PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G11C 19/28, 7/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/56005

10 December 1998 (10.12.98)

(21) International Application Number: PCT/SE98/01054

(22) International Filing Date: 3 June 1998 (03.06.98)

(30) Priority Data:

9701874-1 SE

3 June 1997 (03.06.97)

(71)(72) Applicant and Inventor: BELIK, Ferenc [SE/SE];

Batyxevigen 46, S—226 56 Lund (SE).

(74) Agent: AWAPATENT AB; P.O. Box 5117, $-200 71 Malmd
(SE).

(81) Designated States: CN, HU, JP, KR, RU, US, European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND DEVICE FOR DATA SEQUENCE MANIPULATION

(57) Abstract

A random access memory and meth-
ods for insertion and deletion of data ele-
ments in the memory are presented. The
memory comprises a number of parallel
shift registers. Each memory cell consits
of bits from a number of shift registers.
The method for insertion or deletion of a
data element into a sequence of data ele-
ments, contained in a number of consec-
utive memory cells comprise the steps of
localizing a position at which a data ele-
ment is to be inserted or deleted, moving
the data elements in a controllable num-
ber of consecutive memory cells simulta-
neously to create space for a data element
or to delete a data element and, in the case
of insertion, inserting the data element into
the sequence of data elements at the local-
ized position. As a result, efficient sort-
ing and dynamic searching are achieved,
the need of pointers in linked list structures
eliminated.

memory addresses

shift register 1

B000MNOIENTRINISIRINILRIIRINNNY

shift register 2
shift register 3

- §hift register 32

tff e
nlll"..._

(SR & Iy

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG

CI
M
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
P
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
T
UA
UG
Us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 98/56005 PCT/SE98/01054

METHOD AND DEVICE FOR DATA SEQUENCE MANIPULATION

Technical field of the invention

This invention relates to a method of inserting data
elements into and deleting data elements from a sequence
of data elements, and to a random access memory designed
therefor, according to the preambles of claims 1, 2, 9,
and 12.

Background art

Sorting and searching are two of the most studied
topics in computer science today. Virtually every general
computer science textbook discusses a variety of sorting
algorithms, search trees and priority queues. It is esti-
mated that about 25% of all computation time in the world
is spent sorting and searching. The importance of effi-
cient sorting and searching has increased with the advent
of the World Wide Web.

In almost all types of data computation the data is
sequentially arranged, i.e. arranged in an ordered col-
lection of data elements in which the position of an ele-
ment plays a significant role.

Today’s computers usually comprise a finite program,
a finite collection of registers, each of which can store
a single integer or real number, and a memory consisting
of an array of memory cells of word length, each of which
has a unique address and can hold data. In one step, a
computer of the type presented above can perform a single
arithmetic or logical operation on the contents of speci-
fied registers, place the contents of a memory cell whose
address is in a register into another specified register,
or store the contents of a register in a memory cell
whose address is in another register.

A serious deficiency in computers of this type is
that there is no “natural” way to sort data elements and

handle sequences of data elements, due to the way the

CONFIRMATION COPY

10

15

20

25

30

35

WO 98/56005 PCT/SE98/01054

2

memory is constructed. As a result, arrays and linked
lists are used together with different sophisticated
algorithms, search trees, priority queues, and similar
nynnatural” solutions. Even though this minimizes the
deficiencies, some problems of a serious nature remain.
For example, in order to achieve gquick addressing of an
element in a sequence, the data sequence needs to be
represented by an array in the random access memory. This
leads to an addressing time that is independent of the
array size, while the time for the insertion and deletion
of data elements in the array is dependent on the size of
the array. If, on the other hand, rapid insertion and
deletion of data is required, the data sequence needs to
be represented by a linked list in the random access
memory. As a result, the data insertion and deletion time
is independent of the size of the linked list, while the
addressing time is dependent on the size of the linked
list.

Summary of the invention

The purpose of the present invention is therefore to
eliminate the problems mentioned above and to provide a
more efficient method for combining rapid insertion and
deletion with rapid addressing, and thereby provide more
efficient methods for working with sequentially arranged
data elements in general.

This purpose has been achieved by the methods and by
a random access memory that has been designed to be used
together with the methods, as set forth in the appended
claims.

The methods for efficient insertion of a data ele-
ment into a sequence of data elements, and for efficient
deletion of a data element from a sequence of data ele-
ments, are mainly based on two ideas. The first idea 1is
that the number of consecutive memory cells in the se-
quence of data elements that are simultaneously moved is
controllable, and the second idea is that the number of

steps the data elements in the consecutive memory cells

10

15

20

25

30

35

WO 98/56005

3

are simultaneously moved is controllable. With the pos-
sibility of controlling the above parameters, several
advantages appear, some of which are presented here.

