the CTLA-4 inhibitor is encoded by a codon optimized sequence so as to increase expression levels in target cells; and/or
 - (f) the virus does not express functional ICP34.5, does not express functional ICP47, and expresses the US11 gene as an immediate early gene.
2. The virus of claim 1, wherein the CTLA-4 inhibitor is an anti-CTLA-4 antibody, or an antigen binding fragment thereof.
3. The virus of claim 2, wherein the fragment comprises a scFv molecule; the fragment is a scFv molecule linked to one or more IgG1 constant regions; or the antibody or fragment comprises a light chain variable region sequence linked to an IgG heavy chain.
4. The virus of claim 2 or 3, wherein the antibody or fragment:
 - (a) comprises the light chain variable region sequence shown in SEQ ID NO: 1 and the heavy chain variable region sequence shown in SEQ ID NO: 3;
 - (b) comprises the light chain variable region sequence shown in SEQ ID NO: 11 and the heavy chain variable region sequence shown in SEQ ID NO: 12;
 - (c) comprises the amino acid sequence of SEQ ID NO: 9;
 - (d) comprises the amino acid sequence of SEQ ID NO: 14;

- (e) is encoded by the nucleotide sequence of SEQ ID NO: 10; or
- (f) is encoded by the nucleotide sequence of SEQ ID NO: 15.

5. The virus of any one of claims 1 to 4, wherein the virus further comprises:

- (a) a GM-CSF-encoding gene;
- (b) an immune co-stimulatory pathway activating molecule or an immune co-stimulatory pathway activating molecule-encoding gene; and/or
- (c) a fusogenic protein-encoding gene.

6. The virus of claim 5, wherein:

- (a) the immune co-stimulatory pathway activating molecule-encoding gene encodes CD40 ligand (CD40L), ICOS ligand, GITR ligand, 4-1-BB ligand, OX40 ligand, TL1A, CD30 ligand, CD27 or flt3 ligand;
- (b) the fusogenic protein is selected from the group consisting of vesicular stomatitis virus (VSV) G-protein, syncitin-1, syncitin-2, simian virus 5 (SV5) F-protein, measles virus (MV) H-protein, MV F-protein, respiratory syncytial virus (RSV) F-protein and a glycoprotein from gibbon ape leukemia virus (GALV), murine leukemia virus (MLV), Mason-Pfizer monkey virus (MPMV) or equine infectious anaemia virus (EIAV) from which the R peptide has been deleted; and/or
- (c) the fusogenic protein is the glycoprotein from gibbon ape leukemia virus (GALV) and has the R transmembrane peptide mutated or removed (GALV-R-).

7. The virus of any one of claims 1 to 6, which encodes more than one immune co-stimulatory pathway activating molecule.

8. The virus of any one of claims 1 to 7, which is:

- (i) a HSV1; or
- (ii) a HSV1 which:
 - (a) does not express functional ICP34.5;
 - (b) does not express functional ICP47; and
 - (c) expresses the US11 gene as an immediate early gene.

9. The virus of any one of claims 1 to 8, which is a modified HSV1: strain RH018A having the accession number ECACC 16121904; strain RH004A having the accession number ECACC 16121902; strain RH031A having the accession number ECACC 16121907; strain RH040B having the accession number ECACC 16121908; strain RH015A having the accession number ECACC 16121903; strain RH021A having the accession number ECACC 16121905; strain RH023A having the accession number ECACC 16121906; or strain RH047A having the accession number ECACC 16121909.
10. The virus of claim 8 or 9, wherein:
 - (a) the CTLA-4 inhibitor is encoded by a gene inserted into the ICP34.5 encoding locus by insertion, partial deletion or complete deletion;
 - (b) the CTLA-4 inhibitor is encoded by a gene included in a cassette also including one or more immune stimulating gene(s) and/or an immune co-stimulatory pathway activating molecule encoding gene and/or a fusogenic protein encoding gene inserted into the ICP34.5 encoding locus by insertion, partial deletion or complete deletion; or
 - (c) the CTLA-4 inhibitor is encoded by a gene included in a cassette also including a GM-CSF encoding gene and/or an immune co-stimulatory pathway activating molecule encoding gene and/or a fusogenic protein encoding gene inserted into the ICP34.5 encoding locus by insertion, partial deletion or complete deletion.
11. The virus of any one of claims 1 to 10, wherein the virus comprises a codon optimized sequence encoding the CTLA-4 inhibitor, a codon optimized sequence encoding GM-CSF, a codon optimized sequence encoding an immune co-stimulatory pathway activating molecule and/or a codon optimized sequence encoding the fusogenic protein so as to increase expression levels in target cells.
12. The virus according to any one of claims 1 to 11, which expresses three heterologous genes, wherein each of the three heterologous genes is driven by a different

promoter selected from the CMV promoter, the RSV promoter, the SV40 promoter and a retroviral LTR promoter; and/or wherein each of the three heterologous genes is terminated by a different poly adenylation sequence selected from the BGH, SV40, HGH and RBG poly adenylation sequences.

13. The virus of any one of claims 1 to 11, which expresses four heterologous genes driven by each of the CMV promoter, the RSV promoter, the SV40 promoter and a retroviral LTR promoter, respectively; and/or terminated by each of the BGH, SV40, HGH and RBG poly adenylation sequences, respectively.
14. A pharmaceutical composition comprising a virus according to any one of claims 1 to 13 and a pharmaceutically acceptable carrier or diluent.
15. Use of the virus of any one of claims 1 to 13 in the manufacture of a medicament for treating cancer.
16. Use of the virus according to claim 15, wherein the cancer is a solid tumor; a tumor at its primary site and/or tumors that have metastasized from the site of the original tumor.
17. Use of the virus for use according to claim 15 or 16, wherein the medicament comprises:
 - (a) a further anti-cancer agent;
 - (b) a further anti-cancer agent selected from an agent targeting an immune co-inhibitory or immune co-stimulatory pathway, radiation and/or chemotherapy, an agent that targets a specific genetic mutation which occurs in tumors, an agent intended to induce an immune response to one or more tumor antigen(s) or neoantigen(s), a cellular product derived from T cells or NK cells, an agent intended to stimulate the STING, cGAS, TLR or other innate immune response and/or inflammatory pathway, a second virus, and combinations thereof;
 - (c) a further anti-cancer agent which is an agent targeting an immune co-inhibitory pathway which is a PD-1 inhibitor, a PD-L1 inhibitor, a LAG-3 inhibitor,

a TIM-3 inhibitor, a VISTA inhibitor, aCSF1R inhibitor, an IDO inhibitor, a KIR inhibitor, a SLAMF7 inhibitor, a CEACAM1 inhibitor or a CD47 inhibitor;

(d) a further anti-cancer agent which is an agent targeting an immune co-stimulatory pathway which is a GITR agonist, a 4-1-BB agonist, an OX40 agonist, a CD40 agonist or an ICOS agonist;

(e) a further anti-cancer agent which is a second oncolytic virus;

(f) a further anti-cancer agent which is an antibody; or

(g) an inhibitor of the indoleamine 2,3-dioxygenase (IDO) pathway and a further antagonist of an immune co-inhibitory pathway, or an agonist of an immune co-stimulatory pathway.

18. A method of treating cancer, which comprises administering a therapeutically effective amount of the virus of any one of claims 1 to 13 or a pharmaceutical composition according to claim 14 to a patient in need thereof.

19. The method according to claim 18, which further comprises:

(a) administering concurrently or separately to the virus a therapeutically effective amount of a further anti-cancer agent to the patient in need thereof;

(b) administering concurrently or separately to the virus a therapeutically effective amount of a further anti-cancer agent to the patient in need thereof, wherein the further anti-cancer agent is selected from the group consisting of an agent targeting an immune co-inhibitory or immune co-stimulatory pathway, radiation and/or chemotherapy, an agent that targets a specific genetic mutation which occurs in tumors, an agent intended to induce an immune response to one or more tumor antigen(s) or neoantigen(s), a cellular product derived from T cells or NK cells, an agent intended to stimulate the STING, cGAS, TLR or other innate immune response and/or inflammatory pathway, a second virus, and combinations thereof;

(c) administering concurrently or separately to the virus a therapeutically effective amount of a further anti-cancer agent to the patient in need thereof, wherein the further anti-cancer agent is an agent targeting an immune co-inhibitory pathway which is a PD-1 inhibitor, a PD-L1 inhibitor, a LAG-3 inhibitor, a TIM-3

inhibitor, a VISTA inhibitor, aCSF1R inhibitor, an IDO inhibitor, a KIR inhibitor, a SLAMF7 inhibitor, a CEACAM1 inhibitor or a CD47 inhibitor;

(d) administering concurrently or separately to the virus a therapeutically effective amount of a further anti-cancer agent to the patient in need thereof, wherein the further anti-cancer agent is an agent targeting an immune co-stimulatory pathway which is a GITR agonist, a 4-1-BB agonist, an OX40 agonist, a CD40 agonist or an ICOS agonist;

(e) administering concurrently or separately to the virus a therapeutically effective amount of a further anti-cancer agent to the patient in need thereof, wherein the further anti-cancer agent is a second oncolytic virus;

(f) administering concurrently or separately to the virus a therapeutically effective amount of a further anti-cancer agent to the patient in need thereof, wherein the further anti-cancer agent comprises an antibody; or

(g) administering an inhibitor of the indoleamine 2,3-dioxygenase (IDO) pathway and a further antagonist of an immune co-inhibitory pathway, or an agonist of an immune co-stimulatory pathway.

20. The method according to claim 18 or 19, wherein the cancer is a solid tumor, a tumor at its primary site and/or tumors that have metastasized from the site of the original tumor.

10. **EAT**

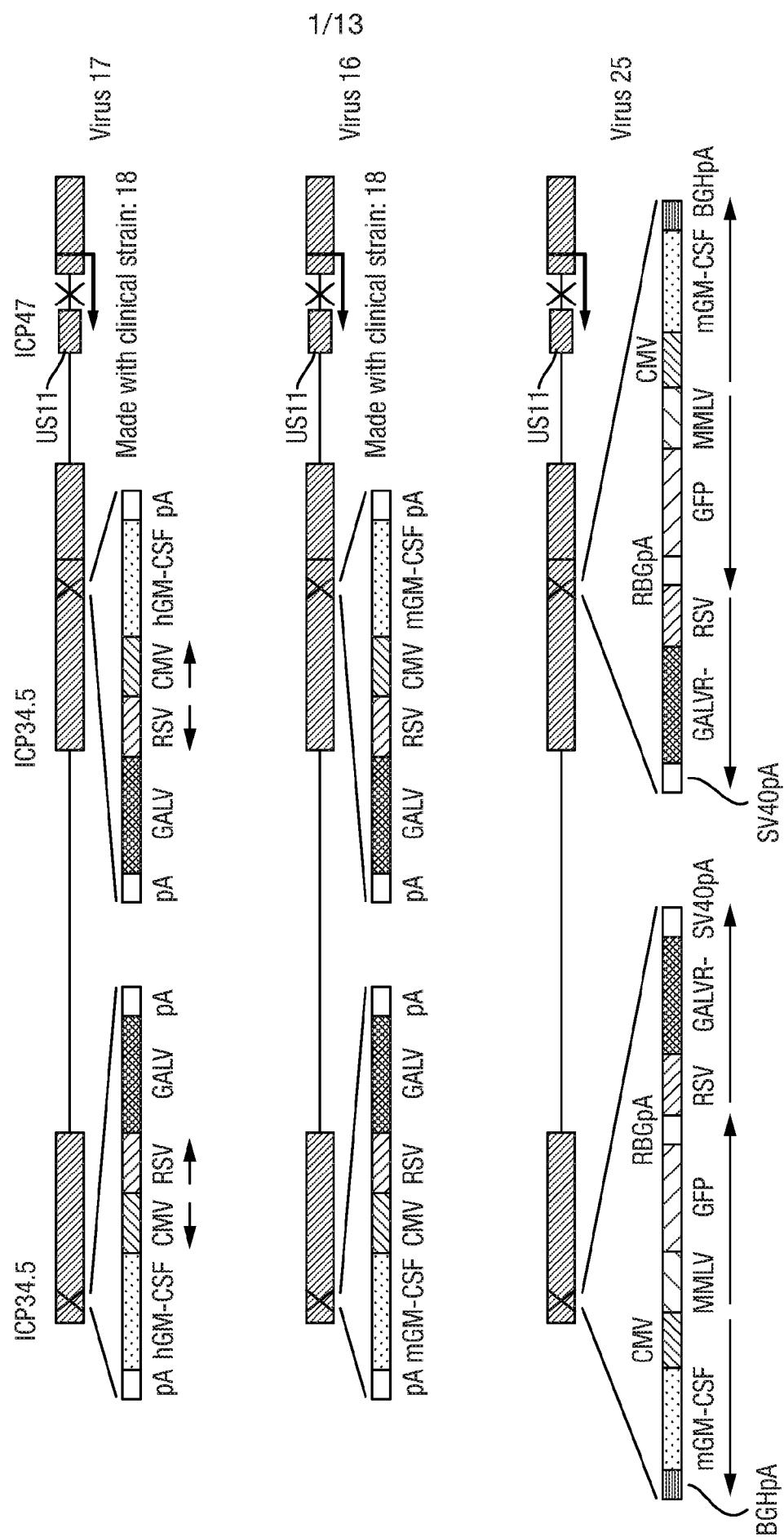
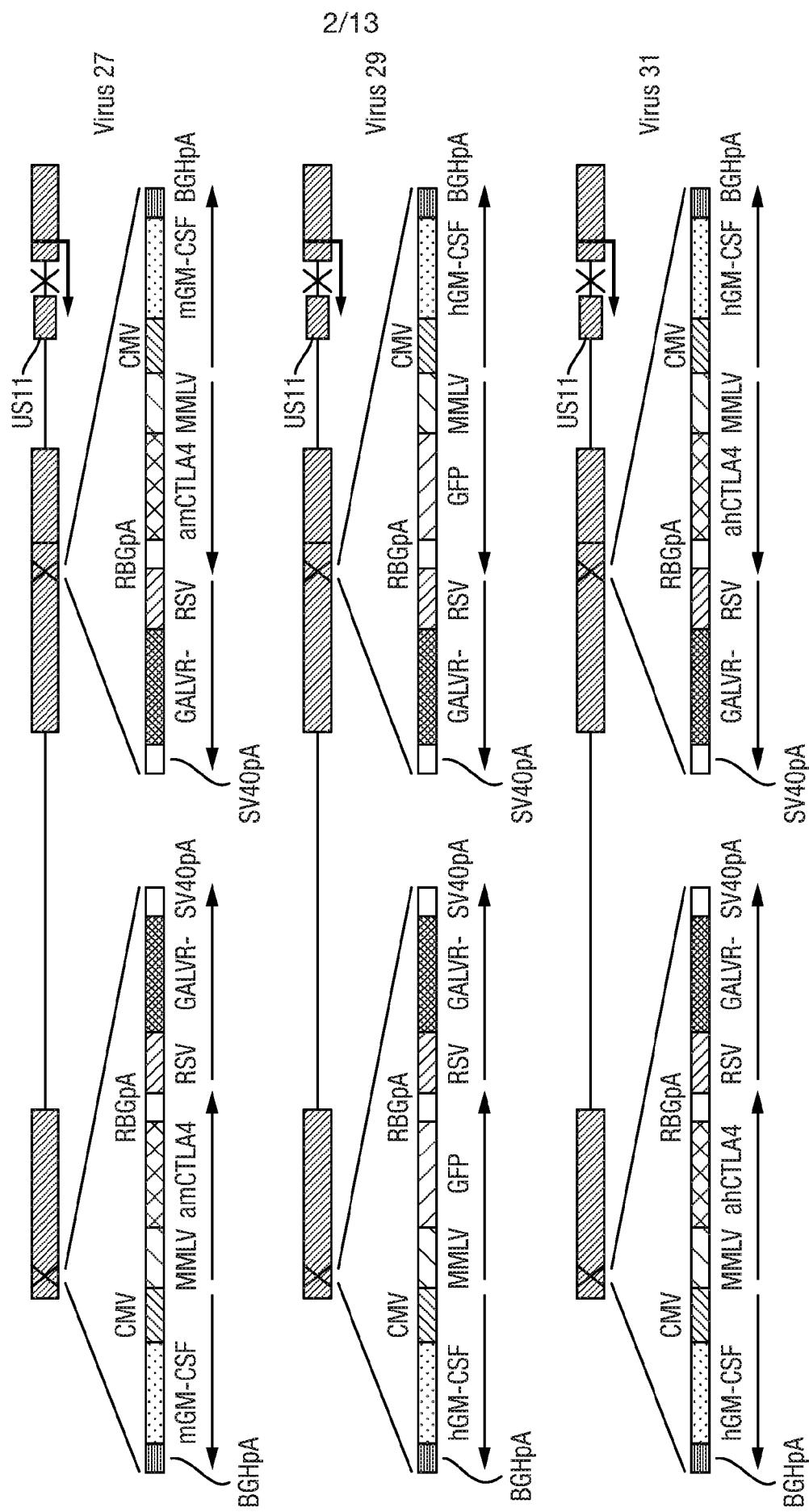
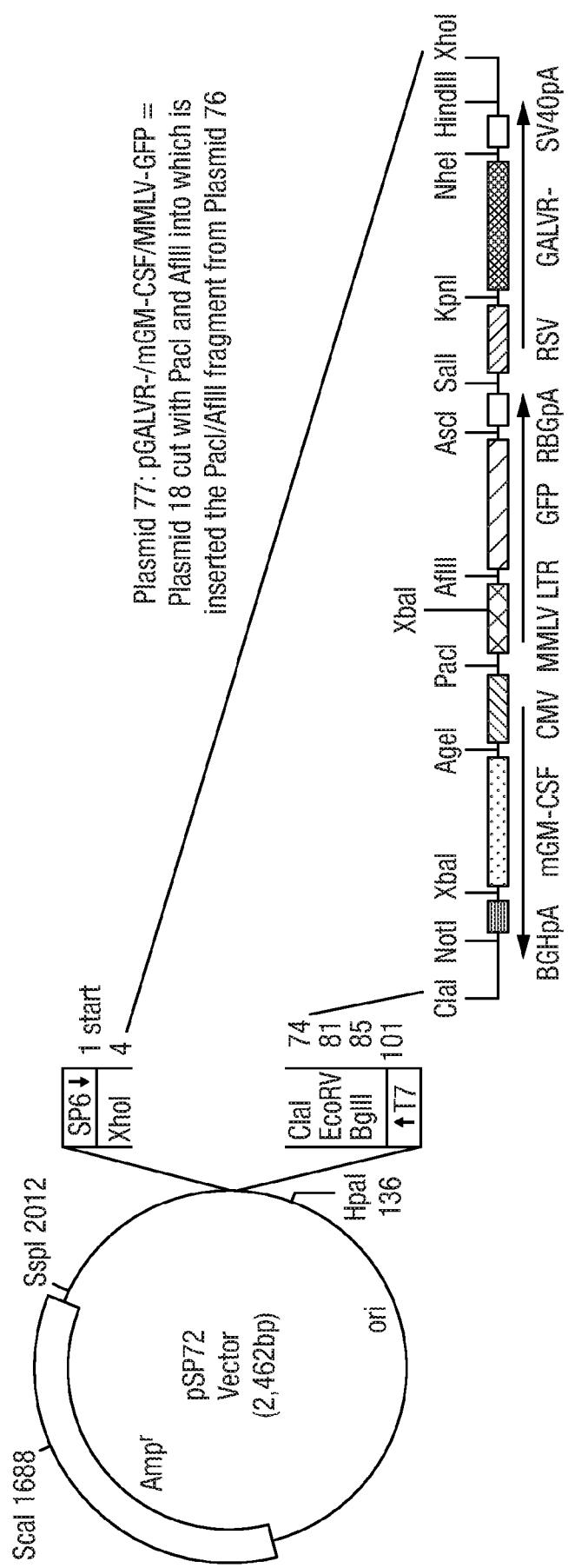




