20147001862 A2 |1 0100 10 1010 0 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/001862 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

3 January 2014 (03.01.2014) WIPOIPCT
International Patent Classification: (81)
GO6F 9/54 (2006.01)
International Application Number:

PCT/IB2013/001045

International Filing Date:
15 April 2013 (15.04.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/666,018 29 June 2012 (29.06.2012) US
61/666,023 29 June 2012 (29.06.2012) US
2,793,154 22 October 2012 (22.10.2012) CA

Applicant: KABUSHIKI KAISHA SQUARE ENIX
HOLDINGS (ALSO TRADING AS SQUARE ENIX
HOLDINGS CO., LTD.) [JP/JP]; 6-27-30 Shinjuku,
Shinjuku-ku, Tokyo (JP).

Inventors: PERRIN, Cyril; c¢/o Eidos Montreal, 400 de
Maisonneuve West, 6th Floor, Montreal, Quebec, H3A 1
L4 (FR). IWASAKI, Tetsuji; c/o Eidos Montreal, 400 de
Maisonneuve West, 6th Floor, Montreal, Quebec, H3A 1
L4 (JP).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with declaration under Article 17(2)(a); without abstract;
title not checked by the International Searching Authority

O (54) Title: METHODS AND SYSTEMS FOR BANDWIDTH-EFFICIENT REMOTE PROCEDURE CALLS

(57) Abstract:

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

METHODS AND SYSTEMS FOR BANDWIDTH-EFFICIENT
REMOTE PROCEDURE CALLS

FIELD OF THE INVENTION

The present invention relates generally to communications between computing devices
over a network and, more particularly, to an approach for efficient usage of network
resources, particularly bandwidth, when a first computing device calls functions to be

executed on a second computing device.

BACKGROUND

In the entertainment world, it has become commonplace to offer real-time or near-real-
time delivery of voice, music, video and other forms of data over private and public data
networks.

While users can obtain much enjoyment by using their computing devices to passively
receive the aforementioned forms of media over a network, a superior user experience
can be enabled when the user is allowed to influence or otherwise participate in what is
being delivered. An often-cited example is IPTV, where user input is monitored and
used to adapt the nature of the television signal being delivered to the user, typically
over a private data network that provides a guaranteed bandwidth. A different example
is Skype, where users participate in a video or audio conference that is supported over
the Internet rather than over a private data network.

The video game industry also has much to offer by harnessing the power of the
Internet. As Internet connections become faster and more reliable, it becomes feasible
to transmit larger amounts of graphics generated at a central source to participants in a
video game. Moreover, because images are rendered in the “cloud”, users can use
ordinary PCs, tablets or smartphones to partake in the gaming experience, thus
bypassing the need for expensive video game consoles. This is known as a cloud
gaming system.

In a cloud gaming system, the computational burden is shifted to the game provider.
However, the game provider’s resources available are not limitless. From a practical
perspective, limits on computational resources can impact the realism of the game or
the number of users who can concurrently play a version of the game at any given

time, or both.

10

15

20

25

WO 2014/001862 PCT/IB2013/001045

To handle the added computational burden of a cloud-based solution, some cloud
gaming providers are shifting to a model in which the game state is monitored by one
computer and rendering is carried out by another computer. To achieve rendering, a
rendering command is placed by the game state computer and executed by the
rendering computer. However, this configuration places demands on the
interconnection bandwidth between the two computers, and therefore it becomes of
importance to efficiently use this bandwidth when remotely executing rendering
commands. Similar considerations apply to other industries where remote procedure

calls are used in high volume.

SUMMARY OF THE INVENTION

Various non-limiting aspects of the invention are set out in the following clauses:

1. A method for execution by a local device connectable to a remote device, the
method comprising:

obtaining at least one instruction for execution by the remote device;
creating a packet representing the at least one instruction; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a packet index has already
been assigned to the at least one instruction;
when the determining is positive, formulating the packet so that it
contains the packet index.

2. The method according to clause 1, wherein the at least one instruction comprises
an identifier of a function for execution by the remote device and a combination of
parameters for use in execution of the function.

3. The method according to clause 2, wherein to determine whether a packet index
has already been assigned to the at least one instruction comprises determining
whether a packet dictionary in the memory comprises an entry corresponding to the

identifier of the function and the combination of parameters.

4. The method according to clause 2, wherein creating the packet further comprises:

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

when the determining is positive, formulating the packet so that it does not

contain the identifier of the function or any of the parameters in the
combination of parameters.

The method according to any one of clauses 1 to 4, wherein the at least one

instruction is issued by an application running on the local device.

The method according to clause 5, wherein the application is a game state

management process.

The method according to any one of clauses 1 to 6, wherein the at least one

instruction comprises at least one instruction for rendering at least part of a game

screen of a video game.

The method according to any one of clauses 1 to 7, wherein the at least one

instruction comprises at least one instruction for fetching a leaderboard for the video

game.

The method according to any one of clauses 1 to 7, wherein the at least one

instruction comprises at least one instruction for finding other players of the video

game.

10.The method according to any one of clauses 1 to 7, wherein the at least one

11.

instruction comprises at least one instruction for retrieving game news about the
video game.
The method according to any one of clauses 1 to 10, wherein the obtaining,
creating and releasing are executed by a first marshalling process running on the
local device, wherein the at least one instruction comprises at least one first
instruction, wherein the first device is a first local device, and wherein the method
further comprises additional steps executed by a second marshalling process
running on a second local device, the additional steps comprising:
obtaining at least one second instruction for execution by the remote device;
creating a second packet representing the at least one second instruction; and
releasing the second packet towards the remote device;
wherein creating the second packet comprises:
consulting the memory to second determine whether a second packet
index has already been assigned to the at least one second

instruction;

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

when the second determining is positive, formulating the packet so that it
contains the second packet index.
12.The method according to clause 11, wherein the first and second packet indexes
are identical when the first and second instructions are identical.
13. The method according to clause 11 or clause 12, wherein the memory is a memory
space that is shared by the first and second local devices.
14.The method according to clause 11, wherein the at least one first instruction
comprises an identifier of a first function for execution by the remote device and a
first combination of parameters for use in execution of the first function and wherein
the at least one second instruction comprises an identifier of a second function for
execution by the remote device and a second combination of parameters for use in
execution of the second function.
15.The method according to clause 14, wherein creating the second packet further
comprises:
when the second determining is positive, formulating the second packet so that
it does not contain the identifier of the second function or any of the
parameters in the second combination of parameters.
16. The method according to clause 2, wherein the determining is first determining, and
wherein creating the packet further comprises:
when the first determining is negative:
consulting the memory to second determine whether a parameter index has
already been assigned to the combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter combination index.
17. The method according to clause 16, wherein creating the packet further comprises:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
18.The method according to clause 2, wherein the determining is first determining, and
wherein creating the packet further comprises:

when the first determining is negative:

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

consulting the memory to second determine whether a parameter index has
already been assigned to each of the individual parameters in the
combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter index for each the parameters in the combination
of parameters.
19.The method according to clause 18, wherein creating the packet further comprises:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
20.The method according to clause 19, wherein creating the packet further comprises:
when the second determining is positive:
assigning a parameter combination index to the combination of parameters;
and
storing the parameter combination index in the memory in association with
the combination of parameters.
21.The method according to clause 20, wherein the assigning is carried out in
accordance with a process that is known to the remote device.
22.The method according to clause 20, wherein creating the packet further comprises:
when the second determining is positive:
formulating the packet so that it further contains the parameter combination
index.
23.The method according to clause 1, wherein creating the packet further comprises:
when the determining is negative:
identifying one or more parameters that are not associated with previously
assigned parameter indexes;
for each of the one or more parameters, assigning a respective parameter
index and storing the respective parameter index in a parameter index
table in association with the parameter.
24.The method according to clause 23, wherein the assigning is carried out in
accordance with a process that is known to the remote device.
25.The method according to clause 23, wherein creating the packet further comprises:

when the determining is negative:

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

formulating the packet so that it contains each of the one or more
parameters.
26.The method according to clause 25, wherein creating the packet further comprises:
when the determining is negative:
formulating the packet so that it further contains the parameter index
associated with each of the one or more parameters.
27.The method according to clause 25, wherein creating the packet further comprises:
when the determining is negative:
identifying one or more parameters to which a parameter index has already
been assigned;
formulating the packet so that it further contains the parameter index
associated with each of the one or more parameters.
28.The method according to clause 27, wherein when the packet is formulated, it does
not contain any of the one or more parameters to which a parameter index had
already been assigned.
29.The method according to any one of clauses 1 to 28, wherein releasing the packet
comprises placing the packet in an output queue of a communication unit.
30.The method according to any one of clauses 2, 16, 17, 18, 19, 20, 21 and 22,
wherein the identifier of the function for execution by the remote device is encoded
in at least one of the parameters.
31.An apparatus connectable to a remote device, the apparatus comprising:
an interface for obtaining at least one instruction for execution by the remote
device;
a processing unit for creating a packet representing the at least one instruction
and for releasing the packet via the interface towards the remote device:
a memory comprising a shared packet dictionary;
wherein to create the packet, the processing unit is configured for:
consulting the shared packet dictionary to determine whether a packet
index has already been assigned to the at least one instruction;
when the determining is positive, formulating the packet so that it

contains the packet index.

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

32.The apparatus according to clause 31, wherein the at least one instruction
comprises an identifier of a function for execution by the remote device and a
combination of parameters for use in execution of the function.
33.The apparatus according to clause 32, wherein to determine whether a packet
index has already been assigned to the at least one instruction, the processing unit
is configured for determining whether the shared packet dictionary comprises an
entry corresponding to the identifier of the function and the combination of
parameters.
34.The apparatus according to clause 32, wherein to create the packet, the processing
unit is further configured for:
when the determining is positive, formulating the packet so that it does not
contain the identifier of the function or any of the parameters in the
combination of parameters.
35.The apparatus according to clause 31, wherein the processing unit is further
configured for running an application that issues the at least one instruction.
36.The apparatus according to clause 35, wherein the application comprises a video
game and wherein the at least one inétruction is rendering instruction for a game
screen of the video game.
37.The apparatus according to clause 32, wherein the memory further comprise a
parameter combination index table, wherein the determining is first determining,
and wherein to create the packet, the processing unit is further configured for:
when the first determining is negative:
consulting the parameter combination index table to second determine
whether a parameter combination index has already been assigned to the
combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter combination index.
38.The apparatus according to clause 37, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive, formulating the packet so that it does

not contain any of the parameters.

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

39.The apparatus according to clause 32, wherein the determining is first determining,
wherein the memory comprises a parameter index table, and wherein to create the
packet, the processing unit is further configured for:
when the first determining is negative:
consulting the parameter index table to second determine whether a
parameter index has already been assigned to each of the individual
parameters in the combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter index for each the parameters in the combination
of parameters.
40. The apparatus according to clause 39, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
41.The apparatus according to clause 40, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive:
assigning a parameter combination index to the combination of parameters;
and
storing the parameter combination index in the memory in association with
the combination of parameters.
42.The apparatus according to clause 41, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive:
formulating the packet so that it further contains the parameter combination
index.
43.The apparatus according to clause 31, wherein the memory comprises a parameter
index table, and wherein to create the packet, the processing unit is further
configured for:
when the determining is negative:
identifying one or more parameters for which a parameter index has not

been previously assigned;

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

for each of the one or more parameter, assigning a respective parameter
index and storing the respective parameter index in the parameter index
table in association with the parameter.
44.The apparatus according to clause 41, wherein to create the packet, the processing
unit is further configured for:
when the determining is negative:
formulating the packet so that it contains each of the one or more
parameters.
45.The apparatus according to clause 44, wherein to create the packet, the processing
unit is further configured for:
when the determining is negative:
formulating the packet so that it further contains a parameter index
associated with each of the one or more parameter.
46. The apparatus according to clause 44, wherein to create the packet, the processing
unit is further configured for:
when the determining is negative:
identifying one or more parameters for which a parameter index has already
been assigned;
formulating the packet so that it further contains the parameter index
associated with each of the one or more parameters.
47.The apparatus according to clause 46, wherein when the packet is formulated, it
does not contain any of said one or more parameters.
48.The apparatus according to any one of clauses 31 to 47, wherein the interface
comprises an output queue, wherein the packet is released by placing it in the
output queue.
49.The apparatus according to clause 32, wherein the identifier of the function for
execution by the remote device is encoded in at least one of the parameters.
50.The apparatus according to clause 31, connected to the remote device over a
private data network.
51.In combination:
the apparatus of any one of clauses 31 to 46; and

a second apparatus, comprising:

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

an interface for obtaining an identifier of at least one second instruction for
execution by the remote device;

a processing unit for creating a second packet representing the at least one
second instruction and releasing the second packet via the interface
towards the remote device;

wherein to create the second packet, the processing unit is configured for:

consulting the shared packet dictionary to second determine whether
a packet index has already been assigned to the at least one
second instruction;
when the second determining is positive, formulating the second
packet so that it contains the second packet index.
52.The combination according to clause 51, wherein the first and second packet
indexes are identical when the first and second instructions are identical.
53.The combination according to clause 51, wherein the first instruction comprises an
identifier of a first function and a first combination of parameters for use in execution
of the first function and wherein the second instruction comprises an identifier of a
second function and a second combination of parameters for use in execution of the
second function.
54.The combination according to clause 53, wherein to create the first packet, the
processing entity of the first apparatus is further configured for:
when the first determining is positive, formulating the second packet so that it
does not contain the identifier of the second function or any of the
parameters in the second combination of parameters.
55.The combination according to clause 54, wherein to create the second packet, the
processing entity of the second apparatus is further configured for:
when the second determining is positive, formulating the second packet so that
it does not contain the identifier of the second function or any of the
parameters in the second combination of parameters.
56.The combination according to any one of clauses 51 to 55, wherein the first and
second apparatuses devices are embodied in a cloud gaming server.
57.The combination according to clause 56, wherein the shared packet dictionary is

part of the cloud gaming server.
10

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

58.The combination according to clause 51, wherein the shared packet dictionary is
accessible to the first and second apparatuses over a storage area network.

59. The combination according to any one of clauses 51-58, wherein the first apparatus
is connected to the second apparatus over a computer network.

60. The combination according to any one of clauses 51-58, wherein the first apparatus
is connected to the second apparatus in a data center.

61.A non-transitory computer-readable medium storing instructions for execution by at
least one processor of a local device, wherein execution of the instructions by the at
least one processor of the local device causes the local device to implement a
method that comprises:

obtaining an identifier of at least one command for execution by the remote
device;
creating a packet representing the at least one command; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a packet index has already
been assigned to the at least one command;
when the determining is positive, formulating the packet so that it
contains the packet index.

62.A method for execution by a local device connectable to a remote device, the

method comprising:
obtaining a sequence of instructions for execution by the remote device;
creating a packet representing the sequence of instructions; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a sequence index has already
been assigned to the sequence of instructions;
when the determining is positive, formulating the packet so that it
contains the sequence index.

63.The method according to clause 62, wherein creating the packet further comprises:

when the determining is negative:

creating a packet for each instruction in the sequence of instructions: and
11

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

releasing each packet towards the remote device.
64.An apparatus connectable to a remote device, the apparatus comprising:
an interface for obtaining a sequence of instructions for execution by the remote
device;
a processing unit for creating a packet representing the sequence of instructions
and for releasing the packet via the interface towards the remote device;
a memory comprising a sequence dictionary;
wherein to create the packet, the processing unit is configured for:
consulting the sequence dictionary to determine whether a sequence
index has already been assigned to the sequence of instructions;
when the determining is positive, formulating the packet so that it
contains the packet index.

65. A non-transitory computer-readable medium storing instructions for execution by at
least one processor of a local device, wherein execution of the instructions by the at
least one processor of the local device causes the local device to implement a
method that comprises:

obtaining a sequence of commands for execution by the remote device;
creating a packet representing the sequence of commands; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a sequence index has already
been assigned to the sequence of commands;
when the determining is positive, formulating the packet so that it
contains the sequence index.

