

[19] Patents Registry [11] 1237648 B
The Hong Kong Special Administrative Region
香港特別行政區
專利註冊處

[12] **STANDARD PATENT (R) SPECIFICATION**
轉錄標準專利說明書

[21] Application no. 申請編號 [51] Int. Cl.
17111526.1 A61K 35/76 (2015.01) A61K 38/46 (2006.01)

[22] Date of filing 提交日期
08.11.2017

[54] ACINETOBACTER LYSINS
不動桿菌賴氨酸

[30] Priority 優先權 26.06.2014 US US201462017618P	[73] Proprietor 專利所有人 The Rockefeller University 1230 York Avenue New York, NY 10065 UNITED STATES OF AMERICA
[43] Date of publication of application 申請發表日期 20.04.2018	[72] Inventor 發明人 FISCHETTI, Vincent SCHUCH, Raymond LOOD, Rolf WINER, Benjamin
[45] Date of publication of grant of patent 批予專利的發表日期 04.09.2020	[74] Agent and / or address for service 代理人及/或送達地址 LETTERS & THOO LIMITED Suite 1008, Prosperity Millennia Plaza 663 King's Road, Quarry Bay HONG KONG
[86] International application no. 國際申請編號 PCT/US2015/037962	
[87] International publication no. and date 國際申請發表編號及日期 WO2015/200783 30.12.2015	
EP Application no. & date 歐洲專利申請編號及日期 EP 15812120.2 26.06.2015	
EP Publication no. & date 歐洲專利申請發表編號及日期 EP 3164146 10.05.2017	
Date of grant in designated patent office 指定專利當局批予專利日期 25.12.2019	

(11)

EP 3 164 146 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

25.12.2019 Bulletin 2019/52

(21) Application number: 15812120.2

(22) Date of filing: 26.06.2015

(51) Int Cl.:

A61K 35/76^(2015.01)

A61K 38/46^(2006.01)

(86) International application number:

PCT/US2015/037962

(87) International publication number:

WO 2015/200783 (30.12.2015 Gazette 2015/52)

(54) ACINETOBACTER LYSINS

ACINETOBACTER-LYSINE

LYSINES D'ACINETOBACTER

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 26.06.2014 US 201462017618 P

(43) Date of publication of application:

10.05.2017 Bulletin 2017/19

(73) Proprietor: The Rockefeller University
New York, NY 10065 (US)

(72) Inventors:

- FISCHETTI, Vincent
New York, NY 10065 (US)
- SCHUCH, Raymond
New York, NY 10065 (US)
- LOOD, Rolf
New York, NY 10065 (US)
- WINER, Benjamin
New York, NY 10065 (US)

(74) Representative: D Young & Co LLP

120 Holborn
London EC1N 2DY (GB)

(56) References cited:

WO-A2-2012/036580 US-A1- 2005 025 781
US-A1- 2010 172 918 US-A1- 2014 079 671

- LESHOM, EMIL ET AL: "Emergence of colistin-resistance in extremely drug-resistant *Acinetobacter baumannii* containing a novel pmrCAB operon during colistin therapy of wound infections.", 1 October 2013 (2013-10-01), THE JOURNAL OF INFECTIOUS DISEASES 01 OCT 2013, VOL. 208, NR. 7, PAGE(S) 1142 - 1151, XP002775174, ISSN: 1537-6613 * page 1143, left-hand column, paragraph 4 - page 1148, right-hand column, paragraph 1 * - & DATABASE UniProt [Online] 16 October 2013 (2013-10-16), XP002775175, Database accession no. R4L440
- ROLF LOOD ET AL: "Novel Phage Lysin Capable of Killing the Multidrug-Resistant Gram-Negative Bacterium *Acinetobacter baumannii* in a Mouse Bacteremia Model", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 59, no. 4, 11 April 2015 (2015-04-11), pages 1983-1991, XP055330866, ISSN: 0066-4804, DOI: 10.1128/AAC.04641-14 - & DATABASE UniProt [Online] 27 May 2015 (2015-05-27), XP002775176, Database accession no. A0A0B5KND4 - & DATABASE UniProt [Online] 27 May 2015 (2015-05-27), XP002775177, Database accession no. A0A0B5KZH1
- DATABASE UNIPROTKB [Online] 11 June 2014 'AOA009YLP0 ACIBA, Lysozyme Gene J500_0845 from *Acinetobacter baumannii* 479375', XP055380542 Retrieved from UNIPROT Database accession no. A0A009YLP0

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**FIELD**

5 [0001] Compositions comprising a bacteriophage lytic enzyme specific for *Acinetobacter* and method for treating *Acinetobacter* infections.

BACKGROUND

10 [0002] *Acinetobacter baumannii*-calcoaceticus complex and other members of this species frequently colonize the human skin without harm. However, injuries to the skin from scrapes, wounds or surgery, can result in *Acinetobacter* infection of the wound, blood, soft tissues, and central nervous system. Given that >80% of *Acinetobacter* sp. are also multiply drug resistant (MDR) (at least three classes of antibiotics), these infections may result in adverse clinical outcomes, including high rates of morbidity and mortality, prolonged hospital stay, and substantial health care expenses.

15 Military personnel and athletes have an increased risk of injuries (from skin abrasions to severe wounds) that would be susceptible to infection by *Acinetobacter* spp., thus methods to remove them quickly and effectively would reduce or eliminate downstream complications. Outbreaks caused by MDR *Acinetobacter* have been reported in hospitals all over the world; more recently, they have become a serious problem in military medical facilities. Because of its MDR, *Acinetobacter* infections are difficult to treat so infections by these organisms usually result in a poor outcome. Thus, new 20 and better ways of controlling this pathogen are needed.

25 [0003] *Acinetobacter baumannii* strains resistant to all known antibiotics have now been reported. Acting in synergy with this emerging resistance profile is the uncanny ability of *A. baumannii* to survive for prolonged periods throughout a hospital environment, thus potentiating its ability for nosocomial spread. The organism commonly targets hospitalized subjects, who are critically ill with breaches in skin integrity and airway protection. As such, hospital-acquired pneumonia is still the most common infection caused by *A. baumannii*. However, recently, infections involving the central nervous system, skin and soft tissue, and bone have emerged as highly problematic for certain institutions. Because of this 30 resistance problem, new methods to control these pathogens must be developed.

35 [0004] Antimicrobial agents known as bacteriophage-encoded lysins have been identified. Bacteriophages are viruses that infect bacterial and it is estimated that there are 10^6 distinct bacteriophage species. Bacteriophage lysins are generally genus- or species-specific, i.e., a *Staphylococcus aureus* phage lysis may have activity only against *Staphylococcus aureus* providing a targeted therapeutic approach. In some cases, lysins may have activity against several 40 genera or species.

45 [0005] Bacteriophage infect their host bacteria to produce more virus particles. At the end of the reproductive cycle they are faced with a problem, how to release the progeny phage trapped within the bacterium. They solve this problem by producing an enzyme called "lysin" that degrades the cell wall of the infected bacteria to release the progeny phage. The lytic system consists of a holin and at least one peptidoglycan hydrolase, or lysis, capable of degrading the bacterial cell wall. Typically, the holin is expressed in the late stages of phage infection forming a pore in the cell membrane, allowing the lysis(s) to gain access to the cell wall peptidoglycan resulting in release of progeny phage. Significantly, exogenously added lysis, in the absence of a holin, can lyse the cell wall of healthy, uninfected cells, producing a 50 phenomenon known as "lysis from without".

Lood et al., (Antimicrobial Agents and Chemotherapy, 2015 vol. 59, no. 4, 1983-1991) described a novel phage lysis capable of killing the multidrug-resistant gram-negative bacterium *Acinetobacter baumannii* in a mouse bacteremia model.

45 SUMMARY

55 [0006] We have recently identified, purified and characterized several phage lysins that specifically attack *Acinetobacter* bacteria. This is a breakthrough since most lysins have antibacterial activity only against gram-positive bacteria. The purified phage lysins of the present invention are well suited for a variety of applications such as treatment of bacterial infections, and disinfection.

The present invention provides a polypeptide comprising an amino acid sequence that has at least 97% sequence identity to the amino acid sequence of SEQ ID NO:1 or SEQ ID NO:2, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity. The present invention also provides a conjugated polypeptide comprising: a polypeptide having an amino acid sequence that has at least 97% sequence identity to the amino acid sequence of SEQ ID NO:1 or SEQ ID NO:2, or a fragment of the polypeptide; and an antimicrobial peptide conjugated to the polypeptide or the fragment of the polypeptide, wherein the conjugated polypeptide has antibacterial activity.

The present invention further provides a composition comprising one or more polypeptides according to the claims. The present invention provides a composition according to the claims, for use in treating a subject having a bacterial infection.

The present invention also provides a composition according to the claims comprising a pharmaceutically acceptable carrier, buffering agent or preservative for use in treating a surgical wound by irrigating the surgical wound with the composition.

The present invention further provides a composition according to the claims for use in inhibiting the formation of or disrupting a bacterial biofilm in an amount effective to kill bacteria in the biofilm.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007]

Figure 1A. Negative staining electron micrograph showing phage induced from *A. baumannii* strain 1790.

Figure 1B. Negative staining electron micrograph showing phage induced from *A. baumannii* strain 1794

Figure 1C. Negative staining electron micrograph showing phage induced from *A. baumannii* strain 1796

Figure 2. A representative image of lysin clone activity in clearing live *A. baumannii* imbedded in the agar.

Figure 3. Schematic of amino acid sequences of cloned lysins showing four classes of lytic activity: i) glycosyl hydrolase family, ii) phage baseplate lysozymes, iii) lysozyme autolysins, and iv) lysins.

Figure 4. Alignment of nucleotide sequences for cloned lysins.

Figure 5. Alignment of amino acid sequences of cloned lysins.

Figure 6. Is a graph showing the lytic activity of 21 cloned constructs against thirteen, different *A. baumannii* clinical isolates.

Figure 7A, and 7B. Blebbing of the cytoplasmic membrane containing cytosolic contents from *A. baumannii* cells are observed after treatment with F307 (arrows).

Figure 8. Scanning electron micrograph of 3-day biofilms of strain 1791 *A. baumannii* before and after treatment with F307 polypeptide.

Figure 9. Is a graph showing reduction in bacterial counts on whole catheter pieces with *Acinetobacter* biofilm after treatment with F307 polypeptide.

Figure 10. Is a graph showing the survival of mice infected with *A. baumannii* treated with F307 polypeptide versus control.

Figure 11. Sequence of F307, P307 polypeptide without and with short extension (P307Ex).

Figure 12. Figure 12A is a graph a comparison of *in vitro* bactericidal activities of P307, P307SQ-8C and P307_{AE-8} against *A. baumannii* strains #1791, S5 and ATCC17978. Figure 12B shows the comparative *in vivo* bactericidal activity of P307, P307SQ-8C, and P307CS-8 against *A. baumannii* strains #1791 and S5. Figure 12C shows a comparison of the comparative *in vivo* bactericidal activity of P307SQ-8C and P307CS-8 against *A. baumannii* strains #1791, S5 and ATCC17978.

Figure 13. The *in vitro* bactericidal activities of P307 and P307SQ-8C against *A. baumannii* strain #1791 to investigate the pH optimum (13A), and NaCl optimum (13B). The same conditions, except for the variables, were used with 50 mM Tris-HCl, pH 7.5 to determine the concentration optimum (13C), and killing kinetics (13D). The error bars show standard deviation and the black horizontal line marks the limit of detection.

Figure 14. Is a graph showing the sensitivity of different bacterial species to P307 and P307SQ-8C. The error bars show standard deviation and the black horizontal line marks the limit of detection.

Figure 15. Figures 15A and 15B are graphs that show the bactericidal activities of P307 and P307SQ-8C against the log phase and stationary phase of *A. baumannii* strain No. 1791 (15A) and the biofilm phase (15B).

Figure 16. Figure 16 shows the cytotoxic effects of P307 and P307SQ-8C as measured by B cell survival (16A) and hemolysis (16B).

Figure 17. Figure 17A shows the effect of DTT at 0, 0.1 and 1 mM on the activity of P307 and P307SQ-8C. Figure 17B shows the effect of substitution of the terminal cysteine residue of P307SQ-8C with alanine (P307SQ-8A).

Figure 18. Is a DNA shift gel showing the shift for control peptide and P307.

Figure 19. Figures 7A-C show representative transmission electron microscopy images of *A. baumanii* strain no.1791: untreated control (19A), treated with 300 µg/mL P307SQ-8C for 5 minutes (19B) and for 2 hours (19C). Magnification, ×2600 (left, scale bar = 2 µm) and ×5000 (right top and bottom, scale bar = 0.5 µm). Figure 7D shows the bactericidal activity of P307SQ-8C on gram negative bacteria *K. pneumoniae* and *E. coli* at pH 7.5 and 8.8.

Figure 20. Shows the membrane permeability of *A. baumannii* strains #1791 and S5 treated with P307 and P307SQ-8C.

Figure 21. Shows the inhibition of bactericidal activity of P307 or P307SQ-8C by hydroxyl radical scavenger, thiourea and anaerobic condition.

Figure 22. Shows the effect of treatment of a skin infection with polymyxin B and P307SQ-8C.

DETAILED DESCRIPTION

[0008] The present invention provides polypeptides having antibacterial activity and for methods for using the disclosed polypeptides. As used herein, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

[0009] Terms such as "comprises", "comprised", "comprising", "contains", "containing" and the like have the meaning attributed in United States Patent law; they are inclusive or openended and do not exclude additional, un-recited elements or method steps. Terms such as "consisting essentially of" and "consists essentially of" have the meaning attributed in United States Patent law; they allow for the inclusion of additional ingredients or steps that do not materially affect the basic and novel characteristics of the claimed invention. The terms "consists of" and "consisting of" have the meaning ascribed to them in United States Patent law; namely that these terms are close ended

[0010] Described herein are polypeptides that comprise an amino acid sequence that has at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0011] The polypeptides described herein may comprise an amino acid sequence that has at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0012] The polypeptides described herein may comprise an amino acid sequence that has 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0013] Described herein are polypeptides that consist of an amino acid sequence that has at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0014] The polypeptides described herein may consist of an amino acid sequence that has at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0015] The polypeptides described herein may consist of an amino acid sequence that has 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0016] Described herein are polypeptides that comprise an amino acid sequence that has at least at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment is conjugated to an antimicrobial peptide to yield a conjugated polypeptide and the conjugated polypeptide has antibacterial activity.

[0017] The polypeptide described herein may comprise an amino acid sequence that has at least 90%, or at least 92%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide,

wherein the polypeptide or fragment is conjugated to an antimicrobial peptide to yield a conjugated polypeptide and the conjugated polypeptide has antibacterial activity.

[0018] Described herein are polypeptides that consists of an amino acid sequence that has at least at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment is conjugated to an antimicrobial peptide to yield a conjugated polypeptide and the conjugated polypeptide has antibacterial activity.

[0019] The polypeptide described herein may consist of an amino acid sequence that has at least 90%, or at least 92%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or 100%, identity to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, or SEQ ID NO:21, or a fragment of the polypeptide, wherein the polypeptide or fragment is conjugated to an antimicrobial peptide to yield a conjugated polypeptide and the conjugated polypeptide has antibacterial activity.

[0020] In some embodiments, the antimicrobial peptide comprises the amino acid sequence SQSRESQC (SEQ ID NO:44) wherein at least one amino is cysteine and 0, 1, 2, 3, 4, 5, 6, or 7 amino acids of the antimicrobial peptide are conservatively substituted. 0, 1, 2, 3, 4, 5, 6, or 7 amino acids of the antimicrobial peptide are conservatively substituted. In other embodiments, the antimicrobial peptide comprises the amino acid sequence SQSRESQC (SEQ ID NO:44). In still other embodiments, the antimicrobial peptide comprises the amino acid sequence SQSRESQC (SEQ ID NO:44) wherein 0, 1, 2, 3, 4, 5, 6, or 7 amino acids of the antimicrobial peptide are conservatively substituted and the antimicrobial peptide consists of 8 amino acids. In yet other embodiments, the antimicrobial peptide consists of the amino acid sequence SQSRESQC (SEQ ID NO:44).

[0021] In some embodiments, the antimicrobial peptide comprises the amino acid sequence CSQRQSES (SEQ ID NO:50) wherein at least one amino is cysteine and 0, 1, 2, 3, 4, 5, 6, or 7 amino acids of the antimicrobial peptide are conservatively substituted. In other embodiments, the antimicrobial peptide comprises the amino acid sequence CSQRQSES (SEQ ID NO:50). In still other embodiments, the antimicrobial peptide comprises the amino acid sequence CSQRQSES (SEQ ID NO:50) wherein 0, 1, 2, 3, 4, 5, 6, or 7, amino acids of the antimicrobial peptide are conservatively substituted and the antimicrobial peptide consists of 8 amino acids. In yet other embodiments, the antimicrobial peptide consists of the amino acid sequence CSQRQSES (SEQ ID NO:50).

[0022] In some embodiments, the C-terminus of the polypeptide or the fragment is conjugated to the antimicrobial peptide. In other embodiments, the C-terminus of the polypeptide or the fragment is conjugated to the N-terminus of the antimicrobial peptide. In still other embodiments, the N-terminus of the polypeptide or fragment is conjugated to the antimicrobial peptide. In yet other embodiments, the N-terminus of the polypeptide or fragment is conjugated to the C-terminus of the antimicrobial peptide. For any of the embodiments the antimicrobial peptide can be conjugated to the polypeptide or fragment via a peptide bond.

[0023] Another embodiment of the peptides of the present disclosure is a peptide having the amino acid sequence NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRKSQSRESQA (SEQ ID NO:45). Another embodiment is a peptide having the amino acid sequence NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRKCSQRQSES (SEQ ID NO:51).

[0024] In some embodiments the polypeptides, polypeptide fragments or conjugated polypeptides have antibacterial activity against a gram-negative bacterium. In some embodiments, the gram-negative bacterium is of the genus *Acinetobacter*.

[0025] In some embodiments the polypeptides, polypeptide fragments or conjugated polypeptides have antibacterial activity against *E. coli*, *P. aeruginosa* or *A. baumannii*.

[0026] In some embodiments the polypeptides, polypeptide fragments or conjugated polypeptides have antibacterial activity against a gram-positive bacterium. In some embodiments, the gram-positive bacterium is *S. aureus* or *B. anthracis*.

[0027] In some embodiments, the polypeptide is lyophilized.

[0028] Specific polypeptides are provided in Table 1.

Table 1

SEQ ID NO:1	F307
SEQ ID NO:2	F376
SEQ ID NO:3	F351
SEQ ID NO:4	F347

(continued)

5	SEQ ID NO:5	F344
10	SEQ ID NO:6	F340
15	SEQ ID NO:7	F338
20	SEQ ID NO:8	F336
25	SEQ ID NO:9	F334
30	SEQ ID NO:10	F332
35	SEQ ID NO:11	F330
40	SEQ ID NO:12	F328
45	SEQ ID NO:13	F324
50	SEQ ID NO:14	F321
55	SEQ ID NO:15	F320
60	SEQ ID NO:16	F315
65	SEQ ID NO:17	F306
70	SEQ ID NO:18	F303
75	SEQ ID NO:19	F301
80	SEQ ID NO:20	F309
85	SEQ ID NO:21	F311
90	SEQ ID NO:43	P307
95	SEQ ID NO:44	SQSRESQC
100	SEQ ID NO:45	P307SQ-8C (P307Ex)
105	SEQ ID NO:48	AEMLFLK
110	SEQ ID NO:49	P307AE-8
115	SEQ ID NO:50	CSQRQSES
120	SEQ ID NO:51	P307CS-8
125	SEQ ID NO:52	SQSRESQA
130	SEQ ID NO:53	P307SQ-8A

[0029] P307SQ-8C and P307Ex are used interchangeably herein.

[0030] The invention also provides for compositions comprising the polypeptides, polypeptide fragments or conjugated polypeptides of the invention. In some embodiments, the compositions are pharmaceutical compositions, which comprise a pharmaceutically acceptable carrier, buffering agent, or preservative.

[0031] In some embodiments, the pharmaceutical composition is formulated for topical administration. In other embodiments, the pharmaceutical composition is formulated for subcutaneous delivery. In still other embodiments, the pharmaceutical composition is formulated for intravenous delivery. In yet other embodiments, the pharmaceutical composition is formulated for oral delivery.

[0032] In some embodiments, the composition further comprises an antibiotic. Examples of suitable antibiotics include, but are not limited to, amoxicillin, augmentin, amoxicillin, ampicillin, azlocillin, flucloxacillin, mezlocillin, methicillin, , penicillin G, penicillin V, cephalexin, cefazidone, cefuroxime, loracarbef, cemetazole, cefotetan, cefoxitin, ciprofloxacin, levaquin, and floxacillin, tetracycline, doxycycline, or minocycline, gentamycin, amikacin, and tobramycin, clarithromycin, azithromycin, erythromycin, daptomycin, neomycin, kanamycin, or streptomycin.

[0033] In some embodiments, the pharmaceutical composition further comprises a clotting agent.

[0034] In some embodiments, the pharmaceutical composition is lyophilized.

[0035] Described herein are methods for treating a subject in need thereof, comprising administering to the subject a pharmaceutical composition comprising a polypeptide, polypeptide fragment or conjugated polypeptide of the invention,

and a pharmaceutically acceptable carrier, buffering agent, or preservative.

[0036] Described herein is a method for treating a subject in need thereof, comprising administering to the subject a pharmaceutical composition comprising a polypeptide of the invention, and a pharmaceutically acceptable carrier, buffering agent, or preservative.

5 [0037] Described herein is a method for treating a subject in need thereof, comprising administering to the subject a pharmaceutical composition comprising a polypeptide fragment of the invention, and a pharmaceutically acceptable carrier, buffering agent, or preservative.

10 [0038] The method may be a method for treating a subject in need thereof, comprising administering to the subject a pharmaceutical composition comprising a conjugated polypeptide of the invention, and a pharmaceutically acceptable carrier, buffering agent, or preservative.

15 [0039] The method may be a method for treating having a bacterial infection and the treatment is therapeutic treatment comprising administering to the subject a pharmaceutical composition comprising a conjugated polypeptide of the invention, and a pharmaceutically acceptable carrier, buffering agent, or preservative. The subject may have a bacterial infection that is non-responsive to other treatment modalities. For example, the bacterial infection may be resistant to one or more antibiotic. The bacterial infection may be a wound infection.

20 [0040] The method may be a method for prophylactically treating a subject in need thereof comprising administering to the subject a pharmaceutical composition comprising a conjugated polypeptide of the invention, and a pharmaceutically acceptable carrier, buffering agent, or preservative. In some embodiments the subject has undergone, or is undergoing surgery and the surgical wound is contacted with a pharmaceutical composition of the invention. In certain embodiments, the surgical wound is irrigated with the pharmaceutical composition prior to closure of the wound. In other embodiments the pharmaceutical composition is applied to the wound after closure, for example the pharmaceutical composition is applied to the sutured or stapled area of the wound.

25 [0041] A method may comprise administering a pharmaceutical composition of the invention is administered in combination with an antibiotic. The method may comprise topically administering a pharmaceutical composition of the invention. The method may comprise administering a pharmaceutical composition of the invention subcutaneously. The method may comprise administering a pharmaceutical composition of the invention by intravenous injection. The method may comprise administering a pharmaceutical composition of the invention orally.

30 [0042] In some embodiments, the pharmaceutical composition is in a unit dosage form. In other embodiments, the pharmaceutical composition is in the form of a cream, ointment, salve, gel, lozenge, spray, or aerosol.

35 [0043] We describe herein methods for treating a bacterial infection comprising inhibiting the formation of or disrupting a bacterial biofilm comprising administering to a subject in need thereof, a composition comprising a polypeptide, polypeptide fragment or conjugated polypeptide of the invention in an amount effective to kill bacteria in the biofilm.

[0044] Additionally provided, are methods of disinfecting an article comprising contacting the article with a composition comprising a polypeptide, polypeptide fragment or conjugated polypeptide of the invention to the article for a time sufficient to disinfect the article. The article may be a hard surface. In some embodiments, the article is a countertop, keyboard, surgical instrument, or medical device.

[0045] Additionally provided, are methods for inhibiting the formation of or disrupting a bacterial biofilm on an article comprising contacting the article with a polypeptide, polypeptide fragment or conjugated polypeptide of the invention, in an amount effective to kill bacteria in the biofilm.

40 [0046] We describe herein articles of manufacture that contain a composition comprising a polypeptide, polypeptide fragment or conjugated polypeptide of the invention. The article of manufacture may be a spray bottle that contains a polypeptide, polypeptide fragment or conjugated polypeptide of the invention.

45 [0047] The article of manufacture may contain a pharmaceutical composition comprising a polypeptide, polypeptide fragment or conjugated polypeptide of the invention and a carrier, buffering agent or preservative. The article of manufacture may be a vial. The article of manufacture may be a delivery device. The composition contained by the article of manufacture may be lyophilized.

50 [0048] Modifications and changes can be made in the structure of the polypeptides of the disclosure and still obtain a molecule having similar characteristics as the polypeptide (e.g., a conservative amino acid substitution). For example, certain amino acids can be substituted for other amino acids in a sequence without appreciable loss of activity. Because it is the interactive capacity and nature of a polypeptide that defines that polypeptide's biological functional activity, certain amino acid sequence substitutions can be made in a polypeptide sequence and nevertheless obtain a polypeptide with like properties.

55 [0049] Such amino acid substitutions are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include (original residue: exemplary substitution): (Ala: Gly, Ser), (Arg: Lys), (Asn: Gln, His), (Asp: Glu, Cys, Ser), (Gln: Asn), (Glu: Asp), (Gly: Ala), (His: Asn, Gln), (Ile: Leu, Val), (Leu: Ile, Val), (Lys: Arg), (Met: Leu, Tyr), (Ser: Thr), (Thr: Ser), (Tip: Tyr), (Tyr: Trp, Phe), and (Val: Ile, Leu). Embodiments of this disclosure thus contemplate functional or biological equivalents of a

polypeptide as set forth above. In particular, polypeptides can include variants having about 50%, 60%, 70%, 80%, 90%, and 95% sequence identity to the polypeptide of interest.

[0050] "Identity" as known in the art, is a relationship between two or more polypeptide sequences, as determined by comparing the sequences. "Identity" can be readily calculated by known algorithms well known in the art. Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity are codified in publicly available computer programs. The percent identity between two sequences can be determined using analysis software (*i.e.*, Sequence Analysis Software Package of the Genetics Computer Group, Madison Wis.) that incorporates the Needleman and Wunsch, (*J. Mol. Biol.*, 48: 443-453, 1970) algorithm (*e.g.*, NBLAST, and XBLAST).

[0051] Identity can be measured as "local identity" or "global identity". Local identity refers the degree of sequence relatedness between polypeptides as determined by the match between strings of such sequences. Global identity refers to the degree of sequence relatedness of a polypeptide compared to the full-length of a reference polypeptide. Unless specified otherwise, as used herein identity means global identity. The percentages for global identity herein are calculated using the ClustalW algorithm used through the software Mac Vector, using the default settings; both for local and global identity.

Production of polypeptides

[0052] Polypeptides of the present invention can be produced by any known method. For example, polypeptides can be produced in bacteria including, without limitation, *E. coli*, or in other existing system for polypeptide (*e.g.*, *Bacillus subtilis*, baculovirus expression systems using *Drosophila Sf9* cells, yeast or filamentous fungal expression systems, mammalian cell expression systems), or they can be chemically synthesized.

[0053] If the a polypeptide is to be produced in bacteria, *e.g.*, *E. coli*, the nucleic acid molecule encoding the peptide may also encode a leader sequence that permits the secretion of the mature peptide from the cell. Thus, the sequence encoding the peptide can include the pre sequence and the pro sequence of, for example, a naturally occurring bacterial ST peptide. The secreted, mature peptide can be purified from the culture medium.

[0054] The sequence encoding a peptide described herein is can be inserted into a vector capable of delivering and maintaining the nucleic acid molecule in a bacterial cell. The DNA molecule may be inserted into an autonomously replicating vector (suitable vectors include, for example, pGEM3Z and pcDNA3, and derivatives thereof). The vector may be a bacterial or bacteriophage DNA vector such as bacteriophage lambda or M13 and derivatives thereof. Construction of a vector containing a nucleic acid described herein can be followed by transformation of a host cell such as a bacterium. Suitable bacterial hosts include but are not limited to, *E. coli*, *B. subtilis*, *Pseudomonas*, *Salmonella*. The genetic construct also includes, in addition to the encoding nucleic acid molecule, elements that allow expression, such as a promoter and regulatory sequences. The expression vectors may contain transcriptional control sequences that control transcriptional initiation, such as promoter, enhancer, operator, and repressor sequences. A variety of transcriptional control sequences are well known to those in the art. The expression vector can also include a translation regulatory sequence (*e.g.*, an untranslated 5' sequence, an untranslated 3' sequence, or an internal ribosome entry site). The vector can be capable of autonomous replication or it can integrate into host DNA to ensure stability during peptide production.

[0055] We describe herein nucleic acids that encode a polypeptide comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, or SEQ ID NO:45, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0056] The nucleic acid may encode a polypeptide comprising an amino acid sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, or SEQ ID NO:45, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0057] The nucleic acid may encode a polypeptide consisting of an amino acid sequence nucleic acid of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, or SEQ ID NO:45, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0058] The nucleic acid may comprise the nucleotide sequence of SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID

NO:39, SEQ ID NO:40, SEQ ID NO:41, or SEQ ID NO:42.

[0059] The nucleic acid may consist of the nucleotide sequence of SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, or SEQ ID NO:42.

[0060] We describe herein an expression vector that comprises a nucleic acid that encodes a polypeptide comprising an amino acid sequence that has at least 90% sequence identity to the amino acid sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, or SEQ ID NO:45, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0061] The expression vector may comprise a nucleic acid that encodes a polypeptide comprising an amino acid sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, or SEQ ID NO:45, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0062] The expression vector may comprise a nucleic acid that encodes a polypeptide consisting of an amino acid sequence nucleic acid of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, or SEQ ID NO:45, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

[0063] The expression vector may comprise a nucleic acid that comprises the nucleotide sequence of SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, or SEQ ID NO:42.

[0064] The expression vector may comprise a nucleic acid that consists of the nucleotide sequence of SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, or SEQ ID NO:42.

[0065] Table 2 provides nucleotide SEQ ID NO: and the polypeptides they encode.

Table 2

35	Nucleotide SEQ ID NO:	Corresponding Amino Acid SEQ ID NO:	Nucleotide SEQ ID NO:	Corresponding Amino Acid SEQ ID NO:
40	22	1	33	12
	23	2	34	13
45	24	3	35	14
	25	4	36	15

Nucleotide SEQ ID NO:	Corresponding Amino Acid SEQ ID NO:	Nucleotide SEQ ID NO:	Corresponding Amino Acid SEQ ID NO:
26	5	37	16
27	6	38	17
28	7	39	18
29	8	40	19
30	9	41	20
31	10	42	21
32	11		

[0066] The nucleic acid that encodes a polypeptide described herein can also be fused to a nucleic acid encoding a peptide affinity tag, e.g., glutathione S-transferase (GST), maltose E binding protein, protein A, FLAG tag, hexa-histidine, myc tag or the influenza HA tag, in order to facilitate purification. The affinity tag or reporter fusion joins the reading frame of the peptide of interest to the reading frame of the gene encoding the affinity tag such that a translational fusion is generated. Expression of the fusion gene results in translation of a single peptide that includes both the peptide of interest and the affinity tag. In some instances where affinity tags are utilized, DNA sequence encoding a protease recognition site will be fused between the reading frames for the affinity tag and the peptide of interest.

[0067] Genetic constructs and methods suitable for production of immature and mature forms of the polypeptides and variants described herein in protein expression systems other than bacteria, and well known to those skilled in the art, can also be used to produce polypeptides in a biological system.

[0068] Polypeptides and variants thereof can be synthesized by the solid-phase method using an automated peptide synthesizer. For example, the peptide can be synthesized on Cyc(4-CH₂Bzl)-OCH₂-4-(oxymethyl)-phenylacetamidomethyl resin using a double coupling program. Peptides can also be synthesized by many other methods including solid phase synthesis using traditional Fmoc protection (i.e., coupling with DCC-HOBt and deprotection with piperidine in DMF).

