Title: TRIAZOLE DERIVATIVES AS SCD INHIBITORS

The present invention relates to substituted triazole compounds of the formula (I): and salts thereof, to pharmaceutical compositions containing them and their use in medicine. In particular, the invention relates to compounds for inhibiting SCD activity, such as diseases related to elevated lipid levels, cardiovascular disease, diabetes, obesity, metabolic syndrome, skin disorders such as acne, diseases or conditions related to cancer and the treatment of symptoms linked to the production of the amyloid plaque-forming AB42 peptide such as Alzheimer's disease.
TRIAZOLE DERIVATIVES AS SCD INHIBITORS

FIELD OF THE INVENTION

The present invention relates to a novel class of compounds believed to be inhibitors of stearoyl-CoA desaturase (SCD), compositions comprising said compounds, methods of synthesis and uses for such compounds in treating and/or preventing various diseases, including those mediated by SCD enzyme, such as diseases related to elevated lipid levels, cardiovascular disease, diabetes, obesity, metabolic syndrome, skin disorders such as acne, diseases or conditions related to cancer and the treatment of symptoms linked to the production of the amyloid plaque-forming Aβ42 peptide such as Alzheimer's disease and the like.

BACKGROUND OF THE INVENTION

Acyl desaturase enzymes catalyze the formation of double bonds in fatty acids derived from either dietary sources or de novo synthesis in the liver. Mammals synthesise at least three fatty acid desaturases of differing chain length that specifically catalyze the addition of double bonds at the delta-9, delta-6, and delta-5 positions. Stearoyl-CoA desaturases (SCDs) introduce a double bond in the C9-C10 position of saturated fatty acids. The preferred substrates for the enzymes are palmitoyl-CoA (16:0) and stearoyl-CoA (18:0), which are converted to palmitoleoyl-CoA (16:1) and oleoyl-CoA (18:1), respectively. The resulting mono-unsaturated fatty acids may then be employed in the preparation of phospholipids, triglycerides, and cholesteryl esters, in vivo.

A number of mammalian SCD genes have been cloned. For example, two genes have been cloned from rats (SCD1, SCD2) and four SCD genes have been isolated from mice (SCD1, 2, 3 and 4). While the basic biochemical roles of SCD has been known in rats and mice since the 1970's (Jeffcoat, R et al., Elsevier Science (1984), Vol 4, pp. 85-12; de Antueno, RJ, Lipids (1993), Vol. 28, No. 4, pp. 285-290), it has only recently been directly implicated in human diseases processes.

A single SCD gene, SCD1, has been characterized in humans. SCD1 is described in Brownlie et al, WO 01/62954. A second human SCD isoform has been identified, and because it bears little sequence homology to known mouse or rat isoforms it has been named human SCD5 or hSCD5 (WO 02/26944).

Whilst not wishing to be bound by theory, it is thought that inhibition of the activity of SCD in vivo can be used to ameliorate and/or treat one or more diseases such as dyslipidemia, hypoalphalipoproteinemia, hyperbetaalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, atherosclerosis, obesity, Type I diabetes, Type II diabetes, insulin resistance, hyperinsulinaemia, metabolic syndrome; other cardiovascular diseases
An SCD-mediated disease or condition also includes a disorder of polyunsaturated fatty acid (PUFA) disorder, or a skin disorder, including but not limited to eczema, acne, psoriasis, skin ageing, keloid scar formation or prevention, diseases related to production or secretion from mucous membranes, such as monounsaturated fatty acids, wax esters, and the like (US2006/0205713A1, WO2007/046868, WO2007/046867). SCD has been shown to play a physiological role in cholesterol homeostasis and the de novo biosynthesis of cholesterol esters, triglycerides and wax esters required for normal skin and eyelid function and therefore may be useful in the treatment of acne and other skin conditions (Makoto et al. J of Nutrition (2001), 131(9), 2260-2268, Harrison et al. J of Investigative Dermatology (2007) 127(6), 1309-1317).

An SCD-mediated disease or condition also includes but is not limited to a disease or condition which is, or is related to cancer, neoplasia, malignancy, metastases, tumours (benign or malignant), carcinogenesis, hepatomas and the like (US2006/0205713A1, WO2007/046868, WO2007/046867). Recently, SCD-1 has been identified as playing a role in human tumor cell survival and therefore has potential as an anticancer target (Morgan-Lappe et al. 2007 Cancer Res. 67(9) 4390-4398).

It has been shown that overexpression of Steroyl-CoA desaturase (SCD) in human cells in culture leads to a specific increase in the production of the amyloid plaque-forming Aβ42 peptide, and conversely, that reductions in SCD activity in human cells in culture leads to a specific decrease in the production of Aβ42. Therefore, SCD inhibitors may also be useful for treating, delaying the onset of symptoms, or slowing the progression of symptoms of mild cognitive impairment (MCI), Alzheimer's Disease (AD), cerebral amyloid angiopathy (CAA) or dementia associated with Down Syndrome (DS) and other neurodegenerative diseases characterized by the formation or accumulation of amyloid plaques comprising Aβ42 (US2007/0087363A1; Myriad Genetics).

WO2005/011657 describes certain piperazine derivatives useful for inhibiting SCD activity.

The present invention provides a compound of formula (I) for inhibiting SCD activity:

\[
\begin{align*}
R^1 & \quad N \quad \begin{array}{c}
\text{R}\text{.}
\end{array} \\
N & \quad N \\
X & \quad R^3
\end{align*}
\]

wherein:
X represents -CONH-, -NHCO- or -CH₂NH-;

R¹ represents:
- C₆.ioaryl (such as phenyl) optionally substituted by one, two or three groups independently selected from:
 - C₃ alkyl (such as -CH₃), - C₆ alkox (such as -OCH₃), - C₆ haloalkyl (such as -CF₃), -OC₆ haloalkyl (such as -OCF₃), -OC₆ cycloalkyl or halogen (such as chloro, bromo or fluoro);

R² represents hydrogen, -C₆ alkyl (such as -CH₃) or d-salkyOd-salkyl (such as -CH₂OCH₃);

R³ represents:
- C₅₉ heteroaryl optionally substituted by one, two or three groups independently selected from: -C₁₃ alkyl (such as -CH₃), - C₆ alkox (such as -OCH₃), -CO₂R⁴, -C(=O)NR²R⁶, - C(=O)NHC₆ alkylNR²R⁷R⁸, -C(=O)NHC₆ alkylOC₆ alkyl, -C(=O)NHC₆ alkylOH, -C(=O)OR⁹, -C₆ alkylOH (such as -CH₂OH or -C₆H₅OH), -C=O, -CHO, -C₁₃ alkylCO₂C₆ alkyl, -C₆ cycloalkyl, -C₆ cycloalkyl or halogen (such as chloro, bromo or fluoro);

R⁴ represents -H or -C₁₃ alkyl (such as -CH₃ or -C₂H₅);
R⁵ represents -H or -C₁₃ alkyl (such as -CH₃);
R⁶ represents -H or -C₆ alkyl (such as -CH₃);
R⁷ represents -H or -C₁₃ alkyl (such as -CH₃);
R⁸ represents -H or -C₁₃ alkyl (such as -CH₃); and
R⁹ represents -C₆ heterocycle (such as morpholine or piperazine) which is optionally substituted by a group independently selected from: -C₆ alkyl (such as -CH₃);

or a pharmaceutically acceptable salt thereof,

with the proviso that the compound of formula (I) is not
N-1,3-benzodioxol-5-yl-1-[(4-fluorophenyl)methyl]-1 H-1,2,3-triazole-4-carboxamide

or N-(6-acetyl-1,3-benzodioxol-5-yl)-1-[(4-methylphenyl)methyl]-1 H-1,2,3-triazole-4-carboxamide
The said compounds have been found to inhibit SCD activity and may therefore be useful in the treatment of SCD-mediated diseases such as diseases or conditions caused by or associated with an abnormal plasma lipid profile including dyslipidemia, hypoalphalipoproteinemia, hyperbetalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, atherosclerosis, obesity, Type I diabetes, Type II diabetes, insulin resistance, hyperinsulinaemia and metabolic syndrome; other cardiovascular diseases e.g. peripheral vascular disease, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, thrombosis, hepatic steatosis, non-alcoholic steatohepatitis (NASH) and other diseases related to accumulation of lipids in the liver; skin disorders e.g. eczema, acne, psoriasis, skin ageing, keloid scar formation or prevention, and diseases related to production or secretion from mucous membranes; cancer, neoplasia, malignancy, metastases, tumours (benign or malignant), carcinogenesis, hepatomas and the like; mild cognitive impairment (MCI), Alzheimer's Disease (AD), cerebral amyloid angiopathy (CAA) or dementia associated with Down Syndrome (DS) and other neurodegenerative diseases characterized by the formation or accumulation of amyloid plaques comprising Aβ42.

In one aspect of the invention, X represents -CONH-. In another aspect of the invention, X represents -NHCO-. In another aspect of the invention, X represents -CH₂NH-.

In one aspect of the invention, R¹ represents phenyl optionally substituted by one, two or three groups independently selected from: -C₁₋₃alkyl (such as -CH₃), -C₁₋₆alkoxy (such as -OCH₃), -C₁₋₆haloalkyl (such as -CF₃), -OC₁₋₆haloalkyl (such as -OCF₃), -OC₃₋₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R¹ represents phenyl optionally substituted by one or two groups independently selected from: -C₁₋₃alkyl (such as -CH₃), -C₁₋₆alkoxy (such as -OCH₃), -C₁₋₆haloalkyl (such as -CF₃), -OC₁₋₆haloalkyl (such as -OCF₃), -OC₃₋₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R¹ represents phenyl optionally substituted by one, two or three groups independently selected from: -C₁₋₃alkyl (such as -CH₃), -C₁₋₆alkoxy (such as -OCH₃), -C₁₋₆haloalkyl (such as -CF₃), -OC₁₋₆haloalkyl (such as -OCF₃), -OC₃₋₆cycloalkyl or halogen (such as chloro, bromo or fluoro).
In another aspect of the invention, R^1 represents phenyl optionally substituted by one or two groups independently selected from: $-C_{1-3}$alkyl (such as $-CH_3$), $-C_{1-3}$alkoxy (such as $-OCH_3$), $-Cl_{1-3}$haloalkyl (such as $-CF_3$), $-OCl_{1-3}$haloalkyl (such as $-OCF_3$), $-OC_{1-6}$cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R^1 represents phenyl optionally substituted by one or two groups independently selected from: $-CH_3$, $-OCH_3$, $-CF_3$, $-OCF_3$ or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R^1 represents phenyl optionally substituted by one or two groups independently selected from: $-CH_3$, $-OCH_3$, $-CF_3$, $-OCF_3$ or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R^1 represents phenyl substituted by two groups independently selected from halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R^1 represents phenyl substituted by two chloro groups.

In another aspect of the invention, R^1 is phenyl substituted in the meta position, that is in the 3 position, and the para position, that is in the 4 position, by halogen e.g chloro i.e.

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
N \\
\text{Cl}
\end{array}
\]

In another aspect of the invention, R^1 is phenyl substituted in the meta position, that is in the 3 position and 5 position, by halogen e.g chloro i.e

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
N \\
\text{Cl}
\end{array}
\]

In another aspect of the invention, R^1 represents phenyl.

In one aspect of the invention, R^2 represents hydrogen. In another aspect of the invention, R^2 represents $-Cl_6$alkyl. In another aspect of the invention, R^2 represents $-Cl_3$alkyl. In another aspect of the invention, R^2 represents $-CH_3$ (methyl). In another aspect of the invention, R^2 represents $-C_1-C_3$alkyloC_1-C_3alkyl. In another aspect of the invention, R^2 represents $-CH_2OCH_3$. In another aspect of the invention, R^2 represents hydrogen or $-Cl_3$alkyl.
In one aspect of the invention, R³ represents a -Cs-heteroaryl wherein the optional substituent is on a carbon atom.

In another aspect of the invention, R³ represents -C₅-heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two or three groups independently selected from: -C₃-alkyl (such as -CH₃), -C₆-alkoxy (such as -OCH₃), -CO₂R⁴, -C(=0)NR₅R⁶, -C(=0)NHC₆₃alkylNR₅R⁶, -C(=0)NHC₆₃alkylOC₆₃alkyl, -C(=0)NHCl₆₃alkylOCl₆₃alkyl, -C(=0)NHC₆₃alkylOH, -C(=0)R₉, -C₆-alkylOH (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -C₆-alkylCO₂C₆₃alkyl, -C₆-alkylOC₆₃alkyl, -C₆-alkoxy (such as -OCF₃), -OC₆₆cycloalkyl, -C₆-cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents -C₅-heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: -C₆-alkyl (such as -CH₃), -C₆-alkoxy (such as -OCH₃), -CO₂R⁴, -C(=0)NR₅R⁶, -C(=0)NHC₆₃alkylNR₅R⁶, -C(=0)NHC₆₃alkylOCl₆₃alkyl, -C(=0)NHC₆₃alkylOH, -C(=0)R₉, -C₆-alkylOH (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -C₆-alkylCO₂C₆₃alkyl, -C₆-alkylOCl₆₃alkyl, -C₆-alkoxy (such as -OCF₃), -Od-cycloalkyl, -d-ecycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents -C₅-heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two or three groups independently selected from: -C₆-alkyl (such as -CH₃), -C₆-alkoxy (such as -OCH₃), -CO₂R⁴, -C(=0)NR₅R⁶, -C(=0)NHC₆₃alkylNR₅R⁶, -C(=0)NHC₆₃alkylOCl₆₃alkyl, -C(=0)NHC₆₃alkylOH, -C(=0)R₉, -C₆-alkylOH (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -C₆-alkylCO₂C₆₃alkyl, -C₆-alkylOCl₆₃alkyl or -C₆-haloalkyl (such as -CF₃).

In another aspect of the invention, R³ represents -C₅-heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: -C₆-alkyl (such as -CH₃), -C₆-alkoxy (such as -OCH₃), -CO₂R⁴, -C(=0)NR₅R⁶, -C(=0)NHC₆₃alkylNR₅R⁶, -C(=0)NHC₆₃alkylOCl₆₃alkyl, -C(=0)NHC₆₃alkylOH, -C(=0)R₉, -C₆-alkylOH (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -C₆-alkylCO₂C₆₃alkyl, -C₆-alkylOCl₆₃alkyl or -C₆-haloalkyl (such as -CF₃).

In another aspect of the invention, R³ represents -C₅-heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one, two or three groups independently selected from: -C₆-alkyl (such as -CH₃), -CO₂R⁴, -
C(=O)NR₃ R₆, -C(=O)NHCl₃ alkylOCi₃ alkyl, -C(=O)NHC₉₃ alkylOH, -C(=O)R₉, -C_i₃ alkylOH (such as -CH₂OH or -C₂H₄OH), -CHO, -C_i₃ alkylOCi₃ alkyl, -d-salkyLOd-salkyl or -C_i₃ haloalkyl (such as -CF₃).

In another aspect of the invention, R³ represents -C₅ heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: -C_i₃ alkyl (such as -CH₃), -CO₂R, -C(=O)NR₃ R₆, -C(=O)NHCl₃ alkylN(CH₃)₂, -C(=O)NHC_i₃ alkylOCi₃ alkyl, -C(=O)NHCl₃ alkylOH, -C(=O)R₉, -C_i₃ alkylOH (such as -CH₂OH or -C₂H₄OH), -CHO, -C_i₃ alkyl(CO₂C₂C₃ alkyl, -C_i₃ alkylOCi₃ alkyl or -C_i₃ haloalkyl (such as -CF₃).

