(12) STANDARD PATENT (11) Application No. AU 2002362656 B9
(19) AUSTRALIAN PATENT OFFICE

(54) Title

System for integrating java servlets with asynchronous messages
(51) International Patent Classification(s)

GO6F 15/00 (2006.01) HO4L 29/06 (2006.01)

GO6F 9/46 (2006.01) HO4L 29/08 (2006.01)

GO6F 15/16 (2006.01)
(21) Application No: 2002362656 (22) Date of Filing: 2002.10.04
(87) WIPO No: WO03/032181

(30) Priority Data

(31) Number (32) Date (33) Country
60/327,530 2001.10.05 us
10/264,973 2002.10.03 us

(43) Publication Date: 2003.04.22

(43) Publication Journal Date: 2003.07.03

(44) Accepted Journal Date: 2008.05.29

(48) Corrigenda Journal Date: 2008.06.19

(71) Applicant(s)
Bea Systems, Inc.

(72) Inventor(s)
Pullara, Sam;Brown, Dave;Messinger, Adam

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
US 5987454
US 20010047385
US 6247044
US 6701438
US 6279030
WO 01/90945
US 6292933

10

Abstract:
in a traditional application server that uses servlets, when a

request is dispatched to a thread the service method of the appropriate
servlet is called. When the service method returns, the response is
sent. This is sub-optimal in the case that an asynchronous event must
occur before the response can be sent, because the thread running the
servlet must block until the event occurs. The invention provides for
asynchronous processihg of such requests (510). In one embodiment,
the invention provides an extension to the Servlet APl which allows the
service method (514) to return (516), and thus the thread to be freed,
before the response is ready to be sent. Then when the asynchronous
event later (520) occurs the response may be completed and sent (518,
522, 524).

12 May 2008

2002362656

10

15

20

25

30

PAOPERRIC\2008\May\2002362656 | spa doc-5/12/2008

-1-

SYSTEM FOR INTEGRATING JAVA SERVLETS
WITH ASYNCHRONOUS MESSAGES

Copyright Notice:

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosure,
as it appears in the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Claim of Priority:

This application claims priority from provisional application "SYSTEM FOR
APPLICATION SERVER MESSAGING WITH ASYNCHRONOUS QUEUES",
Application No. 60/327,530, filed October 5, 2001, and which application is
incorporated herein by reference.

Field of the Invention:

The invention relates to a system for messaging and/or communicating service
requests between an HTTP client and a server; and a method for messaging
and/or communicating service requests between an HTTP client and a server. For
example, the present invention generally relates to application and transaction
servers and particularly to a system for supporting message queuing and threads

with multiple execute queues.

Cross References:

This application is related to provisional application "SYSTEM FOR APPLICATION
SERVER MESSAGING WITH MULTIPLE DISPATCH POOLS", Application No.
60/327,543, filed October 5, 2001, and Utility Patent Application "SYSTEM FOR

10

15

20

25

WO 03/032181 PCT/US02/31727

-2.

APPLICATION SERVER MESSAGING WITH MULTIPLE DISPATCH
POOLS”, Application Number , Inventors: Adam Messinger
and Don Ferguson, filed October 3, 2002 both applications are

incorporated herein by reference.

Background of the Invention:
[0004] The Java 2 Platform, Enterprise Edition (J2EE)

specification defines one of the current standards for developing multi-
tier enterprise applications. J2EE provides a component-based
approach to the design, development, assembly, and deployment of
enterprise applications, which both reduces the cost and enables fasten
design and implementation. The J2EE platform gives the developer a
multi-tiered distributed application model, the ability to reuse
components, a unified security model, and flexible transaction control.
Not only can they deliver innovative customer solutions to market faster
than ever, but the resultant platform-independent J2EE
component-based solutions are not tied to the products and application
program interfaces (APIs) of any one vendor.