Therapeutic and Prophylactic Compositions and Their Use

[0069] We described herein methods of treatment comprising administering to a subject in need thereof an effective amount of a polypeptide of the invention. The subject is human or another animal, including but not limited to primates such as monkeys and chimpanzees; livestock animals such as cows, pigs, horse or chickens; and companion animals such as dogs cats, and rodents. In a specific embodiment the subject is a human. In another specific embodiment the subject is a non-human mammal. In one embodiment the polypeptides are administered as the sole antibacterial agent. In another embodiment the polypeptides are administered in combination with one or more other antibacterial agents.

[0070] Methods of administration of the disclosed pharmaceutical compositions can be oral or parenteral and include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, intra-articular, intra-synovial, subcutaneous, intranasal, epidural, topical and oral routes. The compounds may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment, such as topical use on the skin; any suitable method known to the art may be used.

[0071] In one aspect of the invention provides for pharmaceutical compositions comprising the polypeptides of the present invention for use in treating a subject having a bacterial infection. A pharmaceutical composition may be formu-

lated for topical treatment. A pharmaceutical composition may be formulated for systemic infections.

[0072] Such compositions comprise a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier, buffering agent, or preservative. The term "pharmaceutically acceptable carrier" as used herein, includes, but is not limited to, solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, solid binders, lubricants and the like, as suited to the particular dosage form desired. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition can also contain of wetting or emulsifying agents, preservatives, or pH buffering agents. These compositions can take the form of a solution, suspension, emulsion, tablet, pill, lozenge, capsule, powder, patches for topical administration and the like. For topical applications, the pharmaceutically acceptable compositions may be formulated in a suitable ointment, lotion or cream containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene-polyoxypropylene compounds, emulsifying wax, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The composition can be formulated as a suppository with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. One of skill in the art is well versed in formulation of therapeutic agents. See e.g. Remington The Science and Practice of Pharmacy, 20th Edition, Lippincott Williams & White, Baltimore, Md. (2000); Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company, 1995).

[0073] Described herein is a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) is a notice in the form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biologic products, which notice reflects (a) approval by the agency of manufacture, use or sale for human administration, (b) directions for use, or both.

EXAMPLES

[0074] The following examples are put forth so as to provide additional information to one of skill in the art of how to make and use the polypeptides described herein, and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) however, some experimental errors and deviations should be accounted for. Unless indicated otherwise, molecular weight is average molecular weight, and the temperature is in degrees Centigrade.

Example 1

Identification of polypeptides having antibacterial activity.

[0075] Fifteen clinical isolates of *A. baumannii* were obtained from a New York hospital. Strains of *A. baumannii* were isolated and treated with mitomycin C to induce prophage induction. The supernatants were collected and phase were precipitated with polyethylene glycol (PEG). Supernatants from three of the *A. baumannii* isolates were examined by negative staining EM and images taken of the phage (Figures 1A, 1B, and 1C).

[0076] Phage DNA was separated from co-precipitated compounds by agarose gel electrophoresis and extraction of high-molecular-weight DNA. From this DNA, an expressible linker shotgun library (E-LASL) was constructed as previously described. (Schmitz JE. et al., 2008, Appl. Environ. Microbiol. 74:1649-1652.) Briefly, for all samples, 100 ng of DNA was fragmented with the restriction enzyme TSP509I (consensus sequence AATT) Following phenol-chloroform extraction and ethanol precipitation, the DNA was ligated to 40 ng of linker sequence, with a complementary 5' overhang (AATTCGGCTCGAG, where the overhang is underlined (SEQ ID NO:46). The ligation mixture was used as the template for Taq-based PCR using the linker-targeted primer CCATGACTCGAGCCGAATT (SEQ ID NO:47).

[0077] The amplified inserts were ligated into the arabinose-inducible pBAD plasmid using the pBAD TOPO® TA expression kit; Invitrogen, per the manufacturer's directions. The recombinant vectors were transformed into competent *E. coli* TOP10 (Invitrogen). To determine which clones had lytic activity, the *E. coli* were plated on LB agar supplemented with 100 µg/ml ampicillin and 5% defibrinated sheep's blood. Following overnight growth at 37°C, the plates were placed in a sealed container that was attached to the outlet of a commercial nebulizer. Nebulized arabinose was continuously pumped into the container for 1 hour. The plates were returned to 37°C and colonies were identified that developed a zone of hemolysis in the surrounding blood agar. Chosen clones were streaked onto separate LB-ampicillin plates

(lacking arabinose) and allowed to propagate without induced expression. (Schmitz JE, et al., 2010 Appl. Environ. Microbiol.76:7181-7187).

[0078] To determine killing activity for *A. baumannii*, a secondary screen was done essentially as described in Schmitz JE, et al., 2010 Appl. Environ. Microbiol.76:7181-7187. Hits were streaked as approximately 1-cm by 2-cm patches onto 5 LB-ampicillin plates supplemented with 0.2% arabinose. Following overnight incubation at 37°C, the plates were exposed to chloroform vapor to kill and permeabilize any still-viable *E. coli*. The patches were then overlaid with molten soft agar containing *A. baumannii* and observed for clearing zones. Twenty-one positive clones were identified that exhibited a clear zone around the clone. Figure 2 shows a representative screen of lysin clone activity in clearing live *A. baumannii* imbedded in the agar.

[0079] The inserts of the positive clones were sequenced and compared to the sequences in the NCBI protein database. 10 The alignments showed that among the 21 clones there are four classes of lytic activity: i) nine were in the glycosyl hydrolase family, ii) seven were phage baseplate lysozymes, iii) two were lysozyme autolysins, and iv) three were lysins. (Fig. 3). For ease of reference here in, regardless of class, the polypeptides encoded by these sequences are referred to as "lysins". Figure 4 shows a sequence alignment based on similarity of the nucleotide sequences encoding the 21 15 clones. Figure 5 shows a sequence alignment based on similarity of the polypeptide sequences of the 21 clones.

Example 2

Activity of positive clones.

[0080] Twenty-one different constructs were screened for activity against thirteen different *A. baumannii* clinical isolates. The constructs were recombinantly expressed in *E. coli*. Cells were grown at 30°C 200rpm, and when reaching 20 mid-log phase they were induced by adding 0.2% arabinose. Induction continued overnight. In the morning, cells were spun down, washed 3x with 50 mM sodium phosphate buffer pH 7.0, before being homogenized in an Emulsiflex homogenizer. Cell debris was removed by centrifugation (16000 g, 45 min) and the lysate passed through a 0.22 um 25 sterile filter to generate the crude lysate.

[0081] *A. baumannii* grown overnight in TSB, were mixed with 50°C soft agar TSB and poured onto a TSB agar plate as a top agar layer. The plate was allowed to solidify in room temperature. Crude lysates (10 ul) were added to a soft agar plate with *A. baumannii*, and incubated for 2 hours at room temperature each day, while being kept at 4°C for the 30 remainder of the time. Plates were incubated until clearing zones were visible (4-5 days). A clearing zone larger than the original spot of the crude lysate was scored. The number above each lysin indicates how many stains for which that lysin was the most efficient.

[0082] Results are shown in Figure 6. The lysin construct is shown on the x-axis and the percent of *Acinetobacter* 35 strains lysed is shown on the y-axis. The numbers above each bar indicates the number of strains for which that lysin was the most efficient, no number indicates one strain. As can be seen, Lysin F307 lysed about 90% of the strains tested and was the most active against seven strains.

Example 3

40 Lysis of *A. baumannii* by F307.

[0083] Figure 7 shows representative Transmission Electron Micrographs of *A. baumannii* strain 1791 cells after 45 treatment with F307 polypeptide. The micrographs show that F307 caused lysis through extrusion of the cytoplasmic membrane to the outside of the cell. (See Figure 7, arrows). Two 100 mL culture of *A. baumannii* strain 1791 were started in BHI media and grown in a 500 mL flask for 1.5h at 37 °C, 200 rpm. The cells were then centrifuged and washed one 50 time with 1X PBS buffer. They were then re-suspended in 1.2 mL of 1X PBS. EDTA at a final concentration of 250 µM was added to each sample. To the experimental sample 300 µL of lysin (~1.2 mg final concentration) and incubated the control (EDTA alone) and experimental (EDTA+F307 lysin) at 25°C. Time points were taken at 0.5, 1, 5, 10, 15, and 30 minutes. The reactions were quenched and cells were fixed using 2.5% Glutaraldehyde in CAC buffer (10 mm sodium cacodylate, 0.1 m CaCl₂, pH 6.5).

Example 4

[0084] Effect of F307 polypeptide on *A. baumannii* biofilms on catheters *in vitro* and *in vivo*.

[0085] In vitro treatment of catheter adherent *A. baumannii* 55 1791 with F307 lysin

[0086] Catheter tubing (CareFusion Ref#72023E) was cut using a sterile scalpel into 3-inch long sections. An overnight culture of *A. baumannii* 1791 was used to inoculate 1:1000 a 50 mL of TSB 0.2% Glucose (~1X10⁵ CFU/mL). Each 3-inch catheter tube was seeded with 300-350 µL of the 1:1000 diluted culture. The catheters were then clamped and

placed in plastic containers in a 37 °C incubator for 3 days to allow for biofilm formation to occur. After the 3 days catheters were washed twice with either PBS or Sodium Phosphate buffer pH 7.5 and then had 300-350 μ L of F307 added to the tube (~1 mg final concentration). The catheters were then clamped. Catheters were taken at time points 0, 15 minutes, 30 minutes, and 1 hour. The catheters were washed twice with 50 mM Sodium Phosphate pH 7.5 and were cut into small pieces. These were placed into a 1.5 mL ependorff tube and 500 μ L of 50 mM NaP buffer pH 7.5 was added. The tubes were sonicated for 20 minutes, and vortexed for 1 minute. The samples were then serial diluted and 20 μ L was plated onto a quadrant of a BHI agar plate and incubated at 37°C overnight. CFU's were calculated the following morning.

[0087] An approximate 4-log drop in the number of colony forming units (CFU's of *A. baumannii* was observed after 30 minutes of treatment. Table 3 shows CFU counts. Figure 8 shows Scanning Electron micrographs of 3-day biofilms of *A. baumannii* strain 1791 before and after treatment with 250 μ g F307 polypeptide.

Table 3. Treatment of *A. baumannii* biofilms on catheters.

Sample	CFU
no treatment	1.4×10^7
no treatment replicate	3.0×10^6
15 minutes F307 treatment	9.0×10^4
30 minutes F307 treatment	6.0×10^3

Example 5

[0088] Mouse Catheter Model: Several 3 inch section of catheter tubing were seeded (1:1000) with *A. baumannii* strain 1791. *A. baumannii* biofilms were formed as described above. The back of twenty BALB/C mice were shaved, their backs were sterilized, and then an incision was made to place a 1 inch section of the catheter with a biofilm already formed under the dermis of the back. The incisions were then stapled shut. After 24 hours, 250 μ l of F307 (1 mg) (n=10) or 250 μ l control vehicle (n=10) was injected directly into the catheter that was under the dermis of the mouse. The treatment was repeated after 4 hours. After 3 hours the catheters were removed from the mice, and assayed as described in Experiment 4. Figure 9 shows the reduction of bacterial counts by approximately 2-logs in mice treatment with F307 polypeptide compared with control.

Example 6

[0089] F307 polypeptide rescues mice from death after a lethal injection of *A. baumannii*.

[0090] Twenty-two C57BL/6 mice were given 10^8 CFU of *A. baumannii* strain intraperitoneally (IP). Two hours later, two mice were euthanized and organs examine as described below, ten mice injected IP with 1 mg of F307 and ten mice were injected IP with control vehicle. Treated animals showed 50% survival with this dose of lysin, whereas control mice showed only 10% survival 14 days after infection (Figure 10).

[0091] The organs from the two mice that were euthanized after infection were examined to confirm that the organs were infected with *A. baumannii* at the time of treatment with F307 polypeptide. Liver, spleen, kidney, and heart were dissected from the mice. The organs were then homogenized in 500 μ l of 1X PBS. Dilutions were made and were plated onto Brain Heart infusion (BHI) plates. The plates were incubated at 37°C overnight. The number of colony forming units was counted. Control mice were sacrificed at the two hour time point and showed Acinetobacter in all organs examined indicating that the organs were infected with *A. baumannii* at the time of treatment.

Example 7

[0092] P307 polypeptide (SEQ ID NO:43) was tested in duplicate against 18 clinical isolates of *A. baumannii* strains. *A. baumannii* strains were cultured ON to reach stationary phase. Cells were washed 3x in 20 mM Tris pH 7.5 and resuspended in the same buffer to an OD (595nm) of around 0.7. To these cells, P307(250 μ g/ml) or a corresponding volume of buffer, was added, and the mixture was allowed to incubate for 60 minutes at room temperature. Dilutions of the mixtures were made and plated on TSB Agar plates for subsequent counting of colony forming units.

[0093] P307 polypeptide treatment resulted in a 1 to 8-log drop in bacterial viability, versus control, after incubation for 60 minutes with 250 μ g of P307. Results are show in Table 4. When P307 was compared with the full length F307 polypeptide (SEQ ID NO:1) the P307 polypeptide had higher activity.

Table 4. P307 activity against 18 *A. baumannii* strains.

Strain	Control 1	Control 2	Control Average	P307 1	P307 2	P307 Average	Difference	Log drop
1775	1.00E+08	4.50E+08	2.75E+08	1.00E+07	1.50E+07	1.25E+07	2.20E+01	1.34
1776	5.50E+08	3.50E+08	4.50E+08	8.80E+05	7.50E+05	8.15E+05	5.52E+02	2.74
1777	7.00E+08	4.00E+08	5.50E+08	6.50E+06	9.00E+06	7.75E+06	7.10E+01	1.85
1788	2.00E+08	3.00E+08	2.50E+08	1.50E+07	1.20E+07	1.35E+07	1.85E+01	1.27
1789	4.50E+08	3.50E+08	4.00E+08	1.10E+07	1.30E+07	1.20E+07	3.33E+01	1.52
1790	1.50E+08	2.00E+08	1.75E+08	5.50E+05	1.80E+05	3.65E+05	4.79E+02	2.68
1791	9.0E+08	4.5E+08	6.8E+08	2.2E+05	2.2E+05	2.2E+05	3.1E+03	3.49
1792	1.2E+09	8.5E+08	1.0E+09	7.1E+05	7.5E+05	7.3E+05	1.4E+03	3.15
1793	3.5E+08	5.0E+08	4.3E+08	6.5E+05	5.6E+05	6.1E+05	7.0E+02	2.85
1794	7.5E+08	4.0E+08	5.8E+08	7.0E+05	6.0E+05	6.5E+05	8.8E+02	2.95
1795	9.5E+08	1.3E+09	1.1E+09	9.0E+06	2.5E+07	1.7E+07	6.6E+01	1.82
1796	1.0E+09	7.0E+08	8.5E+08	8.2E+05	8.2E+05	8.2E+05	1.0E+03	3.02
1797	1.2E+09	9.0E+08	1.1E+09	6.7E+05	6.5E+05	6.6E+05	1.6E+03	3.20
1798	4.0E+08	4.0E+08	4.0E+08	2.7E+05	6.5E+05	4.6E+05	8.7E+02	2.94
1799	5.5E+08	3.5E+08	4.5E+08	2.9E+07	7.0E+06	1.8E+07	2.5E+01	1.40
S1	1.4E+09	1.1E+09	1.3E+09	4.2E+07	3.0E+07	3.6E+07	3.5E+01	1.54
S3	2.5E+08	2.0E+08	2.3E+08	6.8E+05	6.5E+05	6.7E+05	3.4E+02	2.53
S5	1.1E+09	8.5E+08	9.8E+08	1.0E+00	1.0E+00	1.0E+00	9.8E+08	8.99

Example 8

[0094] Addition of a short extension peptide resulted in increased antibacterial activity of P307.

[0095] The peptide SQSRESQC (SEQ ID NO:44) is derived from hepatitis C virus and has been shown to have antimicrobial activity against gram-positive and gram-negative bacteria. We conjugated this sequence to P307 (P307Ex) to determine its effect on the activity. The sequence of F307, p307 and the P307Ex (SEQ ID Nos: 1, 43 and 45 respectively) are provided in figure 11 where a portion of the sequence of F307 is underlined to show the location of P307 and a portion of the sequence of P307 is double underline to show the location of the antimicrobial sequence.

[0096] P307 and P307Ex were assayed in duplicate against six bacterial strains. Antibacterial acidity was measured as described in Example 5. Treatment with P307Ex resulted in a 3.2 log drop in *A. baumannii* 1791 whereas treatment with P307 resulted in a 2.9 log drop demonstrating that the addition of the antimicrobial peptide increased the activity of P307. The results are shown in Table 5.

Table 5

Strain	Control 1	P307 EX1	P307 EX 2	P307Ex Average	Difference	Log drop
1775	5.00E+08	1.60E+05	1.10E+05	1.35E+05	3.70E+03	3.5
1776	5.00E+08	5.50E+05	6.50E+05	6.00E+05	8.33E+02	2.9
1777	6.50E+08	6.50E+04	2.80E+05	1.73E+05	3.77E+03	3.5
1788	3.50E+08	8.80E+05	5.80E+05	7.30E+05	4.79E+02	2.6
1789	4.00E+08	1.10E+07	1.30E+07	1.20E+07	3.33E+01	1.5
1790	2.00E+08	1.50E+04	2.00E+04	1.75E+04	1.14E+04	4.0
1791	3.50E+08	4.00E+04	4.50E+04	4.25E+04	8.24E+03	3.9

(continued)

Strain	Control 1	P307 EX1	P307 EX 2	P307Ex Average	Difference	Log drop
1792	1.00E+08	4.00E+04	5.00E+03	2.25E+04	4.44E+03	3.6
1793	1.50E+08	3.50E+04	2.00E+04	2.75E+04	5.45E+03	3.7
1794	5.00E+07	1.40E+05	1.00E+05	1.20E+05	4.17E+02	2.6
1795	4.00E+08	5.50E+04	1.30E+05	9.25E+04	4.32E+03	3.6
1796	2.50E+08	3.80E+05	2.50E+05	3.15E+05	7.94E+02	2.8
1797	2.50E+08	5.50E+06	8.50E+06	7.00E+06	3.57E+01	1.5
1798	3.50E+08	3.40E+05	3.70E+05	3.55E+05	9.86E+02	3.0
1799	3.50E+08	5.00E+03	3.00E+04	1.75E+04	2.00E+04	4.3
S1	8.50E+08	5.90E+05	7.00E+05	6.45E+05	1.32E+03	3.1
S3	3.00E+08	1.60E+07	1.40E+07	1.50E+07	2.00E+01	1.3
S5	1.50E+09	5.00E+05	2.90E+05	3.95E+05	3.80E+03	3.57

[0097] P307 and P307Ex were tested for activity against *A. baumannii* strain 1791, *E. coli*, *P. aeruginosa* strain PAO1, *S. aureus* strain RN4220, *S. aureus* strain 8325 and *B. anthracis*. As shown in Table 6, P307 and P307 were most active against *A. baumannii* and *B. anthracis*.

Table 6. P307 and P307Ex against other bacterial species.

Sample	<i>A. baumannii</i> 1791	<i>E. coli</i>	<i>B.</i> <i>anthracis</i> Δsterne	<i>Pseudomonas</i> <i>aeruginosa</i> PAO1	<i>S. aureus</i> RN4220	<i>S. aureus</i> 8325
control 1	5.50E+08	5.50E+08	2.40E+07	1.30E+09	1.50E+09	6.50E+08
control 2	2.60E+08	4.50E+08	2.80E+07	4.50E+08	7.50E+08	9.50E+08
P307EX 1	1.10E+05	3.50E+08	2.60E+03	4.70E+07	5.20E+07	3.20E+07
P307EX 2	3.90E+05	3.00E+08	2.90E+03	3.70E+07	5.80E+07	3.60E+07
P307 1	5.80E+05	3.50E+08	3.10E+03	5.60E+07	8.00E+08	4.80E+07
P307 2	3.70E+05	3.50E+08	4.00E+03	4.00E+07	4.50E+08	4.40E+07
average control	4.05E+08	5.00E+08	2.60E+07	8.75E+08	1.13E+09	8.00E+08
average P307EX	2.50E+05	3.25E+08	2.75E+03	4.20E+07	5.50E+07	3.40E+07
average P307	4.75E+05	3.50E+08	3.55E+03	4.80E+07	6.25E+08	4.60E+07
difference P307EX	1.62E+03	1.54E+00	9.45E+03	2.08E+01	2.05E+01	2.35E+01
difference P307	8.53E+02	1.43E+00	7.32E+03	1.82E+01	1.80E+00	1.74E+01
log drop P307EX	3.2	0.2	4.0	1.3	1.3	1.4
log drop P307	2.9	0.2	3.9	1.3	0.3	1.2

Example 9

[0098] P307 is not toxic to B cells or red blood cells.

[0099] P307 was mixed with red blood cells to determine if it would cause lysis. No lysis was observed at 200 µg of

P307. When P307 was tested for lysis of a B cell line it was found to have only a slight effect on cell number after 24 hours. The results are shown in Table 7.

Table 7 (% viable)

Sample	0 min	5 min	30 min	1 hour	2 hour	3 hour	24 hours
Initial cell only	97%			83.60%		85%	88.20%
Tris-HCl pH=6.8		97.20%	89.70%	94.70%	81.50%	90.90%	89.90%
200 µg P307		94.60%	1100%	71.40%	71.90%	58.60%	76.30%
20 µg P307		97.20%	88.60%	89.70%	90.30%	91.00%	94.20%
2 µg P307		95.20%	76.90%	89.30%	92.50%	93.80%	96.30%

[0100] The peptides used in Examples 10-20 were chemically synthesized.

[0101] Peptides were created using a Protein Technologies Symphony™ peptide synthesizer (PTI Tucson, Arizona, USA) on pre-coupled Wang (*p*-alkoxy-benzyl alcohol) resin (Bachem, Torrance, CA, USA). Reaction vessels were loaded at 25 µM and peptides were elongated using Fmoc protected amino acids (Anaspec, San Jose, CA, USA) (1997. Standard Fmoc protocols. 289:44-67). Deprotection of the amine was accomplished with 20% piperidine (Sigma-Aldrich) in NMP (N-methylpyrrolidinone). Repetitive coupling reactions were conducted using 0.6 M HATU/Cl-HOBT (azabenzotriazol tetramethyluronium hexafluorophosphate/6-chloro-1-hydroxybenzotriazole)(P3 Biosystems, Shelbyville, KY, USA) and 0.4 M NMM (N-methylmorpholine) using NMP (EMD) as the primary solvent (1989. New Coupling Reagents in Peptide Chemistry 30:1927-1930.). Resin cleavage and side-chain deprotection were achieved by transferring to a 100 ml round bottom flask and reacted with 4.0 ml concentrated, sequencing grade, trifluoroacetic acid (Fisher) with triisopropylsilane (Fluka), degassed water, and 3,6-dioxa-1,8-octanedithiol (DODT, Sigma-Aldrich) in a ratio of 95:2:2:1 over a 6 hour time frame. This was followed by column filtration to a 50 ml round bottom flask and TFA volume reduced to 2 ml using a rotary evaporator. A standard ether precipitation was performed on the individual peptides by transferring to a 50 ml falcon tube containing 40 ml cold tert-butyl methyl ether (TBME, Sigma-Aldrich). Samples were placed in an ice bath for 2 hours to aid precipitation followed by pellet formation using centrifugation (3300 rpm, 5 min). Excess ether was removed by vacuum aspiration and the peptide pellets were allowed to dry overnight in a fume hood. Dried peptide pellets were resolved in 20% acetonitrile and 10 ml HPLC grade water, subsampled for LC/MS and lyophilized. All crude products were subsequently analyzed by reverse-phase Aquity™ UPLC (Waters Chromatography, Milford, MA, USA) using a Waters BEH C18 column. Individual peptide integrity was verified by tandem electrospray mass spectrometry using a ThermoFinnigan LTQ™ (Thermo Fisher, Waltham, MA, USA) spectrometer system. Preparative chromatography was accomplished on a Vydac C18 RP preparative column on a Waters 600 Prep HPLC. Individual fractions were collected in 30 seconds intervals, characterized using LC/MS and fractions containing desired product were lyophilized. These were stored at -20°C until being resuspended in autoclaved Milli-Q water for various assays. The stock solutions were then stored at 4°C. The peptides are summarized with their amino acid sequences, isoelectric points (pI) and molecular weights (MW) in table 8.

Table 8

Names	Amino acid sequences	pI	MW	SEQ ID NO:
F307		10.12	16 kDa	1
P307	NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRK	10.71	3.4 kDa	43
P307AE-8	NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRK AEMEFLK	10.21	4.4 kDa	49
P307SQ-8C	NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRK SQSRESQC	10.38	4.3 kDa	45
P307CS-8	NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRK CSQRQSES	10.38	4.3 kDa	51
P307SQ-8A	NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRK SQSRESQA	10.69	4.3 kDa	53

Example 10

Comparison of *in vitro* bactericidal activities of peptides of the present disclosure.

[0102] To determine the *in vitro* bactericidal activities of the peptides, P307, P307AE-8, P307SQ-8C, and P307CS-8,

bacteria were treated with the peptides for 2 hours at room temperature. The survived cells were serially diluted and plated on TSB agar plates to determine the activity.

[0103] The bactericidal activities of 50 $\mu\text{g/mL}$ the peptides, P307, P307AE-8 and P307SQ-8C were compared by treating *A. baumannii* strains #1791, S5 and ATCC17978. P307SQ-8C was the most active, reducing about 10⁶ cfu/mL of bacteria to below the limit of detection (<10 cfu/mL). P307 was slightly more active than P307AE-8, but both peptides induced about a 3.8-log-unit decrease in viable bacteria (Fig. 2A). To investigate how the eight amino acids, SQSRESQC, contributed to the higher activity of P307SQ-8C, the same molar concentration of peptide SQSRESQC as 50 $\mu\text{g/mL}$ P307 was added by itself or in combination with P307 to *A. baumannii* strains #1791 and S5. The activities were compared with 50 $\mu\text{g/mL}$ of P307 and P307SQ-8C. The combination was only as active as P307 while SQSRESQC peptide alone has no activity (Fig. 2B). Hence the linkage is essential for the high bactericidal activity of P307SQ-8C. Next, we investigated the importance of sequence and composition. By scrambling the last eight amino acids in P307SQ-8C, we synthesized P307CS-8 with a C-terminal addition of CSQRQSES to P307. The activities of P307SQ-8C and P307CS-8 were comparable (Fig. 2C). The error bars show standard deviation and the black horizontal line marks the limit of detection. Thus, we concluded that the superior activity of P307SQ-8C derives from the composition of the last eight amino acids, regardless of the order of the last eight amino acids. For further investigation, we used P307SQ-8C because it is the most active, and compared its activity with P307.

Example 11

20 Bactericidal activities of P307 and P307SQ-8C

[0104] The effects of pH and NaCl on the *in vitro* activities of P307 and P307SQ-8C were investigated. *A. baumannii* strain #1791 were treated with 50 $\mu\text{g/mL}$ of peptides to test each condition. Two buffer systems (sodium phosphate and Tris-HCl) were used to test pH 6.8, 7.5, 8.0 and 8.8. The peptides were more active in Tris-HCl and higher pH elicited better killing (Fig. 13A). Thus, we elected to continue our *in vitro* experiments with 50 mM Tris-HCl, pH 7.5, which approximates physiological pH. The activities of both peptides were inversely proportional to the concentration of NaCl (Fig. 13B). Next, titration of P307 and killing kinetics of P307 and P307SQ-8C were investigated by treating *A. baumannii* strain #1791. The activity of P307 was concentration-dependent, beginning from 4 $\mu\text{g/mL}$ (Fig. 13C). P307SQ-8C acted faster than P307, resulting in about 3.2-log-unit decrease already at the 5 minute time point (Fig. 13D). There was no difference in activities of either peptide at room temperature or 37°C (data not shown). From these *in vitro* characterization experiments, we decided our optimal experimental conditions to be 50 mM Tris-HCl, pH 7.5, 50 $\mu\text{g/mL}$ peptides and 2 hours at room temperature (22-25°C), unless otherwise indicated.

Example 12

[0105] Next, we investigated the *in vitro* bactericidal spectra of P307 and P307SQ-8C against different bacterial species, *A. baumannii* (strain Nos. 1775, 1776, 1777, 1788, 1789, 1790, 1791, 1792, 1793, 1794, 1796, 1797, 1798, 1799, ATCC 17978 and S1, S3, D5), *Bacillus anthracis* (Δ Sterne), *Escherichia coli* (DH5 α), *Pseudomonas aeruginosa* (PA01), *Staphylococcus aureus* (RN4220) and two strains of *Klebsiella pneumonia* (ATCC 700603 and ATCC10031). These bacterial species were treated with 50 $\mu\text{g/mL}$ of P307 or P307SQ-8C in 50 mM Tris-HCl, pH 7.5 for 2 hours at room temperature to investigate the specificity of the peptides. Among the bacteria tested, *A. baumannii* strains were consistently most sensitive to the peptides, showing an average of 2.7- and 6.2-log-unit decrease with P307 and P307SQ-8C, respectively. *Bacillus anthracis*, *Pseudomonas aeruginosa* and *Staphylococcus aureus* are moderately sensitive. P307 and P307SQ-8C produced an average of about 1.3- and 2.9-log unit decrease, respectively, for these bacteria. However, *Escherichia coli* and *Klebsiella pneumoniae* are resistant to both peptides (Fig. 14).

Example 13.

[0106] In addition, to investigate the activities of the peptides against *A. baumannii* at different growth phases, we compared the sensitivities of strain #1791 at log phase, stationary phase and biofilm state. The bacteria in log phase (3 hours post inoculation of 1:100 overnight culture in fresh media) and stationary phase (overnight culture) were treated with 50 $\mu\text{g/mL}$ of P307 or P307SQ-8C for 2 hours at room temperature. The survived cells were serially diluted and plated on TSB agar plates to determine cfu/mL. (figure 15A). *A. baumannii* biofilms were established by incubating about 10⁵ cfu/mL of strain #1791 in TSB with 0.2% glucose inside about 2.5 cm long catheters for 72 hours at 37°C. The catheters were then washed to remove planktonic cells and treated with 250 $\mu\text{g/mL}$ of P307 or P307SQ-8C. After 2 hours and 24 hours at room temperature, the biofilm was thoroughly disrupted and survived cells re-suspended to be plated and counted to determine the killing efficiency of the peptides against *in vitro* biofilm. (figure 15B) The log phase organisms were slightly more sensitive to P307 than stationary phase (about 3.7- versus 2.4-log-unit decrease). There

5 seems to be no such difference with P307SQ-8C (Figure 15A). The biofilms were the most resistant of all growth phases. Biofilms were treated with 250 μ g/mL P307 or P307SQ-8C for 2 or 24 hr. After 2 hours, about 3- and 4-log-unit decrease in cfu/mL was observed with P307 and P307SQ-8C, respectively. After 24 hours, P307 produced an additional about 1.3-log-unit decrease while P307SQ-8C did not (figure 15B).

Example 14

10 [0107] In order to compare the efficiency of the peptides P307 and P307SQ-8C with some clinically used antibiotics, we performed a minimal inhibitory concentration assay for two *A. baumannii* strains, #1791 and ATCC17978. Microtiter dilution method was used to determine the MICs of levofloxacin, ceftazidime, polymyxin B, P307 and P307SQ-8C for *A. baumannii* strains #1791, #1798, S5 and ATCC17978. For the antibiotics, 1.5-2 fold serial dilutions (three lower and three higher) of the MICs determined by Etest Lood R, et al., 2015 *Antimicrob. Agents Chemother.* 59:1983-1991.) were included. For the peptides, two-fold serial dilutions (500-31.25 μ g/mL) were tested. The overnight cultures were re-suspended to OD₆₀₀ of 0.001 (about 10⁵ cfu/mL) in Mueller-Hinton broth (pH 7.9). The antibiotics or peptides were added to final 100 μ L for each dilution. The bacteria were allowed to grow at 37°C for 24 hour at 220 rpm. The absorbance at 595 nm was then read in a SpectraMax Plus Reader (Molecular Devices). The MICs were determined as the lowest concentrations of antimicrobial agents that completely inhibit bacterial growth. Alamar®Blue was used to confirm the data obtained from OD₅₉₅. The experiments were conducted at least twice in duplicate.

15 [0108] The strains displayed varying degree of sensitivity to all antimicrobial agents (Table 9).