Fig. 1B

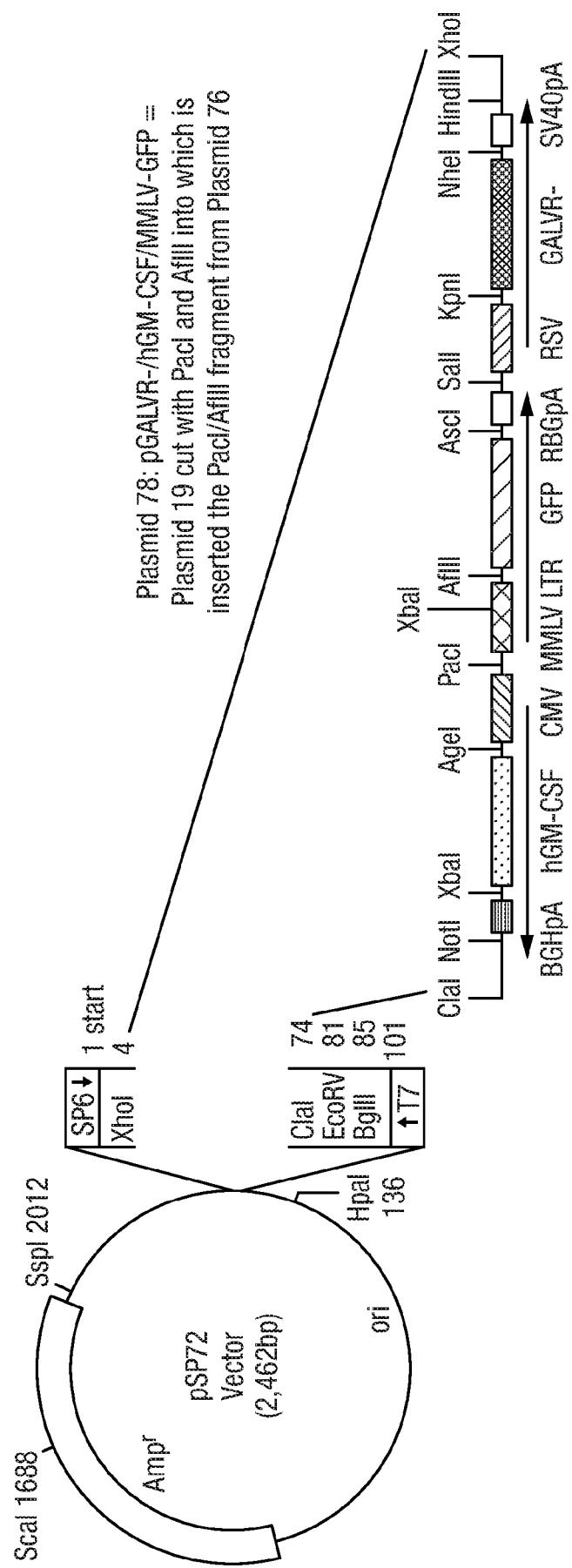

3/13

Fig. 2A

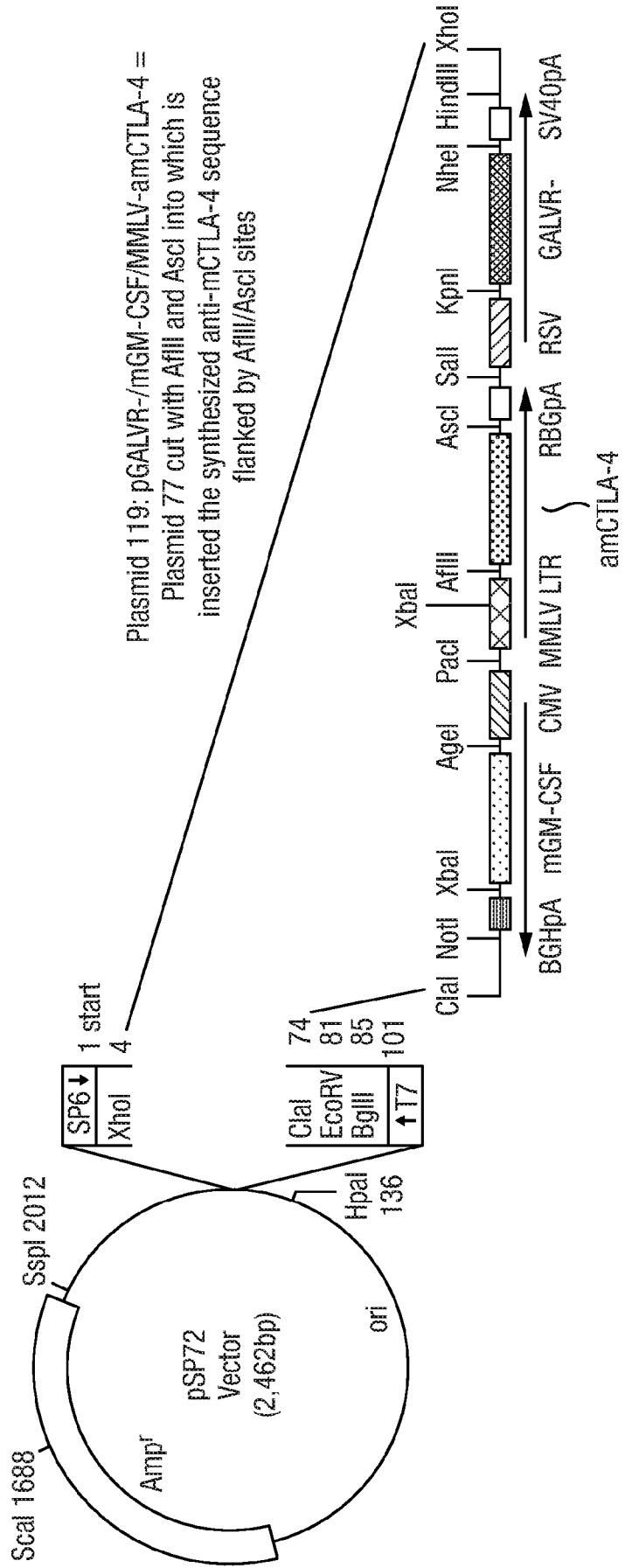

4/13

Fig. 2B

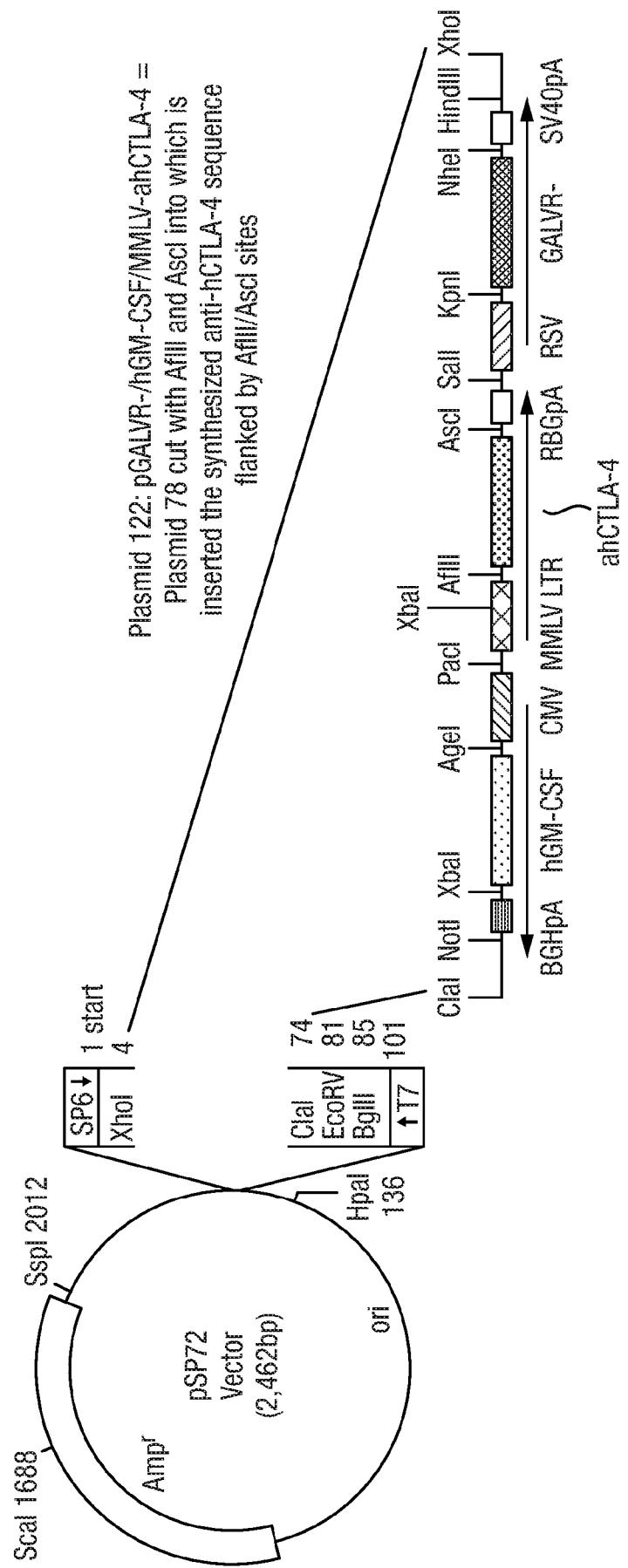
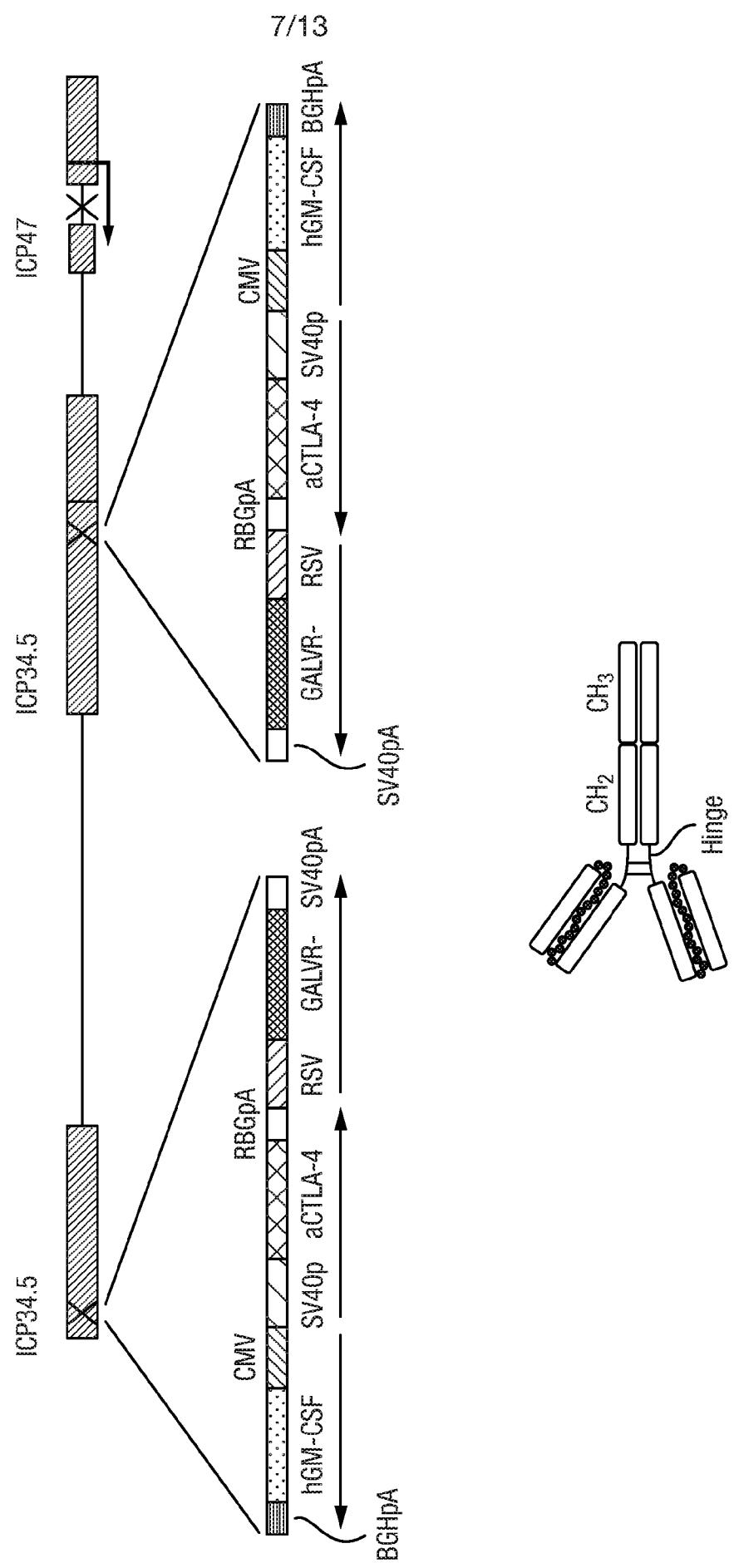