[0005] The J2EE specification defines the following kinds of
components: application client components; Enterprise JavaBeans
(EJB); servlets and Java Server Pages (JSP) (also called Web
components); and applets. A multi-tiered distributed application model
implies that the application logic is divided into components according
to function, and different application components may make up a J2EE
application on the same or different servers. Where an application
component is actually installed depends on which tier in the multi-tiered

J2EE environment the application component belongs. These tiers are

10

15

20

25

WO 03/032181

PCT/US02/31727

-3-

depicted in Figure 1. As shown therein an application server tier 104 is
used to develop EJB containers and/or presentation containers such as
servlets, JSP, and html pages 114. These in turn are used as an
interface between a client tier 102, where the clients 108 and client
applications are deployed, and a backend tier 106, used for hosting
enterprise or legacy applications such Enterprise Resource Planning
(ERP) systems.

[0006] Client tier- These can be browsers, Java-based programs,
or other Web-enabled programming environments running within the
client tier, both inside and outside of corporate firewalls.

[0007] Application Server tier - Normally this tier hosts a
combination of presentation logic and business logic to support client
requests. Presentation logic is supported via JSP pages and servlets
that display HTML pages, while business logic is supported via Remote
Method Invocation (RMI) objects and EJBs 112. EJBs rely upon the
container environmentfortransactions, lifecycle and state management,
resource pooling, security, etc., which together make up the run time
environment in which the beans are executed.

[0008] Back-end tier - This is generally a combination of existing
applications and data stores. It is also referred to as the Enterprise
Information Systems (EIS) tier, since it may include such systems as
Enterprise Resource Planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems.
[0009] Since the components of a J2EE application run
separately, and often on different devices, there needs to be a way for
client and application server tier code to look up and reference other

code and resources. Client and application code can, for example, use

10

15

20

25

WO 03/032181

PCT/US02/31727

-4-

the Java Naming and Directory Interface (JNDI) 116 to look up
user-defined objects such as enterprise beans, and environment entries
such as the location of the Java Database Connector (JDBC)
DataSource objects, which in turn are used for looking up resources in
backend tier, and message connections.

[0010] Application behavior such as security and transaction
management can be configured at deployment time on Web and
enterprise bean components. This deployment time feature decouples
application logic from the configuration settings that might vary with the
assembly. The J2EE security model lets a developer configure a Web
or enterprise bean component so that system resources are accessed
only by authorized users. For example, a Web component can be
configured to prompt for a user name and password. An Enterprise
Bean component can be configured so that only persons in specific
groupls can invoke certain kinds of its methods. Alternatively, a servlet
component might be configured to have some of its methods accessible
to everyone, and a few methods accessible to only certain privileged
persons in an organization. The same serviet component can be
configured for another environment to have all methods available to
everyone, or all methods available to only a select few.

[0011] Some application servers, such as the WebLogic Server
product from BEA Systems, Inc., San Jose, California, use an Access
Control List (ACL) mechanism that allows for fine-grained control of the
usage of components running on the server. Using an ACL, a developer
can define at the Java Method level what can, or cannot, be executed
by which user or group of users. This ACL mechanism covers anything

that runs on the application server except for EJBs, which have their

10

15

20

25

WO 03/032181

PCT/US02/31727

-5-

own access control mechanism defined in the EJB specification.
Security realms allow the administrator to import information from

existing authorization or authentication systems into the ACL.

Java Servlets

[0012] A servlet is a program that extends the functionality of a
Web server. A servlet receives a request from a client, dynamically
generates the response (possibly querying databases to fulfill the
request), and then sends the response containing an HTML or XML
document to the client. Servlets are similar to CGI but are typically
easier to write, since servlets use Java classes and streams. They
execute faster because servlets are compiled to Java byte code and at
run time the servlet instance is kept in memory, each client request
spawning a new thread. Servlets make it easy to generate data to an
HTTP response stream in a dynamic fashion. Each client request is
performed as a new connection, so flow control does not come naturally
between requests. To allow for this session management maintains the
state of specific clients between requests. In some application servers,
servlets make use of the HTTP session object to save their state
between method requests. This object can be replicated in a clustered

environment for failover purposes.

