
(12) STANDARD PATENT (11) Application No. AU 2002362656 B9
(19) AUSTRALIAN PATENT OFFICE

(54) Title
System for integrating java servlets with asynchronous messages

(51) International Patent Classification(s)
G06F 15/00 (2006.01) H04L 29/06 (2006.01)
G06F9/46 (2006.01) H04L 29/08 (2006.01)
G06F 15/16 (2006.01)

(21) Application No: 2002362656 (22) Date of Filing: 2002.10.04

(87) WIPO No: W003/032181

Priority Data

(31) Number (32) Date (33) Country
60/327,530 2001.10.05 US
10/264,973 2002.10.03 US

(43) Publication Date: 2003.04.22
(43) Publication Journal Date: 2003.07.03
(44) Accepted Journal Date: 2008.05.29
(48) Corrigenda Journal Date: 2008.06.19

(71) Applicant(s)
Bea Systems, Inc.

(72) Inventor(s)
Pullara, Sam;Brown, Dave;Messinger, Adam

(74) Agent Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
US 5987454
US 20010047385
US 6247044
US 6701438
US 6279030
WO 01/90945
US 6292933

Abstract:
In a traditional application server that uses servlets, when a

request is dispatched to a thread the service method of the appropriate

servlet is called. When the service method returns, the response is

sent. This is sub-optimal in the case that an asynchronous event must

occur before the response can be sent, because the thread running the

servlet must block until the event occurs. The invention provides for

asynchronous processing of such requests (510). In one embodiment,

the invention provides an extension to the Servlet API which allows the

service method (514) to return (516), and thus the thread to be freed,

before the response is ready to be sent. Then when the asynchronous

event later (520) occurs the response may be completed and sent (518,

522,524).

P %OPERU\J2OO89\Ma220262656 I spa dc-5/I2t2O

00

-1-

SSYSTEM FOR INTEGRATING JAVA SERVLETS

WITH ASYNCHRONOUS MESSAGES

o Copvright Notice:

IDA portion of the disclosure of this patent document contains material which is
(N
INDsubject to copyright protection. The copyright owner has no objection to the

facsimile reproduction by anyone of the patent document or the patent disclosure,

c as it appears in the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Claim of Priority:

This application claims priority from provisional application "SYSTEM FOR

APPLICATION SERVER MESSAGING WITH ASYNCHRONOUS QUEUES",

Application No. 60/327,530, filed October 5, 2001, and which application is

incorporated herein by reference.

Field of the Invention:

The invention relates to a system for messaging and/or communicating service

requests between an HTTP client and a server; and a method for messaging

and/or communicating service requests between an HTTP client and a server. For

example, the present invention generally relates to application and transaction

servers and particularly to a system for supporting message queuing and threads

with multiple execute queues.

Cross References:

This application is related to provisional application "SYSTEM FOR APPLICATION

SERVER MESSAGING WITH MULTIPLE DISPATCH POOLS", Application No.

60/327,543, filed October 5, 2001, and Utility Patent Application "SYSTEM FOR

WO 03/032181 PCT/US02/31727

-2-

APPLICATION SERVER MESSAGING WITH MULTIPLE DISPATCH

POOLS", Application Number Inventors: Adam Messinger

and Don Ferguson, filed October 3, 2002 both applications are

incorporated herein by reference.

Background of the Invention:

[0004] The Java 2 Platform, Enterprise Edition (J2EE)

specification defines one of the current standards for developing multi-

tier enterprise applications. J2EE provides a component-based

approach to the design, development, assembly, and deployment of

enterprise applications, which both reduces the cost and enables fasten

design and implementation. The J2EE platform gives the developer a

multi-tiered distributed application model, the ability to reuse

components, a unified security model, and flexible transaction control.

Not only can they deliver innovative customer solutions to market faster

than ever, but the resultant platform-independent J2EE

component-based solutions are not tied to the products and application

program interfaces (APIs) of any one vendor.

[0005] The J2EE specification defines the following kinds of

components: application client components; Enterprise JavaBeans

(EJB); servlets and Java Server Pages (JSP) (also called Web

components); and applets. A multi-tiered distributed application model

implies that the application logic is divided into components according

to function, and different application components may make up a J2EE

application on the same or different servers. Where an application

component is actually installed depends on which tier in the multi-tiered

J2EE environment the application component belongs. These tiers are

WO 03/032181 PCT/US02/31727

-3-

depicted in Figure 1. As shown therein an application server tier 104 is

used to develop EJB containers and/or presentation containers such as

servlets, JSP, and html pages 114. These in turn are used as an

interface between a client tier 102, where the clients 108 and client

applications are deployed, and a backend tier 106, used for hosting

enterprise or legacy applications such Enterprise Resource Planning

(ERP) systems.

[0006] Client tier- These can be browsers, Java-based programs,

or other Web-enabled programming environments running within the

client tier, both inside and outside of corporate firewalls.