20 Table 9

A. baumannii strains	Levofloxacin		Ceftazidime		Polymyxin B		P307		P307SQ-8C	
	μ g/mL	μ M	μ g/mL	μ M	μ g/mL	μ M	μ g/mL	μ M	μ g/mL	μ M
#1791	6	16.6	250	457	0.25	0.19	375	110	125	29
ATCC17978	\leq 0.1	0.3	12	21.9	0.25	0.19	750	220	\leq 500	\leq 11
										6

30 [0109] P307SQ-8C has a lower MIC than P307, which is in accordance with the *in vitro* killing activity (Fig. 2 and 3).

Example 15

35 [0110] Cytotoxic effects of P307 and P307SQ-8C as measured by B cell survival and hemolysis.

40 [0111] Human B-cells obtained from a rheumatic fever patient at The Rockefeller University Hospital were grown in RPMI media supplemented with 10% bovine serum, penicillin and streptomycin. Cells were harvested by low speed centrifugation, washed once in media, and resuspended in pre-warmed media to a concentration of 10⁷ cells/ml, as determined by trypan blue exclusion tests. The peptides (P307, P307SQ-8C and melittin) were serially diluted (80-0.3125 μ M) in culture media, and added to 5x10⁴ live cells. Cells were incubated for 1 hour at 37°C in a humidified 5% CO₂ atmosphere, after which they were stained (CellTiter 96 Non-radioactive cell proliferation assay; Promega) according to manufacturer's instructions. The samples were incubated for additionally 4 hours, before a Solubilization/Stop solution was added, and incubated overnight. The absorbance at 570 nm was measured in SpectraMax Plus Reader (Molecular Devices). The reactions were carried out twice in triplicate and representative data are shown as mean \pm standard deviation.

45 [0112] Human blood from a healthy individual was gathered in an EDTA-tube, and red blood cells (RBC) collected through low speed centrifugation. Cells were washed in PBS, and resuspended to a 10% RBC solution. P307 and P307SQ-8C were serially diluted in PBS (80-0.3125 μ M). PBS and 1% Triton X-100 were used as negative and positive controls, respectively. Samples were mixed, and incubated for 1 hour at 37°C. The supernatant was collected, and absorbance at 405 nm recorded through SpectraMax Plus Reader (Molecular Devices). The reactions were carried out twice in triplicate and representative data are shown as mean \pm standard deviation.

50 [0113] Serial dilutions of peptides were incubated with about 5x10⁴ live B cells for 1 hr at 37°C in a humidified 5% CO₂ atmosphere, and melittin was used as a positive control. CellTiter 96® Non-Radioactive Cell Proliferation Assay (Promega) was conducted according to manufacturer's protocol to quantify the survival of B cells. Red blood cells (RBCs) were incubated with serial dilutions of the peptides and the release of hemoglobin into the supernatant was measured by OD₄₀₅ to determine hemolysis. Triton X-100 was used as a positive control. The error bars show standard deviation.

55 [0114] The peptides were tested for their cytotoxicity using human B cells and red blood cells (RBCs). In contrast to the melittin positive control, the membranes of B cells are not affected by either P307 or P307SQ-8C. Even at the highest

concentration tested (80 μ M), the viability of the cells remains the same as the buffer control (figure 16A). Similarly, the integrity of RBCs are also not affected by either peptide in comparison to the Triton X-100 positive control (figure 16B).

Example 16

[0115] A portion of P307SQ-8C (about 25%) runs at twice the theoretical molecular weight in comparison to P307SQ-8A, which runs at 4.3 kD (data not shown). To determine the importance of disulfide bond formation for the high activity of P307SQ-8C the bactericidal activities of P307 and P307SQ-8C were compared in the presence of 0, 0.1 and 1 mM dithiothreitol (DTT). *A. baumannii* strain #1791 was treated with 50 μ g/mL P307 or 10 μ g/mL P307SQ-8C in 50 mM Tris-HCl, pH 7.5 for 2 hours at room temperature. The survived cells were serially diluted and plated on TSB agar. P307SQ-8C becomes less active with higher DTT concentration whereas the activity of P307 slightly increases (figure 17A). To further confirm the importance of disulfide formation for P307SQ-8C activity, we synthesized P307SQ-8A with the last cysteine changed to alanine. *A. baumannii* strains no. 1791 and ATCC17978 were treated with 10 μ g/mL of each peptide. The bactericidal assays of P307SQ-8C and P307SQ-8A showed that the former is slightly more active than the latter (figure 17B). These results altogether pointed out that part of the superior activity of P307SQ-8C derives from disulfide bond formation between two molecules.

Example 17

[0116] Next, we investigated whether P307 binds to DNA, given the positive charges on the peptides (net charge of +7). The peptide P307 was mixed with DNA at different peptide:DNA ratios (0:1-15:1) and incubated for 1 hour before being analyzed on an agarose gel. In comparison to positive control peptide, no shift in molecular weight was observed for P307 at any of the ratios of peptide to DNA tested (Fig. 18).

Example 18

[0117] Because the peptides did not appear to kill the bacteria by interacting with DNA, we investigated whether they affect the bacterial membrane using transmission electron microscopy (TEM). *A. baumannii* strain #1791 was treated with buffer (control) or 300 μ g/mL P307SQ-8C for 5 minutes or 2 hours. Comparing the TEM images of the samples reveals disruption of inner membrane and changes in intracellular density (Figures 19A, B and C). In addition, we found that the resistant bacteria at pH 7.5 (figure 3) were sensitive to P307 at pH 8.8, including *E. coli* and *K. pneumoniae* (figure 19D). Because the charges on the peptide do not vary as pH changes from 7.5 to 8.8, we reasoned that the changes occur on the bacterial membrane. At higher pH, the bacterial membrane becomes more negatively charged, allowing the positively charged peptides to establish stronger ionic interactions.

Example 19

[0118] Without wishes to be bound by theory, we hypothesize the following mechanism of action: P307SQ-8C interacts with the bacterial membrane to gain entry into the cell, and in the process, disrupts the cytoplasmic membrane. Membrane permeabilization is more effective when the peptide is dimerized. The disruption induces the production of reactive oxygen species such as hydroxyl radicals, which disturbs the intracellular content. To investigate this hypothesis, we determined membrane disruption using SYTOX® Green uptake assay.

[0119] Overnight cultures of bacteria were washed in 50 mM Tris-HCl pH 7.5, and resuspended to an OD₆₀₀ of 0.3 (about 10⁷ cfu/ml). Benzonase® nuclease (25 U/ml)(Novagen) and SYTOX® Green (1 μ M)(Invitrogen) was added to the bacterial cells, and incubated for 15 minutes at room temperature in the dark. Peptides were added (50 μ g/ml; 14.7 μ M P307 and 11.6 μ M P307SQ-8C, and melittin (14.7 μ M)(Sigma) was used as a control. Relative fluorescence units (RFU) were measured in a SpectraMax Plus reader (Molecular Devices) at room temperature (ex: 485 nm, em: 520 nm) for 2 hours. The reactions were carried out twice in duplicate and representative data are shown as mean \pm standard deviation.

[0120] Both peptides permeabilize the membranes of sensitive bacteria, giving rise to an increase in fluorescent signals of SYTOX® Green dye as it binds to intracellular DNA (figure 20). Hydroxyl radical formation was investigated by treating the bacteria with P307 and P307SQ-8C in the presence of hydroxyl radical scavenger, thiourea. Polymyxin B was included as a control since it has been reported that its bactericidal activity partially relies on hydroxyl radical death pathway. Thiourea (300 mM) inhibits the activity of P307 and P307SQ-8C completely (Fig. 21A). However, it cannot be disregarded that thiourea affects the activities by other pathways. Therefore, bactericidal activities were also compared under aerobic and anaerobic conditions. Since *A. baumannii* is a strictly aerobic bacteria, *E. coli* was used for the bactericidal assay with 50 mM Tris-HCl, pH 8.8. Both peptide activities were completely inhibited by anaerobic condition (Fig. 21B). Although we cannot rule out other possibilities such as effect on oxygen-dependent transport mechanism,

the current results support our hypothesis of hydroxyl radical formation.

Example 20

5 [0121] We investigated the *in vivo* activity of P307SQ-8C using mouse skin model because skin infection is a common route of disease by *A. baumannii*. The backs of 40 female CD-1 mice (6 to 8 weeks of age; Charles River Laboratories) were shaved with an electric razor. Nair™ (Hair remover lotion for body and legs, aloe and lanolin) was applied to the shaved areas to remove any remaining hair. The areas were then disinfected with alcohol wipes, and skin abrasion was induced by tape-stripping. An area of ~ 1 cm² of the tape striped skin was then marked and infected with 10 µL of about 10⁸ cfu/mL *A. baumannii* strain no. 1791. The bacteria were allowed to colonize for 16-18 hours, after which the infected area was either left untreated or treated with 200 µg of P307SQ-8C or 2 µg of polymyxin B for 2 hours. To harvest the remaining bacteria on the skin, the mice were sacrificed and the infected skin was processed in 500 µL PBS for 1 minute in a Stomacher® 80 Biomaster using a microbag (Seward Ltd., UK). The solution was serially diluted and plated on LB agar containing 4 µg/mL levofloxacin and 12 µg/mL ampicillin for selection. The resulting cfu/mL from each animal is shown as a point and the horizontal bars represent the means. Both treatments reduce the bacterial load significantly

10 [0122] (p-value = 0.0023, ordinary one-way ANOVA) (figure 22).

15

SEQUENCE LISTING

20 [0123]

<110> The Rockeffer University Office of Techonology Transfer

25 <120> ACINETOBACTER LYSINS

<130> 235932-373399

<150> 62/017,618

<151> 2014-06-26

30

<160> 53

<170> PatentIn version 3.5

35

<210> 1

<211> 146

<212> PRT

<213> Acinetobacter baumannii

40

<400> 1

45

50

55

EP 3 164 146 B1

Val Lys Thr Ser Asn Pro Gly Val Asp Leu Ile Lys Gly Phe Glu Gly
1 5 10 15

5 Leu Arg Leu Lys Ala Tyr Asp Asp Gly Val Gly Val Trp Thr Ile Gly
20 25 30

10 Phe Gly Thr Ile Lys Tyr Pro Asn Gly Val Arg Val Lys Lys Gly Asp
35 40 45

15 Thr Cys Thr Glu Ser Gln Ala Glu Glu Tyr Leu Arg Asn Asp Leu Val
50 55 60

20 Val Phe Glu Ser Ala Ile Asn Arg Leu Val Lys Val Pro Leu Asn Gln
65 70 75 80

25 Asn Gln Phe Asp Ala Leu Ala Ser Phe Thr Tyr Asn Leu Gly Glu Gly
85 90 95

30 Asn Leu Ser Ile Ser Thr Leu Leu Lys Lys Leu Asn Ala Lys Asp Tyr
100 105 110

35 Lys Gly Ala Ala Ala Glu Phe Pro Lys Trp Asn Lys Ala Gly Gly Arg
115 120 125

40 Val Leu Ala Gly Leu Val Lys Arg Arg Lys Ala Glu Met Glu Leu Phe
130 135 140

45 Leu Lys
145

<210> 2

<211> 189

40 <212> PRT

<213> Acinetobacter baumannii

45 <220>

<221> MOD_RES

<222> (105)..(105)

<223> METHYLATION, Abu

50 <400> 2

55

EP 3 164 146 B1

Met	Ser	Ala	Asn	Pro	Glu	Leu	Pro	Trp	Ile	Ala	Glu	Ala	Arg	Arg	His	
1				5					10				15			
5																
	Ile	Gly	Leu	Ala	Glu	Ile	Ala	Gly	Pro	Lys	His	Asn	Gln	Thr	Ile	Ile
			20					25						30		
10																
	Lys	Trp	Leu	Lys	Asp	Leu	Lys	Ser	Ser	Trp	Leu	Asp	Asp	Glu	Thr	Ala
				35				40						45		
15																
	Trp	Cys	Gly	Thr	Phe	Val	Ala	His	Cys	Leu	Gln	Thr	Ala	Gly	Phe	Gln
				50				55				60				
20																
	Arg	Gly	Ser	Val	Asn	Ser	Arg	Ser	Lys	Thr	Tyr	Lys	Ser	Gly	Thr	Lys
				65			70				75				80	
25																
	Ala	Pro	Pro	Gly	Phe	Tyr	Pro	Phe	Asn	Trp	Tyr	Ala	Ala	Leu	Glu	Tyr
					85				90					95		
30																
	Ile	Lys	Glu	Gly	Gly	Val	Lys	Leu	Asx	Lys	Pro	Cys	Tyr	Gly	Cys	Val
						100			105					110		
35																
	Ala	Val	Lys	Ser	Arg	Glu	Gly	Gly	Gly	His	Val	Thr	Phe	Val	Val	Gly
					115			120					125			
40																
	Lys	Thr	Pro	Thr	Gly	Lys	Leu	Ile	Cys	Leu	Gly	Gly	Asn	Gln	Ser	Asn
						130		135				140				
45																
	Lys	Val	Cys	Phe	Ala	Val	Tyr	Asp	Val	Ser	Ala	Phe	Glu	Ala	Phe	Met
				145			150				155			160		
50																
	Trp	Tyr	Gly	Lys	Thr	Ser	Lys	Pro	Ala	Ala	His	Arg	Tyr	Asp	Leu	Pro
					165				170				175			
	Val	Leu	Lys	Ile	Val	Ser	Val	Thr	Ser	Val	Ser	Glu	Ala			
					180				185							
55																
	<210> 3															
	<211> 185															
	<212> PRT															
	<213> Acinetobacter baumannii															
	<400> 3															

EP 3 164 146 B1

Leu Lys Glu Thr Glu Met Asn Ile Glu Lys Tyr Leu Asp Glu Leu Ile
1 5 10 15

5 Lys Arg Glu Gly Gly Tyr Val Asn Asn Pro Ala Asp Arg Gly Gly Ala
20 25 30

10 Thr Lys Tyr Gly Ile Thr Gln Ala Val Ala Arg Glu Asn Gly Trp Asn
35 40 45

15 Gly Asn Met Lys Asp Leu Pro Leu Asp Val Ala Lys Ala Ile Tyr Lys
50 55 60

20 Ser Ala Val Ala Glu Glu Leu Leu Asp Thr Gly Val Asn Cys Gly Thr
85 90 95

25 Gly Phe Ala Lys Pro Leu Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn
100 105 110

30 Gln Gly Lys Ala Gly Tyr Ala Asp Leu Glu Val Asp Gly Val Tyr Gly
115 120 125

35 Ser Ala Thr Leu Gly Ala Leu Lys Thr Tyr Leu Ser Lys Arg Gly Lys
130 135 140

40 Glu Gly Glu Lys Val Leu Val Arg Val Leu Asn Ile Met Gln Gly Gln
145 150 155 160

Arg Tyr Ile Glu Ile Cys Glu Arg Asn Pro Lys Gln Glu Gln Phe Phe
165 170 175

Tyr Gly Trp Ile Ala Asn Arg Ile Gly
180 185

45 <210> 4
<211> 86
<212> PRT
<213> Acinetobacter baumannii

50 <400> 4

Leu Pro Ser Thr Thr Arg Ala Glu Leu Ser Gln Thr Glu Tyr Asp Leu
1 5 10 15

55

EP 3 164 146 B1

Tyr Leu Asp Phe Thr Tyr Gln Tyr Gly Val Pro Thr Phe Ala Lys Ser
20 25 30

5 Ser Met Leu Lys His Leu Lys Ala Gly Gln Tyr Lys Ala Ala Cys Asp
35 40 45

10 Ser Leu Leu Lys Tyr Lys Tyr Val Ala Lys Arg Asp Cys Ser Val Arg
50 55 60

15 Lys Asn Gly Cys Tyr Gly Val Trp Thr Arg Gln Val Glu Arg His Ala
65 70 75 80

15 Lys Cys Ile Gly Ala Gln
85

20 <210> 5

20 <211> 195

20 <212> PRT

20 <213> Acinetobacter baumannii

25 <400> 5

25 Met Pro Pro Ser Gly Gly Phe Leu His Leu Lys Glu Thr Glu Met Asn
1 5 10 15

30 Ile Glu Gln Tyr Leu Asp Glu Leu Ile Lys Arg Glu Gly Gly Tyr Val
20 25 30

35 Asn Asn Pro Ala Asp Arg Gly Gly Glu Thr Lys Tyr Gly Ile Thr Glu
35 40 45

40 Ala Val Ala Arg Thr Asn Gly Phe Lys Gly Asn Met Lys Asp Leu Pro
50 55 60

45 Leu Asp Val Ala Lys Ala Ile Tyr Lys Lys Gln Tyr Trp Thr Asp Pro
65 70 75 80

50 Arg Phe Asp Gln Val Asn Val Ile Ser Ser Leu Val Ala Glu Glu Leu
85 90 95

55 Leu Asp Thr Gly Val Asn Cys Gly Thr Gly Phe Ala Lys Pro Leu Leu
100 105 110

60 Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly Trp Pro
115 120 125

65 Asp Leu Thr Val Asp Gly Ile Tyr Gly Pro Ala Thr Leu Asn Ala Leu
130 135 140

EP 3 164 146 B1

Lys Thr Tyr Leu Ala Lys Arg Gly Lys Asp Gly Glu Lys Val Leu Val
145 150 155 160

5 Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile Cys Glu
165 170 175

10 Arg Asn Pro Ser Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala Asn Arg
180 185 190

15 Val Val Ile
195

<210> 6

<211> 189

<212> PRT

<213> Acinetobacter baumannii

20 <400> 6

25 Met Ser Ala Asn Pro Glu Leu Pro Trp Ile Ala Glu Ala Arg Arg His
1 5 10 15

Ile Gly Leu Ala Glu Ile Ala Gly Pro Lys His Asn Gln Thr Ile Ile
20 25 30

30 Lys Trp Leu Lys Asp Leu Lys Ser Ser Trp Leu Asp Asp Glu Thr Ala
35 40 45

35 Trp Cys Gly Thr Phe Val Ala His Cys Leu Gln Thr Ala Gly Phe Gln
50 55 60

40 Arg Gly Ser Val Asn Ser Arg Ser Lys Thr Tyr Lys Ser Gly Thr Lys
65 70 75 80

Ala Pro Pro Gly Phe Tyr Pro Phe Asn Trp Tyr Ala Ala Leu Glu Tyr
85 90 95

45 Ile Lys Glu Gly Val Lys Leu Asp Lys Pro Cys Tyr Gly Cys Val
100 105 110

50 Ala Val Lys Ser Arg Glu Gly Gly His Val Thr Phe Val Val Gly
115 120 125

55 Lys Thr Pro Thr Gly Lys Leu Ile Cys Leu Gly Gly Asn Gln Ser Asn
130 135 140

Lys Val Cys Phe Ala Val Tyr Asp Val Ser Ala Phe Glu Ala Phe Met
145 150 155 160

EP 3 164 146 B1

Trp Tyr Gly Lys Thr Ser Lys Pro Ala Ala His Arg Tyr Asp Leu Pro
165 170 175

5 Val Leu Lys Ile Val Ser Val Thr Ser Val Ser Glu Ala
180 185

<210> 7

<211> 256

10 <212> PRT

<213> Acinetobacter baumannii

<400> 7

15 Met Lys Leu Ile Glu Asn Asn Ala Trp Gln Tyr Leu Ser Val Lys Leu
1 5 10 15

20 Pro Ala Val Gly Ala Phe Ile Met Leu Ile Leu Leu Pro Ala Leu Gln
20 25 30

Trp Gly Val Asp Tyr Glu Val Ile Pro Glu Lys Tyr His Ala Phe Val
35 40 45

25 Thr Gly Thr Leu Met Leu Val Leu Ser Trp Ile Gly Lys Lys Ile Ser
50 55 60

30 Gln Pro Arg Leu Asn Gly Pro Gln Leu Thr Gly Gln Leu Val Gly Ile
65 70 75 80

35 Asn Ser Leu Leu Asn Ile Pro Thr Pro Thr Lys Pro Asp Glu Leu Ala
85 90 95

40 Trp Ile Ala Glu Ala Lys Lys His Leu Gly Leu Gln Glu Ile Pro Gly
100 105 110

45 Lys Gln His Asn Pro Thr Ile Leu Lys Trp Leu Ser Glu Leu Lys Ala
115 120 125

50 Trp Trp Ala Asp Asp Glu Thr Ala Trp Cys Gly Thr Phe Val Ala His
130 135 140

Cys Leu Lys Ser Ala Gly Ile Ala Tyr Pro Lys His Trp Tyr Arg Ala
55 145 150 155 160

Leu Asp Tyr Val Asn Tyr Gly Thr Lys Leu Ala Lys Pro Ala Tyr Gly
165 170 175

55 Cys Val Ala Ile Lys Thr Arg Lys Gly Gly His Val Cys Phe Val
180 185 190

EP 3 164 146 B1

Val Gly Arg Asp Lys Lys Ser Gly Lys Leu Val Cys Leu Gly Gly Asn
195 200 205

5 Gln Ser Asn Lys Val Cys Tyr Ala Leu Tyr Asn Asp Ser Asp Phe Gln
210 215 220

10 Glu Phe Arg Trp Tyr Gly Arg Thr Thr Gln Pro Ala Ser Lys Arg Tyr
225 230 235 240

15 Thr Leu Pro Gln Leu Lys Gly Val Thr Ala Thr Arg Val Leu Glu Ala
245 250 255

15 <210> 8
<211> 256
<212> PRT
20 <213> Acinetobacter baumannii
20 <400> 8

25 Met Lys Leu Ile Glu Asn Asn Ala Trp Gln Tyr Leu Ser Val Lys Leu
1 5 10 15

30 Pro Ala Val Gly Ala Phe Ile Met Leu Ile Leu Leu Pro Ala Leu Gln
20 25 30

35 Trp Gly Val Asp Tyr Glu Val Ile Pro Glu Lys Tyr His Ala Phe Val
35 40 45

35 Thr Gly Thr Leu Met Leu Val Leu Ser Trp Ile Gly Lys Lys Ile Ser
50 55 60

40 Gln Pro Arg Leu Asn Gly Pro Gln Leu Thr Gly Gln Leu Val Gly Ile
65 70 75 80

45 Asn Ser Leu Leu Asn Ile Pro Thr Pro Thr Lys Pro Asp Glu Leu Ala
85 90 95

45 Trp Ile Ala Glu Ala Lys Lys His Leu Gly Leu Gln Glu Ile Pro Gly
100 105 110

50 Lys Gln His Asn Pro Thr Ile Leu Lys Trp Leu Ser Glu Leu Lys Ala
115 120 125

55 Trp Trp Ala Asp Asp Glu Thr Ala Trp Cys Gly Thr Phe Val Ala His
130 135 140

55 Cys Leu Lys Ser Ala Gly Ile Ala Tyr Pro Lys His Trp Tyr Arg Ala
145 150 155 160

EP 3 164 146 B1

Leu Asp Tyr Val Asn Tyr Gly Thr Lys Leu Ala Lys Pro Ala Tyr Gly
 165 170 175

5 Cys Val Ala Ile Lys Thr Arg Lys Gly Gly Gly His Val Cys Phe Val
 180 185 190

10 Val Gly Arg Asp Lys Lys Ser Gly Lys Leu Val Cys Leu Gly Gly Asn
 195 200 205

15 Gln Ser Asn Lys Val Cys Tyr Ala Leu Tyr Asn Asp Ser Asp Phe Gln
 210 215 220

Glu Phe Arg Trp Tyr Gly Arg Thr Thr Gln Pro Ala Ser Lys Arg Tyr
 225 230 235 240

20 Thr Leu Pro Gln Leu Lys Gly Val Thr Ala Thr Arg Val Leu Glu Ala
 245 250 255

<210> 9

<211> 256

25 <212> PRT

<213> Acinetobacter baumannii

<400> 9

30 Met Lys Leu Ile Glu Asn Asn Ala Trp Gln Tyr Leu Ser Val Lys Leu
 1 5 10 15

35 Pro Ala Val Gly Ala Phe Ile Met Leu Ile Leu Leu Pro Ala Leu Gln
 20 25 30

40 Trp Gly Val Asp Tyr Glu Val Ile Pro Glu Lys His His Ala Phe Val
 35 40 45

45 Thr Gly Thr Leu Met Leu Val Leu Ser Trp Ile Gly Lys Lys Ile Ser
 50 55 60

50 Gln Pro Arg Leu Asn Gly Pro Gln Leu Thr Gly Gln Leu Val Gly Ile
 65 70 75 80

55 Asn Ser Leu Leu Asn Ile Pro Thr Pro Thr Lys Pro Asp Glu Leu Ala
 85 90 95

55 Trp Ile Ala Glu Ala Lys Lys His Leu Gly Leu Gln Glu Ile Pro Gly
 100 105 110

55 Lys Gln His Asn Pro Thr Ile Leu Lys Trp Leu Ser Glu Leu Lys Ala
 115 120 125

EP 3 164 146 B1

Trp Trp Ala Asp Asp Glu Thr Ala Trp Cys Gly Thr Phe Val Ala His
130 135 140

5 Cys Leu Lys Ser Ala Gly Ile Ala Tyr Pro Lys His Trp Tyr Arg Ala
145 150 155 160

10 Leu Asp Tyr Val Asn Tyr Gly Thr Lys Leu Ala Lys Pro Ala Tyr Gly
165 170 175

15 Cys Val Ala Ile Lys Thr Arg Lys Gly Gly His Val Cys Phe Val
180 185 190

Val Gly Arg Asp Lys Lys Ser Gly Lys Leu Val Cys Leu Gly Gly Asn
195 200 205

20 Gln Ser Asn Lys Val Cys Tyr Ala Leu Tyr Asn Asp Ser Asp Phe Gln
210 215 220

25 Glu Phe Arg Trp Tyr Gly Arg Thr Thr Gln Pro Ala Gly Lys Arg Tyr
225 230 235 240

30 Thr Leu Pro Gln Leu Lys Gly Val Thr Ala Thr Arg Val Leu Glu Ala
245 250 255

35 <210> 10

<211> 256

<212> PRT

<213> Acinetobacter baumannii

40 <400> 10

45 Met Lys Leu Ile Glu Asn Asn Ala Trp Gln Tyr Leu Ser Val Lys Leu
1 5 10 15

50 Pro Ala Val Gly Ala Phe Ile Met Leu Ile Leu Leu Pro Ala Leu Gln
20 25 30

55 Trp Gly Val Asp Tyr Glu Val Ile Pro Glu Lys Tyr His Ala Phe Val
35 40 45

60 Thr Gly Thr Leu Met Leu Val Leu Ser Trp Ile Gly Lys Lys Ile Ser
50 55 60

65 Gln Pro Arg Leu Asn Gly Pro Gln Leu Thr Gly Gln Leu Val Gly Ile
65 70 75 80

70 Asn Ser Leu Leu Asn Ile Pro Thr Pro Thr Lys Pro Asp Glu Leu Ala
85 90 95

EP 3 164 146 B1

Trp Ile Ala Glu Ala Lys Lys His Leu Gly Leu Gln Glu Ile Pro Gly
100 105 110

5 Lys Gln His Asn Pro Thr Ile Leu Lys Trp Leu Ser Glu Leu Lys Ala
115 120 125

10 Trp Trp Ala Asp Asp Glu Thr Ala Trp Cys Gly Thr Phe Val Ala His
130 135 140

15 Cys Leu Lys Ser Ala Gly Ile Ala Tyr Pro Lys His Trp Tyr Arg Ala
145 150 155 160

Leu Asp Tyr Val Asn Tyr Gly Thr Lys Leu Ala Lys Pro Ala Tyr Gly
165 170 175

20 Cys Val Ala Ile Lys Thr Arg Lys Gly Gly His Val Cys Phe Val
180 185 190

25 Val Gly Arg Asp Lys Lys Ser Gly Lys Leu Val Cys Leu Gly Gly Asn
195 200 205

30 Gln Ser Asn Lys Val Cys Tyr Ala Leu Tyr Asn Asp Ser Asp Phe Gln
210 215 220

35 Glu Phe Arg Trp Tyr Gly Arg Thr Thr Gln Pro Ala Ser Lys Arg Tyr
225 230 235 240

40 Thr Leu Pro Gln Leu Lys Gly Val Thr Ala Thr Arg Val Leu Glu Ala
245 250 255

<210> 11

<211> 248

<212> PRT

<213> Acinetobacter baumannii

<400> 11

45 Leu Asp Pro Val Met Thr Met Thr Ser Ser Pro Phe His Asn Ser Ser
1 5 10 15

50 Arg Ile Leu Leu Pro Ala Leu Gln Trp Gly Val Asp Tyr Glu Val Ile
20 25 30

55 Pro Glu Lys Tyr His Ala Phe Val Thr Gly Thr Leu Met Leu Val Leu
35 40 45

Ser Trp Ile Gly Lys Lys Ile Ser Gln Pro Arg Leu Asn Gly Pro Gln
50 55 60

EP 3 164 146 B1

Leu Thr Gly Gln Leu Val Gly Ile Asn Ser Leu Leu Asn Ile Pro Thr
65 70 75 80

5 Pro Thr Lys Pro Asp Glu Leu Ala Trp Ile Ala Glu Ala Lys Lys His
85 90 95

10 Leu Gly Leu Gln Glu Ile Pro Gly Lys Gln His Asn Pro Thr Ile Leu
100 105 110

15 Lys Trp Leu Ser Glu Leu Lys Ala Trp Trp Ala Asp Asp Glu Thr Ala
115 120 125

20 Trp Cys Gly Thr Phe Val Ala His Cys Leu Lys Ser Ala Gly Ile Ala
130 135 140

25 Tyr Ser Lys His Trp Tyr Arg Ala Leu Asp Tyr Val Asn Tyr Gly Thr
145 150 155 160

30 Lys Leu Ala Lys Pro Ala Tyr Gly Cys Val Ala Ile Lys Thr Arg Lys
165 170 175

35 Gly Gly Gly Arg Val Cys Phe Val Val Gly Arg Asp Lys Lys Ser Gly
180 185 190

40 Lys Leu Val Cys Leu Gly Gly Asn Gln Ser Asn Lys Val Cys Tyr Ala
195 200 205

45 Leu Tyr Asn Asp Ser Asp Phe Gln Glu Phe Arg Trp Tyr Gly Arg Thr
210 215 220

50 Thr Gln Pro Ala Ser Lys Arg Tyr Thr Leu Pro Gln Leu Lys Gly Val
225 230 235 240

55 Thr Ala Thr Arg Val Leu Glu Ala
245

<210> 12
<211> 180
<212> PRT
<213> Acinetobacter baumannii

50 <400> 12

55 Met Lys Ile Glu Gln Tyr Leu Asp Asp Leu Ile Lys Arg Val Gly Gly
1 5 10 15

Tyr Val Asn Asn Pro Val Asp Arg Gly Gly Ala Thr Lys Tyr Gly Ile
20 25 30

EP 3 164 146 B1

Thr Glu Ala Val Ala Arg Glu Asn Gly Tyr Lys Gly Asn Met Lys Asp
35 40 45

5 Leu Pro Leu Asp Val Ala Lys Ala Ile Tyr Arg Lys Gln Tyr Trp Ile
50 55 60

10 Glu Pro Arg Phe Asp Gln Val Asn Thr Leu Ser Ser Ala Val Ala Glu
65 70 75 80

15 Glu Leu Leu Asp Thr Gly Val Asn Cys Gly Ile Asn Phe Ala Lys Pro
85 90 95

Leu Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly
100 105 110

20 Tyr Ala Asp Leu Lys Val Asp Gly Val Tyr Gly Ser Asn Thr Leu Gly
115 120 125

25 Ala Leu Lys Thr Tyr Leu Ala Lys Arg Gly Lys Glu Gly Glu Lys Val
130 135 140

30 Leu Val Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile
145 150 155 160

Cys Glu Arg Asn Lys Ser Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala
165 170 175