5/13

Fig. 2C



6/13

Eid 2D

३८

8/13

Fig. 4

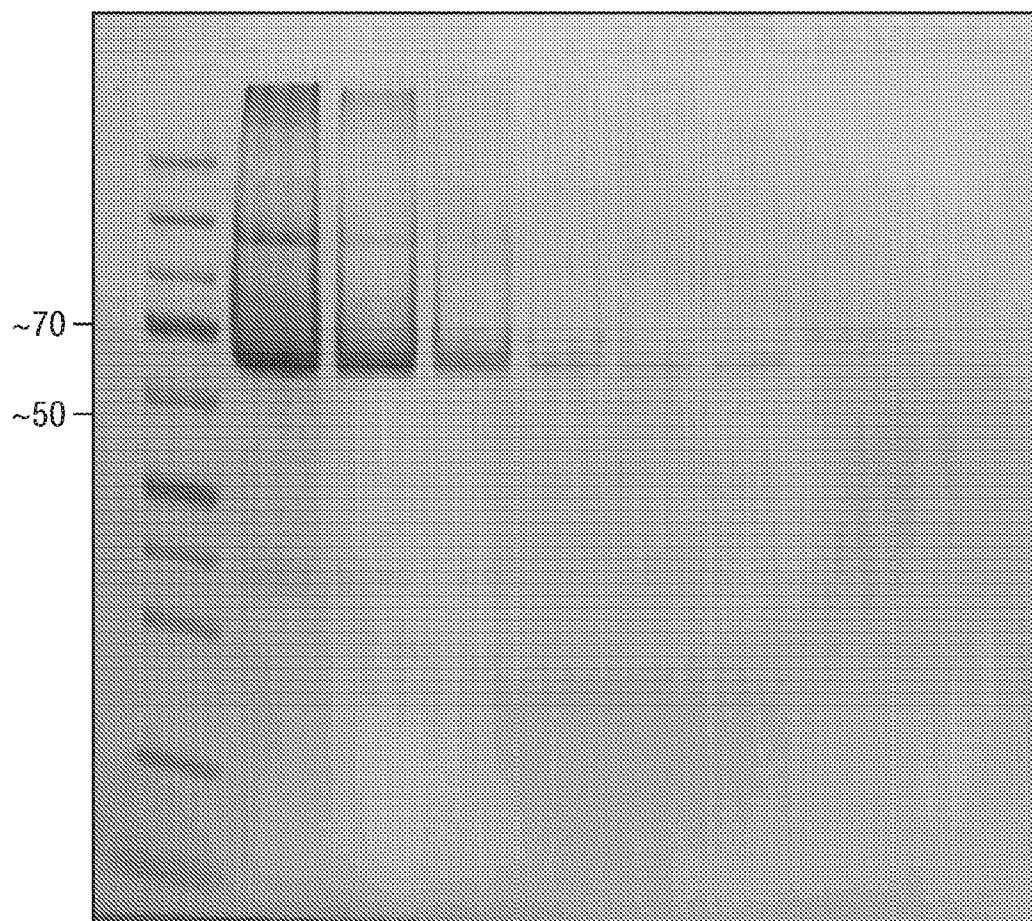


Fig. 5

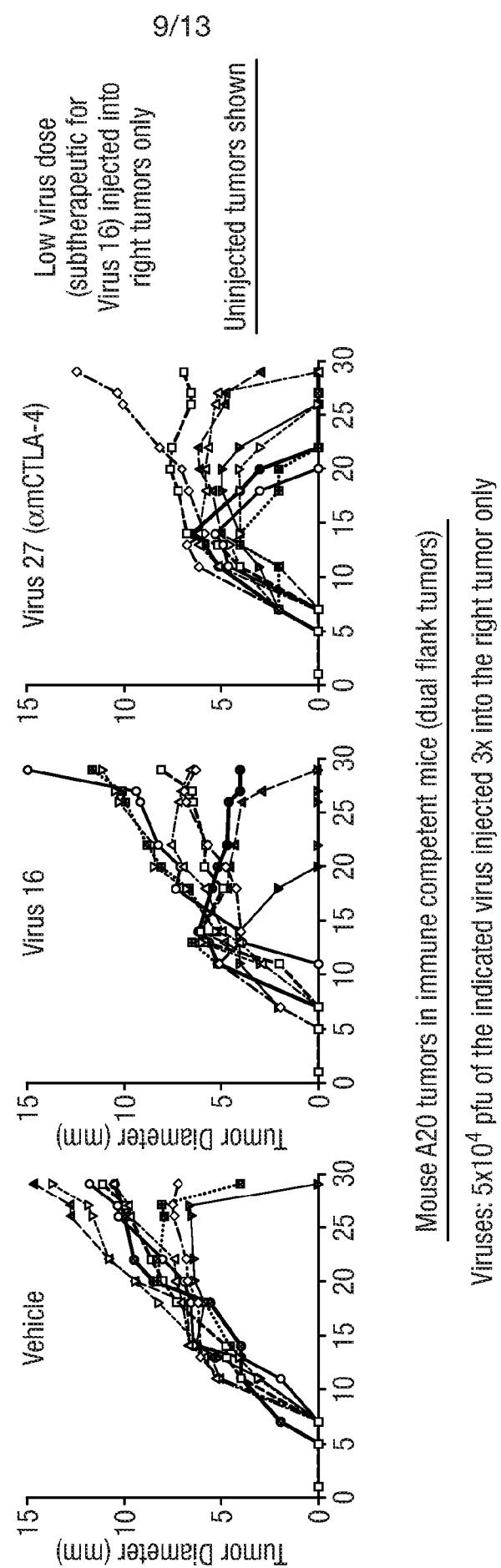
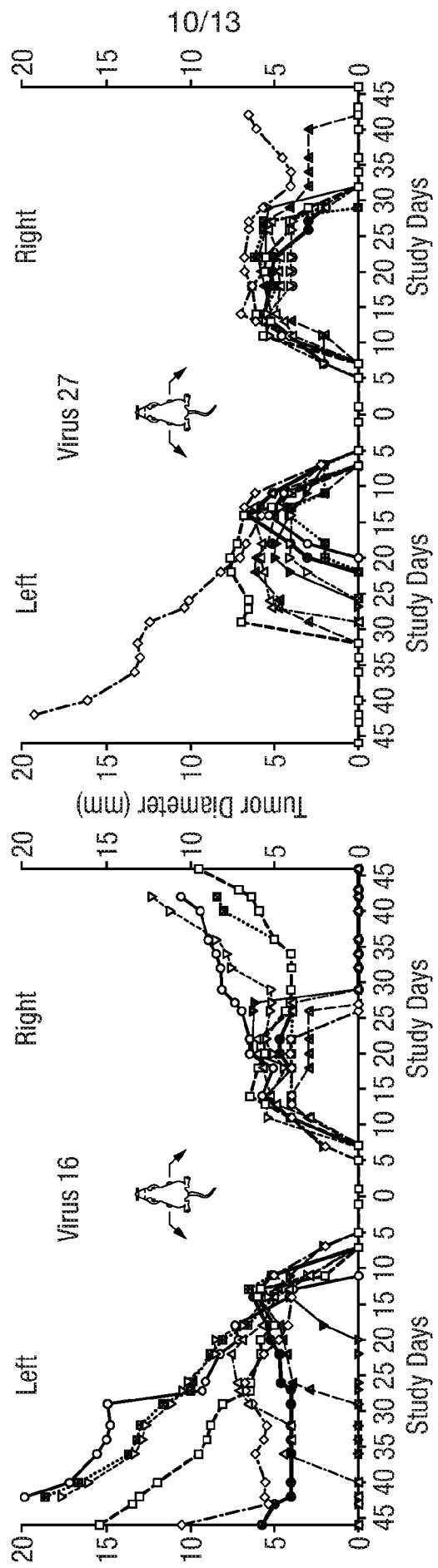



Fig. 6

Mouse A20 bi-lateral tumors, immune competent mice

5×10^4 pfu of the indicated virus 3x over 1 wk into the right tumor

Fig. 7

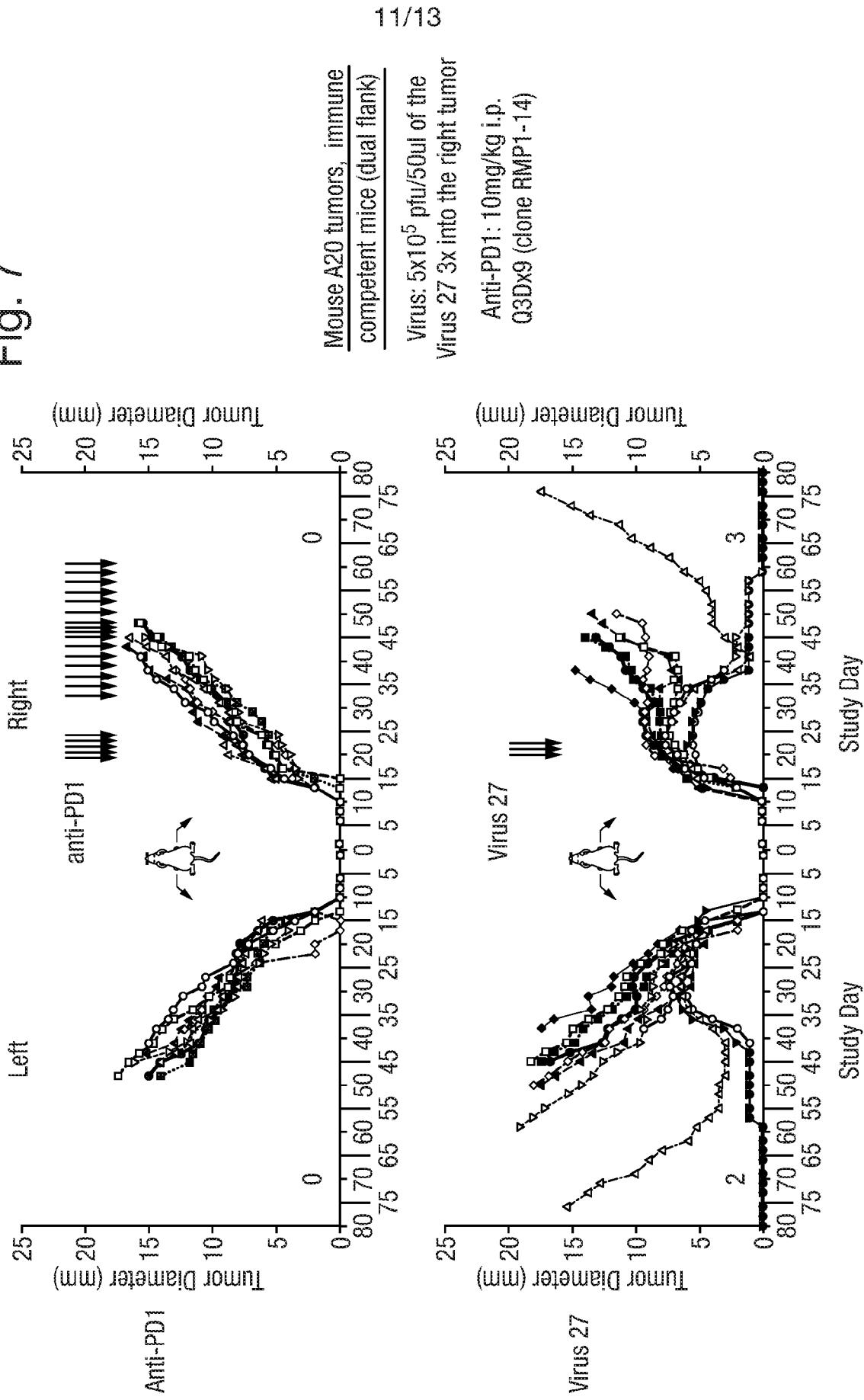


Fig. 7(Cont.)

