A 0 O 0 O

WO 02/091296 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

14 November 2002 (14.11.2002) PCT WO 02/091296 A2
(51) International Patent Classification”: GO6N 5/00 Mark, P.; 2258 Montgomery Avenue, San Diego, CA
92007 (US). WIXTED, William, G.; 5488 Renaissance
(21) International Application Number: PCT/US02/14326 Avenue, #2, San Diego, CA 92122 (US).

(22) International Filing Date: 6 May 2002 (06.05.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/850,877 7 May 2001 (07.05.2001) US
(71) Applicant: ECRITICAL, INC. [US/US]; 12625 High

Bluff Drive, Suite 218, San Diego, CA 92130 (US).

(72) Inventors: PABARI, Vipul, J.; 2122 Balboa Avenue, #1,
San Diego, CA 92109 (US). WILLIS, Robert, L.; 1439
Via Terrassa, Encinitas, CA 92024 (US). WHITEHOUSE,

(74) Agent: RAWLINS, Pattric, J.; Lyon & Lyon LLP, 633
West Fifth Street, Suite 4700, Los Angeles, CA 90071-
2066 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Titlee METHOD AND APPARATUS FOR MEASUREMENT, ANALY SIS, AND OPTIMIZATION OF CONTENT DELIV-

ERY

Protocol Stack 151

App Decoding
Layer 220

Object

‘/ 230

i

App Selection
Layer 210

T A

SSL Decrypt
Layer 200

TCP Layer 190

IP Layer 180

Pkt Detector 170

Information
Server

12

(57) Abstract: An apparatus and method for
measurement, analysis, and optimization of
content delivery over a communications network is
presented. In one embodiment, the apparatus detects
data packets (170) en route over a communications
network (32). The detected data packets are read
by the apparatus (230), combined into application
messages, and further combined into user centric
events. The events are analyzed (161) to identify
metrics and statistics relating to the delivery
of content over a communications network and
the experience of the end user. The metrics and
statistics are saved in a data storage area. When
the metrics exceed a configurable threshold,
the apparatus provides real-time notification of
content delivery problems or end user experience
problems. Alternatively, the system can take action
to proactively prevent anticipated content delivery
problems or end user experience problems.

w0 02/091296 A2 NI 000 00O O

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, For two-letter codes and other abbreviations, refer to the "Guid-
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent ance Notes on Codes and Abbreviations" appearing at the begin-
(BE, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, ning of each regular issue of the PCT Gazette.

NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

WO 02/091296 PCT/US02/14326

METHOD AND APPARATUS FOR
MEASUREMENT, ANALYSIS, AND
OPTIMIZATION OF CONTENT DELIVERY

Background of the Invention

1. Field of the Invention

[01] The present invention generally relates to apparatus and methods for
improving the efficiency of an information server coupled with a communications
network, and more specifically relates to the measurement, analysis, and

optimization of content delivery over a communications network.

2. Related Art

[02] In the competitive e-Business marketplace, a key success factor is the speed
with which network based activities are conducted. Typically, potential customers,
clients, and partners will go elsewhere if transactions or content are slow or
unavailable. Studies show that many network based purchase transactions are
abandoned because of frustration with slow response or unexpected web page
behavior. For example, Jupiter Communications reported that 46% of consumers
will leave a preferred web site if they experience any technical or performance
problems. Therefore, e-Businesses must respond quickly to their customers’
electronic requests, or risk serious financial injury.

[03] Further evidence of the risk associated with slow transactions or content is
the well known “eight second rule”, which stipulates that electronic consumers will
wait no longer than eight seconds before canceling a transaction or moving on to an
e-Competitor. Unfortunately, most e-Business operators and service providers are
not equipped with the necessary tools to ensure a positive experience for their
potential customers, clients, and partners. ‘

[04] In response to this need, the Network and Systems Management (“NSM”)
market evolved to provide network monitoring and fault management capabilities.
These key components were typically incorporated into complete frameworks and
product suites that were created to enable the management of distributed systems.
As management of network devices became commonplace, the industry focus

SD-172064.1

WO 02/091296 PCT/US02/14326

shifted toward the improvement of the performance of client/server applications.
The conventional frameworks did not address these pressing problems, and various
discrete and single purpose niche products and solutions appeared to fill the need.
[05] This eventually led to the emergence of the Infrastructure Performance
Management (“IPM”) market, which consists of products that help information
technology operators manage the infrastructure of their network based applications,
products, and services. Additionally, these products help customers to gauge the
performance of the network and assist in troubleshooting when problems arise. The
IPM market products typically address the main aspects of the e-Business
infrastructure, such as the networks (LAN and WAN), network devices (switches,
routers, firewalls, & bridges), servers, applications, databases. These products also
address the main parameters of Service Level Management (“SLM”), which are
~ availability, performance, accuracy, and security.
[06] These two competing markets have collectively produced a variety of
conventional web analysis tools that are fairly immature as vendors try to meet the
market need of e-Business infrastructure management. First generation tools relied
on log files to present graphical views of information relating to the operation of a
web site. These conventional solutions can be classified as application level logging
mechanisms that monitor web site traffic. A significant drawback of this
conventional approach is that it does not provide any information relating to the
actual delivery of content to the potential customer, client, or partner. This
conventional approach did, however, provide adequate information to understand the
demographics of the web site’s user base.
[07] Second generation tools used packet sniffing techniques to measure e-
Business infrastructure traffic patterns at the internet protocol (“IP”) layer. These
types of conventional tools are typically focused on delivering solutions that help
marketing professionals comprehend complex web traffic demographics and trends
so they can more effectively provide banner ads to visiting potential customers.
[08] Another approach used by second generation tools is to use specific test
points external to the network infrastructure that periodically query the site under
test. These periodic fixed queries from a limited number of test points are used to

estimate site performance for the hypothetical customer who is assumed to be in the

WO 02/091296 PCT/US02/14326

vicinity of the test point. Thus this solution does not capture the experience of an
actual customer who visits the site. Furthermore, these conventional solutions only
monitor specific, pre-defined pages of the target web site, allowing the particular
problem page or pages to remain undetected.

[09] An additional and very significant drawback of these solutions is that they
can adversely impact the actual performance of the web site as more test locations
are added in the attempt to improve accuracy. For example, a conventional system
may “ping” the server computer to establish that the server is currently running and
communicating. This requires the transmission of a data packet be sent to the
targeted server computer, and the transmission of an acknowledgement data packet
confirming receipt in response. Although this method confirms that the server
computer is running and communicating, it requires the introduction of an intrusive
data packet onto the network. Moreover, the acknowledgement data packet sent by
tﬁe server computer to confirm receipt does not indicate whether any higher level
applications are running on the server computer.

[10] Other conventional methods may monitor log files that a server computer or
an application may create. A drawback of this method is that considerable disk
space and overhead may be consumed to create and maintain the necessary log files.
Another conventional method involves placing an agent on the server computer or
on a client computer in order to capture and analyze data. A disadvantage of this
conventional solution is that it increases the workload of the processor on the server
or client computer and requires constant maintenance on the part of the customer.
[11] These conventional approaches presently overload servers, rely on
hypothetical user data, introduce congestion causing traffic on the network, and
produce overhead on the client or server host processor. Accordingly, the
shortcomings associated with the related art have created a need for a method and
apparatus that overcomes these significant problems. The present invention
addresses these problems by providing a solution that has not previously been

proposed.

Summary of the Invention

[12] An apparatus and method for measurement, analysis and optimization of

content delivery over a communications network is presented. In one embodiment,

3

WO 02/091296 PCT/US02/14326

the apparatus detects data packets en route over a communications network. The
data packets are read by the apparatus and combined into application messages. T. he
application messages are further combined into user centric events that describe
certain metrics relating to content delivery over the communications network.

[13] Advantageously, the sometimes generous amounts of data created by the
process of generating events are periodically aggregated in order to decrease,
efficiently manage, and control the growth of the ever increasing amount of data
being collected and saved in a data storage arca. Furthermore, the events are
continuously analyzed to identify metrics and statistics that determine the efficiency
of the content delivery and the adequacy of the end user experience. Certain
thresholds can be established and alarms generated when efficiency or adequacy
falls below the threshold. Additionally, detailed reports tracking the efficiency and
adequacy can be generated. Furthermore, real-time notification and proactive

prevention of problems or anticipated problems can be provided.

Brief Description of the Drawings
[14] The details of the present invention, both as to its structure and operation,

may be gleaned in part by study of the accompanying drawings, in which like
reference numerals refer to like parts, and in which:

[15] Figure 1 is a block diagram illustrating a high level overview of an example
system for measurement, analysis, and optimization of content delivery according to
an embodiment of the present invention;

[16] Figure 2 is a flow diagram illustrating an example apparatus configured for
measurement, analysis, and optimization of content delivery according to an
embodiment of the present invention; |

[17] Figure 3 is a block diagram illustrating an example apparatus for
measurement, analysis, and optimization of content delivery according to an
embodiment of the present invention;

[18] Figure 4 is a block diagram illustrating an example data analyzer in an
apparatus for measurement, analysis, and optimization of content delivery according

to an embodiment of the present invention;

WO 02/091296 PCT/US02/14326

[19] Figure 5 is a flow diagram illustrating an example protocol stack in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[20] Figures 6A —E are flow diagrams illustrating an example root analyzer in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[21] Figure 7A is a flow diagram illustrating an example session analyzer in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[22] Figure 7B is a flow diagram illusirating an example server analyzer in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[23] Figure 7C is a flow diagram illustrating an example application analyzer in
an apparatus for measurement, analysis, and optimization of content delivery
according to an embodiment of the present invention;

[24] TFigure 7D is a flow diagram illustrating an example page analyzer in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[25] Figure 7E is a flow diagram illustrating an example page component
analyzer in an apparatus for measurement, analysis, and optimization of content
delivery according to an embodiment of the present invention;