In a preferred embodiment of the invention, a se-
quence of data elements is represented as an array which
is contained in a number of memory cells in a random
access memory. Increased flexibility in the manipulation
of data elements makes operations on arrays consisting of
unsorted data elements, sorted data elements, or arrays
with at least one sorted and one unsorted group of data
elements equally easy. By choosing the number of words to
be moved, and the number of address steps for the words
to be moved, sorting of an array and dynamic searching in
a sorted array is elementary to one skilled in the art.
In the preferred embodiment, sorting of a sequence of
data elements which is represented by an array is accomp-
lished by a Binary Insertion Sort algorithm. By using
dynamic searching, a position in a sequence of sorted
data elements in an array at which a data element is to
be searched, inserted, or deleted is found by binary
search.

As a consequence of using arrays in which data ele-
ments can be entered in an efficient way, the need of
pointers in linked lists is eliminated, which makes com-
puter programs safer.

The increased flexibility in the manipulation of
data elements have further advantages. For example, data
elements do not need to be of word size, that is, the
same size as the memory cells, but may instead consist of
several words. Large data elements comprising much infor-
mation can be manipulated almost as easily as smaller
data elements.

The random access memory according to the invention
preferably comprises a number of parallel shift regis-
ters. A shift register is a memory, consisting of memory
cells of bit size, in which the contents of a controll-

able number of consecutive bit-sized memory cells can be

PCT/SE98/01054

10

15

20

25

30

WO 98/56005 PCT/SE98/01054

4

moved simultaneously a controllable number of steps to-
wards higher or lower address numbers. The shift regis-
ters do not need to be physically connected in parallel,
as long as the function described below is achieved. In a
preferred embodiment of the random access memory, each
memory cell consists of bits from a number of shift
registers corresponding to the number of bits in the
memory cell, the bits having the same location in the
shift registers. Thus, when the same consecutive number
of bits in each shift register that is comprised in
consecutive memory cells is moved a certain number of
steps, the contents of the same consecutive number of
memory cells in the random access memory will be moved
accordingly.

A random access memory of the above type can pre-
ferably be included in a processing unit, such as a
computer or some other type of electronic device, where
sorting, dynamic searching, list manipulation, and other
manipulation of data sequences are important tasks.

Brief descriptions of the drawings

A preferred embodiment of the invention will now be
described, by way of example only, with reference to the
accompanying drawings.

Fig 1 shows a schematic diagram of the architecture
of a Random Access Memory according to the invention.

Fig 2 shows the process of insertion of a data ele-
ment into an array of data elements according to the
invention.

Fig 3 shows the process of deletion of a data ele-
ment from an array of data elements according to the
invention.

Fig 4 shows one insertion step of Binary Insertion
Sort implemented on a Random Access Memory according to
the invention.

10

15

20

25

30

35

WO 98/56005 PCT/SE98/01054

5

Detailed description of preferred embodiments of the

invention

Referring to fig 1, a preferred embodiment of the
random access memory according to the invention comprises
a number of parallel shift registers, each of which is m
bits long, m being the highest address number in the
memory. The number of shift registers corresponds to the
size of a memory word or memory cell. The first bits of
the parallel shift registers form the first memory word,
the second bits of the parallel shift registers form the
second memory word, and so on. By constructing the random
access memory as parallel shift registers, it is possible
to move the contents of several consecutive words simul-
taneously.

additional circuitry is provided that makes 1t pos-—
sible to choose the number of words that are to be shif-
ted, and to choose the number of address steps by which
the words are shifted towards higher or lower address
numbers. Today the random access memory according to the
invention can be realized in a size of about 8 Mbytes on
a chip, if a controllable number of consecutive memory
cells are simultaneously movable one step only. There is
a large number of circuits suitable for performing the
operations described above in a random access memory, and
the construction of a random access memory with the above
characteristics can therefore be carried out by a person
skilled in the art. The choice of how many words that are
to be moved can be made either by the user or by the
software depending on the situation. The specified add-
resses and numbers are stored in registers.

Referring now to fig 2, a method of insertion of a
data element or a word X into a sequence of data elements
according to a preferred embodiment of the invention will
be described. In the random access memory according to
the invention, a sequence of data elements is implemented
as an array, with one data element in each memory word.