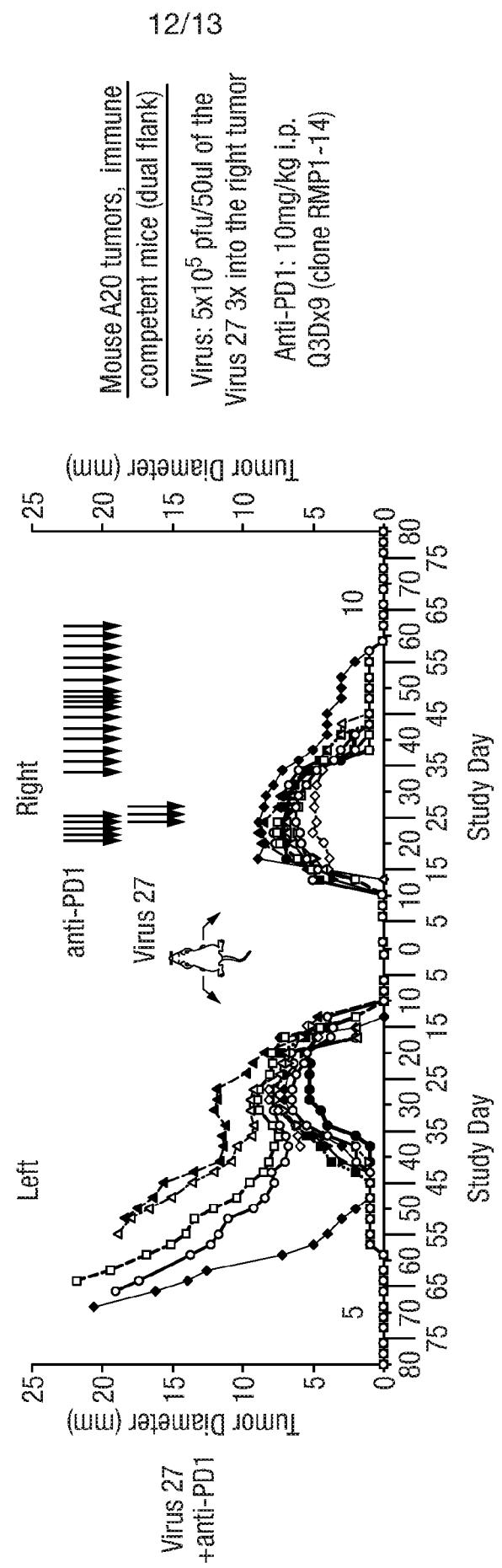
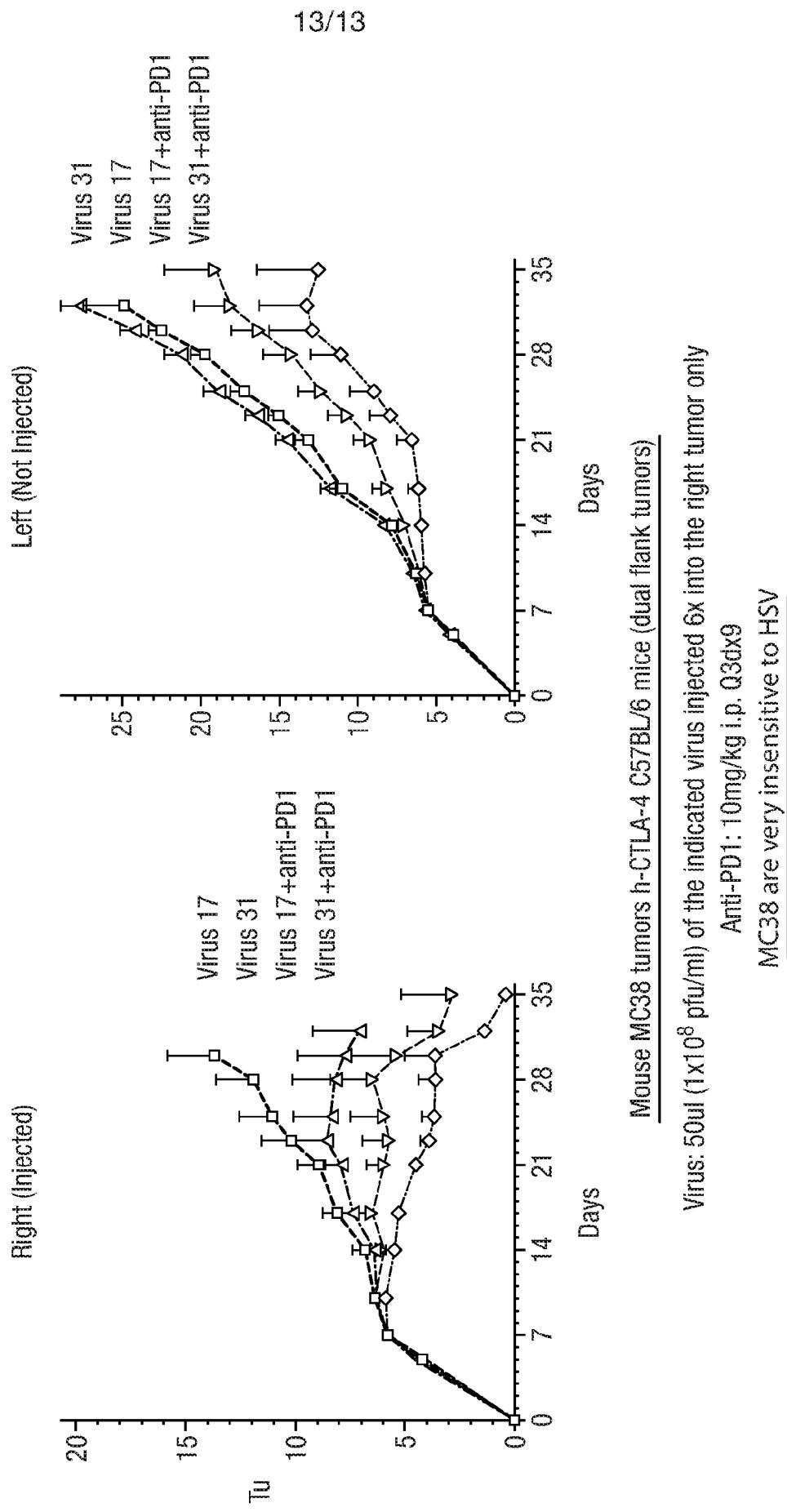



Fig. 8

pctgb2018050048-seql.txt
SEQUENCE LISTING

<110> Replimune Limited

<120> ALTERED VIRUS

<130> N409771W0

<140>

<141> 2018-01-09

<150> GB 1700350.0

<151> 2017-01-09

<160> 46

<170> PatentIn version 3.5

<210> 1

<211> 108

<212> PRT

<213> Homo sapiens

<400> 1

Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu
1 5 10 15

Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Gly Ser Ser Tyr
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45

Tyr Gly Ala Phe Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro
65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro Trp
85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105

pctgb2018050048-seql.txt

<210> 2
<211> 215
<212> PRT
<213> Homo sapiens

<400> 2

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Gly Ser Ser
20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Gly Ala Phe Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro
85 90 95

Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala
100 105 110

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
115 120 125

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
130 135 140

Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser
145 150 155 160

Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu
165 170 175

pctgb2018050048-seql.txt

Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val
180 185 190

Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
195 200 205

Ser Phe Asn Arg Gly Glu Cys
210 215

<210> 3
<211> 118
<212> PRT
<213> Homo sapiens

<400> 3

Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Thr Phe Ile Ser Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Ala Arg Thr Gly Trp Leu Gly Pro Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser
115

<210> 4

pctgb2018050048-seql.txt

<211> 103

<212> PRT

<213> Homo sapiens

<400> 4

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1 5 10 15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
65 70 75 80

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Arg Val Glu Pro Lys Ser Cys
100

<210> 5

<211> 227

<212> PRT

<213> Homo sapiens

<400> 5

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
1 5 10 15

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
20 25 30

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
35 40 45

pctgb2018050048-seql.txt

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
50 55 60

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
65 70 75 80

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
85 90 95

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
100 105 110

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
115 120 125

Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
130 135 140

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
145 150 155 160

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
165 170 175

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
180 185 190

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
195 200 205

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
210 215 220

Pro Gly Lys
225

<210> 6
<211> 448
<212> PRT

pctgb2018050048-seql.txt

<213> Homo sapiens

<400> 6

Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Thr Phe Ile Ser Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Ala Arg Thr Gly Trp Leu Gly Pro Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
115 120 125

Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly
130 135 140

Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
145 150 155 160

Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
165 170 175

Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
180 185 190

pctgb2018050048-seql.txt

Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser
195 200 205

Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr
210 215 220

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser
225 230 235 240

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
245 250 255

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
260 265 270

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
275 280 285

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
290 295 300

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
305 310 315 320

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr
325 330 335

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
340 345 350

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys
355 360 365

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
370 375 380

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
385 390 395 400

pctgb2018050048-seql.txt

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
405 410 415

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
420 425 430

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
435 440 445

<210> 7
<211> 21
<212> PRT
<213> Mus musculus

<400> 7

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Asp
20

<210> 8
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> (Gly4Ser)3 linker

<400> 8

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10 15

<210> 9
<211> 489
<212> PRT
<213> Homo sapiens

<400> 9

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

pctgb2018050048-seql.txt

Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser
20 25 30

Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45

Val Gly Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala
50 55 60

Pro Arg Leu Leu Ile Tyr Gly Ala Phe Ser Arg Ala Thr Gly Ile Pro
65 70 75 80

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
85 90 95

Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr
100 105 110

Gly Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
115 120 125

Arg Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Ser
130 135 140

Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
145 150 155 160

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
165 170 175

Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
180 185 190

Thr Phe Ile Ser Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala Asp Ser Val
195 200 205

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
210 215 220

pctgb2018050048-seql.txt

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile Tyr Tyr Cys
225 230 235 240

Ala Arg Thr Gly Trp Leu Gly Pro Phe Asp Tyr Trp Gly Gln Gly Thr
245 250 255

Leu Val Thr Val Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro
260 265 270

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
275 280 285

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
290 295 300

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
305 310 315 320

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
325 330 335

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
340 345 350

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
355 360 365

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
370 375 380

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
385 390 395 400

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
405 410 415

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
420 425 430

pctgb2018050048-seql.txt

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
435 440 445

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
450 455 460

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
465 470 475 480

Lys Ser Leu Ser Leu Ser Pro Gly Lys
485

<210> 10

<211> 1470

<212> DNA

<213> Homo sapiens

<400> 10

atggaaactg acaccctgct gctgtgggtc ctgctgctgt gggtgccctgg atccaccggc 60
gatatcgtgc tgacccagtc tcctggcaca ctgagtcgt caccagggga gcgagcaaca 120
ctgtcttgt a g g c c a g c c a g t c t g t g g g a a g c t c c t a c c t g g t t g g t a t c a g c a g a a g 180
c c a g g c c a g g c a c c c a g g c t g c t a c g g a c t t c a g c g g c c a c t g g c a t t c c a 240
g a c a g g t t c t g g a a g t g g a c t c a g g a c c g a t t c a c c a t c a g c c g a c t g g a g 300
c c c g a a g a c t t c g c t g t a c t a t g c c a g c a g t c a g g c t g t t g g a c t t t t g g a 360
c a g g g c a c c a a g t g g a g a t c a g g a c c g a t t c a c c a t c a g c a c t g g a g 420
g g c g g g g g a t c a c a g g t c c a g t g g t g g a a g c g g c g g g g g g g a g g t g g a 480
a g c c t g c g g c t g a g c t g c g c c g t t c a g g a c t t t t a c a g c t a t a c c a t g c a c t g g 540
g t c c g g c a g g a a g g a c t g g a g t g g t g a c c t a t t c a t c a g c t a t t c a g c a a c 600
a a c a a g t a t t a c g c t g a t t c a g g a a g g t t a c c a t t a c g c g c g a a c t c c a a a 660
a a t a c a c t g t a c t g c a g a t g a a c a g c c t g c g g a g g a c t t a c t g c t a t t g c 720
g c a a g a a c c g g t g g c t g g g a c c t t c g a c t t a t t g g g g g g g a g g g a c t t c a c c g t g 780
t c c t c t g a t a g a c a c a c a t g c c t c c c t g c t g c a c c a g a g c t g c t g g g g g g c c a 840
t c c g t g t t c c t g t t t c c a c c a g c t a a a a g c a c c t g a t c a g c c g g a c a c c t g a a 900

pctgb2018050048-seql.txt

gtcacttgcg	tggtcgtgga	cgtgagtcac	gaggatccag	aagtcaagtt	taactggtag	960
gtggatggcg	tcgagggtgca	taatgccaaag	accaaaccctc	gcgaggaaca	gtacaatagc	1020
acatatcgag	tcgtgtccgt	cctgactgtg	ctgcatcagg	attggctgaa	cggcaaagag	1080
tataagtgca	aagtgagcaa	taaggcactg	cctgccccaa	tcgagaaaaac	aatttccaag	1140
gctaaaggcc	agcccaggga	acctcaggtg	tacactctgc	ctccaagtgc	cgagggaaatg	1200
accaagaacc	aggtgaggct	gacctgtctg	gtgaaagggt	tctatccatc	agacattgca	1260
gtggagtggg	aaagcaatgg	acagccgaa	aacaattaca	agaccacacc	ccctgtgctg	1320
gacagcgatg	gctccttctt	tctgtattct	aagctgactg	tggataaaag	tcgctggcag	1380
cagggaaacg	tcttagctg	ttccgtgatg	catgaggctc	tgcacaatca	ttacacacag	1440
aagtctctga	gtctgtcacc	cggcaaatga				1470

<210> 11
<211> 127
<212> PRT
<213> Mus musculus

<400> 11

Ile Arg Arg Ala Asp Ile Val Met Thr Gln Thr Thr Leu Ser Leu Pro
1 5 10 15

Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser
20 25 30

Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys
35 40 45

Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe
50 55 60

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
65 70 75 80

Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr
85 90 95

pctgb2018050048-seql.txt

Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys
100 105 110

Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Gly Ser
115 120 125

<210> 12
<211> 134
<212> PRT
<213> Mus musculus

<400> 12

Glu Ala Lys Leu Gln Glu Ser Gly Pro Val Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30

Tyr Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
35 40 45

Gly Val Ile Asn Pro Tyr Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Gly Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu
100 105 110

Ile Thr Val Ser Thr Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu
115 120 125

Ala Pro Arg Ser Ser Arg
130

<210> 13

pctgb2018050048-seql.txt

<211> 356

<212> PRT

<213> Mus musculus

<400> 13

Glu Ala Lys Leu Gln Glu Ser Gly Pro Val Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30

Tyr Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
35 40 45

Gly Val Ile Asn Pro Tyr Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Gly Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu
100 105 110

Ile Thr Val Ser Thr Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu
115 120 125

Ala Pro Arg Ser Ser Arg Gly Cys Lys Pro Cys Ile Cys Thr Val Pro
130 135 140

Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu
145 150 155 160

Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Ile Ser
165 170 175

Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu
180 185 190

pctgb2018050048-seql.txt

Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr
195 200 205

Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu Asn
210 215 220

Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala Pro
225 230 235 240

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln
245 250 255

Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp Lys Val
260 265 270

Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr Val
275 280 285

Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln
290 295 300

Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn
305 310 315 320

Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val
325 330 335

Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His
340 345 350

Ser Pro Gly Lys
355

<210> 14
<211> 519
<212> PRT
<213> Mus musculus

<400> 14

pctgb2018050048-seql.txt

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Asp Ile Arg Arg Ala Asp Ile Val Met Thr Gln Thr
20 25 30

Thr Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys
35 40 45

Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
50 55 60

Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys
65 70 75 80

Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly
85 90 95

Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp
100 105 110

Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe
115 120 125

Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr
130 135 140

Val Ser Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly
145 150 155 160

Gly Gly Ser Glu Ala Lys Leu Gln Glu Ser Gly Pro Val Leu Val Lys
165 170 175

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
180 185 190

Thr Asp Tyr Tyr Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu
195 200 205

pctgb2018050048-seql.txt

Glu Trp Ile Gly Val Ile Asn Pro Tyr Asn Gly Asp Thr Ser Tyr Asn
210 215 220

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser
225 230 235 240

Thr Ala Tyr Met Glu Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val
245 250 255