[26] Figure 7F is a flow diagram illustrating an example web site analyzer in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[27] Figure 8 is a flow diagram illustrating an example data migration in an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[28] Figure 9 is a flow diagram illustrating an example data aggregation in an
apparatus for measurement, analysis, and optimization of content delivery according

to an embodiment of the present invention;

WO 02/091296 PCT/US02/14326

[29]1 TFigure 10 is a block diagram illustrating an example data store manager of
an apparatus for measurement, analysis, and optimization of content delivery
according to an embodiment of the present invention;

[30] Figure 11 is a block diagram illustrating an example reporting engine of an
apparatus for measurement, analysis, and optimization of content delivery according
to an embodiment of the present invention;

[31] Figures 12A — E are software application windows illustrating example
interfaces for presenting reports and information in a system for measurement,
analysis, and optimization of content delivery according to one embodiment of the
present invention;

[32] Figure 13 is a block diagram illustrating an example system for
measurement, analysis, and optimization of content delivery according to an
embodiment of the present invention;

[33] Figure 14 is a block diagram illustrating an example home base component
in a system for measurement, analysis, and optimization of content delivery
according to an embodiment of the present invention;

[34] Figure 15 is a flowchart illustrating an example process for processing data
packets through a protocol stack according to an embodiment of the present
invention;

[35] Figure 16 is a flowchart illustrating an example process for identifying a
page object from a set of application messages according to an embodiment of the
present invention;

[36] Figure 17 is a flowchart illustrating an example process for routing a data
object to a sub-analyzer according to an embodiment of the present invention;

[37] Figure 18 is a flowchart illustrating an example process for populating a data
storage area with cache data according to an embodiment of the present invention;
and

[38] Figure 19 is a flow diagram illustrating an example process for switching
data repositories during operation according to an embodiment of the present

invention.

WO 02/091296 PCT/US02/14326

Detailed Description of the Invention
[39] Certain embodiments disclosed herein provide methods and apparatus for

measurement, analysis and optimization of content delivery over a communications
network. For example, one apparatus disclosed herein detects data packets on a
network. These packets are read by the apparatus and- as they are combined into
high level application messages, certain user centric events are generated and stored
for later analysis germane to the efficiency of content delivery over the network.
Additionally, the user centric events are further correlated into groups directly
relating to the experience of the end user, allowing metrics describing the end user
experience to be stored. These metrics can also be analyzed to identify bottlenecks
or errors in the delivery of content over a network. Additionally, the systém can
analyze the metrics and proactively provide notice of existing problems or take
action to prevent potential problems.

[40] After reading this description it will become apparent to one skilled in the art
how to implement the invention in various alternative embodiments and alternative
applications. However, although various embodiments of the present invention will
be described herein, it is understood that these embodiments are presented by way of
example only, and not limitation. As such, this detailed description of various
alternative embodiments should not be construed to limit the scope or breadth of the
present invention as set forth in the appended claims.

[41] Fig. 1 is a block diagram illustrating a high level overview of an example
system for measurement, analysis, and optimization of content delivery. The system
has an information server 10 coupled with a data storage area 20. Information server
10 may incorporate various types of information servers including, for example, a
world wide web (“WWW?” or “web”) server that provides web pages upon request.
Additionally, information server 10 may incorporate a file server that provides files
upon request through a file transfer program, a remote copy program, or some other
utility. The various types of information servers may be integrated on a single
general purpose computer or they reside on separate computers.

[42] Additionally, information server 10 may comprise a plurality of general
purpose computers that provides a single service. For example, a single web server

may employ multiple computers to disperse the massive amounts of content

7

WO 02/091296 PCT/US02/14326

available to wusers across multiple processor units and data storage areas.
Alternatively, information server 10 may be a single general purpose computer that
hosts a variety of discrete services. For example, a small web server, a file transfer
server, or a real time data server.

[43] In one embodiment, information server 10 may provide voice over IP
(“VoIP”) services. Alternatively, information server 10 may provide video on
demand (“VonD”) services. The multiple types of information, data, and the variety
of services that can be provided by information server 10 are all contemplated within
the scope of the present invention. However, for the purposes of this detailed
description, information server 10 will be described in a web server embodiment in
order to consistently and effectively describe the inner workings, features, and
advantages.of the present invention.

[44] Content delivery embodies providing information or services to any client on
demand. Content delivery may also include each of the various components in the
content delivery chain from end users to an information server. For example, some
components may include end users, programmed devices, intelligent devices,
communication networks (including any intervening networks between the end user
and the information server), servers, applications, and databases, just to name a few.
[45] Preferably, information server 10 is connected to a communications network
30. In one embodiment, network 30 can be a local area network (“LLAN”) a wide
area network (“WAN”), a public network, a private network, a virtual private
network, a wired network, a wireless network, or various other types of
communication networks. The function of network 30 is to carry content between
information server 10 and other devices communicatively coupled with information
server 10. Additional networks may also be employed to carry content. For
example, content delivered from information server 10 to users 50 and 60 may travel
over network 30 and network 40 to reach its destination. Additional networks may
also be involved in the function of carrying content. Furthermore, users 50 and 60
may include actual persons using a general computing device and/or remote devices
configured to query server 10.

[46] Multiple appliances can be at each location where an appliance is shown.

Multiple appliances can be used to provide redundancy or to allow an administrator

WO 02/091296 PCT/US02/14326

to dedicate each appliance to measure, analyze, and optimize particular sets of
information servers as a convenience.

[47] Additionally connected to network 30 can be one or more appliances 70.
Preferably, appliance 70 is situated on network 30 such that appliance 70 is capable
of seeing all of the network traffic that is seen by information server 10. For
example, appliance 70 may be located on the same physical wire as information
server 10. Alternatively, appliance 70 may be located between network 30 and
information server 10 such that all network traffic seen by information server 10
must pass through appliance 70. The function of the location of appliance 70 is to
ensure that appliance 70 sees all of the network traffic available to information
server 10.

[48] Appliance 70 is preferably coupled with a data storage area 80. Data storage
area 80 can be configured as a conventional database, a hierarchical file system, or
many other viable alternatives for long term storage of information. In one
embodiment, data storage area 80 can be configured as a lightweight directory
access protocol (“LDAP”) database. Data storage area 80 may be integrated within
appliance 70 or alternatively, data storage area 80 may be external to appliance 70.
[49] In one embodiment, admin 90 may be present on network 30 with
information server 10 and appliance 70. Preferably, admin 90 has the ability to
communicate with appliance 30 over network 30. Alternatively, admin 100 may be
located on a remote network 40, although still communicatively coupled with
appliance 70 via the combination of network 40 and network 30, including any
intervening networks. The function of admin 90 is to communicate with appliance
70 and provide the ability fo configure appliance 70 according to the desired
performance of the system.

[50] Fig. 2 is a flow diagram illustrating an example appliance 71 configured for
measurement, analysis, and optimization of content delivery over one or more
networks 31 and 41. As illustrated, data packets such as DP1 and DP2 travel over
networks 31 and 41 from source network appliances (not shown) to information
server 11 and back. Data packets DP1 and DP2 are representative of a significant

number of data packets that, in aggregate, constitute the requests for and delivery of

WO 02/091296 PCT/US02/14326

content by information server 11, which is preferably coupled with data storage area
21.

[51] Appliance 71, coupled with data storage area 81, is positioned on network 76
relative to information server 11 such that appliance 71 sees all of the network
traffic (i.e. data packets DP1 and DP2) destined for the targeted information server
11. As the data packets DP1 and DP2 travel past appliance 71, appliance 71 detects
their presence. and reads the data packets. The detection can be accomplished either
actively or passively. Preferably, passive detection can be employed so as to reduce
overall system overhead. As will be understood by those skilled in the arts, this
function of appliance 71 may be implemented using a conventional packet capture
device. A packet capture device may be implemented in hardware or software and
performs the function of detecting and capturing data packets from a network as
described above.

[52] Fig. 3 is a block diagram illustrating an example appliance 72 for
measurement, 'anélysis, and optimization of content delivery. Appliance 72 is
preferably connected to a network (not shown) and coupled with a data storage areas
82A and 82B. The data storage areas 82A and 82B may be separate discrete storage
areas or a single physical storage area logically separated into areas 82A and 82B.
For example, data storage area 82A may be a disk drive that stores a standard LDAP
database and data storage area 82B may be a cache that includes both memory
storage area and disk storage area. In one embodiment, data storage areas 82A and
82B collectively include memory, hard drive, removable hard drive, magneto-optical
storage discs, and other fixed and removable storage mediums that can be either
volatile or persistent.

[53] Appliance 72 may be comprised of a data analyzer 110, a data store manager
120, a reporting engine 130, an interface 140, and an alert manager 800. Data
analyzer 110 detects the packets on the network (not shown), reads the packets, and
combines and correlates the data packets into application messages and user-centric
events. These user centric events are then multiplexed into various logical
groupings and stored in data storage areas 82A and/or 82B. In one embodiment, the

user centric events can be stored initially in data storage area 82B, which comprises

10

WO 02/091296 PCT/US02/14326

memory and a cache, and then later transitioned into long term storage area 82A,
which comprises an LDAP database. |

[54] Data store manager 120 controls the writing and reading of data to data
storage areas 82A and 82B. Any data storage techniques employed by appliance 72
are implemented by data storage manager 120 in a fashion that simplifies the write
and read operations of related components, such as data analyzer 110. For example,
data store manager 120 may encrypt, compress, or otherwise massage the data
maintained in data storage areas 82A and 82B for optimized and efficient storage.
This encryption or compression is advantageously hidden from any components
reading or writing data to data storage area 82A. In one embodiment, the data stored
in long term storage area 82A can be compressed while the data stored in cache
storage area 82B can be uncompressed.