66.A method for execution by a second device connectable to a first device,
comprising:

obtaining from the first device a packet comprising a packet index associated
with a remote function call placed by the first device;

consulting a packet dictionary based on the packet index to identify a function
associated with the remote function call and to determine a combination of
parameters associated with the remote function call;

carrying out the function using the parameters in the combination of parameters.
12

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

67.The method according to clause 66, wherein to determine the combination of
parameters associated with the remote function call, the method comprises
determining from the packet dictionary, based on the packet index, a combination of
parameter indexes associated with the combination of parameters and consulting a
parameter index table on a basis of the parameter indexes in the combination of
parameter indexes to determine the parameters in the combination of parameters.
68. The method according to clause 66, wherein to identify the function associated with
the remote function call, the method comprises determining from the packet
dictionary, based on the packet index, at least one function index and consulting a
function table on a basis of the function index to identify the function associated with
the remote function call.
69.The method according to clause 68, further comprising, during one or more
preceding steps:
obtaining from the first device a packet comprising an identity of the function
associated with the remote function call;
storing the identity of the function in the function table in association with the
function index.
70.The method according to clause 69, further comprising, during the one or more
preceding steps:
obtaining from the first device at least one packet comprising the parameters
associated with the remote function call;
storing the parameters in the parameter index table in association with
respective ones of the parameter indexes.
71.The method according to clause 70, further comprising, during the one or more
preceding steps:
obtaining from the first device a packet comprising the function index and a
combination of parameter indexes associated with the combination of
parameters;
storing the function index and the combination of parameter indexes in the
packet dictionary in association with the packet index.
72.A non-transitory computer-readable medium storing instructions for execution by at

least one processor of a server, wherein execution of the instructions by the at least
13

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

one processor of the server causes the server to implement a method that
comprises:
obtaining from a computing apparatus connected to the server a packet
comprising a packet index associated with a remote function call placed by
the first device;
consulting a packet dictionary based on the packet index to identify a function
associated with the remote function call and to determine a combination of
parameters associated with the remote function call;
carrying out the function using the parameters in the combination of parameters.
73.A method for execution by a second device connectable to a first device,
comprising:
obtaining from the first device a packet comprising at least a plurality of
parameter indexes associated with a remote function call placed by the first
device;
consulting a parameter index table on a basis of the plurality of parameter
indexes to determine a plurality of parameters in a combination of
parameters associated with the remote function call;
identifying a function associated with the remote function call; and
carrying out the function for the first device at the second device using the
parameters in the combination of parameters.
74.The method according to clause 73, wherein the packet comprises a function index,
and wherein identifying a function associated with the remote function call
comprises consulting a function table on a basis of the function index.
75.The method according to clause 73, further comprising:
storing a packet index in the packet dictionary in association with the function
index and the combination of parameter indexes.
76. The method according to clause 75, further comprising:
assigning the packet index to the function index and the combination of
parameter indexes, wherein assigning is carried out in accordance with a
process that is known to the first device.
77.A method for execution by a second device connectable to a first device,

comprising:
14

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

obtaining from the first device a packet comprising a sequence index associated
with a sequence of instructions issued by the first device;

consulting a sequence dictionary based on the sequence index to identify a
plurality of functions respectively associated with the sequence of remote
procedure calls and to determine, for each function, a respective combination
of parameters;

carrying out the plurality of functions using the parameters in the respective
combination of parameters.

78.A non-transitory computer-readable medium storing instructions for execution by at
least one processor of a local device in an on-line gaming system, wherein
execution of the instructions by the at least one processor of the local device
causes implementation of:

a game state management process for managing game state for a plurality of
participants in a game;

a plurality of local stubs for obtaining commands issued by the game state
management process, wherein upon obtaining a given one of the
commands, a given one of the local stubs is configured to consult a packet
dictionary shared among the plurality of local stubs in an attempt to find a
packet identifier associated with the given instruction, and wherein upon a
packet identifier being found, the given one of the local stubs is configured to
release a packet containing the packet identifier towards a remote stub for
remote execution of the given instruction at a device remote from the local
device.

79.The non-transitory computer-readable medium according to clause 78, wherein the
local device is a central server and wherein the remote device is a rendering server
equipped with a GPU.

80.The non-transitory computer-readable medium according to clause 78 or clause 79,
wherein the at least one processor comprises a plurality of processors that
implement the game state management process collaboratively.

81.The non-transitory computer-readable medium according to any one of clauses 78
to 80, wherein the local stubs are associated with respective participants in the

game.
15

5

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

82.The non-transitory computer-readable medium according to any one of clauses 78
to 81, wherein the commands comprise rendering instructions.

83.The non-transitory computer-readable medium according to any one of clauses 78
to 82, wherein the given one of the local stubs is configured to receive a rendered
game scene in response to having released the packet towards the remote device.

84.A computing apparatus, comprising:

an interface for connection to a remote device;

at least one processor for executing a game state management process to
manage game state for a plurality of participants in a game;

a memory storing a packet dictionary;

the at least one processor implementing a plurality of local stubs for obtaining
instructions issued by the game state management process, wherein upon
obtaining a given set of instructions, a given one of the local stubs is
configured to consult the packet dictionary shared among the plurality of
local stubs in an attempt to find a packet identifier associated with the given
set of instructions, and wherein upon a packet identifier being found, the
given one of the local stubs is configured to release a packet containing the
packet identifier towards the remote device via the interface for remote
execution of the given set of instructions.

85.The computing apparatus according to clause 84, implemented in a central server,
wherein the remote device comprises at least one rendering server equipped with a
GPU.

86. The computing apparatus according to clause 84 or clause 85, wherein the at least
one processor comprises a plurality of processors that implement the game state
management process collaboratively.

87.The computing apparatus according to any one of clauses 84 to 86, wherein the
local stubs are associated with respective participants in the game.

88.The computing apparatus according to any one of clauses 84 to 87, wherein the
commands are rendering instructions.

89.The computing apparatus according to clause any one of clauses 84 to 88, the
given one of the local stubs being configured to receive a rendered game scene in

response to having released the packet towards the remote device.
16

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

90.A server system, comprising:

a game state server implementing a game state management process for at
least one participant of a video game, the game state server adjusting a state
of the video game based on input received over a network from at least one
device associated with the at least one participant; and

a rendering server for rendering game screens for the at least one participant
and for causing transmission of the game screens to the at least one
participant over the network, the rendering server carrying out said rendering
based on rendering commands that are compressed by the game state
server, transmitted to the rendering server and decompressed by the
rendering server.

91.The server system according to clause 90, further comprising a second network
over which the compressed rendering commands are transmitted from the game
state server to the rendering server.

92.The server system according to clause 91, wherein the second network comprises
a low-latency private data network.

93.The server system according to any one of clauses 90 to 92, wherein to compress
the rendering commands, the game state server is configured for obtaining a set of
rendering commands, consulting a packet dictionary in an attempt to determine
whether a packet representing the set of rendering instructions has previously been
transmitted to the rendering server and, when the attempt is successful, transmitting
an index of the packet to the rendering server.

These and other aspects and features of the present invention will now become

apparent to those of ordinary skill in the art upon review of the following description of

specific embodiments of the invention in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

Fig. 1 is a block diagram of a system including a central server and a rendering server,
according to a non-limiting embodiment of the present invention;

Fig. 2 is a block diagram showing various functional modules of the central server,

according to a non-limiting embodiment of the present invention;

17

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

Fig. 3 is a block diagram showing various functional modules of the rendering server,
according to a non-limiting embodiment of the present invention;

Fig. 4 is a flowchart illustrating steps in a game state management process executed
by the central server;

Fig. 5A illustrates a data structure for playing character input information that may be
received from a client device;

Fig. 5B illustrates a data structure for a rendering instruction that may be issued by a
game state management process being executed on the central server;

Fig. 6 conceptually illustrates a remote procedure call and the functional entities
involved therein, according to a non-limiting example embodiment;

Fig. 7A is a flowchart representative of steps in a marshalling process, in accordance
with a non-limiting embodiment of the present invention;

Fig. 7B shows various mappings used in the marshalling process, including a function
index table, a parameter index table and a packet dictionary, in accordance with a non-
limiting embodiment of the present invention;

Fig. 7C shows a parameter combination index table that may be used in some non-
limiting embodiments of the present invention;

Fig. 7D is a variant of Fig. 7A in accordance with another non-limiting embodiment of
the present invention;

Fig. 8A conceptually illustrates the state of the function index table, the parameter
index table and the packet dictionary, prior to processing a first of three example
instructions, in accordance with a non-limiting embodiment of the present invention;

Fig. 8B conceptually illustrates the state of the function index table, the parameter
index table and the packet dictionary, after processing the first instruction, as well as
the resulting packet, in accordance with a non-limiting embodiment of the present
invention;

Fig. 8C conceptually illustrates the state of the function index table, the parameter
index table and the packet dictionary, after processing the second of three example
instructions, as well as the resulting packet, in accordance with a non-limiting

embodiment of the present invention;

18

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

Fig. 8D conceptually illustrates the packet resulting from processing the third of three
example instructions, in accordance with a non-limiting embodiment of the present
invention;

Fig. 9A is a flowchart representative of steps in an unmarshalling process, in
accordance with a non-limiting embodiment of the present invention;

Fig. 9B shows various mappings used in the unmarshalling process, including a
function index table, a parameter index table and a packet dictionary, in accordance
with a non-limiting embodiment of the present invention;

Fig. 9C shows a parameter combination index table that may be used in some non-
limiting embodiments of the present invention;

Fig. 9D is a variant of Fig. 9A in accordance with another non-limiting embodiment of
the present invention;

Fig. 10A conceptually illustrates the state of the function index table, the parameter
index table and the packet dictionary, prior to processing a first received packet, in
accordance with a non-limiting embodiment of the present invention;

Fig. 10B conceptually illustrates the state of the function index table, the parameter
index table and the packet dictionary, after processing the first received packet, in
accordance with a non-limiting embodiment of the present invention;

Fig. 10C conceptually illustrates the state of the function index table, the parameter
index table and the packet dictionary, after processing the second received packet, in
accordance with a non-limiting embodiment of the present invention;

Fig. 11A is a flowchart representative of steps in a marshalling process for handling
sequences of instructions, in accordance with a non-limiting embodiment of the present
invention;

Fig. 11B shows a sequence dictionary for use in the marshalling process of Fig. 11A, in
accordance with a non-limiting embodiment of the present invention;

Fig. 12A conceptually illustrates the state of the function index table, the parameter
index table, the packet dictionary and the sequence dictionary, prior to processing a
first of three example sequences of three instructions per sequence, in accordance with
a non-limiting embodiment of the present invention;

Fig. 12B conceptually illustrates the state of the function index table, the parameter

index table, the packet dictionary and the sequence dictionary, after processing the first
19

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

example sequence of three instructions, as well as the resulting packet, in accordance
with a non-limiting embodiment of the present invention;

Fig. 12C conceptually illustrates the state of the function index table, the parameter
index table, the packet dictionary and the sequence dictionary, after processing the
second example sequence of three instructions, as well as the resulting packet, in
accordance with a non-limiting embodiment of the present invention;

Fig. 13 conceptually illustrates the packet resulting from processing the third of three
example sequences of instructions, in accordance with a non-limiting embodiment of
the present invention.

Fig. 14A is a block diagram conceptually illustrating an architecture by virtue of which a
plurality of local stubs implemented on a common device maintain sets of mappings for
themselves independently;

Fig. 14B is a block diagram conceptually illustrating an architecture by virtue of which a
plurality of local stubs implemented on a common device share a common set of
mappings; and

Fig. 15 is a block diagram conceptually illustrating an architecture by virtue of which a
plurality of local stubs implemented on multiple devices share a common set of
mappings.

It is to be expressly understood that the description and drawings are only for the
purpose of illustration of certain embodiments of the invention and are an aid for

understanding. They are not intended to be a definition of the limits of the invention.

DETAILED DESCRIPTION
a. CLOUD-BASED ARCHITECTURE

Fig. 1 shows a cloud computing architecture 10 according to an embodiment of the

present invention. The cloud computing architecture 10 includes a server system for
providing a service to one or more client devices 300a to 300e. In the following
description, the expression “the client device 300” (or “the client devices 300”) refers to
any or all of the client devices 300a to 300e unless otherwise specified. In a non-
limiting embodiment, the cloud computing architecture 10 is a video game architecture
and the “service” provided by the server system can be a single-player or a multi-player

video game. It should be understood that a video game includes games that are

20

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

played purely for entertainment as well as games played with the possibility of
monetary gain (gambling).

In some embodiments, one or more of the client devices 300 can be, for example, a
PC, home game machine (console such as XBOX™, PS3™, Wii™), or portable game
machine. In other embodiments, one or more of the client devices 300 may be a
communication or computing device such as a cell phone, PDA, or tablet (e.g., iPad™).
The client devices 300 have input devices, such as a touch screen, keyboard, game
controller, joystick, etc., to allow users of the client devices 300 to provide input and
participate in the game. In other embodiments, the user of a given one of the client
devices 300 may produce body motion or wave an external object; these movements

t™), while software operating

are detected by a camera or other sensor (e.g., Kinec
within the client device attempts to correctly guess whether the user intended to
provide input to the client device and, if so, the nature of such input.

In a non-limiting embodiment, the server system comprises a central server 200 and a
rendering server 100, although in other non-limiting embodiments, the server system
can comprise one or more clusters of one or more servers per cluster. The servers in
the server system, such as the central server 200 and the rendering server 100, may
communicate through a network 450 such as, for example, a dedicated private
network, data center, or a virtual private network (VPN). The network 450 may ideally
be a low-latency network.

The central server 200 (which may also be referred to as a game state server) receives
input signals 20 from the client devices 300a to 300e. The input signals 20 can be
received from the various client devices 300a to 300e through a back channel over a
network 400, such as a public data network (e.g., the Internet) or a private IP network.
The input signals 20 can be the result of the client devices 300a to 300e detecting user
actions, or they can be generated autonomously by the client devices 300a to 300e
themselves. The input signal 20 from a given client device can convey that the user of
the client device wishes to cause the character under his control to move, jump, kick,
turn, swing, pull, grab, etc.. Alternatively or in addition, the input signal 20 from a given
client device can convey that the user of the client device wishes to select a particular

camera view (e.g., first-person or third-person).

21

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

The rendering server 100 is configured for rendering game screens for the client
devices 300a to 300e, based on commands/instructions received from the central
server 200. These commands can be transmitted from the central server 200 to the
rendering server 100 in the form of packets 40 over the network 450. Output signals
30 containing the rendered game screens are distributed by the rendering server 100
to the client devices 300 over the network 400, such as the Internet. In some
embodiments, it may be possible to establish a low-latency, high-bandwidth channel
between the central server 200 and the rendering server 100 over the network 400, in
which case the networks 450, 400 could utilize the same physical resources. In other
embodiments, the networks 450, 400 are separate networks and traverse separate
physical paths.

Different game screens are produced for different client devices 300 depending on their
location in the game, camera angle and other game parameters. Of interest is the fact
that a client device 300 need not have any rendering functionality for displaying a game
screen. That is, each of the client devices 300 need only be an apparatus including a
user interface for detecting input and comprising (or connectable to) a display device
for displaying a received and rendered game screen. Since generating a game screen
uses more hardware resources than those to be used by a process of decoding a video
stream, the present system enables users to participate in a game independent of the
rendering performance of a client device 300 by transmitting already-rendered game

screens from the rendering server 100 to the client device 300.

b. CENTRAL SERVER

Various functional modules that make up the central server 200 of this embodiment will

now be explained with reference to Fig. 2. A central CPU 201 controls the operation of
each module of the central server 200. More specifically, the CPU 201 reads out
program instructions from, for example, a ROM 202 or central storage medium 204.
The CPU 201 expands the program instructions into a central RAM 203 and executes
the program, thereby carrying out a “game state management process” and controlling
the operation of various other modules in the central server 200.

The central ROM 202 can be, for example, a programmable non-volatile memory. The

central ROM 202 stores program instructions for the game state management process,

22

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

and may also store other program intructions. The central ROM 202 also stores
information such as data required for the operation of each module of the central server
200.

The central RAM 203 can be a volatile memory. The central RAM 203 is used not only
as an expansion area for the game state management process operation program, but
also as a storage area for temporarily storing, for example, intermediate data output
during the operation of other modules of the central server 200.

The central storage medium 204 can be, for example, a mass storage device such as
an HDD detachable from the central server 200. In this embodiment, the central
storage medium 204 is used as, for example, a database for managing participants
involved the game, and a database for managing various kinds of information on the
game, which are required to generate a game screen to be provided for each
participant in the game.

The central communication unit 205 is a communication interface of the central server
200. The central communication unit 205 receives input signals 20 from the client
devices 300 over the network 400. The central communication unit 205 also sends
packets 40 to the rendering server 100 over the network 450. When necessary or
appropriate, the central communication unit 205 may convert data into a data format
complying with various communication specifications.

It should be appreciated that as used herein, the term “participant” refers to both
“‘players” and “spectators”, wherein “players” are typically assigned a character over
which they exert some control during game play and “spectators” can typically view

players’ movements from a location of their choice without having control over game

play.

c. RENDERING SERVER

Fig. 3 is a block diagram showing various functional modules of the rendering server

100 according to a non-limiting embodiment of the present invention. A CPU 101
controls the operation of various modules of the rendering server 100. More
specifically, the CPU 101 reads out program instructions stored in a ROM 102 or

storage medium 104, expands the program instructions on a RAM 103, and executes

23

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

the program, thereby carrying out a “rendering control process” and controlling the
operation of each module.

The ROM 102 is, for example, a programmable nonvolatile memory. The ROM 102
stores the program instructions for the rendering control process, other program
instructions, and information such as data required for the operation of each module of
the rendering server 100.

The RAM 103 can be a volatile memory. The RAM 103 is used not only as an
operation program expansion area, but also as a storage area for temporarily storing,
for example, intermediate data output during the operation of each module of the
rendering server 100. The storage medium 104 can be, for example, a mass storage
device such as an HDD detachable from the rendering server 100.