Tyr Tyr Cys Ala Arg Tyr Tyr Gly Ser Trp Phe Ala Tyr Trp Gly Gln
260 265 270

Gly Thr Leu Ile Thr Val Ser Thr Ala Lys Thr Thr Pro Pro Ser Val
275 280 285

Tyr Pro Leu Ala Pro Arg Ser Ser Arg Gly Cys Lys Pro Cys Ile Cys
290 295 300

Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys
305 310 315 320

Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val
325 330 335

Asp Ile Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp
340 345 350

Asp Val Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe
355 360 365

Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp
370 375 380

Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe
385 390 395 400

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys
405 410 415

pctgb2018050048-seql.txt

Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys
420 425 430

Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp
435 440 445

Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys
450 455 460

Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser
465 470 475 480

Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr
485 490 495

Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser
500 505 510

Leu Ser His Ser Pro Gly Lys
515

<210> 15

<211> 1560

<212> DNA

<213> Mus musculus

<400> 15

atggaaactg atactctgct gctctgggtg ctgctcctct gggtgccctgg ttcaactggg 60

gacattcgac gggctgacat tgtgatgacc cagaccacac tgagcctgcc cgtgtccctg 120

ggcgaccagg ccagcatctc ctgccggagc tcccagtcta tcgtgcacag caacggaaac 180

acataacctgg agtggtatct gcagaagcct ggccagtccc caaagctgct gatctacaag 240

gtgtccaaca ggttcagcgg cgtgcctgac cgctttctg gaagcggctc cggaacagat 300

ttcacccctga agatcagcag ggtggaggct gaggacctgg gcgtgtacta ctgcttccag 360

ggatcccacg tgccttacac cttggcggaa ggcacaaaagc tggagatcaa gagagccgat 420

gctgctccaa ccgtgtctgg aagcggaggc gggggttctg gaggcggtgg gagcggtggc 480

ggagggctcg aggctaagct gcaggagagc ggccccgtgc tggtaagcc tggagccagc 540

pctgb2018050048-seql.txt

gtgaagatgt cctgtaaggc ttctggatac acttcacag actactacat gaactgggtg	600
aagcagagcc acggcaagtc cctggagtgg atcggagtga tcaaccctta caacggcgac	660
acctcttaca accagaagtt taagggcaag gccaccctga cagtggataa gtctagctcc	720
accgcttaca tggagctgaa cagcctgaca tccgaggatt ctgccgtgta ctactgtgct	780
aggtactacg gaagctggtt cgcctactgg ggccagggaa cactgatcac cgtgtccaca	840
gccaagacca cacccttag cgtgtacccc ctggctccta ggtctagcag aggctgcaag	900
ccatgcatct gtaccgtgcc cgaggtgagc agcgtttca tctttccacc caagcccaag	960
gacgtgctga ccatcacact gacccttaag gtgacatgcg tggtggtgga tatcagcaag	1020
gacgatccag aggtgcagtt ctccctggttt gtggacgatg tggaggtgca caccgcccag	1080
acacagccaa gggaggagca gttcaactcc accttttagat ccgtgtctga gctgcccattc	1140
atgcaccagg actggctgaa cgaaaggag ttcaagtgcc gggtaactc cgccgctttt	1200
cctgctccaa tcgagaagac catctctaag acaaagggcc gcccaaaggc tccacaggtg	1260
tacaccatcc ctccacccaa ggagcagatg gctaaggata aggtgagcct gacctgtatg	1320
atcacagact tctttccga ggatatcaca gtggagtggc agtggAACGG acagcctgcc	1380
gagaactaca agaacaccca gccaaatcatg gacacagatg gctcttactt cgtgtacagc	1440
aagctgaacg tgcagaagtc taactgggag gctggcaaca cttcacctg cagcgtgctg	1500
cacgaaggc tccataatca ccacaccgaa aagagcctca gtcacagccc tggaaatga	1560

<210> 16
<211> 1574
<212> DNA
<213> Mus musculus

<400> 16	
cttaagatgg aaactgatac tctgctgctc tgggtgctgc tcctctgggt gcctgggtca	60
actggggaca ttgcacgggc tgacattgtg atgaccaga ccacactgag cctgcccgtg	120
tccctggcg accaggccag catctcctgc cggagctccc agtctatcgt gcacagcaac	180
gaaacacat acctggagtg gtatctgcag aagcctggcc agtccccaaa gctgctgatc	240
tacaagggtt ccaacagggtt cagcggcgtg cctgaccgct tttctgaaag cggctccgga	300

pctgb2018050048-seql.txt

acagattca	ccctgaagat	cagcagggtg	gaggctgagg	acctggcg	gtactactgc	360
ttccagggat	cccacgtgcc	ttacacctt	ggcgaggca	caaagctgga	gatcaagaga	420
gccgatgctg	ctccaaccgt	gtctggaagc	ggaggcgggg	gttctggagg	cggtgggagc	480
ggtggcggag	ggtctgaggc	taagctgcag	gagagcggcc	ccgtgctggt	gaagcctgga	540
gccagcgtga	agatgtcctg	taaggcttct	ggatacacct	tcacagacta	ctacatgaac	600
tgggtgaagc	agagccacgg	caagtccctg	gagtggatcg	gagtgtatcaa	cccttacaac	660
ggcgacacct	cttacaacca	gaagtttaag	ggcaaggcca	ccctgacagt	ggataagtct	720
agctccaccg	cttacatgga	gctgaacagc	ctgacatccg	aggattctgc	cgtgtactac	780
tgtgctaggt	actacggaag	ctggttcgcc	tactggggcc	aggaaacact	gatcaccgtg	840
tccacagcca	agaccacacc	ccctagcgtg	tacccctgg	ctcctaggtc	tagcagaggc	900
tgcaagccat	gcatctgtac	cgtccccgag	gtgagcagcg	tgttcatctt	tccacccaag	960
cccaaggacg	tgctgaccat	cacactgacc	cctaaggtga	catgcgtggt	ggtggatatc	1020
agcaaggacg	atccagaggt	gcagttctcc	tggttgtgg	acgatgtgga	ggtgcacacc	1080
gcccagacac	agccaaggga	ggagcagttc	aactccacct	ttagatccgt	gtctgagctg	1140
cccatcatgc	accaggactg	gctgaacgga	aaggagttca	agtgccgggt	gaactccgcc	1200
gctttcctg	ctccaatcga	gaagaccatc	tctaagacaa	agggccgccc	aaaggctcca	1260
caggtgtaca	ccatccctcc	acccaaggag	cagatggcta	aggataaggt	gagcctgacc	1320
tgtatgatca	cagacttctt	tcccgaggat	atcacagtgg	agtggcagtg	gaacggacag	1380
cctggcgaga	actacaagaa	cacccagcca	atcatggaca	cagatggctc	ttacttcgtg	1440
tacagcaagc	tgaacgtgca	gaagtctaac	tgggaggctg	gcaacacctt	cacctgcagc	1500
gtgctgcacg	aaggtctcca	taatcaccac	accgaaaaga	gcctcagtca	cagccctggg	1560
aaatgaggcg	cgcc					1574

<210> 17
 <211> 1484
 <212> DNA
 <213> Homo sapiens

<400> 17
 cttaagatgg aaactgacac cctgctgctg tgggtcctgc tgctgtgggt gcctggatcc 60

pctgb2018050048-seql.txt

accggcgata tcgtgctgac ccagtctcct ggcacactga gtctgtcacc	120
gcaacactgt cttgttagagc cagccagtct gtgggaagct cctacctggc	180
cagaagccag gccaggcacc caggctgctg atctacggag ccttcagccg	240
attccagaca gtttctctgg aagtggctca gggaccgact tcaccctgac	300
catcagccga ctggagcccg aagacttcgc cgtgtactat tgccagcagt	360
acggctctag tccttgact tttggacagg gcaccaaagt ggagatcaag	420
cgcggcgggg gaggctctgg gggagggcggg	480
agtggaggcg ggggatcaca ggtccagctg gtggaaagcg gcgggggagt	540
ggtccagcca ggcggagcc tgccgtgag ctgcggcgtc tcaggattca	600
cattttcaag ctataccatg cactgggtcc ggcaggcacc aggaaggga	660
ctggagtggt tgaccttcat cagctatgac ggcaacaaca agtattacgc	720
tgattccgtg aaagggaggt ttaccattag ccgcgacaac	780
tccaaaata cactgtacct gcagatgaac agcctgcggg ccgaggatac	840
tgctatctac tattgcgcaa gaaccgggtg gctggaccc ttgcactatt	900
ggggccaggg gactctggc	960
ggccatccg tgttcctgtt tccacccaag cctaaagaca ccctgatgat	1020
cagccggaca cctgaagtca cttgcgtggt cggtggacgtg agtcacgagg	1080
atccagaagt caagtttaac tggtacgtgg atggcgtcga ggtgcataat	1140
gccaaagacca aacctcgcga ggaacagtac aatagcacat atcgagtcgt	1200
gtccgtcctg actgtgctgc atcaggattg gctgaacggc	1260
aaagagtata agtgcaaagt gagcaataag gcactgcctg ccccaatcga	1320
gaaaacaatt tccaaggcta aaggccagcc cagggAACCT caggtgtaca	1380
ctctgcctcc aagtcgcgag gaaatgacca agaaccaggt gagcctgacc	1440
tgtctggata caatggacag cccgaaaaca attacaagac cacacccct	1484
gtgctggaca gcgatggctc cttctttctg tattctaagc tgactgtgga	
taaaagtgcgttgcagg ggaacgtctt tagctgttcc gtgatgcgttgc	
caatcattac acacagaagt ctctgagtct gtcacccggc aaatgaggcg	
cgcc	

<210> 18
<211> 426

pctgb2018050048-seql.txt

<212> DNA
<213> Mus musculus

<400> 18
atgtggctgc agaatttact tttcctggc attgtggtct acagcctctc agcaccacc 60
cgctcaccca tcactgtcac ccggccttgg aagcatgttag aggccatcaa agaagccctg 120
aacctcctgg atgacatgcc tgtcacattg aatgaagagg tagaagtcgt ctctaacgag 180
ttctccttca agaagctaac atgtgtgcag acccgctga agatattcga gcagggtcta 240
cggggcaatt tcaccaaact caagggcgcc ttgaacatga cagccagcta ctaccagaca 300
tactgccccca caactccgga aacggactgt gaaacacaag ttaccaccta tgcggatttc 360
atagacagcc ttaaaacctt tctgactgat atccccttt aatgcaaaaa accagtccaa 420
aaatga 426

<210> 19
<211> 426
<212> DNA
<213> Mus musculus

<400> 19
atgtggctcc agaacctcct cttcctcggt atcgtcggt attcactctc cgcacctact 60
cgctcaccta tcactgtcac cagaccctgg aagcacgtgg aggccatcaa ggaggctctg 120
aacctgctgg acgatatgcc agtgaccctg aacgaggagg tggaggtggt gagcaacgag 180
ttctccttta agaagctgac ctgcgtgcag acaaggctga agatcttcga gcagggcctg 240
agaggaaact ttaccaagct gaagggcgcc ctgaacatga ccgcttctta ctaccagaca 300
tactgccccca ctaccccgaa gacagactgt gagacacagg tgaccacata cgccgacttc 360
attgatagcc tgaaaacatt cctgaccgac attccattt agtgttaagaa gcccgtccag 420
aagtaa 426

<210> 20
<211> 435
<212> DNA
<213> Homo sapiens

<400> 20
atgtggctgc agagcctgct gctcttggc actgtggcct gcagcatctc tgcacccgcc 60

pctgb2018050048-seql.txt

cgctcgccca	gccccagcac	gcagccctgg	gagcatgtga	atgccatcca	ggaggcccg	120
cgtctcctga	acctgagtag	agacactgct	gctgagatga	atgaaacagt	agaagtcatc	180
tcagaaatgt	ttgacctcca	ggagccgacc	tgcctacaga	cccgccctgga	gctgtacaag	240
cagggcctgc	ggggcagcct	caccaagctc	aagggccct	tgaccatgat	ggccagccac	300
tacaaggcagc	actgcccctcc	aaccccgaa	acttcctgtg	caacccagat	tatcaccttt	360
gaaagtttca	aagagaacct	gaaggacttt	ctgcttgtca	tcccctttga	ctgctgggag	420
ccagtgccagg	agtga					435

<210> 21

<211> 435

<212> DNA

<213> Homo sapiens

<400> 21

atgtggctgc	agtccctgct	gctgctggc	accgtgcct	gttctatttc	cgcacccgca	60
aggtcaccaa	gtccatctac	tcagccttgg	gagcacgtga	acgcaatcca	ggaggcacgg	120
cggctgctga	acctgagccg	ggacaccgccc	gccgagatga	acgagacagt	ggaagtgatc	180
agcgagatgt	tcgatctgca	ggagcccacc	tgcctgcaga	caaggctgga	gctgtacaag	240
cagggcctgc	gccccctct	gaccaagctg	aagggccac	tgacaatgat	ggccagccac	300
tataaggcagc	actgcccccc	taccccgag	acaagctgtg	ccacccagat	catcacattc	360
gagtccttta	aggagaacct	gaaggatttt	ctgctggtca	ttccatttga	ttgttgggag	420
cccgccagg	agtaa					435

<210> 22

<211> 141

<212> PRT

<213> Mus musculus

<400> 22

Met	Trp	Leu	Gln	Asn	Leu	Leu	Phe	Leu	Gly	Ile	Val	Val	Tyr	Ser	Leu
1															15

Ser	Ala	Pro	Thr	Arg	Ser	Pro	Ile	Thr	Val	Thr	Arg	Pro	Trp	Lys	His
20															30

pctgb2018050048-seql.txt

Val Glu Ala Ile Lys Glu Ala Leu Asn Leu Leu Asp Asp Met Pro Val
35 40 45

Thr Leu Asn Glu Glu Val Glu Val Val Ser Asn Glu Phe Ser Phe Lys
50 55 60

Lys Leu Thr Cys Val Gln Thr Arg Leu Lys Ile Phe Glu Gln Gly Leu
65 70 75 80

Arg Gly Asn Phe Thr Lys Leu Lys Gly Ala Leu Asn Met Thr Ala Ser
85 90 95

Tyr Tyr Gln Thr Tyr Cys Pro Pro Thr Pro Glu Thr Asp Cys Glu Thr
100 105 110

Gln Val Thr Thr Tyr Ala Asp Phe Ile Asp Ser Leu Lys Thr Phe Leu
115 120 125

Thr Asp Ile Pro Phe Glu Cys Lys Lys Pro Val Gln Lys
130 135 140

<210> 23
<211> 144
<212> PRT
<213> Homo sapiens

<400> 23

Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile
1 5 10 15

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His
20 25 30

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp
35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe
50 55 60

pctgb2018050048-seql.txt

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys
65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met
85 90 95