[55] Reporting engine 130 breferably accesses the data in data storage area 82A
or 82B (through data store manager 120) and generates reports based on the raw
data. Advantageously, reporting engine 130 may access the data in long term data
storage area 82A in order to reduce overhead and allow cache storage area 82B to
continue to be used by data collection processes.

[56] Furthermore, reporting engine 130 may automatically generate reports and/or
generate reports upon request. The format of the reports may be standard or
customized. The essential function of reporting engine 130 is to read data from data
storage areas 82A or 82B and recapitulate and format the data into a variety of
reports that provide value and convey the nature of content delivery over a
communications network.

[57] Alert manager 800 preferably allows appliance 72 to modify the notification
method used to inform a customer that a predefined or automatically defined
threshold has been breached. For example, a threshold may be set in a configuration
file. Alternatively, a threshold may be set by the continuous operation of an
appliance such that the threshold is automatically configured by the appliance to be a
certain percentage above the mean. Advantageously, this allows thresholds to be
established for moving target type metrics such as page requests per hour.

[58] For example, as page requests fluctuate, over time the appliance is able to

calculate a mean number of page requests per hour, per minute, per day, or some

11

WO 02/091296 PCT/US02/14326

other time related metric. In one embodiment, the mean page requests between 9:30
am and 9:45 am may be 1000. Thus, a threshold may be set so that the administrator
is notified if the number of page requests exceeds the mean by 20%. In the situation
where there are over 1200 page requests between 9:30 am and 9:45 am, alert
manager 800 may advantageously provide a notice message to an administrator or
other designated party.

[59] Furthermore, alert manager 800 may allow the method for notifying the
administrator to change. In one embodiment, the administrator may be notified by
an entry written to a log file. Alternatively, the administrator may be notified via an
email sent to the administrator’s email address. Additionally, the administrator may
be notified via a pager or some other convenient and real time electronic notification
method.

[60] Alert manager 800 may also provide the ability to respond to a threshold
notice by taking steps to fix a detected problem. For example, alert manager 800
may reboot the information server if necessary. Also, the appliance may be
configured to make modifications to an information server so as to ensure that no
major disruptions in content delivery are experienced by users of the information
server.

[61] Fig. 4 is a block diagram illustrating an example data analyzer 110 in an
apparatus for measurement, analysis, and optimization of content delivery. Data
analyzer 110 can be connected to a data storage area 83. In one embodiment, data
storage area 83 can be a cache storage system that is comprised of both memory and
disk space. Data analyzer 110 is comprised of a protocol stack 150 and a root
analyzer 160. The protocol stack 150 receives packets from a network and
combines the packets into data objects that represent user centric events. Root
analyzer 160 receives the data objects, sorts them into coherent groupings, and
condenses the data elements contained within the data objects for optimized long
term storage.

[62] Fig. 5 is a flow diagram illustrating an example protocol stack 151 in an
apparatus for measurement, analysis, and optimization of content delivery. The
protocol stack 151 resides in a data analyzer (not shown) that is connected to a

network 32. Data packets, such as DP3, travel across the network to and from

12

WO 02/091296 PCT/US02/14326

information server 12, which is coupled with a data storage area 22. These data
packets are read and processed by protocol stack 151.

[63] Protocol stack 151 can be comprised of a packet detector 170, an IP layer
180, a transport control protocol (“TCP”) layer 190, a secure socket layer (“SSL”)
decrypter 200, an application selection layer 210, and an application decoding layer
220. Data packets such as DP3 are read into protocol stack 151 and combined by
protocol stack 151 to ultimately produce a data object 230. The data object is
preferably comprised of several data elements.

[64] Packet detector 170 preferably captures each and every packet traveling on
the network 32. Each packet that is captured by detector 170 is stored in a local
buffer until it is moved into memory. As will be understood by those skilled in the
art, commercial packet detectors carry out this function and can be integrated into
the appliance to serve that limited purpose. An additional function of packet
detector 170 is to apply a high resolution timestamp to each packet that is captured
from network 32. Once a packet is captured and timestamped by packet detector
170, the packet is forwarded to IP layer 180.

[65] IP layer 180 operates much like an IP layer of a conventional TCP/IP
protocol stack, although on a much broader and more complex scale. IP layer 180
performs all of the standard operations of a conventional IP layer such as IP header
validation, IP compliance, IP checksum validation, TP multiplexing, and IP data
segment defragmentation. However, as a conventional IP layer performs these
operations on packets destined for the machine on which the IP layer is running, TP
layer 180 processes all packets detected on the network by detector 170, regardless -
of the destination.

[66] In order to accomplish this, IP layer 180 creates a unique flow object to track
the current state of each unique source-destination tuple (source IP, destination IP).
Once the flow object has been created, the flow object processes each subsequent
packet detected that contains the source IP and destination IP of the flow’s unique
tuple. In this fashion, IP layer 180 can advantageously process all packets detected
on the network. Packets that are processed by IP layer 180 are then forwarded on to
TCP layer 190.

13

WO 02/091296 PCT/US02/14326

[67] TCP layer 190 operates much like a TCP layer of a conventional TCP/IP
protocol stack, although on a much broader and more complex scale. TCP layer 190
performs all of the standard operations of a conventional TCP layer such as TCP
header validation, TCP compliance, TCP checksum validation, TCP connection
selection (multiplexing), TCP data segment ordering, and TCP data segment re-
assembly. However, as a conventional TCP layer performs these operations on
packets destined for the machine on which the TCP layer is running (either the client
or the server), TCP layer 190 performs these operations for both the client and the
server in every connection.

[68] In order to accomplish this, TCP layer 190 maintains state information for
both the client and the server in each unique client-server tuple (client IP, client port,
server IP, server port). Additionally, the state changes detected by TCP layer 190
when processing datagrams received from IP layer 190 are passed along to the upper
layers of the protocol stack 151. Furthermore, the time of the state change is also
determined by TCP layer 190 and passed through to the upper layers of the protocol
stack 151.

[69] For example, some state changes that may be detected and passed through
include TCP_SYN_SENT, TCP_SYN_RECYV, TCP_ESTABLISHED,
TCP_FIN_SENT, TCP_FIN_CONFIRMED, and TCP_CLOSE, just to name a few.
Advantageously, TCP layer 190 captures the time that the state changes occur. This
information can preferably improve the later analysis of content delivery. For
example, the elapsed time between the TCP_SYN_RECV state and the
TCP_ESTABLISHED state provides the round trip network delay between the client
and server.

[70] An additional advantage of TCP layer 190 is that it provides the ilpper layers
of protocol stack 151 with application data from both the client and the server, along
with additional protocol information. For example, in addition to providing the
upper layers of protocol stack 151 with the application data, TCP layer 180 can
additionally provide the length of the application data, the time when the application
data was sent, and the time when the application data was acknowledged as

received.

14

WO 02/091296 PCT/US02/14326

[71] Additionally TCP layer 190 notifies the upper layers of protocol stack 151
when specific packets are transmitted. For example, TCP layer 190 passes through
acknowledgement packets while conventional TCP layers do not. Datagrams that
are processed by TCP layer 190 are then forwarded on to either SSL decrypt layer
200 or application layer 210. Those datagrams that are encoded using the secure
socket layer encryption are sent by TCP layer 190 to the SSL decrypt layer 200. All
other datagrams (including those that are not encoded and state change notifications)
are passed along to application layer 210.

[72] SSL decrypt layer 200 serves the function of decrypting encrypted traffic.
This layer can be implemented by a conventional SSL decryption tool or utility and
may use a standard SSL decryption algorithm.

[73] The next several layers of protocol stack 151 use the wealth of information
provided by the lower layers of protocol stack 151 in conjunction with the
application data provided by the lower layers. For example, TCP/IP state
information and application data are correlated across multiple user sessions and
connections to generate higher level descriptions of user, application, network, and
server behavior.

[74] It is important here to note that for each applicétion (e.g. HTTP web
browsers, FTP, email, VoIP, VonD, streaming media, etc.) that may deliver content
over network 32, there is a unique set of application decoding layers. This is
necessary because each application may use the underlying TCP/IP connections in
different ways to carry out the communications between a client and a server.

[75] For example, an HTTP web browser may open up several simultaneous TCP
connections. Each connection is then used to download a different component of the
current page. As these components arrive at the client, the web browser application
begins to render the web page on the display. Often, some of these TCP connections
are kept open by the web browser application in anticipation of downloading a new
page shortly after the current page.

[76] In contrast, the FTP (file transfer) application uses a single TCP connection
for issuing commands and a second TCP connection for transmitting the requested

file. After the transfer is complete, the TCP connection for transmission is closed.

15

WO 02/091296 PCT/US02/14326

[77] This application specific disparity in handling state changes and data
messages from the lower levels of protocol stack 151 may require a unique
application decoding layer for each application. However, to generalize, each
unique application decoding layer can have a similar structure consisting of a
session processing layer, a connection processing layer, a message processing layer,
and a content processing layer. Some application decoding layérs may also have
additional processing layers.

[78] Application selection layer 210 allows protocol stack 151 to implement the
various unique application decoding layers by identifying the appropriate application
for the particular message received from TCP layer 190 or SSL decryption layer 200
and routing those messages to the corresponding application decoding layer 220. In
one embodiment, the particular application decoding layer may be identified by the
TCP server port for the connection. Advantageously, this information is passed to
application selection layer 210 from TCP layer 190 or SSL decryption layer 200 and
thus it is contained within the message.

[791 As will be understood by those skilled in the arts, well known server ports
are established for particular and common applications. For example, HTTP
applications are typically associated with port 80; FTP applications are typically
associated with port 20, telnet applications are typically associated with port 21,
email applications (sendmail) are typically associated with port 23, and so on. In
one embodiment, non-standard port numbers may be assigned to the various
applications. In such an embodiment, the appliance may be configured to recognize
the non-standard port numbers. Alternatively, the appliance may be configured to
dynamically decipher the application associated with a particular port number. Once
the application is identified by application selection layer 210, the particular
message is forwarded to the appropriate application decoding layer 220. The output
of application decoding layer is object 230, which preferably comprises various data
elements.