A communication unit 113 is a communication interface of the rendering server 100.
The communication unit 113 exchanges data with other apparatuses. For example, the
communication unit 113 receives packets 40 from the central server 200 over the
network 450. The communication unit 113 converts data received across the network
450 into an arbitrary data format readable by the rendering server 100, and temporarily
stores the data in, for example, the RAM 103. In addition, the communication unit 113
sends rendered game screens to the client devices 300 over the network 400. When
transmitting data to a transmission destination apparatus (such as one of the client
devices 300), the communication unit 113 converts the data into a data transmission
format compatible with the network 400 or a transmission destination apparatus, and

transmits the data to the transmission destination apparatus.

d. GRAPHICS PROCESSING UNITS

Game screens to be provided for the client devices 300 are generated by one or more

graphics processing units (GPUs) 105 within or accessible to the rendering server 100.
Each GPU 105 is connected to a video memory 109 (e.g., VRAM), which provides a
rendering area for the game screen. When performing rendering on the connected
VRAM 109, each GPU 105 expands an object in a cache memory (not shown), and
writes the mapped object in the corresponding VRAM 109. Note that one video

memory 109 is connected to one GPU 105 in this embodiment, but the present

24

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

invention is not limited to this. That is, the number of video memories 109 connected to
the GPU 105 can be any arbitrary number.

It is to be noted that, depending on processing power (which can be related to the
number of GPUs it operates), the rendering server 100 may be capable of
simultaneously generating a plurality of game screens for a plurality of participants.

The GPUs 105 are controlled by providing them with rendering instructions (also
referred to as “rendering commands”). Interaction with the GPUs 105 can be achieved
through a low-level API in order to draw triangles, lines, or points per frame, or to start
highly parallel operations on the GPUs 105. The low-level API hides different GPU
implementations behind a coherent abstraction. One non-limiting example of a low-
level API is Direct3D™ available from Microsoft Corporation of Redmond, Washington.
Generally speaking, supplying a rendering command to a GPU amounts to calling a
function to be executed by the GPU.

Examples of detailed data that may be part of a rendering command used to render a
particular object may include one or more of: model data; texture data; the identity of a
rendering program (for example, a shader) to be used; and data for calculations (for
example, the light source intensity, light source vector, and rotation matrix) to be used
by the rendering program. Of course, a rendering command may contain other
information used in the process of rendering an object.

The rendering of a game screen for a particular participant may require the execution
of hundreds or thousands of rendering instructions. Once a game screen has been
rendered for a particular participant, the game screen is provided by the rendering
server 100 to the client device 300 associated with the particular participant. Thus, the
system 10 of the present embodiment can generate game screens corresponding to
inputs provided at the various client devices 300 at a rate of several times (e.g., 30 or
60) per second for each participant. These game screens are displayed to the
corresponding participants via the display device of each participant’'s client device
300. At this rate, the human eye will perceive fluidity of motion.

Although the system 10 of the present non-limiting embodiment includes one rendering
server 100 and one central server 200, the present invention is not limited to this
specific arrangement. For example, it is possible to allocate one rendering server 100

to a plurality of central servers 200, or to allocate a plurality of rendering servers 100 to
25

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

a plurality of central servers 200. The central server 200 can also designate a
rendering server 100 or a GPU of a rendering server 100 to be used to execute a
rendering instruction, in accordance with information indicating the number of game
screens simultaneously generated by a rendering server 100 or each GPU of a

rendering server 100.

e. GAME STATE MANAGEMENT PROCESS

A non-limiting example of execution of the game state management process by the

central server 200 will be explained below with reference to the flowchart shown in Fig.
4. The game state management process for a given participant is spawned when that
participant’s client device 300 connects to the central server 200. The game state
management process for the given participant includes a main loop that is executed for
each frame, namely several (e.g., 30 or 60) times per second. As part of the main
loop, the central server 200 receives participant input 30 via the client devices 300
(step S401), modifies game state information (step S403), determines the objects in
the “game screen” for the given participant (S404) and generates function calls to the
GPUs 105 (step S405). This is now described in greater detail.

In executing the game state management process, the central server 200 manages
information pertaining to characters operated by the players (such as their position and
direction on a map) and also manages events associated with each character and with
the game as a whole. For example, when a given player provides an input to his or her
client device 300, this information is transmitted across the network 400 to the central
server 200 which, in executing the game state management process, updates the
information pertaining to the given player's character. Also as part of the game state
management process, the central server 200 causes the rendering server 100 to
generate a game screen for each participant. Specifically, the central server 200
determines one or more objects to be rendered on the game screen for each
participant, and transmits a set of rendering instructions (possibly thousands per frame)
to the rendering server 100.

Turning now to step S401, input information may be received from the client device 300
associated with the given participant or from the client device 300 associated with one

or more other players or spectators. The input information may indicate that the

26

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

players or spectators have carried out an operation on their characters via their client
device. The input information may have a data structure, a non-limiting example of
which is shown in Fig. 5A. For instance, the data structure may contain one or more
of: an identifier (for example, an IP address and user identification information) of a
client device at which an operation by a player or spectator has been carried out;
movement information, including magnitude and direction; identification information of a
selected action; rendering range of a game screen (for example, a camera parameter);
and/or the display setting (for example, the screen display resolution and the number of
colors) of the display device connected to the client device. It is to be noted that the
data structure of the input information received by the central server 200 is not limited
to the foregoing.

In one non-limiting embodiment, the input information can be a set of numerical values
obtained by converting an operation effected on the client device 300 by the player or
spectator into numerical values/parameters. In other embodiments, the input
information may include an input signal detected by the client device 300 (e.g., in
response to pressing a button or the like by the player or spectator), in which case the
process of conversion into numerical values/parameters can be performed by the
central CPU 201, as a function of the type of client device 300 from which it was
received.

At step S403, an update to the playing characters, non-playing characters and other
graphical elements is performed. Examples of other graphical elements include
background objects such as a landform. The objects to be rendered can change with
time in accordance with game rules, or by the action of a character as controlled by the
corresponding player.

In summary, therefore, the central CPU 201 reads out, from the central storage
medium 204, state information corresponding to each character or graphical element in
the game that was affected by the input information, clock information or other
information. In the case of character state information, this may include information
pertaining to the appearance and properties of a character that can be changed by a
player's operation, such as, for example, the position (coordinate information) of the
character on the map, the gazing direction of the character, and the character’s action.

Based on the input information, a parameter pertaining to the character is updated.
27

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

Accordingly, the actions carried out by the players can be reflected on the characters in
the game.

At step S404, objects in the “game screen rendering range” for the given participant are
determined. The game screen rendering range can include a set of coordinates (e.g.,
in two or in three dimensions) that delimits the set of objects contained in the game
screen for that participant. The objects contained in the game screen for a given
participant will vary from one participant to the next.

More specifically, the central CPU 201 reads out, from the central storage medium 204,
the game screen rendering range for the given participant’s client device 300. The
game screen rendering range contains, e.g., camera parameters corresponding to the
game screen. The central CPU 201 refers to the camera parameters, and specifies, as
a rendering object contained in the game screen, a rendering object such as a
character whose state information contains coordinate information included in the
camera’s rendering range. Note that an identifier is assigned to each object to be
rendered, and the central CPU 201 associates the object identifier with the client
device identifier, and records the information on the central storage medium 204.

At step S405, the game state management process generates rendering instructions
for rendering the objects in the given participant’'s game screen. As shown by the data
structure in Fig. 5B, the rendering instructions issued by the game state management
process for a particular client device 300 may include one or more of: an identifier of
each object contained in the game screen; detailed information regarding each object
contained in the game screen; state information regarding each object contained in the
game screen; and information regarding the rendering range and display setting of the
game screen.

It is to be noted that if the game is, for example, a game in which the camera position
remains unchanged or a game having a fixed display resolution, information such as
the camera parameters and display setting indicating the game screen rendering range

need not be contained in the rendering instruction.

f. REMOTE PROCEDURE CALLS

It will be noted that the rendering instructions generated at step S405 of the game state

management process executed by the CPU 201 of the central server 200 are issued as

28

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

function calls destined for one or more of the GPUs 105, which are on the rendering
server 100. This can be achieved by virtue of remote procedure calls, whereby a local
device (the central server 200) calls one or more functions at a remote device (the
rendering server 100). Such remote procedure calls are carried out several hundred or
thousand times per frame, for each of the client devices 300.

Fig. 6 conceptually illustrates a remote procedure call and the functional entities
involved therein, according to a non-limiting example embodiment. With reference to
Fig. 6, there is provided a local stub 620, which can be embodied as a software routine
/ procedure that is invoked either implicitly or explicitly by the game state management
process upon issuing one or more rendering instructions 610. For example, whereas
the game state management process may operate at a first level of the OSI model
(e.g., the application layer), the local stub 620 may operate at a lower level of the OSI
model (e.g., the presentation layer). When the one or more rendering instructions 610
is issued at step S405 and its associated data is pushed onto the stack, this is
recognized by the local stub 620. Alternatively, the local stub 620 can be invoked by
operating system.

The local stub 620 assembles the data associated with the one or more rendering
instructions 610 into a packet 630 and makes a low-level system call to send the
packet 630. Assembling the data associated with the rendering instructions into the
packet 630 is called “marshalling”, and will be described in further detail later on. The
operating system of the central server 200 releases the packet 630 from the central
server 200 (which can be viewed as the “local’ device) into the network 450 towards
the rendering server 100 (which can be viewed as the “remote: device).

At the rendering server 100, the operating system of the rendering server 100 passes
the incoming packet 640 (whose contents may be identical to those of packet 630) to a
remote stub 650, which is part of the rendering control process running on the CPU
101. The remote stub 650 disassembles the parameters from the packet 640.
Disassembly of the parameters is called “unmarshalling”, and will be described in
further detail later on. This results in the one or more rendering instructions 630 being
reconstructed. Finally, the remote stub 650 sends the rendering instructions to the
GPUs 105 on the rendering server 100. To this end, the remote stub 650 locally

makes the various API calls corresponding to the rendering instructions.
29

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

When a complete game screen for the given participant has been rendered on the
rendering server 100, the rendering control process sends the rendered game screen
to the client device 300 corresponding to that participant. The game screen may
comprise a frame of video, which can be encoded into a suitable format for delivery to
the client device 300 over the network 400. The video frame may also include audio as
well as other information including control information.

In some cases, it may be the case that within a series of rendering instructions issued
by the game state management process for a given participant, some of these
rendering instructions will be similar or identical. The same may be true of other
instructions that trigger remote procedure calls. In accordance with some non-limiting
embodiments of the present invention, the remote procedure calls can be made more
efficient by compressing or condensing them. Specifically, the local stub 620 can be
specially adapted to carry out a marshalling process that leads to the generation of
condensed packets 40. At the rendering server side, the remote stub 650 can be
specially adapted to carry out a unmarshalling process for expanding received packets

that have been condensed.

9. MARSHALLING

In a non-limiting embodiment, the local stub 620 in the central server 200 executes a

marshalling process. Generally speaking, as part of the marshalling process, an
instruction to be executed by the remote device is obtained. Following this, a packet
representing the instruction is created and released towards the remote device.
Creation of the packet involves consulting a memory to determine whether a “packet
index” has already been assigned to the instruction. If this is the case, the packet is
formulated so that it contains the packet index. Since fewer bits are needed to encode
the packet index than to encode the instruction, the packets generated by the
marshalling process will have a tendency to be condensed when they repeatedly
represent the same instruction.

Reference is made to Fig. 7A, which shows a flowchart representative of steps in a
marshalling process for generating condensed packets to be sent to a remote device,
in accordance with a non-limiting embodiment of the present invention. At step S710,

an instruction is received. In a non-limiting example, the instruction may be a rendering

30

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

instruction issued by a game state management process at the application layer.
Those skilled in the art will appreciate that the instruction can be formatted in numerous

ways. For example, the instruction may be formatted as a function call, such as:

Functioncall (Paraml, Param2, Param3, Data).
It will be seen that the instruction includes at least a “function identifier’
(Functioncall) and a combination of “parameters” (Paraml, Param2, Param3). The
function identifier represents a function to be executed remotely by the remote device
(e.g., the rendering server 100). The function identifier (Functioncall) is considered
to be condensable, which means that the marshalling process will favor using a
function index, rather than the function identifier, to encode the function to be executed
by the remote device. This will result in fewer bits being used to encode the same
function.
The combination of parameters (Paraml, Param2, Param3) represent function
arguments that are also considered to be condensable. This means that the
marshalling process will favor using a parameter indexes, rather than the parameters
themselves, to represent the function arguments. Examples of function arguments that
are condensable include the names of pointers, addresses and variables.
Optionally, the instruction can also include function arguments (e.g., Data) that are not
considered to be condensable. The demarcation between function arguments that are
considered to be condensable those which are not considered to be condensable may
be different in different embodiments. For example, in some embodiments, the values
acquired by pointers, addresses and variables are considered to be condensable,
whereas in other embodiments, these same values would not considered
incondensable.
Referring now to Fig. 7B, there is shown a function index table 790 and a parameter
index table 792. The function index table 790 associates function identifiers with
respective function indexes, and is accessed on the basis of a received function
identifier. Similarly, the parameter index table 792 associates parameters with
respective parameter indexes, and is accessed on the basis of a received parameter.
In addition, there is shown a packet dictionary 794. The packet dictionary 794
associates specific function calls involving specific combinations of parameters to

respective packet indexes. That is to say, each entry in the packet dictionary 794
31

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

associates a function identifier and a combination of parameters to a particular packet
index. There may be a maximum number of parameters N in a combination of
parameters that may be listed in the packet dictionary 794.

In one non-limiting embodiment, the function index table 790, the parameter index table
792 and the packet dictionary 794 may be implemented as databases that are
maintained in the central RAM 203 or the central storage medium 204. In another non-
limiting embodiment, the function index table 790, the parameter index table 792 and
the packet dictionary 794 can be maintained on external storage, which is accessible to
the central server 200 via a local storage area network (SAN), the network 450 or the
network 400. Still other possibilities will be apparent to those of skill in the art.

At step S720, the packet dictionary 794 is checked. In particular, the current set of
function identifier and combination (i.e., ordered set) of parameters is compared
against the entries of the packet dictionary 794 to determine whether the packet
dictionary 794 includes a packet index for the current set of function identifier and
combination of parameters. If the answer is affirmative, this will indicate that a packet
representing the same function and the same combination has already been created
and transmitted to the remote device (e.g., the rendering serve 100). In that case, the
marshalling process proceeds to step S740, wherein the existing packet index is
retrieved from the packet dictionary 794, and a packet is formulated such that it
includes the packet index. In addition, function arguments (e.g., certain forms of data)
that are not considered to be condensable may be appended to the packet.

The marshalling process then proceeds to step S750, wherein the newly created
packet is transmitted to the remote device (e.g., the rendering server 100) over the
network 450. The packet also includes any necessary header or other information that
would make it suitable for transmission over the network 450. For example, the packet
may be formatted in such a way as to alert the remote device that it carries a packet
index rather than the function identifier or the parameters themselves.

However, if at step S720 it had been determined that the packet dictionary 794 does
not include a packet index for the current set of function identifier and combination of
parameters, the marshalling process proceeds to step S760. At step S760, the
function index table 790 and the parameter index table 792 are checked. In particular,

it is determined whether the function index table 790 includes a function index for the
32

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

function identifier. If the answer is affirmative, this will indicate that the same function
has been called in the past, although with different parameters (or with the same
parameters but in a different order). It is also determined whether the parameter index
table 792 includes a parameter index for one or more of the parameters. If the answer
is affirmative for a given parameter, this will indicate that the given parameter has been
part of a function call in the past. Accordingly, at step S765, the previously
assigned/allocated function index and/or parameter index(es) is(are) retrieved.

The marshalling process then proceeds to step S770, where a packet is formulated
such that it includes any previously assigned function index and/or parameter index(es)
that was(were) retrieved at step S765. In addition, function arguments that are not
considered to be condensable may be appended to the packet.

If there was no function index retrieved at step S765, then the complete function
identifier is used in the packet. In addition, a step S775, an entry for the function
identifier is created in the function index table 790 and a function index is assigned to
the function identifier and stored in association therewith. Assignment of the function
index to the function identifier may proceed in accordance with a function index
assignment algorithm that is known to both the local device and the remote device. If
this is the case, then it is not necessary to inform the remote device of the function
index assigned to the function identifier, because the remote device can derive the
function index by executing the same function index assignment algorithm as the local
device. However, if the function index assignment algorithm is not known to both the
local device and the remote device, then it may be desirable to include, in the packet,
not only the complete function identifier, but also the function index associated
therewith.

Similarly, if, for at least one of the parameters, there was no parameter index retrieved
at step S765, then the complete parameter is used in the packet. In addition, at step
S780, an entry for each such parameter is created in the parameter index table 792
and a parameter index is assigned to the parameter and stored in association
therewith. Assignment of parameter indexes to parameters may proceed in
accordance with a parameter index assignment algorithm that is known to both the
local device and the remote device. [f this is the case, then it is not necessary to inform

the remote device of the parameter index assigned to a given parameter, because the
33

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

remote device can derive the parameter index by executing the same parameter index
assignment algorithm as the local device. However, if the parameter index assignment
algorithm is not known to the remote device, then when including a complete
parameter in the packet, it may also be desirable to include the parameter index
associated therewith.