Fig 2 shows an allocated memory area of the random access

10

15

20

25

30

35

WO 98/56005 PCT/SE98/01054

6

memory in which the sequence of data elements is allowed
to expand or retract. For explanatory purposes two num-
pers i and n, referring to address positions in the me-
mory, that is indices in the array, will be used in the
following discussion. 1 corresponds to an address at
which an element is to be inserted, and n corresponds to
the address of the last word in the data sequence. Since
it is possible to select the number of words that are to
pe moved, as well as the number of steps by which the
words are to be moved, insertion of data is extremely
easy and can be carried out with great efficiency. In
order to insert a word at the address i in a data se-
quence which is implemented as an array, three steps are
carried out. In step 1, the i:th position of the array is
looked up. In step 2, the words between the i:th position
and the n:th position in the array are simultaneously
moved one step in the direction of increasing addresses.
Finally, in Step 3, the new word is inserted at the
address i. This method of inserting a word can obviously
also be extended to inserting data elements consisting of
several words.

The time complexity for each of the operations de-
scribed above is O(l). If a step preceding step 1 1is
necessary in order to retrieve the data element x from
another sequence of data elements before inserting it
into the new sequence, the time complexity for this step
will determine the overall worst time complexity for the
insertion of the data element x into the sorted array.
For more information on time complexity, see computer
science textbooks such as Jeffrey H Kingston: ”“Algorithms
and Data Structures”, Addison-Wesley, 1992.

Referring to fig 3, which also shows an allocated
memory area of the random access memory in which the
sequence of data elements is allowed to expand or retract
the deletion of a data element or data word will be de-
scribed. Here, i and n denote the same address positions

in the array as in fig 2. The deletion of the contents at

10

15

20

25

30

35

WO 98/56005 PCT/SE98/01054

7

address i is simply carried out by simultaneously moving
the elements between position i+l and n one step in the
direction of decreasing addresses. The time complexity
for this operation is O(1l). According to the methods
shown in figs 2 and 3, the invention combines rapid in-
sertion and deletion with rapid addressing, which elimi-
nates the need of pointers in linked lists, and makes
computer programs safer and more efficient.

Fig 4 shows how a one step in a Binary Insertion
Sort algorithm can be carried out using a random access
memory according to the invention. The data elements,
which are of word size, are contained in an array consis-
ting of both a sorted group of data elements and an un-
sorted group of data elements. For explanatory purposes
two address numbers, that is indices in the array, i and
kK will be used. k is the address of the last sorted data
element. In the insertion step shown in fig 4, the first
unsorted data element, which is at address k+1, is to be
inserted among the sorted elements. i is an address num-
per in the sorted group of data elements, at which the
data element at the address k+1 in the unsorted group of
data elements is to be inserted. In Step 1, the address i
is found by using binary search. The address i1 and the
data element at the address k+l are moved to two diffe-
rent registers. The worst case time complexity for find-
ing the place of the data element using binary search is
O(log n), where n is the number of elements to be sorted.
In Step 2, consecutive elements from addresses i to k are
simultaneously moved one address step in the direction of
increasing addresses. The time complexity for this is
0(1) for the worst case time. In Step 3, the data element
retrieved from address k+1, now held in the register, is
inserted at the address i. The time complexity for this
is O(1).

As can be seen, after performing n insertion steps
the worst case time complexity for sorting an array con-

sisting of sorted and unsorted data elements is O(nlog

10

15

20

25

30

35

WO 98/56005 PCT/SE98/01054

8

n). Sorting can be achieved today in conventional random
access memories by using sorting algorithms such as Merge
Sort and Heap Sort with a worst case time complexity of
O(nlog n), and Quick Sort with an average time complexity
of O(nlog n). However, the asymptotic time complexity
hides a constant. Improvements of Quicksort, today’s most
efficient sorting algorithm, such as using straight in-
sertion sort for small subfiles, have been recommended in
order to minimize this constant. For more information on
improvements of Quicksort, see Robert Sedgewick: “Algo-
rithms in C++”, Addison-Wesley, 1992. In a random access
memory according to the invention, the constant hidden in
the asymptotic time complexity has a lower value for the
Binary Insertion Sort algorithm than for any of the algo-
rithms above, and is thus more efficient.

With a sorted array in a random access memory
according to the invention, dynamic searching, that is
the implementation of the operations in Table 1, is
simple and efficient. The table shows a comparison
petween the worst case time complexity for different
searching methods in a conventional random access memory
and in a random access memory according to the invention.
x represents a data element, n the number of data ele-
ments contained in the sorted array, and i represents an
address number of a data element in the sorted array.

The operations find(x) and index_of (x) finds the
data element x and its address, respectively, by binary
search in the sorted array, and have a time complexity of
O(log n).

The operation insert(x) comprises the steps of
finding the position where the data element Xx is to be
inserted using binary search, and inserting it into the
sorted array. These two steps have a time complexity of
O(log n) together.