Java Server Pages

[0013] JSP pages are a text-based, presentation-centric way to
develop servlets. JSP pages offer all the benefits of servlets, and when
combined with a JavaBeans class, provide an easy way to keep content

and display logic separate. Both JSP pages and servlets are more

10

15

20

25

WO 03/032181

-6-

desirable than Common Gateway Interface (CGl), because they are
platform-independent, and use less overhead. JSP pages can be used
with JavaBeans classes to define Web templates for building a Web site
made up of pages with a similar look and feel. The JavaBeans class
performs the data rendering, so the templates have no Java code. This
means they can be maintained by an HTML editor. Simple Web-based
application using a JSP page can be used to bind content to application
logic using custom tags or scriptlets instead of a JavaBeans class.
Custom tags are bundled into tag libraries that are imported into a JSP
page. Scriptlets are small Java code segments embedded directly in the

JSP page.

Java Messaging Services (JMS)

[0014] JMS is the J2EE mechanism used to support the
exchange of messages between Java programs. This is how Java
supports asynchronous communication, wherein the sender and
receiver don't need to be aware of each other and thus can operate
independently. JMS supports two messaging models:

[0015] Pointto point - which is based on message queues. In this
model message producer sends a message to a queue. A message
consumer can attach itself to a queue to listen for messages. When a
message arrives on the queue, the consumer takes it off the queue and
responds to it. Messages can be sent to just one queue and will be used
by just one consumer. Consumers have the option to filter messages to
specify the exact message types they want.

[0016] Publish and subscribe - which allows producers to send

messages to a topic and for all the registered consumers for that topic

PCT/US02/31727

12 May 2008

2002362656

10

15

20

25

30

POPERVRIC\2008\Ma 12002362656 1 sps.doc-5/12/2008

-7-

to retrieve those messages. In this case, many consumers can receive the same

message.

One problem with current Serviet APls is the completely synchronous
programming model. After a request is dispatched to a particular thread the
service() method of the appropriate servlet is called. When the service() method
returns, the response is sent. This is a simple programming model which is
suitable for many types of work, but is sub-optimal in the case that a asynchronous
event must occur before the response can be sent, because the thread running

the serviet must block until the event occurs.

It is generally desirable to overcome or ameliorate one or more of the above
described difficulties, or to at least provide a useful alternative.

Summary of the Invention:

In accordance with one aspect of the present invention, there is provided a system
for messaging and/or communicating service requests between an HTTP client
and a server, comprising:
a server that includes a servlet container process, a servlet process, and a
servlet response handler process executing on the server;
an HTTP software interface provided by the servlet container that receives
requests from an HTTP client, wherein a request from the HTTP client is
transmitted by the servlet container to the servlet; and
wherein the servlet upon receiving the request from the servlet container
immediately sets a response code to be used with a subsequent response,
releases the response handler to interleave the processing of subsequent
requests from the HTTP client or from other HTTP clients, and then
processes the original request by locating the required information, resetting
the response code, and sending the information to the HTTP client using the
servlet response handler.

12 May 2008

2002362656

10

15

20

25

30

PAOPERRIC\2008\May\2002362656 | spa.doc-5/12/2008

-8-

In accordance with another aspect of the present invention, there is provided a
method for messaging and/or communicating service requests between an HTTP
client and a server, comprising the steps of:
receiving at a server that includes a servlet container process, a servlet
process, a servlet response handler process and an HTTP software interface
executing thereon, a request from an HTTP client to access the servlet within
the servlet container; and immediately
setting a response code to be used with a subsequent response,
releasing the servlet response handler to interleave the processing of
subsequent requests from the HTTP client or from other HTTP clients,
processing the original request by locating the required information, resetting
the response code, and sending the information to the HTTP client using the

serviet response handler.

The invention preferably provides a system and method for asynchronous
threading which allows the service() method to return (and thus allowing the thread
to be freed up) before the response is ready to be sent. Then when the
asynchronous event later occurs the response may be completed and sent. An

example use of this mechanism is the use of JMS in conjunction with servlets.

In accordance with a preferred embodiment of the invention, the process begins
when a servlet is executed. The servlet builds a portion of a response, but typically
needs more data to complete the response. While it's waiting it queues a JMS
message requesting the data and sets the response object aside in a place where
it may be found when a JMS message containing the needed data arrives. At this
point the servlet may return, but the response will not yet be sent. At a later point
in time, when the data arrives via JMS for example, the corresponding response
object is retrieved. The remainder of the response can then be generated. When

the response is completed it can be explicitly sent to the client.