The marshalling process further executes step S750, wherein the packet is transmitted
to the remote device (e.g., the rendering server 100) over the network 450. This can
be done by placing the packet in an output queue of the central communication unit
205. The packet also includes any necessary header or other information that would
make the packet suitable for transmission over the network 450.

It should be understood that the creation of entries in the function index table 790 and
the parameter index table 792 (i.e., the execution of steps S775 and S780) can occur

prior to, during or after execution of step S750.

h. MARSHALLING (EXAMPLE)

An example description will now be provided in order to illustrate operation of the

marshalling process in the creation of three packets from the following three

successive instructions:
Functioncall 1(Paraml, Param2, Param3);
Functioncall 2 (Param3, Paramé);

Functioncall 1(Paraml, ParamZ, Param3).

It will be noted that the first and third instructions utilize the same function identifier
Functioncall 1 and the same function arguments Paraml, Param2 and Param3. |t
is assumed that all function arguments are condensable, and therefore qualify as
“parameters”. However, this assumption is made merely for the sake of simplicity and
it need not be the case in every embodiment.

Fig. 8A shows the status of the packet dictionary 794, the function index table 790 and
the parameter index table 792 prior to receipt or processing of the first instruction
Functioncall 1(Paraml, Param2, Param3). Quite simply, the packet dictionary
794, the function index table 790 and the parameter index table 792 are all empty.
Consider now three iterations of the marshalling process, as executed on the first,

second and third aforementioned instructions, respectively. The first iteration of the

34

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

marshalling process begins at step S710, whereby the first instruction
Functioncall 1(Paraml, Param2, Param3) is received. The function identifier is
Functioncall 1 and the combination (ordered set) of parameters is pParaml,
param2, Param3. The packet dictionary 794 is consulted at step S720, and it is
determined that there is no entry in the packet dictionary 794 for the current function
identifier (Functioncall 1) and the current combination of parameters (paraml,
param2, Param3). Next, at step S760, the function index table 790 and the parameter
index table 792 are checked. These are also empty, and therefore the marshalling
process continues to step S770. This results in the creation of a packet which, as
illustrated in Fig. 8B, is denoted 810 includes function identifier Functioncall 1 and
parameters Paraml, Param2 and Param3, the order of which is preserved.

At step S775, which may be executed before, during or after step S770, an entry 812 is
created in the function index table 790 for function identifier Functioncall 1, and a
function index 0x1 is assigned to function identifier Functioncall 1 and stored in the
newly created entry 812. In addition, three entries 814, 816, 818 are created in the
parameter index table 792, one each for paraml, Param2 and Param3, and
parameter indexes 0Ox1, Ox2 and 0x3 are assigned to parameters paraml, Param2
and praram3 and stored in the respective newly created entries 814, 816, 818.
Furthermore, at step S780, which may also be executed before, during or after step
S770, a new entry 820 is created in the packet dictionary 794 for the function identifier
Functioncall 1 together with the combination of parameters paraml, Param2,
param3, to which a packet index 0x1 is assigned.

At step S750, packet 810 is released towards the remote device. Optionally, although
not shown in the drawing, packet index 0x1 may be included in packet 810, while
function index 0x1 may accompany function identifier Functioncall 1 and parameter
indexes 0x1, O0x2 and Ox3 may accompany parameters paraml, Param2 and Param3
in packet 810. Providing this additional information may assist the remote device in
replicating its own versions of the packet dictionary 794, the function index table 790
and the parameter index table 792, particularly when the remote device is not aware of
the algorithm/process used by the local device to generate the packet index, the

function index and the parameter indexes.

35

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

The second iteration of the marshalling process begins at step S710, whereby the
second instruction Functioncall 2(Param3, Paramd) is received. The function
identifier is Functioncall 2 and the combination (ordered set) of parameters is
param3, Paramd4. The packet dictionary 794 is consulted at step S720, and it is
determined that there is no entry in the packet dictionary 794 for the current function
identifier and combination of parameters. Next, at step S760, the function index table
790 and the parameter index table 792 are checked. The function index table 790
does not include an entry for function identifier Functioncall 2. However, while the
parameter index table 792 does not include an entry for parameter Param4, it does
include and entry for parameter param3. Accordingly, the marshalling process
proceeds to step 765, where parameter index Ox3 is retrieved in association with
parameter Param3.

With reference to Fig. 8C, the marshalling process continues to step S770, where a
packet 830 is created, and includes function identifier Functioncall_ 2, parameter
index 0x3 (in lieu of parameter param3) and parameter param4. A flag may be inserted
into packet 830 in order to differentiate between fields that convey a parameter versus
fields that convey a parameter index. At step S775, which may be executed before,
during or after step S770, an entry 832 is created in the function index table 790 for
function identifier Functioncall 2, and a function index 0x2 is assigned to function
identifier Functioncall 2 and stored in the newly created entry 832. In addition, an
entry 834 is created in the parameter index table 792 for param4, and parameter index
Ox4 is assigned thereto and stored in the newly created entry 834. Furthermore, at
step S780, which may also be executed before, during or after step S770, a new entry
836 is created in the packet dictionary 794 for the function identifier Functioncall 2
together with the combination of parameters param3, Param4, to which a packet index
0x2 is assigned.

At step S750, packet 830 is released towards the remote device. Optionally, although
not shown in the drawing, packet index 0x2 may be included in packet 830, while
function index 0x2 may accompany function identifier Functioncall 2 and parameter

index Ox4 may accompany parameter param4 in packet 830. This additional

36

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

information may assist the remote device in replicating its own versions of the packet
dictionary 794, the function index table 790 and the parameter index table 792.

It is noted that because packet 830 includes parameter index 0x3 instead of parameter
param3, packet 830 is shorter in length than it would have been, had it included
parameter param3 in fully expanded (uncondensed) form. That is to say, packet 830 is
condensed, which means that it takes less time to transmit and consumes less
bandwidth through the network 450. Transmission efficiency thus increases as a result
of the present marshalling process.

Moreover, as the number of transmitted packets increases, so does the transmission
efficiency. This demonstrated by considering the third iteration of the marshalling
process, which begins at step S710 upon receipt of the third instruction
Functioncall 1(Paraml, Param2, Param3). The function identifier is
Functioncall 1 and the combination (ordered lit) of parameters is paraml, pParam2,
param3. The packet dictionary 794 is consulted at step S720. By virtue of earlier
execution of step S780 in connection with the first iteration of the marshalling process,
the will have been created an entry in the packet dictionary 794 for the current function
identifier and combination of parameters. Specifically, this is entry 812, which
associates packet index Ox1 with function identifier Functioncall 1 and the
combination of parameters paraml, Param2, Param3.

Thus, the marshalling process proceeds to step S740, where packet index 0x1 is
retrieved, resulting in the creation of a packet 840 (see Fig. 8D) that includes packet
index Ox1. At step S750, packet 840 is released towards the remote device. A flag
may be inserted into packet 840 in order to signal that what is being conveyed by
packet 40 is a packet index rather than a function identifier, function index, parameter
or parameter index.

It is noted that because packet 840 includes packet index 0x1 instead of function
identifier Functioncall 1 or any of the parameters paraml, Param2, Param3—Or
even any of the parameter indexes 0x1, 0x2, Ox3—packet 840 is shorter in length than
it would have been, had it included the aforementioned information. That is to say,

packet 840 is condensed, which means that it takes less time to transmit and

37

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

consumes less bandwidth through the network 450. Transmission efficiency thus
increases as a result of the present marshalling process.

Further improvements in transmission efficiency can be provided in those cases where
different functions call the same combination of parameters. Whereas in the above
described marshalling process, some efficiency is gained by representing each
parameter by its parameter index, there is still a need to transmit the parameter
indexes in the correct order.

Accordingly, in a variant of the above described marshalling process, and with
reference to Fig. 7C, a parameter combination index table 796 may be provided. The
parameter combination index table 796 associates combinations of parameters to
respective parameter combination indexes. That is to say, each entry in the parameter
combination index table 796 associates an ordered set of parameters to a particular
code (a “parameter combination index”). In one non-limiting embodiment, the
parameter combination index table 796 may be implemented as a database that is
maintained in the central RAM 203 or the central storage medium 204. In another non-
limiting embodiment, the parameter combination index table 796 can be maintained on
external storage, which is accessible to the central server 200 via a local storage area
network (SAN), the network 450 or the network 400.

In order for the marshalling process to make use of the parameter combination index
table 796, a modification is made to step S760. Specifically, step S760 would be
modified so as to check the function index table 790 and the parameter combination
index table 796. In this way, not only will it be determined that the function index table
790 includes a function index for the function identifier if it has already been called in
the past, but also it will be determined that the parameter combination index table 790
includes a parameter combination index if the current combination of parameters has
been called in the past, albeit using a different function. Accordingly, at step S765, the
available function index and/or parameter combination index would be retrieved. Of
course, if there is no entry in the parameter combination index table 796 for the current
combination of parameters, then the parameter index table 792 can still be checked as
previously described in order to see if any of the parameters has been part of a

function call in the past.

38

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

In addition, step S775 would be modified so that if it is determined that there was no
entry in the parameter combination index table 796 at step S760, a new entry for the
current combination of parameters would be created in the parameter combination
index table 796, and a parameter combination index would be assigned to this
combination of parameters and stored in association therewith. Assignment of the
parameter combination index to the current combination of parameters may proceed in
accordance with a parameter combination index assignment algorithm that is known to
both the local device and remote devices. If this is the case, then it is not necessary to
inform the remote device of the parameter combination index assigned to the current
combination of parameters, because the remote device can derive the parameter
combination index by executing the same parameter combination index assignment
algorithm in parallel. However, if the parameter combination index assignment
algorithm is not known to the remote device, then it may be desirable to include, in the
transmitted packet, the parameter combination index associated with the current
combination of parameters.

In a further variant, the instruction issued by the game state management process and
received by the local stub 620 may include a generic function identifier, while the
specifics of the function can be partly embedded amongst the parameters. For

example, consider the following sequence of instructions:
Functioncall (Functionl, Paraml, Param2, Param3);

Functioncall (Function?2, Param4, Param5, Paramé6).

It will be seen that even though the function identifier is the same (i.e., Functioncall),
the actual function being called is different and takes the form of a function argument.
In such a case, the “combination of parameters” includes at least one parameter that
specifies the nature of the function being called. Stated differently, in this variant, the
function identifier is considered to be no different from any other parameter.

In order to accommodate the above variant, the function index table 790 would
effectively be subsumed into the parameter index table 792. Accordingly, the flowchart
of Fig. 7A is reproduced in modified form in Fig. 7D, where a letter “D” next to a step
number denotes a modified version of that step relative to Fig. 7A. Specifically, it is

seen that step S760D includes consideration of the parameter index table 792 but does

39

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045
not include consideration of a “function index table”. Also, reference to a “function

index” has been omitted in steps S770D and S775D.

i. UNMARSHALLING

At the remote device, an unmarshalling process is executed on packets received over

the network 450. The unmarshalling process can be carried out by the remote stub
650 in the rendering server 100, although it is to be understood that the unmarshalling
process can be carried out by any entity that receives packets that have been
marshaled as previously described with reference to Fig. 7A.

Referring now to Fig. 9B, it is assumed that the remote device (e.g., the rendering
server 100) maintains a function index table 990, a parameter index table 992 and a
packet dictionary 994. When properly constructed, these entities will be similar to the
function index table 790, the parameter index table 792 and the packet dictionary 794
maintained by the local device (e.g., the central server 200). However, the entries in
the function index table 990, the parameter index table 992 and the packet dictionary
094 are accessed differently. For example, the function index table 990, which
associates function indexes with respective function identifiers, is accessed on the
basis of a received function index; the parameter index table 992, which associates
parameter indexes with respective parameters, is accessed on the basis of a received
parameter index; and the packet dictionary 994, which associates each of a plurality of
packet indexes to a specific function identifier and combination of parameters, is
accessed on the basis of a received packet index.

In one non-limiting embodiment, the function index table 990, the parameter index table
992 and the packet dictionary 994 may be implemented as databases that are
maintained in the RAM 103 or the storage medium 104 of the rendering server 100. In
another non-limiting embodiment, the function index table 990, the parameter index
table 992 and the packet dictionary 994 can be maintained on external storage, which
is accessible to the rendering server 100 via a local storage area network (SAN) , the
network 450 or the network 400.

Reference is now made to Fig. 9A, which shows a flowchart representing the
unmarshalling process, in accordance with a non-limiting embodiment of the present

invention.

40

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

At step S910, a packet is received. The packet can be received over the network 450
from the local device (e.g., the central server 200), which instantiates the local stub 620
responsible for creating the packet. At step S915, it is determined whether the
received packet includes a packet index. In the present embodiment, it is assumed
that when the received packet includes a packet index, it does not include a
corresponding function identifier or combination of parameters, and when the received
packet includes the corresponding function identifier or combination of parameters, it
does not include a packet index. In such an embodiment, the presence of a packet
index in a received packet signals that an identical packet (i.e., representing the same
function and parameters) has previously been created by the local device and
transmitted to the remote device.

Thus, if step S910 reveals that the received packet includes a packet index, the
unmarshalling process proceeds to step S920, where the packet dictionary 994 is
consulted on the basis of the packet index. In this manner, a corresponding function
identifier and combination of parameters are obtained from the packet dictionary 994,
and the unmarshalling process proceeds to step S930. At step S930, the function
identified by the function identifier is called locally on the remote device, using the
retrieved parameters (in the appropriate combination) as arguments. For example, a
game screen can be rendered by the rendering server 100. The rendered game
screen can be distributed to the central server 200 (via a remote procedure call in the
opposite direction) or directly to the participant for which the rendering instruction was
carried out.

However, if the received packet does not include a packet index, then this signals that
the received packet was not previously received, and the unmarshalling process
proceeds to step S940. At this stage, a series of tests can be conducted, in no
particular required order. These tests may also be conducted in parallel. Firstly, it can
be verified whether the received packet includes either a function index or a function
identifier. In the case where the received packet includes a function index, the
unmarshalling process proceeds to step S942, where the function index table 990 is
consulted on the basis of the function index. In this manner, a corresponding function
identifier is obtained from the function index table 990. In the case where the received

packet includes a function identifier, the unmarshalling process proceeds to step $944,
41

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

where a function index is assigned to the function identifier, and an entry is created in
the function index table 990, which associates the function index and the function
identifier. Assignment of the function index to the function identifier may proceed in
accordance with a function index assignment algorithm that is assumed to have been
used by the local device during execution of the marshalling process.

At step S950, it can be verified whether the received packet includes one or more
parameter indexes. In the affirmative, the unmarshalling process proceeds to step
S952, where the parameter index table 992 is consulted on the basis of the parameter
index or indexes. As a result, corresponding parameters (or possibly a single
corresponding parameter) are retrieved from the parameter index table 992. At step
954, it can be verified whether the received packet includes one or more parameters,
rather than parameter indexes. In the affirmative, the unmarshalling process proceeds
to step S956, where a parameter index is assigned to each such parameter, and an
entry is created in the parameter index table 992 for each such parameter, thereby
associating each such parameter with its newly assigned parameter index.
Assignment of parameter indexes to parameters may proceed in accordance with a
parameter index assignment algorithm that is assumed to have been used by the local
device during execution of the marshalling process.

At step S958, a packet index is assigned to the function identifier and combination of
parameters that were either included in the received packet or were retrieved from the
function index table 992 and/or the parameter index table 994. Assignment of the
packet index to the function identifier and combination of parameters may proceed in
accordance with a packet index assignment algorithm that is assumed to have been
used by the local device during execution of the marshalling process.

In the above embodiment, it was assumed that when the received packet (see step
S910) includes a packet index, it does not include the corresponding function identifier
or combination of parameters, and vice versa. In such an embodiment, the presence
of a packet index in a received packet signals that the very same packet has previously
been received. Thus, the packet dictionary 994 has already been populated with that
very same packet index. On the other hand, when a previously unrecognized set of
function identifier and combination of parameters is received, then the packet dictionary

994 will be populated with a new packet index, which is assigned in accordance with a
42

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

packet index assignment algorithm (see step S956). However, this need not be the
case in every embodiment. Indeed, in some embodiments, the first time that a
previously unrecognized set of function identifier and combination of parameters is
received, it may be accompanied by its own pre-assigned packet index (e.g., one that
was assigned by the local device during execution of the marshalling process and
transmitted to the remote device). In such a case, the packet dictionary 994 will
associate the received packet index with the received set of function identifier and
combination of parameters.