The operations delete(x) and delete min are deletion

operations from a sorted array, and have an O(l) time

10

15

WO 98/56005 PCT/SE98/01054

9

complexity. In Table 1, it is assumed with the operation
delete(x) that the address of x is known.

The operations find min, find max, find next (x),
find previous (X), and find(i) correspond to finding the
the last data element, the data

element succeeding x, the data element preceding x, and

first data element,

the data element at address i in a sorted array. All
these operations involve finding addresses in the random
which has an 0O(1)

access memory, time complexity.

Conventional random access memory Random access
memory according
to the invention

2-3 tree |Splay- |Heap Binomial |Sorted array
tree queue

find(x) O(log n) | O(log n) O(log n)

insert(x) O(log n) | O(log n) | O(log n) | O(log n) O(log n)

delete(x) O(log n) | O(log n) | O(log n) | O(log n) o)

delete min O(log n) | O(log n) | O(log n) [O(logn) |O(1)

find min O(log n) | O(log n) | O(1) 0(1) o(1)

find max O(log n) | O(log n) O(1)

find next(x) O(log n) | O(log n) o(1)

find previous(x) O(log n) | O(log n) o(1)

find(1) O(log n) | O(log n) o(1)

index of(x) O(log n) | O(log n) O(log n)

TABLE 1: Comparison of search methods (the

Splay-tree are amortized times).

times for

10

15

20

25

30

35

WO 98/56005
10

CLAIMS

1. A method for insertion of a data element into a
sequence of data elements, contained in a plurality of
consecutive memory cells in a random access memory, Ccom-
prising the steps of:

- localizing the position at which the data element
is to be inserted into the sequence of data elements;

- creating space at the localized position in the
sequence of data elements by moving the data elements in
a numpber of consecutive memory cells simultaneously;

- inserting the data element into the sequence of
data elements at the localized position;
characterized in

- that the number of consecutive memory cells whose
data elements are simultaneously moved is controllable.

2. A method for deletion of a data element from a
sequence of data elements, contained in a plurality of
consecutive memory cells in a random access memory,
comprising the steps of:

- localizing the position in the sequence of data
elements from which the data element is to be deleted;

- moving the data elements in a number of consecu-
tive memory cells simultaneously, so that the data
element at the localized position is replaced;
characterized in

- that the number of consecutive memory whose data
elements are simultaneously moved is controllable.

3. A method according to claim 1 or 2, wherein the
number of steps that the data elements in the consecutive
memory cells are simultaneously moved is controllable.

4. A method according to any of the preceding
claims, wherein the insertion and deletion respectively
of data elements is performed on an unsorted sequence of

data elements.

PCT/SE98/01054

10

15

20

25

30

35

WO 98/56005 PCT/SE98/01054

11

5. A method according to any of the claims 1-3,
wherein the sequence of data elements is a sorted se-
quence of data elements.

6. A method according to any of the claims 1-3,
wherein the insertion and deletion respectively of data
elements is performed on a sequence of data elements in a
Random Access Memory, the sequence of data elements con-
sisting of at least one sorted and one unsorted group of
data elements.

7. A method according to claim 5 or 6, wherein the
step of localizing the position in the sequence of sorted
data elements is performed by binary search.

8. A method according to claim 1 or 2, wherein the
insertion or deletion of a data element in the sequence
of data elements is performed by a Binary Insertion Sort
algorithm.

9. A random access memory comprising a number of
memory cells for storing data elements, each memory cell
consisting of a certain number of bits
characterized in

that the random access memory comprises circuits
enabling simultaneous moving of the data elements in a
controllable number of consecutive memory cells.

10. A random access memory according to claim 9, the
random access memory further comprising circuits enabling
simultaneous moving of the data elements in a
controllable number of memory cells a controllable number
of steps.

11. A random access memory according to any of the
claims 9-10, wherein the random access memory further
comprises a number of parallel shift registers, each
memory cell consisting of bits from a number of shift
registers corresponding to the number of bits in the
memory cell, the bits having the same bit location in

each shift register.

WO 98/56005 PCT/SE98/01054
12
12. A processing unit character ized in
that it comprises a random access memory according to any

of the claims 9-11.

PCT/SE98/01054

WO 98/56005
1 1/2
T'-l‘ 8 shift register 1
shift register 2
........................ shift register 3
: . shift register 32
memory addresses === =
1 lllll
2
3 {
n

":“3 Ha

i n
Step 1
i n+l
Step 2 .
i n+l
Step 3

el

WO 98/56005

T:t'g 3

PCT/SE98/01054

2/2

o 5T
s g

-

[

..-{l"ll-

]:[L‘\
9
1 k
Step 1 : sorted unsorted
1 k
Step 2 ... unsorted
i k+1
Step 3 sorted unsorted

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