35 Asn Arg Ile Gly
180

<210> 13

<211> 180

40 <212> PRT

<213> Acinetobacter baumannii

<400> 13

45 Met Lys Ile Glu Gln Tyr Leu Asp Asp Leu Ile Lys Arg Glu Gly Gly
1 5 10 15

50 Tyr Val Asn Asn Pro Val Asp Arg Gly Gly Ala Thr Lys Tyr Gly Ile
20 25 30

55 Thr Glu Ala Val Ala Arg Glu Asn Gly Tyr Lys Gly Asn Met Lys Asp
35 40 45

Leu Pro Leu Asp Val Ala Lys Ala Ile Tyr Arg Lys Gln Tyr Trp Ile
50 55 60

EP 3 164 146 B1

65 Glu Pro Arg Phe Asp Gln Val Asn Thr Leu Ser Ser Ala Val Ala Glu
70 75 80

5 Glu Leu Leu Asp Thr Gly Val Asn Cys Gly Ile Asn Phe Ala Lys Pro
85 90 95

10 Leu Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly
100 105 110

15 Tyr Ala Asp Leu Lys Val Asp Gly Val Tyr Gly Ser Asn Thr Leu Gly
115 120 125

20 Ala Leu Lys Thr Tyr Leu Ala Lys Arg Gly Lys Glu Gly Glu Lys Val
130 135 140

25 Leu Val Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile
145 150 155 160

30 Cys Glu Arg Asn Lys Ser Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala
165 170 175

35 Asn Arg Ile Gly
180

40 <210> 14
<211> 180
<212> PRT
<213> Acinetobacter baumannii

45 Tyr Val Asn Asn Pro Val Asp Arg Gly Gly Ala Thr Lys Tyr Gly Ile
20 25 30

50 Thr Glu Ala Val Ala Arg Glu Asn Gly Tyr Lys Gly Asn Met Lys Asp
35 40 45

55 Leu Pro Leu Asp Val Ala Lys Ala Ile Tyr Arg Lys Gln Tyr Trp Ile
50 55 60

65 Glu Pro Arg Phe Asp Gln Val Asn Thr Leu Ser Ser Ala Val Ala Glu
70 75 80

85 Glu Leu Leu Asp Thr Gly Val Asn Cys Gly Ile Asn Phe Ala Lys Pro
90 95

EP 3 164 146 B1

Leu Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly
100 105 110

5 Tyr Ala Asp Leu Lys Val Asp Gly Val Tyr Gly Ser Asn Thr Leu Gly
115 120 125

10 Ala Leu Lys Thr Tyr Leu Ala Lys Arg Gly Lys Glu Gly Glu Lys Val
130 135 140

15 Leu Val Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile
145 150 155 160

Cys Glu Arg Asn Lys Ser Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala
165 170 175

20 Asn Arg Ile Gly
180

<210> 15

<211> 180

25 <212> PRT

<213> Acinetobacter baumannii

<400> 15

30 Met Lys Ile Glu Gln Tyr Leu Asp Asp Leu Ile Lys Arg Glu Gly Gly
1 5 10 15

35 Tyr Val Asn Asn Pro Val Asp Arg Gly Gly Ala Thr Lys Tyr Gly Ile
20 25 30

40 Thr Glu Ala Val Ala Arg Glu Asn Gly Tyr Lys Gly Asn Met Lys Asp
35 40 45

Leu Pro Leu Asp Val Ala Lys Ala Ile Tyr Arg Lys Gln Tyr Trp Ile
50 55 60

45 Glu Pro Arg Phe Asp Gln Val Asn Thr Leu Ser Ser Ala Val Ala Glu
65 70 75 80

50 Glu Leu Leu Asp Thr Gly Val Asn Cys Gly Ile Asn Phe Ala Lys Pro
85 90 95

55 Leu Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly
100 105 110

Tyr Ala Asp Leu Lys Val Asp Gly Val Tyr Gly Ser Ser Thr Leu Gly
115 120 125

EP 3 164 146 B1

Ala Leu Lys Thr Tyr Leu Ala Lys Arg Gly Lys Glu Gly Glu Lys Val
130 135 140

5 Leu Val Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile
145 150 155 160

10 Cys Glu Arg Asn Pro Lys Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala
165 170 175

15 Asn Arg Ile Gly
180

168
<211> 168
<212> PRT
<213> Acinetobacter baumannii
20 <400> 16

25 Met Ser Asn Lys Thr Lys Ile Ile Val Thr Thr Leu Ser Ala Ser Ala
1 5 10 15

30 Leu Phe Phe Ala Ser Leu Ile Gly Tyr Glu Gly Tyr Lys Ser Lys Pro
20 25 30

35 Tyr Leu Asp Ser Ala Lys Val Ala Thr Ile Gly Ile Gly Ser Thr Ser
35 40 45

35 Tyr Glu Asn Gly Thr Lys Val Lys Met Thr Asp Lys Pro Ile Thr Lys
50 55 60

40 Glu Arg Ala Val Gln Ile Ala Lys Ala His Ile Ala Lys Asp Glu Val
65 70 75 80

45 Ala Phe Arg Lys Ser Leu Gln Gly Val Arg Leu Thr Gln Thr Glu Tyr
85 90 95

45 Asp Val Tyr Leu Asp Phe Val Tyr Asn Tyr Gly Gln Ala Asn Trp Asn
100 105 110

50 Gly Ser Ser Met Leu Arg Asn Leu Lys Ala Gly Gln Tyr Lys Gln Ala
115 120 125

55 Cys Ala Ser Leu Leu Lys Tyr Lys Tyr Val Ala Lys Arg Asp Cys Ser
130 135 140

Ile Arg Ser Asn Gly Cys Tyr Gly Val Trp Thr Arg Gln Gln Asp Cys
145 150 155 160

EP 3 164 146 B1

Tyr Ser Lys Cys Met Ala Val Gln
165

<210> 17

5 <211> 168

<212> PRT

<213> Acinetobacter baumannii

<400> 17

10

Met Ser Asn Lys Thr Lys Ile Ile Val Thr Thr Leu Ser Ala Ser Ala
1 5 10 15

15 Leu Phe Phe Ala Ser Leu Ile Gly Tyr Glu Gly Tyr Lys Ser Lys Pro
20 25 30

20 Tyr Leu Asp Ser Ala Lys Val Ala Thr Ile Gly Ile Gly Ser Thr Ser
35 40 45

25 Tyr Glu Asn Gly Thr Lys Val Lys Met Thr Asp Lys Pro Ile Thr Lys
50 55 60

Glu Arg Ala Val Gln Ile Ala Lys Ala His Ile Ala Lys Asp Glu Val
65 70 75 80

30 Ala Phe Arg Lys Ser Leu Gln Gly Val Arg Leu Thr Gln Thr Glu Tyr
85 90 95

35 Asp Val Tyr Leu Asp Phe Val Tyr Asn Tyr Gly Gln Ala Asn Trp Asn
100 105 110

40 Gly Ser Ser Met Leu Arg Asn Leu Lys Ala Gly Gln Tyr Lys Gln Ala
115 120 125

Cys Ala Ser Leu Leu Lys Tyr Lys Tyr Val Ala Lys Arg Asp Cys Ser
130 135 140

45 Ile Arg Ser Asn Gly Cys Tyr Gly Val Trp Thr Arg Gln Gln Asp Arg
145 150 155 160

50 Tyr Ser Lys Cys Met Ala Val Gln
165

<210> 18

<211> 180

55 <212> PRT

<213> Acinetobacter baumannii

<400> 18

Met Lys Ile Glu Gln Tyr Leu Asp Asp Leu Ile Lys Arg Glu Gly Gly

5	1	5	10	15
10	Tyr Val Asn Asn Pro Val Asp Arg Gly Gly Ala Thr Lys Tyr Gly Ile			
	20	25		30
15	Thr Glu Ala Val Ala Arg Glu Asn Gly Tyr Lys Gly Asn Met Lys Asp			
	35	40		45
20	Leu Pro Leu Asp Val Ala Lys Ala Ile Tyr Arg Lys Gln Tyr Trp Ile			
	50	55	60	
25	Glu Pro Arg Phe Asp Gln Val Asn Thr Leu Ser Ser Ala Val Ala Glu			
	65	70	75	80
30	Glu Leu Leu Asp Thr Gly Val Asn Cys Gly Ile Asn Phe Ala Lys Pro			
	85	90		95
35	Leu Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly			
	100	105		110
40	Tyr Ala Asp Leu Lys Val Asp Gly Val Tyr Gly Ser Ser Thr Leu Gly			
	115	120	125	
45	Ala Leu Lys Thr Tyr Leu Ala Lys Arg Gly Lys Glu Gly Glu Lys Val			
	130	135	140	
50	Leu Val Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile			
	145	150	155	160
55	Cys Glu Arg Asn Pro Lys Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala			
	165	170		175
55	Asn Arg Ile Gly			
	180			

<210> 19

<211> 211

<212> PRT

<213> Acinetobacter baumannii

<400> 19

EP 3 164 146 B1

Leu Thr Lys Asn Leu Ser Leu His Phe Trp Ile Asn Ile Asn Ile Lys
1 5 10 15

5 Phe Thr Asp Gln Leu Val Ala Phe Leu Arg Leu Lys Glu Ser Glu Met
20 25 30

10 Lys Ile Glu Gln Tyr Leu Asp Asp Leu Ile Lys Arg Glu Gly Gly Tyr
15 35 40 45

15 Val Asn Asn Pro Val Asp Arg Gly Gly Ala Thr Lys Tyr Gly Ile Thr
50 55 60

20 Glu Ala Val Ala Arg Glu Asn Gly Tyr Lys Gly Asn Met Lys Asp Leu
65 70 75 80

25 Pro Leu Asp Val Ala Lys Ala Ile Tyr Arg Lys Gln Tyr Trp Ile Glu
85 90 95

30 Leu Leu Asp Thr Gly Val Asn Cys Gly Ile Asn Phe Ala Lys Pro Leu
115 120 125

35 Leu Gln Arg Ala Leu Asn Leu Leu Asn Asn Gln Gly Lys Ala Gly Tyr
130 135 140

40 Ala Asp Leu Lys Val Asp Gly Val Tyr Gly Ser Asn Thr Leu Gly Ala
145 150 155 160

45 Leu Lys Thr Tyr Leu Ala Lys Arg Gly Lys Glu Gly Glu Lys Val Leu
165 170 175

50 Val Arg Val Leu Asn Ile Met Gln Gly Gln Arg Tyr Ile Glu Ile Cys
180 185 190

Glu Arg Asn Lys Ser Gln Glu Gln Phe Phe Tyr Gly Trp Ile Ala Asn
195 200 205

55 Arg Ile Gly
210

<210> 20
<211> 180
<212> PRT
<213> Acinetobacter baumannii

Met Lys Thr Ser Asn Ser Gly Ile Asn Leu Ile Lys Gly Phe Glu Gly
 1 5 10 15

5 Lys Arg Leu Lys Ala Tyr Asp Asp Gly Val Gly Val Trp Thr Ile Gly
 20 25 30

10 Phe Gly Thr Ile Lys Tyr Pro Asn Gly Val Arg Val Lys Lys Gly Asp
 35 40 45

15 Ile Cys Thr Glu Ser Gln Ala Glu Gly Tyr Leu Arg Asn Asp Leu Val
 50 55 60

Ala Phe Glu Asn Ala Ile Asn Arg Leu Val Lys Val Pro Leu Asn Gln

20 65 70 75 80

Asn Gln Phe Asp Ala Leu Ala Ser Phe Thr Tyr Asn Leu Gly Glu Gly
 85 90 95

25 Asn Leu Ser Lys Ser Thr Leu Leu Lys Lys Leu Asn Ala Lys Asp Tyr
 100 105 110

30 Lys Gly Ala Ala Ala Glu Phe Pro Lys Trp Asn Lys Ala Gly Gly Arg
 115 120 125

35 Val Leu Ala Gly Leu Val Lys Arg Arg Lys Ala Glu Met Glu Leu Phe
 130 135 140

Leu Lys
 145

40 <210> 22
 <211> 441
 <212> DNA
 <213> Acinetobacter baumannii

45 <400> 22

50

55

gtgaaaacaa	gtaacccagg	agtggattta	atcaaaggct	ttgaaggct	acgattgaaa	60	
5	gcctatgacg	atggtgtgg	cgtttggacc	attggcttg	gcaccatcaa	atacccgaac	120
ggtgtgcgag	tcaaaaaagg	cgatacatgc	actgaatctc	aagcggaga	ataccttcgc	180	
10	aatgacttag	ttgtatttga	aagcgctatc	aatcgtttg	tgaaagttcc	gcttaatcaa	240
aaccaattcg	atgcttggc	ctcattcaact	tacaaccttgc	gtgagggcaa	tcttagtata	300	
15	tcaacttgc	taaaaaagct	taatgccaaa	gactataaag	gtgctgcagc	tgaatttcct	360
aaatggaata	aggcgggtgg	tcgtgtcttgc	gctggatttag	ttaaacgtcg	caaagctgaa	420	
atggagttat	ttttaaaatg a					441	
<210> 23							
<211> 570							
<212> DNA							
20	<213> Acinetobacter baumannii						
<400> 23							
25	ttaaggctct	gaaacactcg	taacagaaac	gatttttagg	actggtaat	cgtatcggt	60
agcagctgg	ttacttgttt	tgccatacca	cataaaggct	tcaaaagccg	aaacgtcata		120
tactgcaaaa	caaactttat	ttgactgatt	accacctaag	caaattaatt	taccagtagg		180
30	tgttttacca	acaacgaaag	ttacatggcc	accgcctct	cttgatttta	ccgcaacaca	240
cccataacaa	ggcttgyta	atttgcactcc	gccttcttgc	atgtattcaa	gtgcggcata		300
ccagttgaaa	ggataaaaagc	ctggggggc	ctttgttcc	gatttataag	ttttggAACG		360
35	cgagtttaca	cttcctttt	gaaatccgc	cgttggaga	cagtgcgcaa	cgaatgttcc	420
gcaccatgca	gtttcatcg	caagccaaga	ggactttaag	tccttcagcc	atttgcgtat		480
40	tgtctggttg	tgtttggggc	cggcgatttc	agccaaccct	atgtgacggc	gagcctctgc	540
gatccacgg	aattctggat	ttgcactcat					570
<210> 24							
<211> 558							
<212> DNA							
45	<213> Acinetobacter baumannii						
<400> 24							
50							

EP 3 164 146 B1

ctgaaggaaa	ccgaaatgaa	tattgaaaaa	tatcttgatg	aattaattaa	gcgtgaaggc	60	
gggtatgtaa	ataaccagc	tgatcgggc	ggtgcaacta	aatatggcat	cacacaagct	120	
5	gttgcgcgtg	aaaatggctg	aatggcaat	atgaaagatt	tgccgcttga	tgtggccaaa	180
gctatttaca	agaagcaata	ctggacagct	ccgcgatttgc	accaagtaaa	tgctgttct	240	
10	tctgcagtag	ctgaagagct	tctagacact	ggtgtgaatt	gcggtaccgg	atttgcaaaa	300
cctctttac	aacgagctt	gaacttgctt	aataaccaag	gtaaagctgg	atatgcagat	360	
15	ttagaggttg	atgggttta	tggctcagca	acgctaggtg	cccttaaaac	atacttgtca	420
aaacgtggga	aagaaggtga	gaagggtctg	gtgcgagtgc	tcaatattat	gcaagggcaa	480	
cgctacatttgc	aaatctgtga	gcgtaatcca	aagcaggaac	agttttctta	tggctggatt	540	
gctaaccgga	tcggctag					558	
20	<210> 25						
<211> 261							
<212> DNA							
<213> Acinetobacter baumannii							
25	<400> 25						
tcactgcgct	cctatacatt	ttgcgtgtcg	ttctacttgt	ctggccaga	cgccataaca	60	
30	cccgtttta	cgaacagagc	aatcgcgctt	tgcaacgtac	ttatatttaa	gtaaagagtc	120
gcaagctgct	ttatatttgcac	cagccttaa	atgcttaagc	attgatgatt	ttgcgaatgt	180	
35	tggcacaccg	tattgatacg	tgaaatcaag	gtataggtca	tattcagtct	gtgataattc	240
ggctcgagtt	gtggaaggca	g				261	
<210> 26							
<211> 588							
<212> DNA							
40	<213> Acinetobacter baumannii						
<400> 26							
45	tcatataaca	actcgattgg	cgatccaacc	atagaaaaac	tgttcctggc	taggattgcg	60
ttcacagatt	tcaatgtaac	gttgccttg	catgatatta	agaacacgca	ccaggacttt	120	
50							

5	ttcgcgtct tttccacgct tggccagata agtttgagt gcattaagag ttgctggacc	180
	ataaattccg tcaactgtta aatctggcca acctgctta ccttggttat tcagcaaatt	240
	taaagcacgc tgtaagagtg gtttgcaaa tccggtaccc caatttaccc cagtatctaa	300
10	aagctcttca gcaactaacg agctaattac attcaacttga tcaaatcgcg gatctgtcca	360
	atactgcttt ttataaatgg ctttggccac atcaagcggt aaatcttca tggccctt	420
	aaagccgtta gtacgtgcta ctgcttcagt aataccgtac tttgttac cgcctcgatc	480
	tgctgggttg ttacgtacc cgccttcacg cttaattaac tcgtccagat attgttcaat	540
15	gttcatttcg gtttccttca gatgtaaaaa accgccccaa ggccggcat	588
	<210> 27	
	<211> 570	
20	<212> DNA	
	<213> Acinetobacter baumannii	
	<400> 27	
25	ttaagcctct gaaacactcg taacagaaac gatTTTtagg actggtaat cgtatcggtg	60
	agcagctgggt ttacttggtt tgccatacca cataaaggct tcaaaagccg aaacgtcata	120
	tactgcaaaa caaactttat ttgactgatt accacctaag caaattaatt taccagtggg	180
30	tgtttacca acaacgaaag ttacatggcc accgcctct cttgatttta ccgcaacaca	240
	cccataacaa ggcttgcata atttgactcc gccttcttg atgtattcaa gtgcggcata	300
	ccagttgaaa ggataaaagc ctgggggc ctttggctt gatttataag ttttggAACG	360
35	cgagttaca cttccctttt gaaatccgc cgttggaga cagtgcgcaa cgaatgtcc	420
	gcaccatgca gtttcatcgta caagccaaaga ggactttaag tccttcagcc atttgatgat	480
40	tgtctgggttg tttttggggc cggcgatttc agccaaccct atgtgacggc gagcctctgc	540
	gatccacggt aattctggat ttgcactcat	570
	<210> 28	
	<211> 771	
45	<212> DNA	
	<213> Acinetobacter baumannii	
	<400> 28	

50

55

5	atgaagttaa ttgaaaacaa tgcttggcag tatctatctg ttaagttacc cgccgttaggt gcattcatca tgctaatttt attgccagca ctacaatggg gtgttgatta tgaagttatt cctgaaaaat atcatgcatt tgttactggt actttgatgc ttgttctgtc atggatggaa	60 120 180
10	aagaaaattt ctcaaccacg acttaatggc ccgcaattaa caggccagtt agtagggatc aattctttat tgaatatccc aacaccaaca aagcctgatg aattagcttg gattgcggaa gcaaaaaagc atcttggcct tcaagaaata cctggtaaac agcataaccc aactattta	240 300 360
15	aaatggctct cggagctaaa ggcttggtgg gctgacgatg aaacggcttg gtgtggacc ttcggtgcac attgcttcaa atcagctgga attgcttatac ctaagcattg gtaccgtgca	420 480
20	ttggattatg tgaattatgg tacaaaatta gctaaacccg cttacggttg tgtagctatt aaaactcgaa agggtggtgg gcatgtttgt tttgtagttg gccgtgacaa aaagtctgga aagttagtat gccttggagg caatcagtca aataaagttt gttatgcact ttataatgac	540 600 660
25	tctgactttc aagaattcag atggatgggt cgtacaactc aaccagcaag taagcgttat acattgccac aattaaaagg cgtaacagct actagggttt tggaagccta a	720 771
	<210> 29	
	<211> 771	
30	<212> DNA	
	<213> Acinetobacter baumannii	
	<400> 29	
35	ttaggcttcc aaaaccctag tagctgttac gccttttaat tgtggcaatg tataacgcctt acttgctggc tgagttgtac gaccatacca tctgaattct tgaaagtcag agtcattata	60 120
40	aagtgcataa caaaactttat ttgactgatt gcctccaagg catactaact ttccagactt tttgcacgg ccaactacaa aacaaacatg cccaccaccc ttgcagttt taatagctac	180 240
45	acaaccgtaa gcgggttttag ctaattttgt accataattc acataatcca atgcacggta ccaatgctta ggataagcaa ttccagctga tttcaagcaa tgtcaacga aggtcccaca	300 360
50	ccaagccgtt tcacgtcag cccaccaagc cttagctcc gagagccatt taaaaatagt tgggttatgc tgtttaccag gtatttctt aaggccaaga tgcttttttgc ttctgcaat	420 480
55	ccaagctaat tcacaggct ttgttgggt tggttatttc aataaagaat tgatccctac taactggcct gttaattgcg ggccattaag tcgtggttga gaaattttct ttccaatcca	540 600
	tgacagaaca agcatcaaag taccagtaac aaatgcattga tatttttcag gaataacttc ataatcaaca cccccattgtta gtgctggcaa taaaatttagc atgatgaatg cacctacggc	660 720
	gggttaactta acagatagat actgccaagc attgtttca attaacttca t	771

<210> 30
 <211> 771
 <212> DNA
 <213> Acinetobacter baumannii

5

<400> 30

	ttaggcttcc	aaaaccctag	tagctgttac	gcctttaat	tgtggcaatg	tataacgctt	60	
10	acctgctgg	ttagttgtac	gaccatacca	tctgaattct	tgaaagtca	agtca	tata	120
	aagtgcataa	caaactttat	ttgactgatt	gcctccaagg	catactaact	ttccagactt	180	
15	tttgtcacgg	ccaactacaa	aacaaacatg	cccaccaccc	tttcgagttt	taatagctac	240	
	acaaccgtaa	gcgggtttag	ctaattttgt	accataattc	acataatcca	atgcacggta	300	
20	ccaatgctta	ggataagcaa	ttccagctga	tttcaagcaa	tgtcaacga	aggcccaca	360	
	ccaagccgtt	tcatcg	tca	cccaccaagc	ctttagctcc	gagagccatt	ttaaaatagt	420
	tgggttatgc	tgttaccag	gtatttctt	aaggccaaga	tgctttttt	cttctgcaat	480	
25	ccaagcta	at	tcatcagg	ttgttgtgt	tggatattc	aataaagaat	tgatccctac	540
	taactggc	gttaattgcg	ggcattaa	tcgtgg	tttga	gaaattttct	ttccaa	600
	tgacagaaca	agcatcaa	taccag	aaatgc	tgtttt	cag	gaataactt	660
30	ataatcaaca	ccccattgt	gtgctgg	caa	taaaatt	atgc	atgatgaat	720
	gggttaactt	ta	acagatagat	actgcca	actg	ttca	attaacttca	771

<210> 31
 <211> 771
 <212> DNA
 <213> Acinetobacter baumannii

<400> 31

40

45

50

55

atgaagttaa ttgaaaacaa tgcttggcag tatctatctg tcaagttacc cgccgttaggt	60
gcattcatca tgctaatttt attgccagca ctacaatggg gtgttgatta tgaagttatt	120
5 cctgaaaaat atcatgcatt tgttactggt actttgatgc ttgttctgtc atggatggaa	180
aagaaaattt ctcaaccacg acttaatggc ccgcaattaa caggccagtt agtagggatc	240
aattctttat tgaatatccc aacaccaaca aagcctgatg aattagcttg gattgcagaa	300
10 gcaaaaaagc atcttggcct tcaagaaata cctggtaaac agcataaccc aactatttta	360
aatggctct cggagctaaa ggcttggtgg gctgacgatg aaacggcttg gtgtggacc	420
15 ttcgttgcac attgcttcaa atcagctgga attgcttatac ctaagcattg gtaccgtgca	480
ttggattatg tgaattatgg tacaaaatta gctaaacccg cttacggttg tgtagctatt	540
aaaactcgaa agggtggtgg gcatgttgt tttgtagttg gccgtgacaa aaagtctgga	600
20 aagttagtat gccttggagg caatcagtca aataaaagttt gttatgcact ttataatgac	660
tctgactttc aagaattcag atggatgggt cgtacaactc aaccagcaag taagcgttat	720
acattgccac aattaaaagg cgtaacagct actagggtt tggaaagccta a	771
25 <210> 32	
<211> 747	
<212> DNA	
30 <213> Acinetobacter baumannii	
<400> 32	
ctggatccgg tcatgacgat gacaagctcg cccttccaca actcgagccg aattttattt	60
35 ccagcaactac aatggggtgt tgattatgaa gttattcctg aaaaatatca tgcatttgg	120
actggactt tcatgcttgc tctgtcatgg attggaaaga aaatttctca accacgactt	180
40 aatggcccg aattaacagg ccagttagta gggatcaatt ctttattgaa tatcccaaca	240
ccaacaaaagc ctgtatgaatt agcttggatt gcagaagcaa aaaagcatct tggcattcaa	300
gaaatacctg gtaaacagca taacccaaact attttaaaat ggctctcgga gctaaaggct	360
45 tggtgggctg acgatgaaac ggcttggtgt gggaccttcg ttgcacattt cttgaaatca	420
gctggaattt cttattctaa gcattggatc cgtgcattgg attatgtgaa ttatggata	480
aaattagcta aacccgctta cggttggta gctattaaaa ctcgaaagggg tggtggcgt	540
50 gtttggttt tagttggccg tgacaaaaag tctggaaagt tagtatgcct tggaggcaat	600
cagtcaaata aagtttggta tgcactttat aatgactctg actttcaaga attcagatgg	660
tatggtcgtt caactcaacc agcaagtaag cgttatacat tgccacaatt aaaaggcgta	720
55 acagctacta gggtttggta agcctaa	747
<210> 33	

<211> 543
<212> DNA
<213> *Acinetobacter baumannii*

5 <400> 33

ctagccgatc cggttagcga tccagccata aaaaaactgc tcctggctt tattacgttc 60
acagattca atgtatcggtt ggccttgcata aatatttaac acgcgcacta agacctttc 120
gccttctttg ccacgtttg ccaagtaagt ttttagagct cctaaagtgt tagaaccata 180
aacggccatca accttcaagt ctgcataacc agctttacct tgattgttaa gcaagttcaa 240
agcacgttgt aaaaagtggtt ttgcaaaagtt gataccacag ttcacaccag tgtctaaaag 300
ttcttcagct actgcagagc taagagtatt aacctgatca aaacgtggct ctatccagta 360
ctgtttccga taaaattgctt tggccacatc aagaggcaaa tccttcataat tgcccttata 420
gccggtttca cgtgctacag cttcagtaat accgtatttg gtagcacctc ctgcatctac 480
tggattattt acataaccgc ctacgcgttt aatcaaatca tcaagatattt gttcaatttt 540
cat 543

25

<210> 34
<211> 543
<212> DNA
<213> *Acinetobacter baumannii*

30

atgaaaattt aacaatatct tcatgtatgg attaaacgcg aaggcggtta tgtaaataat	60
ccagtggatc gaggagggtgc taccaaatac ggtattactg aagctgttagc acgtgaaaac	120
ggctataagg gcaatatgaa agatttgccct cttgatgtgg ccaaagcaat ttatcgaaaa	180
cagtactgga tagagccacg ttttgcgttac gttataactc ttagctctgc agtagctgaa	240
gaacttttag acactgggtgt gaactgtgggt atcaacttttgc caaaaccact tttacaacgt	300
gctttgaact tgcttaacaa tcaaggtaaa gctggttatg cagacttgcg ggttgcgttgc	360
gtttatggtt ctaacactttt aggagctcta aaaacttact tggccaaacg tggccaaagaa	420
ggcgaaaaagg tattagtgcg cgtgttaat attatgcgg ag gccaaacgata cattgaaatc	480
tgtgaacgta ataaaagcca agagcagttt ttttatggct ggatcgctaa ccggatcgcc	540
tag	543

<210> 35
<211> 543
<212> DNA
<213> *Acinetobacter baumannii*

<400> 35

EP 3 164 146 B1

5	atgaaaattg aacaatatct tcatgatttg attaaacgcg aagggtgtta tgtaaataat	60
	ccagtagatc gaggaggtgc taccaaatac ggtattactg aagctgtgc acgtgaaaac	120
	ggctataagg gcaatataaa agattgcct cttgatgtgg ccaaagcaat ttatcgaaa	180
10	cagtactgga tagagccacg ttttgcacag gttataactc ttagctctgc agtagctgaa	240
	gaacttttag acactgggtgt gaactgtggt atcaactttt caaaaccact tttacaacgt	300
	gctttgaact tgcttaacaa tcaaggtaaa gctggttatg cagacttgaa ggttgcgttgc	360
15	gtttatgggtt ctaacactttt aggagctcta aaaacttact tggccaaacg tggcaaaagaa	420
	ggcgaaaagg tcttagtgcg cgtgttaat attatgcaag gccaaacgata cattgaaatc	480
	tgtgaacgta ataaaagcca agagcagttt ttttatggct ggatcgctaa ccggatcggc	540
	tag	543
20	<210> 36	
	<211> 543	
	<212> DNA	
	<213> Acinetobacter baumannii	
25	<400> 36	
30	ctagccgatc cggttagcaa tccagccata gaagaattgc tcttgcttgg gattacgctc	60
	acaaatttcg atatatcgct ggccttgcgt gatattaaga actcgcacta ggactttctc	120
	accttcttc ccacgttgg ccaagtaagt tttgagagct cctaatgtgc tagaaccata	180
35	aacgccccatca accttcaagt ctgcataacc agcttaccc tggattgttaa gcaagttcaa	240
	agcacgttgt aaaagtgggtt ttgcaaaagtt gataccacag ttcacaccag tgcgttcaaaag	300
	ttcttcagct actgcagagc taagagtatt aacctgatca aaacgtggct ctatccagta	360
40	ctgtttccga taaattgctt tggccacatc aagaggcaaa tctttcatat tgcccttata	420
	gccgtttca cgtgctacag cttcagtaat accgtattt gtagcacccctc ctgcgttctac	480
	tggattattt acataaccgc cttcgcgttt aatcaaatac tcaagatatt gttcaatttt	540
45	cat	543
50	<210> 37	
	<211> 507	
	<212> DNA	
	<213> Acinetobacter baumannii	
	<400> 37	

5	tcactgcacc gccatacact tgctataaca atcttggcgg cgtgtccaga caccataaca	60
	accattggac cgaatcgagc aatcacgctt tgcaacatata ttgtatttca gtaatgaagc	120
	acaagcttgc ttatattgcc ctgctttgag attacgaagc attgatgagc cggttccaaatt	180
10	tgcttggcca tagttgtaaa caaagtctaa gtacacatca tattcagtct gagttgcct	240
	cacgcccgtgc aacgacttgc gaaatgccac ctcatctta gcaatgtgag ctttggcaat	300
	ttgaacagca cggttctttttaatcggcatt gtcagtcatt ttgaccttgg taccgtttc	360
	ataggaagtg gatccgatac caatcggtgc cacttagcg ctatctaaat atggctttga	420
15	tttgcgttccatccatagccaa ttaaagatgc aaaaaaaagc gctgatgcgc ttaatgttgc	480
	tactatgatt ttagtcttgc ttgacat	507
20	<210> 38	
	<211> 507	
	<212> DNA	
	<213> Acinetobacter baumannii	
25	<400> 38	
	atgtcaaaaca agactaaaat catagtaaca acattaagcg catcagcgct ttttttgca	60
	tctttaatttgc gctatgaggg gtacaaatca aagccatatt tagatagcgc taaagtggca	120
30	acgattggta tcggatccac ttccatgaa aacggtacca aggtcaaaat gactgacaag	180
	ccgattacaa aagaacgtgc tgttcaaatt gccaaagctc acattgctaa agatgaggtg	240
	gcatttcgca agtcgttgc gggcgtgagg ctaactcaga ctgaatatga tttgtactta	300
35	gactttgttt acaactatgg ccaagcaaatttgg tggaaacggct catcaatgct tcgtaatctc	360
	aaagcaggc aatataagca agcttgcgt tcattactga aatacaaata ttttgcaaaag	420
40	cgtgattgct cgattcggtc caatgggtgt tatgggtctt ggacacgcca acaagatcgt	480
	tatagcaagt gtatggcggt gcaatga	507
45	<210> 39	
	<211> 543	
	<212> DNA	
	<213> Acinetobacter baumannii	
50	<400> 39	
	ctagccgatc cggttagcaa tccagccata gaagaattgc tcttgcttag gattacgctc	60
	acaaatttcg atatatcgct ggccttgcattt gatattaaga actcgcacta ggactttctc	120

actttttc ccacgttgg ccaagtaagt tttgagagct cctaatgtgc tagaaccata	180
aacgccccatca accttcaagt ctgcataacc agcttaccc tgattgttaa gcaagttcaa	240
5 agcacgttgt aaaagtgggtt ttgcaaagtt gataccacag ttcacaccag tgtctaaaag	300
ttcttcagct actgcagagc taagagtatt aacctgatca aaacgtggct ctatccagta	360
ctgtttccga taaattgctt tggccacatc aagaggcaaa tctttcatat tgcccttata	420
10 gccgtttca cgtgctacag cttcagtaat accgtatttg gtagcacctc ctgcgttac	480
tggattattt acataaccgc cttcgcgttt aatcaaatca tcaagatatt gttcaatttt	540
15 cat	543
 20 <210> 40	
<211> 636	
<212> DNA	
20 <213> Acinetobacter baumannii	
 25 <400> 40	
ctagccgatc cggttagcga tccagccata aaaaaactgc tcttggcttt tattacgttc	60
acagatttca atgtatcggtt ggcccttgcatt aatatttaac acgcgcacta agacctttc	120
gccttcttg ccacgttgg ccaagtaagt ttttagagct cctaaagtgt tagaaccata	180
30 aacgccccatca accttcaagt ctgcataacc agcttaccc tgattgttaa gcaagttcaa	240
agcacgttgt aaaagtgggtt ttgcaaagtt gataccacag ttcacaccag tgtctaaaag	300
ttcttcagct actgcagagc taagagtattt aacctgatca aaacgtggct ctatccagta	360
35 ctgtttccga taaattgctt tggccacatc aagaggcaaa tctttcatat tgcccttata	420
gccgtttca cgtgctacag cttcagtaat accgtatttg gtagcacctc ctgcgttac	480
40 tggattattt acataaccgc cttcgcgttt aatcaaatca tcaagatatt gttcaatttt	540
catttactt tccttttagac gtaaaaaaagc caccagttga tccgtgaact tgatatttt	600
attgatccag aagtgcagggc tgagggtttt ggtcag	636
 45 <210> 41	
<211> 543	
<212> DNA	
<213> Acinetobacter baumannii	
50 <400> 41	

