INSTRUCTIONS

(a) If Convention application insert
"Convention"

AUSTRALIA

Patents Act 1990

(b)	Delete one		j	REQUEST FOR A	A (b) STANDA	RD/PEF	TY-PATENT			
, ,	Insert FULL name(s) of applicant(r)		the pers	ing the person(s) identific on identified below as the anying Standard/Petty (b)	Nominated Person,	for an invent				
			I-am/Wo	e are (b) not an opponent	or eligible person de	scribed in Se	ctions 33-36 of the Act.			
		[70,71]	Applica	nt and Nominated Person	(c):					
(d)	Insert FULL address(es) of applicant(s)		of (d)	EMS-INVENTA A Selnaustrass CH-8001 Züri	e 16	cland				
(e)	Insert TITLE of invention	[54] Invention Title (e) THERMOSETTING COATING SYSTEMS								
(f)	Insert Names of	[72]	Names o	of Actual Inventors (f)						
•••	actual Inventors.		1) Dr. KAPLAN, Andreas							
			2) Dr. HOPPE, Manfred 3) Dr. KINKELIN, Eberhard							
	· ·		••••			•••••••				
	· • . •	[74]	Address for Service: PHILLIPS ORMONDE AND FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne, Australia 3000 Attorney Code: PO							
			(Note: The following applies only to Convention applications)							
	.		Basic Convention Application Details							
•	Insert number, country and filing date for the/or each basic application		(g)	[31] Application No.	[33] Country	Country Code	[32] Date of Application			
(h)	Signature of applicant(s) (For body corporate see headnote*)		P	44 01 438.4	Germany	DE	19 January 1994			
(i)	Insert date of signing	EN	1S/NV	ENTA AG						
(j)	Corporate seal if any	.(Senaus CH 800	gysse (f 1 Zürich	\circ					
	te: No legalization other witness ENZ	inger ha	_		Walter-Joachin	Josephine	h, December 06, 1994			
		/	(h) .	Signature of Applicant	/	(i) Da	ate			
				W Y 700 OD 1 (O) TO 7	A D Transport Compa					

PHILLIPS ORMONDE AND FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street Melbourne, Australia

EMEASIG 180 29

P17/5/91

AUSTRALIA

Patents Act 1990

NOTICE OF ENTITLEMENT

(a)	NSTRUCTIONS Name of person making statement.	I (a)	1) ENZINGER Hans-Ul: 2) Dr. SCHULZE Walt							
	Position of that person.	(b)	 Director Holder of Procur. 	ation						
(c)	Name of applicant	of (c)	EMS-INVENTA AG							
(d)	Address of applicant	of (d)	Selnaustrasse 16 CH-8001 Zürich, Sw	itzerland						
	Delete as necessary	1. (e)	(ii) as assignee of the actual in (iii) by contract of employment							
(f)	Insert details if not covered by (i) or (ii)	or	(iii) (f)							
(g)	Delete as necessary	2. (g)	convention application(s).							
(h)	Delete for non-convention applications	3.	The basic convention application((s) was/were the first made in a Convention not the subject of the application. (h)						
••••	•: • • • • • • • • • • • • • • • • • •									
(i)	Insert DATE of signing			Dated (i)						
(j)	nercon making	GER I	Acusterick Jans-Ulrich	(j) Zürich, December 06, 1994						
	te: No legalization or Dr. So	CHUL	Walter-Jachim							
		То: Т	he Commissioner of Patents							

PHILLIPS ORMONDE AND FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne, Australia

MUUTE .

(12) PATENT ABRIDGMENT (11) Document No. AU-B-10280/95 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 662864

(54) Title
THERMOSETTING COATING SYSTEMS

International Patent Classification(s)