[80] The objects generated by the protocol stack describe various aspects of a
user’s interaction with an information server. For example, each application
decoding layer may comprise a separate layer to process the various types of objects

it may receive. In one embodiment, the application decoding layer may comprise a

16

WO 02/091296 PCT/US02/14326

session layer, a connection layer, a message layer, a content layer, and a content
component layer in order to efficiently process session objects, connection objects,
message objects, content objects, and content component objects.

[81] A session object may comprise user level events. In one embodiment, a
session object can be created for each interaction between a user and an information
server. Preferably, the session object may comprise data elements describing the
user’s overall experience with the application running on the information server(s).
[82] A connection object may comprise transport level events. In one
embodiment, one or more TCP connections can be opened with one or more
information servers during the course of a session. For each of these connections, a
connection object can be created. Preferably, the connection object comprises data
elements that describe the overall performance and behavior of connections to an
information server.

[83] A message object may comprise requests and responses made to an
information server. In one embodiment, one or more requests can be sent to an
information server during the course of a session. For each of these requests, one or
more responses can be sent back to the requesting client. Preferably, a request may
contain a command or action to be performed by the information service, while a
response may contain the result of performing the requested action.

[84] In one embodiment, for each request that is made, a request message object
can be created that comprises the type of request, the specific action, and the target
of the action. Advantageously, additional details may be added to the object by
other application decoding layers. Furthermore, for each response to a request, a
response message object can be created that comprises the type of response, the
success or failure of the request, and any resulting data that is to be returned to the
requestor. Again, additional details may be added by other application decoding
layers.

[85] A content object may comprise the high-level resources, data, information, or
services provided by an information server. In one embodiment, each resource may
have a unique name or identifier. For each resource accessed, a content object can

be created that comprises the resource type, identity, size, availability, structure, and

17

WO 02/091296 PCT/US02/14326

organization of the content. Advantageously, additional details may be added by the
other application decoding layers.

[86] A content component object may comprise a sub-part of the content provided
by the information service. In one embodiment, an information server may break
content up into various sub-components. For example, a web page provided by a
web server may include dozens of images, many applets, and various other multi-
media component. For each component accessed, a content component object can
be created that comprises data elements describing the component type, identity,
size, availability, structure, and organization. Additional details may be added to the
content component object by the other application decoding layers.

[87] Because the unique application decoding layers for the various applications
are implemented in different fashions to accommodate an application’s unique
needs, the forthcoming description will proceed by describing application decoding
layer 220 in reference to and in operation with an HTTP web browser application. It
is, however, important to note that the present invention contemplates a protocol
stack 151 with various application decoding layers corresponding to various
applications and therefore the description herein with reference to HTTP is by way
of example only and shall not be considered limiting in any manner.

[88] Application decoding layer 220, specifically tailored for HTTP applications,
may comprise four layers, namely the session processing layer, the connection
processing layer, the message processing layer and the content processing layer.
First, the session processing layer provides for tracking how each user is interacting
with a monitored web site. The session processing layer correlates events from
every connection to provide a high level view of how information server 12 is being
used.

[89] The session processing layer produces session objects as output. For
example, object 230 could be a session object. Preferably, a unique session object is
created for each unique client IP address that is received. Advantageously, all
events and messages contain the client IP address so they can be correctly identified.
Furthermore, each subsequent event and message that contains the same client IP
address is forwarded to the appropriate session object. A session object preferably

contains data elements that describe the various aspects of a user’s session with

18

WO 02/091296 PCT/US02/14326

information server 12. When comple;ce, a session object is forwarded to the root
analyzer for further processing and storage.

[90] In one embodiment, a session object may include data elements reflecting the
number of user clicks, the number of pages downloaded, average download time,
download time per page, cumulative download time, session length (how long the
user was on the site), average network delay between client and server, client access
speed (slowest link in connectivity), number of application messages sent/received
by user, size of application messages sent/received by user, type and number of
application requests made by user, number and size of data packets sent/received by
user, and number and size of TCP segments sent/received by user.

[91] The connection processing layer produces connection objects as output. For
example, object 230 could be a connection object. Preferably, a connection object
contains various data elements that describe the various aspects of a éingle
connection between a single user (not shown) and information server 12. A
connection object can be uniquely identified by the tuple (client IP, client Port,
server IP, server Port). Advantageously, this information is propagated up protocol
stack 151 by the lower layers. Preferably, there is a one-to-one correlation between
connection objects and TCP connections identified at TCP layer 190. When
complete, a connection object is forwarded to the root analyzer for further
processing and storage.

[92] In one embodiment, a connection object may include data elements reflecting
the number of open connections, the number of request messages, server response
time, number of successful requests, number of failed requests, network delay from
the server to the end user, connection terminated by the end user or server, number
of TCP segments exchanged between client and server, number of packets
exchanged between end user machine and the server.

[93] The message processing layer produces message objects as output. In one
embodiment, types of message objects may include request message objects and
response message objects. For example, object 230 could be a request message
object or a response message object. The function of the message processing layer is

to extract application specific data elements from each message.

19

WO 02/091296 PCT/US02/14326

[94] The message processing layer advantageously determines whether the
message is a request from the client to the server or whether the message is a
response from the server to the client. In an HTTP application, the server sends a
response message for every request message.

[95] For processing HTTP request messages, the message processing layer may
determine the command type (e.g., GET, PUT, POST, HEAD, etc.), the uniform
resource locator (“URL”), the referrer, and the host (server). This data can
preferably be stored in the request message object.

[96] For processing HTTP response messages, the message processing layer may
determine the response code (success, Server error, clienf error, redirect,
informational), the content type (text, binary), the content encoding (compressed,
uncompressed, uu-encoded, efc.), and the last time modified, to name just a few.

[97] For both the HTTP request and HTTP response, many other application
speciﬁd data elements may be extracted. The details about each message can be
stored in a request or response message object. When complete, a request or
response message object is forwarded to the root analyzer for further processing and
storage.

[98] In one embodiment, a message object may include data elements reflecting
the number and size of packets sent/received by the user, the number and size of
TCP segments sent/received by the user, the number of packets required to transmit
a message, number of segments required to transmit a message, request type (GET,
PUT, POST, HEAD), request URL, Referrer, response type (Success, Client Error,
Server Error, etc.), content type, content encoding, and the like.

[99] The content processing layer produces content and content component
objects as output. For example, object 230 could be a content object or a content
.component object. The function of the content processing layer is to use information
from all oﬁher layers (session, connection, message, and the lower networking
layers) to extract high-level representations of the data, information, services, and
other resources provided by an information server. The type and structure of the
content is different for every application.

[100] For example, HTTP content provided by a web information server can be

represented as a page object. The content can be also be sub-divided into page

20

WO 02/091296 PCT/US02/14326

components. When complete, a page object or page component object is forwarded
to the root analyzer for further processing and storage.

[101] In one embodiment, a content object may include data elements reflecting
the URL of a page, number of page downloads, number of page components in a
page, number of pages successfully downloaded, number of pages unsuccessfully
downloaded, time to download a complete page, size of the entire page, number of
packets to download a complete page, number of segments to download a complete
page, number of connections opened to download a page, and the number of pages
stopped for download by the end user.

[102] In one embodiment, a content component object may include data elements
reflecting the Page component object reflecting the Uniform Resource Locator
(URL) of a page, number of page component downloads, number of components
successfully downloaded, number of components unsuccessfully downloaded, time
to download a page component, size of the page component, number of packets to
download a page component, and the number of segments to download a page
component.

[103] Figs. 6A —E are flow diagrams illustrating example root analyzers 161 — 164
in an apparatus for measurement, analysis, and optimization of content delivery.
The function of the root analyzer is to discern the type of object received from the
protocol stack and then route that object to one or more appropriate sub-analyzers.
In one embodiment, root analyzer 161 has various sub-analyzers including session
analyzer 280, server analyzer 290, application analyzer 300, page analyzer 310, page
component analyzer 320, and web site analyzer 330. Additional sub-analyzers may
be added to handle different types of specialized objects. These analyzers preferably
handle the various types of data objects, such as object 231, that are passed to root
analyzer 161. |

[104] The function of the various sub-analyzers can advantageously be to analyze
one or more objects created by the protocol stack and create or update the
appropriate storage area that may be later viewed by an end-user of the appliance.
Preferably, the various sub-analyzers can use identifying field values in the object to
correctly select the particular storage area to update. In one embodiment, a storage

area may comprise a plurality of external objects.

21

WO 02/091296 PCT/US02/14326

[105] External objects can be those objects in a longterm storage area (e.g., a
database). Preferably, the longterm storage area is accessible to users of the
appliance via an interface. In one embodiment, external objects can map directly to
elements in the service delivery chain for an information server. Examples of
external objects include server objects, application objects, user session objects,
network objects, web-site objects, and web page objects. In one embodiment, an
external server object can be created for each information server providing a service.
Additional objects specific to an information server’s delivery chain may also be
included.

[106] For example, an external web page object can be specific to the web
information server. External objects can be created by the various sub-analyzers.
Sub-analyzers use objects received from the protocol stack to comstruct external
objects. For example, an external object can be an aggregation of all the internal
objects used in its creation. “

[107] For example, Fig. 6A illustrates a session object being sent to root analyzer
161. Upon receiving object 231 and determining that the object is a session object
240, root analyzer 161 passes session object 240 to session analyzer 280 for further
processing and storage. The other sub-analyzers (server, application, page, page
component, and web site) do not receive session objects.

[108] .In Fig. 6B, root analyzer 162 receives object 232 and determines that it is a
connection object 251. Upon determining the type of object, root analyzer 162
passes connection object 251 to session analyzer 281, server amalyzer 291,
application analyzer 301, and web site analyzer 331. Advantageously, connection
object 251 may contain data elements germane to each of the sub-analyzers that it is
passed to. Page analyzer 311 and page component analyzer 321 do not receive
connection objects.