This feature is also available through the use of a JSP tag library. Using the tags

12 May 2008

2002362656

10

15

20

25

30

PAOPERWRIC2008:May\2002362656 1 spa.doc-5/122008

-9.

the JSP page author specifies what work should be done before the asynchronous
event and which work should be done after the asynchronous event. This feature
integrates with the JSP context mechanisms to ensure that they are restored after

the asynchronous event and that processing can continue uninterrupted.

Brief Description of the Drawings:

Preferred embodiments of the present invention are hereafter described, by way of
non-limiting example only, with reference to the accompanying drawings, in which:
Figure 1 shows an illustration of a J2EE compatible architecture that can utilize the
present invention.

Figure 2 shows an illustration of a threading policy with asynchronous thread pool
in accordance with an embodiment of the invention.

Figure 3 shows a diagram of a synchronous threading process.

Figure 4 shows a lifecycle of a single HTTP request that is processed using
traditional methods.

Figure 5 shows a lifecycle of a single HTTP request processed using
asynchronous messaging.

Figure 6 shows a lifecycle of a plurality of HTTP requests processed using
traditional methods.

Figure 7 shows a lifecycle of a plurality of HTTP requests processed using
asynchronous messaging.

Detailed Description of Preferred Embodiments of the Invention:

Broadly described, the invention preferably provides a system and method to allow
asynchronous threading. The invention can be incorporated into application server
systems that allow access to a servlet via an Application Program Interface (API),
or into other systems that benefit from asynchronous threading.

The typical Servlet APls are completely synchronous. After a request is dispatched
to a thread, the service() method of the appropriate serviet is called. When the

12 May 2008

2002362656

10

15

20

25

30

PAOPERWRIC\20081MayA2002362656 | spa doc-5/12/2008

-10 -

service() method returns, the response is sent. This simple programming model is
suitable for many types of work, but is sub-optimal in those instances that an
asynchronous event must occur before the response can be sent, because the

thread running the servlet must block until the event occurs.

In one preferred embodiment, the invention provides an extension to the Servlet
API which allows the service() method to return (and thus allowing the thread to be
freed up) before the response is ready to be sent. Then when the asynchronous
event later occurs the response may be completed and sent. One example use of

this mechanism is the use of JMS in conjunction with serviets.

In this preferred embodiment, when a servlet is executed, it builds a portion of a
response, but then typically needs more data to complete the response. It queues
a JMS message requesting the data, and sets the response object aside in a place
where it may be found when a JMS message containing the needed data arrives.
At this point the serviet may return, but the response will not yet be sent. Later on,
when the required data arrives via JMS, the response object is retrieved. The
remainder of the response can then be generated, and when completed can be

explicitly sent to the client.

The invention is preferably primarily designed for use with application, transaction,
and messaging servers, such as the WebLogic family of products from BEA
Systems, Inc. At the core of the typical server's design is the threading model, the
policy by which threads are assigned to perform work requests. As servlet
requests arrive at the server they are dispatched to a thread. This thread is
responsible for executing the requested serviet. The server employs a threading
model which uses two thread pools an asynchronous pool (often referred to as
reader threads) and a synchronous pool (referred to as execute threads). This
combination of pools allows a developer or administration to effectively prioritize
requests while tolerating user code that performs blocking operations.

12 May 2008

2002362656

POPERRIC\2008\M4yA2002362656 1 spa.doc-5/12/2008

-10a -

Figure 2 shows a threading policy mechanism 206 in accordance with an
embodiment of the invention. The asynchronous thread pool 208 waits on an
asynchronous input mechanism 202 (muxer) for asynchronous read results to
become available. Once a result is available a thread from the pool looks at the
5 message and dispatches it by making the appropriate callbacks. The dispatch

callbacks usually queue the request for later processing by the synchronous
thread pool. However certain non-blocking, priority requests are services directly in
the callback. By aggressively accepting input high priority requests 214 do not wait
to be read while low priority requests 212 run. Since these threads should never

10 block there are usually a low number of them, perhaps one per processor (CPU).