(51)6 C09D 167/02

C09D 005/46

(21) Application No.: 10280/95

(22) Application Date: 18.01.95

- (30) Priority Data
- (31) Number (32) Date (33) Country 4401438 19.01.94 DE GERMANY
- (43) Publication Date: 27.07.95
- (44) Publication Date of Accepted Application: 14.09.95
- (71) Applicant(s) EMS-INVENTA AG
- (72) Inventor(s)
 DR. ANDREAS KAPLAN; DR. MANFRED HOPPE; DR. EBERHARD KINKELIN
- (74) Attorney or Agent
 PHILLIPS ORMONDE & FITZPATRICK, 367 Collins Street, MELBOURNE VIC 3000
- (56) Prior Art Documents
 US 4801680
 US 4471108
- (57) Claim
- Thermosetting coating system based carboxylon functional polyester resins, polyfunctional epoxy compounds agents β-hydroxyalkylamides cross linking as optionally further conventional additives, the coating system linear containing binder resin at least one carboxylfunctional polyester resin composed of bifunctional monomer including components a maximum of 10 molar isophthalic acid and at least 90 molar parts of at least one further dicarboxylic acid from the group including aromatic acids with 8 to 16 carbon atoms, aliphatic dicarboxylic acids with 6 to 22 carbon atoms dicarboxylic cycloaliphatic dicarboxylic acids with 8 to 16 carbon atoms and at least 50 molar parts of at least one branched aliphatic diol with 4 to 12 carbon atoms and a maximum of 50 molar parts of at least one linear aliphatic diol with 2 to 22 carbon atoms and/or at least one cycloaliphatic diol with 6 to 16 carbon atoms.

AUSTRALIA 662864

Patents Act

COMPLETE SPECIFICATION (ORIGINAL)

Class Int. Class

Application Number: Lodged:

Complete Specification Lodged: Accepted:

Published:

Priority

Related Art:

••• Name of Applicant:

Ems-Inventa AG

Actual Inventor(s):

Andreas Kaplan Manfred Hoppe Eberhard Kinkelin

Address for Service:

PHILLIPS ORMONDE & FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA

Invention Title:

THERMOSETTING COATING SYSTEMS

Our Ref: 393587

POF Code: 226745/226745

The following statement is a full description of this invention, including the best method of performing it known to applicant(s):

Thermosetting Coating System

The invention relates to thermosetting coating systems based on linear carboxyl-functional polyester (PES) resins and polyfunctional epoxy compounds and/or β -hydroxyalkylamides, the production and use thereof and to protective layers of these coatings systems.

Thermosetting coating systems generally consist of binder resin and cross linking agent, pigments and additives and/or fillers. Cross linking and therefore setting in heat takes places via polyaddition or polycondensation reactions between functional groups contained in the binder systems. Typical binder systems include epoxy resins/hardeners, polyesters/epoxides, polyesters/isocyanates, polyesters/ β -hydroxyalkylamides, acrylates/isocyanates.

The macroscopic properties of cured powder coating films change over time. In the case of polymeric materials, this phenomenon has been known for a long time by the term physical aging (L.C.E. Struik: Physical Aging in Amorphous Polymers and other Materials, published by Elsevier, 1978).

Physical aging is interpreted as the change over time in the macroscopic properties of polymers in the glass stage under constant environmental conditions produced by a state of non-equilibrium in the polymer. In contrast to chemical aging during which irreversible changes such as decomposition reactions or chain breakages occur in the material owing to thermal decomposition or photooxidation, physical aging is reversible.

Changes in the electric and optical characteristics as well as changes in the mechanical properties which are most important for paint films are mentioned as examples of changes due to physical aging. Although this phenomenon is

generally known in the case of paint films, it did not appear to give rise to excessive problems in the past.

Owing to the increased use of organic pigments and the high requirements on powder coatings in precoating metal and coil coating technology, in particular when the coated parts are post formed, this phenomenon and the means for eliminating it are gaining in interest. Another interesting sphere of aplication of powder coatings with improved stability to physical aging are clear coats with higher resistance to environmental stress cracking.

In the aforementioned book "Physical Aging in Amorphous Polymers and other Materials", L.C.E. Struik describes the phenomenon of physical aging in general with reference to In the past there was little literature dealing polymers. with the phenomenon of the physical aging of organic coatings or in particular powder coatings (P.J. Greidanus, Porc. 19th Fatipec Congress, Aachen, 1, 485 (1988) and D.Y. Perera and P. Effect of Physical Aging Thermal Schutyser: on Stress Development in Powder Coatings, XIX International Conference in Organic Coating Science and Technology, Athens, Only the physical bases and the effects of physical aging are measured and described in these publications but no solution to this problem is proposed.

the case of powder coatings based on carboxylpolyesters and polyepoxides β-hydroxylalkylamides as cross linking agent, the phenomenon of physical aging can be repressed by increasing the curing temperature, by extending the curing time, by an excess of cross linking agent or by the incorporation of so-called branching agents, i.e. acids or alcohols having functionality greater than 2, into the fundamental polyester resin. increase in the curing temperature or an extension of the curing time is associated with higher energy consumption and sometimes with colour changes. An excess of cross linking agent should also be rejected for economic reasons and is associated with higher costs. The incorporation of branching agents into the polyester resin is not recommended from a technical point of view as it impairs the flow properties.