In another aspect of the invention, R³ represents -C₅ heteroaryl containing 5 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one, two or three groups independently selected from: -CH₂, -CO₂H, -CO₂CH₃, -CO₂C₂H₅, -C(=O)NH₂, -C(=O)NHCH₃, -C(=O)NHC₂H₅, -C(=O)NHCH(CH₃)₂, -C(=O)NHC₂H₄CH(CH₃)₂, -C(=O)N(CH₂)₂, -C(=O)NHC₂H₄N(CH₃)₂, -C(=O)NHC₂H₂OH, -C(=O)NHC₂H₄OCH₃, -C(=O)R₉, -CH₂OH, -C₂H₄OH, -CHO, -CH₂CO₂CH₃, -CH₂CO₂C₂H₅, -CH₂OCH₃, -CH₂CONHCH₃ or -CF₃.

In another aspect of the invention, R³ represents thiazole, thiadiazole, oxadiazole or oxazole, optionally substituted by one, two or three groups independently selected from: -CH₂, -CO₂H, -CO₂CH₃, -CO₂C₂H₅, -C(=O)NH₂, -C(=O)NHCH₃, -C(=O)NHC₂H₅, -C(=O)NHCH(CH₃)₂, -C(=O)NHC₂H₄CH(CH₃)₂, -C(=O)N(CH₂)₂, -C(=O)NHC₂H₄N(CH₃)₂, -C(=O)NHC₂H₂OH, -C(=O)NHC₂H₄OCH₃, -C(=O)R₉, -CH₂OH, -C₂H₄OH, -CHO, -CH₂CO₂CH₃, -CH₂CO₂C₂H₅, -CH₂OCH₃, -CH₂CONHCH₃ or -CF₃.
In another aspect of the invention, R³ represents -C₆heteroaryl containing 9 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one, two or three groups independently selected from: -Ci₃alkyl (such as -CH₃), -Ci₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR₅R⁶, -C(=O)NHCᵢ₃alkylNR₇R⁸, -C(=O)NHCᵢ₃alkyLOCIᵢ₃alkyl, -C(=O)NHRCᵢ₃alkylOH, -C(=O)R⁹, -Ci₆alkoxy (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -Ci₆alkyLOCO₂Ci₃alkyl, -d-salkyLOd-salkyl, -Ci₆haloalkyl (such as -CF₃), -OCi₆haloalkyl (such as -OCF₃), -OC₃₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents -C₆heteroaryl containing 9 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: -Cᵢ₃alkyl (such as -CH₃), -Cᵢ₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR₅R⁶, -C(=O)NHCᵢ₃alkylNR₇R⁸, -C(=O)NHCᵢ₃alkyLOCIᵢ₃alkyl, -C(=O)NHRCᵢ₃alkylOH, -C(=O)R⁹, -Cᵢ₆alkoxy (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -Cᵢ₃alkyLOCO₂Cᵢ₃alkyl, -Cᵢ₃alkyLOCᵢ₃alkyl, -Cᵢ₆haloalkyl (such as -CF₃), -OCᵢ₆haloalkyl (such as -OCF₃), -OC₃₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents -C₆heteroaryl containing 9 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: -Ci₃alkyl (such as -CH₃), -Ci₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR₅R⁶, -C(=O)NHCᵢ₃alkylNR₇R⁸, -C(=O)NHCᵢ₃alkyLOCIᵢ₃alkyl, -C(=O)NHRCᵢ₃alkylOH, -C(=O)R⁹, -Ci₆alkoxy (such as -CH₂OH or -C₂H₄OH), -C=O, -CHO, -Cᵢ₆alkyLOCO₂Cᵢ₃alkyl, -Cᵢ₃alkyLOCᵢ₃alkyl, -Cᵢ₆haloalkyl (such as -CF₃), -OCᵢ₆haloalkyl (such as -OCF₃), -OC₃₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).
the remaining ring-atoms are carbon, optionally substituted by one, two or three groups independently selected from: \(-\text{OCH}_3\), \(-\text{CO}_2\text{R}^4\) or \(-\text{C}=\text{O}\).

In another aspect of the invention, \(R^3\) represents \(-\text{C}gh\text{heteroaryl}\) containing 9 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: \(-\text{Ci}_3\text{alkoxy}\) (such as \(-\text{OCH}_3\), \(-\text{CO}_2\text{R}^4\) or \(-\text{C}=\text{O}\)).

In another aspect of the invention, \(R^3\) represents \(-\text{C}gh\text{heteroaryl}\) containing 9 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: \(-\text{C}1\text{alkoxy}\) (such as \(-\text{OCH}_3\), \(-\text{CO}_2\text{R}^4\) or \(-\text{C}=\text{O}\)).

In another aspect of the invention, \(R^3\) represents \(-\text{C}gh\text{heteroaryl}\) containing 9 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: \(-\text{OCH}_3\), \(-\text{CO}_2\text{Cl}_3\text{alkyl}\) or \(-\text{C}=\text{O}\).

In another aspect of the invention, \(R^3\) represents \(-\text{C}gh\text{heteroaryl}\) containing 9 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: \(-\text{OCH}_3\), \(-\text{CO}_2\text{Cl}_3\text{alkyl}\) or \(-\text{C}=\text{O}\).

In another aspect of the invention, \(R^3\) represents \(-\text{C}gh\text{heteroaryl}\) containing 9 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: \(-\text{OCH}_3\), \(-\text{CO}_2\text{C}_2\text{H}_5\) or \(-\text{C}=\text{O}\).

In another aspect of the invention, \(R^3\) represents \(-\text{C}gh\text{heteroaryl}\) containing 9 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one or two groups independently selected from: \(-\text{OCH}_3\), \(-\text{CO}_2\text{C}_2\text{H}_5\) or \(-\text{C}=\text{O}\).
In another aspect of the invention, R³ represents benzothiazole or thiazolo-pyrimidin, optionally substituted by one or two groups independently selected from: -OCH₃, -CO₂C₂H₅ or -C=O.

In another aspect of the invention, R³ represents -C₆heteroaryl optionally substituted by one, two or three groups independently selected from: -C₃alkyl (such as -CH₃), -C₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR⁵R⁶, -C(=O)NHC₃alkylNR⁷R⁸, -C(=O)NHC₃alkyl0C₁₋₃alkyl, -C(=O)NHC₃alkylOH, -C(=O)R⁹, -C₄haloalkyLOH (such as -CH₂OH or -C₂H₅OH), -C=O, -CHO, -C₃alkyLOC₂C₃alkyl, -C₃alkyLOC₃alkyl, -C₄haloalkyl (such as -CF₃), -OC₆haloalkyl (such as -OCF₃), -OC₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents -C₆heteroaryl optionally substituted by one or two groups independently selected from: -C₃alkyl (such as -CH₃), -C₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR⁵R⁶, -C(=O)NHC₃alkylNR⁷R⁸, -C(=O)NHC₃alkyl0C₁₋₃alkyl, -C(=O)NHC₃alkylOH, -C(=O)R⁹, -C₄haloalkyLOH (such as -CH₂OH or -C₂H₅OH), -C=O, -CHO, -C₃alkyLOC₂C₃alkyl, -C₃alkyLOC₃alkyl, -C₄haloalkyl (such as -CF₃), -OC₆haloalkyl (such as -OCF₃), -OC₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents -C₆heteroaryl optionally substituted by one, two or three groups independently selected from: -C₃alkyl (such as -CH₃), -C₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR⁵R⁶, -C(=O)NHC₃alkylNR⁷R⁸, -C(=O)NHC₃alkyl0C₁₋₃alkyl, -C(=O)NHC₃alkylOH, -C(=O)R⁹, -C₄haloalkyLOH (such as -CH₂OH or -C₂H₅OH), -C=O, -CHO, -C₃alkyLOC₂C₃alkyl, -C₃alkyLOC₃alkyl, -C₄haloalkyl (such as -CF₃), -OC₆haloalkyl (such as -OCF₃), -OC₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents pyridine optionally substituted by one or two groups independently selected from: -C₃alkyl (such as -CH₃), -C₆alkoxy (such as -OCH₃), -CO₂R⁴, -C(=O)NR⁵R⁶, -C(=O)NHC₃alkylNR⁷R⁸, -C(=O)NHC₃alkyl0C₁₋₃alkyl, -C(=O)NHC₃alkylOH, -C(=O)R⁹, -C₄haloalkyLOH (such as -CH₂OH or -C₂H₅OH), -C=O, -CHO, -C₃alkyLOC₂C₃alkyl, -C₃alkyLOC₃alkyl, -d-salkyLOd-salkyl, -C₄haloalkyl (such as -CF₃), -OC₆haloalkyl (such as -OCF₃), -OC₆cycloalkyl, -C₆cycloalkyl or halogen (such as chloro, bromo or fluoro).

In another aspect of the invention, R³ represents pyridine optionally substituted by one, two or three groups independently selected from: -CO₂R⁴, -C₄halyLOH (such as -CH₂OH or -C₂H₅OH) or -C(=O)NR⁵R⁶.

In another aspect of the invention, R³ represents pyridine optionally substituted by one or two groups independently selected from: -CO₂R⁴, -C₄halyLOH (such as -CH₂OH or -C₂H₅OH) or -C(=O)NR⁵R⁶.
In another aspect of the invention, R³ represents pyridine optionally substituted by one, two or three groups independently selected from: \(-\text{CO}_2\text{R}^4\), \(-\text{C}_1\text{alkylOH}\) (such as \(-\text{CH}_2\text{OH}\) or \(-\text{C}_2\text{H}_4\text{OH}\)) or \(-\text{C}(=\text{O})\text{NR}^5\text{R}^6\).

In another aspect of the invention, R³ represents pyridine optionally substituted by one or two groups independently selected from: \(-\text{CO}_2\text{R}^4\), \(-\text{C}_1\text{alkylOH}\) (such as \(-\text{CH}_2\text{OH}\) or \(-\text{C}_2\text{H}_4\text{OH}\)) or \(-\text{C}(=\text{O})\text{NR}^5\text{R}^6\).

In another aspect of the invention, R³ represents pyridine optionally substituted by a group independently selected from: \(-\text{CO}_2\text{R}^4\), \(-\text{C}_1\text{alkylOH}\) (such as \(-\text{CH}_2\text{OH}\) or \(-\text{C}_2\text{H}_4\text{OH}\)) or \(-\text{C}(=\text{O})\text{NR}^5\text{R}^6\).

In another aspect of the invention, R³ represents pyridine optionally substituted by a group independently selected from: \(-\text{CO}_2\text{R}^3\), \(-\text{CH}_3\text{OH}\) or \(-\text{CONHCH}_3\).

In one aspect of the invention, R⁴ represents hydrogen. In another aspect of the invention, R⁴ represents \(-\text{C}_1\text{alkyl}\). In another aspect of the invention, R⁴ represents \(-\text{C}_2\text{H}_5\) (ethyl). In another aspect of the invention, R⁴ represents \(-\text{CH}_3\) (methyl).

In one aspect of the invention, R⁵ represents hydrogen. In another aspect of the invention R⁵ represents \(-\text{C}_1\text{alkyl}\). In another aspect of the invention R⁵ represents \(-\text{CH}_3\) (methyl).

In one aspect of the invention, R⁶ represents hydrogen. In another aspect of the invention, R⁶ represents \(-\text{C}_1\text{alkyl}\). In another aspect of the invention, R⁶ represents \(-\text{CH}_3\) (methyl). In another aspect of the invention, R⁶ represents \(-\text{CH}(\text{CH}_3)\text{H}_2\) (isopropyl). In another aspect of the invention, R⁶ represents \(-\text{C}_2\text{H}_5\) (ethyl). In another aspect of the invention, R⁶ represents \(-\text{C}_3\text{H}_7\) (propyl).

In one aspect of the invention, R⁷ represents hydrogen. In another aspect of the invention, R⁷ represents \(-\text{CH}_3\) (methyl).

In one aspect of the invention, R⁸ represents hydrogen. In another aspect of the invention, R⁸ represents \(-\text{CH}_3\) (methyl).

In one aspect of the invention, R⁹ represents morpholine or piperazine optionally substituted by \(-\text{C}_1\text{alkyl}\) (such as \(-\text{CH}_3\)). In another aspect of the invention, R⁹ represents morpholine or piperazine optionally substituted by \(-\text{C}_1\text{alkyl}\) (such as \(-\text{CH}_3\)). In another aspect of the invention, R⁹ represents morpholine or piperazine substituted by \(-\text{CH}_3\) (methyl).

Each of the aspects of the invention are independent unless stated otherwise. Nevertheless the skilled person will understand that all the permutations of the aspects of described are within the scope of the invention. Thus it is to be understood that the
The present invention covers all combinations of suitable, convenient and exemplified groups described herein. For example, in one aspect the invention provides a compound of formula (I) wherein X represents -CONH- and R² represents -CH₃.

Certain compounds of formula (I) may exist in stereoisomeric forms (e.g. they may contain one or more asymmetric carbon atoms). The individual stereoisomers (enantiomers and diastereomers) and mixtures of these are included within the scope of the present invention. The invention also extends to conformational isomers of compounds of formula (I) and any geometric (cis and/or trans) isomers of said compounds. Likewise, it is understood that compounds of formula (I) may exist in tautomeric forms other than that shown in the formula and these are also included within the scope of the present invention.

It will be appreciated that racemic compounds of formula (I) may be optionally resolved into their individual enantiomers. Such resolutions may conveniently be accomplished by standard methods known in the art. For example, a racemic compound of formula (I) may be resolved by chiral preparative HPLC.

It will also be appreciated that compounds of the invention which exist as polymorphs, and mixtures thereof, are within the scope of the present invention.

As used herein, the term "alkyl" refers to straight or branched hydrocarbon chains containing the specified number of carbon atoms. For example, C₁₆₆₆ alkyl means a straight or branched alkyl containing at least 1, and at most 6, carbon atoms. Examples of "alkyl" as used herein include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, isobutyl, isopropyl, t-butyl and 1,1-dimethylpropyl. However, when a moiety is defined such that alkyl bears a substituent it will be clear to the skilled person from the context that alkyl may include alkyene, for example methylene (-CH₂ℓ), ethylene (-CH₂CH₂-) and propylene (-CH₂CH₂CH₂-).

As used herein, the term "alkyloH" refers to straight or branched hydrocarbon chains containing the specified number of carbon atoms and a hydroxyl group. For example, -C₁-6alkyloH means a straight or branched alkyl containing at least 1, and at most 6, carbon atoms and OH. In one aspect of the invention, the alkyl chain in -C₁-6alkyloH is a straight hydrocarbon chain containing the specified number of carbon atoms and a hydroxyl group.

As used herein, the term "alkoxy" refers to a straight or branched alkoxy group containing the specified number of carbon atoms. For example, C₁₆₆₆ alkoxy means a straight or branched alkoxy group containing at least 1, and at most 6, carbon atoms. Examples of "alkoxy" as used herein include, but are not limited to, methoxy, ethoxy, propoxy, prop-2-oxy, butoxy, but-2-oxv, 2-methylprop-1-oxv, 2-methylprop-2-oxv, pentoxy and hexyloxy. The point of attachment may be on the oxygen or carbon atom.
As used herein, the term "halogen" or "halo" refers to a fluorine (fluoro), chlorine (chloro), bromine (bromo) or iodine (iodo) atom.