[109] In Fig. 6C, root analyzer 163 receives object 233 and determines that it is a
page object 262. Upon determining the type of object, root analyzer 163 passes
page object 262 to session analyzer 282, server analyzer 292, page analyzer 312, and
web site analyzer 332. Advantageously, page object 262 may contain data elements
germane to each of the sub-analyzers that it is passed to. Application analyzer 302

and page component analyzer 322 do not receive page objects.

22

WO 02/091296 PCT/US02/14326

[110] In Fig. 6D, root analyzer 164 receives object 234 and determines that it is a
page component object 273. Upon determining the type of object, root analyzer 164
passes page component object 273 to page component analyzer 323 and web site
analyzer 333. Advantageously, page component object 273 may contain data
elements germane to each of the sub-analyzers that it is passed to. Session analyzer
283, server analyzer 293, application analyzer 303, and page analyzer 313 do not
receive page component objects.

[111] In Fig. 6E, root analyzer 164 receives object 234 and determines that it is a
message object 249. Upon determining the type of object, root analyzer 164 passes
message object 249 to server analyzer 293 and application analyzer 303.
Advantageously, message object 273 may contain data elements germane to each of
the sub-analyzers that it is passed to. Session analyzer 283, page analyzer 313, page
component analyzer 323, and web site analyzer 333 do not receive message objects.
[112] Once a sub-analyzer receives a data object, the sub—émalyzer parses the data
object to determine its characteristics and then stores the elements of the data object
in the appropriate data record. For example, Fig. 7A illustrates a session analyzer
284, which may receive data objects of type session object 244, connection object
254, or page object 264. Because there can be an infinite number of user sessions
with an HTTP information server, session analyzer 284 stores the data elements
from all of the data objects it receives in a single summary record 340, rather than
creating a new record for each unique session. Advantageously, this helps to
manage the growth of data and also provides a unique, cumulative user session
profile that characterizes the average user session with the information server.

[113] Fig. 7B illustrates a server analyzer 294, which may receive data objects of
type connection object 255, page object 265, and message object 276. Because a
single apparatus may monitor one or more servers (or one or more applications on
one or more servers) there can be a server record for each information server being
tracked. For example, server analyzer 294 may have a server 1 record 350, a server
2 record 360, and a server n record 370. The presence of server n record 370
indicates that there may be additional server records. Furthermore, server analyzer

294 may maintain a summary record 341.

- 23

WO 02/091296 PCT/US02/14326

[114] When server analyzer 294 receives a data object such as connection object
255, page object 265, or message object 276, it can parse the object to determine
which server the object is associated with. Advantageously, this information is
contained in the object as constructed by the protocol stack. For example, server
analyzer 294 may determine the server by the IP address data element contained in
the data object. Upon determining the appropriate record for the object, server
analyzer 294 can store the relevant data elements from the data object in the
identified record. In addition, server analyzer 294 can store data elements from the
data object in the summary record 341.

[115] Fig. 7C illustrates an application analyzer 304, which may receive data
objects of type connection object 256 and message object 277. Because a single
apparatus may monitor one or more applications there can be an application record
for each application being tracked. For example, application analyzer 304 may have
an HTTP record 380, an HTTPS record 390, an FTP record 400, a streaming media
record 410, a VoIP record 420, a VonD record 430, and a record for any of the
various other applications that may be monitored by application analyzer 304, as
illustrated by the presence of application record 440. In addition, application
analyzer 304 may maintain a summary record 342. |

[116] When application analyzer 304 receives a data object such as connection
object 256 or message object 277, it preferably parses the object to determine which
application the object is associated with. Advantageously, this information is
contained in the object as constructed by the protocol stack. For example,
application analyzer 304 may determine the associated application by the well
known TCP Port data element contained in the data object. Upon determining the
appropriate record for the object, application analyzer 304 preferably stores the
relevant data elements from the data object in the identified record. In addition,
application analyzer 304 can store data elements from the data object in the
summary record 342.

[117] Fig. 7D illustrates a page analyzer 314, which may receive data objects of
type page object 266. Because a single information server may host a large number
of web pages, there can be a page record for each page being hosted by the

information server. For example, page analyzer 314 may have a page 1 record 450,

24

WO 02/091296 PCT/US02/14326

a page 2 record 460, a page 3 record 470, and a record for any of the various other
pages that may be hosted by an information server and monitored by page analyzer
314, as illustrated by the presence of page n record 480. In addition, page analyzer
314 may maintain a summary record 343.

[118] When page analyzer 314 receives a data object such as page object 266, it
preferably parses the object to determine which page the object is associated with.
Advantageously, this information is contained in the object as constructed by the
protocol stack. For example, page analyzer 314 may determine the associated page
by the URL data element contained in the data object. Upon determining the
appropriate record for the object, page analyzer 314 preferably stores the relevant
data elements from the data object in the identified record. In addition, page
analyzer 314 can store data elements from the data object in the summary record
343.

[119] Fig. 7E illustrates a page component analyzer 324, which may receive data
objects of type page component object 274. Because a single information server
may host a large number of web pages, and each web page may have a large number
of page components, there can be a page component record for each page
component existing on a web page being hosted by the information server. For
example, page component analyzer 324 may have a component 1 record 490, a
component 2 record 500, a component 3 record 510, and a record for any of the
various other components that may be monitored by page component analyzer 324,
as illustrated by the presence of component n record 520. In addition, page
component analyzer 324 may maintain a summary record 344,

[120] When page component analyzer 324 receives a data object such as page
component object 274, it preferably parses the object to determine which component
the object is associated with. Advantageously, this information is contained in the
object as constructed by the protocol stack. For example, page component analyzer
324 may determine the associated component by the URL data element contained in
the data object. Upon determining the appropriate record for the object, page
component analyzer 324 preferably stores the relevant data elements from the data
object in the identified record. In addition, page component analyzer 324 can store

data elements from the data object in the summary record 344.

25

WO 02/091296 PCT/US02/14326

[121] Fig. 7F illustrates a web site analyzer 334, which may receive data objects of
type connection object 257, page object 267, and page component object 275.
Because a single apparatus may monitor a large number of web sites, there can be a
web site record for each web site being monitored by the information server. For
example, web site analyzer 334 may have a site 1 record 530, a site 2 record 540, a
site 3 record 550, and a record for any of the various other web sites that may be
monitored by web site analyzer 334, as illustrated by the presence of site n record
560. In addition, web site analyzer 334 may maintain a summary record 345.

[122] When web site analyzer 334 receives a data object such as connection object
257, page object 267, or page component object 275, it preferably parses the object
to determine which component the object is associated with. Advantageously, this
information is contained in the object as constructed by the protocol stack. For
example, web site analyzer 334 may determine the web site by the URL data
element contained in the data object, or a combination of the IP address data element
and the TCP Port data element. Upon determining the appropriate record for the
object, web site analyzer 334 preferably stores the relevant data elements from the
data object in the identified record. In addition, web site analyzer 334 can store data
elements from the data object in the summary record 345.

[123] As described above with reference to figures 7A — 7F, the various sub-
analyzers store data elements in various records. These records preferably exist in a
cache data storage area available to the data analyzer. As the records begin to
accumulate, the data analyzer preferably employs data migration to manage the
growth of the data while maintaining the detail rich information being collected.
[124] Fig. 8 is a flow diagram illustrating an example data migration in an
apparatus for the measurement, analysis, and optimization of content delivery.
Initially, all of the data is stored in the real time database 570. When the real time
database 570 becomes full, the data is aggregated into the hourly series database
580. Advantageously, aggregating the data maintains the level of detail represented
by the data while at the same time significantly reducing the necessary storage space
required to maintain that detailed information.

[125] As the hourly series database 580 accumulates data, the data stored therein is

periodically aggregated into various additional databases including the hourly

26

WO 02/091296 PCT/US02/14326

longterm database 590, the daily series database 600, the daily longterm database
610, the weekly series database 620, the monthly series database 630, the monthly
longterm database 640, and the yearly series database 650. The periodic nature of
the aggregation from the hourly series database 580 to the various other datébases
can be hourly, as suggested, or some other period more closely tailored to the
efficient operation of the system. Since aggregations may take processor time and
cause disk accesses, it may be advantageous to increase or decrease the period.

[126] Fig. 9 is a flow diagram illustrating an example data aggregation in an
apparatus for measurement, analysis, and optimization of content delivery. As
described above, the advantage of aggregating data is twofold: first, the space
required to house the data is reduced; and second, the rich detail of the data is
maintained. For example, as the real time database 571 accumulates data elements
in its records, the storage area allocated to real time database 571 begins to wane.
During the accumulation time period, real time database 571 may store server data
in records S1 and S2. This represents the data that has been accumulated during the
current period for real time database 571. This data requires a certain amount of
storage area to hold data elements S1:a, S1:b, Sl:c, S2:a, S2:b, and S2:c.

[127] When the data is aggregated into hourly series database 581, the data
elements can advantageously be summed with like data elements already contained
in hourly series database 581. For example, hourly series database 581 contains
server data and already includes a data record S1. Therefore, data elements S1:a,
S1:b, and S1:c already exist in hourly series database 581. However, hourly series
database 581 does not contain a data record S2, and it does contain a data record S3.
[128] Upon completion of the aggregation, hourly series database 582 (the updated
version of hourly series database 581) contains data records S1, S2, and S3.
Although the hourly series database 582 contains a new data record, the size of
hourly series database 582 was increased by only a single data record (S2) while two
data records S1 and S2 were aggregated into hourly series database 582. Note that
the new values in data record S1 have increased to reflect the data added from real
time database 571. This maintains the detail rich data collected by the apparatus

while reducing the overall size of the data needed to be maintained.