10

15

20

25

WO 03/032181 PCT/US02/31727

-11 -

[0034] The synchronous thread pool 210 waits on a queue of
requests 204. Once a request is available a thread from the pool
processes takes the request from the queue, processes it, and sends
outthe result 216. While processing the request the thread may execute
code, such as sending out the result, which causes the thread to block.
The number of threads should therefore be tuned so that there is always
one thread per CPU that is in the runnable state. The dispatch policies
are described in more detail in provisional application entitled, “SYSTEM
FOR APPLICATION SERVER MESSAGING WITH MULTIPLE
DISPATCH POOLS”, Application Number 60/327,543, Inventor: Adam
Messinger, filed October 5, 2001 and copending utility application
entitled, “SYSTEM FOR APPLICATION SERVER MESSAGING WITH
MULTIPLE DISPATCH POOLS", Application Number ,
Inventors: Adam Messinger and Don Ferguson, filed October 3, 2002.
[0035] Figure 3 shows a traditional synchronous message
response mechanism. As shown therein, a request from the client
application 302, such as for example a Web browser application, is
transmitted to the application server via a servlet 304. The request may
be in the form of a hypertext transmission protocol (http) request 306,
for which the client will typically expect a hypertext markup language
(html) response 308. In the synchronous model the thread executes the
servlet and then immediately sends the response to the client when
execution of the servlet completes. The problem with this approach is
that the executing thread is consumed for the entire execution of the
servlet. If the serviet is performing tasks which block, perhaps waiting
for other data, then this can represent a waste of server resources.

10

15

20

25

WO 03/032181

PCT/US02/31727

-12-

[0036] Figure 4 illustrates a typical system lifecycle wherein a
client access a resource at a server. As shown in Figure 4, an HTTP
client 402 accesses a serviet 408, which typically runs on a remote web
server. It will be evident to one skilled in the art that while HTTP clients
are shown herein for purposes of illustration, the invention is not so
limited, but may be used with other types of client application. As shown
in the lifecycle diagram in Figure 4, the HTTP client accesses the
servlet via a servlet container 404. The servlet container is responsible
for receiving the HTTP request 410, and passing it to the serviet 408 for
processing. Much of the operation of processing this HTTP request
takes place at the serviet response level 406. As illustrated in Figure
4, with time increasing vertically down the page, the process continues
with an :init call 412 to the servilet, which is handled by the
response handler 406. The servlet containerthen passesa :service
request 414 to the servlet, to retrieve or to update data for example. A
typical use of such a system is in an e-commerce environment, wherein
the client application is designed to retrieve catalog listings, such as the
results of a search for flight times, etc. The servlet typically responds to
the request by writing output 416 to the servlet response handler. This
step is often required for buffering, and for optimization purposes.
When the servlet container then requests that the response be returned
to the client, it sendsa :send request 418 to the response handler,
and the response handler returns the :send response 420 to the
servlet container. The response is then sent as an HTTP response 422
to the client.

[0037] Figure 5 illustrates a similar life cycle that may be used in

accordance with an embodiment of the invention. As shown in Figure

10

15

20

25

WO 03/032181 PCT/US02/31727

-13 -

5, again an HTTP client 502 is used to access a remote server, server
resource or serviet 508. The HTTP request 510 is handled by a servlet
container 504 which issues an :init request 512 to the servlet
response handler 506. This time however, when the :service
request 514 is transmitted to the servlet for processing, the serviet
returns 516 immediately to the response handler. Thisimmediate return
frees up the response handler for handling subsequent requests, in that
it does not need to wait for the servlet to actively return data in order to
handle those requests. After a period of time t 520, when the servlet
has the appropriate data to return to the requests, it sends a :send
signal 518 to the response handler, which then sends the :send
response 522 to the servlet container. The subsequent HTTP
response 524 is transmitted to the client as before.

[0038] As part of the process described above, the serviet sets a
response code until it has something else to transmit, effectively taking
the responsibility for responding away from the container level and
placing it at the servlet level. In practice the amount of time that the
servlet waits to issue the :send response can be defined as some
arbitrary amount, or can be performed as the result of an asynchronous
message, for example as the result of receiving a JMS message
indicating that the information is available to be transmitted to the client.
This type of processing is useful in, for example, e-commerce sites
where a user typically experiences a delay time in awaiting search
results. When processing is performed according to the invention,
instead of merely having a frozen screen, the user may receive some
items of information, while other items are returned piecemeal as the
serviet finds the appropriate data and returns it. At the same time the

10

15

20

25

WO 03/032181 PCT/US02/31727

-14 -

servlet response handler is available to handle other client requests.
The type of data that is returned immediately, and the type that is
returned later, can be specified by the developer.