As used herein, the term "haloalkyl" refers to an alkyl group having one or more carbon atoms and wherein at least one hydrogen atom is replaced with a halogen atom, for example a trifluoromethyl group and the like.

As used herein, the term "cycloalkyl" refers to a saturated cyclic group containing 3 to 6 carbon ring-atoms. Examples include cyclopropyl, cyclopentyl and cyclohexyl.

As used herein, the term "Cs-g heteroaryl" refers to an aromatic cyclic group containing 5 to 9 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen and sulphur and the remaining ring-atoms are carbon, e.g. isoxazole, oxazole, thiazolopyrimidine, imidazole, thiazole, benzothiazole, thiadiazole, oxadiazole or pyridine and more specifically thiazole, benzothiazole, thiadiazole, oxazole, pyridine and thiazolopyrimidine. This definition includes both monocyclic and bicyclic ring systems and bicyclic structures at least a portion of which is aromatic and the other part is saturated, partially or fully unsaturated.

As used herein, the term `-C₆heteroaryl` means an aromatic carbocyclic moiety containing 6 to 10 ring-atoms. The definition includes both monocyclic and bicyclic ring systems and bicyclic structures at least a portion of which is aromatic and the other part is saturated, partially or fully unsaturated. Examples of aromatic, aryl groups include phenyl, naphthyl, anthranyl, phenanthryl, indanyl, indenyl, azulenyl, azulanyl, fluorenyl, more specifically phenyl and naphthyl, and more specifically phenyl.

As used herein, the term "C₆heterocyclyl" refers to a cyclic group containing 6 ring-atoms 1, 2 or 3 of which are hetero-atoms independently selected from nitrogen, oxygen and sulphur and the remaining ring-atoms are carbon, and wherein said cyclic group is saturated, partially or fully unsaturated but, which is not aromatic e.g. 1,4-dioxane, morpholine, 1,4-dithiane, piperazine, piperidine, tetrahydropyran, dihydropyran, 1,3-dioxane, 1,3-dithiane, oxathiane or thiomorpholine and more specifically morpholine and piperazine. This definition includes bicyclic structures provided the moiety is non-aromatic.

Examples of heterocyclyl and heteroaryl groups include: furyl, thieryl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, dioxolanyl, oxazolyl, thiazolyl, imidazolyl, imidazoliny, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyranyl, pyridyl, piperidinyl, homopiperazinyl, dioxanyl, morpholino, dithianyl, thiomorpholino, pyridazinyl, pyrimidinyl, pyrazinyl, piperazinyl, sulfolanyl, tetrazolyl, triazinyl, azepinyl, oxazepinyl, thiazepinyl, diazepinyl and thiazolinyl, benzimidazolyl, benzoxazolyl, imidazopyridinyl, benzoxazinyl, benzothiazinyl, benzothiophenyl oxazolopyridinyl, benzofuranyl, quinoliny, quinazoliny, quinoxaliny,
dihydroquinazolinyl, benzothiazolyl, phthalimido, benzofuranyl, benzodiazepinyl, indolyl and isoindolyl.

As used herein, the term "substituted" refers to substitution with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated.

For the avoidance of doubt, the term "independently" means that where more than one substituent is selected from a number of possible substituents, those substituents may be the same or different.

As used herein, the term "pharmaceutically acceptable" means a compound which is suitable for pharmaceutical use.

Salts of compounds of formula (I) which are suitable for use in medicine are those wherein the counterion is pharmaceutically acceptable. However, salts having non-pharmaceutically acceptable counterions are within the scope of the present invention, for example, for use as intermediates in the preparation of other compounds of formula (I) and their pharmaceutically acceptable salts.

Suitable pharmaceutically acceptable salts will be apparent to those skilled in the art and include for example acid addition salts formed with inorganic acids e.g. hydrochloric, hydrobromic, sulfuric, nitric or phosphoric acid; and organic acids e.g. succinic, maleic, malic, mandelic, acetic, fumaric, glutamic, lactic, citric, tartaric, benzoic, benzenesulfonic, p-toluenesulfonic, methanesulfonic, ethanesulfonic or naphthalenesulfonic acid. Other non-pharmaceutically acceptable salts e.g. oxalates, may be used, for example in the isolation of compounds of formula (I) and are included within the scope of this invention. Reference is made to Berge et al. J. Pharm. ScL, 1977, 66, 1-19.

Certain of the compounds of formula (I) may form acid addition salts with one or more equivalents of the acid. The present invention includes within its scope all possible stoichiometric and non-stoichiometric forms thereof.

Solvates of the compounds of formula (I) and solvates of the salts of the compounds of formula (I) are included within the scope of the present invention.

As used herein, the term "solvate" refers to a complex of variable stoichiometry formed by a solute (in this invention, a compound of formula (I) or a salt thereof) and a solvent. Such solvents for the purpose of the invention may not interfere with the biological activity of the solute. Examples of suitable solvents include, but are not limited to, water, methanol, ethanol and acetic acid. In one aspect of the invention, the solvent used is a pharmaceutically acceptable solvent. In another aspect of the invention, the solvent used is water and the solvate may also be referred to as a hydrate.
Solvates of compounds of formula (I) which are suitable for use in medicine are those wherein the solvent is pharmaceutically acceptable. However, solvates having non-pharmaceutically acceptable solvents are within the scope of the present invention, for example, for use as intermediates in the preparation of other compounds of formula (I) and their pharmaceutically acceptable salts.

Prodrugs of the compounds of formula (I) are included within the scope of the present invention.

As used herein, the term "prodrug" means a compound which is converted within the body, e.g. by hydrolysis in the blood, into its active form that has medical effects. Pharmaceutically acceptable prodrugs are described in T. Higuchi and V. Stella, Prodrugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987 and in D. Fleishner, S. Ramon and H. Barba "Improved oral drug delivery: solubility limitations overcome by the use of prodrugs", Advanced Drug Delivery Reviews (1996) 19(2) 115-130. Prodrugs are any covalently bonded carriers that release a compound of structure (I) in vivo when such prodrug is administered to a patient. Prodrugs are generally prepared by modifying functional groups in a way such that the modification is cleaved in vivo yielding the parent compound. Prodrugs may include, for example, compounds of this invention wherein hydroxyl or amine groups are bonded to any group that, when administered to a patient, cleaves to form the hydroxy or amine groups. Thus, representative examples of prodrugs include (but are not limited to) phosphonate, carbamate, acetate, formate and benzoate derivatives of hydroxy and amine functional groups of the compounds of formula (I).

Phosphonates, acetates, benzoates and carbamates may be active in their own right and/or be hydrolysable under in vivo conditions in the human body. Suitable pharmaceutically acceptable in vivo hydrolysable ester groups include those which break down readily in the human body to leave the parent acid or its salt. A phosphonate is formed by reaction with phosphorous (phosphonic) acid, by methods well known in the art. For example, phosphonates may be derivatives such as RP(O)(OR)₂ and the like. A acetate is an ester of acetic acid. A benzoate is an ester of benzenecarboxylic acid. A carbamate is an ester of carbamic acid.

In one aspect of the invention there is provided a compound, or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of:

1-{[3,4-Dichlorophenyl)methyl]-5-methyl- N-[(6-methoxy)-1],3-benzothiazol-2-yl]-H-1,2,3-triazole-4-carboxamide,

Ethyl 2-{[1-{[3,4-dichlorophenyl)methyl]-5-methyl-1 H-1,2,3-triazol-4-yl]carbonyl)amino]-4-methyl-1,3-thiazole-5-carboxylate,

Ethyl 5-{[1-{[3,4-dichlorophenyl)methyl]-5-methyl-1 H-1,2,3-triazol-4-yl]carbonyl)amino]-1,3,4-thiadiazole-2-carboxylate,
Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-thiazole-5-carboxylate,
1-[(3,4-Dichlorophenyl)methyl]-N-(5-formyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide,
5
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(5-methyl-1,3-thiazol-2-yl)-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[5-{[(methylene)oxy]methyl}-3,4-thiadiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-thiazol-4-yl]acetate,
Ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-(trifluoromethyl)-1,3-thiazole-5-carboxylate,
1-[(3,4-Dichlorophenyl)methyl]-N-(4,5-dimethyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide,
Ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-5-methyl-1,3-thiazol-4-yl]acetate,
1-[(3,4-Dichlorophenyl)methyl]-N-(5,7-dioxo-4,5,6,7-tetrahydro[1,3]thiazolo[4,5-d]pyrimidin-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide,
Methyl 6-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-3-pyridinecarboxylate,
Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-pyridinecarboxylate,
2-[[1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1^-thiazole-5-carboxylic acid,
2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-3-oxazole-5-carboxylic acid,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl- N-[(4-methyl-5-[(methylamino) carbonyl]-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(4-methyl-5-[[(3-methylbutyl)amino]carbonyl]-1,3-thiazol-2-yl)-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(4-methyl-5-[(1-methylethyl)amino]carbonyl]-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-N-(5-[(ethylamino)carbonyl]-4-methyl-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-N-[(2-(dimethylamino)ethyl)amino]carbonyl]-4-methyl-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(5-[(3-methylbutyl)amino]carbonyl]-1H-1,2,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-{4-methyl-5-[(4-methyl-1-piperazinyl)carbonyl]-3-thiazol-2-yl}-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[4-methyl-5-[[2-(methyloxy)ethyl]amino]carbonyl]-3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[[2-(hydroxyethyl)amino]carbonyl]-4-methyl-3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-N-[5-[(dimethylamino)carbonyl]-4-methyl-1,3-thiazol-2-yl]-4-methyl-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[5-[(2-hydroxyethyl)amino]carbonyl]-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
1-
2-
3-
4-
5-
6-
7-
8-
9-
10-
11-
12-
13-
14-
15-
16-
17-
18-
19-
20-
21-
22-
23-
24-
25-
26-
27-
28-
29-
30-
31-
32-
33-
34-
35-
36-
37-
38-
39-
40-
41-
42-
43-
44-
45-
46-
47-
48-
49-
50-
{2-[1-{(3,4-Dichlorophenyl)methyl]-1 H-1 ,2,3-triazol-4-ylmethyl}amino]-1 ,3-thiazol-5-yl}methanol.

The compounds of the invention have been found to inhibit SCD activity and may therefore be useful in regulating lipid levels, e.g. plasma lipid levels. Diseases or conditions caused by or associated with an abnormal plasma lipid profile and for the treatment of which the compounds of the invention may be useful include; dyslipidemia, hypoalphalipoproteinemia, hyperbeta lipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, atherosclerosis, obesity, Type I diabetes, Type II diabetes, insulin resistance, hyperinsulinaemia and metabolic syndrome. Other cardiovascular diseases for which the compounds of the present invention are useful include peripheral vascular disease, reperfusion injury, angioplast restenosis, hypertension, vascular complications of diabetes and thrombosis. Other diseases or conditions include hepatic steatosis, non-alcoholic steatohepatitis (NASH) and other diseases related to accumulation of lipids in the liver.

The compounds of the invention may also be useful in the treatment of skin disorders e.g. eczema, acne, psoriasis, skin ageing, keloid scar formation or prevention, and diseases related to production or secretions from mucous membranes.

The compounds of the invention may also be useful in the treatment of cancer, neoplasia, malignancy, metastases, tumours (benign or malignant), carcinogenesis, hepatomas and the like.

The compounds of the invention may also be useful in the treatment of mild cognitive impairment (MCI), Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA) or dementia associated with Down Syndrome (DS) and other neurodegenerative diseases characterized by the formation or accumulation of amyloid plaques comprising Aβ42.

Within the context of the present invention, the terms describing the indications used herein are classified in the Merck Manual of Diagnosis and Therapy, 17th Edition and/or the International Classification of Diseases 10th Edition (ICD-10). The various subtypes of the disorders mentioned herein are contemplated as part of the present invention.

In one aspect, the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in medical therapy.

In one aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating and/or preventing a disease or a condition susceptible to amelioration by an SCD inhibitor.
In another aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating and/or preventing acne, psoriasis, skin ageing, cancer, dyslipidemia, hypertriglyceridemia, atherosclerosis, obesity, Type II diabetes, insulin resistance, hyperinsulinaemia, hepatic steatosis and/or non-alcoholic steatohepatitis (NASH).

In another aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating and/or preventing acne, psoriasis, skin ageing, cancer, dyslipidemia, atherosclerosis, insulin resistance, hyperinsulinaemia, Type II diabetes and/or hepatic steatosis.

In another aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating and/or preventing acne.

In one aspect, the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in treating and/or preventing a disease or a condition susceptible to amelioration by an SCD inhibitor in a mammal, including human.

In another aspect, the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in treating and/or preventing acne, psoriasis, skin ageing, cancer, dyslipidemia, hypertriglyceridemia, atherosclerosis, obesity, Type II diabetes, insulin resistance, hyperinsulinaemia, hepatic steatosis and/or non-alcoholic steatohepatitis (NASH).

In another aspect, the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in treating and/or preventing acne, psoriasis, skin ageing, cancer, dyslipidemia, atherosclerosis, insulin resistance, hyperinsulinaemia, Type II diabetes and/or hepatic steatosis.

In another aspect, the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in treating and/or preventing acne.

In one aspect, the invention provides a method for treating and/or preventing a disease or a condition susceptible to amelioration by an SCD inhibitor, which method comprises administering to a subject, for example a mammal, including human, a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

In another aspect, the invention provides a method for treating and/or preventing a acne, psoriasis, skin ageing, cancer, dyslipidemia, hypertriglyceridemia, atherosclerosis, obesity, Type II diabetes, insulin resistance, hyperinsulinaemia, hepatic steatosis and/or non-alcoholic steatohepatitis (NASH), which method comprises administering to a subject,
for example a mammal, including human, a therapeutically effective amount of a
compound of formula (I) or a pharmaceutically acceptable salt thereof.

In another aspect, the invention provides a method for treating and/or preventing acne,
psoriasis, skin ageing, cancer, dyslipidemia, atherosclerosis, insulin resistance,
hyperinsulinaemia, Type II diabetes and/or hepatic steatosis, which method comprises
administering to a subject, for example a mammal, including human, a therapeutically
effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

In another aspect, the invention provides a method for treating and/or preventing acne,
which method comprises administering to a subject, for example a mammal, including
human, a therapeutically effective amount of a compound of formula (I) or a
pharmaceutically acceptable salt thereof.

It will be appreciated that reference to “treatment” and “therapy” includes acute treatment
or prophylaxis as well as the alleviation of established symptoms.

Since the compounds of the invention are intended for use in pharmaceutical
compositions it will readily be understood that they are each preferably provided in
substantially pure form, for example at least 60% pure, more suitably at least 75% pure
and preferably at least 85%, especially at least 98% pure (% are on a weight for weight
basis). Impure preparations of the compounds may be used for preparing the more pure
forms used in the pharmaceutical compositions; these less pure preparations of the
compounds should contain at least 1%, more suitably at least 5% and preferably from 10
to 59% of a compound of the invention.

Processes for the preparation of the compounds of formula (I) form further aspects of the
invention. R1, R2, R3, R4, R5, R6, R7 and R8 are as defined above unless otherwise
specified. Throughout the specification, general formulae are designated by Roman
numerals (I), (II), (III), (IV) etc.