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser
100 105 110

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys
115 120 125

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu
130 135 140

<210> 24

<211> 2010

<212> DNA

<213> Gibbon leukemia virus

<400> 24

atggattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag 60

atgagtcctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc 120

gggacgagtc tgcaaaataa gaaccccccac cagcccatga ccctcacttg gcaggtactg 180

tcccaaactg gagacgttgt ctgggataca aaggcagtcc agcccccttg gacttggtgg 240

cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg 300

ggaaccgatg tctcgtcctc taaacgagtc agacccctgg actcagacta tactgccgt 360

tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg 420

gcaagctcta ctttctacgt atgtccccgg gatggccgga ccctttcaga agctagaagg 480

tgcggggggc tagaatccct atactgtaaa gaatgggatt gtgagaccac ggggaccggt 540

tattggctat ctaaatcctc aaaagacctc ataactgtaa aatgggacca aaatagcgaa 600

tggactcaaa aatttcaaca gtgtcaccag accggctgggt gtaacccct taaaatagat 660

ttcacagaca aaggaaaatt atccaaggac tggataacgg gaaaaacctg gggattaaga 720

ttctatgtgt ctggacatcc aggcgtacag ttcaccattc gctaaaaat caccaacatg 780

pctgb2018050048-seql.txt

ccagctgtgg cagtaggtcc tgacccgtc cttgtggAAC aaggacCTCC tagaacgtCC	840
ctcgctctcc cacccctct tcccccaagg gaagcgccac cgccatctct ccccgactct	900
aactccacag ccctggcgac tagtgcacaa actcccacgg tgagaaaaac aattgttacc	960
ctaaacactc cgccTcccac cacaggcgac agacttttg atcttgcA gggggcTTc	1020
ctaaccTaa atgctaccaa cccaggggcc actgagtctt gctggcttgc tttggccatg	1080
ggccccctt attatgaagc aatagcctca tcaggagagg tcgcctactc caccgacctt	1140
gaccggtgcc gctggggac ccaaggaaag ctcaccctca ctgaggtctc aggacacggg	1200
ttgtgcataG gaaagggtgcc cttaacccat cagcatctct gcaatcagac cctatccatc	1260
aattcctccg gagaccatca gtatctgctc ccctccaacc atagctggtg ggcttgcagc	1320
actggcctca ccccttgccT ctccacctca gtttttaatc agactagaga tttctgtatc	1380
caggtccagc tgattcctcg catctattac tattcctgaag aagttttgtt acaggcctat	1440
gacaattctc accccaggac taaaagagag gctgtctcac ttaccctagc tggggggactg	1500
gggttggaa tcacggcggg aataggtact ggttcaactg ccttaattaa aggacctata	1560
gacctccagc aaggcctgac aaggcctccag atcgccatag atgctgaccc cggggccctc	1620
caagactcag tcagcaagtt agaggactca ctgacttccc tggccgaggt agtgctccaa	1680
aataggagag gccttgactt gctgtttcta aaagaaggtg gcctctgtgc ggccctaaag	1740
gaagagtgcT gtttttacat agaccactca ggtgcagttac gggactccat gaaaaaactc	1800
aaagaaaaac tggataaaag acagtttagag cgccagaaaa gccaaaactg gtatgaagga	1860
tggttcaata actcccTTg gttcactacc ctgctatcaa ccatcgctgg gcccctattaa	1920
ctcctccTtc tgTTgctcat cctcgggcca tgcatacatca ataagtttagt tcaattcatc	1980
aatgatagga taagtgcagt taaaatttaa	2010

<210> 25
 <211> 2013
 <212> DNA
 <213> Gibbon leukemia virus

<400> 25
 accatggtcc tgctgcctgg gtctatgctg ctgacttcta acctgcacca cctgcgacac
 cagatgtctc ccggctcatg gaaacggctg atcatcctgc tgagctgcgt gttcggagga

pctgb2018050048-seql.txt

ggaggcacct ccctgcagaa caagaatcct caccagccaa tgaccctgac atggcaggtg	180
ctgtcccaga caggcgacgt ggtgtggat accaaggcag tgcagccacc ttggacatgg	240
tggcccaccc tgaagcctga cgtgtgcgcc ctggccgcct ccctggagtc ttggacatc	300
cccgccacag acgtgaggcag cagcaagagg gtgagaccac ccgactctga ttatacagcc	360
gcctacaagc agatcacctg gggcgccatc ggctgttagct atcctcgggc ccgcacaagg	420
atggccagct ccaccttta cgtgtgccc cgcgacggaa ggaccctgtc tgaggcaagg	480
agatgtggcg gcctggagag cctgtattgc aaggagtggg attgtgagac cacaggcaca	540
ggctactggc tgtctaagtc tagcaaggac ctgatcaccg tgaagtggga tcagaacagc	600
gagtggacac agaagttcca gcagtgccac cagaccggct ggtgtaatcc cctgaagatc	660
gactttacag ataagggcaa gctgtccaag gactggatca ccggcaagac atggggcctg	720
agattctacg tgtctggcca ccctggcgtg cagttacaa tccggctgaa gatcacaac	780
atgccagcag tggcagtggg accagacctg gtgctggtagt agcaggacc tccacgcacc	840
tccctggccc tgccccctcc actgccccct agggaggccc cacccccctag cctgcccgt	900
tctaacagca cagccctggc caccccgcc cagaccctta cagtgcgcaa gaccatcgtg	960
acactgaata ccccccccccc taccacaggc gacaggctgt tcgatctggt gcagggcgcc	1020
tttctgacac tgaacgcccac caatcctggc gcaaccgaga gctgctggct gtgcctggct	1080
atggggccac cctactatga ggcaatcgcc tcctctggag aggtggcata ttccacagac	1140
ctggatagat gcagatgggg cacccaggc aagctgaccc tgacagaggt gtctggccac	1200
ggcctgtgca tcggcaaggt gccattcaca caccaggcacc tgtgcaacca gaccctgagc	1260
atcaatagct ccggcgacca ccagtacctg ctgccaagca accactcctg gtggcatgc	1320
tccacaggac tgacccatg tctgagcacc agcgtgttca accagaccag agactttgt	1380
atccaggtgc agctgatccc tcggatctac tattacccag aggaggtgct gctgcaggcc	1440
tatgataatt cccacccaag aacaaagagg gaggccgtgt ctctgaccct ggccgtgctg	1500
ctgggactgg gaatcacagc aggaatcgcc acaggcagca ccgcctgtat caagggacca	1560
atcgacctgc agcaggact gacccctcg cagatgcca tcgacgcccga tctgagagcc	1620
ctgcaggaca gcgtgtccaa gctggaggat tctctgaccc ctctgagcga ggtggtgctg	1680

pctgb2018050048-seql.txt

cagaacagga	ggggcctgga	cctgctgttc	ctgaaggagg	gaggactgtg	cgccgcctg	1740
aaggaggagt	gctgtttta	tatcgaccac	tctggcgccg	tgcgggatag	catgaagaag	1800
ctgaaggaga	agctggataa	gcgccagctg	gagaggcaga	agagccagaa	ttggtacgag	1860
ggctggttca	acaattcccc	ctggtttacc	acactgctgt	ctaccatcgc	aggacctctg	1920
ttattactgc	tgctgctgct	gatcctgggc	ccatgtatca	tcaacaagct	ggtgcagttt	1980
atcaacgacc	aatctccgc	agtgaaaatc	taa			2013

<210> 26
<211> 669
<212> PRT
<213> Gibbon leukemia virus

<400> 26

Met	Val	Leu	Leu	Pro	Gly	Ser	Met	Leu	Leu	Thr	Ser	Asn	Leu	His	His
1							5			10			15		

Leu	Arg	His	Gln	Met	Ser	Pro	Gly	Ser	Trp	Lys	Arg	Leu	Ile	Ile	Leu
								25					30		

Leu	Ser	Cys	Val	Phe	Gly	Gly	Gly	Thr	Ser	Leu	Gln	Asn	Lys	Asn
								35			40		45	

Pro	His	Gln	Pro	Met	Thr	Leu	Thr	Trp	Gln	Val	Leu	Ser	Gln	Thr	Gly
				50					55			60			

Asp	Val	Val	Trp	Asp	Thr	Lys	Ala	Val	Gln	Pro	Pro	Trp	Thr	Trp	Trp
					65			70			75		80		

Pro	Thr	Leu	Lys	Pro	Asp	Val	Cys	Ala	Leu	Ala	Ala	Ser	Leu	Glu	Ser
								85			90		95		

Trp	Asp	Ile	Pro	Gly	Thr	Asp	Val	Ser	Ser	Ser	Lys	Arg	Val	Arg	Pro
								100			105		110		

Pro	Asp	Ser	Asp	Tyr	Thr	Ala	Ala	Tyr	Lys	Gln	Ile	Thr	Trp	Gly	Ala
								115			120		125		

pctgb2018050048-seql.txt

Ile Gly Cys Ser Tyr Pro Arg Ala Arg Thr Arg Met Ala Ser Ser Thr
130 135 140

Phe Tyr Val Cys Pro Arg Asp Gly Arg Thr Leu Ser Glu Ala Arg Arg
145 150 155 160

Cys Gly Gly Leu Glu Ser Leu Tyr Cys Lys Glu Trp Asp Cys Glu Thr
165 170 175

Thr Gly Thr Gly Tyr Trp Leu Ser Lys Ser Ser Lys Asp Leu Ile Thr
180 185 190

Val Lys Trp Asp Gln Asn Ser Glu Trp Thr Gln Lys Phe Gln Gln Cys
195 200 205

His Gln Thr Gly Trp Cys Asn Pro Leu Lys Ile Asp Phe Thr Asp Lys
210 215 220

Gly Lys Leu Ser Lys Asp Trp Ile Thr Gly Lys Thr Trp Gly Leu Arg
225 230 235 240

Phe Tyr Val Ser Gly His Pro Gly Val Gln Phe Thr Ile Arg Leu Lys
245 250 255

Ile Thr Asn Met Pro Ala Val Ala Val Gly Pro Asp Leu Val Leu Val
260 265 270

Glu Gln Gly Pro Pro Arg Thr Ser Leu Ala Leu Pro Pro Pro Leu Pro
275 280 285

Pro Arg Glu Ala Pro Pro Pro Ser Leu Pro Asp Ser Asn Ser Thr Ala
290 295 300

Leu Ala Thr Ser Ala Gln Thr Pro Thr Val Arg Lys Thr Ile Val Thr
305 310 315 320

Leu Asn Thr Pro Pro Pro Thr Thr Gly Asp Arg Leu Phe Asp Leu Val
325 330 335

pctgb2018050048-seql.txt

Gln Gly Ala Phe Leu Thr Leu Asn Ala Thr Asn Pro Gly Ala Thr Glu
340 345 350

Ser Cys Trp Leu Cys Leu Ala Met Gly Pro Pro Tyr Tyr Glu Ala Ile
355 360 365

Ala Ser Ser Gly Glu Val Ala Tyr Ser Thr Asp Leu Asp Arg Cys Arg
370 375 380

Trp Gly Thr Gln Gly Lys Leu Thr Leu Thr Glu Val Ser Gly His Gly
385 390 395 400

Leu Cys Ile Gly Lys Val Pro Phe Thr His Gln His Leu Cys Asn Gln
405 410 415

Thr Leu Ser Ile Asn Ser Ser Gly Asp His Gln Tyr Leu Leu Pro Ser
420 425 430

Asn His Ser Trp Trp Ala Cys Ser Thr Gly Leu Thr Pro Cys Leu Ser
435 440 445

Thr Ser Val Phe Asn Gln Thr Arg Asp Phe Cys Ile Gln Val Gln Leu
450 455 460

Ile Pro Arg Ile Tyr Tyr Pro Glu Glu Val Leu Leu Gln Ala Tyr
465 470 475 480

Asp Asn Ser His Pro Arg Thr Lys Arg Glu Ala Val Ser Leu Thr Leu
485 490 495

Ala Val Leu Leu Gly Leu Gly Ile Thr Ala Gly Ile Gly Thr Gly Ser
500 505 510

Thr Ala Leu Ile Lys Gly Pro Ile Asp Leu Gln Gln Gly Leu Thr Ser
515 520 525

Leu Gln Ile Ala Ile Asp Ala Asp Leu Arg Ala Leu Gln Asp Ser Val
530 535 540

pctgb2018050048-seql.txt

Ser Lys Leu Glu Asp Ser Leu Thr Ser Leu Ser Glu Val Val Leu Gln
545 550 555 560

Asn Arg Arg Gly Leu Asp Leu Leu Phe Leu Lys Glu Gly Gly Leu Cys
565 570 575

Ala Ala Leu Lys Glu Glu Cys Cys Phe Tyr Ile Asp His Ser Gly Ala
580 585 590

Val Arg Asp Ser Met Lys Lys Leu Lys Glu Lys Leu Asp Lys Arg Gln
595 600 605

Leu Glu Arg Gln Lys Ser Gln Asn Trp Tyr Glu Gly Trp Phe Asn Asn
610 615 620

Ser Pro Trp Phe Thr Thr Leu Leu Ser Thr Ile Ala Gly Pro Leu Leu
625 630 635 640

Leu Leu Leu Leu Leu Leu Ile Leu Gly Pro Cys Ile Ile Asn Lys Leu
645 650 655

Val Gln Phe Ile Asn Asp Arg Ile Ser Ala Val Lys Ile
660 665

<210> 27
<211> 759
<212> DNA
<213> Artificial Sequence

<220>
<223> Human-Mouse hybrid

<400> 27
atgatcgaga cctacaatca gacaagccca cggccggccg caaccggact gcctatcagc 60
atgaagatct tcatgtacct gctgaccgtg tttctgtatca cacagatgtat cggctccgccc 120
ctgttcgccc tgttatctgca caggagactg gacaagatcg aggtgagcg caatctgcac 180
gaggacttcg tggatgttgc gaccatccag cggtgcaaca caggcgagag gagcctgtct 240
ctgctgaatt gtgaggagat caagtccca gttcgagggtt ttgtgaagga tatcatgctg 300

pctgb2018050048-seql.txt

aacaaggagg	agacaaagaa	ggacgaggat	ccacagatcg	cagcacacgt	ggtgtccgag	360
gcaaactcta	atgccgccag	cgtgctgcag	tgggccaaga	agggctacta	taccatgaag	420
tctaacctgg	tgacactgga	aatggcaag	cagctgaccg	tgaagaggca	gggcctgtac	480
tatatctatg	cccaggtgac	attctgctct	aacagagagg	caagctccc	ggcacccttc	540
atcgtggac	tgtggctgaa	gccctctagc	ggcagcgaga	ggatcctgct	gaaggccgccc	600
aataccact	cctctagcca	gctgtgcgag	cagcagtcca	tccacctggg	aggcgtgttc	660
gagctgcagc	ctggagccag	cgtttcgtg	aacgtgacag	accatctca	ggtgagccac	720
ggcaccggct	tcacaagctt	tggcctgctg	aagctgtga			759

<210> 28

<211> 252

<212> PRT

<213> Artificial Sequence

<220>

<223> Human-Mouse hybrid

<400> 28

Met	Ile	Glu	Thr	Tyr	Asn	Gln	Thr	Ser	Pro	Arg	Ser	Ala	Ala	Thr	Gly
1															15

Leu	Pro	Ile	Ser	Met	Lys	Ile	Phe	Met	Tyr	Leu	Leu	Thr	Val	Phe	Leu
				20				25					30		

Ile	Thr	Gln	Met	Ile	Gly	Ser	Ala	Leu	Phe	Ala	Val	Tyr	Leu	His	Arg
			35				40						45		