[0039] Figures 6 and 7 illustrate in more detail the operation of
the invention, as it may be applied to service multiple requests. As
shown in Figure 6, when asynchronous messaging is not used,
subsequent requests from clients must be handled in a sequential
manner. So, for example, in Figure 6, a first HTTP request 410 from
client A is handled by the servlet container 404 and servlet response
handler 406 and completely processed, prior to a second HTTP request
430 from client B 403 being handled. The overall result is one of taking
twice as much time to process HTTP requests from the two clients. If
the requests were not handled in this sequential manner, it is very likely
that one or more requests would create a backlog for other requests
such that the user would experience a delay in processing.

[0040] Figure 7 illustrates a life cycle of a mechanism in
accordance with an embodiment of the invention in which asynchronous
messaging is used to process multiple requests from a single client,
and/or requests from multiple clients, in an asynchronous manner, such
that the processing can be run in different threads. As shown in Figure
7, afirst HTTP client A 502 and a second HTTP client B 503 access a
servlet resource 508 using the mechanisms described above. In
accordance with this embodiment, when a first HTTP request A 510 is
received at the servlet container, it is handled by the response handler
using an :init A call 512, and then passed as a :service
request 514 to the servlet 508. The servlet returns 516 immediately to
the serviet response handler, which then frees up the response handler

10

15

20

25

WO 03/032181 PCT/US02/31727

-15-

for handling other requests. As shown in Figure 7, a second HTTP
request B is handled immediately as an * :init B call 532 by the
servlet response handler, and passed to the servlet as a :sexrvice
request 534 for processing. Again, the servlet returns immediately 536.
Interleaving the messages in this manner reduces the overall time for
processing both requests, and allows the servlet to return information to
the client when and if it becomes available. For example, as shown in
Figure 7, when the senvlet finds the information necessary to respond
to request A it returns that :send response A signal 522 to the
servlet container for sending on to the client as HTTP response A 524.
A second :send response B signal 542, and HTTP response B

544 is similarly handled in the same way.

Implementation

[0041] The file servlet can be replaced by a fast file serviet on
platforms that support the asynchronous sending of files over the
network. The implementation of this type of serviet requires the addition

of asynchronous responses for servlets, which is discussed below.

Synchronous and Asynchronous Responses

[0042] When a servlet request from a remote client is serviced a
response is often required. This response can either be synchronous,
in that it is sent by the same thread that processed the request, or
asynchronous in that it is sent later in a different thread. This analysis
is fromthe server's perspective. From the clients perspective eithertype
of response may or may not block waiting for it depending upon how the

remote request was made.

10

15

20

25

WO 03/032181 PCT/US02/31727

-16 -

[0043] Currently most requests are handled in a synchronous
manner. When a servlet request is serviced all processing must be
completed before the servicing thread can move on to another request.
This synchronous model is the one specified by the RMI and servlet
specifications. The traditional reason for this is that writing
asynchronous code is very difficult and thus prone to error.

[0044] There are certain situations where the ability to respond to
requests in an asynchronous manner would be very helpful for
conserving threads. This is typically true in cases where the server
needs to make one or more long running requests of external resources
or where the server needs to wait on some condition while processing
the request. An example of this is a client request to dequeue from a
JMS queue that is currently empty. In a synchronous model the thread
servicing the request blocks until there is a message in the queue to
return to the client. In an asynchronous model the thread can set the
request aside and continue servicing other requests. When a message
is placed in the queue the request can be found and a response sent to
the client. The invention allows servers to support asynchronous

responses to RMI and servlet requests.

Serviets

[0045] Particular servlets can be declared as asynchronous in
their deployment descriptor. When the service method of an
asynchronous servlet returns, no further action will be taken on that
request. The servlet is responsible for storing the request someplace
such that after some other action takes place it can be retrieved and the
response sent. At this point a special send() method must be called on

10

15

20

25

WO 03/032181

-17 -

the request which will flush the streams, log the request, and, if itis a
keep alive connection then register the socket with the muxer to receive
more data. It is important to create implementations that ensure
resources are appropriately freed by timing out long running requests,

thus freeing resources for garbage collection and other cleanup.