In certain instances final compounds of formula (I) can be converted into other
compounds of formula (I) by techniques known to those in the art, for example, carboxylic
acid substituents can be converted to esters or amides by routine techniques.

In a general process, compounds of formula (I), wherein X represents -CONH- and R3
represents \(\text{het} \), wherein \(\text{het} \) represents -Cs-gheteroaeryl and Y represents -Ci3
alkyl, -C1-3alkoxy, -CO2R, -C(=O)NR R, -C(=O)NHNC1-3alkylNR7R8, -C(O)NHCl.
3alkylOC1-3alkyl, -C(=O)NHNC1-3alkylOH, -C(=O)R 9, -C1-6alkylOH, -C=O, -CHO, -C1
3alkylCO2C1-3alkyl, -d-salkylOd-salkyl, -Ci6 haloalkyl, -OCi6 haloalkyl, -OCs-cycloalkyl, -
C3-6 cycloalkyl or halogen (formula (Ia)), may be prepared according to reaction scheme 1
by reacting compounds of formula (II) and compounds of formula (III). The reaction is suitably carried out in the presence of a coupling reagent such as HATU or EDCI and HOBt and a base such as DIPEA or NEt$_3$ in a suitable solvent such as DMF (suitably at room temperature to 40°C).

Accordingly, in one aspect the invention provides a process for the preparation of compounds of the formula (Ia) by reacting compounds of formula (II), wherein R^1 and R^2 are defined above, with compounds of formula (III) wherein het and Y are defined above, in the presence of a coupling agent.

Compounds of formula (II) may be prepared according to reaction scheme 2 by reacting compounds of formula (IVa) and compounds of formula (IVb). The reaction is suitably carried out in the presence of a base such as potassium carbonate in a suitable solvent such as DMF or DMSO (suitably at 40-80°C) and is followed by saponification of compounds of formula (IV) in basic conditions such as sodium hydroxide in a suitable solvent such as ethanol or methanol (to reflux).

Compounds of formula (II), wherein R^2 represents H (formula (Na)), may be prepared according to reaction scheme 3 by reacting compounds of formula (IVa) and ethyl 2-propynoate in a suitable solvent such as ethanol to reflux and is followed by saponification of compounds of formula (V) in basic conditions such as sodium hydroxide in a suitable solvent such as ethanol or methanol (suitably at reflux).
Compounds of formula (IVa) may be prepared according to reaction scheme 4 by the reaction of benzyl halide chlorine or bromine (VI) with sodium azide in a suitable solvent such as DMSO or DMF (suitably at room temperature to 80°C).

Compounds of formula (I), wherein X represents -NHCO- and R³ represents \(\text{het} - Y \), wherein \(\text{het} \) and Y are defined as above (formula (Ib)), may be prepared according to reaction scheme 5 by reacting compounds of formula (VII) and compounds of formula (VIII). The reaction is suitably carried out in the presence of a coupling reagent such as HATU and a base such as DIPEA in a suitable solvent such as DCM or DMF (suitably at room temperature to 40°C).

Accordingly, in another aspect the invention provides a process for the preparation of compounds of the formula (Ib) by reacting compounds of formula (VII), wherein R¹ and R² are defined above, with compounds of formula (VIII) wherein \(\text{het} \) and Y are defined above, in the presence of a coupling reagent.

Compounds of formula (VII), wherein R² represents H, -C₈₋₆ alkyl or -C₃₋₆ alkylOC₃₋₆ alkyl,
(formula (Vila)), may be prepared according to reaction scheme 6 by reacting compounds of formula (VIIb) in the presence of bromine and a base such as potassium hydroxide in a suitable solvent such as water (suitably at 40° to 80°C).

Scheme 6

![Diagram](image)

Compounds of formula (VIIb), wherein \(R^2 \) represents \(\text{H, } -\text{C}_1-6\text{-alkyl or -d-salkylO-d-salkyl} \) may be prepared according to reaction scheme 7 by reacting compounds of formula (II), wherein \(R^2 \) represents \(-\text{CH}_3 \) (formula (lib), in the presence of thionyl chloride in chloroform at room temperature, followed by reaction with aqueous ammonia in acetonitrile on ice (e.g. -5 to 5°C).

Scheme 7

![Diagram](image)

Compounds of formula (I), wherein \(R^3 \) represents \(\text{het}-(\text{C}_1-6\text{-alkyl})-\text{OH} \) and \(\text{het} \) is defined as above (formula (lc)), may be prepared according to reaction scheme 8 by reduction of the ester function (-COOR\(^4\)) of compounds of the formula (IX) in the presence of DIBAL-H in a solution of toluene. The reaction is suitably carried out in a solvent such as THF at room temperature.

Scheme 8

![Diagram](image)
Accordingly, in another aspect the invention provides a process for the preparation of compounds of the formula (Ic) by reduction of the ester function (-COOR^4) of compounds of the formula (IX) wherein R^1, R^2 and \(\text{het} \) are defined above.

Compounds of formula (I), wherein R^3 represents \(\text{het}\rightarrow (C_{1-5} \text{alkyl})-\text{OH} \) and \(\text{het} \) is defined as above (formula (Ic)), may also be prepared according to reaction scheme 9 by reduction of the aldehyde function (-CHO) of compounds of the formula (X) in the presence of sodium borohydride in a suitable solvent such as DCI/WMeOH at room temperature.

Scheme 9

Accordingly, in another aspect the invention provides a process for the preparation of compounds of the formula (Ic) by reduction of the aldehyde function (-CHO) of compounds of the formula (Villa) wherein R^1, R^2 and \(\text{het} \) are defined above.

Compounds of formula (I), wherein R^3 represents \(\text{het}\rightarrow \text{CO}_2\text{H} \) and \(\text{het} \) is defined as above (formula (Id)), may be prepared according to reaction scheme 10 by saponification of the ester function (-COOR^4) of compounds of the formula (IXa) in basic conditions in a suitable solvent such as methanol or ethanol at reflux.

Scheme 10
Accordingly, in another aspect the invention provides a process for the preparation of compounds of the formula (I) by saponification of the ester function (-COOR) of compounds of the formula (IXa) wherein R¹, R² and are defined above.

Compounds of formula (I), wherein R¹ represents and is defined as above (formula (Ie)), may be prepared according to reaction scheme 11 by reacting compounds of formula (Id), wherein is defined as above, and compounds of formula (XI), wherein R represents -R²R⁶, -C₃₋₅alkylNR⁷R⁸, -C₁₋₅alkyl0C₁₋₅alkyl or -C₁₋₅alkyl0H in the presence of a coupling reagent such as HATU and base such as DIPEA in a suitable solvent such as DMF (suitably at room temperature or at 40°C).

Scheme 11

Accordingly, in another aspect the invention provides a process for the preparation of compounds of the formula (I) by reacting compounds of the formula (Id), wherein R¹, R² and are defined above, with compounds of the formula (XI) wherein R is defined above, in the presence of a coupling agent.

Compounds of formula (I), wherein X represents -CH₂N- and R³ represents , wherein and Y are defined as above, (formula (If)), may be prepared according to reaction scheme 12 by reacting compounds of formula (XII) and compounds of formula (III) in the presence of a base such as potassium carbonate in a suitable solvent such as acetonitrile suitably at 40°C.

Scheme 12
Accordingly, in another aspect the invention provides a process for the preparation of compounds of the formula (If) by reacting compounds of the formula (XIII), wherein \(R^1 \) and \(R^2 \) are defined above, with compounds of the formula (III) wherein \(\text{het} \) and \(Y \) are defined above, in the presence of a base.

Compounds of formula (XII) may be prepared according to reaction scheme 13 by the reduction of compounds of formula (IV) using DIBAL in a suitable solvent such as THF to room temperature to give the compound (XIII), followed by the bromination of compounds of the formula (XII) with \(\text{PBr}_3 \) in a suitable solvent such as dichloromethane suitably at room temperature.

Scheme 13

![Scheme 13](image)

Compounds of the formula (III), (IVb) (VI), (VIII) and (XI) are commercially available compounds or may be prepared by methods known in the literature or processes known to those skilled in the art.

Compounds of the formula (IX), (IXa) and (X) may be prepared according to the general reaction scheme 1.

Further details for the preparation of compounds of formula (I) are found in the examples section hereinafter.

The compounds of the invention may be prepared singly or as compound libraries comprising at least 2, for example 5 to 1,000 compounds, and more preferably 10 to 100 compounds. Libraries of compounds of the invention may be prepared by a combinatorial 'split and mix' approach or by multiple parallel syntheses using either solution phase or solid phase chemistry, by procedures known to those skilled in the art. Thus according to a further aspect there is provided a compound library comprising at least 2 compounds of the invention.

Those skilled in the art will appreciate that in the preparation of compounds of formula (I) and/or salts thereof it may be necessary and/or desirable to protect one or more sensitive groups in the molecule or the appropriate intermediate to prevent undesirable side reactions. Suitable protecting groups for use according to the present invention are well known to those skilled in the art and may be used in a conventional manner. See, for
example, "Protective groups in organic synthesis" by T.W. Greene and P.G.M. Wuts (John Wiley & sons 1991) or "Protecting Groups" by P.J. Kocienski (Georg Thieme Verlag 1994). Examples of suitable amino protecting groups include acyl type protecting groups (e.g. formyl, trifluoroacetyl, acetyl), aromatic urethane type protecting groups (e.g. benzoxycarbonyl (Cbz) and substituted Cbz), aliphatic urethane protecting groups (e.g. 9-fluorenylmethoxycarbonyl (Fmoc), t-butyloxycarbonyl (Boc), isopropylxycarbonyl, cyclohexyloxycarbonyl) and alkyl or aralkyl type protecting groups (e.g. benzyl, trityl, chlorotriyl).

Various intermediate compounds used in the above-mentioned process, including but not limited to certain compounds of formulae (II), (V), constitute a further aspect of the present invention.

The compounds of formula (I) or pharmaceutically acceptable salt(s) thereof may also be used in combination with other therapeutic agents. The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or pharmaceutically acceptable salt thereof together with one or more further therapeutic agent(s).

Compounds of the invention may be administered in combination with other therapeutic agents. Preferred therapeutic agents are selected from the list: an inhibitor of cholesteryl ester transferase (CETP inhibitors), a HMG-CoA reductase inhibitor, a microsomal triglyceride transfer protein, a peroxisome proliferator-activated receptor activator (PPAR), a bile acid reuptake inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an inhibitor of AcylCoA: cholesterol acyltransferase (ACAT inhibitor), a cannabinoid 1 antagonist and a bile acid sequestrant. Other preferred therapeutic agents are selected from the list a corticosteroid, a vitamin D3 derivative, a retinoid, an immunomodulator, an anti androgen, a keratolytic agent, an anti-microbial, a platinum chemotherapeutic, an antimetabolite, hydroxyurea, a taxane, a mitotic disrupter, an anthracycline, dactinomycin, an alkylating agent and a cholinesterase inhibitor.

When the compound of formula (I) or pharmaceutically acceptable salt thereof is used in combination with a second therapeutic agent the dose of each compound may differ from that when the compound is used alone. Appropriate doses will be readily appreciated by those skilled in the art. It will be appreciated that the amount of a compound of the invention required for use in treatment will vary with the nature of the condition being treated and the age and the condition of the patient and will be ultimately at the discretion of the attendant physician or veterinarian.

The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical formulation and thus pharmaceutical formulations comprising a combination as defined above together with at least one pharmaceutically acceptable carrier and/or excipient comprise a further aspect of the invention. The individual
components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations by any convenient route.

When administration is sequential, either the SCD inhibitor or the second therapeutic agent may be administered first. When administration is simultaneous, the combination may be administered either in the same or different pharmaceutical composition.

When combined in the same formulation it will be appreciated that the two compounds must be stable and compatible with each other and the other components of the formulation. When formulated separately they may be provided in any convenient formulation, conveniently in such manner as are known for such compounds in the art.

The invention also includes a pharmaceutical composition comprising one or more compounds of formula (I) or pharmaceutically acceptable salt (s) in combination with one or more excipients.

The compounds of the invention may be administered in conventional dosage forms prepared by combining a compound of the invention with standard pharmaceutical carriers or diluents according to conventional procedures well known in the art. These procedures may involve mixing, granulating and compressing or dissolving the ingredients as appropriate to the desired preparation.

The pharmaceutical compositions of the invention may be formulated for administration by any route, and include those in a form adapted for oral, topical or parenteral administration to mammals including humans.

The compositions may be in the form of tablets, capsules, powders, granules, lozenges, creams or liquid preparations, such as oral or sterile parenteral solutions or suspensions.

The topical formulations of the present invention may be presented as, for instance, dispersions, lotions, creams, gels, pastes, powders, aerosol sprays, syrups or ointments on sponges or cotton applicators, and solutions or suspensions in an aqueous liquid, non-aqueous liquid, oil-in-water emulsion, or water-in-oil liquid emulsion.

Creams, lotions, or ointments, may be prepared as rinse-off or leave-on products, as well as two stage treatment products for use with other skin cleansing or managing compositions. The compositions can be administered as a rinse-off product in a higher concentration form, such as a gel, and then a leave-on product in a lower concentration to avoid irritation of the skin. Each of these forms is well understood by those of ordinary skill in the art, such that dosages may be easily prepared to incorporate the pharmaceutical composition of the invention.
Ointments are hydrocarbon-based semisolid formulations containing dissolved or suspended drugs. Creams and lotions are semi-solid emulsion systems and the term is applied both to water/oil or oil/water. Gel formulations are semi-solid systems in which a liquid phase is trapped in a polymeric matrix.

By way of non-limiting example, the ointments may contain one or more hydrophobic carriers selected from, for example, white soft paraffin or other mineral waxes, liquid paraffin, non-mineral waxes, long chain alcohols, long chain acids and silicones. The ointment may contain in addition to the hydrophobic carriers some hydrophillic carriers selected from, for example, propylene glycol and polyethylene glycol in combination with an appropriate surfactant/co-surfactant system. The carrier compositions of the creams or lotions are typically based on water, white soft paraffin and an appropriate surfactant/co-surfactant system, in combination with other carriers/components selected from, for example, propylene glycol, butylene glycol glycerinemonostearate, PEG-glycerinemonostearate, esters such as C_{12-5} alkyl benzoate, liquid paraffin, non-mineral waxes, long chain alcohols, long chain acids silicones, non-silicone polymers. The gels may by way of example be formulated using isopropyl alcohol or ethyl alcohol, propylene glycol and water with a gelling agent such as hydroxyethyl cellulose, suitably in combination with minor components, for example one or more of butylene glycol and a wetting agent such as a poloxamer.

An ointment, cream, lotion, gel, and the like, can further comprise a moisturizing agent. The moisturizing agent can be a hydrophobic moisturizing agent such as ceramide, borage oil, tocopherol, tocopherol linoleate, dimethicone or a mixture thereof or a hydrophilic moisturizing agent such as glycerine, hyaluronic acid, sodium peroxylinecarbolic acid, wheat protein, hair keratin amino acids, or a mixture thereof.

The compositions according to the invention may also comprise conventional additives and adjuvants for dermatological applications, such as preservatives, acids or bases used as pH buffer excipients and antioxidants.