27

WO 02/091296 PCT/US02/14326

[129] Fig. 10 is a block diagram illustrating an example data store manager 121 of
an apparatus for measurement, analysis, and optimization of content delivery. The
data store manager 121 may be comprised of a populator 660, a database manager
670, and an external interface 680. Additionally, data store manager 121 has access
to data storage areas 84A and 84B. In one embodiment, data storage areas 84A and
84B may be a single data storage area as previously described with reference to Fig.
3. Preferably, data storage area 84A is used for long term storage while data storage
area 84B is used for near term storage. For example, data storage area 84B may be a
cache comprising both memory and disk space. Alternatively, the cache may
comprise only memory or only disk space.

[130] The function of the data store manager is to migrate data from near term
storage in the cache to long term storage. Accordingly, data storage area 84A may
comprise a standard database system such as an LDAP database. Preferably,
populator 660 periodically reads data from cache 84B and passes the data to
database manager 670. Advantageously, database manager 670 receives the data
from populator 660 and writes the data to longterm storage in data storage area 34A.
[131] In order to manage the exponential growth of data being written to data
storage area 84A, database manager 670 employs a purging method to limit the
growth. For example, the long term data storage area 84A preferably contains the
same type of information that is maintained in cache 84B. However, as the data in
cache 84B is aggregated by the data analyzer, the rich detail of the data being
collected is propagated into the various databases contained in the data storage area,
as described with reference to Figs. 8 and 9. Therefore, database manager 670
preferably periodically purges the potentially huge amounts of data stored in the real
time database in data storage area 84A.

[132] For example, as the data analyzer aggregates data from the real time database
to the hourly series database and later to the various other databases, the need to
maintain the data in the real time database eventually passes. In one embodiment,
data from the real time database is aggregated into the hourly series database every 5
minutes. Correspondingly, data from the hourly series database is aggregated into
the hourly longterm database every hour. As the hourly longterm data is read from

the cache 84B and passed to the database manager 670 and written in the long term

28

WO 02/091296 PCT/US02/14326

data storage area 84A, the data in the real time database in long term data storage
area 84A becomes obsolete. Therefore, the database manager may purge this
obsolete data and thereby manage the controlled growth of the data in long term data
storage area 84A. The method by which this is accomplished will be subsequently
described with reference to Fig. 19.

[133] Fig. 11 is a block diagram illustrating an example reporting engine 131 of an
apparatus for measurement, analysis, and optimization of content delivery.
Reporting engine 131 may be comprised of a presentation manager 690, a
configuration manager 700, an alarm manager 710, and a measure data manager
730. The function of the reporting engine is to accept requests or use a
predetermined configuration to generate reports outlining the measurements
collected by the apparatus.

[134] In one embodiment, reporting engine 131 may periodically extract data from
the data storage area and organize that data based on requested report types. This
advantageously allows the reporting engine to spread its processor use out over a
period of time. Advantageously, this eliminates the need for intensive processor use
when generating the complete reports.

[135] Presentation manager 690 is responsible for providing various views of the
data contained in an apparatus for measurement, analysis, and optimization of
content delivery. Preferably, tabular and graphical views of data can be provided.
These views present real-time, hourly, daily, weekly, monthly and yearly data to the
user. The apparatus may provide these views using the hypertext markup language
(“HTML”), and extensible markup language (“XML”) technologies. Users may
access these presentations with a common web browser application residing on a
computer system or with alternative devices that have network access to the
apparatus. Presentation manager 690 may also incorporates security mechanisms to
ensure that only authorized users can gain access to the views presented. In one
embodiment, presentation manager 690 may provide mechanisms by which users
can configure and customize various aspects of both graphical and tabular reports.
[136] Configuration manager 700 preferably allows one or more configuration files
to be created, deleted, and modified. These configuration files are preferably used

by reporting engine 131 to construct one or more customized reports containing the

29

WO 02/091296 PCT/US02/14326

information desired by the administrator or user of the apparatus. In one
embodiment, standard reports may include trend information and alarm threshold
notifications.

[137] Alarm manager 710 can monitor the data being collected by the system and
compare the statistical output of the data collections to certain established
thresholds. At any point in time when the statistical output of the data collections
exceeds an established threshold for a particular metric, alarm manager 710
preferably takes the appropriate action.

[138] Actions taken by the alarm manager can include simple notification of an
administrator that the threshold has been exceeded. This notification may take place
by merely writing a notice to a log file. Alternatively, alarm manager 710 may send
an email to an administrator to effectuate notice. Additional methods of providing
notice are also contemplated, for example alarm manager 710 may cause a page to .
be sent to the administrator.

[139] In addition to providing notice that a threshold has been exceeded, alarm
manager 710 may also proactively initiate steps to fix the problem. For example,
alarm manager 710 may detect, through certain thresholds being exceeded, that the
information server process has aBnormally terminated. In such a case, alarm
manager 710 may proactively initiate the appropriate steps for rebooting the
information server machine, re-initializing the information server process, or both.
[140] Measure data manager 730 is responsible for querying, extracting, filtering
and formatting data for presentation manager 690 in an apparatus for measurement,
analysis, and optimization of content delivery. Presentation manager 690 transmits
requests to measure data manager 730 whenever a user action triggers the need to
build a view for presentation. Preferably, a request can specify which measurements
are required, and how the data should be queried and formatted. For example, a user
can specify a query that generates a view displaying the slowest ten web pages on a
web site. These queries provide users with the ability to interactively analyze and
correlate the data contained in the data storage area. By performing extensive on-
line analysis in this manner, the user is able to gauge all aspects of network
performance, to troubleshoot current problems, and to perform proactive

investigations aimed at preventing potential problems in the future.

30

WO 02/091296 PCT/US02/14326

[141] Figs. 12A — E are software application windows that illustrate example
interfaces for presenting reports and information according to one embodiment of
the present invention. These example windows are presented to show the rich value
added by the characteristics of the particular presentations of the information
collected by the apparatus.

[142] Fig. 13 is a block diagram illustrating an example system for measurement,
analysis, and optimization of content delivery. The system may be comprised of an
information server 13 coupled with a data storage area 23, an appliance 73 coupled
with a data storage are 85, one or more users 51, and one or more administrators 91
and 101. Preferably, these components are communicatively coupled over one or
more networks such as network 33 and network 42. Advantageously, appliance 73
can be physically located such that it sees all of the data traffic traveling on network
33 that is seen by information server 13.

[143] Additionally, the system may include a home base 740 coupled with a data
storage area 750. Preferably, home base 740 is communicatively coupled with
appliance 73 over one or more networks such as network 42 and network 33. In one
embodiment, the function of home base 740 can be to manage one or more remote
appliances 73, and provide account validation and status monitoring services.

[144] Fig. 14 is a block diagram illustrating an example home base 741 in a system
for measurement, analysis, and optimization of content delivery. Home base 741
may be comprised of an auto update module 760, an agent controller 770, a
messaging module 780, and an account validation module 790. Additionally, home
base 741 may preferably be configured with a data storage area 751.

[145] Auto update module 760 may allow home base 741 to keep remote
appliances up to date with the most current version of operational programs and
data. For example, an appliance in communication with home base 741 may
indicate that the appliance is running an older version of the appliance software.
Advantageously, auto update module 760 can detect this and upgrade the appliance
software over the network. Additionally, auto update module may determine if new
appliance distribution files are necessary, and if so, transfer those files to the remote

appliance.

31

WO 02/091296 PCT/US02/14326

[146] Agent controller 770 preferably provides the home base 741 unit with remote
control over the appliances in communication with home base 741. For example,
agent controller 770 may transfer files to and from the remote appliance.
Additionally, agent controller 770 may reboot a remote appliance.

[147] Messaging module 780 preferably manages the receipt and sending of
messages, files, and other data between home base 741 and any remote appliance.
Upon receiving an incoming message, messaging module 780 preferably routes the
message to the appropriate module within home base 741.

[148] Account validation module 790 can function to verify account information
related to particular customers that have an appliance in operation. For example, a
remote appliance may send a status inquiry to home base 741 to determine if the
customer account is up to date. Account validation module 790 preferably consults
data storage area 751 and responds to the query.

[149] Fig. 15 is a flowchart illustrating an example process for processing data
packets through a protocol stack according to an embodiment of the present
invention. Initially, in step 810 a packet is detected on the network. This function
can be implemented by a packet detector. As will be understood by those skilled in
the art various types of packet detectors may be emph;yed. Preferably the packet
detector is robust and is capable of detecting and reading each packet on the
network.

[150] In step 812 the packet is sent to the IP layer of the protocol stack. This may
be done by the packet detector migrating data from its internal buffers into standard
memory. Once in memory, the IP layer can process the data packets.
Advantageously, the IP layer can process packets for more than one IP address,
unlike conventional protocol stacks. Furthermore, the IP layer preferably passes
additional information about the packets up the protocol stack for use in the higher
levels. As shown in step 814, the IP layer passes the processed datagrams to the
TCP layer.

[151] The TCP layer processes the datagrams received from the IP layer. The TCP
layer is also capable of handling datagrams for more than one IP address. In fact,
the TCP layer advantageously can process datagrams for multiple connections

between multiple clients and multiple servers. Furthermore, detail rich data relating

32

WO 02/091296 PCT/US02/14326

to the requests for, delivery of, and pfocessing of content can be passed from the
TCP layer to the higher levels of the protocol stack, in addition to the data content.
'[152] Moreover, the TCP layer can detect if the data content is encrypted. If the
content is encrypted, as determined in step 816, the message is sent to the SSL layer
for decryption, as illustrated in step 818. Once decrypted, or if the data content was
not encrypted, the message is sent to the higher levels of the protocol stock for
further processing. Advantageously, the protocol stack can process messages for a
variety of applications including HTTP web browsers, FTP, VoIP, VonD, streaming
media, and the like. Therefore, messages from the TCP layer or unencrypted
messages from the SSL layer are passed to an application selection layer, as shown
in step 820.