The object of the invention is therefore to overcome or

40

35

5

10

alleviate one or more of the aforementioned disadvantages of the prior art.

This object is achieved with the thermosetting coating system according to claim 1, the process according to claim 12, the use according to claim 13 and by the protective layer according to claim 14.

Advantageous embodiments of the invention are contained in the sub-claims. The object is particularly achieved with a coating system composed of linear carboxyl-functional polyester resins consisting of bifunctional monomer components, the isophthalic acid making up a maximum of 10 molar parts of all acid components and cross linking agents.

It has been found that, in the case of powder coatings based on linear carboxyl-functional polyesters, i.e. those in which the functionality of the acids and alcohols used is lower than or equal to 2, and polyfunctional epoxides and/or β -hydroxyalkylamides as cross linking agents or hardeners, a clear improvement in the resistance to physical aging can surprisingly be achieved.

The thermosetting coating system according to the invention therefore includes a specific saturated polyester as binder resin, which is particularly distinguished in that it is made up of bifunctional aliphatic and/or cycloaliphatic diols and bifunctional aliphatic and/or cycloaliphatic and/or aromatic dicarboxylic acids.

The binder resin contains at least one linear carboxylfunctional polyester resin composed of a maximum of 10 molar parts of isophthalic acid and at least 90 molar parts of at least one further dicarboxylic acid from the group including aromatic dicarboxylic acids with 8 to 16 carbon atoms, aliphatic dicarboxylic acids with 6 to 22 carbon atoms and cycloaliphatic dicarboxylic acids with 8 to 16 carbon atoms. Terephthalic acid is preferred as aromatic dicarboxylic acid, azelaic acid, sebacic acid adipic acid, and dodecanedicarboxylic acid as aliphatic dicarboxylic acid and cyclohexane dicarboxylic acid as cycloaliphatic dicarboxylic In a preferred embodiment, the dicarboxylic component of the polyester resins are made up of 3 to 9 molar parts of aliphatic dicarboxylic acids with at least 6 carbon

35

5

10

atoms, adipic acid being particularly preferred, and/or 3 to 9 molar parts of cycloaliphatic dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid being particularly preferred.

The diols of the polyester resins consist, in a proportion of at least 50 molar parts, of at least one branched aliphatic diol with 4 to 12 carbon atoms and, in a maximum proportion of 50 molar parts, of at least one linear aliphatic diol with 2 to 22 carbon atoms and/or at least one cycloaliphatic diol with 6 to 16 carbon atoms. 2,2-Dimethyl-1,3-propane diol is a preferred branched diol.

Epoxy compounds with at least 2 epoxy groups and/or β-hydroxyalkylamides with at least 2 hydroxyalkylamide groups suitable as a cross linking component. Preferred include glycidyl monomeric polyepoxy compounds ethers cyanuric or isocyanuric acid or glycidyl esters of polycarboxylic acids. Terephthalic acid, trimellitic acid or mixtures thereof are preferred. Trisglycidylisocyanurate (TGIC) is particularly preferred. Bis $[N, N'-di(\beta$ hydroxyethyl] adipamide (Primid XL 552 made by Rohm and Haas) is particularly suitable as β -hydroxyalkylamide compound.

In a preferred embodiment of the coating system, the polyester resin has an acid number of 15 to 100 [mg KOH/g], a maximum OH number of 10 [mg KOH/g] and a glass transition temperature $T_{\rm q}$ higher than 45°C.

The additives usual for the production and use of powder coatings can additionally be present in the coating system according to the invention.

These are additives from the group comprising accelerators, pigments, fillers, flow-control and degassing agents, heat-, UV- and/or HALS-stabilizers or tribo additives as well as matting additives such as wax if necessary.