EP 3 164 146 B1

atgaaaattg aacaatatct tcatgatttg attaaacgcg aaggcggta tggaaataat 60
 ccagtagatc gaggaggtgc taccaaatac ggtattactg aagctgtgc acgtgaaaac 120
 5 ggctataagg gcaatatgaa agattgcct cttgatgtgg ccaaagcaat ttatcgaaa 180
 cagtactgga tagagccacg tttgatcag gttataactc ttagctctgc agtagctgaa 240
 10 gaacttttag acactggtgt gaactgtggt atcaactttg caaaaccact tttacaacgt 300
 gcttgaact tgcttaacaa tcaaggtaaa gctggtata cagactgaa ggttcatggc 360

gtttatggtt ctagcacatt aggagctctc aaaacttact tggccaaacg tggaaagaa 420
 15 ggtgagaaag tcctagtgcg agttcttaat atcatgcaag gccagcgata tattcgaaatt 480
 tgtgagcgta atcctaagca agagcaattc ttctatggct ggattgctaa ccggatcgcc 540
 20 tag 543

25 <210> 42

<211> 441

<212> DNA

25 <213> Acinetobacter baumannii

30 <400> 42

tcattttaaa aataactcca tttcagcttt gcgcacgttc accagtcctg ccaatacacg 60
 35 accgcacgt ttgttccatt ttgggaattc tgctgctgca cctttatagt ccttagcatt 120
 taactttttt agcaaaatgtt atttgctaag attgccttcg cctaaatgtt aagtgaatga 180
 ggccaaagca tcgaattgggt tttgattaag tggtactttc accaagcgat tgatagcatt 240
 ttcaaatgcg accaagtcat tgcgaagata tccttctgct tgagactcag tgcataatc 300
 40 gcctttttt acacgcactc cattaggata tttaattgtt ccaaataccaa tggtccaaac 360
 gcccacacca tcgtcatagg ctttccaaacg tttaccttca aaggccttga ttagattgt 420
 tcctgagtttta cttgttttca t 441

45 <210> 43

<211> 31

<212> PRT

45 <213> Acinetobacter baumannii

50 <400> 43

Asn	Ala	Lys	Asp	Tyr	Lys	Gly	Ala	Ala	Glu	Phe	Pro	Lys	Trp	Asn
1					5				10			15		

Lys	Ala	Gly	Gly	Arg	Val	Leu	Ala	Gly	Leu	Val	Lys	Arg	Arg	Lys
					20				25			30		

55 <210> 44

<211> 8
<212> PRT
<213> Artificial Sequence

5 <220>
 <223> Ex

<400> 44

10 **Ser Gln Ser Arg Glu Ser Gln Cys**
 1 5

<210> 45
<211> 39
15 <212> PRT
 <213> Artificial Sequence

<220>
20 <223> P307Ex
<400> 45

25 **Asn Ala Lys Asp Tyr Lys Gly Ala Ala Ala Glu Phe Pro Lys Trp Asn**
 1 5 10 15

Lys Ala Gly Gly Arg Val Leu Ala Gly Leu Val Lys Arg Arg Lys Ser
 20 25 30

30 **Gln Ser Arg Glu Ser Gln Cys**
 35

35 <210> 46
 <211> 13
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Primer

<400> 46

45 **Ala Ala Thr Thr Cys Gly Gly Cys Thr Cys Gly Ala Gly**
 1 5 10

50 <210> 47
 <211> 19
 <212> PRT
 <213> Artificial Sequence

<220>
55 <223> Primer

<400> 47

Cys Cys Ala Thr Gly Ala Cys Thr Cys Gly Ala Gly Cys Cys Gly Ala
 1 5 10 15

5 Ala Thr Thr

<210> 48

<211> 7

<212> PRT

10 <213> Artificial Sequence

<220>

<223> Peptide Extension

15 <400> 48

Ala Glu Met Leu Phe Leu Lys
 1 5

20 <210> 49

<211> 39

<212> PRT

<213> Artificial Sequence

25 <220>

<223> P307AE-8

<400> 49

30 Asn Ala Lys Asp Tyr Lys Gly Ala Ala Ala Glu Phe Pro Lys Trp Asn
 1 5 10 15

35 Lys Ala Gly Gly Arg Val Leu Ala Gly Leu Val Lys Arg Arg Lys Ala
 20 25 30

Glu Met Glu Leu Phe Leu Lys
 35

40

<210> 50

<211> 8

<212> PRT

<213> Artificial Sequence

45

<220>

<223> Peptide Extension

<400> 50

50

Cys Ser Gln Arg Gln Ser Glu Ser
 1 5

<210> 51

<211> 39

<212> PRT

<213> Artificial Sequence

<220>
<223> P307CS-8

5 <400> 51

Asn Ala Lys Asp Tyr Lys Gly Ala Ala Ala Glu Phe Pro Lys Trp Asn
1 5 10 15

10 Lys Ala Gly Gly Arg Val Leu Ala Gly Leu Val Lys Arg Arg Lys Cys
20 25 30

15 Ser Gln Arg Gln Ser Glu Ser
35

<210> 52

<211> 8

<212> PRT

20 <213> Artificial Sequence

<220>

<223> Peptide Extension

25 <400> 52

Ser Gln Ser Arg Glu Ser Gln Ala
1 5

30 <210> 53

<211> 39

<212> PRT

<213> Artificial Sequence

35 <220>

<223> P307SQ-8A

<400> 53

40 Asn Ala Lys Asp Tyr Lys Gly Ala Ala Ala Glu Phe Pro Lys Trp Asn
1 5 10 15

45 Lys Ala Gly Gly Arg Val Leu Ala Gly Leu Val Lys Arg Arg Lys Ser
20 25 30

Gln Ser Arg Glu Ser Gln Ala
35

50

Claims

1. A polypeptide comprising an amino acid sequence that has at least 97% sequence identity to the amino acid sequence of SEQ ID NO:1 or SEQ ID NO:2, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.
2. The polypeptide according to claim 1, wherein the polypeptide consists of the amino acid sequence of SEQ ID NO:1

or SEQ ID NO:2, or a fragment of the polypeptide, wherein the polypeptide or fragment has antibacterial activity.

3. A conjugated polypeptide comprising: the polypeptide or fragment of claim 1; and an antimicrobial peptide conjugated to the polypeptide or the fragment of the polypeptide, wherein the conjugated polypeptide has antibacterial activity.

5

4. The conjugated polypeptide according to claim 3, wherein the antimicrobial peptide comprises the eight amino acids C, S, Q, R, S, E and S in any order.

10

5. The conjugated polypeptide according to claim 4, wherein the antimicrobial peptide has the amino acid sequence SQSRESQC (SEQ ID NO:44) or CSQRQSES (SEQ ID NO:50).

6. The conjugated polypeptide according to claim 3, wherein the conjugated polypeptide comprises the amino acid sequence of SEQ ID NO:45 or SEQ ID NO:51.

15

7. The conjugated polypeptide according to any one of claims 3-5, wherein the C-terminus of the polypeptide or fragment is conjugated to the antimicrobial peptide or wherein the N-terminus of the polypeptide or fragment is conjugated to the antimicrobial peptide.

20

8. The conjugated polypeptide according to any one of claims 3-7, wherein the conjugated polypeptide has antibacterial activity against a gram negative bacterium or wherein the conjugated polypeptide has antibacterial activity against a gram positive bacterium.

9. A composition comprising one or more polypeptide according to any one of claims 1-8.

25

10. The composition according to claim 9, for use in treating a subject having a bacterial infection.

11. The composition according to claim 9 and a pharmaceutically acceptable carrier, buffering agent or preservative for use in treating a surgical wound by irrigating the surgical wound with the composition.

30

12. The composition for use according to claim 11, wherein the surgical wound is irrigated prior to surgical closure of the wound.

13. The composition according to claim 9, for use in inhibiting the formation of or disrupting a bacterial biofilm in an amount effective to kill bacteria in the biofilm.

35

14. Method for inhibiting the formation of or disrupting a bacterial biofilm on an article comprising contacting the article with the composition of claim 9 in an amount effective to kill bacteria in the biofilm.

40

15. The method according to claim 14, wherein the article is a countertop, keyboard, surgical instrument, or medical device.

Patentansprüche

- 45 1. Polypeptid, umfassend eine Aminosäuresequenz, die eine Sequenzidentität von wenigstens 97% mit der Aminosäuresequenz unter SEQ ID NO:1 oder SEQ ID NO:2 aufweist, oder ein Fragment des Polypeptids, wobei das Polypeptid bzw. Fragment antibakterielle Aktivität besitzt.

50

2. Polypeptid nach Anspruch 1, wobei das Polypeptid aus der Aminosäuresequenz unter SEQ ID NO:1 oder SEQ ID NO:2 besteht, oder ein Fragment des Polypeptids, wobei das Polypeptid bzw. Fragment antibakterielle Aktivität besitzt.

55

3. Konjugiertes Polypeptid, umfassend: das Polypeptid oder Fragment gemäß Anspruch 1 und ein an das Polypeptid bzw. Fragment des Polypeptids konjugiertes antimikrobielles Peptid, wobei das konjugierte Polypeptid antibakterielle Aktivität besitzt.

4. Konjugiertes Polypeptid nach Anspruch 3, wobei das antimikrobielle Peptid die acht Aminosäuren C, S, Q, R, S, E and S in beliebiger Reihenfolge umfasst.

5. Konjugiertes Polypeptid nach Anspruch 4, wobei das antimikrobielle Peptid die Aminosäuresequenz SQSRESQC (SEQ ID NO:44) oder CSQRQSES (SEQ ID NO:50) aufweist.
6. Konjugiertes Polypeptid nach Anspruch 3, wobei das konjugierte Polypeptid die Aminosäuresequenz unter SEQ ID NO:45 oder SEQ ID NO:51 umfasst.
7. Konjugiertes Polypeptid nach einem der Ansprüche 3-5, wobei der C-Terminus des Polypeptids oder Fragments an das antimikrobielle Peptid konjugiert ist oder wobei der N-Terminus des Polypeptids oder Fragments an das antimikrobielle Peptid konjugiert ist.
8. Konjugiertes Polypeptid nach einem der Ansprüche 3-7, wobei das konjugierte Polypeptid antibakterielle Aktivität gegen ein gramnegatives Bakterium besitzt oder wobei das konjugierte Polypeptid antibakterielle Aktivität gegen ein grampositives Bakterium besitzt.
15. 9. Zusammensetzung, umfassend ein oder mehrere Polypeptide nach einem der Ansprüche 1-8.
10. 10. Zusammensetzung nach Anspruch 9, zur Verwendung bei der Behandlung eines an einer bakteriellen Infektion leidenden Individuums.
20. 11. Zusammensetzung nach Anspruch 9 und ein pharmazeutisch unbedenkliches Träger-, Pufferungs- oder Konserverungsmittel zur Verwendung bei der Behandlung einer Operationswunde durch Tränken der Operationswunde mit der Zusammensetzung.
25. 12. Zusammensetzung zur Verwendung nach Anspruch 11, wobei die Operationswunde vor dem chirurgischen Schließen der Wunde getränkt wird.
13. Zusammensetzung nach Anspruch 9, zur Verwendung beim Hemmen der Bildung oder Aufbrechen eines bakteriellen Biofilms in einer zur Abtötung von Bakterien im Biofilm wirksamen Menge.
30. 14. Verfahren zum Hemmen der Bildung oder Aufbrechen eines bakteriellen Biofilms auf einem Artikel, umfassend Inkontaktrbringen des Artikels mit der Zusammensetzung nach Anspruch 9 in einer zur Abtötung von Bakterien im Biofilm wirksamen Menge.
35. 15. Verfahren nach Anspruch 14, wobei es sich bei dem Artikel um eine Arbeitsplatte, Tastatur, ein chirurgisches Instrument oder eine medizinische Vorrichtung handelt.

Revendications

40. 1. Polypeptide, ou fragment du polypeptide, comprenant une séquence d'acides aminés qui a une identité de séquence d'au moins 97% avec la séquence d'acides aminés de SEQ ID n° : 1 ou de SEQ ID n° : 2, le polypeptide ou le fragment ayant une activité antibactérienne.
45. 2. Polypeptide ou fragment du polypeptide selon la revendication 1, le polypeptide étant constitué par la séquence d'acides aminés de SEQ ID n° : 1 ou de SEQ ID n° : 2, le polypeptide ou le fragment ayant une activité antibactérienne.
50. 3. Polypeptide conjugué comprenant : le polypeptide ou le fragment de la revendication 1 ; et un peptide antimicrobien conjugué au polypeptide ou au fragment du polypeptide, le polypeptide conjugué ayant une activité antibactérienne.
4. Polypeptide conjugué selon la revendication 3, dans lequel le peptide antimicrobien comprend les huit acides aminés C, S, Q, R, S, E et S dans un ordre quelconque.
55. 5. Polypeptide conjugué selon la revendication 4, dans lequel le peptide antimicrobien a la séquence d'acides aminés SQSRESQC (SEQ ID n° : 44) ou la CSQRQSES (SEQ ID n° : 50).
6. Polypeptide conjugué selon la revendication 3, le polypeptide conjugué comprenant la séquence d'acides aminés de SEQ ID n° : 45 ou de SEQ ID n° : 51.

7. Polypeptide conjugué selon l'une quelconque des revendications 3 à 5, dans lequel l'extrémité C-terminale du polypeptide ou du fragment est conjuguée au peptide antimicrobien ou dans lequel l'extrémité N-terminale du polypeptide ou du fragment est conjuguée au peptide antimicrobien.

5 8. Polypeptide conjugué selon l'une quelconque des revendications 3 à 7, le polypeptide conjugué ayant une activité antibactérienne contre une bactérie Gram négatif ou le polypeptide conjugué ayant une activité antibactérienne contre une bactérie Gram positif.

10 9. Composition comprenant un ou plusieurs polypeptide(s) selon l'une quelconque des revendications 1 à 8.

10 10. Composition selon la revendication 9, destinée à être utilisée dans le traitement d'un sujet ayant une infection bactérienne.

15 11. Composition, selon la revendication 9, et un véhicule acceptable d'un point de vue pharmaceutique, un agent de tamponnage ou un conservateur destinés à être utilisés dans le traitement d'une plaie chirurgicale par une irrigation de la plaie chirurgicale avec la composition.

20 12. Composition destinée à être utilisée selon la revendication 11, dans laquelle la plaie chirurgicale est irriguée avant la fermeture chirurgicale de la plaie.

25 13. Composition selon la revendication 9, destinée à être utilisée dans l'inhibition de la formation d'un biofilm bactérien ou dans l'interruption de celui-ci en une quantité efficace pour tuer les bactéries dans le biofilm.

25 14. Procédé destiné à inhiber la formation d'un biofilm bactérien ou à interrompre celui-ci sur un article, comprenant la mise en contact de l'article avec la composition de la revendication 9 en une quantité efficace pour tuer les bactéries dans le biofilm.

30 15. Procédé selon la revendication 14, dans lequel l'article est un comptoir, un clavier, un instrument chirurgical ou un dispositif médical.

35

40

45

50

55

FIG. 1A

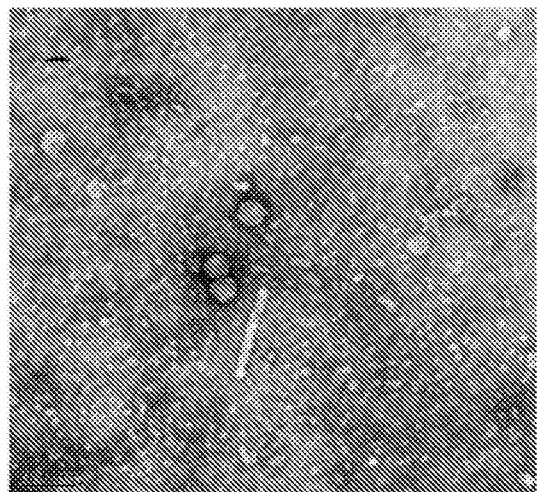
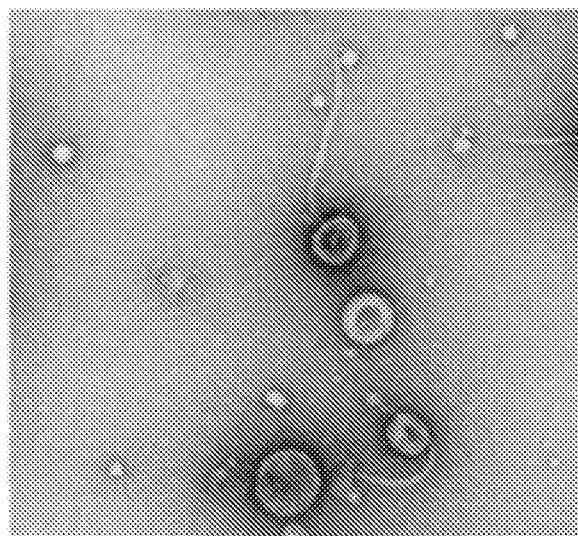



FIG. 1B

FIG. 1C

EP 3 164 146 B1

FIG. 2

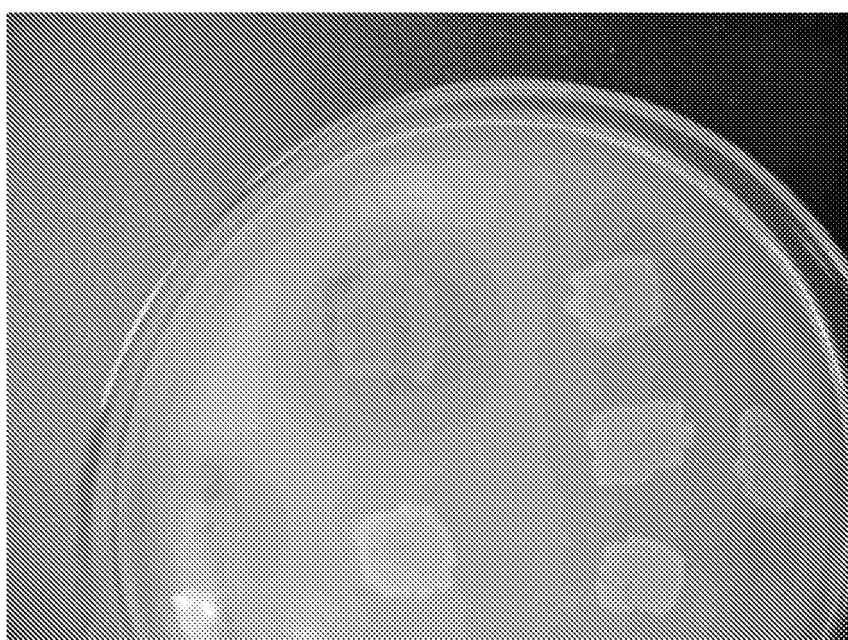


FIG. 3

(1) Glucosyl hydrolase Family (#9)

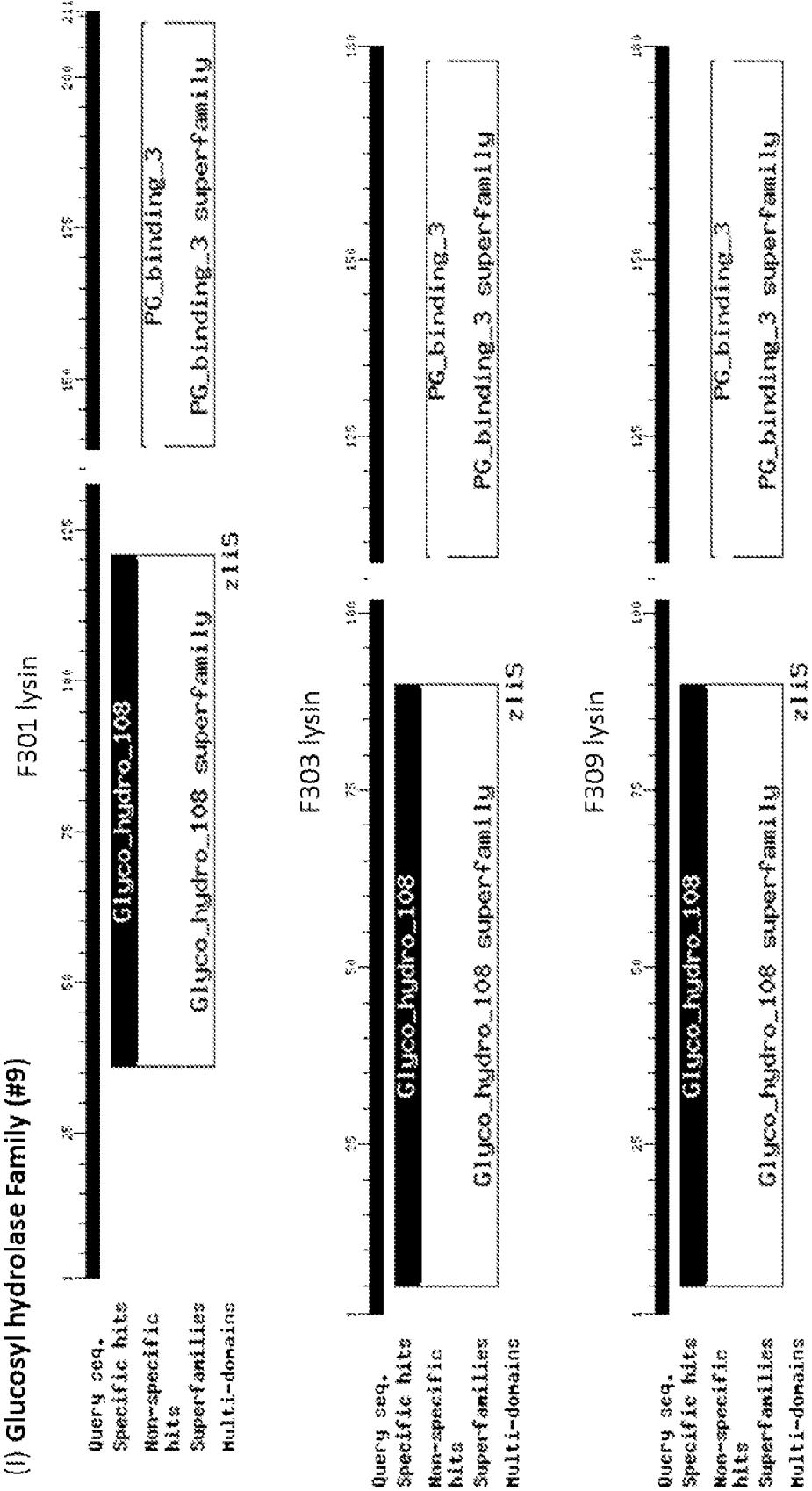


FIG. 3 Cont.

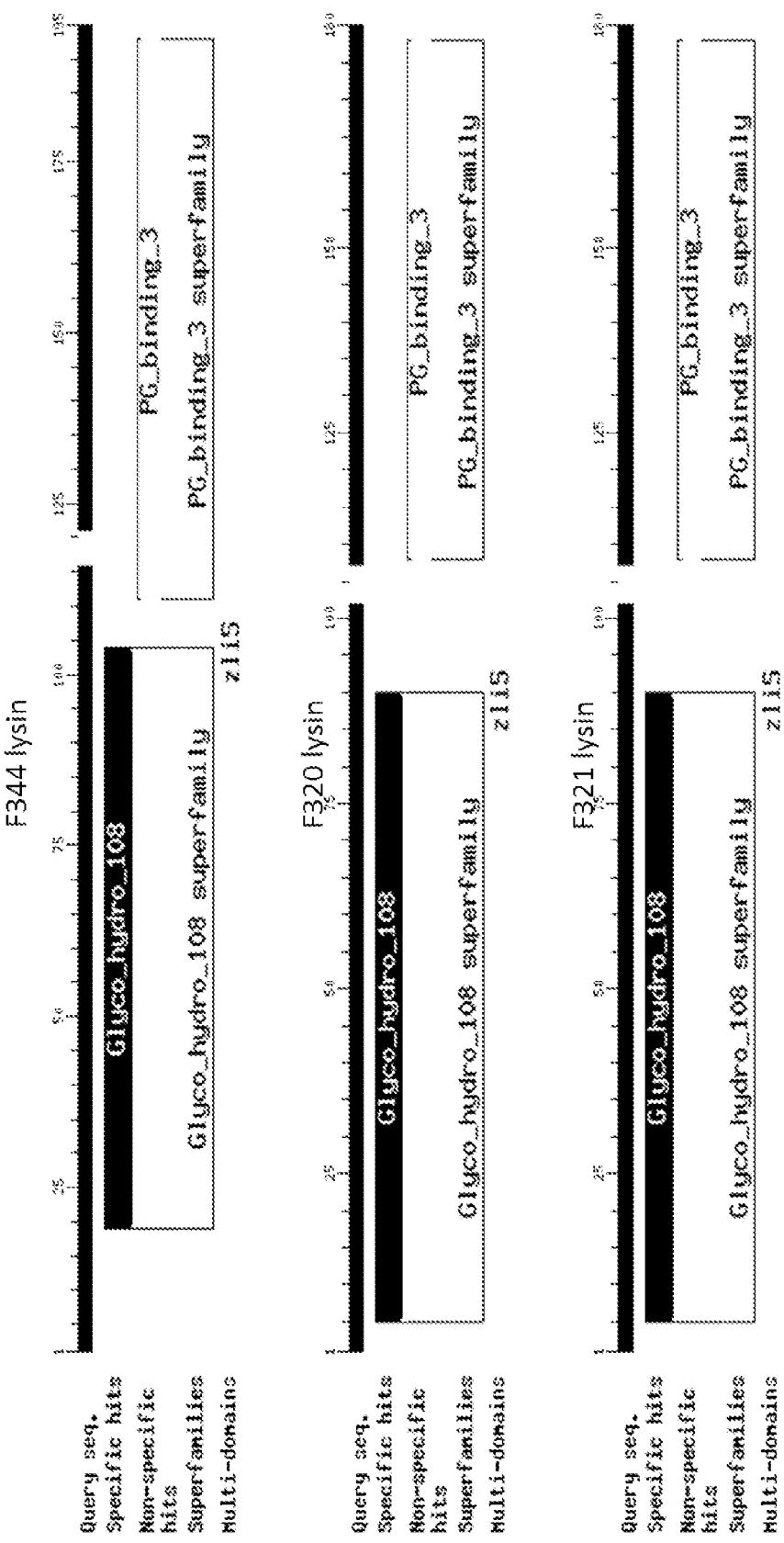


FIG. 3 Cont.

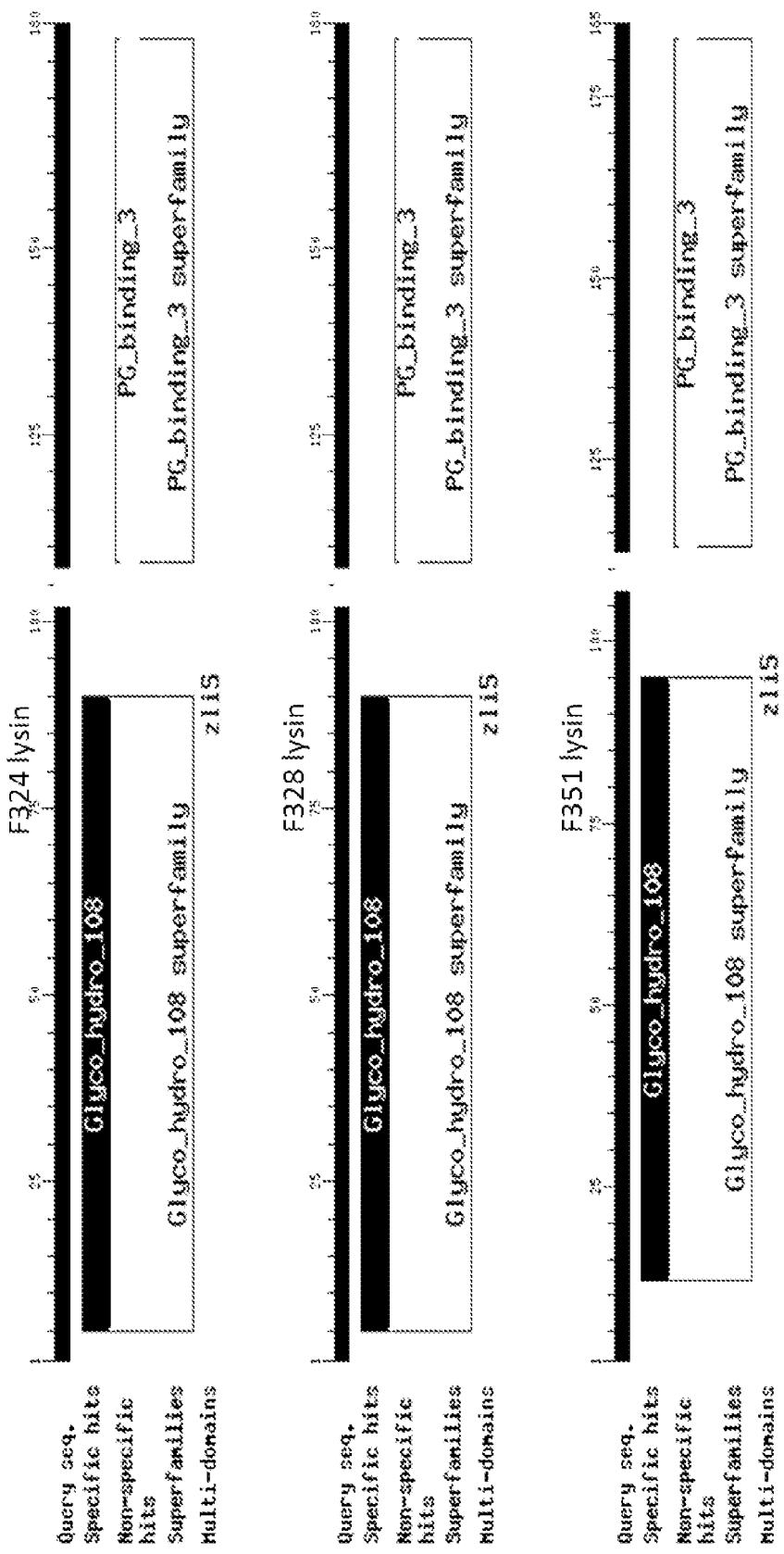


FIG. 3 Cont.