It should also be appreciated that when the function index table 990, the parameter
index table 992 and the packet dictionary 994 maintained by the remote device are
identical to the function index table 790, the parameter index table 792 and the packet
dictionary 794 maintained by the local device, it may be possible for the local device to
share these objects with the remote device and keep them synchronized. Such an
approach may simplify the unmarshalling process, as it would not require the same
object on the local device and the remote device to be twice populated. Sharing
between the local device and the remote device can be achieved by making the
function index table 990, the parameter index table 992 and the packet dictionary 994
accessible to both the remote device and the local device, e.g., via the network 450.

j- UNMARSHALLING (EXAMPLE)

An example description will now be provided in order to illustrate operation of the

unmarshalling process for handling three received packets 810, 830 and 840 created
using the previously described marshalling process. From Figs. 8B-8D, it can be
recalled that packets 810, 830 and 840, which were sent from the local device to the

remote device, include the following information:

Contents of PACKET 810:
function identifier: (Functicncall 1);
parameters: (Paraml, Param2, Param3);
Contents of PACKET 830:
function identifier: (Functioncall 2);

parameter index: 0x3;
parameter: Param4;

Contents of PACKET 840:
43

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

packet index: 0x1
Fig. 10A shows the status of the packet dictionary 994, the function index table 990
and the parameter index table 992 prior to receipt or processing of packet 810. Quite
simply, the packet dictionary 994, the function index table 990 and the parameter index
table 992 are all empty.
Consider now three iterations of the unmarshalling process, as executed on packets
810, 830 and 840, respectively. The first iteration of the unmarshalling process begins
at step S910, whereby packet 810 is received. The function identifier is
Functioncall 1 and the combination (ordered set) of parameters is paraml,
Param2, Param3. Step S920 reveals that there is no packet index included with
packet 810 and therefore the unmarshalling process proceeds to step S940.
At step S940, it is checked whether packet 810 specifies a function identifier or a
function index. Since packet 810 specifies function identifier Functioncall 1, and
thus, with additional reference to Fig. 10B, the unmarshalling process proceeds to step
S944, whereby an entry 1012 is created in the function index table 990 for function
identifier Functioncall 1, and a function index 0x1 is assigned to function identifier
Functioncall 1 (using the same algorithm as in the marshalling process) and stored
in the newly created entry 1012.
At step S950, it is checked whether packet 810 includes at least one parameter index.
Since packet 810 only includes parameters and no parameter indexes, the
unmarshalling process proceeds to step S954. At step S954, it is checked whether
packet 810 includes at least one parameter. Since this is indeed the case, the
unmarshalling process proceeds to step S956, whereby three new entries 1014, 1016,
1018 are created in the parameter index table 992, one each for paraml, Param2 and
param3, and parameter indexes 0x1, Ox2 and O0x3 are assigned to parameters
paraml, Param2 and Param3 (using the same algorithm as in the marshalling
process) and stored in the respective newly created entries 1014, 1016, 1018.
At step S958, a new entry 1020 is created in the packet dictionary 994 for the function
identifier Functioncall 1 together with the combination of parameters paraml,
Param2, Param3, to which a packet index 0x1 is assigned (using the same algorithm

as in the marshalling process).

44

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

At step S930, the function identified by the function identifier Functioncall 1 is
called, using the parameters Paraml, Param2, Param3 as arguments. For example,
a game screen can be rendered by the rendering server 100. The rendered game
screen can be distributed to the central server 200 (via a remote procedure call in the
opposite direction) or directly to the participant for which the rendering instruction was
carried out. Of course, it is to be understood that the present invention is not limited to
rendering instructions or a gaming environment.

The second iteration of the unmarshalling process begins at step S910, whereby
packet 830 is received. The function identifier is Functioncall 2, which is received
together with parameter index 0x3 and parameter param4. Step S920 reveals that
there is no packet index included with packet 830 and therefore the unmarshalling
process proceeds to step S940.

At step S940, it is checked whether packet 830 specifies a function identifier or a
function index. Since packet 830 specifies function identifier Functioncall 2, and
with additional reference to Fig. 10C, the unmarshalling process proceeds to step
S944, whereby an entry 1032 is created in the function index table 990 for function
identifier Functioncall 2, and a function index 0x2 is assigned to function identifier
Functioncall 1 (using the same algorithm as in the marshalling process) and stored
in the newly created entry 1032.

At step S950, it is checked whether packet 830 includes at least one parameter index.
Since packet 830 includes only parameter index 0x3, the unmarshalling process
proceeds to step S952, where the parameters associated with parameter index 0x3 are
retrieved from the parameter index table 992. In particular, it will be recalled that
execution of step S956 in connection with unmarshalling of packet 810 resulted
parameter index 0x3 having been assigned to param3. Therefore, during current
execution of step S952, the parameter param3 is retrieved.

Next, at step S954, it is checked whether packet 830 at least one parameter. Since
this is indeed the case (namely, packet 830 includes parameter param4), the
unmarshalling process proceeds to step S956, whereby a new entry 1034 is created in

the parameter index table 992 for param4. In this case, parameter index 0x4 is

45

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

assigned to parameter Param4 using the same algorithm as in the marshalling
process, and parameter index 0x4 is stored in the newly created entry 1034.

At step S958, a new entry 1036 is created in the packet dictionary 994 for the function
identifier Functioncall 2 together with the combination of parameters param3,
param4, to which a packet index 0x2 is assigned (using the same algorithm as in the
marshalling process).

At step S930, the function identified by the function identifier Functioncall 2 is
called, using the parameters Param3, Param4 as arguments. For example, a game
screen can be rendered by the rendering server 100. The rendered game screen can
be distributed to the central server 200 (via a remote procedure call in the opposite
direction) or directly to the participant for which the rendering instruction was carried
out. Of course, it is to be understood that the present invention is not limited to
rendering instructions or a gaming environment.

The third iteration of the unmarshalling process begins at step S910, whereby packet
840 is received. Packet 840 includes packet index 0x1. Since step S920 will reveal
that there is a packet index included with packet 840, the unmarshalling process
proceeds to step S920.

At step S920, the function identifier and the parameters associated with packet index
0x1 are retrieved from the packet dictionary 994. In this case, the retrieved function
identifier will be Functioncall 1 and the retreieved combination of parameters will be
Paraml, ParamZ2, Param3.

The unmarshalling process then proceeds to step S930, where the function identified
by the function identifier Functioncall 1 is called, using the parameters Pparaml,
Param?, Param3 as arguments. For example, a game screen can be rendered by the
rendering server 100. The rendered game screen can be distributed to the central
server 200 (via a remote procedure call in the opposite direction) or directly to the
participant for which the rendering instruction was carried out. Of course, it is to be
understood that the present invention is not limited to rendering instructions or a
gaming environment.

Clearly, although packets 810 and 840 result in execution of the same function with the

same parameters, the amount of network resources (bandwidth) required to transmit

46

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

packet 840 is less than the amount of network resources required to transmit packet
810.

As has already been mentioned in connection with the marshalling process, further
improvements in transmission efficiency may be achievable in those cases where the
same combination of parameters is called, although possibly by different functions. To
support the modified marshalling process described with reference to Fig. 7C, the
unmarshalling process may be modified accordingly. In particular, with reference to
Fig. 9C, a parameter combination index table 996 may be provided. The parameter
combination index table 996 associates parameter combination indexes with respective
combinations of parameters. That is to say, each entry in the parameter combination
index table 996 associates an ordered set of parameters to a particular code (referred
to as a parameter combination index). In one non-limiting embodiment, the parameter
combination index table 996 may be implemented as a database that is maintained in
the RAM 103 or the storage medium 104 of the rendering server 100. In another non-
limiting embodiment, the parameter combination index table 996 can be maintained on
external storage, which is accessible to the rendering 100 via a local storage area
network (SAN), the network 450 or the network 400.

To make use of the parameter combination index table 996, a modification is made to
the unmarshalling process. Specifically, with reference to Fig. 9D, a new step S946 is
introduced, where it would be checked whether the received packet includes a
parameter combination index. In the affirmative, the corresponding combination of
parameters would be retrieved from the parameter combination index table 996 at step
S948, and the unmarshalling process would then rejoin the unmarshalling process of
Fig. 9A at step S958. However, if the received packet was found not to include a
parameter combination index, the unmarshalling process proceeds to execute steps
S950 through S956 as previously described. In addition, a new step S957 would be
provided, whereby a new entry would be created in the parameter combination index
table 996, and a parameter combination index would be assigned to the current
combination of parameters and stored in association therewith. Assignment of the
parameter combination index to the current combination of parameters may proceed in
accordance with the same parameter combination index assignment algorithm that was

used by the local device.
47

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

It will be recalled that in a further variant, the function identifier may in fact be one of
the parameters. In such a case, the “combination of parameters” includes at least one
parameter that specifies the nature of the function being called. In order to
accommodate the above variant, the function index table 990 is effectively subsumed
into the parameter index table 992. In such an embodiment, steps S940, S942 and
S944 from the flowchart in Fig. 9A can effectively be omitted.

k. SEQUENCE INDEXING
It should be appreciated that still further efficiencies may be gained by making the

observation that sequences of instructions may repeat, and by applying the above
described principles to this observation. Specifically, at the local device, the
marshalling process for condensing sequences of received instructions may be
represented by a flowchart illustrated in Fig. 11A. The marshalling process may be
executed by the local stub 620 in the central server 200, although the presently
described process can be applied wherever remote procedure calls are used.

At step S1110, an instruction is received. In a non-limiting example, the instruction
may be a rendering instruction issued by a game state management process at the
application layer. At step S1120, it is verified whether the received instruction
completes a sequence of instructions, so as to proceed with consulting a sequence
dictionary at step S1130. This can be determined in a number of ways. For example,
the marshalling process may consider that a fixed number of received instructions form
a sequence. [n another embodiment, the marshalling process may wait until several
instructions are received and may process them to detect patterns therein and then
begin processing the instructions in the oldest (least recent) sequence in accordance
with the knowledge that there will be some repetition and therefore efficiency gain.
Other methodologies for determining whether a sequence has been completed will be
understood as being within the scope of the present invention.

Assuming that a complete sequence of instructions has been detected (which will
include, say, instructions 1 through N), the marshalling process proceeds to step
S1130, where a sequence dictionary is consulted. At this point, reference is made to
Fig. 11B, which shows a sequence dictionary 1190. The sequence dictionary 1190

comprises entries that associate sequence indexes with respective sequences of

48

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

instructions. Each instruction represented in a given sequence of instructions may be
associated with a respective function identifier and a respective combination of
parameters. As such, each entry in the sequence dictionary 1190 associates a
sequence index with a sequence of function identifiers and respective combinations of
parameters.

In one non-limiting embodiment, the sequence dictionary 1190 may be implemented as
a database that is maintained in the central RAM 203 or the central storage medium
204. In another non-limiting embodiment, the sequence dictionary 1190 can be
maintained on external storage, which is accessible to the central server 200 via a local
storage area network (SAN), the network 450 or the network 400.

At step S1130, the sequence dictionary 1190 is checked. In particular, the current
sequence of function identifiers and respective combinations of parameters (in
instructions 1 through N) is compared against sequences of function identifiers and
respective combinations of parameters maintained in the entries of the sequence
dictionary 1190 with the aim of determining whether the sequence dictionary 1190
includes a sequence index corresponding to the current sequence of function identifiers
and respective combinations of parameters. If the answer is affirmative, this will
indicate that a packet representing this same sequence of instructions has already
been created in the past, and that a sequence index has already been assigned to this
particular sequence of instructions. In that case, the marshalling process proceeds to
step S1150, wherein the sequence index is retrieved from the sequence dictionary, and
a packet is created such that it includes the sequence index. In addition, where one or
more instructions refers to function arguments that are not considered to be
condensable, these may be appended to the packet, such as in a pre-determined
location that will allow the recipient to determine which instruction the function
arguments are associated with.

The marshalling process then proceeds to step S1160, wherein the packet is
transmitted to the remote device (e.g., the rendering server 100) over the network 450.
The packet also includes any necessary header or other information that would make it
suitable for transmission over the network 450. For example, the packet may be
formatted in such a way as to alert the receiving entity that it carries a sequence index

as opposed to a packet index, a function identifier or parameters.
49

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

However, if at step S1130 it was determined that the sequence dictionary 1190 did not
include a sequence index for the current sequence of instructions, the marshalling
process proceeds to step S1170. This includes execution of steps 720 from the
flowchart of Fig. 7A and all steps subsequent thereto, for each instruction in the
sequence of instructions. In addition, the marshalling process executes step S1180,
wherein an entry is created in the sequence dictionary 1190 for the current sequence of
function identifiers and respective combinations of parameters (in instructions 1
through N), and a sequence index is assigned thereto and stored in the sequence
dictionary 1190.

It will be appreciated that in an actual implementation, it is not necessary for the
marshalling process to wait at step 1120. Instead, it is envisaged that the marshalling
process may effect pre-processing on the instructions that have been received thus far,
which can include any of the steps in Fig. 7A with the exception of step S750. If it turns
out that a sequence index will be found for the sequence currently being compiled, then
this pre-processing will turn out to have been wasteful, but in the event that a sequence
index is not found, such pre-processing will minimize the latency required to create the
packet.

An example description will now be provided in order to illustrate operation of the
marshalling process in the creation of three packets from three sequences of three

instructions per sequence. That is to say, consider the following nine instructions:
Functioncall 1(Paraml, Param2, Param3);
Functioncall 2 (Param3, Paramd);
Functioncall 1 (Paraml, Param2, Param3);

Functioncall 1 (Paraml, Param2, Param3);

Functioncall 3 (Param4, Paramb, Paramé);

(

(

(

(
Functioncall 2{Param3, Parami);

(
Functioncall 1 (Paraml, Param2, Param3);
(

Functioncall 2(Param3, Parami);

Functioncall 1(Paraml, Param2, Param3).
It will be noted that the first, third, fourth, seventh and ninth instructions are identical
and refer to the same function identifier Functioncall 1 and the same function

arguments paraml, Param2 and param3. It will also be noted that the second, fifth

50

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

and eighth instructions are identical and refer to the same function identifier
Functioncall 2 and the same function arguments param3, Param4. It is assumed
that all function arguments are condensable, and therefore qualify as “parameters” as
used herein. However, this assumption is made merely for the sake of simplicity and it
need not be the case in every embodiment.

Fig. 12A shows the status of the packet dictionary 794, the function index table 790,
the parameter index table 792 and the sequence dictionary 1190 prior to receipt or
processing of the first instruction. Quite simply, the packet dictionary 794, the function
index table 790, the parameter index table 792 and the sequence dictionary 1190 are
all empty. This scenario remains substantially the same until the third instruction (i.e.,
the last instruction in a sequence of 3 instructions) is received. That is to say, whereas
in accordance with the marshalling process of Fig. 7A, packets would be generated
one at a time, this is not the case in the marshalling process of Fig. 11A, because
packets are not released until a complete sequence of instructions has been received.
In this non-limiting case, used only for purposes of example, a complete sequence is
considered to include three instructions.

Fig. 12B shows the status of the packet dictionary 794, the function index table 790,
the parameter index table 792 and the sequence dictionary 1190 after having received
and processed the third instruction. Here it is seen that the parameter index table 792
includes four entries, one for each of paraml, Param2, Param3 and Param4, which
are associated with parameter indexes 0x1, 0x2, Ox3 and 0x4, respectively. The
function index table 790 includes two entries, one for each of Functioncall 1 and
Functioncall 2, which are associated with function indexes O0x1 and 0x2,
respectively. The packet dictionary 794 includes two entries, one for Functioncall 1
together with the combination of paraml, Param2, Param3 (associated with packet
index Ox1) and one for Functioncall 2 together with the combination of param3,
Param4 (associated with packet index 0x2). Finally, the sequence dictionary 1190
includes one entry for the first sequence of three instructions, and which is associated
with sequence index 0x1.

Fig. 12B also shows that three packets 1210, 1220, 1230 have been issued,

corresponding to the three instructions in the first sequence:

51

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

Contents of PACKET 1210:;

function identifier: (Functioncall 1);

parameters: (Paraml, Param2, Param3);
Contents of PACKET 1220:

function identifier: (Functioncall 2);

parameter index: 0x3;

parameter: Paramé;

Contents of PACKET 1230:

packet index: 0x1
It should be appreciated that n some embodiments, packets 1210, 1220, 1230 may
include, where appropriate, a flag to allow the recipient to distinguish between a packet
index, a function identifier, a function index, a parameter and a parameter index.
Fig. 12C shows the status of the packet dictionary 794, the function index table 790,
the parameter index table 792 and the sequence dictionary 1190 after having received
and processed the sixth instruction. Here it is seen that the parameter index table 792
includes two new entries, one for each of param5 and paramé, which are associated
with parameter indexes Ox5 and 0x6, respectively. The function index table 790
includes one new entry for Functioncall 3, which is associated with function index
0x3. The packet dictionary 794 includes one new entry for Functioncall 3 together
with the combination of param5, Paramé, which is associated with packet index 0x3.
Finally, the sequence dictionary 1190 includes a new second entry for the second
sequence of three instructions, and which is associated with sequence index 0x2.
Fig. 12C also shows that three packets 1240, 1250, 1260 have been issued,
corresponding to the three instructions in the second sequence:
Contents of PACKET 1240:

packet index: 0x1;
Contents of PACKET 1250:

function identifier: (Functioncall 3);

parameter index: 0x4;

parameters: Paramb, Paramé;
Contents of PACKET 1260:

packet index: 0x1

92

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

Now consider what happens when processing the seventh, eighth and ninth
instructions. It is seen that these three instructions in the current (third) sequence are
identical to the three instructions in the first sequence, for which there is already a
sequence index in the sequence dictionary 1190. As such, branch S1150 is taken after
step S1130 in Fig. 11A, and there is no change to the status of the packet dictionary
794, the function index table 790, the parameter index table 792 or the sequence
dictionary 1190 relative to Fig. 12C. Moreover, only one packet will be transmitted,
representing the sequence of three instructions. Specifically, as shown in Fig. 13,
packet 1270 is a very short packet that includes sequence index 0x1.