[153] The application selection layer preferably determines the application
associated with the current message being processed and routes that message to the
appropriate application decoding layer. For example, in step 822 the application
selection layer determines what application is associated with the message. This
may be carried out by examining the well known port number associated with the
message. As previously described, well known port numbers are often associated
with particular applications. Once the application has been determined, the message
can be sent to the appropriate application decoding layer, as shown in step 824.

[154] The application decoding layer may comprise one or more separate layers to
process messages. Because each different application may use the underlying TCP
connections in a variety of different ways, an application decoding layer will
typically be unique for each specific application. Advantageously, this can be
accommodated through the use of the application selection layer. Once the
4 application decoding layer obtains an application message it preferably processes the
message.

[155] In the specific example of an HTTP web browser application, the application
decoding layer may advantageously combine messages in a fashion that allows the
application decoding layer to determine metrics relating to the actual experience of
the end users. For example, a complete page download time may be determined by

adding up the download times for each of the various components of a single web

page.

33

WO 02/091296 PCT/US02/14326

[156] The result of this type of processing by the application decoding is the
creation of a data object that contains various data elements germane to the
application and the application messages processed. The data object can then be
associated with like data objects to ultimately provide metrics that describe in real
terms relating to actual user experiences how the information server system is
performing. Additionally, certain bottlenecks may be identified in the content
delivery process such that the process may be continuously refined and improved.
[157] Fig. 16 is a flowchart illustrating an example process for identifying a page
object from a set of application messages according to an embodiment of the present
invention. Beginning with step 830, the continuous process obtains the next
message in the stream of messages being received. Each message processed by the
system is checked to determine if it may be the message that starts a new page
object. In the stream of messages received and processed, a logical separation may
be made between messages associated with a particular page. In order to determine
this demarcation, each message in the stream must be reviewed.

[158] When the next message is obtained, the URL data element in the message
can be examined to determine if the message is from a client. If no URL data
element exists, then the message can be excluded from the process. When a
message with a URL data element is detected, the next step is to consult a message
holding area to determine if a previous message is being held, as illustrated in step
832. If no previous message is being held, the system examines the REFERRER
data element, which contains the URL of the referring web page. If the REFERRER
data element is NULL, then the current message is the start of a new page, and the
message can be marked as indicated in step 836.

[159] If the REFERRER data element is not null, then the REFERRER data
element is examined to determine if it contains a local URL. If the URL is not local,
then the current message is the start of a new page, and the message can be marked
as indicated in step 836.

[160] If the URL is local, meaning that it references a local web page, then the
message is stored in the message holding area because the examination of the
message alone was inconclusive as to whether or not the message identified the start

of a new web page. After holding the message, the process returns to step 830 and

34

WO 02/091296 PCT/US02/14326

the next message is obtained. At this point, in step 832 a message is in the holding
area so the REFERRER data element of the current message is examined. This
value is compared to the URL data element of the held message. If the URL data
element of the held message is the same as the URL contained in the REFERRER
data element of the current message, then the held message is the start of a new
page, and the held message can be marked as indicated in step 844.

[161] If the REFERRER data element of the current message is not matched, then
the REFERRER data element is examined to see if it is NULL. If the value is
NULL, then the current message is the start of a new page, and the message can be
marked as indicated in step 836.

[162] If the REFERRER data element is not NULL, then the data element is
examined to determine if the URL content refers to a local web page. If it does not,
then the current is the start of a new page, and the message can be marked as
indicated in step 836.

[163] Ifthe REFERRER data element does not contain a local web page URL, then
the current message replaces the message in the holding area and the process
continues. In this fashion, as the messages continuously pass through the system,
they can be examined to logically differentiate the messages into discrete web pages.
As will be understood by those skilled in the art, once the start of page has been
identified, the end of the previous page has correspondingly been identified.

[164] Fig. 17 is a flowchart illustrating an example process for routing a data
object to a sub-analyzer according to an embodiment of the present invention.
Initially, in step 850, the root analyzer receives the data object from the protocol
stack. In step 852, the root analyzer determines the type of data object that has been
received. For example, in one embodiment, the root analyzer may receive data
objects of type session, connection, page, and page component. Once the type of
data object has been determined, the root analyzer routes the data object to the one
or more appropriate sub-analyzers, as shown in step 854. Depending on the type of
application being monitored, there may be various different types of data objects in
addition to various different types of sub-analyzers. Furthermore, the routing
correlation between data objects and sub-analyzers may be unique for each separate

application.

35

WO 02/091296 PCT/US02/14326

[165] Fig. 18 is a flowchart illustrating an example process for populating a data
storage area with cache data according to an embodiment of the present invention.
The data populator provides the function of transitioning data out of the cache and
into longterm storage. Although the populator does not write data to long term
storage, it passes the data to a database manager that determines how and where to
write the data. For example, the populator first reads data from the cache, as shown
in step 860. Upon reading the data from the cache, the populator forwards the data
to the database manager as illustrated in step 862.
[166] Preferably, the populator process has less priority than the data collection
process so at times reading step 860 may be postponed or delayed while the higher
priority data collection process is executed. In one embodiment, the populator
process may be periodically suspended and then re-activated in order to carry out its
task.
[167] Fig. 19 is a flow diagram illustrating an example process for switching data
repositories during operation according to an embodiment of the present invention.
As the database manager receives data from the populator, as described above with
relation to Fig. 18, the database manager writes that data into longterm storage in the
database. However, much of the data received by the database manager is short
term data that has been collected to reflect real time metrics of the system being
monitored.
[168] Because the real time data is ultimately aggregated into hourly, daily,
weekly, monthly, and yearly data, this real time data rapidly becomes obsolete. In
order to manage the potentially exponential growth of the longterm data storage
area, the database manager periodically purges the fastest growing databases. For
example, the fastest growing databases may include the real time database, the
hourly series database, and the daily series database. In one embodiment, the
various longterm databases are not subject to such rapid growth because the
~ potential number of database records is finite. For example, the hourly longterm
database can typically have only 24 records, since there are only 24 hours in a day.
Similarly, the weekly longterm database may have only 7 records, one for each day

- in the week. Although the data components of these records are updated through

36

WO 02/091296 PCT/US02/14326

aggregation of data, the size of the actual database does not increase rapidly as in the
series database instances because of the advantage of aggregation.

[169] In order to efficiently purge the rapidly growing databases and to allow
uninterrupted read access to the data in longterm storage, the database manager may
employ two separate repositories for a single database. During time period 1, the
active repository may be DB1, while the inactive repository may be DB2. At a
predetermined switch time A, the database manager may delete any residual data in
DB2 and set the active repository to be DB2. Any subsequent database writes
during time period 2 are directed to this repository. Similarly, at a predetermined
switch time B, the database manager may purge the data from repository DB1 and
set the active repository to be DB1. This process may continue through additional
time periods such as time period 3 and time period 4.

[170] The predetermined switch times may also be configurable, as well as
variable. For example, the predetermined switch time may be set for the time when
the current repository reaches 99% of capacity. This advantageously can reduce the
required number of repository changes and reduce the overall overhead of the
database management system. Alternatively, the switch time may be appropriately
set such that no data is purged from the inactive repository until enough time has
passed to ensure that the detail included in the data has been aggregated into other
long term storage, such as hourly longterm, daily longterm, or monthly longterm.
[171] While the particular methods and appliance for measurement, analysis, and
optimization of content delivery over a communications network herein shown and
described in detail is fully capable of attaining the above described objects of this
invention, it is to be understood that the description and drawings presented herein
represent a presently preferred embodiment of the invention and are therefore
representative of the subject matter which is broadly contemplated by the present
invention. It is further understood that the scope of the present invention fully
encompasses other embodiments that may become obvious to those skilled in the art
and that the scope of the present invention is accordingly limited by nothing other
than the appended claims.

37

WO 02/091296 PCT/US02/14326

WHAT IS CLAIMED IS:

1. A method for measuring, analyzing, and optimizing the delivery of content
over a communications network having an information server
communicatively coupled with a network appliance, the method comprising:

detecting a data packet on a communications network;

identifying an application associated with the data packet;

organizing related data packets into an application message;

correlating related application messages into a data object comprising
a plurality of data elements;

routing the data object to one or more data object analyzers; and

storing the data elements from the data object in one or more

databases.

2. The method of claim 1, wherein the detecting step comprises passively

detecting the data packet on the communications network.

3. An apparatus for measuring, analyzing, and optimizing the delivery of
content over a communications network having an information server
communicatively coupled with a network appliance, the apparatus
comprising:

a network interface communicatively coupling the apparatus to the
network;

a packet detector configured to read a data packet from the network;

a protocol stack configured to analyze a plurality of data packets and
combine the data packets into an application message, the protocol stack
further configured to combine a plurality of related application messages into
a data object comprising a plurality of data elements;

aroot analyzer configured to determine the data object type and route
the data object to a sub-analyzer;

a sub-analyzer configured to parse the data object into data elements

and store the data elements in a data storage area.

38

WO 02/091296 PCT/US02/14326

4. The apparatus of claim 3, wherein the data packet detector is further

configured to passively read data packets from the network.

5. A data analyzer for measuring, analyzing, and optimizing the delivery of
content over a communications network having an information server
communicatively coupled with a network appliance, the apparatus
comprising:

an internet protocol layer configured to receive a data packet and
combine a plurality of data packets into a datagram;

a transmission conirol protocol layer configured to receive a
datagram from the internet protocol layer, wherein the datagram comprises
content and additional information, the transmission control protocol layer
additionally configured to combine a plurality of datagrams into an
application message;

an application selection layer configured to receive an application
message from the transmission control protocol layer, wherein the
application message comprises content and additional information, the
application selection layer further configured to identify an application
related to the application message;

an application decoding layer configured to receive an application
message with additional information from the application selection layer and
combine related application messages into a data object comprising a

plurality of data elements.