(iii) Baseplate Lysozyme (#7)

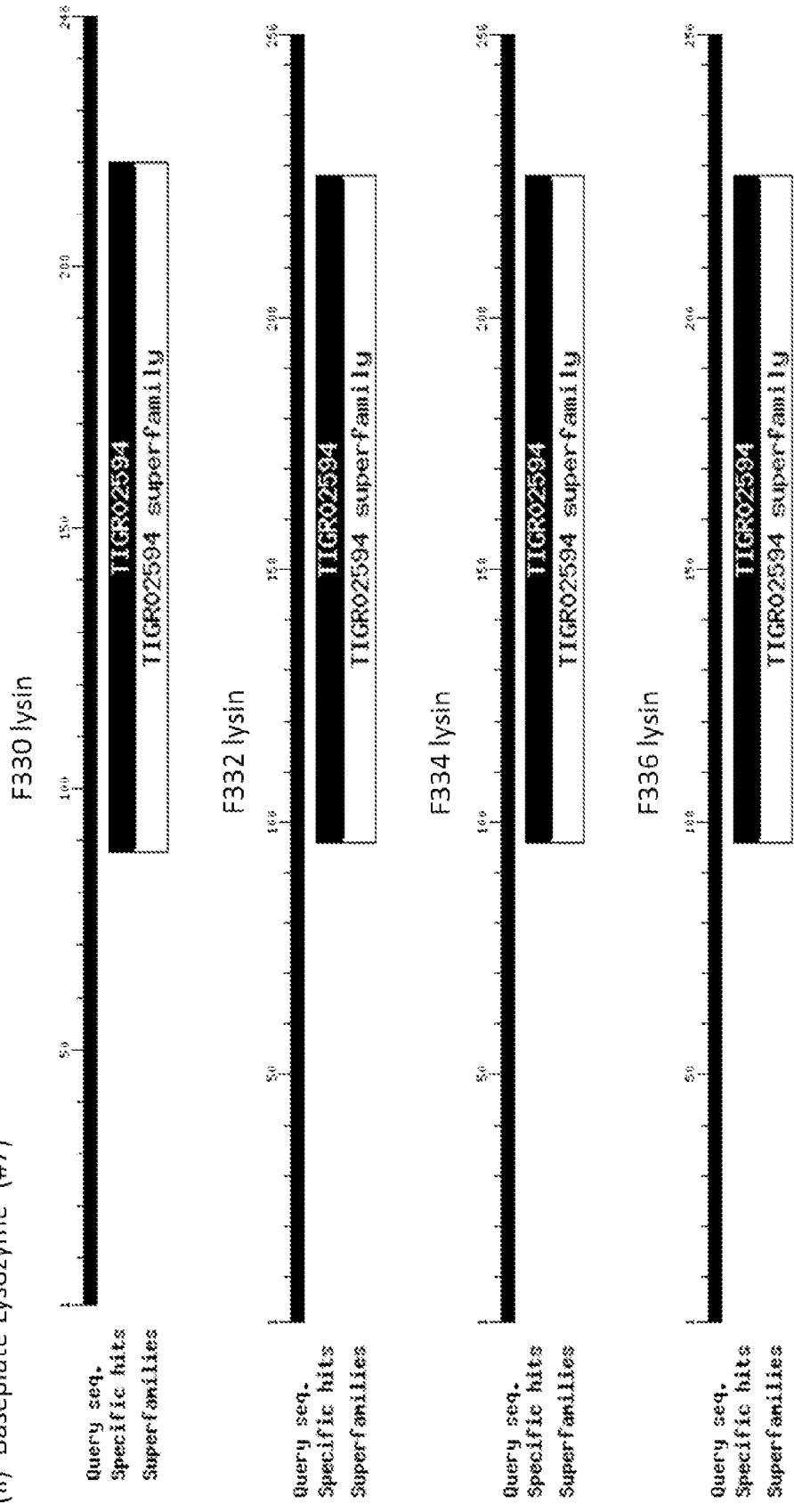


FIG. 3 Cont.

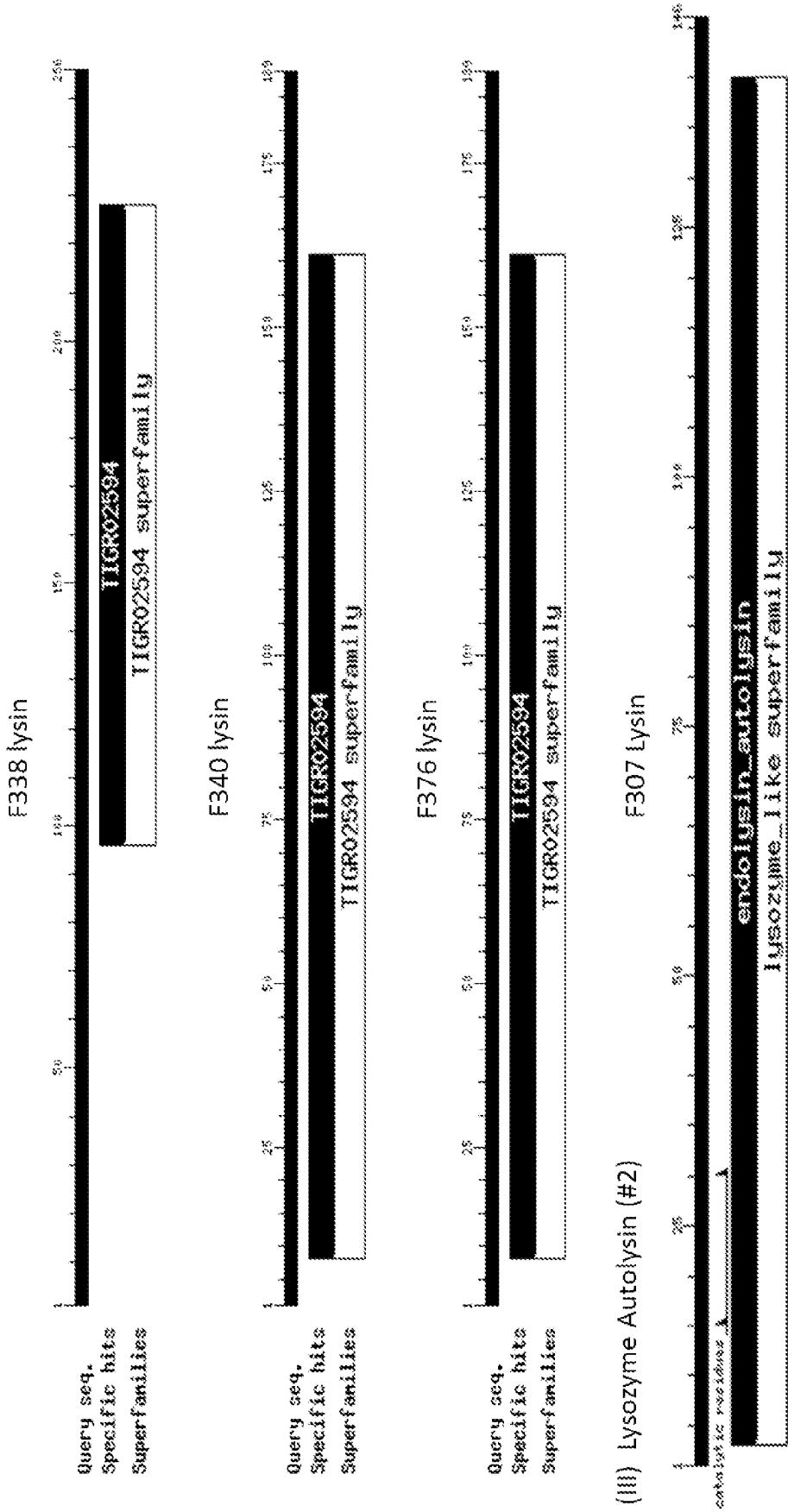


FIG. 3 Cont.

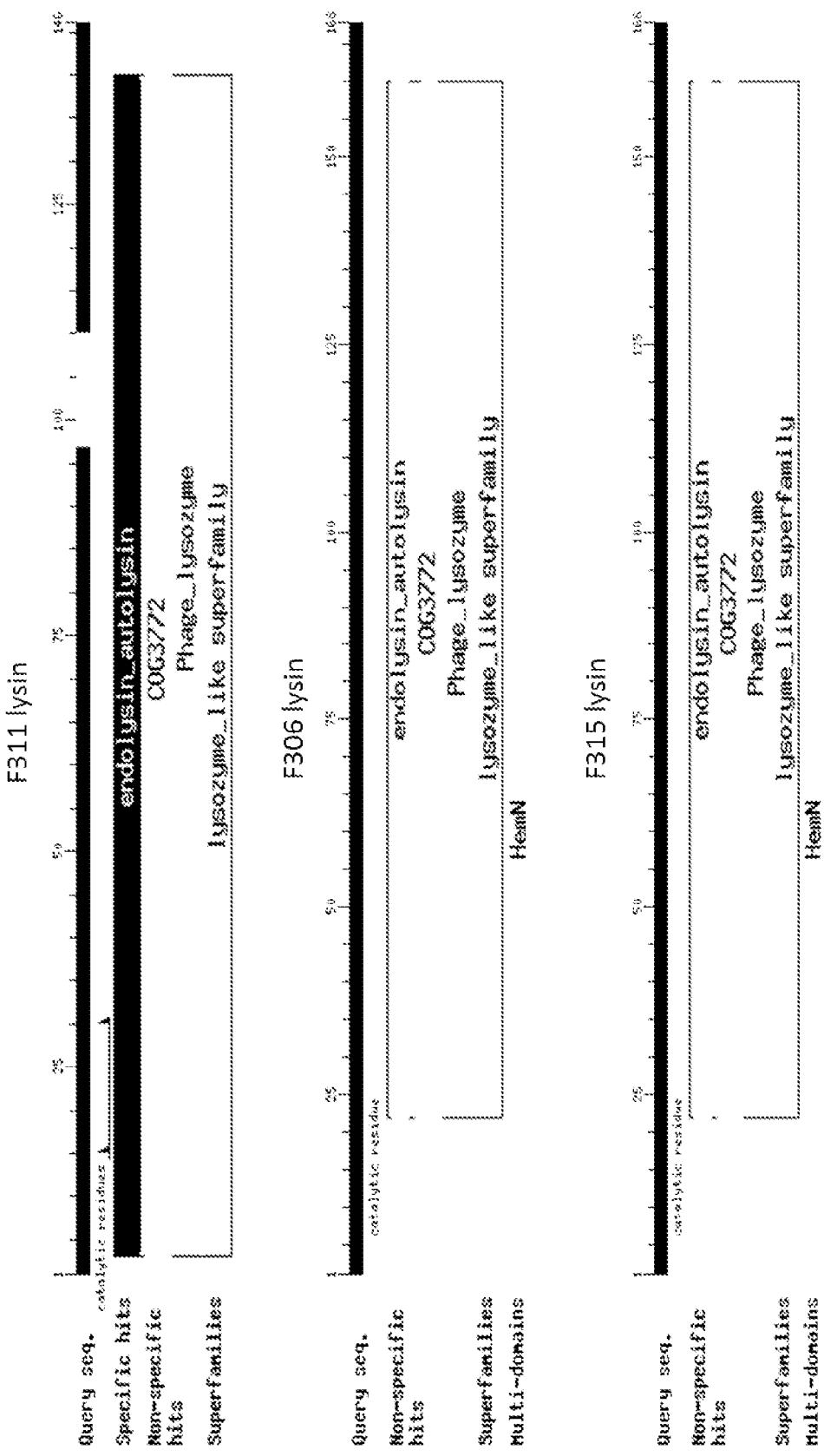


FIG. 3 Cont.

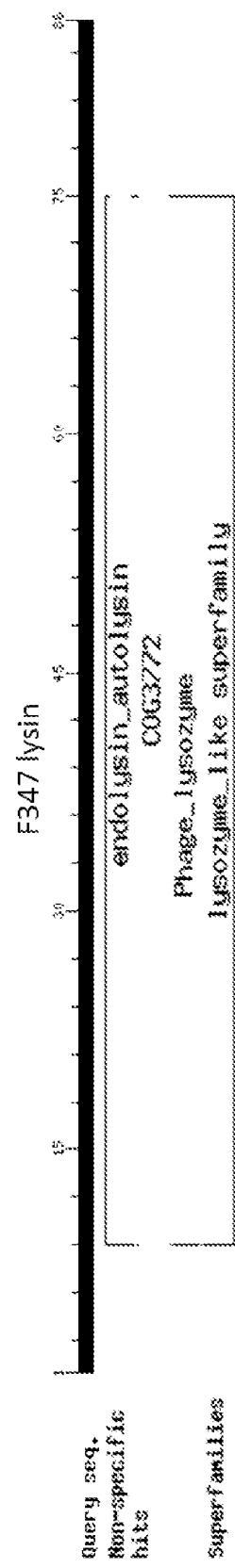


FIG. 4

ClustalW (v1.83) multiple sequence alignment

21 Sequences Aligned Processing time: 1.8 seconds
Gaps Inserted = 540 Conserved Identities = 1
Score = 0

Pairwise Alignment Mode: Slow

Pairwise Alignment Parameters:

Open Gap Penalty = 10.0 Extend Gap Penalty = 5.0

Multiple Alignment Parameters:

Open Gap Penalty = 10.0 Extend Gap Penalty = 5.0

Delay Divergent = 40% Transitions: Weighted

F376	1	-----	0
F311	1	-----	0
F328	1	-----	0
F324	1	-----	0
F347	1	-----	0
F351	1	-----	0
F344	1	-----	0
F340	1	-----	0
F338	1	ATGAAGTTAATTGAAAACAATGCTTGGCAGTATCTATCTGTTAAGTTACCCGCCGTAGGT	60
F336	1	-----	0
F334	1	-----	0
F332	1	ATGAAGTTAATTGAAAACAATGCTTGGCAGTATCTATCTGTCAGTTACCCGCCGTAGGT	60
F330	1	-----CTGGATCCGGTGATGACGAT--GACAAG---CTCGCCCT---T	35
F307	1	-----	0
F309	1	-----	0
F303	1	-----	0
F301	1	-----	0
F320	1	-----	0
F306	1	-----	0
F321	1	-----	0
F315	1	-----	0
F376	1	-----	0
F311	1	-----	0

FIG. 4 Cont.

F328	1	-----	0
F324	1	-----	0
F347	1	-----	0
F351	1	-----C	1
F344	1	-----	0
F340	1	-----	0
F338	61	GCATTCATCATGCT-AATTTATTGCCAGCACTACAATGGGGTGTGATTATGAAGTTAT	119
F336	1	-----	0
F334	1	-----	0
F332	61	GCATTCATCATGCT-AATTTATTGCCAGCACTACAATGGGGTGTGATTATGAAGTTAT	119
F330	36	CCACAACTCGAGCCGAATTTATTGCCAGCACTACAATGGGGTGTGATTATGAAGTTAT	95
F307	1	-----	0
F309	1	-----	0
F303	1	-----	0
F301	1	-----	0
F320	1	-----	0
F306	1	-----	0
F321	1	-----	0
F315	1	-----	0
F376	1	-----TTAACGCCTCTGAAACACTCGTAACAGA	27
F311	1	-----	0
F328	1	-----CTAGCCGAT	9
F324	1	-----ATGAAAAT-TGAACAATATCTTGATGATT-----TGATTAACACG	39
F347	1	-----TCACTGC	7
F351	2	TGAAGGAAACCGAAATGAATAT-TGAAAATATCTTGATGAAT-----TAATTAAGCGT	54
F344	1	-----TCATATAAC-AAC	12
F340	1	-----TTAACGCCTCTGAAACACTCGTAACAGA	27
F338	120	TCCTGAAAATATCATGCATTTGTTACTGGTACTTGTGATGCTTGTCTGTCATGGATTGG	179
F336	1	-----TTAGGCTTCCAAAACCTAGTAGCTGT	27
F334	1	-----TTAGGCTTCCAAAACCTAGTAGCTGT	27
F332	120	TCCTGAAAATATCATGCATTTGTTACTGGTACTTGTGATGCTTGTCTGTCATGGATTGG	179
F330	96	TCCTGAAAATATCATGCATTTGTTACTGGTACTTGTGATGCTTGTCTGTCATGGATTGG	155
F307	1	-----GT	2
F309	1	-----ATGAAAAT-TGAACAATATCTTGATGATT-----TGATTAACACG	39
F303	1	-----CTAGCCGAT	9
F301	1	-----CTAGCCGAT	9
F320	1	-----CTAGCCGAT	9

FIG. 4 Cont.

F306	1	-----ATGTCAAACAAGACTAAAATCATAGT	26
F321	1	-----ATGAAAAT-TGAACAATATCTTGATGATT-----TGATTAAACGC	39
F315	1	-----TCACTGC	7
F376	28	AACGATTTTAGGACTGGTAAATCGTATCGGTGAGCAG---CTGGTTACTTGTGTTGCC	84
F311	1	-----TCAT-TTTAA-AAA	12
F328	10	CCGGTTAGCGATCCAGCCATAAAAAACTGCTCTGGC---TTTATTACGTTCAC-AGA	65
F324	40	GAAGGCGTTATGTAA--ATAATCCAGTGGATCGAGG---AGGTGCTACCAAATAC-GGT	93
F347	8	GCTCCTATACATTT-----TGCCTGTCGTT--CTAC---TTGTCTGGTCCAGAC-GCC	54
F351	55	GAAGGCGGGTATGTAA--ATAACCCAGCTGATCGGGG---CGGTGCAACTAAATAT-GGC	108
F344	13	TCGATTGGCGATCCAACCATAAGAAAAACTGTTCTGGC---TAGGATTGCGTTCAC-AGA	68
F340	28	AACGATTTTAGGACTGGTAAATCGTATCGGTGAGCAG---CTGGTTACTTGTGTTGCC	84
F338	180	AAAGAAAATTCTCAACCACGACTTAATGGCCCGCAATTAACAGGCCAGTTAGTA-GGG	237
F336	28	TACGCCTTTAATTGTGGCAATGTATAACGCTTACTTG---CTGGTTGAGTTGTACGACC	84
F334	28	TACGCCTTTAATTGTGGCAATGTATAACGCTTACCTG---CTGGTTGAGTTGTACGACC	84
F332	180	AAAGAAAATTCTCAACCACGACTTAATGGCCCGCAATTAACAGGCCAGTTAGTA-GGG	237
F330	156	AAAGAAAATTCTCAACCACGACTTAATGGCCCGCAATTAACAGGCCAGTTAGTA-GGG	213
F307	3	GAAAACAAGTAACCCA--GGAGTGGATTTAACAAA-----GGCTTGAA-GGT	48
F309	40	GAAGGCGTTATGTAA--ATAATCCAGTAGATCGAGG---AGGTGCTACCAAATAC-GGT	93
F303	10	CCGGTTAGCAATCCAGCCATAGAAGAATTGCTCTTGCT---TAGGATTACGCTCAC-AAA	65
F301	10	CCGGTTAGCGATCCAGCCATAAAAAACTGCTCTGGC---TTTATTACGTTCAC-AGA	65
F320	10	CCGGTTAGCAATCCAGCCATAGAAGAATTGCTCTTGCT---TGGGATTACGCTCAC-AAA	65
F306	27	AACAACTTAAGCGCA--TCAGCGTTTTTGCACTC---TTAATTGGCTATGAG-GGG	81
F321	40	GAAGGTGGTTATGTAA--ATAATCCAGTAGATCGAGG---AGGTGCTACCAAATAC-GGT	93
F315	8	ACCGCCATACACTT-----GCTATAACAAT--CTTG---TTGGCGTGTCCAGAC-ACC	54
F376	85	ATACCACATAAAGGCTCAAAGCCGAAACGTCACTACTGCAAAACAAACTT-TATTTG	143
F311	13	T----AACTCCATTCAGCTTGCGACGT-TTCACCAAGTCCTGC-CAATACACGACCGCC	66
F328	66	TTT-CAATGTATCGTGGCCTTGCAATAATTAAACACGCGCAC-TAAGACCTTTGCC	123
F324	94	AT--TACTGAAGCTGTAGCACGTGAAAACGGCTATAAGGGCAAT-ATGAA-AGATTG	148
F347	55	ATAACACCGTTTACGAA---CAGAGCAATCGCGCTTGCA-ACGTACTTATATTAA	109
F351	109	AT--CACACAAGCTGTGCGCGTAAAATGGCTGGAATGGAAT-ATGAA-AGATTG	163
F344	69	TTT-CAATGTAACGTTGCCCTTGCACTGATATTAAAGAACACGCAC-CAGGACTTTGCC	126
F340	85	ATACCACATAAAGGCTCAAAGCCGAAACGTCACTACTGCAAAACAAACTT-TATTTG	143
F338	238	AT--CAATTCT-TTATTGAATATCCAACACCAACAAAGCCTG-ATGAATTAGCTTGG	292
F336	85	ATACCACATCTGAATTCTGAAAGTCAGAGTCATTATAAGTCATAACAAACTT-TATTTG	143
F334	85	ATACCACATCTGAATTCTGAAAGTCAGAGTCATTATAAGTCATAACAAACTT-TATTTG	143
F332	238	AT--CAATTCT-TTATTGAATATCCAACACCAACAAAGCCTG-ATGAATTAGCTTGG	292
F330	214	AT--CAATTCT-TTATTGAATATCCAACACCAACAAAGCCTG-ATGAATTAGCTTGG	268

FIG. 4 Cont.

F307 49 CTA-CGATTGA---AAGCC-TATGACGATGGTGGCGTTGG-ACCATTGGCTTGGC 102
 F309 94 AT---TACTGAAGCTGTAGCACGTAAAACGGCTATAAGGGCAAT-ATGAA-AGATTG 148
 F303 66 TTT-CGATATATCGCTGGCCTTGCATGATATTAAGAACCTCGCAC-TAGGACTTCTCACC 123
 F301 66 TTT-CAATGTATCGTTGGCCTTGCATAATATTAAACACGCGCAC-TAAGACCTTCGCC 123
 F320 66 TTT-CGATATATCGCTGGCCTTGCATGATATTAAGAACCTCGCAC-TAGGACTTCTCACC 123
 F306 82 -TA-CAAATCA---AAGCCATATTAGATAGCGCTAAAGTGGCA-ACGATTGGTATCGGA 135
 F321 94 AT---TACTGAAGCTGTAGCACGTAAAACGGCTATAAGGGCAAT-ATGAA-AGATTG 148
 F315 55 ATAACAACCATTGGACCGAA---TCGAGCAATCACGCTTGCA-ACATATTGTATTTC 109
 F376 144 ACTGATTACCACCTAACGAAATTAA-ATTTACCAGTAGGTGTTTAC---CAACAAACGAAA 199
 F311 67 AGCTTGTCCATTGGAAATTCTGCTGCT-GCACCTTATAGTCCTT-AGCATTAAAC 124
 F328 124 TTCTTGCCACGTTGGCCAAGTAAGTTTAGAGCTCCTAAAGTGTAGAACCATAAAC 183
 F324 149 CTCTTGATGTGGCCAAA-GCAATTAA-TCGGAAACAGTACTGGA-TAGA-GCCAC-GTT 202
 F347 110 AGTAAAGAGTCGCAAGCTGTTATATTGACCAGC-----CTTTA-----AATGCTTAAG 159
 F351 164 CGCTTGATGTGGCCAAA-GCTATTAA-CAAGAAGCAATACTGGA-CAGC-TCCGC-GAT 217
 F344 127 GTCTTTCCACGCTTGGCCAGATAAGTTTGAGTCATTAAGAGTTGCTGGACCATAAT 186
 F340 144 ACTGATTACCACCTAACGAAATTAA-ATTTACCAGTAGGTGTTTAC---CAACAAACGAAA 199
 F338 293 TTGCGGAAGCAAA-AAA-GCATCTTGGCCTCAAGAAATACCTGG-TAAACAGCAT-AAC 348
 F336 144 ACTGATTGCCTCCAAGGCATACTA-ACTTCCAGACTTTGTCACGGCCAACACAAAAA 202
 F334 144 ACTGATTGCCTCCAAGGCATACTA-ACTTCCAGACTTTGTCACGGCCAACACAAAAA 202
 F332 293 TTGCGAGAAGCAAA-AAA-GCATCTTGGCCTCAAGAAATACCTGG-TAAACAGCAT-AAC 348
 F330 269 TTGCGAGAAGCAAA-AAA-GCATCTTGGCCTCAAGAAATACCTGG-TAAACAGCAT-AAC 324
 F307 103 ACCATCAAATACCGAACGGTGTGAGTCAGGAGCTGGATA---CATGCACTGA-ATC 158
 F309 149 CTCTTGATGTGGCCAAA-GCAATTAA-TCGGAAACAGTACTGGA-TAGA-GCCAC-GTT 202
 F303 124 TTCTTCCCACGTTGGCCAAGTAAGTTGAGAGCTCCTAATGTGCTAGAACCATAAAC 183
 F301 124 TTCTTGCCACGTTGGCCAAGTAAGTTAGAGCTCCTAAAGTGTAGAACCATAAAC 183
 F320 124 TTCTTCCCACGTTGGCCAAGTAAGTTGAGAGCTCCTAATGTGCTAGAACCATAAAC 183
 F306 136 TCCACTTCCTATGAAAACGGTACCAAGGTCAAAATGACTGACAAGCCGATTACAAA-AGA 194
 F321 149 CTCTTGATGTGGCCAAA-GCAATTAA-TCGGAAACAGTACTGGA-TAGA-GCCAC-GTT 202
 F315 110 AGTAATGAAGCACAAGCTGCTTATATTGCCCTGC-----TTTGA-----GATTACGAAG 159
 F376 200 GTTACATGGCCACCGCCCTCTTGATTTACCGAACACACCCATAACAAGGCTGTYT 259
 F311 125 TTTTTAGCAAAGTAGATTGCTAAGATTGCCCTC-GCCTAAGT-TAT-AAGTGAATG-A 180
 F328 184 GCCATCAACCTT-CAAGTCTGCATAACCGAGCTT--ACCTTGAT-TGTTAAGCAAGTTCA 239
 F324 203 TTGATCAGGTTAATA---CTCTTAGCTCTGCAGT-----AGC-TG--AAGA----- 242
 F347 160 CATTGATG-----ATTT-TGCG-AATGTTGGCACACCGTATTGATACTGAA---ATCA 208
 F351 218 TTGACCCAAGTAAATG---CTGTTCTCTGCAGT-----AGC-TG--AAGA----- 257
 F344 187 TCCGTCAACTGT-TAAATCTGGCCAACCTGCTT--ACCTTGGT-TATTCAAGAACATTAA 242
 F340 200 GTTACATGGCCACCGCCCTCTTGATTTACCGAACACACCCATAACAAGGCTGTCT 259

FIG. 4 Cont.

F338 349 CCAACTATTTAAAATGGCTCTGGAGCTAAAGGCTTGGTGGC-TG-ACGATGAAACG 405
 F336 203 CAAACATGCCACCACCCCTTCGAGTTTAATAGCTACACAACCGTAAGCGGGTTAGCT 262
 F334 203 CAAACATGCCACCACCCCTTCGAGTTTAATAGCTACACAACCGTAAGCGGGTTAGCT 262
 F332 349 CCAACTATTTAAAATGGCTCTGGAGCTAAAGGCTTGGTGGC-TG--ACGATGAAACG 405
 F330 325 CCAACTATTTAAAATGGCTCTGGAGCTAAAGGCTTGGTGGC-TG--ACGATGAAACG 381
 F307 159 TCAAGCGGAAGAATA---CCTTCGCAA-TGACTT-----AGT-TG--TATTGAAA-202
 F309 203 TTGATCAGGTTAATA---CTCTTAGCTCTGCAGT-----AGC-TG--AAGA----- 242
 F303 184 GCCATCAACCTT-CAAGTCTGCATAACCAGCTT--ACCTTGAT-TGTTAAGCAAGTTCA 239
 F301 184 GCCATCAACCTT-CAAGTCTGCATAACCAGCTT--ACCTTGAT-TGTTAAGCAAGTTCA 239
 F320 184 GCCATCAACCTT-CAAGTCTGCATAACCAGCTT--ACCTTGAT-TGTTAAGCAAGTTCA 239
 F306 195 ACGTGCTGTTCAA-A---TTGCCAAAGCTCACAT-----TGC-TA--AAGATGAGGTG 240
 F321 203 TTGATCAGGTTAATA---CTCTTAGCTCTGCAGT-----AGC-TG--AAGA----- 242
 F315 160 CATTGATG-----AGCCGTTCC-AAT-TTGCTTGGCCATAGTTGAAACAAA---GTCT 208
 F376 260 AATTGACTCCGCCTTCTTGATGTATTG--AAGTGCAGGAT-----ACCAGTTGAAAG 311
 F311 181 GGCCAAAGCATCGAATTGGTTTGATTAA-GTGGTACT-----TTCAC-CAAGC 227
 F328 240 AAGCACGTTGTAAAAGTGGTTTGCAAAG-TTGATACCACAG-----TTCACACCAAGT 291
 F324 243 ACTT---TTAGACACTGGT-GTGAACGTG--TGGTATCAACT---TTGCAAACCA--- 288
 F347 209 AGGTA---TAGGTATTCAGTCTGTGA--TAATT---CGG-----CT---CGAGT 249
 F351 258 GCTT---CTAGACACTGGT-GTGAATTG--CGGTACCGGAT---TTGCAAACCT--- 303
 F344 243 AAGCACGCTGTAAGAGTGGTTTGCAAAT-CCGGTACCGCAA-----TTTACCCAGT 294
 F340 260 AATTGACTCCGCCTTCTTGATGTATTG--AAGTGCAGGAT-----ACCAGTTGAAAG 311
 F338 406 GCTTGGTGTGGGACCTTCGTTGCACATTGCTTGAATCAGCTGGAATTGCTTATCCTAAG 465
 F336 263 AATT---TGTACCATATTACACATAATC--CAATGCACGGT-----ACCAATGCTTAG 311
 F334 263 AATT---TGTACCATATTACACATAATC--CAATGCACGGT-----ACCAATGCTTAG 311
 F332 406 GCTTGGTGTGGGACCTTCGTTGCACATTGCTTGAATCAGCTGGAATTGCTTATCCTAAG 465
 F330 382 GCTTGGTGTGGGACCTTCGTTGCACATTGCTTGAATCAGCTGGAATTGCTTATTCTAAG 441
 F307 203 GCGC---TAT-CAATCGTTGGTGAAG--TTCCGCTTAAT-----CAAACCA--- 245
 F309 243 ACTT---TTAGACACTGGT-GTGAACGTG--TGGTATCAACT---TTGCAAACCA--- 288
 F303 240 AAGCACGTTGTAAAAGTGGTTTGCAAAG-TTGATACCACAG-----TTCACACCAAGT 291
 F301 240 AAGCACGTTGTAAAAGTGGTTTGCAAAG-TTGATACCACAG-----TTCACACCAAGT 291
 F320 240 AAGCACGTTGTAAAAGTGGTTTGCAAAG-TTGATACCACAG-----TTCACACCAAGT 291
 F306 241 GCAT---TTCGCAAGTCGTTGCAGGGCG--TGAGGGCTAATCAGACTGA--- 284
 F321 243 ACTT---TTAGACACTGGT-GTGAACGTG--TGGTATCAACT---TTGCAAACCA--- 288
 F315 209 AAGTA---CACATCATATTCAAGTCTGAGT--TAGCCTCACGC-----CCTGCAACGACT 257
 F376 312 GATAA--AAGCCTGGTGGGCCTTGTCC-TGATT---ATAAGTTGGAACCGCAGT 365
 F311 228 GATTG--ATAGCATTTCAAATGCGACCAAGTCATTGCGAAGATATCCTCTGCTTGAGA 285
 F328 292 GTCTA--AAAGT-TCTTCAGCTACTGCAGAGCTAAGAGTATTAACCTGATCAAAACGTGG 348

FIG. 4 Cont.