JSP

[0046] An asynchronous model may also be supported in a
similar manner through the use of JSP tag libraries. These tag libraries
are used by the http developer/page author to designate which portion
of the web page should be executed prior to the asynchronous event
and which portion should be executed after the asynchronous event.
The tag libraries allow the author to gain access to an object which
should be notified when the asynchronous event occurs and JSP page
execution should resume.

[0047] When using the tag libraries the execution context of the
page may be automatically stored before registering for the
asynchronous event. In this way it is possible to hide many of the
details of asynchronous programming from the JSP author. The JSP
need not be concerned about state maintenance. State stored in any
of the standard scopes (page, request, session or application) will
continue to work as they would using a synchronous JSP.

[0048] The foregoing description of the present invention has
been provided for the purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations will be

apparent to the practitioner skilled in the art. The embodiments were

PCT/US02/31727

12 May 2008

2002362656

10

15

PAOPER\RIC\2008\MuyA2002362656 | spa doc-$/12/2008

-18 -

chosen and described in order to best explain the principles of the invention and
its practical application, thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modifications that are suited to
the particular use contemplated. [t is intended that the scope of the invention be

defined by the following claims and their equivalence.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word “comprise”, and variations such as “comprises” and
“comprising”, will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or
group of integers or steps.

The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication
(or information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

12 May 2008

2002362656

10

15

20

25

30

POPER\RIC\2008\May\2002362656) spa.doc-5/12/2008

-19-

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

A system for messaging and/or communicating service requests between an
HTTP client and a server, comprising:

a server that includes a servlet container process, a servlet process, and a
servlet response handler process executing on the server,

an HTTP software interface provided by the servlet container that receives
requests from an HTTP client, wherein a request from the HTTP client is
transmitted by the serviet container to the servlet; and

wherein the servlet upon receiving the request from the servlet container
immediately sets a response code to be used with a subsequent response,
releases the response handler to interleave the processing of subsequent
requests from the HTTP client or from other HTTP clients, and then
processes the original request by locating the required information, resetting
the response code, and sending the information to the HTTP client using the
serviet response handler.

The system of claim 1 wherein the subsequent response is triggered by a
response command from the HTTP client to send additional response data.

The system of claim 1 wherein the system includes an extension to the
HTTP interface that allows a service method to return, and the thread
handling that service method to be released before the response is ready to
be sent.

The system of claim 1 further including a Java Messaging Service (JMS),
wherein the servlet builds a portion of a response, queues a JMS message
requesting the data, and creates a response object as the response code,
which is later retrieved when another JMS message containing the

requested data arrives.

12 May 2008

2002362656

10

15

20

25

30

PAOPER\RIC\2008\May\2002362656 1 spa doc-$/12/2008

-20-

The system of claim 1 wherein the system sets a period of time for which to
send the subsequent response, after which period of time the servlet sends a
send signal to the response handier, which then signals the servlet container
to send the subsequent response to the client.

The system of claim 1 wherein the system is used to provide information
within a search function to a user of a web page, and wherein the system
provides partial items of information to the user's screen, while other items of
information are returned as subsequent responses to the user's screen as
the servlet finds the appropriate data.

A method for messaging and/or communicating service requests between an
HTTP client and a server, comprising the steps of:

receiving at a server that includes a servlet container process, a servlet
process, a servlet response handler process and an HT TP software interface
executing thereon, a request from an HTTP client to access the servlet within
the servlet container; and immediately

setting a response code to be used with a subsequent response,

releasing the servlet response handler to interleave the processing of
subsequent requests from the HTTP client or from other HTTP clients,
processing the original request by locating the required information, resetting
the response code, and sending the information to the HTTP client using the

servlet response handler.

The method of claim 7 wherein the subsequent response is triggered by a
response command from the HTTP client to send additional response data.

The method of claim 7 wherein the system includes an extension to the
HTTP interface that allows a service method to return, and the thread
handling that service method to be released before the response is ready to

be sent.

12 May 2008

2002362656

10

15

20

25

P\OPERRJC\2008\MayA2002362656 1 spa doc-5/12/2008

10.

