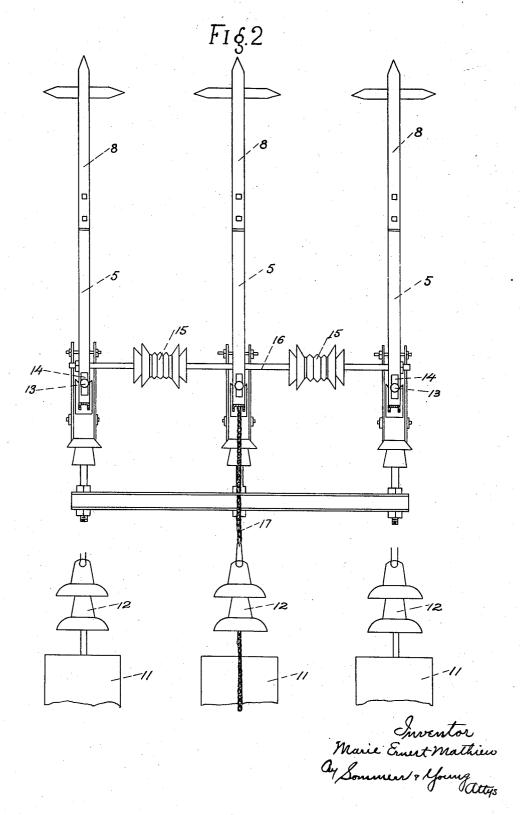

SAFETY DEVICE FOR OVERHEAD ELECTRIC LINES

Filed March 8, 1933

3 Sheets-Sheet 1



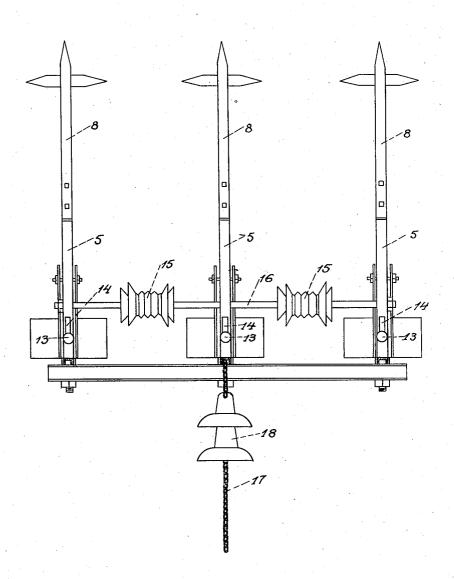



Marie Enert Mathiew By Sommer of Joung allys

## SAFETY DEVICE FOR OVERHEAD ELECTRIC LINES

Filed March 8, 1933

3 Sheets-Sheet 2




SAFETY DEVICE FOR OVERHEAD ELECTRIC LINES

Filed March 8, 1933

3 Sheets-Sheet 3

F1 6.4



Irventor Marie Enest-Mathiew Cy Sommeror Young Attys.

## UNITED STATES PATENT OFFICE

MARIE ERNEST MATHIEU, OF ALENCON, FRANCE

SAFETY DEVICE FOR OVERHEAD ELECTRIC LINES

Application filed March 8, 1933, Serial No. 660,072, and in France March 9, 1932.

My invention relates to overhead electric weight 11 electrically insulated from chain 9 lines and its chief object is to provide a through insulators 12. safety device for such lines that is capable ing of the line.

Another object of my invention is to provide a safety device of that kind that is fur-

current in the line.

In order to obtain these results, the electric line is divided into a certain number of sec-Means, operatively connected with the counmum value.

Preferred embodiments of my invention will be hereinafter described with reference to the accompanying drawings, given merely by way of example, and in which:

view of the safety device according to my invention;

Fig. 2 is a corresponding elevational view at right angles to Fig. 1;

Figs. 3 and 4 are elevational views similar to Figs. 1 and 2 respectively illustrating a simplified embodiment of my invention. In the device shown in Fig. 1, two bars 1,

carried by supports 2, from which they are insulated by insulators 3. Said bars 1 support, through arms 4, connecting bars 5 pivoted at 6 to the ends of said arms 4. Said connecting bars are electrically connected to the line 7, and their upper ends 8 are applied 245 against each other, thus electrically connecting together two sections of the line.

The end of a section 7 of the line is mechanically connected to a chain 9 wound around a pulley 10 journalled on bar 1. The other end of said chain 9 carries a counter-

The lower end of connecting bar 5 is proof preventing the occurrence of any accident vided with a slot 14 through which chain 9 that might be caused by an accidental break-may slide freely. But said chain is provided 85 with a stop 13 of a diameter greater than the width of said slot.

Counterweight 11 is so chosen as to norther adapted to be used for cutting off the mally balance the tension of the section of

the line to which it corresponds.