F324 289 CTTT--ACACGTGCTTGAACCTGCTAACATCAAGTAAAGCTGGTTATGCAG--A 344
 F347 250 TGTGG--AAGGCAG----- 261
 F351 304 CTTT--ACACGAGCTTGAACCTGCTAACATCAAGTAAAGCTGGATATGCAG--A 359
 F344 295 ATCTA--AAAGC-TCTTCAGCAACTAACGAGCTAATTACATTGATCAAATCGCG 351
 F340 312 GATAA--AAGCCTGGTGGGCCTTGTCC-TGATTT--ATAAGTTTGAACGCGAGT 365
 F338 466 CATTG--GTACCGTGCATTGGATTATGTGAATTAT-GGTACAAAATTAGCTAAACCC--G 520
 F336 312 GATAAGCAATTCCAGCTGATTCAAGCAATGTGCAAC--GAAGGTCCCACACCAAGCCG 368
 F334 312 GATAAGCAATTCCAGCTGATTCAAGCAATGTGCAAC--GAAGGTCCCACACCAAGCCG 368
 F332 466 CATTG--GTACCGTGCATTGGATTATGTGAATTAT-GGTACAAAATTAGCTAAACCC--G 520
 F330 442 CATTG--GTACCGTGCATTGGATTATGTGAATTAT-GGTACAAAATTAGCTAAACCC--G 496
 F307 246 -ATTC--GATGCTTGGCCTCATTCACTTA-CAACCTTGGTGAGGGCAATCTTAGTA--T 299
 F309 289 CTTT--ACACGTGCTTGAACCTGCTAACATCAAGTAAAGCTGGTTATACAG--A 344
 F303 292 GTCTA--AAAGT-TCTTCAGCTACTGCAGAGCTAAGAGTATTAAACCTGATCAAACGTGG 348
 F301 292 GTCTA--AAAGT-TCTTCAGCTACTGCAGAGCTAAGAGTATTAAACCTGATCAAACGTGG 348
 F320 292 GTCTA--AAAGT-TCTTCAGCTACTGCAGAGCTAAGAGTATTAAACCTGATCAAACGTGG 348
 F306 285 -ATAT--GATGTGTACTTAGACTTTGTTA-CAACTATGCCAAGCAAATTGGAACG--G 338
 F321 289 CTTT--ACACGTGCTTGAACCTGCTAACATCAAGTAAAGCTGGTTATGCAG--A 344
 F315 258 TGCAG--AATGCCACCTCATCTTAGCAATGTGAGCTTGGCAATTGAAACAGCACGTTC 315
 F376 366 TTACACT-TCCTCTTGAATCCGCCGTTGG-AGA--CAGTGCACGAAATGTTCCG 421
 F311 286 CTCAGTGCATATATGCCCTTTTGACACGC---ACTCATTAGG-----ATATTTAA 335
 F328 349 CTCTATCCA-GTACTGTTCCGATAAATTGCTTGGCCACATCAAGAGGCAAATCTTC 407
 F324 345 CTTGAAGGTTG-ATGGCGTTT-ATGGTTCTA---ACACTT--TAGGA-----GCTCTAAA 392
 F347 262 ----- 261
 F351 360 TTTAGAGGTTG-ATGGTGTGTT-ATGGCTCAG---CAACGC--TAGGT-----GCCCTTAA 407
 F344 352 ATCTGTCCA-ATACTGCTTTATAAATGGCTTGGCCACATCAAGCGGTAAATCTTC 410
 F340 366 TTACACT-TCCTCTTGAATCCGCCGTTGG-AGA--CAGTGCACGAAATGTTCCG 421
 F338 521 CTT-ACGGTTGTAGCTATT-AAAACCTGA---AAGGGTGGTGGG-----ATGTTTGT 570
 F336 369 TTTCATCGTCAGCCCACCAAGCCTTAGCTCCG-AGAGCCATTAAAATAGTTGGGTTA 427
 F334 369 TTTCATCGTCAGCCCACCAAGCCTTAGCTCCG-AGAGCCATTAAAATAGTTGGGTTA 427
 F332 521 CTT-ACGGTTGTAGCTATT-AAAACCTGA---AAGGGTGGTGGG-----ATGTTTGT 570
 F330 497 CTT-ACGGTTGTAGCTATT-AAAACCTGA---AAGGGTGGTGGG-----GTGTTTGT 546
 F307 300 ATC-AACTTGCTAAAAAGC-TTAATGCCA---AAGACTA-TAAAG-----GTGCTGCA 348
 F309 345 CTTGAAGGTTG-ATGGCGTTT-ATGGTTCTA---GCACAT--TAGGA-----GCTCTCAA 392
 F303 349 CTCTATCCA-GTACTGTTCCGATAAATTGCTTGGCCACATCAAGAGGCAAATCTTC 407
 F301 349 CTCTATCCA-GTACTGTTCCGATAAATTGCTTGGCCACATCAAGAGGCAAATCTTC 407
 F320 349 CTCTATCCA-GTACTGTTCCGATAAATTGCTTGGCCACATCAAGAGGCAAATCTTC 407
 F306 339 CTC-ATCAATGCTTCGTAATC-TCAAAGCAG---GGCAATA-TAAC-----AAGCTTGT 387

FIG. 4 Cont.

F321 345 CTTGAAGGTTG-ATGGCGTT-ATGGTTCTA---ACACTT--TAGGA----GCTCTAAA 392
 F315 316 TTTTGTAAATCGGCTTGTCAAGTCATTTGACCTT-GGTACCGTTTCATAGGAAGTGGATC 374
 F376 422 CACCATG---CAGTTTCATCGTCAAG---CCAAGAGG---ACTTTAAGTCCTTCAGCCAT 472
 F311 336 T--TGTTC-C-AAATCCAATG---GTCCAAACGCC---ACACCAT---CGTCATA 378
 F328 408 TATTGCCCTTATAGCCGTTTCACGTGCTACAGCTTCAGTAATACCGTATTTGGTAGCA 466
 F324 393 A-ACTTAC-TTGGCCA-AACGTGGCAA--AGAAGGCG---AAAAGGTATTAGTGCGCG 442
 F347 262 ----- 261
 F351 408 A-ACATAC-TTGTCAA-AACGTGGAA--AGAAGGTG---AGAAGGTTCTGGTGCAG 457
 F344 411 TGTTGCCCTTAAAGCCGTTAGTACGTGCTACTGCTCAGTAATACCGTACTTGTTC 469
 F340 422 CACCATG---CAGTTTCATCGTCAAG---CCAAGAGG---ACTTTAAGTCCTTCAGCCAT 472
 F338 571 T-TTGTAG-TTGGCCGTGACAAAAAGTCTGGAAAGTT---AGTATGCCTTGGAGGCAA 6
 F336 428 TGCTGTTTACCAAGGTATTCTTGAGG--CCAAGATG---CTTTT-TTGCTTCTGCAAT 480
 F334 428 TGCTGTTTACCAAGGTATTCTTGAGG--CCAAGATG---CTTTT-TTGCTTCTGCAAT 480
 F332 571 T-TTGTAG-TTGGCCGTGACAAAAAGTCTGGAAAGTT---AGTATGCCTTGGAGGCAA 623
 F330 547 T-TTGTAG-TTGGCCGTGACAAAAAGTCTGGAAAGTT---AGTATGCCTTGGAGGCAA 599
 F307 349 G-CTGAAT-TT--CCTAAATG-GAATA--AG--G--C---GG---GTGGTCGT--GTC 387
 F309 393 A-ACTTAC-TTGGCCA-AACGTGGAA--AGAAGGTG---AGAAAGTCCTAGTGCGAG 442
 F303 408 TATTGCCCTTATAGCCGTTTCACGTGCTACAGCTTCAGTAATACCGTATTTGGTAGCA 466
 F301 408 TATTGCCCTTATAGCCGTTTCACGTGCTACAGCTTCAGTAATACCGTATTTGGTAGCA 466
 F320 408 TATTGCCCTTATAGCCGTTTCACGTGCTACAGCTTCAGTAATACCGTATTTGGTAGCA 466
 F306 388 G-CTTCAT-TA--CTGAAATACAAATA--TGTTG--C---AAAGCGTATTGCTCGAT 434
 F321 393 A-ACTTAC-TTGGCCA-AACGTGGCAA--AGAAGGCG---AAAAGGTCTTAGTGCGCG 442
 F315 375 CGATACCAATCGTGCCTTTAGCGCTATCTAAATA---TGGCTTGATTGTACCCCT 431
 F376 473 TTGA--TGATT-GTCTGGTTGTGTTGGGCCGGCGATTTCAGCCAA-----CCCTA 521
 F311 379 GGCTTCAAAC----GTTTACCTTC---AAA---GCCTTG-ATT-----AGATTGATT 421
 F328 467 CCTCCTCGATCTGCTGGATTATTCACGCTACGCGTT---TAATCAAAT 518
 F324 443 T--GTTAAATA-----TTATGCA---AGGCCAACGAT-ACATT---GAAATC--- 480
 F347 262 ----- 261
 F351 458 T--GCTCAATA-----TTATGCA---AGGGCAACGCT-ACATT---GAAATC--- 495
 F344 470 CCGCCTCGATCTGCTGGTTGTTAC---GTACCCGCCCTCACGCT-----TAATTAAC 521
 F340 473 TTGA--TGATT-GTCTGGTTGTGTTGGGCCGGCGATTTCAGCCAA-----CCCTA 521
 F338 624 TCAGTCAAATAAAAGTTGTTATGCACTTATAATGACTCTGACTTCAA-GAATTCAAGAT 682
 F336 481 CCAAGCTAATTCTCAGGCTTGT-GGTGTTGGATATTCAATAAAAGAATTGATCCCTA 539
 F334 481 CCAAGCTAATTCTCAGGCTTGT-GGTGTTGGATATTCAATAAAAGAATTGATCCCTA 539
 F332 624 TCAGTCAAATAAAAGTTGTTATGCACTTATAATGACTCTGACTTCAA-GAATTCAAGAT 682
 F330 600 TCAGTCAAATAAAAGTTGTTATGCACTTATAATGACTCTGACTTCAA-GAATTCAAGAT 658
 F307 388 TTGGCTGGAT-----TAGTTA-AAC---GTCGCAAAGCTGAAAT-----GGAGTTAT-T 431

FIG. 4 Cont.

F309	443	T--TCTTAATA-----TCATGCA-----AGGCCAGCGAT-ATATC-----GAAATT-----	480
F303	467	CCTCCTCGATCTACTGGATTATTTAC---ATAACCGCCTCGCGTT-----TAATCAAAT	518
F301	467	CCTCCTCGATCTACTGGATTATTTAC---ATAACCGCCTCGCGTT-----TAATCAAAT	518
F320	467	CCTCCTCGATCTACTGGATTATTTAC---ATAACCGCCTCGCGTT-----TAATCAAAT	518
F306	435	TCGGTCCAATGG---TTGTTATGGT---GTCTGGACACGCCAAC-----AAGATCGT-T	481
F321	443	T--GTTAAATA-----TTATGCA-----AGGCCAACGAT-ACATT-----GAAATC-----	480
F315	432	CATAGCCAATTAAAGATGCAAAAAAAAGCGCTGATGCGCTTAATGTTGTTACTATGATT	491
F376	522	TGTGACGGCGAGCCT-CTGCGATCCACG----GTAATTCTGGA-TTTCACTC--AT--	570
F311	422	CCT---GA-GTT--ACTTG-TTTCAT-----	441
F328	519	CATCAAGATATT--GTTCAATTTCAT-----	543
F324	481	--TGTGAACGTA--ATAAAA--GCCAAGAGCAGTTTTATGGCTG-GATCGCTAACCG	533
F347	262	-----	261
F351	496	--TGTGAGCGTA--ATCCAA--AGCAGGAACAGTTTTCTATGGCTG-GATTGCTAACCG	548
F344	522	CGTCCAGATATT--GTTCAATGTTCATTCGGTTCTCAGATGTAACCGCCCCGA	579
F340	522	TGTGACGGCGAGCCT-CTGCGATCCACG----GTAATTCTGGA-TTTCACTC--AT--	570
F338	683	GGTATGGTCGTACAACCTAACCAACAGCAAGTAAGCGTTATACATTGCCACAATTAAAAGGCG	742
F336	540	CTAACTGGCCTGTTAATTGCGGGCATTAAAGTCGTGGTTGAGAAATTTCATCC	599
F334	540	CTAACTGGCCTGTTAATTGCGGGCATTAAAGTCGTGGTTGAGAAATTTCATCC	599
F332	683	GGTATGGTCGTACAACCTAACCAACAGCAAGTAAGCGTTATACATTGCCACAATTAAAAGGCG	742
F330	659	GGTATGGTCGTACAACCTAACCAACAGCAAGTAAGCGTTATACATTGCCACAATTAAAAGGCG	718
F307	432	TTTA-AAATGA-----	441
F309	481	--TGTGAGCGTA--ATCCTA--AGCAAGAGCAATTCTTATGGCTG-GATTGCTAACCG	533
F303	519	CATCAAGATATT--GTTCAATTTCAT-----	543
F301	519	CATCAAGATATT--GTTCAATTTCATTCACCTTACAGTAAACCGAACAG	576
F320	519	CATCAAGATATT--GTTCAATTTCAT-----	543
F306	482	ATAGCAAGTGTATGGCGGTGCAATGA-----	507
F321	481	--TGTGAACGTA--ATAAAA--GCCAAGAGCAGTTTTATGGCTG-GATCGCTAACCG	533
F315	492	TAGCTTGGTACAT-----	507
F376	571	-----	570
F311	442	-----	441
F328	544	-----	543
F324	534	GATCGGCTAG-----	543
F347	262	-----	261
F351	549	GATCGGCTAG-----	558
F344	580	AGGCGGCAT-----	588
F340	571	-----	570
F338	743	TAACAGCTACTAGGGTTTGGAAAGCCTAA-----	771

FIG. 4 Cont.

F336	600	ATGACAGAACAGCATCAAAGTACCAAGTAACAAATGCATGATATTTTCAGGAATAACTT	659
F334	600	ATGACAGAACAGCATCAAAGTACCAAGTAACAAATGCATGATGTTTCAGGAATAACTT	659
F332	743	TAACAGCTACTAGGGTTTGGAAAGCCTAA-----	771
F330	719	TAACAGCTACTAGGGTTTGGAAAGCCTAA-----	747
F307	442	-----	441
F309	534	GATCGGCTAG-----	543
F303	544	-----	543
F301	577	TTGATCCGTGAACTTGATATTTATATTGATCCAGAAGTGCAGGCTGAGGTTTGGTCAG	636
F320	544	-----	543
F306	508	-----	507
F321	534	GATCGGCTAG-----	543
F315	508	-----	507
F376	571	-----	570
F311	442	-----	441
F328	544	-----	543
F324	544	-----	543
F347	262	-----	261
F351	559	-----	558
F344	589	-----	588
F340	571	-----	570
F338	772	-----	771
F336	660	CATAATCAACACCCCCATTGTAGTGCTGGCAATAAAATTAGCATGATGAATGCACCTACGG	719
F334	660	CATAATCAACACCCCCATTGTAGTGCTGGCAATAAAATTAGCATGATGAATGCACCTACGG	719
F332	772	-----	771
F330	748	-----	747
F307	442	-----	441
F309	544	-----	543
F303	544	-----	543
F301	637	-----	636
F320	544	-----	543
F306	508	-----	507
F321	544	-----	543
F315	508	-----	507
F376	571	-----	570
F311	442	-----	441
F328	544	-----	543
F324	544	-----	543

FIG. 4 Cont.

F347	262	-----	261
F351	559	-----	558
F344	589	-----	588
F340	571	-----	570
F338	772	-----	771
F336	720	CGGGTAACCTAACAGATAGATACTGCCAAGCATTGTTTCAATTAACTTCAT-----	771
F334	720	CGGGTAACCTAACAGATAGATACTGCCAAGCATTGTTTCAATTAACTTCAT-----	771
F332	772	-----	771
F330	748	-----	747
F307	442	-----	441
F309	544	-----	543
F303	544	-----	543
F301	637	-----	636
F320	544	-----	543
F306	508	-----	507
F321	544	-----	543
F315	508	-----	507

FIG. 5

ClustalW (v1.83) multiple sequence alignment

21 Sequences Aligned Processing time: 0.3 seconds
Gaps Inserted = 50 Conserved Identities = 1
Score = 83346

Pairwise Alignment Mode: Slow

Pairwise Alignment Parameters:

Open Gap Penalty = 10.0 Extend Gap Penalty = 0.1

Similarity Matrix: gonnet

Multiple Alignment Parameters:

Open Gap Penalty = 10.0 Extend Gap Penalty = 0.1

Delay Divergent = 40% Gap Distance = 8

Similarity Matrix: gonnet

F307	1	-----	0
F376	1	-----	0
F351	1	-----	0
F347	1	-----	0
F344	1	-----	0
F340	1	-----	0
F338	1	MKLIENNAWQYLSVKLPAVGAFIMLILLPALQWGVDYEVIEPEKYHAFVTGTLMLVLSWIG	60
F336	1	MKLIENNAWQYLSVKLPAVGAFIMLILLPALQWGVDYEVIEPEKYHAFVTGTLMLVLSWIG	60
F334	1	MKLIENNAWQYLSVKLPAVGAFIMLILLPALQWGVDYEVIEPEKHHAFVTGTLMLVLSWIG	60
F332	1	MKLIENNAWQYLSVKLPAVGAFIMLILLPALQWGVDYEVIEPEKYHAFVTGTLMLVLSWIG	60
F330	1	----LDPVMTMTSSPFHNS----SRILLPALQWGVDYEVIEPEKYHAFVTGTLMLVLSWIG	52
F328	1	-----	0
F324	1	-----	0
F321	1	-----	0
F320	1	-----	0
F315	1	-----	0
F306	1	-----	0
F303	1	-----	0
F301	1	-----LTKN	4
F309	1	-----	0
F311	1	-----	0

FIG. 5 Cont.

F307	1	-----VKTSNPGVDLIKGFEGRLRKAYDDGFGVWTIGF	33
F376	1	-----MSANP-ELPWIAEARRHIGLAEIAGPKHNQTII	32
F351	1	-----LKETEMNIEKYLDLIKREGGYVNNPADRGGATKYGIT	38
F347	1	-----LPSTTR-----	6
F344	1	-----MPPSGGFLHLKETEMNIEQYLDLIKREGGYVNNPADRGGETKYGIT	47
F340	1	-----MSANP-ELPWIAEARRHIGLAEIAGPKHNQTII	32
F338	61	KKISQPRLNGPQLTGQLVGINSLLNIPTPTKPDELAWIAEAKKHLGLQEIPGKQHNPTIL	120
F336	61	KKISQPRLNGPQLTGQLVGINSLLNIPTPTKPDELAWIAEAKKHLGLQEIPGKQHNPTIL	120
F334	61	KKISQPRLNGPQLTGQLVGINSLLNIPTPTKPDELAWIAEAKKHLGLQEIPGKQHNPTIL	120
F332	61	KKISQPRLNGPQLTGQLVGINSLLNIPTPTKPDELAWIAEAKKHLGLQEIPGKQHNPTIL	120
F330	53	KKISQPRLNGPQLTGQLVGINSLLNIPTPTKPDELAWIAEAKKHLGLQEIPGKQHNPTIL	112
F328	1	-----MKIEQYLDLIKRVGGYVNNPVDRGGATKYGIT	33
F324	1	-----MKIEQYLDLIKREGGYVNNPVDRGGATKYGIT	33
F321	1	-----MKIEQYLDLIKREGGYVNNPVDRGGATKYGIT	33
F320	1	-----MKIEQYLDLIKREGGYVNNPVDRGGATKYGIT	33
F315	1	-----MSNKTIIIVTLSASALFFASLIGYEGYKSKPYLDSAKVATIGI	44
F306	1	-----MSNKTIIIVTLSASALFFASLIGYEGYEGYKSKPYLDSAKVATIGI	44
F303	1	-----MKIEQYLDLIKREGGYVNNPVDRGGATKYGIT	33
F301	5	LSLHFWININIKFTDQLVAFLRLKESEMIEQYLDLIKREGGYVNNPVDRGGATKYGIT	64
F309	1	-----MKIEQYLDLIKREGGYVNNPVDRGGATKYGIT	33
F311	1	-----MKTNSGINLIKGFEGKRLKAYDDGFGVWTIGF	33
F307	34	GTIKYPNGVRVKKGDTCTESQAEEYLNDLVV-----FES	68
F376	33	KWLKDLKSSWLDDETAWCGTFVAHCLQTAGFQRGSVNSRSKTYKSGTKAPPGFYPFNWYA	92
F351	39	QAVARENGWNGNMKDLPLDVAKAIYKKQYWTAPRFDQVNA-----VSSAVAEE	86
F347	7	-----	6
F344	48	EAVARTNGFKGNMKDLPLDVAKAIYKKQYWTDPRFQNVN-----ISSLVAEE	95
F340	33	KWLKDLKSSWLDDETAWCGTFVAHCLQTAGFQRGSVNSRSKTYKSGTKAPPGFYPFNWYA	92
F338	121	KWLSELKAWWADDETAWCGTFVAHCLKSAGIA-----YPKHWYR	159
F336	121	KWLSELKAWWADDETAWCGTFVAHCLKSAGIA-----YPKHWYR	159
F334	121	KWLSELKAWWADDETAWCGTFVAHCLKSAGIA-----YPKHWYR	159
F332	121	KWLSELKAWWADDETAWCGTFVAHCLKSAGIA-----YPKHWYR	159
F330	113	KWLSELKAWWADDETAWCGTFVAHCLKSAGIA-----YSKHWYR	151
F328	34	EAVARENGYKGNMKDLPLDVAKAIYRKQYWIEPRFDQVNT-----LSSAVAEE	81
F324	34	EAVARENGYKGNMKDLPLDVAKAIYRKQYWIEPRFDQVNT-----LSSAVAEE	81
F321	34	EAVARENGYKGNMKDLPLDVAKAIYRKQYWIEPRFDQVNT-----LSSAVAEE	81
F320	34	EAVARENGYKGNMKDLPLDVAKAIYRKQYWIEPRFDQVNT-----LSSAVAEE	81
F315	45	GSTS YENGTKVKMTDKPITKERAVQIAKAHIA-----KDE	79

FIG. 5 Cont.

F306	45	GSTS YENG TKVKM TDKP ITKERA VQIAKAHIA-----	KDE	79
F303	34	EAVARENGYKG NMKD LPLDVAKAIYRKQY WIEPRFDQVNT-----	LSSAVAEE	81
F301	65	EAVARENGYKG NMKD LPLDVAKAIYRKQY WIEPRFDQVNT-----	LSSAVAEE	112
F309	34	EAVARENGYKG NMKD LPLDVAKAIYRKQY WIEPRFDQVNT-----	LSSAVAEE	81
F311	34	GTIKY PNGV RVKKG DICTESQAEGY LRNDLVA-----	FEN	68
F307	69	AINR--LVK VPLNQNQFDALASFTY NLG-----EGNLSISTLLKKLNAKDYKGAAA EFP	120	
F376	93	ALEYI KEGGVKLX KPCY GCVAVKSREGGGHVT FVVGKTP-TGKLICLGGNQSNKVC FAVY	151	
F351	87	LLDTGVNC GTGFAKPLLQRALNLLNNQG-----KAGYADLEVDGVYGSATLGALKTYLS	140	
F347	7	-----AELS QTEYDLYLDFTYQYG-----VPTFAKSSMLKHLKAGQYKAACDSLL	51	
F344	96	LLDTGVNC GTGFAKPLLQRALNLLNNQG-----KAGWPDLTV DGIYGPATLNALKTYLA	149	
F340	93	ALEYI KEGGVKLDKPCY GCVAVKSREGGGHVT FVVGKTP-TGKLICLGGNQSNKVC FAVY	151	
F338	160	ALDYVNYG-TKLA KPAY GCVAIKTRKGGGHVC FVVG RDKSGKL VCLGGNQSNKVC YALY	218	
F336	160	ALDYVNYG-TKLA KPAY GCVAIKTRKGGGHVC FVVG RDKSGKL VCLGGNQSNKVC YALY	218	
F334	160	ALDYVNYG-TKLA KPAY GCVAIKTRKGGGHVC FVVG RDKSGKL VCLGGNQSNKVC YALY	218	
F332	160	ALDYVNYG-TKLA KPAY GCVAIKTRKGGGHVC FVVG RDKSGKL VCLGGNQSNKVC YALY	218	
F330	152	ALDYVNYG-TKLA KPAY GCVAIKTRKGGGRVC FVVG RDKSGKL VCLGGNQSNKVC YALY	210	
F328	82	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	135	
F324	82	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	135	
F321	82	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	135	
F320	82	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	135	
F315	80	VAFRKSLQGVRLTQTEYDVFVYNYG-----QANWNGSSMLRNLKAGQYKQACASLL	133	
F306	80	VAFRKSLQGVRLTQTEYDVFVYNYG-----QANWNGSSMLRNLKAGQYKQACASLL	133	
F303	82	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	135	
F301	113	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	166	
F309	82	LLDTGVNC GINF AFAKPLLQRALNLLNNQG-----KAGYADLKVDGVYGSNTLGALKTYLA	135	
F311	69	AINR--LVK VPLNQNQFDALASFTY NLG-----EGNLSKSTLLKKLNAKDYKGAAA EFP	120	
F307	121	KWNKAGGR-----VLAGLVKRRKAEMELFLK-----	146	
F376	152	DVSAFEAFM WY GKT SKPAAHRYDLPVLKIVSVTSVSEA-----	189	
F351	141	KRGKEGEKVLVRVLNIMQGQRYIEICERNPKQE QFFY GWIANRIG-----	185	
F347	52	KYKYVAKRDCS-----VRKNGCYGVWTRQVERHAKCIGAQ-----	86	
F344	150	KRGKDGEKVLVRVLNIMQGQRYIEICERNPSQE QFFY GWIANRVVI-----	195	
F340	152	DVSAFEAFM WY GKT SKPAAHRYDLPVLKIVSVTSVSEA-----	189	
F338	219	NDSDFQEFRWYGR TTQPASKRYTLPQLKGVTATRVLEA-----	256	
F336	219	NDSDFQEFRWYGR TTQPASKRYTLPQLKGVTATRVLEA-----	256	
F334	219	NDSDFQEFRWYGR TTQPAGKRYTLPQLKGVTATRVLEA-----	256	
F332	219	NDSDFQEFRWYGR TTQPASKRYTLPQLKGVTATRVLEA-----	256	
F330	211	NDSDFQEFRWYGR TTQPASKRYTLPQLKGVTATRVLEA-----	248	

FIG. 5 Cont.

F328	136	KRGKEGEKVLVRVLNIMQGQRYIEICERNKSSEQFFYGWIANRIG-----	180
F324	136	KRGKEGEKVLVRVLNIMQGQRYIEICERNKSSEQFFYGWIANRIG-----	180
F321	136	KRGKEGEKVLVRVLNIMQGQRYIEICERNKSSEQFFYGWIANRIG-----	180
F320	136	KRGKEGEKVLVRVLNIMQGQRYIEICERNPKSEQFFYGWIANRIG-----	180
F315	134	KYKYVAKRDGS-----IRSNGCYGVWTRQQDCYSKCMAVQ-----	168
F306	134	KYKYVAKRDGS-----IRSNGCYGVWTRQQDRYSKCMAVQ-----	168
F303	136	KRGKEGEKVLVRVLNIMQGQRYIEICERNPKSEQFFYGWIANRIG-----	180
F301	167	KRGKEGEKVLVRVLNIMQGQRYIEICERNKSSEQFFYGWIANRIG-----	211
F309	136	KRGKEGEKVLVRVLNIMQGQRYIEICERNPKSEQFFYGWIANRIG-----	180
F311	121	KWNKAGGR-----VLAGLVKRRKAEMELFLK-----	146

FIG. 6

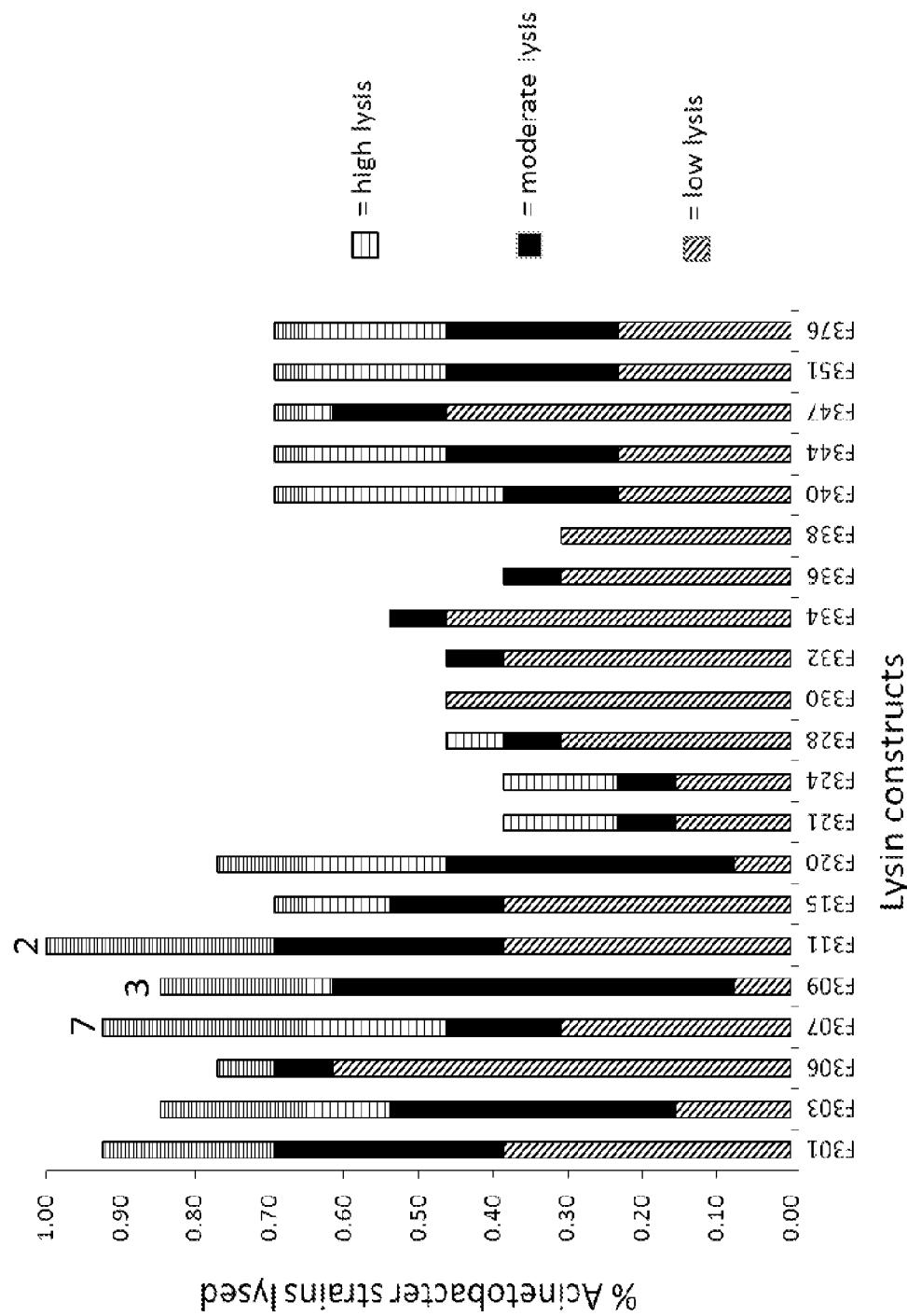


FIG. 7A

FIG. 7B

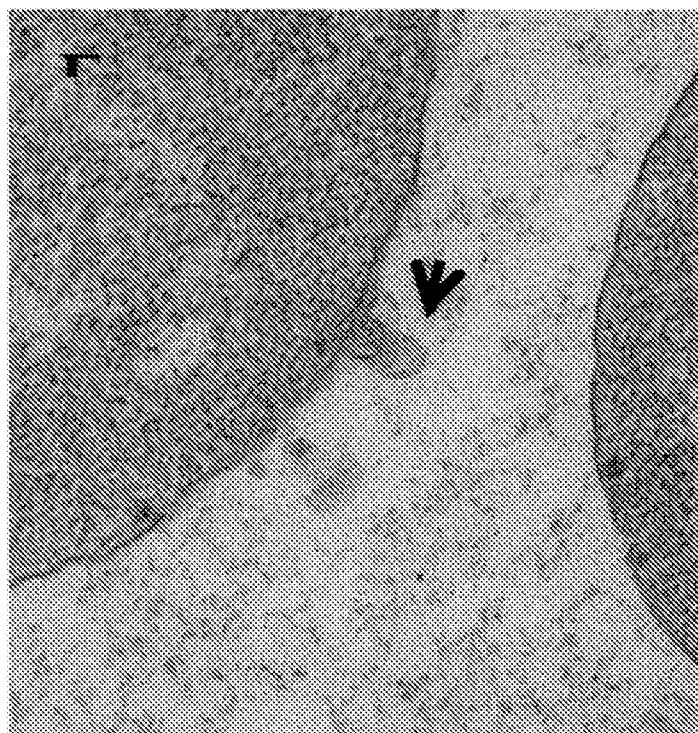
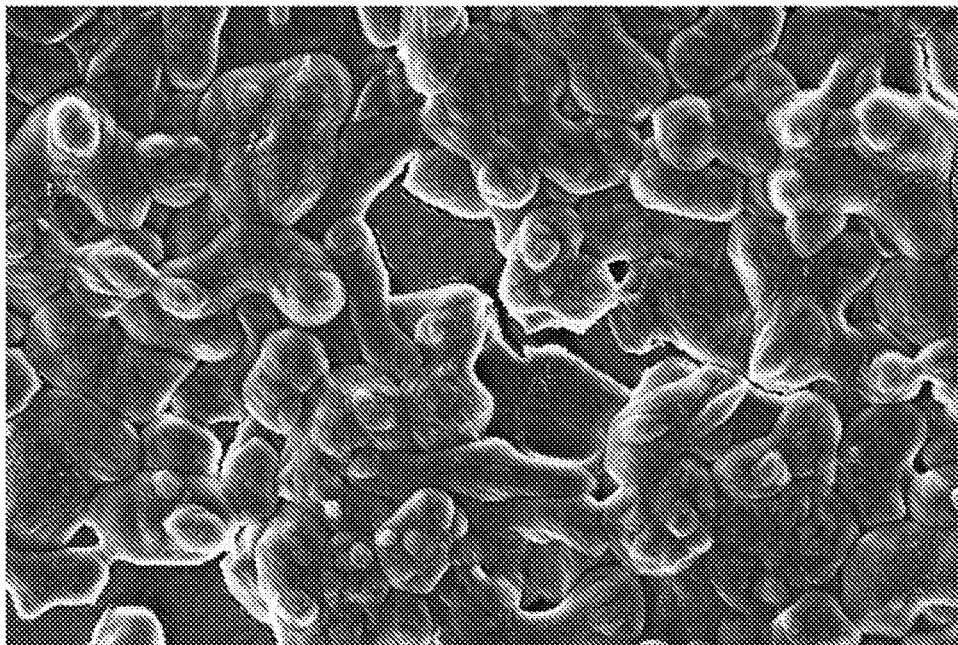