11.

12.

13.

14.

-21-

The method of claim 7 further including a Java Messaging Service (JMS),
wherein the servlet builds a portion of a response, queues a JMS message
requesting the data, and creates a response object as the response code,
which is later retrieved when another JMS message containing the

requested data arrives.

The method of claim 7 wherein the system sets a period of time for which to
send the subsequent response, after which period of time the servlet sends a
send signal to the response handler, which then signals the servlet container

to send the subsequent response to the client.

The method of claim 7 wherein the system is used to provide information
within a search function to a user of a web page, and wherein the system
provides partial items of information to the user's screen, while other items of
information are returned as subsequent responses to the user's screen as
the servlet finds the appropriate data.

A system for messaging and/or communicating service requests between an
HTTP client and a server substantially as hereinbefore described, with

reference to the accompanying drawings.

A method for messaging and/or communicating service requests between an
HTTP client and a server substantially as hereinbefore described, with

reference to the accompanying drawings.

'Enterprise
- Information

108
Ir _______ I T T T T T
| | | AN
| | | EJB Container
TS] |
: Client | ; -
| | f\
| | | Enterprise
| [| Beans
: l |
| Client | : : ¢
' | | :
| | | |Presentation
| | | Container
|
[: : (Servlets,
I , | JSETPI\Z‘EGS' JNDI, JMS
N\ '
: : 114 —/r- XML) —~
:_ 2 Client Tier | | Application Server Tier
102 104

FIGURE 1

116

Systems

(RDBMS, ERP,

Backend Tier

Legacy Applications)

106

L/t

I812€0/€0 OM

LTLIE/TOSN/1Dd

206

205

Resource

202 —— = —&— = 212
{ | R
| | Asynchronous -
Asynchronous {» Thread — LORW PFIOFJI[W o
Input | Pool [equ.es
Mechanism I | High Priority |
I | Request
I | g
| ' 21
Queue | Synchronous [4
of > Thread [¢4+—— Result «——— | —
Requests | Pool I
S) | g
216
204 L ~(— ————— !
210

FIGURE 2

L]z

I81Z€0/€0 OM

LTLIE/T0SN/LId

312
Java
Object
Request

Servlet

Response

318 _

306
http
Client
(Browser)
2?
302 htmi

308

2

316

304

Response
Queue
314

FIGURE 3

Application
Server
310

L/g

I81Z€0/€0 OM

LTLIE/T0SN/LId

Time

WO 03/032181 PCT/US02/31727
417
402 404 406 408
/ = = =
HTTP Servlet Servlet
Client; Container; Response: Serviet:
410
‘hitp request
»
.
> —
Lt
- — — — — —
*http response I
~
422

(Single Request)

FIGURE 4

WO 03/032181 PCT/US02/31727

S/17
502 504 506 508
ol Yl fad ~
HTTP Serviet Serviet
Client: Container: Response: Serviet:

510

:http request

g

>

‘ 'service |-\ , 514

|--g

l:send response 522

I :http response J
i]
524 -

(Single Request)

FIGURE 5

WO 03/032181

PCT/US02/31727
6/7
402 403 . 404 406 408
c = Z c o
HTTP HTTP Serviet Serviet)
Client A: Client B: Container: Response: Servlet:
410
(-
‘http request A
1
412
’
’ -
< g
.4 — — — — — —
j | r :hitp response I
| -
422

B

‘http
request B

430

442
-hitp
response
B
<_- — e

432

:service 434

l 'send B]—_, 438
-

-t

(

I :send response B |»\, 440

Multiple Requests)

FIGURE 6

write output

436

Time

WO 03/032181 PCT/US02/31727

7/7
502 503 504 506 408
fadt faud P fad ~
HTTP HTTP Serviet Servlet)
Client A: Client B: Container: Response: Serviet:
510
(-
‘hitp request A
P
>
‘http
] | |request B Time
_
| s 1
- 516
t, 520
|| A
536
518 A
| send A J
- — — — —
524
ol :send response A{-_, 522
:hitp Lt
response '
A
B e DR]y
—
538
 —————
:http
response
B
|| / -
544

(Multiple Requests)

FIGURE 7

	Abstract
	Description
	Claims
	Drawings