Contents of PACKET 1270:

Sequence index: 0x1.

This is in contrast to transmitting three packets, one for each of the seventh, eighth and
ninth instruction. Those skilled in the art will appreciate that packet 1270 may include a
flag or header to indicate that it is conveying a sequence index rather than, say, a
packet index.

It should be appreciated that in some embodiments, the detection of sequences can be
done based on the packets output by the marshalling process of Fig. 7A, rather than
directly on the basis of received instructions. That is to say, once packets have been
created and are ready to be transmitted in accordance with the marshalling process of
Fig. 7A, it is possible to analyze these packets in order to identify sequences of packets
(rather than instructions) and issue condensed packets that include sequence numbers
where possible.

Those skilled in the art will appreciate that a complementary unmarshalling process
can be carried out at the remote device (e.g., the rendering server 100), so as to
decode the sequence identifier where one is present in the incoming packet and, in the

alternative, to assign a sequence identifier to an incoming sequence of packets.

l. SHARED PACKET DICTIONARY

It should be appreciated that in the course of the game state management process,

due to the large volume of objects to be rendered, there may be a need to issue two or
more rendering instructions such that they are processed at least partly in parallel.

Another factor that may contribute to the need to execute multiple rendering

93

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

instructions contemporaneously is where multiple participants are involved in the game.
To satisfy this need, multiple local stubs can be running concurrently over the same
period of time. In a simple scenario, which is used merely for illustrative purposes and
is not to be viewed as limiting, a separate local stub is associated with each participant
in the game. Each of the local stubs is invoked repeatedly so as to render a game
scene for the corresponding participant with acceptable motion quality. The multiple
local stubs cooperate with corresponding remote stubs in order to carry out multiple
parallel executions of step S405 of the game state management process.

Referring now to Figs. 14A and 14B, three local stubs 1410, 1415, 1420 are
instantiated on the same local device 1430. The local device 1430 executes the game
state management process. The local stubs 1410, 1415, 1420 make remote procedure
calls to corresponding remote stubs 1450, 1455, 1460 disposed on a common remote
device 1470. ltis to be understood that although the number of local and remote stubs
is three, this is not to be considered a limitation of the present invention. In a non-
limiting embodiment, the local device 1430 can be the central server 200 and the
remote device 1470 can be the rendering server 100. The local device 1430 and the
remote device 1470 may be connected by the network 450. The function calls made
by local stub 1410 are marshaled into packets, which are then sent to and serviced by
remote stub 1450. This can result in the rendering of game screens for a first
participant in the game. Likewise, function calls made by local stub 1415 are
marshaled into packets, which are then sent to and serviced by remote stub 1455,
while function calls made by local stub 1420 are marshaled into packets, which are
then sent to and serviced by remote stub 1460. This results in the rendering of game
screens for a second and a third participant in the game, respectively.

In the non-limiting embodiment shown in Fig. 14A, the three local stubs 1410, 1415,
1420 have access to respective memory spaces 1440, 1445, 1449. Memory space
1440 includes a function index table 1442, a parameter index table 1444 and a packet
dictionary 1446 for use by local stub 1410. Memory space 1440 may also include a
sequence dictionary 1448 when useful or desired. The function index table 1442, the
parameter index table 1444, the packet dictionary 1446 and the sequence dictionary
1448 are accessed by local stub 1410 when executing a marshalling process for

participant #1. For their part, memory spaces 1445 and 1449 are similarly configured,
54

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

with a respective function index table, a respective parameter index table, a respective
packet dictionary and possibly also a respective sequence dictionary. These separate
memory spaces 1445, 1450 are separately accessed by local stubs 1415, 1420 when
executing distinct marshalling processes for participants #2 and #3, respectively.

At the remote device 1470, the three remote stubs 1450, 1455, 1460 have access to
respective memory spaces 1480, 1485, 1490. Memory space 1480 includes a function
index table 1482, a parameter index table 1484 and a packet dictionary 1486 for use by
remote stub 1450. Memory space 1480 may also include a sequence dictionary 1488
when useful or desired. The function index table 1482, the parameter index table
1484, the packet dictionary 1486 and the sequence dictionary 1488 are accessed by
remote stub 1450 when executing an unmarshalling process for participant #1. For
their part, memory spaces 1485 and 1490 are similarly configured, with a respective
function index table, a respective parameter index table, a respective packet dictionary
and possibly also a respective sequence dictionary. These separate memory spaces
1485, 1490 are separately accessed by remote stubs 1455, 1460 when executing
distinct unmarshalling processes for participants #2 and #3, respectively

In another non-limiting embodiment, shown in Fig. 14B, the three local stubs 1410,
1415 1420 have access to a shared memory space 1461. The shared memory space
1461 includes a common function index table 1462, a common parameter index table
1464 and a common packet dictionary 1466. The shared memory space 1461 may
also include a common sequence dictionary 1468 when useful or desired. Therefore,
the function index table 1462, the parameter index table 1464, the packet dictionary
1466 and the sequence dictionary 1468 are commonly accessed by local stubs 1410,
1415, 1420 executing distinct marshalling processes for participants #1, #2 and #3,
respectively.

The shared memory space 1461 may be configured in various ways. For example, the
shared memory space 1461 can be maintained in the central RAM 203 or the central
storage medium 204. In another non-limiting embodiment, the shared memory space
1461 can be maintained on external storage, which is accessible to the central server
200 via a local storage area network (SAN), the network 450 or the network 400.

At the remote device 1470, the three remote stubs 1450, 1455 1460 have access to a

shared memory space 1475. The shared memory space 1475 includes a common
55

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

function index table 1492, a common parameter index table 1494 and a common
packet dictionary 1496. The shared memory space 1475 may also include a common
sequence dictionary 1498 when useful or desired. Therefore, the function index table
1492, the parameter index table 1494, the packet dictionary 1496 and the sequence
dictionary 1498 are commonly accessed by remote stubs 1450, 1455, 1460 executing
distinct unmarshalling processes for participants #1, #2 and #3, respectively.

The shared memory space 1475 may be configured in various ways. For example, the
shared memory space 1475 can be maintained in the RAM 103 or the storage medium
104. In another non-limiting embodiment, the shared memory space 1475 can be
maintained on external storage, which is accessible to the rendering server 100 via a
local storage area network (SAN), the network 450 or the network 400.

It will be appreciated that use of a shared memory space 1461 by local stubs 1410,
1415, 1420 and use of the shared memory space 1475 by remote stubs 1450, 1455,
1460 allows function calls to be even more efficient in terms of bandwidth usage. That
is to say, efficiency rises with repetition in function calls and repetition in function calls
is more likely when measured across multiple participants rather than on a per-
participant basis.

Reference is now made to Fig. 15, which illustrates a non-limiting embodiment in which
three local stubs 1510, 1515, 1520 are instantiated on three separate local devices
1530, 1535, 1540. The local stubs 1510, 1515, 1520 make remote procedure calls to
corresponding remote stubs 1550, 1555, 1560. In one embodiment, remote stubs
1550, 1555, 1560 are instantiated on a single remote device 1570. In other
embodiments, the remote stubs 1550, 1555, 1560 may be instantiated on separate
remote devices. It is to be understood that although the number of local and remote
stubs is three, this is not to be considered a limitation of the present invention.

In one non-limiting embodiment, the local devices 1530, 1545, 1540 can be sub-
portions of a distributed central server 200, while the remote device 1570 can be the
rendering server 100. In such an embodiment, the game state management process
may be run by one of the local devices 1530, 1535, 1540 that is designated as the
“master”, or the game state management process may be collaboratively / distributedly
executed by the local devices 1530, 1535, 1540.

56

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

In another non-limiting embodiment, the local devices 1530, 1545, 1540 can be game
consoles, while the remote device 1570 can be the rendering server 100 or the central
server 200. In such an embodiment, the game state management process may be run
by one of the game consoles that is designated as the “master”, or the game state
management process may be collaboratively / distributedly executed by the various
game consoles.

Local stub 1510 responds to the receipt of instructions by executing a marshalling
process to create packets, which are sent to and serviced by remote stub 1550. This
can result in the rendering of game screens for a first participant in the game.
Likewise, local stubs 1515, 1520 execute their own marshalling processes that result in
the transmission of packets to remote stubs 1555, 1560, respectively. This results in
the rendering of game screens for a second and a third participant in the game,
respectively.

The three local stubs 1510, 1515, 1520 have access to a shared memory space 1580.
The shared memory space 1580 includes a common function index table 1582, a
common parameter index table 1584 and a common packet dictionary 1586. The
shared memory space 1580 may also include a common sequence dictionary 1588
when useful or desired. Therefore, the function index table 1582, the parameter index
table 1584, the packet dictionary 1586 and the sequence dictionary 1588 are
commonly accessed by local stubs 1510, 1515, 1520 executing distinct marshalling
processes for participants #1, #2 and #3, respectively.

The shared memory space 1580 may be configured in various ways. For example, one
possibility is for the shared memory space 1580 to be maintained in the memory (e.g.,
RAM or other storage medium) of one of the local devices 1530, 1535, 1540 and
continuously accessed by the local stubs 1510, 1515, 1520, including those that are
outside of the local device where the shared memory space is located.

Another possibility, shown in Fig. 15, is for the shared memory space 1580 to be
maintained on external storage, which is accessible to the local devices 15630, 1535,
1540 via a storage area network (SAN) and/or the network 450 or the network 400.

Yet another possibility is for the shared memory space 1580 to be replicated within
each of the local devices 1530, 1535, 1540 (e.g., within a cache) so as to provide faster

access to the function index table 1582, the parameter index table 1584, the common
57

10

15

20

25

WO 2014/001862 PCT/IB2013/001045

packet dictionary 1586 (and the sequence dictionary 1588, when used). In this way,
the local devices 1530, 1535, 1540 can carry out a protocol for building copies of the
shared memory space 1580 in each of the local devices 1530, 1535, 1540.

Since the remote stubs 1550, 1555, 1560 are executed by a single remote device
1570, the may be configured as previously described with reference to Fig. 14B.

Some of the above examples have focused on remote procedure calls that involve
rendering commands in a gaming environment. However, this is not to be considered
a limitation of the present invention. For example, another suitable example of a
remote procedure call in a gaming environment includes an instruction to initialize a
process. Still other examples of a remote procedure call in a gaming environment
include fetching the leader-board, finding other players or retrieving game news.
Moreover, it should be appreciated that the present invention is not limited to a gaming
environment.

Those skilled in the art will appreciate that efficiencies may also arise by compressing
remote procedure calls in the opposite direction, i.e., in the course of issuing remote
procedure calls from the rendering server 100 to the central server 200 in order to send
rendered game screens thereto, for distribution to the client devices 300.

Those skilled in the art will appreciate that certain adaptations and modifications of the
described embodiments can be made. Therefore, the above discussed embodiments
are to be considered illustrative and not restrictive. Also it should be appreciated that
additional elements that may be needed for operation of certain embodiments of the
present invention have not been described or illustrated as they are assumed to be
within the purview of the person of ordinary skill in the art. Moreover, certain
embodiments of the present invention may be free of, may lack and/or may function

without any element that is not specifically disclosed herein.

58

WO 2014/001862 PCT/IB2013/001045

WHAT IS CLAIMED IS:

1. A method for execution by a local device connectable to a remote device, the

10

15

20

25

30

method comprising:
obtaining at least one instruction for execution by the remote device;
creating a packet representing the at least one instruction; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a packet index has already
been assigned to the at least one instruction;
when the determining is positive, formulating the packet so that it

contains the packet index.

. The method according to claim 1, wherein the at least one instruction comprises an

identifier of a function for execution by the remote device and a combination of

parameters for use in execution of the function.

. The method according to claim 2, wherein to determine whether a packet index has

already been assigned to the at least one instruction comprises determining
whether a packet dictionary in the memory comprises an entry corresponding to the

identifier of the function and the combination of parameters.

. The method according to claim 2, wherein creating the packet further comprises:

when the determining is positive, formulating the packet so that it does not
contain the identifier of the function or any of the parameters in the

combination of parameters.

. The method according to any one of claims 1 to 4, wherein the at least one

instruction is issued by an application running on the local device.

. The method according to claim 5, wherein the application is a game state

management process.

. The method according to any one of claims 1 to 6, wherein the at least one

instruction comprises at least one instruction for rendering at least part of a game

screen of a video game.

59

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

8. The method according to any one of claims 1 to 7, wherein the at least one
instruction comprises at least one instruction for fetching a leaderboard for the video
game.

9. The method according to any one of claims 1 to 7, wherein the at least one
instruction comprises at least one instruction for finding other players of the video
game.

10.The method according to any one of claims 1 to 7, wherein the at least one
instruction comprises at least one instruction for retrieving game news about the
video game.

11.The method according to any one of claims 1 to 10, wherein the obtaining, creating
and releasing are executed by a first marshalling process running on the local
device, wherein the at least one instruction comprises at least one first instruction,
wherein the first device is a first local device, and wherein the method further
comprises additional steps executed by a second marshalling process running on a
second local device, the additional steps comprising:

obtaining at least one second instruction for execution by the remote device;
creating a second packet representing the at least one second instruction; and
releasing the second packet towards the remote device;
wherein creating the second packet comprises:
consulting the memory to second determine whether a second packet
index has already been assigned to the at least one second
instruction;
when the second determining is positive, formulating the packet so that it
contains the second packet index.

12.The method according to claim 11, wherein the first and second packet indexes are
identical when the first and second instructions are identical.

13.The method according to claim 11 or claim 12, wherein the memory is a memory
space that is shared by the first and second local devices.

14.The method according to claim 11, wherein the at least one first instruction
comprises an identifier of a first function for execution by the remote device and a
first combination of parameters for use in execution of the first function and wherein

the at least one second instruction comprises an identifier of a second function for
60

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

execution by the remote device and a second combination of parameters for use in
execution of the second function.
15.The method according to claim 14, wherein creating the second packet further
comprises:
when the second determining is positive, formulating the second packet so that
it does not contain the identifier of the second function or any of the
parameters in the second combination of parameters.
16. The method according to claim 2, wherein the determining is first determining, and
wherein creating the packet further comprises:
when the first determining is negative:
consulting the memory to second determine whether a parameter index has
already been assigned to the combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter combination index.
17.The method according to claim 16, wherein creating the packet further comprises:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
18.The method according to claim 2, wherein the determining is first determining, and
wherein creating the packet further comprises:
when the first determining is negative:
consulting the memory to second determine whether a parameter index has
already been assigned to each of the individual parameters in the
combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter index for each the parameters in the combination
of parameters.
19. The method according to claim 18, wherein creating the packet further comprises:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
20.The method according to claim 19, wherein creating the packet further comprises:

when the second determining is positive:

61

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

assigning a parameter combination index to the combination of parameters;
and
storing the parameter combination index in the memory in association with
the combination of parameters.
21.The method according to claim 20, wherein the assigning is carried out in
accordance with a process that is known to the remote device.
22.The method according to claim 20, wherein creating the packet further comprises:
when the second determining is positive:
formulating the packet so that it further contains the parameter combination
index.
23. The method according to claim 1, wherein creating the packet further comprises:
when the determining is negative:
identifying one or more parameters that are not associated with previously
assigned parameter indexes;
for each of the one or more parameters, assigning a respective parameter
index and storing the respective parameter index in a parameter index
table in association with the parameter.
24.The method according to claim 23, wherein the assigning is carried out in
accordance with a process that is known to the remote device.
25.The method according to claim 23, wherein creating the packet further comprises:
when the determining is negative:
formulating the packet so that it contains each of the one or more
parameters.
26. The method according to claim 25, wherein creating the packet further comprises:
when the determining is negative:
formulating the packet so that it further contains the parameter index
associated with each of the one or more parameters.
27.The method according to claim 25, wherein creating the packet further comprises:
when the determining is negative:
identifying one or more parameters to which a parameter index has already

been assigned;

62

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

formulating the packet so that it further contains the parameter index
associated with each of the one or more parameters.
28.The method according to claim 27, wherein when the packet is formulated, it does
not contain any of the one or more parameters to which a parameter index had
already been assigned.
29.The method according to any one of claims 1 to 28, wherein releasing the packet
comprises placing the packet in an output queue of a communication unit.
30.The method according to any one of claims 2, 16, 17, 18, 19, 20, 21 and 22,
wherein the identifier of the function for execution by the remote device is encoded
in at least one of the parameters.
31.An apparatus connectable to a remote device, the apparatus comprising:
an interface for obtaining at least one instruction for execution by the remote
device;
a processing unit for creating a packet representing the at least one instruction
and for releasing the packet via the interface towards the remote device;
a memory comprising a shared packet dictionary;
wherein to create the packet, the processing unit is configured for:
consulting the shared packet dictionary to determine whether a packet
index has already been assigned to the at least one instruction;
when the determining is positive, formulating the packet so that it
contains the packet index.
32.The apparatus according to claim 31, wherein the at least one instruction comprises
an identifier of a function for execution by the remote device and a combination of
parameters for use in execution of the function.
33.The apparatus according to claim 32, wherein to determine whether a packet index
has already been assigned to the at least one instruction, the processing unit is
configured for determining whether the shared packet dictionary comprises an entry
corresponding to the identifier of the function and the combination of parameters.
34.The apparatus according to claim 32, wherein to create the packet, the processing

unit is further configured for:

63

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

when the determining is positive, formulating the packet so that it does not
contain the identifier of the function or any of the parameters in the
combination of parameters.
35.The apparatus according to claim 31, wherein the processing unit is further
configured for running an application that issues the at least one instruction.
36.The apparatus according to claim 35, wherein the application comprises a video
game and wherein the at least one instruction is rendering instruction for a game
screen of the video game.
37.The apparatus according to claim 32, wherein the memory further comprise a
parameter combination index table, wherein the determining is first determining,
and wherein to create the packet, the processing unit is further configured for:
when the first determining is negative:
consulting the parameter combination index table to second determine
whether a parameter combination index has already been assigned to the
combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter combination index.
38.The apparatus according to claim 37, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
39.The apparatus according to claim 32, wherein the determining is first determining,
wherein the memory comprises a parameter index table, and wherein to create the
packet, the processing unit is further configured for:
when the first determining is negative:
consulting the parameter index table to second determine whether a
parameter index has already been assigned to each of the individual
parameters in the combination of parameters;
when the second determining is positive, formulating the packet so that it
contains the parameter index for each the parameters in the combination

of parameters.