The present invention encompasses administration via a transdermal patch or other forms of transdermal administration. Suitable formulations for transdermal administration are known in the art, and may be employed in the methods of the present invention. For example, suitable transdermal patch formulations for the administration of a pharmaceutical compound are described in, for example, U.S. Pat. No. 4,460,372 to Campbell et al., U.S. Pat. No. 4,573,996 to Kwiatek et al., U. S. Pat. No. 4,624,665 to Nuwayser, U.S. Pat. No. 4,722,941 to Eckert et al., and U.S. Pat. No. 5,223,261 to Nelson et al.

One suitable type of transdermal patch for use in the methods of the present invention encompasses a suitable transdermal patch includes a backing layer which is non-permeable, a permeable surface layer, an adhesive layer substantially continuously
coating the permeable surface layer, and a reservoir located or sandwiched between the backing layer and the permeable surface layer such that the backing layer extends around the sides of the reservoir and is joined to the permeable surface layer at the edges of the permeable surface layer. The reservoir contains a compound of formula (I) or pharmaceutically acceptable salt thereof, alone or in combination, and is in fluid contact with the permeable surface layer. The transdermal patch is adhered to the skin by the adhesive layer on the permeable surface layer, such that the permeable surface layer is in substantially continuous contact with the skin when the transdermal patch is adhered to the skin. While the transdermal patch is adhered to the skin of the subject, the compound of formula (I) or pharmaceutically acceptable salt thereof contained in the reservoir of the transdermal patch is transferred via the permeable surface layer, from the reservoir, through the adhesive layer, and to the skin of the patient. The transdermal patch may optionally also include one or more penetration-enhancing agents in the reservoir that enhance the penetration of the compound of formula (I) or pharmaceutically acceptable salt thereof through the skin.

Examples of suitable materials which may comprise the backing layer are well known in the art of transdermal patch delivery, and any conventional backing layer material may be employed in the transdermal patch of the instant invention.

Suitable penetration-enhancing agents are well known in the art as well. Examples of conventional penetration-enhancing agents include alkanols such as ethanol, hexanol, cyclohexanol, and the like, hydrocarbons such as hexane, cyclohexaue, isopropylbenzene; aldehydes and ketones such as cyclohexanone, acetamide, N,N-di(lower alkyl)acetamides such as N,N-diethyacetamide, N,N-dimethyl acetamide, N-(2-hydroxyethyl)acetamide, esters such as N,N-di-lower alkyl sulfoxides; essential oils such as propylene glycol, glycerine, glycerol monolaurate, isopropyl myristate, and ethyl oleate, salicylates, and mixtures of any of the above.

Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants, for example potato starch; or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives, such as suspending agents, for example sorbitol, methyl cellulose, glucose syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example
almond oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and, if desired, conventional flavouring or colouring agents.

Preparations for oral administration may be suitably formulated to give controlled/extended release of the active compound.

Suppositories will contain conventional suppository bases, e.g. cocoa-butter or other glyceride.

For parenteral administration, fluid unit dosage forms are prepared utilising the compound and a sterile vehicle, water being preferred. The compound, depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilised before filling into a suitable vial or ampoule and sealing.

Advantageously, agents such as a local anaesthetic, preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. The dry lyophilised powder is then sealed in the vial and an accompanying vial of water for injection may be supplied to reconstitute the liquid prior to use. Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilisation cannot be accomplished by filtration. The compound can be sterilised by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.

The compositions may contain from 0.1% by weight, preferably from 10-60% by weight, of the active ingredient, depending on the method of administration. Where the compositions comprise dosage units, each unit will preferably contain from 50-500 mg of the active ingredient. The dosage as employed for adult human treatment will preferably range from 100 to 3000 mg per day, for instance 1500 mg per day depending on the route and frequency of administration. Such a dosage corresponds to 1.5 to 50 mg/kg per day. Suitably the dosage is from 5 to 20 mg/kg per day.

It will be recognised by one of skill in the art that the optimal quantity and spacing of individual dosages of a compound of the invention will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular mammal being treated, and that such optimums can be determined by conventional techniques. It will also be appreciated by one of skill in the art that the optimal course of treatment, i.e., the number of doses of a compound of the invention given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
The invention also extends to novel intermediates disclosed herein, used in the preparation of compounds of formula (I) or salts thereof.

The following is a list of the used definitions:

DEFINITIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTS</td>
<td>Para toluene sulfonic acid</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DIBAL</td>
<td>Diisobutylaluminium hydride solution</td>
</tr>
<tr>
<td>DIPEA</td>
<td>Diisopropyl ethyl amine</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-Dimethoxy ethane</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EDCI</td>
<td>1,3-Propanediamine N$_3$-(ethylcarbonimidoyl)-N$_1$N$_1$-dimethyl-, hydrochloride</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>HATU</td>
<td>O-(7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HOBr</td>
<td>Hydroxy benzotriazole</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NEt$_3$</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>Ammonium chloride</td>
</tr>
<tr>
<td>PBr$_3$</td>
<td>Phosphorus tribromine</td>
</tr>
<tr>
<td>Pd tetrakis</td>
<td>Tetrakis(triphenylphosphine)palladium (0)</td>
</tr>
<tr>
<td>Pd/C</td>
<td>Palladium (0) on carbon</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
</tbody>
</table>

Regardless of how the preparation of compounds are represented in the present specification no inference can be drawn that particular batches (or mixtures of two or more batches) of intermediates were used in the next stage of the preparation. The examples and intermediates are intended to illustrate the synthetic routes suitable for preparation of the same, to assist the skilled persons understanding of the present invention.

Where reference is made to the use of a "similar" procedure, as will be appreciated by those skilled in the art, such a procedure may involve minor variation, for example reaction temperature, reagent/solvent amount, reaction time, work-up conditions or chromatographic purification conditions.

Analytical methods LC-MS

Analytical HPLC was conducted on a X-terra MS C18 column (2.5 µm 3 * 30 mm id) eluting with 0.01 M ammonium acetate in water (solvent A) and 100% acetonitrile using the
following elution gradient: 0 to 4 minutes, 5 to 100%B; 4 to 5 minutes, 100%B at a flowrate of 1.1 mL/min with a temperature of 40°C.

The mass spectra (MS) were recorded on a micromass ZQ-LC mass spectrometer using electrospray positive ionisation [ES+ve to give MH⁺ molecular ion] or electrospray negative ionisation [ES-ve to give (M-H)⁻ molecular ion] modes.

Analytical methods LC-HRMS

Analytical HPLC was conducted on an Uptisphere-hsc column (3 µm 30 × 3 mm id) eluting with 0.01 M ammonium acetate in water (solvent A) and 100% acetonitrile (solvent B) using the following elution gradient: 0 to 0.5 minutes, 5%B; 0.5 to 3.5 minutes, 5 to 100%B; 3.5 to 4 minutes, 100%B; 4 to 4.5 minutes, 100 to 5%B; 4.5 to 5.5 minutes, 5%B at a flowrate of 1.3 mL/min with a temperature of 40°C.

The mass spectra (MS) were recorded on a micromass LCT, mass spectrometer using electrospray positive ionisation [ES+ve to give MH⁺ molecular ion] or electrospray negative ionisation [ES-ve to give (M-H)⁻ molecular ion] modes.

Analytical method GC-MS

Analytical GC was conducted on a DB-1ms column (Agilent Technologies), 0.1µm 10m × 0.1mm id) eluting with an Helium flow of 0.5ml/min and pressure at 3.4 bar and with a gradient temperature: 0 to 0.35 min, 100°C; 0.35min to 6min, 100°C to 250°C (ramp of 80°C/min).

The mass spectra (MS) were recorded on a Agilent Technologies G5973 mass spectrometer using electronic impact ionisation.

Supporting Examples and Intermediates

The invention is illustrated by the non-limiting Examples described below.

Intermediate 1: (3,4-Dichlorophenyl)methyl azide

A mixture of 3,4-dichlorobenzyl chloride (10 g, 0.05 mol), sodium azide (5 g, 0.08 mol) in DMSO (100 mL) was stirred at room temperature overnight. The mixture was poured into water (150 mL). The water layer was extracted with EtOAc (100 mL X 3). The combined organic phases were dried over sodium sulfate, filtered and concentrated in vacuo. The
residue was purified by distillation to give the title compound as an oil (14 g, quantitative yield). LC/MS: m/z 203 (M+H)+. Rt: 2.26 min.

Intermediate 2: Methyl 1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylate

To a suspension of milled potassium carbonate (38.7 g, 0.28 mol) in DMSO (100 ml.) was added Intermediate 1 (14 g, 0.07 mol) and methyl acetoacetate (12.1 g, 0.1 mol). The mixture was stirred at 40°C for 2 days. The mixture was poured into a mixture of ice and water (100 ml). The water was extracted with ethyl acetate (100 ml. X 2). The combined organic phases were dried over sodium sulfate, filtered and concentrated. The residue was purified by distillation to give the title compound as white solid crystals (14 g, 67%).

LC/MS: m/z 301 (M+H)+. Rt: 1.97 min.

The following compounds were similarly prepared by a method analogous to that described for Intermediate 2:

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate 3</td>
<td></td>
<td>(3,4-Dichlorophenyl)methyl azide (Intermediate 1) and Ethyl 4-(methylxylo)3-oxobutanoate</td>
<td>LC/MS: m/z 330 (M+H)+, Rt: 3.12 min</td>
</tr>
<tr>
<td>Methyl 1-[(3,4-dichlorophenyl)(methyl)-5-[(methylxylo)methyl]-1H-1,2,3-triazole-4-carboxylate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermediate 4: 1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid

![Intermediate 4](image)
To a mixture of methyl 1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylate (Intermediate 2) (9 g, 0.03 mol) in methanol (200 ml.) was added NaOH (2.4 g) and water. The mixture was stirred overnight. Water was added and the solvent was evaporated. The residue was extracted with DCM (twice). The aqueous phase was adjusted to pH=2 with a 2N HCl solution. The formed precipitate was filtered to give the title compound as white solid (7.2 g, 84%). LC/MS: m/z 287 (M+H)+. Rt: 2.52 min.

The following compounds were similarly prepared by a method analogous to that described for Intermediate 4:

Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate 5</td>
<td></td>
<td>Methyl 1-[(3,4-dichlorophenyl)methyl]-5-[(methyloxy)methyl]-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 3)</td>
<td>LC/MS: m/z 316 (M+H)+, Rt: 2.22 min</td>
</tr>
</tbody>
</table>

Intermediate 6: 2-[(1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl)carbonyl]amino]-1,3-thiazole-5-carboxylic acid

A mixture of methyl 2-{[(1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl)carbonyl]amino}-1,3-thiazole-5-carboxylate (Example 4) (0.403 g, 0.95 mmol) and a 1N NaOH solution (10 ml., 9.5 mmol) in EtOH was stirred at reflux for 2 hours. The solvent was evaporated and the residue was acidified with a 1N HCl solution. The precipitate formed was filtered and dried to give the title compound as a white solid (326 mg, 83%). LC/MS: m/z 412 (M+H)+. Rt: 2.48 min.

The following compounds were similarly prepared by a method analogous to that described for Intermediate 6:
Table 3

<table>
<thead>
<tr>
<th>Compound.</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate 7</td>
<td>Methyl 2-[(1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl)carbonyl]amino]-4-pyridinecarboxylic acid</td>
<td>(Example 15)</td>
<td>LC/MS: m/z 406 (M+H)^+; Rt: 2.47 min</td>
</tr>
</tbody>
</table>

Intermediate 8: Ethyl 2-[(1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl)carbonyl]amino]-3-oxazole-5-carboxylate

A mixture of i-KS^-dichloropheny^-methyl^-5-methyl-IH^-1,2,3-triazole^-carboxylic acid (Intermediate 4) (1 g, 3.4 mmol), ethyl 2-amino-3-oxazole-5-carboxylate (0.82 g, 5.2 mmol), HOBt (0.708 g, 5.2 mmol), EDCI (1.005 g, 5.2 mmol) and NEt₃ (730 μl, 5.2 mmol) in DMF (50 ml) was stirred at room temperature for 2 days. The reaction was not completed and 2.5 eq of EDCI and HOBt were added and the reaction was heated at 40°C and stirred for a further 14 days. Again no completed reaction was obtained. The solvent was evaporated and the residue was washed with water and extracted with DCM. The organic phase was dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash column chromatography eluting with DCM/MeOH (90/10) to give after crystallisation from diisopropyl ether, the title compound as a yellow solid (98 mg, 6%). LC/MS: m/z 424 (M+H)^+. Rt: 3.17 min.

The following compounds were similarly prepared by a method analogous to that described for Intermediate 8:

Table 4
To a solution of 4-(bromomethyl)-1,2-dichlorobenzene (2 g, 8.3 mmol), in DMF (30 ml.) was added sodium azide (0.65 g, 1.2 eq). The reaction was stirred at 80°C for 3 hours. The solvent was then evaporated and the residue was dissolved in DCM and washed with water. The organic phase was dried over sodium sulphate and the solvent was evaporated. The crude azido compound was dissolved in ethanol (100 ml.) and ethyl 2-propynoate (1 ml., 1.2 eq) was added. The reaction was stirred to reflux for 24 hours. The reaction was not completed and 0.3 ml. of ethyl 2-propynoate was added and the reaction was stirred to reflux for more 24 hours. Ethanol was evaporated and the reaction was dissolved in DCM and washed with water, dried over sodium sulphate and concentrated in vacuo. Purification by flash chromatography eluting with DCM and DCM/MeOH 99/1 gave the title compound as a white solid (1.5 g, 60%). LC/MS: m/z 300 (M+H)+. Rt: 3.12 min.

Intermediate 11: 1-[(3,4-Dichlorophenyl)methyl]-1H-1,2,3-triazole-4-carboxylic acid

A solution of ethyl 1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazole-4-carboxylate (Intermediate 10) (1.5 g, 5 mmol) and a 1N NaOH solution (7.5 ml., 1.5 eq) in ethanol (50 ml.) was stirred at reflux for 48 hours. The solvent was evaporated and the residue was acidified with a 1N HCl solution (15 ml.). The precipitate formed was filtered, washed with
water and dried to give the title compound as a white solid (1.25 g, 92%). LC/MS: m/z 272 (M+H)+. Rt: 2.05 min.

Intermediate 12: Methyl 2-[(1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl]carbonyl)amino]-1,3-thiazole-5-carboxylate

A mixture of 1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 11) (1 g, 3.6 mmol), methyl 2-amino-1,3-thiazole-5-carboxylate (0.58 g, 3.6 mmol), HATU (1.82 g, 1.3 eq) and DIPEA (0.9 mL, 1.3 eq) in DMF (50 mL) was stirred at 40°C for 3 days. The solvent was evaporated and the residue was washed with water and extracted with DCM. A precipitate was formed, filtered and triturated with a mixture of methanol/acetonitrile. After filtration, the yellow solid was dried to give the title compound as a pale yellow solid (644 mg, 44%). LC/MS: m/z 412 (M+H)+. Rt: 3.21 min.

The following compounds were similarly prepared by a method analogous to that described for Intermediate 12:

Table 5

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate 13</td>
<td></td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 11) and Ethyl 2-amino-4-methylthiazole-5-carboxylate</td>
</tr>
<tr>
<td>Ethyl 2-[(1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl]carbonyl)amino]-4-methyl-1,3-thiazole-5-carboxylate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermediate 14: 2-[(1-[(3,4-Dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl]carbonyl)amino]-1,3-thiazole-5-carboxylic acid
A solution of methyl 2-[[1-[[3,4-dichlorophenyl]methyl]-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-thiazole-5-carboxylate (Intermediate 12) (0.644 g, 1.6 mmol) and a 1N NaOH solution (4.7 ml, 3 eq) in ethanol (40 ml.) was stirred at reflux for 3 days. The solvent was evaporated and the residue was acidified with a 1N HCl solution (5 ml). The precipitate formed was filtered, washed with water and dried to give the title compound as a white solid (0.19 g, 30.5%). The filtrate contained a large quantity of the title compound. LC/MS: m/z 398 (M+H) +, Rt: 2.35 min.