The carboxyl-functional polyester resins according to the invention are produced in a known manner by the common heating of all monomeric components in the presence of conventional esterification catalysts to a temperature of about 250°C and removal of the reaction water formed or by a two stage process in which a hydroxyl-functional polyester is formed in the presence of an excess of polyol in a first stage and the polyester is reacted with one or more polybasic

20

5

10

15

25

35

carboxylic acids or their anhydrides to form a carboxylfunctional polyester in a second stage.

The powder coatings according to the invention are preferably produced in the melt by the common extrusion of all constituents of the formulation at temperatures between 90 and $130\,^{\circ}$ C. The extrudate is then cooled, ground and sieved to a particle size smaller than 100 μm . Other processes for the production of the powder coatings are basically also suitable such as mixing of the constituents of the formulation in solution and subsequent precipitation or removal of the solvent by distillation.

The powder coatings according to the invention are applied by processes which are normal with powder coatings, for example using whirl sintering or electrostatic coating, for example by the corona or the tribo system or by the fluidized bed process.

The powder coatings proposed according to the present invention are sufficiently stable in storage and, after cross linking at 140 to 200°C, have very good flow and mechanical properties. They are also distinguished by good weather- and and particularly good physical UVB-resistance aging resistance. The production and the properties οf the carboxyl-functional specific polyester resins the powder coatings are described hereinafter by way of examples.

35

40

5

10

Production of the Carboxyl-functional Polyester Resins

Comparison Example

391.9 g (3.76 mol) of 2,2-dimethyl-1,3-propanol and 27.5 g (0.44 mol) of ethylene glycol are placed in a 2-l- esterification reactor provided with temperature sensor, stirrer, reflux column and distillation bridge, and are melted at 140° C under an inert nitrogen atmosphere which is maintained throughout the entire reaction.

515.5 g (3.10 mol) of terephthalic acid, 110.5 g (0.67 mol) of isophthalic acid and 0.1 g of a Sn-containing esterification catalyst are added while stirring and the internal temperature is raised stepwise to 235°C. The reaction is continued until no more distillate is formed and the acid number is less than 10 mg KOH/g.

73.6 g (0.44 mol) of isophthalic acid and 32.4 g (0.22 mol) of adipic acid are then added, and esterification is continued until the desired acid number of about 33 mg KOH/g is attained. Part of this second stage is carried out under reduced pressure (< 100 mbar).

Example 1

As in the comparison example, 352.9 g (3.39 mol) of

2,2-dimethyl-1,3-propane diol and 56.2 g (0.91 mol) of ethylene glycol are melted.

639.3 g (3.85 mol) of terephthalic acid and 0.1 g of a Sn-containing esterification catalyst are added while stirring. The reaction is continued until no more distillate is formed and the acid number is less than 10 mg KOH/g.

56.4 g (0.34 mol) of isophthalic acid and 49.6 g (0.34 mol) of adipic acid are then added and esterification is continued until the desired acid number of about 33 mg KOH/g is attained.

Example 2

347.8 g (3.34 mol) of 2,2-dimethyl-1,3-propane diol and 55.4 g (0.89 mol) of ethylene glycol are melted as in the comparison example.

630 g (3.79 mol) of terephthalic acid and 0.1 g of a Sn-containing esterification catalyst are added while stirring. The reaction is continued until no more distillate is formed and the acid number is less than 10 mg KOH/g.

37.1 g (0.22 mol) of isophthalic acid and 32.6 g (0.22 mol) of adipic acid and 38.4 g (0.22 mol) of cyclohexane dicarboxylic acid are then added, and esterification is continued until the desired acid number of about 33 mg KOH/g is attained.

Example 3

366.7 g (3.52 mol) of 2,2-dimethyl-1,3-propane diol and 55.7 g (0.90 mol) of ethylene glycol are melted as in the comparison example.

633.7 g (3.82 mol) of terephthalic acid and 0.1 g of a Sn-containing esterification catalyst are added while stirring. The reaction is continued until no more distillate is formed and the acid number is less than 10 mg KOH/g.

55.9 g (0.34 mol) of isophthalic acid and 49.2 g (0.34 mol) of adipic acid are then added and esterification is continued until the desired acid number of about 22 mg KOH/g is attained.

Example 4

• • • • • •

364.5 g (3.50 mol) of 2,2-dimethyl-1,3-propane diol and 55.4 g (0.89 mol) of ethylene glycol are melted as in the comparison example.