64

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

40.The apparatus according to claim 39, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive, formulating the packet so that it does
not contain any of the parameters.
41.The apparatus according to claim 40, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive:
assigning a parameter combination index to the combination of parameters;
and
storing the parameter combination index in the memory in association with
the combination of parameters.
42.The apparatus according to claim 41, wherein to create the packet, the processing
unit is further configured for:
when the second determining is positive:
formulating the packet so that it further contains the parameter combination
index.
43.The apparatus according to claim 31, wherein the memory comprises a parameter
index table, and wherein to create the packet, the processing unit is further
configured for:
when the determining is negative:
identifying one or more parameters for which a parameter index has not
been previously assigned;
for each of the one or more parameter, assigning a respective parameter
index and storing the respective parameter index in the parameter index
table in association with the parameter.
44.The apparatus according to claim 41, wherein to create the packet, the processing
unit is further configured for:
when the determining is negative:
formulating the packet so that it contains each of the one or more
parameters.
45.The apparatus according to claim 44, wherein to create the packet, the processing

unit is further configured for:
65

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

when the determining is negative:
formulating the packet so that it further contains a parameter index
associated with each of the one or more parameter.
46.The apparatus according to claim 44, wherein to create the packet, the processing
unit is further configured for:
when the determining is negative:

identifying one or more parameters for which a parameter index has already
been assigned;

formulating the packet so that it further contains the parameter index
associated with each of the one or more parameters.

47.The apparatus according to claim 46, wherein when the packet is formulated, it
does not contain any of said one or more parameters.
48.The apparatus according to any one of claims 31 to 47, wherein the interface
comprises an output queue, wherein the packet is released by placing it in the
output queue.
49.The apparatus according to claim 32, wherein the identifier of the function for
execution by the remote device is encoded in at least one of the parameters.
50. The apparatus according to claim 31, connected to the remote device over a private
data network.
51.In combination:
the apparatus of any one of claims 31 to 46; and
a second apparatus, comprising:

an interface for obtaining an identifier of at least one second instruction for
execution by the remote device;

a processing unit for creating a second packet representing the at least one
second instruction and releasing the second packet via the interface
towards the remote device;

wherein to create the second packet, the processing unit is configured for:

consulting the shared packet dictionary to second determine whether
a packet index has already been assigned to the at least one

second instruction;

66

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

when the second determining is positive, formulating the second
packet so that it contains the second packet index.
52. The combination according to claim 51, wherein the first and second packet indexes
are identical when the first and second instructions are identical.
53.The combination according to claim 51, wherein the first instruction comprises an
identifier of a first function and a first combination of parameters for use in execution
of the first function and wherein the second instruction comprises an identifier of a
second function and a second combination of parameters for use in execution of the
second function.
54.The combination according to claim 53, wherein to create the first packet, the
processing entity of the first apparatus is further configured for:
when the first determining is positive, formulating the second packet so that it
does not contain the identifier of the second function or any of the
parameters in the second combination of parameters.
55.The combination according to claim 54, wherein to create the second packet, the
processing entity of the second apparatus is further configured for:
when the second determining is positive, formulating the second packet so that
it does not contain the identifier of the second function or any of the
parameters in the second combination of parameters.
56.The combination according to any one of claims 51 to 55, wherein the first and
second apparatuses devices are embodied in a cloud gaming server.
57.The combination according to claim 56, wherein the shared packet dictionary is part
of the cloud gaming server.
58.The combination according to claim 51, wherein the shared packet dictionary is
accessible to the first and second apparatuses over a storage area network.
59.The combination according to any one of claims 51-58, wherein the first apparatus
is connected to the second apparatus over a computer network.
60. The combination according to any one of claims 51-58, wherein the first apparatus
is connected to the second apparatus in a data center.
61.A non-transitory computer-readable medium storing instructions for execution by at

least one processor of a local device, wherein execution of the instructions by the at

67

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

least one processor of the local device causes the local device to implement a
method that comprises:
obtaining an identifier of at least one command for execution by the remote
device;
creating a packet representing the at least one command; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a packet index has already
been assigned to the at least one command;
when the determining is positive, formulating the packet so that it
contains the packet index.
62.A method for execution by a local device connectable to a remote device, the
method comprising:
obtaining a sequence of instructions for execution by the remote device;
creating a packet representing the sequence of instructions; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a sequence index has already
been assigned to the sequence of instructions;
when the determining is positive, formulating the packet so that it
contains the sequence index.
63. The method according to claim 62, wherein creating the packet further comprises:
when the determining is negative:
creating a packet for each instruction in the sequence of instructions; and
releasing each packet towards the remote device.
64.An apparatus connectable to a remote device, the apparatus comprising:
an interface for obtaining a sequence of instructions for execution by the remote
device;
a processing unit for creating a packet representing the sequence of instructions
and for releasing the packet via the interface towards the remote device:
a memory comprising a sequence dictionary;

wherein to create the packet, the processing unit is configured for:
68

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

consulting the sequence dictionary to determine whether a sequence
index has already been assigned to the sequence of instructions;

when the determining is positive, formulating the packet so that it
contains the packet index.

65.A non-transitory computer-readable medium storing instructions for execution by at
least one processor of a local device, wherein execution of the instructions by the at
least one processor of the local device causes the local device to implement a
method that comprises:

obtaining a sequence of commands for execution by the remote device;
creating a packet representing the sequence of commands; and
releasing the packet towards the remote device;
wherein creating the packet comprises:
consulting a memory to determine whether a sequence index has already
been assigned to the sequence of commands;
when the determining is positive, formulating the packet so that it
contains the sequence index.

66.A method for execution by a second device connectable to a first device,

comprising:
obtaining from the first device a packet comprising a packet index associated
with a remote function call placed by the first device;
consulting a packet dictionary based on the packet index to identify a function
associated with the remote function call and to determine a combination of
parameters associated with the remote function call;
carrying out the function using the parameters in the combination of parameters.
67.The method according to claim 66, wherein to determine the combination of
parameters associated with the remote function call, the method comprises
determining from the packet dictionary, based on the packet index, a combination of
parameter indexes associated with the combination of parameters and consulting a
parameter index table on a basis of the parameter indexes in the combination of
parameter indexes to determine the parameters in the combination of parameters.
68.The method according to claim 66, wherein to identify the function associated with

the remote function call, the method comprises determining from the packet
69

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

dictionary, based on the packet index, at least one function index and consulting a
function table on a basis of the function index to identify the function associated with
the remote function call.

69.The method according to claim 68, further comprising, during one or more
preceding steps:

obtaining from the first device a packet comprising an identity of the function
associated with the remote function call;

storing the identity of the function in the function table in association with the
function index.

70.The method according to claim 69, further comprising, during the one or more
preceding steps:

obtaining from the first device at least one packet comprising the parameters
associated with the remote function call;

storing the parameters in the parameter index table in association with
respective ones of the parameter indexes.

71.The method according to claim 70, further comprising, during the one or more
preceding steps:

obtaining from the first device a packet comprising the function index and a
combination of parameter indexes associated with the combination of
parameters;

storing the function index and the combination of parameter indexes in the
packet dictionary in association with the packet index.

72.A non-transitory computer-readable medium storing instructions for execution by at
least one processor of a server, wherein execution of the instructions by the at least
one processor of the server causes the server to implement a method that
comprises:

obtaining from a computing apparatus connected to the server a packet
comprising a packet index associated with a remote function call placed by
the first device;

consulting a packet dictionary based on the packet index to identify a function
associated with the remote function call and to determine a combination of

parameters associated with the remote function call;
70

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

carrying out the function using the parameters in the combination of parameters.
73.A method for execution by a second device connectable to a first device,
comprising:
obtaining from the first device a packet comprising at least a plurality of
parameter indexes associated with a remote function call placed by the first
device;
consulting a parameter index table on a basis of the plurality of parameter
indexes to determine a plurality of parameters in a combination of
parameters associated with the remote function call;
identifying a function associated with the remote function call; and
carrying out the function for the first device at the second device using the
parameters in the combination of parameters.
74.The method according to claim 73, wherein the packet comprises a function index,
and wherein identifying a function associated with the remote function cali
comprises consulting a function table on a basis of the function index.
75.The method according to claim 73, further comprising:
storing a packet index in the packet dictionary in association with the function
index and the combination of parameter indexes.
76. The method according to claim 75, further comprising:
assigning the packet index to the function index and the combination of
parameter indexes, wherein assigning is carried out in accordance with a
process that is known to the first device.
77.A method for execution by a second device connectable to a first device,
comprising:
obtaining from the first device a packet comprising a sequence index associated
with a sequence of instructions issued by the first device;
consulting a sequence dictionary based on the sequence index to identify a
plurality of functions respectively associated with the sequence of remote
procedure calls and to determine, for each function, a respective combination
of parameters;
carrying out the plurality of functions using the parameters in the respective

combination of parameters.
71

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

78.A non-transitory computer-readable medium storing instructions for execution by at
least one processor of a local device in an on-line gaming system, wherein
execution of the instructions by the at least one processor of the local device
causes implementation of:

a game state management process for managing game state for a plurality of
participants in a game;

a plurality of local stubs for obtaining commands issued by the game state
management process, wherein upon obtaining a given one of the
commands, a given one of the local stubs is configured to consult a packet
dictionary shared among the plurality of local stubs in an attempt to find a
packet identifier associated with the given instruction, and wherein upon a
packet identifier being found, the given one of the local stubs is configured to
release a packet containing the packet identifier towards a remote stub for
remote execution of the given instruction at a device remote from the local
device.

79.The non-transitory computer-readable medium according to claim 78, wherein the
local device is a central server and wherein the remote device is a rendering server
equipped with a GPU.

80.The non-transitory computer-readable medium according to claim 78 or claim 79,
wherein the at least one processor comprises a plurality of processors that
implement the game state management process collaboratively.

81.The non-transitory computer-readable medium according to any one of claims 78 to
80, wherein the local stubs are associated with respective participants in the game.

82.The non-transitory computer-readable medium according to any one of claims 78 to
81, wherein the commands comprise rendering instructions.

83. The non-transitory computer-readable medium according to any one of claims 78 to
82, wherein the given one of the local stubs is configured to receive a rendered
game scene in response to having released the packet towards the remote device.

84.A computing apparatus, comprising:

an interface for connection to a remote device;

at least one processor for executing a game state management process to

manage game state for a plurality of participants in a game;
72

10

15

20

25

30

WO 2014/001862 PCT/IB2013/001045

a memory storing a packet dictionary;

the at least one processor implementing a plurality of local stubs for obtaining
instructions issued by the game state management process, wherein upon
obtaining a given set of instructions, a given one of the local stubs is
configured to consult the packet dictionary shared among the plurality of
local stubs in an attempt to find a packet identifier associated with the given
set of instructions, and wherein upon a packet identifier being found, the
given one of the local stubs is configured to release a packet containing the
packet identifier towards the remote device via the interface for remote
execution of the given set of instructions.

85.The computing apparatus according to claim 84, implemented in a central server,
wherein the remote device comprises at least one rendering server equipped with a
GPU.

86.The computing apparatus according to claim 84 or claim 85, wherein the at least
one processor comprises a plurality of processors that implement the game state
management process collaboratively.

87.The computing apparatus according to any one of claims 84 to 86, wherein the local
stubs are associated with respective participants in the game.

88.The computing apparatus according to any one of claims 84 to 87, wherein the
commands are rendering instructions.

89.The computing apparatus according to claim any one of claims 84 to 88, the given
one of the local stubs being configured to receive a rendered game scene in
response to having released the packet towards the remote device.

90. A server system, comprising:

a game state server implementing a game state management process for at
least one participant of a video game, the game state server adjusting a state
of the video game based on input received over a network from at least one
device associated with the at least one participant; and

a rendering server for rendering game screens for the at least one participant
and for causing transmission of the game screens to the at least one
participant over the network, the rendering server carrying out said rendering

based on rendering commands that are compressed by the game state
73

10

WO 2014/001862 PCT/IB2013/001045

server, transmitted to the rendering server and decompressed by the
rendering server.
91.The server system according to claim 90, further comprising a second network over
which the compressed rendering commands are transmitted from the game state
server to the rendering server.
92.The server system according to claim 91, wherein the second network comprises a
low-latency private data network.
93.The server system according to any one of claims 90 to 92, wherein to compress
the rendering commands, the game state server is configured for obtaining a set of
rendering commands, consulting a packet dictionary in an attempt to determine
whether a packet representing the set of rendering instructions has previously been
transmitted to the rendering server and, when the attempt is successful, transmitting

an index of the packet to the rendering server.

74

WO 2014/001862 PCT/IB2013/001045

1727

FIG. 1

WO 2014/001862 PCT/1IB2013/001045
2/27
200
Central Central Central
CPU ROM RAM
201 202 203
- - >
<<l A
R
Central
Central | | communication Unit
Storage 205
Medium —
204
e
FIG. 2
100
Storage
CPU ROM RAM ;
o || o102 | | 103 | | M5GR"
A
A $ f A >
v Ve v. .. ,
GPU GPU GPU Commljlr?iltcatlon
105 105 105 113
y S 4 ““““““ .l """ —
_____ Yoo N
VRAM VRAM VRAM
109 109 109

WO 2014/001862 PCT/IB2013/001045

3/27

(Start)

Receive participant |
input S401

Modify game state |
information 5403

A

Determine objecdts in
game screen rendering |
range for each 5404
participant

A

Generate function calls (~S405

End

FIG. 4

WO 2014/001862

4/27

Client Device Identifier

Movement Infermation

Magnitude

Direction

Action Information

Rendering Range

Display Setting

FIG. 5A

Rendering Object 1

Identification Information 1

Detailed Information 1

Model Data Identification
Information 1

Texture Data Identification
Information 1

Rendering Program
Specifying Information 1

Data for Calculations
Specifying Information 1

State Information 1

Rendering Object 2

Identification Information 2

State Information n

Rendering Range

Display Setting

FIG. 5B

PCT/IB2013/001045

WO 2014/001862 PCT/IB2013/001045
5/27
Central Server } Rendering Server
200 100
<+t —>
. Game State ,
| Management Pracess | GPUs 105
el s —
610~ Rendering Rendering
Instructions Instructions
v |
N Local Stub Remote Stub =
620 (Marshalling) (Unmarshalling) [~650
| A
630~ Packet Packet 640

v

Network/Data Center

450

FIG. 6

WO 2014/001862 PCT/IB2013/001045

6/27

Receive Inst(r:uclzltioanunction _S710
a

v
Consult Packet Dictionary [~S720

S765
Z

Function
Index or Parameter
Index Exists?

Retrieve Available
Function Index/
Parameter Indexes

$740 S770
N /
Retrieve Packet Index; Create Packet; Include
Create Packet; Available Function Index/ |«
Include Packet Index Parameter Indexes

Assign Function Index/
Parameter Index Where ~S775
None Available

Assign Packet Index and
Populate Packet ~S780
Dictionary

Send Packet ~S750
A
(End)

FIG. 7TA

WO 2014/001862 PCT/IB2013/001045
7/27
790 792
/ Z

Function Identifier

Function Index

Parameter

Parameter Index

794
/
Function Identifier | Parameter #1 | Parameter #2| ... [Parameter #N| Packet Index
P
Entry in
Packet
Dictionary
FIG. 7B
S796
/
Ordered Set of Parameters Parameter
Combination
Parameter #1 Parameter #2 Parameter #N Index

FIG. 7C

WO 2014/001862

8/27
Receive Inst(r:U(iltioanunction 5710
a
v
Consult Packet Dictionary S720

S740
N

Parameter Index
Exists?