The following compounds were similarly prepared by a method analogous to that described for Intermediate 14:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate 15</td>
<td></td>
<td>Ethyl 2-[[1-[[3,4-dichlorophenyl]methyl]-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid</td>
<td>LC/MS: m/z 412 (IVH-H) +, Rt: 2.41 min</td>
</tr>
<tr>
<td>Intermediate 16</td>
<td></td>
<td>Ethyl 1-[[3,4-Dichlorophenyl]methyl]-1H-1,2,3-triazole-4-carboxylate (Intermediate 10) (0.33 g, 1.09 mmol) in THF was added a 1M solution of DIBAL-H in toluene (2.3 mL, 2.1 eq) and the reaction was stirred at room temperature for 2 hours. The reaction was not completed. Two more equivalents of a 1M solution of DIBAL-H in toluene were added and the reaction was stirred for a further 18 hours. Solid NH₄Cl was added followed by water and the aqueous phase was extracted with ether, ethyl acetate, dried over sodium sulphate and evaporated. The title compound was obtained as a white powder after recrystallisation from isopropyl ether (170 mg, 60%). LC/MS: m/z 258 (M+H) +, Rt: 2.45 min.</td>
<td></td>
</tr>
</tbody>
</table>
Intermediate 17: 4-(Bromomethyl)-1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazole

To a solution of {1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl}methanol (Intermediate 16) (0.17 g, 0.66 mmol) in DCM was added PBr$_3$ (125 µL, 2 eq) and the reaction was stirred at room temperature for 3 hours. Water was added, followed by solid NaHCO$_3$. The organic phase was dried over sodium sulphate and evaporated. The title compound was obtained as a colorless oil (0.21 g, 99%) and used in the next step without purification. LC/MS: m/z 320 (M-H)$^+$. Rt: 2.13 min.

Intermediate 18: 1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxamide

To a solution of (1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid) Intermediate 4 (14 g, 48.9 mmol), in chloroform (200 ml.) was added thionyl chloride (30 ml.) at room temperature. The reaction mixture was stirred to reflux for 4 hours and concentrated in vacuum. The mixture was then dissolved in acetonitrile (50 ml.) and aqueous ammonia (50 ml.) was added at 0°C for 30 min. The resulting solid was filtered and dried to give the title compound as white crystals (12.7 g, 91.1%). LC/MS: m/z 285 (M+H)$^+$. Rt: 2.53 min.

Intermediate 19: 1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-amine

To a solution of potassium hydroxide (10.96 g, 195.8 mmol) in water (50 ml.), cooled in an ice-salt bath, was added bromine (6.3 g, 39.16 mmol) and at 0°C, 1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxamide (Intermediate 18) (9.3 g, 32.63 mmol) was added for 4 hours under vigorous stirring. The reaction mixture was then warmed at 80°C for 2 days and stirred at room temperature for 12 hours. The resulting solid was filtered and purified by HPLC to give the title compound (3.45 g, 41.14%). LC/MS: m/z 257 (M+H)$^+$. Rt: 2.25 min.
Example 1: 1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxamide

A mixture of i-S^-dichlorophen^-methylO^-5-methyl^-H^-i^-triazole^-carboxylic acid (Intermediate 4) (0.1 g, 0.35 mmol), 2-amino-6-methoxybenzothiazole (0.062 g, 0.35 mmol), HATU (0.082 g, 0.45 mmol) and DIPEA (85 µl, 0.45 mmol) in DMF (5 ml) was stirred at 45°C for 3 days. The solvent was evaporated and the residue was washed with water and extracted with DCM. The organic phase was dried over sodium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography eluting with DCM/MeOH (99/1) to give after trituration in diisopropyl ether, the title compound as a white solid (15 mg, 10%). HRMS calculated for C_{19}H_{15}Cl_2N_5O_2S (M+H)^+ 448.0402, found: 448.0403, Rt: 3.31 min. MP: 225°C.

The following compounds were similarly prepared by a method analogous to that described for Example 1:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 2</td>
<td></td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 4) and ethyl 2-amino-4-methylthiazole-5-carboxylate</td>
</tr>
<tr>
<td>Ethyl 2-[(1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylate</td>
<td></td>
<td>HRMS calculated for C_{18}H_{17}Cl_2N_5O_3S Theo: 454.0507 Found: 454.0539 Rt: 3.34 min</td>
<td></td>
</tr>
<tr>
<td>Example 3</td>
<td></td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 4) and 5-amino-1,3,4-thiadiazole-2-carboxylic acid ethyl ester</td>
</tr>
<tr>
<td>Ethyl 5-[(1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3,4-thiadiazole-2-carboxylate</td>
<td></td>
<td>HRMS calculated for C_{15}H_{14}Cl_2N_6O_3S Theo: 441.0303 Found: 441.0278 Rt: 2.80 min MP: 203.8°C</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>From</td>
<td>Physical data</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Example 4</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3,4-carboxylic acid</td>
<td>HRMS calculated for C_{18}H_{13}Cl_{2}N_{2}O_{3}S, Theo: 426.0194, Found: 426.0222, Rt: 3.03 min, MP: 212°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Intermediate 4) and 2-amino-1,3-thiazole-5-carboxylate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 5</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-N-(5-formyl-1,3-thiazole-2-yl)-5-</td>
<td>HRMS calculated for C_{15}H_{11}Cl_{2}N_{2}O_{3}S, Theo: 396.0089, Found: 396.0103, Rt: 2.86 min, MP: 260°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methyl-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 6</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(5-methyl-1,3,4-</td>
<td>HRMS calculated for C_{14}H_{13}Cl_{2}N_{5}O_{2}, Theo: 367.0477, Found: 367.0500, Rt: 2.46 min, MP: 192.2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxadiazol-2-yl)-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 7</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(5-[(methylxy)methyl]-1,3,4-</td>
<td>HRMS calculated for C_{13}H_{15}Cl_{2}N_{6}O_{2}S, Theo: 413.0354, Found: 413.0363, Rt: 2.79 min, MP: 178.3°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thiadiazol-2-yl)-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 8</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic</td>
<td>HRMS calculated for C_{17}H_{15}Cl_{2}N_{4}O_{3}S, Theo: 440.0351, Found: 440.0373</td>
</tr>
<tr>
<td></td>
<td></td>
<td>acid</td>
<td></td>
</tr>
</tbody>
</table>

42
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3-triazol-4-yl</td>
<td>carbonyl</td>
<td>amino</td>
<td>1,3-thiazol-4-yl</td>
</tr>
<tr>
<td>Example 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl 2-{{1-[(3,4-dichlorophenyl) methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino</td>
<td>4-(trifluoromethyl)-1,3-thiazole-5-carboxylate</td>
<td>1-[(3,4-Dichlorophenyl) methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 4) and ethyl 2-amino-4-(trifluoromethyl)-1,3-thiazole-5-carboxylate</td>
<td>HRMS calculated for C_{18}H_{14}Cl_{12}F_{2}N_{2}O_{2}S</td>
</tr>
<tr>
<td>Example 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-[(3,4-Dichlorophenyl) methyl]-N-(4,5-dimethyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide</td>
<td>1-[(3,4-Dichlorophenyl) methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 4) and 4,5-dimethyl-1,3-thiazol-2-amine</td>
<td>HRMS calculated for C_{16}H_{15}Cl_{2}N_{3}O_{5}S</td>
<td>Theo: 396.0453</td>
</tr>
<tr>
<td>Example 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl 2-{{1-[(3,4-dichlorophenyl) methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino</td>
<td>1,3-benzothiazole-6-carboxylate</td>
<td>1-[(3,4-Dichlorophenyl) methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 4) and ethyl 2-amino-1,3-benzothiazole-6-carboxylate</td>
<td>HRMS calculated for C_{21}H_{17}Cl_{2}N_{2}O_{3}S</td>
</tr>
<tr>
<td>Example 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl 2-{{1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino</td>
<td>5-methyl-1,3-thiazol-4-yl</td>
<td>acetate</td>
<td>1-[(3,4-Dichlorophenyl) methyl]-5-methyl-1H-1,2,3-triazole-4-carboxylic acid (Intermediate 4) and ethyl (2-amino-5-methyl-1,3-thiazol-4-yl)acetate</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>From</td>
<td>Physical data</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>Example 13</td>
<td></td>
<td>1-1(3,4-Dichlorophenyl)methyl-N-(5,7-dioxo-4,5,6,7-tetrahydro[1,3]thiazolo[4,5-d]pyrimidin-2-yl)-5-methyl-1H,1,2,3-triazole-4-carboxamide</td>
<td>HRMS calculated for C\textsubscript{16}H\textsubscript{11}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{3}S Theo: 449.9943 Found: 449.9927 Rt: 2.36 min MP: 279.9°C</td>
</tr>
<tr>
<td>Example 14</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H,1,2,3-triazole-4-carboxylic acid (Intermediate 4) and 2-amino[1,3]thiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione</td>
<td>HRMS calculated for C\textsubscript{18}H\textsubscript{15}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{3} Theo: 420.0630 Found: 420.0626 Rt: 3.2 min MP: 179°C</td>
</tr>
<tr>
<td>Example 15</td>
<td></td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H,1,2,3-triazole-4-carboxylic acid (Intermediate 4) and methyl 6-amino-3-pyridinecarboxylate</td>
<td>HRMS calculated for C\textsubscript{18}H\textsubscript{15}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{3} Theo: 420.0630 Found: 420.0633 Rt: 3.18 min MP: 172°C</td>
</tr>
</tbody>
</table>

Example 16: 2-\{1-(3,4-Dichlorophenyl)methyl\}-5-methyl-1H-1,2,3-triazol-4-yl carbonylamino]-4-methyl-1^-thiazole-5-carboxylic acid

A mixture of ethyl 2-\{1-(3,4-dichlorophenyl)methyl\}-5-methyl-1H-1,2,3-triazol-4-yl carbonylamino]-4-methyl-1,3-thiazole-5-carboxylate (Example 2) (0.482 g, 1.06 mmol) and a 1N NaOH solution (5.5 ml, 5.5 mmol) in ethanol (20 ml) was stirred at 50°C for 45 min. The reaction was not complete, a 1N NaOH solution (20 ml, 20 mmol) was added and the reaction mixture was stirred for 1h30 at 50°C. The solvent was evaporated and
the residue was acidified with a 1 N HCl solution (25 mL) to pH=1. The precipitate formed was filtered, washed with water and coevaporated with Ethanol. The solid was recrystallised from methanol and washed with DCM to give the title compound as a white solid (418 mg, 92%). HRMS calculated for C_{i6}H_{13}Cl_{2}N_{5}O_{3}S (M+H)^{+} 426.0194, found: 426.0165, Rt: 2.24 min. MP: 262.6°C.

The following compounds were similarly prepared by a method analogous to that described for Example 16:

Table 8

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 17</td>
<td>Ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-oxazole-5-carboxylic acid</td>
<td>HRMS calculated for C_{i5}H_{11}Cl_{2}N_{5}O_{4} Theo : 396.0266 Found: 396.0289</td>
<td>Rt: 2.07 min MP: 201.8°C</td>
</tr>
</tbody>
</table>

Example 18: 1-[[3,4-Dichlorophenyl)methyl]-5-methyl- \text{N-}[4-methyl-5-[(methylamino)carbonyl]-1,3-thiazol-2-yl]-1 H-1,2,3-triazole-4-carboxamide

A mixture of 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino^-methyl-i ^-thiazole-S-carboxylic acid (Example 16) (0.15 g, 0.35 mmol), methylamine (96 µl, 2.46 mmol), HATU (0.268 g, 0.70 mmol) and DIPEA (80 µl, 0.46 mmol) in DMF was stirred at 40°C overnight. The solvent was evaporated and the residue was washed with water and extracted with DCM (large volume). The organic phase was dried over sodium sulphate, filtered and concentrated. The residue was twice purified by flash chromatography eluting with DCM/MeOH (95/5) to give after crystallisation from ether the title compound as a white solid (33 mg, 21%). HRMS calculated for C_{i7}H_{16}Cl_{2}N_{6}O_{2}S (M+H)^{+} 439.0511, found: 439.0548, Rt: 2.69 min. MP: 218.5°C.