630 g (3.79 mol) of terephthalic acid and 0.1 of a Sn-containing esterification catalyst are added while stirring. The reaction is continued until no more distillate is formed and the acid number is less than 10 mg KOH/g.

37.1 g (0.22 mol) of isophthalic acid, 32.6 g (0.22 mol) of adipic acid and 38.4 g (0.22 mol) of cyclohexane dicarboxylic acid are then added and esterification is continued until the desired acid number of about 22 mg KOH/g is attained.

Example 5

Production of the Powder Coatings

The following formulation was used for all powder coatings described in Table 1. DT 3126 made by Ciba was additionally used as accelerator in the powder coatings in Table 2.

Parts by Weight

•••••

- 948 Binder
- 15 Resiflow PV 88 1)
- 7 Benzoin
- 30 Organic Pigment
- Flow-control agent based on polyacrylate, commercial product made by Worlee-Chemie GmbH

The constituents of the formulation are mixed dry in a Henschel mixer at 700 rpm for 30 seconds and are then extruded, on a Buss co-kneader (PLK 46) with a barrel temperature of 100°C, cooled screw and a screw speed of 150 rpm. The extrudate is cooled, ground and sieved to smaller than 90 µm.

Painting tests were carried out on aluminium plates (Q-panel AL-36 5005 H 14/08 (0.8 mm)) with a stoving temperature of 180° C and a stoving time of 10 minutes. The paint film thickness is about 90 μ m.

Table 1 shows the changes over time in the impact as test criterion for the physical aging after storage in an air conditioned room at 23°C and 50% relative atmospheric humidity.

Table 2 shows the changes over time in the impact as test criterion for physical aging after storage in an oven at 50° C.

TABLE 1 STORAGE IN AIR CONDITIONED ROOM (23°C/50% RELATIVE ATMOSPHERIC HUMIDITY

POLYESTER	CROSS LINKING AGENT	MIXING RATIO COPES CROSS	19.	1 DAY	THPACT 2 DAYS	J J DAYS	30 DAYS
CoPES from Comparison Example	Primid XL 552	95 : 5	> 140	120	80	40	< 10
CoPES from Example :	Primid XL 552	95 : 5	> 140	> 140	> 140	> 140	> 140
CoPES from Example 2	Primid XL 552	95 : 5	> 140	> 140	> 140	> 140	> 140
CoPES from Example 3	Primid XL 552	96.5 : 3.5	> 140	> 140	> 140	> 140	> 140
CoPES from Example 4	Primid XL 552	96.5 : 3.5	> 140	> 140	> 140	> 140	> 140

Reverse impact, ASTM D 2794, ball diameter 5/8" [inoh*pound]

(50°C)

			; :			
TABLE 2	STORAGE	IN THE OVE	.N	•••	• • • • •	•

			The section of the se	12421-12E	-	The Branch	च्हार क्षेत्र के किया के किया के किया किया किया किया किया किया किया किया	SPEED THOUGH	77 THE SECTION AND ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION ADDRESS OF THE SECTION AND ADDRESS OF THE SECTION ADDRESS O
Polyester	Percentage	Cross : Linking : Agent :	Tinking Agent	0 Days	10 LDays	20 Days	30 Days	40 Days	50 Days
Copes from	C.5	TGIC	93 : 7	> 140	100	80	50	< 10	< 10
Comparison Example	3.0	XB 910	91.3 : 8.7	> 140	80	70	30	< 10	< 10 > 140
CoPES from Example 1	0.5 3.0	TGIC XB 910	93 : 7 91.3 : 8.7	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140
CoPES from	0.5	TGIC XB 910	93 : 7 91.3 : 8.7	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140
Example 2 CoPES from	0.5	TGIC XB 910	95 : 5 93.5 : 6.5	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140
CoPES from Example 4	0.5 3.0	TGIC XB 910	95 : 5 93.5 : 6.5	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140	> 140 > 140

Reverse impact, ASTM D 2794, ball diameter 5/8" [inch*pound]

The claims defining the invention are as follows:

- Thermosetting coating system based on functional polyester resins, polyfunctional epoxy compounds β-hydroxyalkylamides as cross linking agents optionally further conventional additives, the coating system containing as binder resin at least one linear carboxylfunctional polyester resin composed of bifunctional monomer components including a maximum of 10 molar parts isophthalic acid and at least 90 molar parts of at least one further dicarboxylic acid from the group including aromatic dicarboxylic acids with 8 to 16 carbon atoms, aliphatic dicarboxylic acids with 6 22 carbon to atoms cycloaliphatic dicarboxylic acids with 8 to 16 carbon atoms and at least 50 molar parts of at least one branched aliphatic diol with 4 to 12 carbon atoms and a maximum of 50 molar parts of at least one linear aliphatic diol with 2 to 22 carbon atoms and/or at least one cycloaliphatic diol with 6 to 16 carbon atoms.
 - 2. Coating system according to claim 1, wherein the additives are selected from the group including accelerators, pigments, fillers, flow-control agents, degassing agents, heat-stabilizers, UV-stabilizers, HALS-stabilizers, matting additives and tribo additives.
 - 3. Coating system according to either one of claims 1 or 2, wherein the cross linking agent is a monomeric epoxy compound.
 - 4. Coating system according to any one of claims 1 to 3, wherein the cross linking agent is a glycidyl ester of a polycarboxylic acid.
 - 5. Coating system according to any one of claims 1 to 3, wherein the cross linking agent is a glycidyl ether of cyanuric acid or isocyanuric acid.
 - 6. Coating system according to any one of claims 1 to 4, wherein the polycarboxylic acid is trimellitic acid or terephthalic acid.
- 7. Coating system according to claim 1, wherein the cross linking agent is a β -hydroxyalkylamide with at least 2 hydroxyalkylamide groups.
 - 8. Coating system according to any one of claims 1 to 7, wherein the branched aliphatic diol is 2,2-dimethyl-1,3-

.20

15

5

10

25

propane diol.

5

10

15

- 9. Coating system according to any one of claims 1 to 8, wherein the dicarboxylic acid is selected from the group including terephthalic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid or cyclohexane dicarboxylic acid.
- 10. Coating system according to any one of the preceding claims, wherein the content of aliphatic dicarboxylic acid and/or of cycloaliphatic dicarboxylic acid as a dicarboxylic acid is 3 to 9 molar parts.
- 11. Coating system according to any one of the preceding claims, wherein the carboxyl-functional polyester resin has an acid number of 15 to 100 mg KOH/g and a maximum OH number of 10 mg KOH/g and a glass transition temperature higher than 45°C.
- 12. Process for the production of thermosetting coating systems based on linear carboxyl-functional polyester resins, according to any one of claims 1 to 11 wherein the binder resin, the cross linking agent of which there is at least one from the group including polyfunctional epoxy compounds and β -hydroxyalkylamides and optionally further conventional additives are mixed in the melt at 90 to 130°C, extruded, discharged, granulated, ground and sieved to a particle size of smaller than 100 μm .
- 13. Use of the thermosetting coating system according to any one of claims 1 to 11 for the production of coverings or protective layers by fluidized bed process or electrostatic spraying.
- 14. Protective layer which can be produced from the coating system according to any one of claims 1 to 11.
- 15. A thermosetting coating system substantially as hereinbefore described with reference to any one of Examples 1 to 4.
- 16. A process according to claim 12 substantially as hereinbefore described with reference to Example 5.

DATED: 9 January, 1995

PHILLIPS ORMONDE & FITZPATRICK

Attorneys for:

David & Fitzfatrick

EMS-INVENTA AG

40 PUSTRALLY PROPERTY OF THE P

ABSTRACT

The invention relates to a thermosetting coating system based on carboxyl-functional polyester resins, polyfunctional epoxy compounds and/or β-hydroxyalkylamides and optionally further conventional additives, the coating system containing binder resin at least one linear carboxyl-functional polyester resin composed of a maximum of 10 molar parts of isophthalic acid and at least 90 molar parts of at least one further dicarboxylic acid from the group including aromatic dicarboxylic acids with 8 to 16 carbon atoms, aliphatic dicarboxvlic acids with 6 to 22 carbon atoms cycloaliphatic dicarboxylic acids with 8 to 16 carbon atoms and at least 50 molar parts of at least one branched aliphatic diol with 4 to 12 carbon atoms and a maximum of 50 molar parts of at least one linear aliphatic diol with 2 to 22 carbon atoms and/or at least one cycloaliphatic diol with 6 to 16 carbon atoms.

30.

5

10

15