Arg	Leu	Asp	Lys	Ile	Glu	Asp	Glu	Arg	Asn	Leu	His	Glu	Asp	Phe	Val
		50			55					60					

Phe	Met	Lys	Thr	Ile	Gln	Arg	Cys	Asn	Thr	Gly	Glu	Arg	Ser	Leu	Ser
	65				70				75					80	

Leu	Leu	Asn	Cys	Glu	Glu	Ile	Lys	Ser	Gln	Phe	Glu	Gly	Phe	Val	Lys
						85			90					95	

Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Asp Glu Asp Pro Gln

pctgb2018050048-seql.txt

100 105 110

Ile Ala Ala His Val Val Ser Glu Ala Asn Ser Asn Ala Ala Ser Val
115 120 125

Leu Gln Trp Ala Lys Lys Gly Tyr Tyr Thr Met Lys Ser Asn Leu Val
130 135 140

Thr Leu Glu Asn Gly Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr
145 150 155 160

Tyr Ile Tyr Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser
165 170 175

Gln Ala Pro Phe Ile Val Gly Leu Trp Leu Lys Pro Ser Ser Gly Ser
180 185 190

Glu Arg Ile Leu Leu Lys Ala Ala Asn Thr His Ser Ser Ser Gln Leu
195 200 205

Cys Glu Gln Gln Ser Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro
210 215 220

Gly Ala Ser Val Phe Val Asn Val Thr Asp Pro Ser Gln Val Ser His
225 230 235 240

Gly Thr Gly Phe Thr Ser Phe Gly Leu Leu Lys Leu
245 250

<210> 29

<211> 1416

<212> DNA

<213> Homo sapiens

<400> 29

atgctgccct ttctgagcat gctggtgctg ctggcgcagc ctctgggaaa cctgggagcc 60

gagatgaaga gcctgtccca gagatctgtg cctaacacct gcacactggc catgtgcagc 120

cccacccgaga atggactgcc tggaaaggac ggaaggatg gaagggaggg ccctcgggc 180

gagaagggcg acccaggact gcctggacca atggactga gcggactgca gggaccaaca 240

pctgb2018050048-seql.txt

ggacctgtgg	gaccaaaggg	agagaacgga	tccgcccggag	agccaggccc	taagggcgag	300	
aggggcctgt	ctggccccc	tggcctgcca	ggcatcccag	gccccgcccgg	caaggagggc	360	
ccatccggca	agcagggcaa	tatcggccc	cagggcaagc	ctggcccaa	ggcgaggca	420	
ggaccaaagg	gagaagtggg	agcacctggc	atgcagggat	ccaccggagc	aaagggatct	480	
acaggaccaa	agggcgagcg	cggcgcccc	ggcgtgcagg	gcgccccgg	caatgcagga	540	
gcagcaggac	cagcaggacc	tgcaggccc	cagggcgccc	ctggctctag	gggcccaccc	600	
ggcctgaagg	g gcacagggg	agtgcctggc	gataggggca	tcaagggaga	gagcggactg	660	
ccagattccg	ccgccc	tgag	gcagcagatg	gaggccctga	agggcaagct	720	
gaggtggcct	tctcccacta	ccagaaggcc	gccctgtttc	cagacggcca	caggagactg	780	
gacaagatcg	aggatgagcg	caac	ctgcac	gaggattcg	tgttatgaa	gaccatccag	840
agatgcaaca	caggcgagcg	gtctctgagc	ctgctgaatt	gtgaggagat	caagtctcag	900	
ttcgagggct	ttgtgaagga	catcatgctg	aacaaggagg	agaccaagaa	ggagaatagc	960	
ttcgagatgc	agaagggcga	tcagaatccc	cagatcgcag	cacacgtgat	cagcgaggca	1020	
agctccaaga	ccacatccgt	gctgcagtgg	gccgagaagg	gctactatac	catgtccaac	1080	
aatctggtga	cactggagaa	cggcaagcag	ctgaccgtga	agagacaggg	cctgtactat	1140	
atctatgccc	aggtgacatt	ctgctcta	at	cgccaggcct	ctagccaggc	ccctttatc	1200
gcctctctgt	gcctgaagag	cccaggcaga	ttcgagcgg	tcctgctgag	ggccgccaac	1260	
acccactcct	ctgccaagcc	atgcggacag	cagagcatcc	acctggagg	cgtgttcgag	1320	
ctgcagccag	gagcctccgt	gtttgtgaat	gtgacagacc	catcccagg	gtctcacgga	1380	
accggcttca	catccttgg	cctgctgaag	ctgtga			1416	

<210> 30
 <211> 471
 <212> PRT
 <213> Homo sapiens

 <400> 30

Met Leu Pro Phe Leu Ser Met Leu Val Leu Leu Val Gln Pro Leu Gly
 1 5 10 15

pctgb2018050048-seql.txt

Asn Leu Gly Ala Glu Met Lys Ser Leu Ser Gln Arg Ser Val Pro Asn
20 25 30

Thr Cys Thr Leu Val Met Cys Ser Pro Thr Glu Asn Gly Leu Pro Gly
35 40 45

Arg Asp Gly Arg Asp Gly Arg Glu Gly Pro Arg Gly Glu Lys Gly Asp
50 55 60

Pro Gly Leu Pro Gly Pro Met Gly Leu Ser Gly Leu Gln Gly Pro Thr
65 70 75 80

Gly Pro Val Gly Pro Lys Gly Glu Asn Gly Ser Ala Gly Glu Pro Gly
85 90 95

Pro Lys Gly Glu Arg Gly Leu Ser Gly Pro Pro Gly Leu Pro Gly Ile
100 105 110

Pro Gly Pro Ala Gly Lys Glu Gly Pro Ser Gly Lys Gln Gly Asn Ile
115 120 125

Gly Pro Gln Gly Lys Pro Gly Pro Lys Gly Glu Ala Gly Pro Lys Gly
130 135 140

Glu Val Gly Ala Pro Gly Met Gln Gly Ser Thr Gly Ala Lys Gly Ser
145 150 155 160

Thr Gly Pro Lys Gly Glu Arg Gly Ala Pro Gly Val Gln Gly Ala Pro
165 170 175

Gly Asn Ala Gly Ala Ala Gly Pro Ala Gly Pro Ala Gly Pro Gln Gly
180 185 190

Ala Pro Gly Ser Arg Gly Pro Pro Gly Leu Lys Gly Asp Arg Gly Val
195 200 205

Pro Gly Asp Arg Gly Ile Lys Gly Glu Ser Gly Leu Pro Asp Ser Ala
210 215 220

pctgb2018050048-seql.txt

Ala Leu Arg Gln Gln Met Glu Ala Leu Lys Gly Lys Leu Gln Arg Leu
225 230 235 240

Glu Val Ala Phe Ser His Tyr Gln Lys Ala Ala Leu Phe Pro Asp Gly
245 250 255

His Arg Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp
260 265 270

Phe Val Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser
275 280 285

Leu Ser Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe
290 295 300

Val Lys Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser
305 310 315 320

Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val
325 330 335

Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu
340 345 350

Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly
355 360 365

Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln
370 375 380

Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile
385 390 395 400

Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu
405 410 415

Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser
420 425 430

pctgb2018050048-seql.txt

Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe
435 440 445

Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr
450 455 460

Ser Phe Gly Leu Leu Lys Leu
465 470

<210> 31
<211> 1412
<212> DNA
<213> Mus musculus

<400> 31
atgctgccct tcctgagcat gctggtgctg ctgggtgcagc ctctgggcaa tctgggcgcc 60
gagatgaagt ccctgtctca gaggagcgtg ccaaacacct gcacactggt catgtgctct 120
ccaaaccgaga atggactgcc aggaagggac ggaagagatg gaagggaggg accaagggga 180
gagaagggcg accctggact gcctggacca atgggactgt ccggactgca gggaccaaca 240
ggccctgtgg gaccaaaggg agagaatgga agcgccggag agccaggacc taagggagag 300
aggggcctgt ccggccccc tggcctgcct ggcattccag gccccgcccgg caaggagggc 360
ccttctggca agcagggcaa catcgacca cagggcaagc ctggaccaaaa gggagaggca 420
ggaccaaagg gagaagtggg agcacccggc atgcagggca gcacccggagc aaagggatcc 480
accggcccta agggagagag aggagcacct ggagtgcagg gcgcggcagg caatgcagga 540
gcagcaggac cagcaggacc tgcaggccca cagggcgccc caggcagccg gggcccaccc 600
ggcctgaagg ggcacagggg agtgcaggc gatagggca tcaagggaga gtccggactg 660
ccagactctg ccgcctgag gcagcagatg gaggccctga agggcaagct gcagaggctg 720
gaggtggcct tctccacta ccagaaggcc gccctgtttc cagacggaca caggagactg 780
gataaggtgg aggaggaggt gaaacctgcac gaggattcg tggatcaaa gaagctgaag 840
agggtcaaca agggcgaggg cagcctgtcc ctgctgaatt gtgaggagat gcggcgccag 900
ttcgaggacc tggtaagga tatcaccctg aacaaggagg agaagaagga gaattcttt 960
gagatgcaga gggcgacga ggatcctcag atcgcagcac acgtggtgc cgaggcaa 1020

pctgb2018050048-seql.txt

tctaatgccg ccagcgtgct gcagtgggcc aagaaggcgt actataccat gaagtctaac	1080
ctggcatgc tggagaatgg caagcagctg acagtgaaga gagagggcct gtactacgtg	1140
tacacccagg tgacattctg cagcaacaga gagccagct cccagcggcc ttttatcgtg	1200
ggcctgtggc tgaagccctc tatcggaaagc gagaggatcc tgctgaaggc agccaatacc	1260
cactctagct cccagctgtg cgagcagcag tccgtgcacc tgggaggcgt gttcgagctg	1320
caggcaggag caagcgtgtt cgtgaacgga cagaggccag ccaggtcatc cacagagtgg	1380
gcttctctag ctttggcctg ctgaagctgt ga	1412

<210> 32
<211> 470
<212> PRT
<213> Mus musculus

<400> 32

Met Leu Pro Phe Leu Ser Met Leu Val Leu Leu Val Gln Pro Leu Gly
1 5 10 15

Asn Leu Gly Ala Glu Met Lys Ser Leu Ser Gln Arg Ser Val Pro Asn
20 25 30

Thr Cys Thr Leu Val Met Cys Ser Pro Thr Glu Asn Gly Leu Pro Gly
35 40 45

Arg Asp Gly Arg Asp Gly Arg Glu Gly Pro Arg Gly Glu Lys Gly Asp
50 55 60

Pro Gly Leu Pro Gly Pro Met Gly Leu Ser Gly Leu Gln Gly Pro Thr
65 70 75 80

Gly Pro Val Gly Pro Lys Gly Glu Asn Gly Ser Ala Gly Glu Pro Gly
85 90 95

Pro Lys Gly Glu Arg Gly Leu Ser Gly Pro Pro Gly Leu Pro Gly Ile
100 105 110

Pro Gly Pro Ala Gly Lys Glu Gly Pro Ser Gly Lys Gln Gly Asn Ile

pctgb2018050048-seql.txt

115 120 125

Gly Pro Gln Gly Lys Pro Gly Pro Lys Gly Glu Ala Gly Pro Lys Gly
130 135 140

Glu Val Gly Ala Pro Gly Met Gln Gly Ser Thr Gly Ala Lys Gly Ser
145 150 155 160

Thr Gly Pro Lys Gly Glu Arg Gly Ala Pro Gly Val Gln Gly Ala Pro
165 170 175

Gly Asn Ala Gly Ala Ala Gly Pro Ala Gly Pro Ala Gly Pro Gln Gly
180 185 190

Ala Pro Gly Ser Arg Gly Pro Pro Gly Leu Lys Gly Asp Arg Gly Val
195 200 205

Pro Gly Asp Arg Gly Ile Lys Gly Glu Ser Gly Leu Pro Asp Ser Ala
210 215 220

Ala Leu Arg Gln Gln Met Glu Ala Leu Lys Gly Lys Leu Gln Arg Leu
225 230 235 240

Glu Val Ala Phe Ser His Tyr Gln Lys Ala Ala Leu Phe Pro Asp Gly
245 250 255

His Arg Arg Leu Asp Lys Val Glu Glu Val Asn Leu His Glu Asp
260 265 270

Phe Val Phe Ile Lys Lys Leu Lys Arg Cys Asn Lys Gly Glu Gly Ser
275 280 285

Leu Ser Leu Leu Asn Cys Glu Glu Met Arg Arg Gln Phe Glu Asp Leu
290 295 300

Val Lys Asp Ile Thr Leu Asn Lys Glu Glu Lys Lys Glu Asn Ser Phe
305 310 315 320

Glu Met Gln Arg Gly Asp Glu Asp Pro Gln Ile Ala Ala His Val Val

pctgb2018050048-seql.txt

325

330

335

Ser Glu Ala Asn Ser Asn Ala Ala Ser Val Leu Gln Trp Ala Lys Lys
340 345 350

Gly Tyr Tyr Thr Met Lys Ser Asn Leu Val Met Leu Glu Asn Gly Lys
355 360 365

Gln Leu Thr Val Lys Arg Glu Gly Leu Tyr Tyr Val Tyr Thr Gln Val
370 375 380

Thr Phe Cys Ser Asn Arg Glu Pro Ser Ser Gln Arg Pro Phe Ile Val
385 390 395 400

Gly Leu Trp Leu Lys Pro Ser Ile Gly Ser Glu Arg Ile Leu Leu Lys
405 410 415

Ala Ala Asn Thr His Ser Ser Ser Gln Leu Cys Glu Gln Gln Ser Val
420 425 430

His Leu Gly Gly Val Phe Glu Leu Gln Ala Gly Ala Ser Val Phe Val
435 440 445

Asn Val Thr Glu Ala Ser Gln Val Ile His Arg Val Gly Phe Ser Ser
450 455 460

Phe Gly Leu Leu Lys Leu
465 470

<210> 33

<211> 786

<212> DNA

<213> Homo sapiens

<400> 33

atgatcgaaa catacaacca aacttctccc cgatctgcgg ccactggact gcccatcagc 60

atgaaaattt ttatgtatcc acttactgtt tttcttatca cccagatgtat tgggtcagca 120

cttttgctg tgtatcttca tagaagggtt gacaagatag aagatgaaag gaatcttcat 180

gaagatttt tattcatgaa aacgatacag agatgcaaca caggagaaag atccttatcc 240

pctgb2018050048-seql.txt

ttactgaact	gtgaggagat	taaaagccag	tttgaaggct	ttgtgaagga	tataatgtta	300
aacaaagagg	agacgaagaa	agaaaacagc	tttgaatgc	aaaaaggtga	tcagaatcct	360
caaattgcgg	cacatgtcat	aagtgaggcc	agcagtaaaa	caacatctgt	gttacagtgg	420
gctgaaaaag	gatactacac	catgagcaac	aacttggtaa	ccctggaaaa	tgggaaacag	480
ctgaccgtta	aaagacaagg	actctattat	atctatgccc	aagtcacctt	ctgttccaat	540
cgggaagctt	cgagtcaagc	tccatttata	gccagcctct	gcctaaagtc	ccccggtaga	600
ttcgagagaa	tcttactcag	agctgcaaat	acccacagtt	ccgccaaacc	ttgcgggcaa	660
caatccattc	acttgggagg	agtatggaa	ttgcaaccag	gtgcttcggt	gtttgtcaat	720
gtgactgatc	caagccaagt	gagccatggc	actggcttca	cgtcctttgg	cttactcaaa	780
ctctga						786