6. A method for aggregating data relating to measuring, analyzing, and
optimizing the delivery of content over a communications network,
comprising:

writing data to a data cache, wherein the data represents real time
metrics relating to the delivery of content over a communications network;

periodically migrating the data from the data cache to a temporary
storage area,

periodically adding the data from the temporary storage area to a

longterm storage area having an initial size, wherein the resulting size of the

39

WO 02/091296 PCT/US02/14326

longterm storage area is less than the size of the temporary storage area and

the initial size of the longterm storage area combined.

7. A method for identifying a complete web page from a stream of web content
messages, wherein each message comprises a referrer URL, the method
comprising the steps of:

obtaining a current web content message having a referrer URL;
parsing the current web content message to obtain the referrer URL;
comparing the referrer URL to the NULL value; and

identifying the current web content message as the start of a web

page if the referrer URL is equal to the NULL value.

8. The method of claim 7, wherein the referrer URL is not equal to the NULL

value, further comprising the steps of:

holding the current web content message as a previous web content
message having a previous web content message URL;

obtaining a new current web content message having a new referrer
URL;

parsing the new current web content message to obtain the new
referrer URL;

comparing the new referrer URL to the previous web content
message URL; and

identifying the previous web content message as the start of a web
page if the new referrer URL is equal to the previous web content message
URL.

9. A method for identifying a complete web page from a stream of web content
messages, wherein each message comprises a referrer URL, the method
comprising the steps of:

obtaining a current web content messagé having a referrer URL;
parsing the current web content message to obtain the referrer URL;

comparing the referrer URL to one or more local URL values; and

40

WO 02/091296 PCT/US02/14326

10.

11.

identifying the current web content message as the start of a web

page if the referrer URL is equal to a local URL value.

The method of claim 9, wherein the referrer URL is not a local URL, further
comprising the steps of:

holding the current web content message as a previous web content
message having a previous web content message URL;

obtaining a new current web content message having a new referrer
URL;

parsing the new current web content message to obtain the new
referrer URL;

comparing the new referrer URL to the previous web content
message URL; and

identifying the previous web content message as the start of a web

page if the new referrer URL is equal to the previous web content message
URL.

A method for efficiently managing the growth of data in a database having at
least two discrete data repositories, the method comprising:

writing data exclusively to a first data repository;

receiving an indicator to switch data repositories;

purging a second data repository; and

writing data exclusively to the second data repository.

41

WO 02/091296

Network

Information
Server
10

PCT/US02/14326

1/24

"’
Network
40

Appliance
70)

FIG. 1

WO 02/091296 PCT/US02/14326
2/24 .

Appliance

il

(=]
(=]

o) 20 ot
nformation
Network Server
41 11 '
(o] (=]

Network
31

FIG. 2

WO 02/091296

PCT/US02/14326
3/24

Data
Analyzer
110

Reporting

Data Store
Manager
120

Alert
Manager
800

. Interface
Engine 140
130
Appliance 72
FIG. 3

Protocol
Stack
150

Root
Analyzer
160

EIN

Data Analyzer 110

FIG. 4

WO 02/091296 PCT/US02/14326
4/24

Protocol Stack 151

App Decoding ! \ Object
Layer 220 / 230

3

App Selection
Layer 210

A

SSL Decrypt
Layer 200

A

TCP Layer 190

IP Layer 180
A

Pkt Detector 170

Information

Server
& & ’
DP3 DP3

Network
32

FIG. 5

WO 02/091296

PCT/US02/14326
5/24
Root Analyzer 161
Session
Analyzer 280
Session
Object 240 Server
Analyzer 290
r Connection Application

Object 250

Object ——'\ \1 Analyzer 300

231
Page

Page Analyzer 310

Object 260
Page Component

Page Component Analyzer 320

Object 270
Web Site
Analyzer 330
Message

Object 245

FIG. 6A

WO 02/091296

object —\

232

PCT/US02/14326
6/24
Root Analyzer 162
Session
“| Analyzer 281
Session
Analyzer 291
Connection Application
Object 25 >
bject 251 Analyzer 301
Page
Page Analyzer 311
Object 261
Page Component
Page Component Analyzer 321 |
Object 271
Web Site
~1 Analyzer 331
Message
Object 246

FIG. 6B

WO 02/091296

Object ——[\

233 L

PCT/US02/14326
/24
Root Analyzer 163
Session
"1 Analyzer 282
Session
Object 242 Server
Analyzer 292
Connection Application
Object 252
ject 25 Analyzer 302
Page
Page | Analyzer 312
Object 262
Page Component
Page Component Analyzer 322
Object 272
Web Site
"1 Analyzer 332
Message
Object 247

FIG. 6C

WO 02/091296

Object
234

iy

PCT/US02/14326
8/24
Root Analyzer 164
Session
Analyzer 283
Session
Object 243 Server
Analyzer 293
Connection Application
ject 25
Object 253 Analyzer 303
Page
|_3age Analyzer 313
Object 263
.| Page Component
Page Component Analyzer 323
Object 273
Web Site
Analyzer 333
Message
Object 248

FIG. 6D

WO 02/091296

Object
234

iy

PCT/US02/14326
9/24
Root Analyzer 164
Session
Analyzer 283
Session
Object 243 Server
\ "I Analyzer 293
Connection Application
Object 253 Analyzer 303
Page
Page Analyzer 313
Object 263
Page Component
Page Component Analyzer 323
Object 273
Web Site
Analyzer 333
Message
Object 249

FIG. 6E

WO 02/091296

PCT/US02/14326
10/24
Session Analyzer 284
Session
Object 244
Connection summ
Page
Object 264
FIG. TA
Server Analyzer 294
server 1 server 2
- rec 350 rec 360
Connection
Object 255
Page : Y

servern
rec 370

Object 265 m

Message
Object 276

FIG. 7B

WO 02/091296

PCT/US02/14326
11/24

Application Analyzer 304

https stream
htp || rec 390 b || eca10

Connection
Object 256

rec 380

A

|

Message
Object 277

A
- Vop || vonb
4
rec 420 rec 430

FIG.7C
Page Analyzer 314
ec 450
rec 343 ree rec 460
A I Y
Page
Object 266

FIG. 7D

WO 02/091296 s PCT/US02/14326
Page Component Analyzer 324
summ comp 4 comp 2
490
rec 344 rec rec 500
h i A
Page Component
Object 274
comp n
rec 520
FIG. 7TE
Web Site Analyzer 334
Connection summ r::;[e5;0 site 2
Object 257 rec 345 rec 540
3
Page
Object 267 J
A
Page Component | |
Object 275 site n
rec 560

FIG. 7F

WO 02/091296

PCT/US02/14326
13/24

Hourly

|
I
l
I
|
|
I
l
l
l

Longterm
| 590
| Daily
| Series
| 600
l
Daily
transfer transfer Longterm
when full hourly 610
Weekly
Series
620
Monthly
Series
630
Monthly
Longterm
- 640
Yearly
FIG. 8 Series

650

WO 02/091296

PCT/US02/14326
14/24
Real I Hourly
Time Series
571 581
Server e Server
" Data S1 S2 Data S1 S3
a:2b a:100 a:125 a:400
b:50 b:200 b:275 b:500
c:75 ¢:300 ¢:300 c:600
Page
"| Data
Site
"I Data
|]
.
Server
" Data S1 S2 S3
L 1 l|a:150 a:100 a:400
b:325 b:200 b:500
FIG. 9 c:375 c:300 ¢.600

84B

WO 02/091296

15/24

Database

Populator
660

Manager

670

// \\
/ external
| interface |
. 680 /

T

Data Store Manager 121

FIG. 10

PCT/US02/14326

84A

Present
Manager
690

Config
Manager
700

Measure
Data
Manager
730

Alarm
Manager
710

Reporting Engine 131

FIG. 11

PCT/US02/14326

WO 02/091296

16/24

vZi "Old

SETTEXE ,, uu_._,\z :

O3 Ao0IR MMM 1t

U5 DBJUI0S D30XPap Mm 72

oo

5988,

PCT/US02/14326

WO 02/091296

17/24

‘oLt

g¢i "oid

Cgopl 00k

08 -

PCT/US02/14326

WO 02/091296

18/24

goL

.. . D8k

o G

€

rﬁ

o¢l Old

 posdsssaie g

_) ,s.la;sﬁ

PCT/US02/14326

WO 02/091296

19/24

aci "oid

JUNDD UDRIRUUOT 45435 | -

I A . -

R,

o0&l

oy

USROS 1 1 A

PCT/US02/14326

WO 02/091296

20/24

321 "Oid

g T

WO 02/091296

Information

21/24

Server
13
Network
33
(Admin Appliance
\\ 91 II 73

~——

FIG.

13

Agent
Controller
770

Account
Validation
790

Home Base 741

Messaging

780

PCT/US02/14326

FIG. 14

WO 02/091296 PCT/US02/14326
22/24

/810
812

detect send to
packet i IP layer

A 814

send to
TCP layer

818
816

encrypted

decrypt v
packet

packet

N
as;?:ati%n determine
selection layer applicafion
820 v 824

send to application
decoding layer

. 826

create
data object

FIG. 15

WO 02/091296
23/24

/830

PCT/US02/14326

get next 4

v message

holding
message

836

mark current
message as start
of page

referrer
= NULL

A

referrer
=local URL

I

hold message

FIG. 16

mark held
message
as start of page

Nous

referrer
= held URL

838

840

WO 02/091296 PCT/US02/14326
24/24
850 860
receive read data
data object from cache
852 3 862
determine forward data
type to database
manager
J
854
FIG. 18
route to
sub-analyzers
FIG. 17
time —>
switch switch switch switch
/time A /time B /time C time D
time period 1 time period 2 time period 3 time period 4

!

(2 (&0
l
(&) (&0

FIG. 19

I
{02

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