FIG. 8

0 Time

30 Min

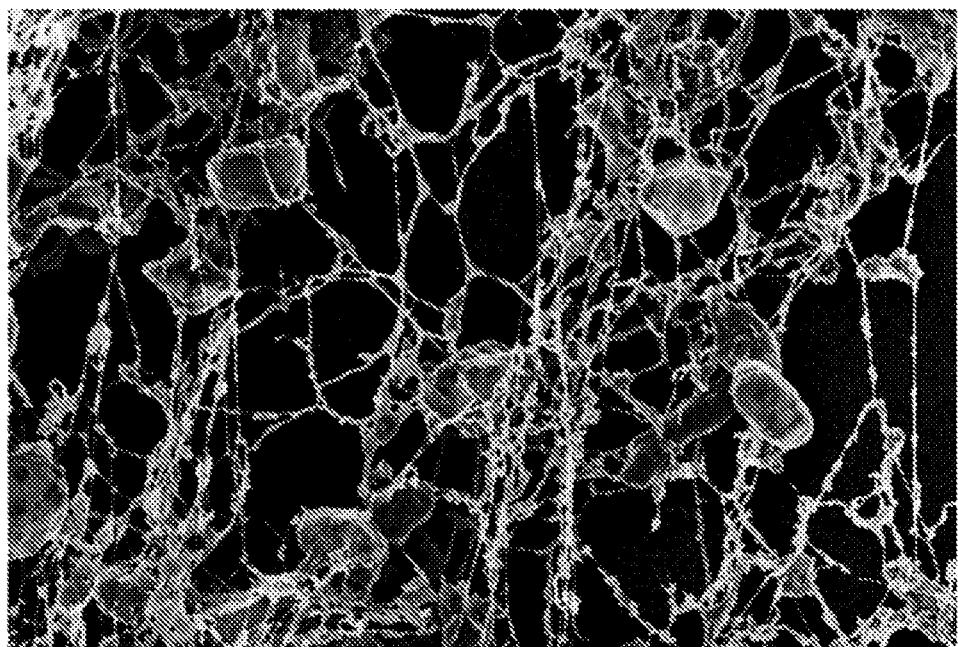


FIG. 9

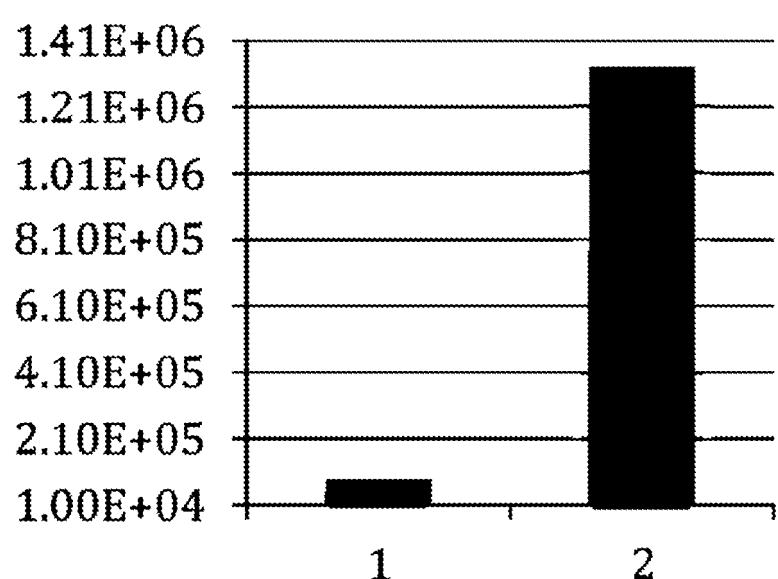


FIG. 10

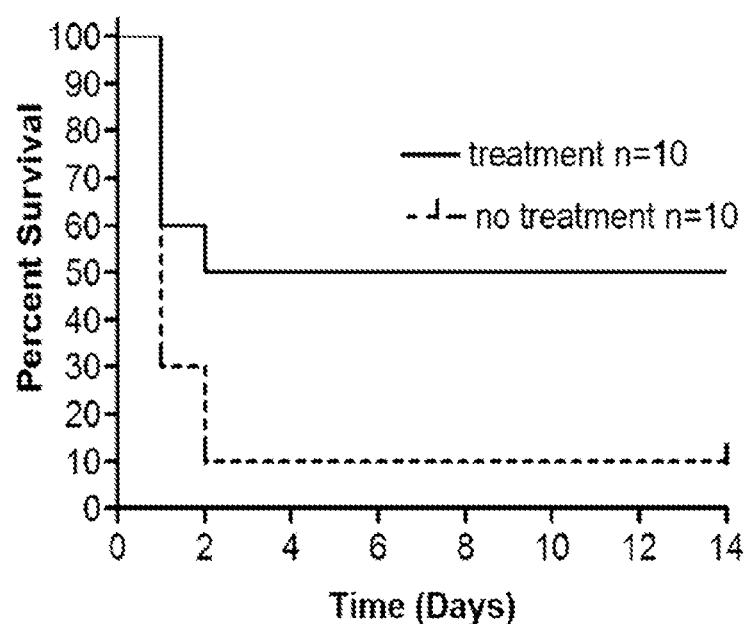


FIG. 11

F307

VKTSNPGVDL IKGFEGRLRK AYDDGVGVWT IGFGTIKYPN GVRVKKGDTC TESQAEYLR
NDLVVFESAI NRLVKVPLNQ NQFDALASFT YNLGEGNLSI STLLKKLNAK DYKGAAAEFP
KWNKAGGRVL AGLVKRRKAE MELFLK (SEQ ID NO:1)

P307- NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRK -- 3.4 kDa (SEQ ID
NO:43)

P307Ex - NAKDYKGAAAEFPKWNKAGGRVLAGLVKRRKSQSRESQC -- 4.3 kDa (SEQ ID
NO:45)

FIG. 12

Figure 12A

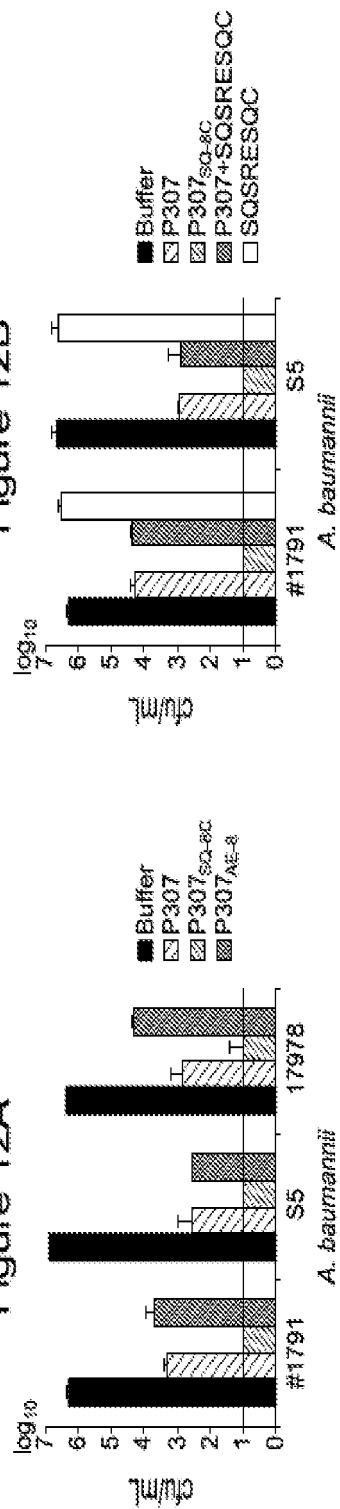


Figure 12B

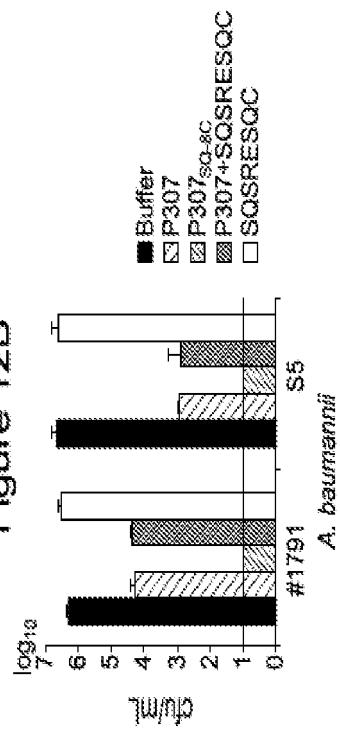


Figure 12C

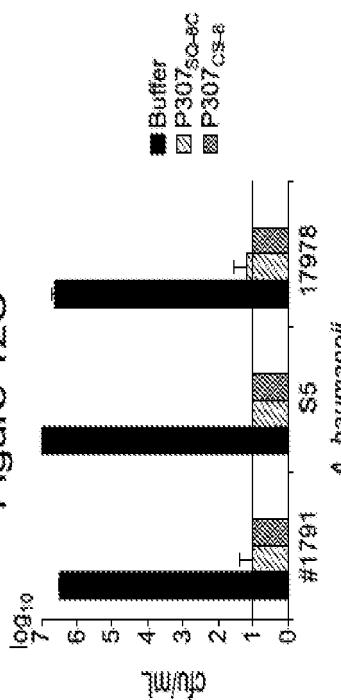

*A. baumannii**A. baumannii**A. baumannii**A. baumannii*

FIG. 13

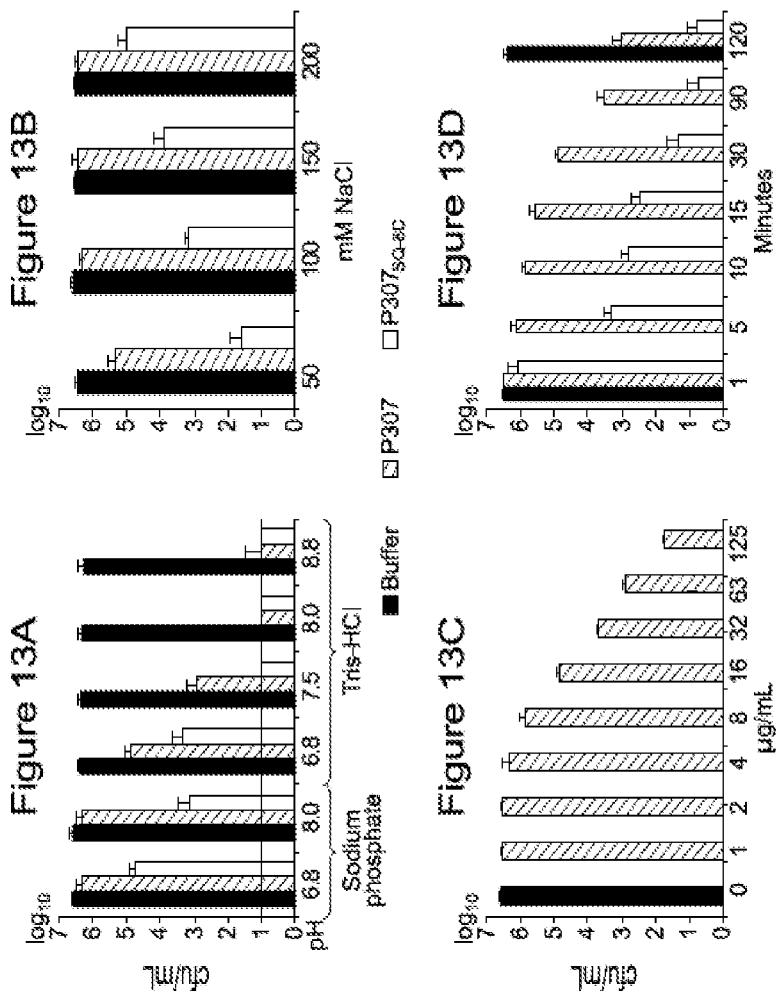


FIG 14

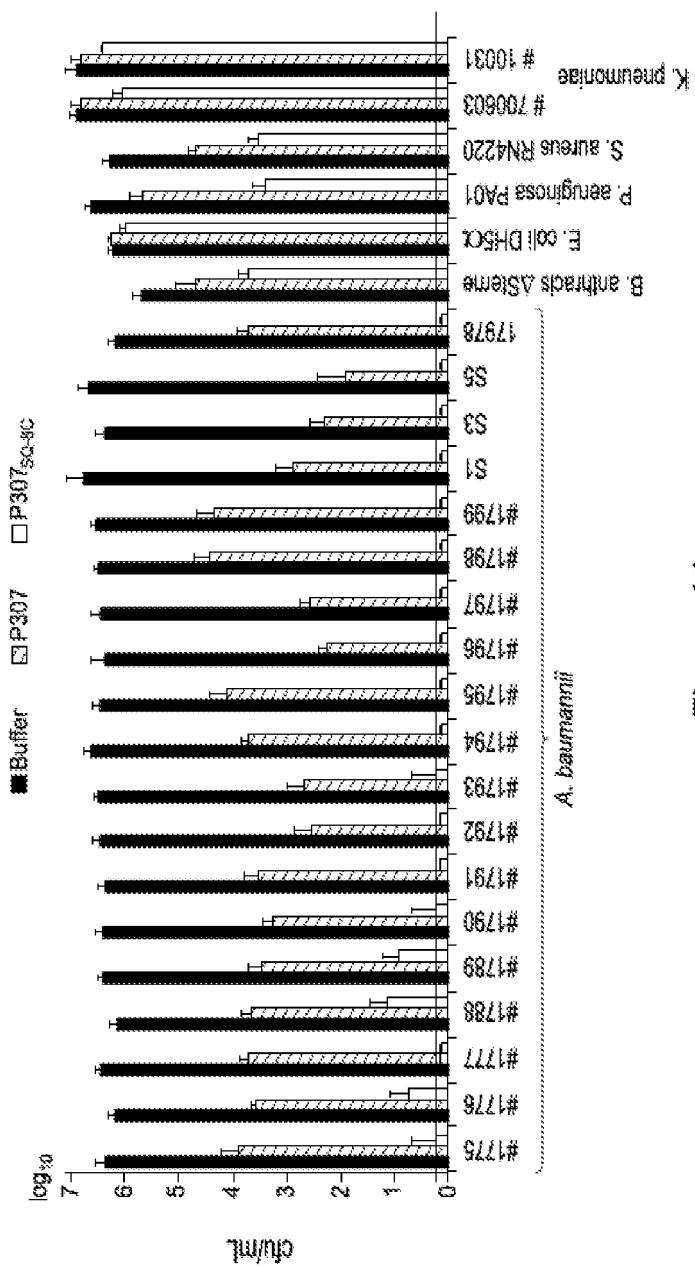


Figure 14

FIG 15

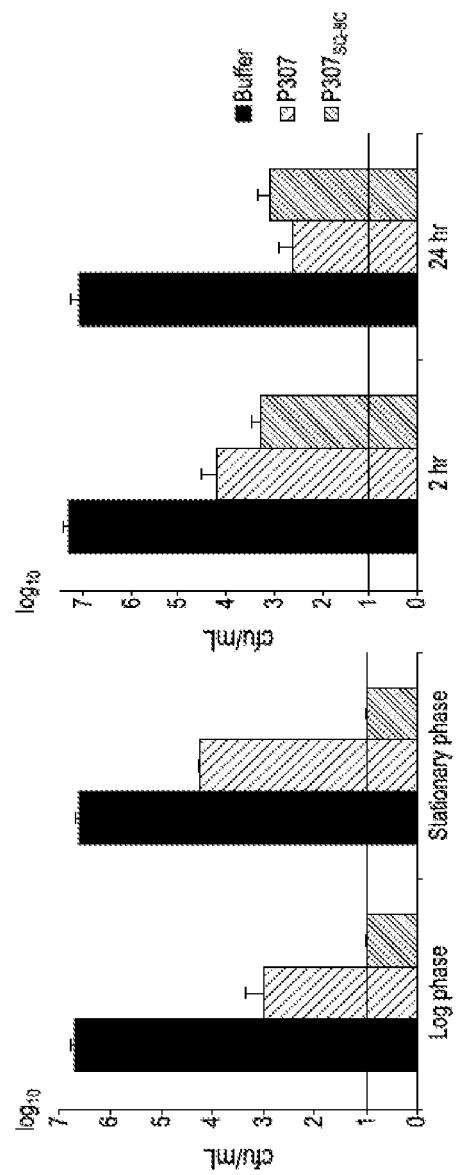


Figure 15A

Figure 15B

FIG. 16

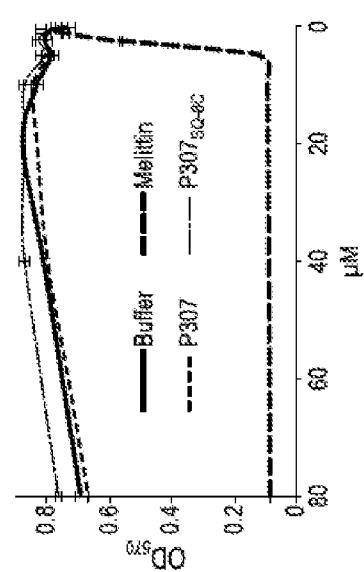


Figure 16A

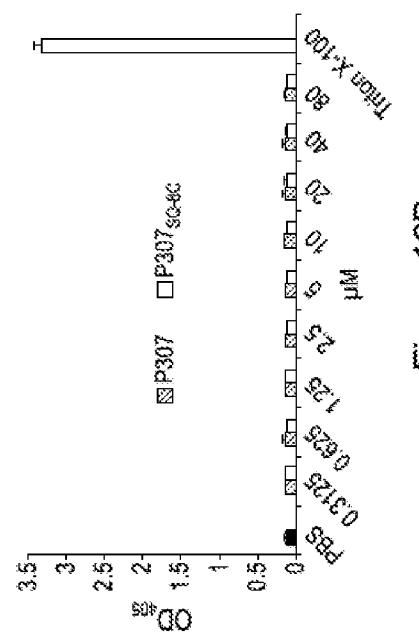


Figure 16B

FIG. 17

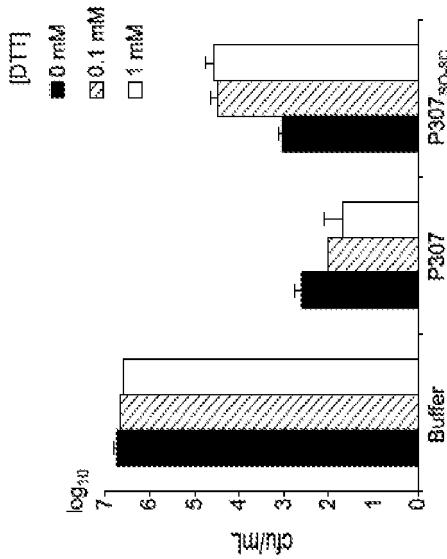


Figure 17A

Figure 17B

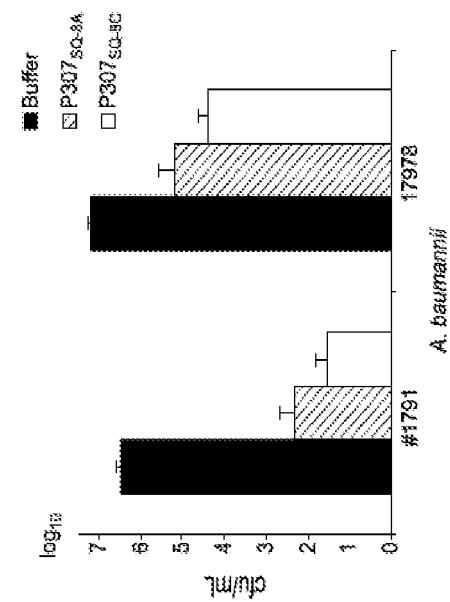


Figure 17B

FIG. 18

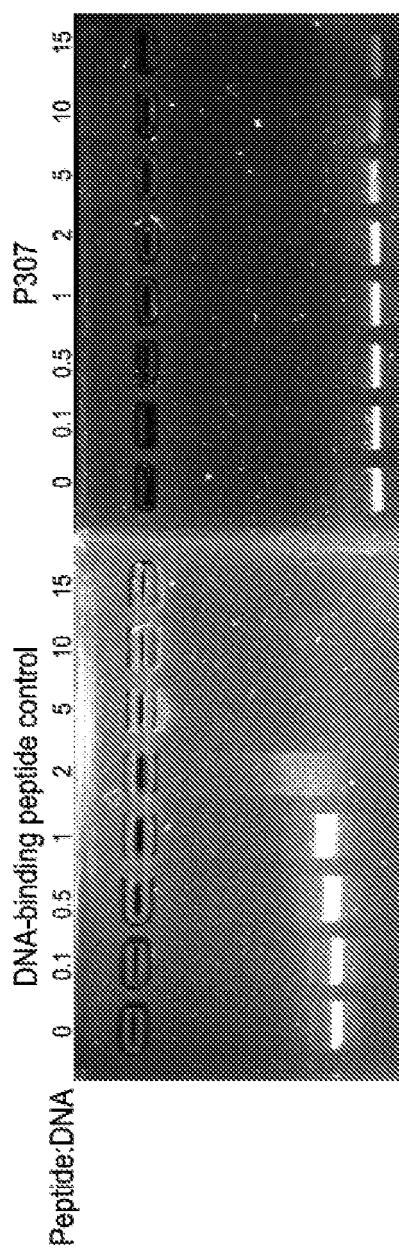


Figure 18

FIG. 19

Figure 19A Untreated

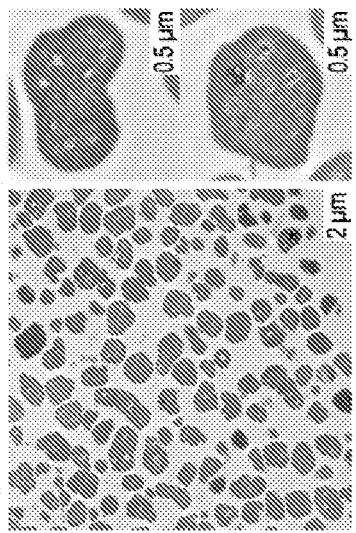


Figure 19B P307₂₀₀₀ 5 min

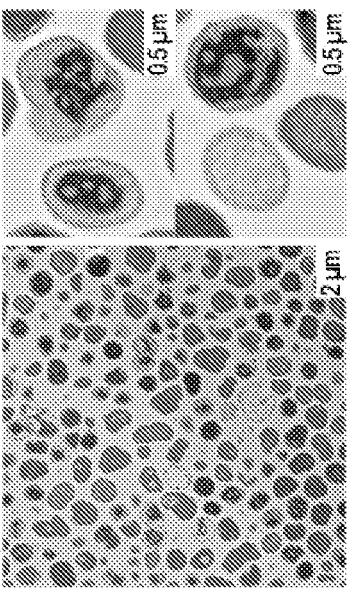
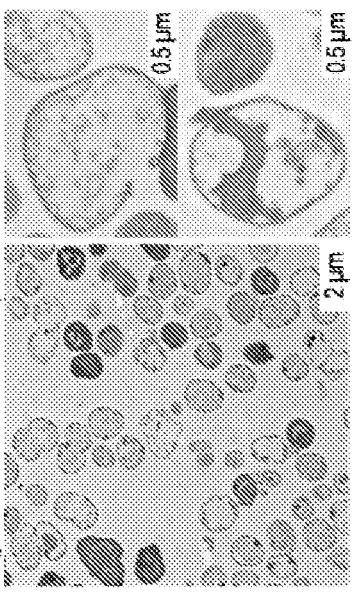



Figure 19C P30794C

log₁₀ pH 7.5 pH 8.8

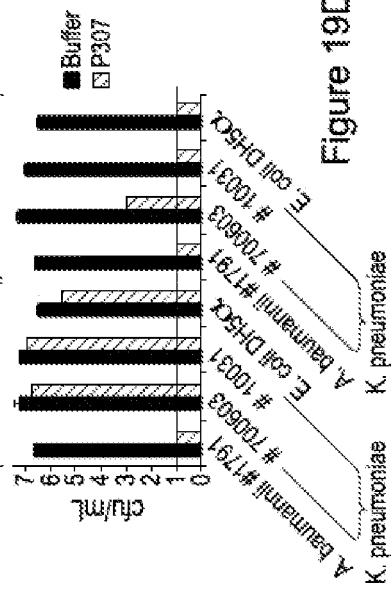


Figure 19D

FIG. 20

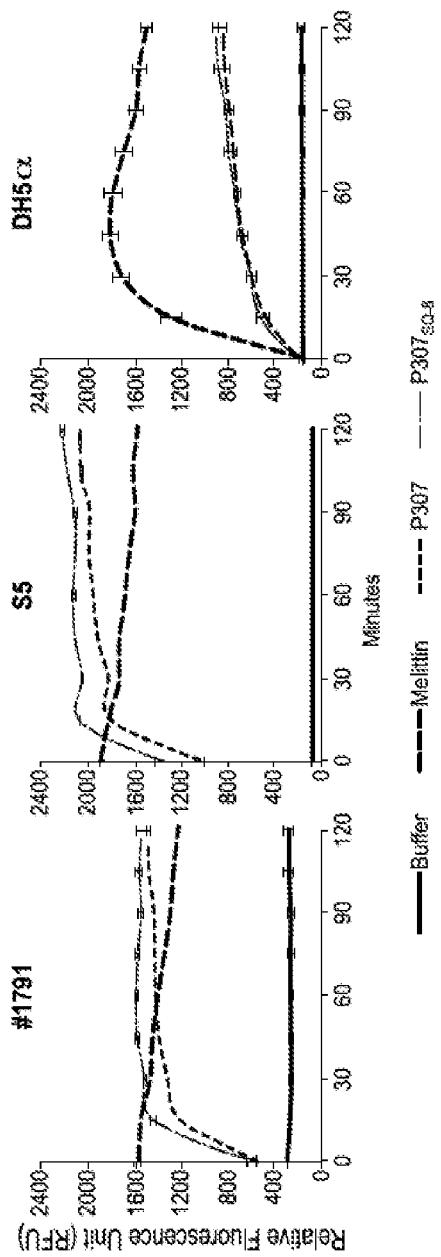


Figure 20

FIG. 21

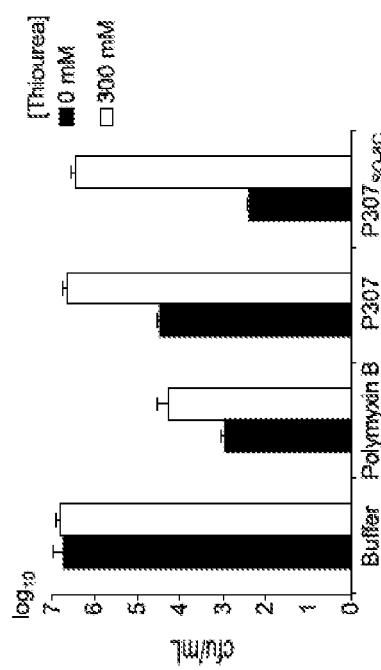


Figure 21A

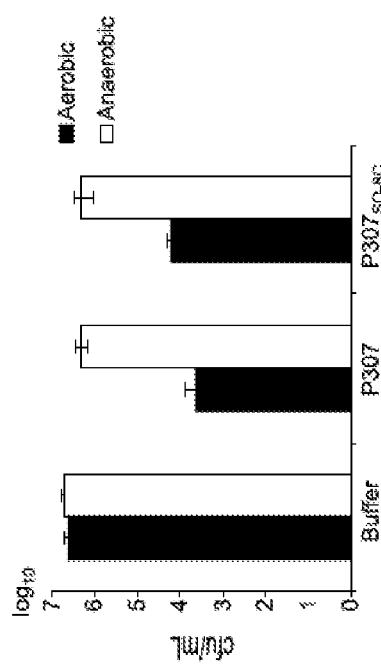


Figure 21B

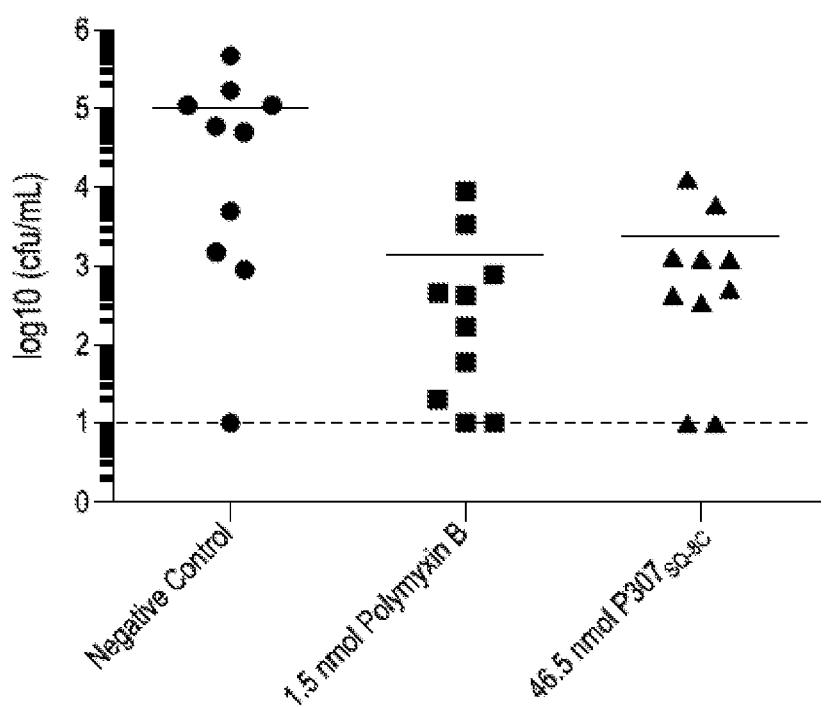


FIG. 22

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 62017618 A [0123]

Non-patent literature cited in the description

- LOOD et al. *Antimicrobial Agents and Chemotherapy*, 2015, vol. 59 (4), 1983-1991 [0005]
- NEEDELMAN ; WUNSCH. *J. Mol. Biol.*, 1970, vol. 48, 443-453 [0050]
- Remington The Science and Practice of Pharmacy. Lippincott Williams & White, 2000 [0072]
- Remington's Pharmaceutical Sciences. Mack Publishing Company, 1995 [0073]
- SCHMITZ JE. et al. *Appl. Environ. Microbiol.*, 2008, vol. 74, 1649-1652 [0076]
- SCHMITZ JE et al. *Appl. Environ. Microbiol.*, 2010, vol. 76, 7181-7187 [0077] [0078]
- Standard *Fmoc protocols.*, 1997, vol. 289, 44-67 [0101]
- *New Coupling Reagents in Peptide Chemistry*, 1989, vol. 30, 1927-1930 [0101]
- ETEST LOOD R et al. *Antimicrob. Agents Chemother.*, 2015, vol. 59, 1983-1991 [0107]