The following compounds were similarly prepared by a method analogous to that described for Example 18:
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 19</td>
<td></td>
<td>2-[(1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl[carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Example 16) and isopentylamine</td>
<td>HRMS calculated for C_{21}H_{14}Cl_{2}N_{6}O_{2}S Theo: 495.1137 Found: 495.1167 Rt: 3.22 min. MP: 174.3°C</td>
</tr>
<tr>
<td>Example 20</td>
<td></td>
<td>2-[(1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl[carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Example 16) and isopropylamine</td>
<td>HRMS calculated for C_{19}H_{20}Cl_{2}N_{6}O_{2}S Theo: 465.0667 Found: 465.0626 Rt: 2.94 min. MP: 204.4°C</td>
</tr>
<tr>
<td>Example 21</td>
<td></td>
<td>2-[(1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl[carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Example 16) and ethylamine</td>
<td>HRMS calculated for C_{18}H_{19}Cl_{2}N_{6}O_{2}S Theo: 453.0667 Found: 453.0684 Rt: 2.82 min. MP: 194.1°C</td>
</tr>
<tr>
<td>Example 22</td>
<td></td>
<td>2-[(1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl[carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid</td>
<td>HRMS calculated for C_{20}H_{20}Cl_{2}N_{6}O_{2}S Theo: 496.1089 Found: 496.1131 Rt: 2.48 min. MP: 121°C</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>From</td>
<td>Physical data</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>yl]-5-methyl-1 H-1,2,3-triazole-4-carboxamide hydrochloride</td>
<td>(Example 16) and N,N-dimethylethylene diamine</td>
<td>2-[[1-[{(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-thiazole-5-carboxylic acid (Intermediate 6) and isopentylamine</td>
<td>HRMS calculated for C_{21}H_{22}Cl_{2}N_{6}O_{2}S Theo: 481.0980 Found: 481.1023 Rt: 3.12 min. MP: 259.3°C</td>
</tr>
<tr>
<td>Example 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1(3,4-Dichlorophenyl)methyl]-5-methyl-N-[5-[[{3-methylbutyl]amino]carbonyl]-1,3-thiazol-2-yl]-1 H-1,2,3-triazole-4-carboxamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1(3,4-Dichlorophenyl)methyl]-5-methyl-N-[4-methyl-5-[4-morpholinyl]carbonyl]-1,3-thiazol-2-yl]-1 H-1,2,3-triazole-4-carboxamide</td>
<td>2-[[1-[{(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Example 16) and morpholine</td>
<td>HRMS calculated for C_{21}H_{23}Cl_{2}N_{7}O_{2}S Theo: 495.0773 Found: 495.0808 Rt: 2.71 min. MP: 202.9°C</td>
<td></td>
</tr>
<tr>
<td>Example 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[4-methyl-5-{[4-methyl-1-piperazinyl]carbonyl}]-1,3-thiazol-2-yl]-1 H-1,2,3-triazole-4-carboxamide</td>
<td>2-[[1-[{(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Example 16) and 1-methylpiperazine</td>
<td>HRMS calculated for C_{21}H_{23}Cl_{2}N_{7}O_{2}S Theo: 508.1089 Found: 508.1132 Rt: 2.65 min. MP: 216.9°C</td>
<td></td>
</tr>
<tr>
<td>Example 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[4-methyl-5-[[2-[(methyloxy)ethyl]]</td>
<td>2-[[1-[{(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid</td>
<td>HRMS calculated for C_{13}H_{25}Cl_{2}N_{6}O_{3}S Theo: 483.0773 Found: 483.0758 Rt: 2.75 min.</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>From</td>
<td>Physical data</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>amino]carbonyl]-1,3-thiazol-2-y]-1H-1,2,3-triazole-4-carboxamide</td>
<td>carboxylic acid (Example 16) and 2-methoxyethyl amine</td>
<td>MP: 129°C</td>
<td></td>
</tr>
<tr>
<td>Example 27</td>
<td>1-[(3,4-Dichlorophenyl)methyl]-N-[(2-hydroxyethyl)amino] carbonyl]-4-methyl-1,3-thiazol-2-y]-5-methyl-1H-1,2,3-triazole-4-carboxamide</td>
<td>HRMS calculated for C_{16}H_{16}Cl_{2}N_{6}O_{3}S Found: 469.0616 Theo: 469.0599 Rt: 2.54 min. MP: 166°C</td>
<td></td>
</tr>
<tr>
<td>Example 28</td>
<td>1-[(3,4-Dichlorophenyl) methyl]-N-[(dimethylamino) carbonyl]-4-methyl-1,3-thiazol-2-y]-5-methyl-1H-1,2,3-triazole-4-carboxamide</td>
<td>HRMS calculated for C_{18}H_{18}Cl_{2}N_{8}O_{2}S Found: 453.0691 Theo: 453.0667 Rt: 2.74 min. MP: 144°C</td>
<td></td>
</tr>
<tr>
<td>Example 29</td>
<td>1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-[(methylamino)carbonyl]-1,3-thiazol-2-y]-1H-1,2,3-triazole-4-carboxamide</td>
<td>HRMS calculated for C_{16}H_{16}Cl_{2}N_{6}O_{2}S Found: 425.0347 Theo: 425.0354 Rt: 2.62 min. MP: 335.6°C</td>
<td></td>
</tr>
<tr>
<td>Example 30</td>
<td>1-[(3,4-Dichlorophenyl) methyl]-N-[(dimethylamino) carbonyl]-1,3-thiazol-</td>
<td>HRMS calculated for C_{17}H_{18}Cl_{2}N_{8}O_{2}S Found: 439.0527 Theo: 439.0511 Rt: 2.71 min.</td>
<td></td>
</tr>
</tbody>
</table>

The following compounds were similarly prepared by a method analogous to that described for Example 18:

Table 10

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 31</td>
<td></td>
<td>2-[[1-[[3,4-Dichlorophenyl]methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-N-5-[[2-hydroxyethyl]amino]carbonyl]-1,3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide (Intermediate 6) and dimethyl amine</td>
<td>MP: 304.9°C</td>
</tr>
<tr>
<td>Example 32</td>
<td></td>
<td>2-[[1-[3,4-Dichlorophenyl]methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-N-methyl-4-pyridinecarboxamide (Intermediate 7) and methyl amine</td>
<td>HRMS calculated for C18H16Cl2N6O2 Theo: 419.0790 Found: 419.0770 Rt: 2.70 min. MP: 234.1°C</td>
</tr>
<tr>
<td>Example 33</td>
<td></td>
<td>2-[[1-[[3,4-Dichlorophenyl]methyl]-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Intermediate 15) and ethyl amine</td>
<td>HRMS calculated for C17H16Cl2N6O2S Theo: 439.0511 Found: 439.0522 Rt: 2.67 min. MP: 210.6°C</td>
</tr>
</tbody>
</table>
Example 34: 1-[(3,4-Dichlorophenyl)methyl]-N-[4-methyl-5-[(methylamino) carbonyl]-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 34</td>
<td></td>
<td>2-[[1-(3,4-Dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl(carbonyl)amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Intermediate 15) and methyl amine</td>
<td>HRMS calculated for C_{16}H_{14}Cl_{2}N_{6}O_{2}S Theo: 425.0354 Found: 425.0362 Rt: 2.54 min. MP: 210.4°C</td>
</tr>
</tbody>
</table>

Example 35: 1-[(3,4-Dichlorophenyl)methyl]-N-[5-[[2-hydroxyethyl]amino]carbonyl]-1,3-thiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide

A mixture of 2-[[1-(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl(carbonyl)amino]-1,3-thiazole-5-carboxylic acid (Intermediate 14) (0.18 g, 0.45 mmol), 2-aminoethanol (32 µL, 1.2 eq), HATU (0.22 g, 1.3 eq) and DIPEA (100 µL, 1.3 eq) in DMF (20 mL) was stirred at 40°C for 48 hours. The solvent was evaporated and the residue was washed with water and extracted with DCM. The insoluble compound was filtered and washed with a mixture of acetonitrile/methanol 80/20 and then purified by flash chromatography eluting with DCM/MeOH (95/5) to give the title compound as a white solid (60 mg, 30%). HRMS calculated for C_{16}H_{14}Cl_{2}N_{6}O_{3}S (M+H)^+ 441.0303, found: 441.0339, Rt: 2.39 min. MP: 274.8°C.

Example 36: N-[5-(Aminocarbonyl)-1,3-thiazol-2-yl]-1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazole-4-carboxamide

To a suspension of 2-[[1-(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl(carbonyl)amino]-1,3-thiazole-5-carboxylic acid (Intermediate 14) (0.14 g, 3.5 mmol) in THF (10 mL), was added 1 drop of DMF and oxaly chloride (0.06 mL, 2 eq). The reaction was stirred to room temperature for 3 hours. The reaction was evaporated in vacuo. After
dissolution in THF (10 ml), the residue was treated with ammonia (gas) for 5 min. The reaction was stirred at room temperature for 1 hour. After filtration, the filtrate was concentrated and purified through a bed of silica eluting with DClMeOH, 98/2. After recrystallisation from methanol, the title compound was obtained as a white solid (10 mg, 7%). HRMS calculated for C_{14}H_{10}Cl_{2}N_{6}O_{2}S (M+H)^{+} 397.0041, found: 397.0044, Rt: 2.40 min. MP: 280.9°C.

The following compounds were similarly prepared by a method analogous to that described for Example 36:

Table 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 37</td>
<td></td>
<td>2-[[1-[(3,4-Dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid (Intermediate 15)</td>
<td>HRMS calculated for C_{14}H_{10}Cl_{2}N_{6}O_{2}S Theo: 411.0198 Found: 411.0186 Rt: 2.47 min. MP: 283°C</td>
</tr>
</tbody>
</table>

Example 38: 1-[(3,4-Dichlorophenyl)methyl]-N-[5-(hydroxymethyl)-1,3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide

A mixture of ethyl 5-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1 H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3,4-thiadiazole-2-carboxylate (Example 3) (0.302 g, 0.68 mmol) and a 1N NaOH solution (7 ml, 7 mmol) in ethanol (20 ml) was stirred at 50°C for 1 hour. The solvent was evaporated and the residue was acidified with a 1N HCl solution. The precipitate formed was filtered and the solid was recrystallised from acetonitrile to give the title compound as a white solid (124 mg, 49%). HRMS calculated for C_{13}H_{10}Cl_{2}N_{6}OS (M+H)^{+} 369.0092, found: 369.0107, Rt: 2.64 min. MP: 215.6°C.

Example 39: 1-[(3,4-Dichlorophenyl)methyl]-N-[5-(hydroxymethyl)-1,3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide
To a suspension of 1-[(3,4-dichlorophenyl)methyl]-N-(5-formyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide (Example 5) (1.2 g, 30 mmol), in a mixture of DCI/MeOH, was added sodium borohydride (130 mg). The reaction was stirred at room temperature for 1 hour. After evaporation, the residue was poured in a mixture of water/concentrated HCl solution and extracted with ethyl acetate. A solid was formed and filtered. The filtrate was dried over sodium sulphate and evaporated in vacuo. The combined solids were recrystallised from acetonitrile to give the title compound as a yellow solid (0.8 g, 67%). HRMS calculated for C_{15}H_{13}Cl_{2}N_{5}O_{2}S (M+H)^+ 398.0245, found: 398.0205, Rt: 2.59 min. MP: 170.5°C.

The following compounds were similarly prepared by a method analogous to that described for Example 39:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
</table>
| Example 40 | ![Structure](image1) | 1-[(3,4-dichlorophenyl)methyl]-N-(5-formyl-1,3-thiazol-2-yl)-5-[(methylxoy)methyl]-1H-1,2,3-triazole-4-carboxamide | HRMS calculated for C_{16}H_{15}Cl_{2}N_{5}O_{2}S
Theo : 428.0351
Found: 428.0341
Rt: 2.65 min.
MP: 205°C |

Example 41: 1-[(3,4-Dichlorophenyl)methyl]-N-[5-(hydroxymethyl)-4-methyl-1,3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide
To a solution of ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylate (Example 2) (0.1 g, 0.22 mmol) in THF was added a 1M solution of DIBAL-H in toluene (2.76 ml, 6 eq) and the reaction was stirred to room temperature for 27 hours. Ether was added followed by solid NH₄Cl. After 30 min, water was added and the mixture was filtered. The aqueous phase was extracted with ether, dried over sodium sulphate and evaporated. After purification by flash chromatography, eluting with DCIWMeOH 95/5, and crystallisation from acetonitrile, the title compound was obtained as a white solid (3 mg, 3%). HRMS calculated for CI₆H₁₅Cl₂N₅O₂S (M+H)+ 412.0402, found: 412.0409, Rt: 2.65 min. MP: 161.8°C.

The following compounds were similarly prepared by a method analogous to that described for Example 41:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>From</th>
<th>Physical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 42</td>
<td>Ethyl 5-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3,4-thiadiazole-2-carboxamide</td>
<td>HRMS calculated for CI₆H₁₅Cl₂N₅O₂S Theo: 399.0198 Found: 399.0216 Rt: 2.50 min. MP: 153.6°C</td>
<td></td>
</tr>
<tr>
<td>Example 43</td>
<td>Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3,4-thiadiazole-2-carboxamide</td>
<td>HRMS calculated for CI₆H₁₅Cl₂N₅O₂S Theo: 412.0402 Found: 412.0374 Rt: 2.69 min. LC/MS: m/z 412 (M+H)+ Rt: 3.0 min</td>
<td></td>
</tr>
<tr>
<td>Example 44</td>
<td>Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-pyridine</td>
<td>HRMS calculated for CI₇H₁₅Cl₂N₂O₂ Theo: 392.0681 Found: 392.0716 Rt: 2.65 min.</td>
<td></td>
</tr>
</tbody>
</table>
Example 45: N-1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]-6-(methyloxy)-1,3-benzothiazole-2-carboxamide

A mixture of 1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-amine (Intermediate 19) (0.1 g, 0.39 mmol), 6-(methyloxy)-1,3-benzothiazole-2-carboxamide (81 mg, 1 eq), HATU (0.192 g, 1.3 eq) and DIPEA (0.12 mL, 1.3 eq) in DMF (5 mL) was stirred at 45°C for 48 hours. The solvent was evaporated and the residue was washed with water and extracted with DCM. The organic phase was dried over sodium sulphate, filtered and concentrated. The residue was purified by flash chromatography eluting with DCM/MeOH (99/1) to give after recrystallisation from acetonitrile the title compound as pink pale crystals (110 mg, 65%). HRMS calculated for C_{19}H_{15}Cl_{2}N_{5}O_{2}S (M+H)^+ 448.0402, found: 448.0406, Rt: 3.08 min. MP: 176°C.

Example 46: 2-[[1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]methyl]amino]-1,3-thiazol-5-yl)methanol

To a solution of 4-(bromomethyl)-1-[(3,4-dichlorophenyl)methyl]-1H-1,2,3-triazole (Intermediate 17) (0.21 g, 0.65 mmol) in acetonitrile was added (2-amino-1,3-thiazol-5-yl)methanol (0.175 g, 2 eq) followed by potassium carbonate (0.185 g, 2 eq). The reaction was stirred at 40°C for 2 days. After evaporation, the residue was dissolved in ether and ethyl acetate and washed with water. The organic phase was dried over sodium sulphate, filtered and evaporated. The compound was purified by flash chromatography eluting with DCM/MeOH (92/8). The title compound was obtained as an
ochre powder (3 mg, 1.25%). HRMS calculated for C_{14}H_{13}C_{2}N_{5}OS (M+H)^{+} 370.0296, found: 370.0297, Rt: 2.35 min. LC/MS: m/z 370 (M+H)^{+} Rt: 2.60 min.

BIOLOGICAL ASSAY

The compounds of the present invention may be analysed *in vitro* for SCD activity using an assay based on the production of $[^{3}\text{H}]\text{H}_{2}\text{O}$, which is released during the enzyme-catalyzed generation of the monounsaturated fatty acyl CoA product. The assay is performed in a 96-well filtration plate. The titrated substrate used in the assay is the [9,10-^{3}H] stearoyl Coenzyme A. After incubation for 6 minutes of SCD-containing rat microsomes (2 µg protein) and substrate (1 µM), the labelled fatty acid acyl-CoA species and microsomes are absorbed with charcoal and separated from $[^{3}\text{H}]\text{H}_{2}\text{O}$ by centrifugation. The formation of $[^{3}\text{H}]\text{H}_{2}\text{O}$ is used as a measure of SCD activity. Compounds at concentrations starting at 10 µM to 0.1 nM or vehicle (DMSO) are preincubated for 5 minutes with the microsomes before addition of the substrate. The concentration-responses are fitted with sigmoidal curves to obtain IC_{50} values.

All of the synthetic Example compounds 1-46 tested by the above described *in vitro* assay for SCD activity were found to exhibit an average pIC_{50} value of greater than 5.5.