<210> 34
<211> 261
<212> PRT
<213> Homo sapiens

<400> 34

Met Ile Glu Thr Tyr Asn Gln Thr Ser Pro Arg Ser Ala Ala Thr Gly
1 5 10 15

Leu Pro Ile Ser Met Lys Ile Phe Met Tyr Leu Leu Thr Val Phe Leu
20 25 30

Ile Thr Gln Met Ile Gly Ser Ala Leu Phe Ala Val Tyr Leu His Arg
35 40 45

Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp Phe Val
50 55 60

Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser Leu Ser
65 70 75 80

Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe Val Lys
85 90 95

pctgb2018050048-seql.txt

Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser Phe Glu
100 105 110

Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser
115 120 125

Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly
130 135 140

Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln
145 150 155 160

Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr
165 170 175

Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser
180 185 190

Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala
195 200 205

Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His
210 215 220

Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn
225 230 235 240

Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe
245 250 255

Gly Leu Leu Lys Leu
260

<210> 35

<211> 783

<212> DNA

<213> Mus musculus

<400> 35

atgatagaaa catacagcca accttccccc agatccgtgg caactggact tccagcgagc

60

pctgb2018050048-seql.txt

atgaagattt ttatgtattt acttactgtt ttccttatca cccaaatgat tggatctgtg	120
cttttgctg tgtatcttca tagaagattg gataaggtcg aagaggaagt aaaccttcat	180
gaagattttg tattcataaa aaagctaaag agatgcaaca aaggagaagg atcttatcc	240
ttgctgaact gtgaggagat gagaaggcaa tttgaagacc ttgtcaagga tataacgtta	300
aacaaagaag agaaaaaaga aaacagctt gaaatgcaaa gaggtgatga ggatcctcaa	360
attgcagcac acgttgtaag cgaagccaac agtaatgcag catccgttct acagtgggcc	420
aagaaaggat attataccat gaaaagcaac ttggtaatgc ttgaaaatgg gaaacagctg	480
acggtaaaaa gagaaggact ctattatgtc tacactcaag tcaccttctg ctctaattcg	540
gagccttcga gtcaacgccc attcatcgtc ggcctctggc tgaagcccag cagtggatct	600
gagagaatct tactcaaggc ggcaaatacc cacagttcct cccagcttt cgagcagcag	660
tctgttcaact tgggcggagt gttgaatta caagctggtg cttctgtgtt tgtcaacgtg	720
actgaagcaa gccaaagtgt ccacagagtt ggcttctcat cttttggctt actcaaactc	780
tga	783

<210> 36
<211> 260
<212> PRT
<213> Mus musculus

<400> 36

Met Ile Glu Thr Tyr Ser Gln Pro Ser Pro Arg Ser Val Ala Thr Gly
1 5 10 15

Leu Pro Ala Ser Met Lys Ile Phe Met Tyr Leu Leu Thr Val Phe Leu
20 25 30

Ile Thr Gln Met Ile Gly Ser Val Leu Phe Ala Val Tyr Leu His Arg
35 40 45

Arg Leu Asp Lys Val Glu Glu Val Asn Leu His Glu Asp Phe Val
50 55 60

Phe Ile Lys Lys Leu Lys Arg Cys Asn Lys Gly Glu Gly Ser Leu Ser

pctgb2018050048-seql.txt

65

70

75

80

Leu Leu Asn Cys Glu Glu Met Arg Arg Gln Phe Glu Asp Leu Val Lys
85 90 95

Asp Ile Thr Leu Asn Lys Glu Glu Lys Lys Glu Asn Ser Phe Glu Met
100 105 110

Gln Arg Gly Asp Glu Asp Pro Gln Ile Ala Ala His Val Val Ser Glu
115 120 125

Ala Asn Ser Asn Ala Ala Ser Val Leu Gln Trp Ala Lys Lys Gly Tyr
130 135 140

Tyr Thr Met Lys Ser Asn Leu Val Met Leu Glu Asn Gly Lys Gln Leu
145 150 155 160

Thr Val Lys Arg Glu Gly Leu Tyr Tyr Val Tyr Thr Gln Val Thr Phe
165 170 175

Cys Ser Asn Arg Glu Pro Ser Ser Gln Arg Pro Phe Ile Val Gly Leu
180 185 190

Trp Leu Lys Pro Ser Ser Gly Ser Glu Arg Ile Leu Leu Lys Ala Ala
195 200 205

Asn Thr His Ser Ser Ser Gln Leu Cys Glu Gln Gln Ser Val His Leu
210 215 220

Gly Gly Val Phe Glu Leu Gln Ala Gly Ala Ser Val Phe Val Asn Val
225 230 235 240

Thr Glu Ala Ser Gln Val Ile His Arg Val Gly Phe Ser Ser Phe Gly
245 250 255

Leu Leu Lys Leu
260

pctgb2018050048-seq1.txt

<211> 632
<212> DNA
<213> Artificial Sequence

<220>
<223> CMV promoter

<400> 37 gttgacattt attattgact agttattaa agtaatcaat tacgggtca ttagttcata 60
gccccatataat ggagttccgc gttacataac ttacggtaaa tggccgcct ggctgaccgc
ccaacgaccc ccgcccattt acgtcaataa tgacgtatgt tcccatagta acgccaatag 180
ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagttac
atcaagtgtt tcatatgcca agtacgcccc ctattgacgtt caatgacggt aaatggcccg 300
cctggcatta tgcccaagtac atgacccattt gggactttcc tactggcag tacatctacg
tatttagtcat cgctatttacc atgggtatgc gggtttggca gtacatcaat gggcgtggat 360
agcggtttga ctcacgggaa tttccaagtc tccacccat tgacgtcaat gggagtttgt 420
tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgccc ccattgacgc
aaatggcgg taggcgtgtt cgggtggagg tctatataag cagagctctc tggcttaacta 480
gagaacccac tgcttactgg cttatcgaaa tt 540
600
632

<210> 38
<211> 394
<212> DNA
<213> Artificial Sequence

<220>
<223> RSV promoter

```
<400> 38
tgtacgggcc agatatacgc gtatctgagg ggacttagggt gtgttaggc gaaaagcggg 60
gcttcggttg taccggtta ggagtccct caggatatacg tagttcgct tttgcataagg 120
gagggggaaa ttagtctta tgcaatacac ttgttagtctt gcaacatggt aacgatgagt 180
tagcaacatg ctttacaagg agagaaaaag caccgtgcat gccgattggt ggaagtaagg 240
tggtagatc gtgccttatt aggaaggcaa cagacaggtc tgacatggat tggacgaacc 300
actgaattcc gcattgcaga gataattgta tttaagtgcc tagctcgata caataaacgc 360
```

pctgb2018050048-seq1.txt

catttgacca ttcaccacat tggtgtgcac ctcc 394

<210> 39
<211> 188
<212> DNA
<213> Artificial Sequence

<220>
<223> BGH polyA

<400> 39 ctgtgccttc tagttgccag ccatctgttg tttgcccctc ccccggtgcct tccttgaccc 60
tggaagggtgc cactcccact gtccttcctt aataaaatga ggaaattgca tcgcattgtc 120
tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt 180
gggaagac 188

<210> 40
<211> 249
<212> DNA
<213> Artificial Sequence

<220>
<223> SV40 late polyA

```
<400>  40
gacatgataa gatacattga tgagtttggca aaaccacaa ctagaatgca gtgaaaaaaaaa 60
tgctttattt gtgaaatttgc ttagtgcattt gctttatttgc tggaaatttgc gatgctatttgc 120
ctttatttgc aaccattata agctgcaata aacaagttaa caacaacaat tgcatttgcatttgc 180
ttatgtttca ggttcagggg gaggtgtgggg aggtttttca aagcaagttaa aacctctaca 240
aatgtggta 249
```

<210> 41
<211> 99
<212> DNA
<213> Artificial Sequence

<220>
<223> Rabbit beta-globulin polyA

<400> 41 gacctctggc taataaagga aatttatttt cattgcaata gtgtgttgga attttttgtg 60

tctctcactc ggaaggacat atgggaggc aaatcattt 99

<210> 42
 <211> 723
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> GFP

<400> 42
 accatggta gcaagggcga ggagctgttc accgggtgg tgcccatcct ggtcgagctg 60
 gacggcgacg taaacggcca caagttcagc gtgtccggcg agggcgaggg cgatgccacc 120
 tacggcaagc tgaccctgaa gttcatctgc accaccggca agctgcccgt gccctggccc 180
 accctcgtga ccaccctgac ctacggcgtg cagtgcgtca gccgctaccc cgaccacatg 240
 aagcagcacg acttcttcaa gtccgccatg cccgaaggct acgtccagga ggcgaccatc 300
 ttcttcaagg acgacggcaa ctacaagacc cgcgcccagg tgaagttcga gggcgacacc 360
 ctggtaacc gcatcgagct gaagggcatc gacttcaagg aggacggcaa catcctgggg 420
 cacaagctgg agtacaacta caacagccac aacgtctata tcatggccga caagcagaag 480
 aacggcatca aggtgaactt caagatccgc cacaacatcg aggacggcag cgtgcagctc 540
 gccgaccact accagcagaa caccatc ggcgacggcc ccgtgctgct gcccgacaac 600
 cactacctga gcacccagtc cgccctgagc aaagacccca acgagaagcg cgatcacatg 660
 gtcctgctgg agttcgtgac cgccgcccggg atcactctcg gcatggacga gctgtacaag 720
 taa 723

<210> 43
 <211> 454
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> MoMuLV LTR

<400> 43
 ttaattaagt aacgccattt tgcaaggcat ggaaaaatac ataactgaga atagagaagt 60
 tcagatcaag gtcaggaaca gatggaacag ctgaatatgg gccaaacagg atatctgtgg 120

pctgb2018050048-seql.txt

taagcagttc	ctgccccggc	tcagggccaa	gaacagatgg	aacagctgaa	tatgggccaa	180
acaggatatac	tgtggtaagc	agttcctgcc	ccggctcagg	gccagaaca	gatggtcccc	240
agatgcggtc	cagccctcag	cagtttctag	agaaccatca	gatgttcca	gggtgcccc	300
aggacctgaa	atgaccctgt	gccttatttg	aactaaccaa	tcaagttcgct	tctcgcttct	360
gttcgcgcgc	ttctgctccc	cgagctcaat	aaaagagccc	acaacccctc	actcggggcg	420
ccagtcctcc	gattgactga	gtcgcccgct	taag			454
<210>	44					
<211>	1349					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	EF1alpha promoter					
<400>	44					
ttaattaaga	gtaattcata	caaaaggact	cgccctgcc	ttggggaaatc	ccagggaccg	60
tcgttaaact	cccaactaacg	tagaaccagg	agatcgctgc	gttcccggcc	cctcaccgc	120
ccgctctcg	catcaactgag	gtggagaaga	gcatgcgtga	ggctccgggt	cccgctcagt	180
ggcagagcgc	acatcgccca	cagtccccga	gaagttgggg	ggaggggtcg	gcaattgaac	240
cgggcctcg	agaaggtggc	gcggggtaaa	ctggaaagt	gatgtcgtgt	actggctccg	300
cctttttccc	gagggtgggg	gagaaccgta	tataagtgc	gtagtcggcc	tgaacgttct	360
ttttcgcaac	gggtttgccg	ccagaacaca	ggtaagtgc	gtgtgtggtt	cccgccggcc	420
tggcctctt	acgggttatg	gcccttgct	gccttgaaatt	acttccacgc	ccctggctgc	480
agtacgtgat	tcttgatccc	gagttcgaaa	ttggaagtgg	gtgggagagt	tcgaggcctt	540
gcggtaagg	agcccttcg	cctcgtgctt	gagttgaggc	ctggcttggg	cgctggggcc	600
gccgcgtg	aatctggtgg	cacccctcg	cctgtctcg	tgctttcgat	aagtctctag	660
ccatttaaaa	tttttgatga	cctgctgcga	cgctttttt	ctggcaagat	agtcttgtaa	720
atgcggccca	agatctgcac	actggtattt	cggttttgg	ggccgcgggc	ggcgacgggg	780
cccggtcg	ccagcgcaca	tgttcggcga	ggcggggcct	gcgagcgcgg	ccaccgagaa	840
tcggacgggg	gtagtctcaa	gctggccggc	ctgctctgg	gcctggccctc	gcccgcgt	900

pctgb2018050048-seql.txt

gtatcgcccc	gccctggcg	gcaaggctgg	cccggtcggc	accagttcg	tgagcggaaa	960
gatggccgct	tcccggccct	gctgcaggga	gctcaaaatg	gaggacgcgg	cgctcggag	1020
agcgggcggg	tgagtcaccc	acacaaagga	aaagggcctt	tccgtcctca	gccgtcgctt	1080
catgtgactc	cacggagtagc	cggcgccgt	ccaggcacct	cgattagttc	tcgagctttt	1140
ggagtagtc	gtcttaggt	tggggggagg	ggttttatgc	gatggagttt	ccccacactg	1200
agtgggtgga	gactgaagtt	aggccagctt	ggcacttgc	gtaattctcc	ttggaatttg	1260
cccttttga	gttggatct	tggttcattc	tcaagcctca	gacagtggtt	caaagttttt	1320
ttcttcatt	tcaggtgtcg	tgacttaag				1349

<210> 45
<211> 345
<212> DNA
<213> Artificial Sequence

<220>
<223> SV40 enhancer promoter

<400> 45
gctgtggaat gtgtgtcagt tagggtgtgg aaagtccccca ggctccccag caggcagaag 60
tatgcaaagc atgcatctca attagtcagc aaccaggtgt ggaaagtccc caggctcccc 120
agcaggcaga agtatgcaaa gcatgcatct caattagtca gcaaccatag tcccgccct 180
aactccgccc atcccgcccc taactccgcc cagttccgccc cattctccgc cccatggctg 240
actaattttt tttatttatg cagaggccga ggccgcctcg gcctctgagc tattccagaa 300
gtagtgagga ggctttttg gaggcctagg ctttgcaaa aagct 345

<210> 46
<211> 481
<212> DNA
<213> Artificial Sequence

<220>
<223> HGH polyA

<400> 46
gacgggtggc atccctgtga cccctccccca gtgcctctcc tggccctgga agttgccact 60
ccagtgcggca ccagccttgt cctaataaaa ttaagttgca tcattttgtc tgacttaggtg 120

pctgb2018050048-seql.txt

tccttctata atattatggg gtggaggggg gtggtatgga gcaagggca agttgggaag	180
acaacctgta gggcctgcgg ggtctattgg gaaccaagct ggagtgcagt ggcacaatct	240
tggctcactg caatctccgc ctcctgggtt caagcgattc tcctgcctca gcctcccgag	300
ttgttggat tccaggcatg catgaccagg ctcagcta at ttttgttttt ttggtagaga	360
cggggtttca ccatattggc caggctggtc tccaactcct aatctcaggt gatctaccca	420
ccttggcctc ccaaattgct gggattacag gcgtgaacca ctgctccctt ccctgtcctt	480
t	481