The operation of the device is as follows: If, under certain variations of temperature tions, and two adjacent sections are electri- or weather, the line is subjected to certain adcally connected together through two pivot- ditional stresses, the counterweights move ing connecting elements normally in contact within certain limits, thus ensuring a sub. with each other. The end of each section is stantially constant mechanical tension of the mechanically connected to a counterweight line. If, for any reason whatever, one or adapted to balance the tension of the line. more of the conductors of the line is broken, the action of the corresponding counterterweight, are adapted to cause the connect- weight is no longer balanced by the tension 70 ing elements to pivot out of contact with each of the line. Said counterweight therefore other when the counterweights move a cer- moves down, driving chain 9 together with tain distance greater than a determined maxi- it. Stop 13 is thus brought into contact with the edges of slot 14 and bar is subjected to the action of counterweight 11 75 which causes it to pivot about point 6 so that it is no longer in contact with the connecting bar 5 of the adjacent section of the Fig. 1 is a diagrammatical side elevational line. Any electric connection is therefore cut off between the broken section of the line and 30 the other sections connected to a source of

The arrangement above described might not be sufficient if, one conductor of the line being broken, for instance the middle one in 85 Fig. 2, the two other conductors remained connected to the source of current. The broken conductor might then come into contact with any of the two other conductors and accidents would still be possible.

In order to obviate this drawback, the connecting bars 5 of the conductors corresponding respectively to the three phases of the current are mechanically connected together and electrically insulated from one another. 300 Under these conditions, when one of the conductors is broken, the action of its counterweight causes the three bars to pivot out of contact with the respective corresponding bars of the adjacent section.

shown in Fig. 2. It consists of rods 16 rigidly connecting together the three connecting bars 5, insulators 15 being inserted between said 5 rods so as to electrically insulate said bars from one another.

The length of a section of electric line provided with the device according to my invention depends on the length of the dis-10 placements that the counterweight is allowed to have, on the diameter and on the nature of the conductors. It may vary between 3 and 5 kilometers.

An operating chain 17 is fitted to the 15 middle connecting bar, as shown in Figs. 1 and 2. Said chain is provided with insulators 18. It serves to cut off at will the circuit of the line.

The safety device according to my inven-20 tion can be adapted to overhead electric lines made according to the ordinary methods. Such an embodiment is shown in Figs. 3 and 4. The connecting bars are disposed as in the preceding example. The ends 25 of the conductors are adapted to slide in their supports. The ends of each conductor has, attached to it, a counterweight 11' bearing against the support and the weight of which is sufficient for causing, in case of the con-30 ductor being broken, stop 13 to act on the lower end of the connecting bar so as to rotate it and cut off the electric connection between the two adjacent sections of the line.

While I have described what I deem to be 35 preferred embodiments of my invention, it should be well understood that I do not wish to be limited thereto as there might be changes made in the arrangement, disposition, and form of the parts without depart-40 ing from the principle of my invention as comprehended within the scope of the appended claims.

What I claim is:

1. A safety device for overhead electric 45 lines which comprises in combination, a conductor forming a section of the line, pivoting contact means for electrically connecting said section of the line to another conductor, a counterweight mechanically connected to said 50 section of the line, and means, operatively connected with said counterweight, for causing said contact means to pivot out of conwhen the counterweight has moved a distance 55 greater than a predetermined value.

lines, which comprises in combination, a conductor forming a section of the line, a pivot-

An example of such an arrangement is ing bar for electrically connecting said section of the line to another conductor, a pulley, a chain passing round said pulley and fixed at one end to the first mentioned conductor, the lower end of said pivoting bar being 70 provided with an opening through which said end of the chain passes freely, a stop on said chain adapted to butt against the edges of said opening, and a counterweight fixed to the other end of said chain.

3. A safety device according to claim 1 further comprising at least another conductor corresponding to another phase of the current, pivoting contact means for the last mentioned conductor, rigid means for mechani- 80 cally connecting the last mentioned pivoting contact means with the first mentioned pivoting contact means, and means for electrically insulating the last mentioned pivoting contact means from the first mentioned contact 85

4. A safety device according to claim 2 further comprising at least another conductor corresponding to another phase of the current, a pivoting bar for the last mentioned 90 conductor, rigid means for mechanically connecting together the two bars, and means for electrically insulating from each other said two bars.

5. A safety device according to claim 1 95 further comprising means for manually operating said pivoting contact means.

6. A safety device according to claim 2 further comprising a chain operatively connected with said bar, and at least an electri- 100 cal insulator provided in said chain, whereby said pivoting bar can be manually operated.

7. A safety device for overhead electric lines which comprises in combination, a sup- 105 port, a conductor forming a section of the line, the end of said conductor being slidably mounted in said support, a pivoting bar for electrically connecting said section of the line to another conductor, the lower end of said 110 pivoting bar being provided with an opening through which said end of the conductor passes freely, a stop on said conductor adapted to butt against the edges of said opening, and a counterweight fixed to the end of the 115 conductor and butting against said support.

8. A safety device according to claim 7 tact with the second mentioned conductor further comprising a chain fixed to the lower end of said pivoting bar, and at least one electrical insulator provided in said chain, where- 120 2. A safety device for overhead electric by said pivoting bar can be manually operat-

MARIE ERNEST MATHIEU.

125