PCT/IB2013/001045

S765
/
Retrieve Available
Function Index/
Parameter Indexes

Retrieve Packet Index;
Create Packet;
Include Packet Index

Create Packet; Include
Available Parameter
Indexes

h

A

Assign Parameter
Indexes Where None
Available

~S775D

A

Assign Packet Index and
Populate Packet
Dictionary

~S780

Y

Send Packet

~ 5750

End

FIG. 7D

WO 2014/001862 PCT/1IB2013/001045
9/27
790 792
/ Z
Function Identifier | Function Index Parameter Parameter Index
794
/
Function Identifier | Parameter #1 |Parameter #2| ... |Parameter #N| Packet Index
P
Entry in
Packet
Dictionary

FIG. 8A

812

/__

820

WO 2014/001862 PCT/1IB2013/001045
10/27
790 814 792
/ /
Function Identifier | Function Index 816 Parameter Parameter Index
> Functioncall_1 0x1 \»Parameter] 0x1
»>Parameter 2 0x2
/*Parameter 3 0x3
818
794
/

Parameter #1

Parameter #2

Parameter #3] ...

Packet Index

(Function Identifier
> Functioncall_1

Parameter 1

Parameter 2

Parameter 3

0x1

Functioncall_1

Parameter 1

Parameter 2

Parameter 3

Local
Device

o
—
o
v

FIG. 8B

WO 2014/001862

832

PCT/IB2013/001045
11727
790 792
Z Z
Function Identifier { Function Index Parameter | Parameter Index
Functioncall 1 Ox1 Parameter 1 Oxi
> Functioncall_2 0x2 Parameter 2 0x2
Parameter 3 0x3
Parameter 4 0x4
834
794
Z
Function Identifier [Parameter #1 [Parameter #2 | Parameter #3 | ... | Packet Index
Functioncall_1 | Parameter 1 | Parameter 2 | Parameter 3 0x1
> Functioncall 2 | Parameter 3 | Parameter 4 0x2

Functioncall_2 0x3 Parameter 4
Local | 1830 > | Remote
Device Device

WO 2014/001862

PCT/1IB2013/001045
12/27
790 792
/ 2
Function Identifier | Function Index Parameter Parameter Index
Functioncall_1 0x1 Parameter 1 0x1
y Functioncall_2 0x2 Parameter 2 0x2
Parameter 3 0x3
Parameter 4 0x4
832 834
794
Z
Function Identifier | Parameter #1 | Parameter #2 | Parameter #3| ... | Packet Index
Functioncall 1 | Parameter 1 | Parameter 2 | Parameter 3 0x1
> Functioncall_2 Parameter 3 | Parameter 4 0x2

Ox1

Local 7

840

Device

FIG. 8D

Remote
Device

WO 2014/001862

13/27
(Start)
Receive Packet ~ S910

Includes
Function Identifier

Incudes

PCT/IB2013/001045

Index

Packet Index? or Function

Index?

5942
pd

Retrieve Function
Identifier from
Function Index

Table

S920 Identifier S944
N / A
Retrieve Function
Identifier and Parameters Assign Function
from Packet Dictionary Index
Based on Packet index
<]
X $950

5952
Z

Includes
> 1 Parameter
Index?

Retrieve Parameters

from Parameter
Index Table

3956
Z

Includes
> Parameter ?

Assign Parameter
Index

5958
N

Assign Packet Index and Populate Packet Dictionary

S930
N

4

Call Function Based on Function Identifier and Parameters

A 4

End

FIG. 9A

WO 2014/001862 PCT/1IB2013/001045
14/27
990 992
/ /
Function Identifier [Function Index Parameter Parameter Index
994
/.
Function Identifier | Parameter #1 | Parameter #2| ... |Parameter #N| Packet Index
TaRe
Entry in
Packet
Dictionary
FIG. 9B
S996
/
Ordered Set of Parameters Parameter
Combination
Parameter #1 Parameter #2 Parameter #N Index

FIG. 9C

WO 2014/001862

Receive Packet

Incudes
Packet Index?

5920
N

PCT/1IB2013/001045
15/27
sat0 FIG. 9D
S940

Includes

Function Identifier~_Index
or Function
Index?
Identifier S944 S942
/ /

Retrieve Function Identifier and
Parameters from Packet
Dictionary Based on Packet Index

Assign Function
Index

Retrieve Function
Identifier from
Function Index Table

Retrieve
Parameter
Combination Index

N
S948

S957
AN

Y

ncludes
Parameter
Combination
Index?

S952
Z

> 1 Parameter
Index?

Retrieve Parameter
from Parameter
Index Table

S956
Z

Includes
> Parameter ?

Assign Parameter
Index

Assign Parameter Combination Index

5958
AN

¥

S930
\

Assign Packet Index and Populate Packet dictionary

2

Call Function Based on Function Identifier and Parameters

End

WO 2014/001862 PCT/1IB2013/001045
16/27
990 992
/ /
Function Identifier | Function Index Parameter Parameter Index
994
/
Function Identifier | Parameter #1 | Parameter #2| ... [Parameter #N| Packet Index
1>
Entry in
Packet
Dictionary

FIG. 10A

1012

1020

WO 2014/001862 PCT/1IB2013/001045
17/27
990 1014 992
/ /
Function Identifier | Function Index 1016 Parameter Parameter Index
> Functioncall_1 0x1 \»Parametem 0x1
»Parameter 2 0x2
»Parameter 3 0x3
1018
994
/
Function Identifier | Parameter #1 | Parameter #2 |Parameter #3| ... | Packet Index
> Functioncall_1 Parameter 1 | Parameter 2 | Parameter 3 0x1

FIG. 10B

WO 2014/001862 PCT/1IB2013/001045
18/27
990 992
/ /
Function Identifier | Function Index Parameter Parameter Index
Functioncall_1 0x1 Parameter 1 0x1
, Functioncall_2 0x2 Parameter 2 0x2
Parameter 3 0x3
Parameter 4 0x4
1032 1034
994
/
Function Identifier | Parameter #1 | Parameter #2 | Parameter #3| ... | Packet Index
Functioncall_1 Parameter 1 | Parameter 2 | Parameter 3 0x1
> Functioncall_2 | Parameter 3 | Parameter 4 0x2

1036

FIG. 10C

WO 2014/001862 PCT/IB2013/001045

19/27

(Start)

A

Receive InstEuc"tioanunction _S1110
a

Sequence
Complete?

Consult Sequence | _
Dictionary S1130

Sequence
Index Exists?

A 4

Retrieve Sequence Index;
S1160+ Create Packet;

For each Instruction, Execute |

|
| "Steps $720 et seq. from ILsmo

Includes Sequence Index L _Flg. 7& L
S1160- Send Packet Assign Sequence Index ~S1180

End

FIG. 11A

PCT/IB2013/001045

WO 2014/001862

di1 "Old
&~
S
(¥
"
xapu] # CHLE N# CH LA N# CH| LY
aouanbas slajaweled g4 181jljuap] slajaweled Z# 181nuapy Slajouweled L# 181}1juap]
J0 uoIjeuIquon uolaun4 }0 uoljeuiquoy uongaun4 J0 uoneuiqwoy uoljaun4
S~ ~ v 7 N v
"0)8 aauanhag aauanhas 9auanhag
ul uoiponJisuy payL Uf uoyanIsuy puoaas Ul uofjanJisug 18414
\
0611

PCT/IB2013/001045

WO 2014/001862

21/27

VI "D

N#E| ™ | cH| LK N#| & | cH| LA N# CH| LA
Xapuj
9auanhag siglawered | ep saynuapp | s1e1ewesed | zg saynuapp | Sislawesed L# 181IUap
10 UOIRUIGUIO? uoiaun4 10 UOJJRUIGWIOY uoiaun4 10 UojjeUIqI0Y uonaun4
<r ~ AW ~ J v
013 aJuanbag 9Juanbag aouanhas
omq Ul UoI}aNAISu] AL Uj UOI}ONIJSU] PU0IAS Ul U0} aNASu] ISIH
Aleuonaiq
< 19)ded
y6.~] xapur 19y0eg | N# 1a18weleq| | z# Jereweseq | 1# sa1aweseq | seynuapy uonoung | W ABU

6L~

Xapuj a)aweled

la]aweled

Xapuf uonaun4

I3lliuspy uonauny - 06/

PCT/IB2013/001045

WO 2014/001862

22/27

471 "OId

ERITEN] ERTE
ajoway | <« O0ICl - <« 0¢¢l <« 0€¢l [e207]
e hmﬁmaemn_ Z 1818Wieled | | 18)aweled Pl__sco_zci) { 1ajaweled | £x0 Nu__mo&_mms: ,/:5
1X0 g ¢ | L | L leauoijouny v | € | Zleduongaung | ¢ ¢ | L | L 1eduonaung
xapu] N# 44Nt NZE| & | CH| LY NE| & [CH| LA
aauanbag sig)aweled €4 18BUBP] I gia)awe.ed C# 18UNUL [s)3)3WeIRd L# 131Jjuap]
J0 uol}euIquwon uotjaund J0 uoljeuiqwo? uoraun4 10 UoNeUIqWoY uor}oun4
<f v WANS v VAN ~
. "0]8 dauanbag ul uonanisui payL aauanbag ui uorjaniisuj puodas aauanbag ul uorjaniisug 1844
DmFF . ves “es
X0 {7 13)auieled £ lalaweled Z lieauoiaund
LXQ € lajaweled ¢ 19]aweled | l8}aweled 1 lieauoijauny
67— XapuJ 18)3ed | N# 18)aweled C# 18)aweled | L # J91aweied | 1a1ijuapy uoijaung
X0 ¥ 1813ueled
£X0 ¢ lajaweled
X0 ¢ l9lsweled X0 Z 1ieduoauny
LX0 | J3laweled LXQ0 | 1ieauoilaung
26/— Xapuf I3)aweled J31aweled X3pu] uonouny | 1ayiuapy uonaund g/

PCT/IB2013/001045

WO 2014/001862

23/27

ICL "OIA

CRTEY 82IA3(Q
ajoway | <« OVCl - « 08¢l <« 09¢1 - [e307]
LX0 g Jajaweled | G J1a)aweled | vXo m|__8§_§_,E LX0
X0 9 G | v [€ l1euonaung v | € | Zleduoidung | ¢ ¢ | 1 | Leauonaung
X0 £ [A l | 1 lleduooung ¥ | € | ¢ lleuopoungy | ¢ [4 | { L lleduondung
xopu] | .. NZ| & | CH| LY N# CH L N# CH| LA
aguanbag siglawesed | E# 1BUNUADL [sgjaweley | ¢# JBUNUSDL I siajaweled L# 181uap]
10 uofjeuiquion uojjaun4 J0 uonjeulquion uorjaung 10 uoijeuiquon uotaun4
{(~ AN ~ A ~
A~ "01@ 39uanhag ul uoipansur payl aauanhas ul uoianJsuf puodas dauanhag ui uonpaniysug 18114
0611l
£X0 g lglaweled G lalaweled { Isjauieled £ Jleauorjaun4
X0 1 I8laweled £ lajauweled ¢ lleauonaun4
1X0 ¢ lajaweled ¢ l3laweled | 1913weled L 11eauoijauny
v6/—1 Xepu[18)3ed |N# J818weled C# 1913weled | |# 1318weled | 1aip11uapy uorjaund
gx0 g Ja)awesed
GX0 G Jalaweled
X0 ¥ 19]3weled
£X0 ¢ Jajaweled £X0 £ |leauonoun4
X0 ¢ la)auweled X0 Z lleauopnaund
LX0 | 19]aweled LX0 L |[eauonauny
76/ — XapuJ Iajaweled Ja1awesed XapuJ uonaung [13iy1uapy uoauNy — ggy

WO 2014/001862 PCT/IB2013/001045

24/27
0x1
\ i
\ !
\ 1
\ I
\ 1
\ i
\ [
\ !
\ !
Local | {1270 > | Remote
Device Device

WO 2014/001862 PCT/IB2013/001045

25/27

14)40 14)45 14)49

(((
1442 | (1444 1442 | |1444 1442 | |1444

1446 | |1448 1446 | 1448 1446 | | 1448

0 1 % Local

¥ 1 ~Device

Local Stub Local Stub Local Stub 1430
1410 1415 1420

————————————————————

T
!
!
|
|
I
|
|
|
|
|
|
|
|
!
[
l
|
|
|
Il

Remote Stub Remote Stub Remote Stub
1450 1455 1460 Remote
4 A A ~ Device
1470

1482 | | 1484 1482 | | 1484 1482 | {1484

1486 | | 1488 1486 | | 1488 1486 | | 1488
T T T

))
1480 1485 1490

FIG. 14A

WO 2014/001862

PCT/1IB2013/001045
26/27
1461
()
1462 | |1464
1466 | (1468
Local
2 ~ Device
Local Stub Local Stub Local Stub 1430
1410 1415 1420
.]
| [|
| | |
| | |
| |
|
| |
| | i
| [|
| ! |
I | |
| | !
i | I
|
| |
{ | I
| I |
e : o,
: l :
Remote Stub Remote Stub Remote Stub
1450 1455 1460 Remote
4 4 ~ Device
1470
1492 | (1494
1496 | (1498
(
)
1475

FIG. 14B

WO 2014/001862

27/27

Local Device
1530

Local Device
1535

Local Stub
1510

Local Stub

PCT/1IB2013/001045
Local Device
1540
Local Stub
1520
: 1580
________ }
Function Parameter
Index Table {| Index Table
1582 15684
""""" Packet Sequence
Dictionary Dictionary
1586 15888

Remote Stub

1550

Remote Stub
1555

Remote Stub
1560

FIG. 15

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a), Rules 13ter.1(c) and Rule 39)

Applicant's or agent's file reference Date of mailing{day/month/year)
IMPORTANT DECLARATION
87704-17 30 October 2013 (30-10-2013)
International application No. International filing date{day/month/year) (Earliest) Priority date{day/month/year)
PCT/IB2013/001045 15 April 2013 (15-04-2013) 29 June 2012 (29-06-2012)
International Patent Classification (IPC) or both national classification and IPC
GO06F9/54
Applicant

KABUSHIKI KAISHA SQUARE ENIX HOLDINGS (ALSO...

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be
established on the international application for the reasons indicated below

1. |:| The subject matter of the international application relates to:

a.
b.

C.

j-
k.

OOoooddododod

m []

scientific theories
mathematical theories
plant varieties

anhimal varieties

essentially biological processes for the production of plants and animals, other than microbiological processes and
the products of such processes

schemes, rules or methods of doing business

schemes, rules or methods of performing purely mental acts
schemes, rules or methods of playing games

methods for treatment of the human body by surgery or therapy
methods for treatment of the animal body by surgery or therapy
diagnostic methods practised on the human or animal body
mere presentations of information

computer programs for which this International Searching Authority is not equipped to search prior art

2. The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful
search from being carried out:

the description the claims |:| the drawings

3. |:| A meaningful search could not be carried out without the sequence listing; the applicant did not, within the prescribed time limit:

[
[l

[

furnish a sequence listing on paper complying with the standard provided for in Annex C of the Administrative
Instructions, and such listing was not available to the International Searching Authority in a form and manner
acceptable to it.

furnish a sequence listing in electronic form complying with the standard provided for in Annex C of the
Administrative Instructions, and such listing was not available to the International Searching Authority in a form
and manner acceptable to it.

pay the required late furnishing fee for the furnishing of a sequence listing in response to an invitation under
Rule 13ter.1(a) or (b).

4. Further comments:

Name and mailing address of the International Searching Authority Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2 SOGNO-PABIS. Elzbiet
NL-2280 HV Rijswijk EiZbieta
0 Tel. (+31-70) 340-2040 Tel: +31 (0)70 340-2414

Fax: (+31-70) 340-3016

Form PCT/ISA/203 (July 2009)

International Application No. PCT/ 1B2013/ 001045

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 2()3

The present application contains 93 claims, of which 14 are independent
and the broadness thereof renders unreasonable to find a clear
distinction between the independent claims, because of overlapping scope.
There are so many claims, and they are drafted in such a way that the
claims as a whole are not in compliance with the provisions of clarity
and conciseness of Article 6 PCT, as it is particularly burdensome for a
skilled person to establish the subject-matter for which protection is
sought.

In particular, the description does not help in finding potential matter
which might be reasonably expected to form the subject of the claims
later in the procedure, even when reading it in combination with the
claims and with synthetic propensity.

The non-compliance with the substantive provisions is to such an extent
that a meaningful search of the whole claimed subject-matter could not be
carried out (Article 17(2) PCT and PCT Guidelines 9.30).

There being no reasonable basis in the application that clearly indicates
the subject-matter which might be expected to form the subject of the
claims later in the procedure, no search at all was deemed possible.

The applicant's attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guidelines C-1V, 7.2),
should the problems which led to the Article 17(2) declaration be
overcome.

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - pct-art17.2a
	Page 104 - pct-art17.2a