The following compounds were also prepared and when tested by the above described *in vitro* assay for SCD activity were found to exhibit an average pIC_{50} value of less than 5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-[(4-fluorophenyl)methyl]-5-methyl-N-(5-methyl-3-isoxazolyl)-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
<tr>
<td>Methyl 2-[[1-[[3,4-dichlorophenyl]methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1-methyl-1H-imidazole-5-carboxylate</td>
<td></td>
</tr>
<tr>
<td>1-[[3,4-Dichlorophenyl]methyl]-N-(5-formyl-4-methyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
</tbody>
</table>
The following compounds were also prepared and when tested by the above described \textit{in vitro} assay for SCD activity were found to exhibit an average pIC$_{50}$ value of between 5 and 5.5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl 2-{[{3,4-Dichlorophenyl}methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino]-5-ethyl-1,3-thiazole-4-carboxylate</td>
<td>![Methyl 2-{[{3,4-Dichlorophenyl}methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino]-5-ethyl-1,3-thiazole-4-carboxylate](image)</td>
</tr>
<tr>
<td>1-{[3,4-Dichlorophenyl}methyl]-5-methyl-N-[5-(methoxy)-1,3-benzothiazol-2-y]-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
<tr>
<td>1-{[3,4-Dichlorophenyl}methyl]-N-[5-(1-hydroxy-1-methylethyl)-1,3,4-thiadiazol-2-y]-5-methyl-1H-1,2,3-triazole-4-carboxamide</td>
<td></td>
</tr>
<tr>
<td>Methyl 6-{[{3,4-Dichlorophenyl}methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino]-2-pyridinecarboxylate</td>
<td>![Methyl 6-{[{3,4-Dichlorophenyl}methyl]-5-methyl-1H-1,2,3-triazol-4-yl}carbonyl}amino]-2-pyridinecarboxylate](image)</td>
</tr>
</tbody>
</table>
Claims

1. A compound of formula (I):

 \[
 \text{N} = \text{N} \quad \text{X} \quad \text{R}_1 \quad \text{R}_2
 \]

 \[
 \text{R}_1 \quad \text{R}_2
 \]

 wherein:

 X represents -CONH-, -NHCO- or -CH$_2$NH-;

 R$_1$ represents:
 - C$_6$-aryl optionally substituted by one, two or three groups independently selected from:
 - Ci$_3$-alkyl, -Ci$_6$-alkoxy, -Ci$_6$-haloalkyl, -OCi$_6$-haloalkyl, -OC$_5$-cycloalkyl or halogen;

 R$_2$ represents hydrogen, -C$_1$- alkyl or -d-salkyld-salky;

 R$_3$ represents:
 - C$_5$-heteroaryl optionally substituted by one, two or three groups independently selected from:
 - C$_1$-alkyl, -Ci$_6$-alkoxy, -CO$_2$R$_4$, -C(=O)NR$_5$R$_6$, -C(=O)NHCi$_3$alkylNR$_7$R$_8$, -C(=O)NHC$_1$-alkylOC$_1$-alkyl, -C(=O)NHC$_1$-alkylOH, -C(=O)R$_9$, -C$_1$-alkylOH, -C(=O), -CHO, -C$_1$-alkylCO$_2$C$_1$-alkyl, -d-salkyld-salky, -Ci$_6$-haloalkyl, -OCi$_6$-haloalkyl, -OC$_3$$_6$cycloalkyl, -d-cycloalkyl or halogen;

 R$_4$ represents -H or -Ci$_3$-alkyl;

 R$_5$ represents -H or -Ci$_3$-alkyl;

 R$_6$ represents -H or -C$_1$-alkyl;

 R$_7$ represents -H or -Ci$_3$-alkyl;

 R$_8$ represents -H or -Ci$_3$-alkyl; and

 R$_9$ represents -C$_6$-heterocycle which is optionally substituted by a group independently selected from: - d$_6$-alkyl;

 or a pharmaceutically acceptable salt thereof,

 with the proviso that the compound of formula (I) is not:

 N-1,3-benzodioxol-5-yl-1 -[(4-flurophenyl)methyl]-1 H-1,2,3-triazole-4-carboxamide
2. A compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 1 wherein X represents -CONH-.

3. A compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 1 or claim 2 wherein R^1 represents phenyl substituted by two groups independently selected from halogen.

4. A compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 3 wherein R^2 represents hydrogen or -C_3 alkyl.

5. A compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 4 wherein R^3 represents -C_5 heteroaryl containing 5 ring-atoms, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one, two or three groups independently selected from: -C_3 alkyl, -C_3 alkoxy, -CO_2 R^4, -C(=O)NR^5 R^6, -C(=O)NHC_1-3 alkylNR^7 R^8, -C(=O)NHC_1-3 alkylOC_1-3 alkyl, -C(=O)NHC_1-3 alkylOH, -C(=O)R^9, -C_6 alkylOH, -C(=O), -CHO, -C_3 alkylCO_2 C_3 alkyl, -C_1-3 alkylOC_1-3 alkyl, -C_6 haloalkyl, -OC_6 haloalkyl, -OC_6 cycloalkyl, -C_3-6 cycloalkyl or halogen.

6. A compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 5 wherein R^3 represents -C_9heteroaryl containing 9 ring-atoms 1, 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen or sulphur and the remaining ring-atoms are carbon, optionally substituted by one, two or three groups independently selected from: -C_1-3 alkyl, -C_3 alkyl, -CO_2 R^4, -C(=O)NR^5 R^6, -C(=O)NH C_3 alkylNR^7 R^8, -C(=O)NHC_1-3 alkylOC_1-3 alkyl, -C(=O)NHC_1-3 alkylOH, -C(=O)R^9, -C_1-6 alkylOH, -C(=O), -CHO, -C_3 alkylCO_2 C_3 alkyl, -d-salkylOd-salkyl, -C_6 haloalkyl, -OC_6 haloalkyl, -OC_6 cycloalkyl, -C_3-6 cycloalkyl or halogen.
7. A compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 6 wherein R³ represents -C₆₆heteroaryl optionally substituted by one, two or three groups independently selected from: -Cl₃alkyl, -Cl₆alkoxy, -CO₂R⁴, -C(=O)NR₅R⁶, -C(=O)NHC₆alckylNR⁷R⁸, -C(=O)NHC₆Cl₆alkyLOC₁₃alkyl, -C(=O)NHCl₆alkyloH, -C(=O)R⁹, -C₁₋₃alkylOH, -C₆heteroaryl, -C₆haloalkyl, -C₆haloalkyloH, -C₆C₃₋₆cycloalkyl or -C₆haloalkyloH.

8. A compound of formula (I) according to claim 1 selected from:
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-[6-(methyloxy)-1,3-benzothiazol-2-yl]-1H-1,2,3-triazole-4-carboxamide,
Ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylate,
Ethyl 5-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3,4-thiadiazole-2-carboxylate,
Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-thiazole-5-carboxylate,
1-[(3,4-Dichlorophenyl)methyl]-N-(5-formyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-(5-methyl-1,3-thiazol-4-yl)acetate,
2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1,3-thiazol-4-yl]carbonyl]amino]-4-(trifluoromethyl)-1,3-thiazole-5-carboxylate,
1-[(3,4-Dichlorophenyl)methyl]-N-(4,5-dimethyl-1,3-thiazol-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide,
Ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-benzothiazole-6-carboxylate,
Ethyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-5-methyl-1,3-thiazol-4-yl]acetate,
1-[(3,4-Dichlorophenyl)methyl]-N-(5,7-dioxo-4,5,6,7-tetrahydro[1,3]thiazolo[4,5-d]pyrimidin-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide,
Methyl 6-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-3-pyridinecarboxylate,
Methyl 2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-pyridinecarboxylate,
2-[[1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-4-methyl-1,3-thiazole-5-carboxylic acid,
2-[[1-[(3,4-dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl]carbonyl]amino]-1,3-oxazole-5-carboxylic acid,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-{4-methyl-5-[((methylamino)carbonyl]carbonyl}]-1,3-thiazol-2-yl)-1 H-1 ,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-5-methyl-N-{(3-methylbutyl)amino]carbonyl}]-1,3-thiazol-2-yl)-1 H-1 ,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-N-[5-(hydroxymethyl)-1,3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-N-[5-(hydroxymethyl)-1,3-thiazol-2-yl]-5-[(methyloxy)methyl]-1H-1,2,3-triazole-4-carboxamide,
1-[(3,4-Dichlorophenyl)methyl]-N-[5-(hydroxymethyl)-1,3-thiazol-2-yl]-5-methyl-1H-1,2,3-triazole-4-carboxamide,
N-[(1-[(3,4-Dichlorophenyl)methyl]-5-methyl-1H-1,2,3-triazol-4-yl)-6-(methyloxy)-1,3-benzothiazole-2-carboxamide, or
2-[[1-[(3,4-Dichlorophenyl)methyl]-1H-1,2,3-triazol-4-yl]methyl]amino]-1,3-thiazol-5-yl)methanol,
or a pharmaceutically acceptable salt thereof.

9. A pharmaceutical composition comprising a compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 8 together with at least one pharmaceutical carrier and/or excipient.

10. A compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 8 for use in therapy.

11. Use of a compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 8 for the manufacture of a medicament for treating and/or preventing a disease or a condition susceptible to amelioration by an SCD inhibitor.

12. Use of a compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 11 for the manufacture of a medicament for treating and/or preventing diseases or conditions caused by or associated with an abnormal plasma lipid profile including dyslipidemia, hypoalphalipoproteinemia, hyperbeta1ipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, atherosclerosis, obesity, Type I diabetes, Type II diabetes, insulin resistance, hyperinsulinaemia and metabolic syndrome; peripheral vascular disease, reperfusion injury, angioplastetic restenosis, hypertension, vascular complications of diabetes, thrombosis, hepatic steatosis, non-alcoholic steatohepatitis (NASH) and other diseases related to accumulation of lipids in the liver; eczema, acne, psoriasis, skin ageing, keloid scar formation or prevention, and diseases related to production or secrations from mucous membranes; cancer, neoplasia, malignancy, metastases, tumours (benign or malignant), carcinogenesis, hepatomas and the like; mild cognitive impairment (MCI), Alzheimer’s Disease (AD), cerebral amyloid
angiopathy (CAA) or dementia associated with Down Syndrome (DS) and other neurodegenerative diseases characterized by the formation or accumulation of amyloid plaques comprising Aβ42.

13. Use of a compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 11 for the manufacture of a medicament for treating and/or preventing acne, psoriasis, skin ageing, dyslipidemia, hypertriglyceridemia, atherosclerosis, obesity, Type II diabetes, insulin resistance, hyperinsulinaemia, hepatic steatosis and/or non-alcoholic steatohepatitis (NASH).

14. Use of a compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 11 for the manufacture of a medicament for treating and/or preventing acne.

15. A compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 8 for use in treating and/or preventing a disease or a condition susceptible to amelioration by an SCD inhibitor.

16. A compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 15 for use in treating and/or preventing diseases or conditions caused by or associated with an abnormal plasma lipid profile including dyslipidemia, hypoalphalipoproteinemia, hyperbetalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, atherosclerosis, obesity, Type I diabetes, Type II diabetes, insulin resistance, hyperinsulinaemia and metabolic syndrome; peripheral vascular disease, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, thrombosis, hepatic steatosis, non-alcoholic steatohepatitis (NASH) and other diseases related to accumulation of lipids in the liver; eczema, acne, psoriasis, skin ageing, keloid scar formation or prevention, and diseases related to production or secretions from mucous membranes; cancer, neoplasia, malignancy, metastases, tumors (benign or malignant), carcinogenesis, hepatomas and the like; mild cognitive impairment (MCI), Alzheimer's Disease (AD), cerebral amyloid angiopathy (CAA) or dementia associated with Down Syndrome (DS) and other neurodegenerative diseases characterized by the formation or accumulation of amyloid plaques comprising Aβ42.

17. A compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 15 for use in treating and/or preventing acne, psoriasis, skin ageing, dyslipidemia, hypertriglyceridemia, atherosclerosis, obesity, Type II diabetes, insulin resistance, hyperinsulinaemia, hepatic steatosis and/or non-alcoholic steatohepatitis (NASH).

18. A compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 15 for use in treating and/or preventing acne.
19. A method of treating and/or preventing a disease or a condition susceptible to amelioration by an SCD comprising administering to a subject a therapeutically effective amount of a compound of formula (I) or pharmaceutically acceptable salt thereof according to any one of claims 1 to 8.

20. A method of treating and/or preventing diseases or conditions caused by or associated with an abnormal plasma lipid profile including dyslipidemia, hypoalphalipoproteinemia, hyperbetalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, atherosclerosis, obesity, Type I diabetes, Type II diabetes, insulin resistance, hyperinsulinaemia and metabolic syndrome; peripheral vascular disease, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, thrombosis, hepatic steatosis, non-alcoholic steatohepatitis (NASH) and other diseases related to accumulation of lipids in the liver; eczema, acne, psoriasis, skin ageing, keloid scar formation or prevention, and diseases related to production or secretions from mucous membranes; cancer, neoplasia, malignancy, metastases, tumours (benign or malignant), carcinogenesis, hepatomas and the like; mild cognitive impairment (MCI), Alzheimer's Disease (AD), cerebral amyloid angiopathy (CAA) or dementia associated with Down Syndrome (DS) and other neurodegenerative diseases characterized by the formation or accumulation of amyloid plaques comprising Aβ42 comprising administering to a subject a therapeutically effective amount of a compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 19.

21. A method of treating and/or preventing acne, psoriasis, skin ageing, dyslipidemia, hypertriglyceridemia, atherosclerosis, obesity, Type II diabetes, insulin resistance, hyperinsulinaemia, hepatic steatosis and/or non-alcoholic steatohepatitis (NASH) comprising administering to a subject a therapeutically effective amount of a compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 19.

22. A method of treating and/or preventing acne comprising administering to a subject a therapeutically effective amount of a compound of formula (I) or pharmaceutically acceptable salt thereof according to claim 19.

23. A compound of formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 8 in combination with one or more active agent(s) selected from an inhibitor of cholesteryl ester transferase (CETP inhibitors), a HMG-CoA reductase inhibitor, a microsomal triglyceride transfer protein, a peroxisome proliferator-activated receptor activator (PPAR), a bile acid reuptake inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an inhibitor of AcylCoA: cholesterol acyltransferase (ACAT inhibitor), a cannabinoid 1 antagonist and a bile acid sequestранt.
24. A compound of formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 8 in combination with one or more active agent(s) selected from a corticosteroid, a vitamin D3 derivative, a retinoid, an immunomodulator, an anti-androgen, a keratolytic agent, an anti-microbial, a platinum chemotherapeutic, an antimetabolite, hydroxyurea, a taxane, a mitotic disrupter, an anthracycline, dactinomycin, an alkylating agent and a cholinesterase inhibitor.
INTERNATIONAL SEARCH REPORT

International application No:

PCT/EP2008/065105

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Classifications</th>
<th>Code</th>
<th>Classifications</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV.</td>
<td>C07D401/12</td>
<td>C07D413/12</td>
<td>C07D417/12</td>
</tr>
<tr>
<td>A61K31/519</td>
<td>A61P17/00</td>
<td>A61P3/00</td>
<td>A61P35/00</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- C07D
- A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2006/101521 A (XENON PHARMACEUTICALS INC [CA]; KAMBOJ RAJENDER [CA]; ZHANG ZAIHUI [CA]) 28 September 2006 (2006-09-28) claims 1-9,17</td>
<td>1-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed
- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *S*1 document member of the same patent family

Date of the actual completion of the international search

23 February 2009

Date of mailing of the international search report

10/03/2009

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax. (+31-70) 340-3016

Authorized officer

Hani sch, Inken

Form PCT/ISA/210 (second sheet) (April 2005)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2006/114314 A (PHOENIX CONTACT GMBH & CO [DE]; SCHMIDT JOACHIM) 2 November 2006 (2006-11-02) e.g. examples 79,82,83,85,87,88,96-102, 390,443-448; claims 1,4-8; page 24, line 23 - page 26, line 30</td>
<td>1-24</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2006101521 A</td>
<td>28-09-2006</td>
<td>AR 051093 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005329423 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0515482 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2580857 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101083993 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008513504 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008125434 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2615045 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1910352 A1</td>
</tr>
<tr>
<td>WO 2006114314 A</td>
<td>02-11-2006</td>
<td>CN 101167341 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102005019970 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1875724 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008539622 T</td>
</tr>
</tbody>
</table>