[0007] Application Server tier Normally this tier hosts a

combination of presentation logic and business logic to support client

requests. Presentation logic is supported via JSP pages and servlets

that display HTML pages, while business logic is supported via Remote

Method Invocation (RMI) objects and EJBs 112. EJBs rely upon the

container environmentfortransactions, lifecycle and state management,

resource pooling, security, etc., which together make up the run time

environment in which the beans are executed.

[0008] Back-end tier This is generally a combination of existing

applications and data stores. It is also referred to as the Enterprise

Information Systems (EIS) tier, since it may include such systems as

Enterprise Resource Planning (ERP), mainframe transaction

processing, database systems, and other legacy information systems.

[0009] Since the components of a J2EE application run

separately, and often on different devices, there needs to be a way for

client and application server tier code to look up and reference other

code and resources. Client and application code can, for example, use

WO 03/032181 PCT/US02/31727

-4-

the Java Naming and Directory Interface (JNDI) 116 to look up

user-defined objects such as enterprise beans, and environment entries

such as the location of the Java Database Connector (JDBC)

DataSource objects, which in turn are used for looking up resources in

backend tier, and message connections.

[0010] Application behavior such as security and transaction

management can be configured at deployment time on Web and

enterprise bean components. This deployment time feature decouples

application logic from the configuration settings that might vary with the

assembly. The J2EE security model lets a developer configure a Web

or enterprise bean component so that system resources are accessed

only by authorized users. For example, a Web component can be

configured to prompt for a user name and password. An Enterprise

Bean component can be configured so that only persons in specific

groups can invoke certain kinds of its methods. Alternatively, a servlet

component might be configured to have some of its methods accessible

to everyone, and a few methods accessible to only certain privileged

persons in an organization. The same servlet component can be

configured for another environment to have all methods available to

everyone, or all methods available to only a select few.

[0011] Some application servers, such as the WebLogic Server

product from BEA Systems, Inc., San Jose, California, use an Access

Control List (ACL) mechanism that allows for fine-grained control of the

usage of components running on the server. Using an ACL, a developer

can define at the Java Method level what can, or cannot, be executed

by which user or group of users. This ACL mechanism covers anything

that runs on the application server except for EJBs, which have their

WO 03/032181 PCT/US02/31727

own access control mechanism defined in the EJB specification.

Security realms allow the administrator to import information from

existing authorization or authentication systems into the ACL.

Java Servlets

[0012] A servlet is a program that extends the functionality of a

Web server. A servlet receives a request from a client, dynamically

generates the response (possibly querying databases to fulfill the

request), and then sends the response containing an HTML or XML

document to the client. Servlets are similar to CGI but are typically

easier to write, since servlets use Java classes and streams. They

execute faster because servlets are compiled to Java byte code and at

run time the servlet instance is kept in memory, each client request

spawning a new thread. Servlets make it easy to generate data to an

HTTP response stream in a dynamic fashion. Each client request is

performed as a new connection, so flow control does not come naturally

between requests. To allow for this session management maintains the

state of specific clients between requests. In some application servers,

servlets make use of the HTTP session object to save their state

between method requests. This object can be replicated in a clustered

environment for failover purposes.

Java Server Pages

[0013] JSP pages are a text-based, presentation-centric way to

develop servlets. JSP pages offer all the benefits of servlets, and when

combined with a JavaBeans class, provide an easy way to keep content

and display logic separate. Both JSP pages and servlets are more

WO 03/032181 PCT/US02/31727

-6-

desirable than Common Gateway Interface (CGI), because they are

platform-independent, and use less overhead. JSP pages can be used

with JavaBeans classes to define Web templates for building a Web site

made up of pages with a similar look and feel. The JavaBeans class

performs the data rendering, so the templates have no Java code. This

means they can be maintained by an HTML editor. Simple Web-based

application using a JSP page can be used to bind content to application

logic using custom tags or scriptlets instead of a JavaBeans class.

Custom tags are bundled into tag libraries that are imported into a JSP

page. Scriptlets are small Java code segments embedded directly in the

JSP page.

Java Messaging Services (JMS)

[0014] JMS is the J2EE mechanism used to support the

exchange of messages between Java programs. This is how Java

supports asynchronous communication, wherein the sender and

receiver don't need to be aware of each other and thus can operate

independently. JMS supports two messaging models:

[0015] Point to point which is based on message queues. In this

model message producer sends a message to a queue. A message

consumer can attach itself to a queue to listen for messages. When a

message arrives on the queue, the consumer takes it off the queue and

responds to it. Messages can be sent to just one queue and will be used

by just one consumer. Consumers have the option to filter messages to

specify the exact message types they want.

[0016] Publish and subscribe which allows producers to send

messages to a topic and for all the registered consumers for that topic

P:,PER\RJCU2008\May\2002362656 I sp doc-5/I 2/2001

00

-7-

to retrieve those messages. In this case, many consumers can receive the same

c message.

I One problem with current Servlet APIs is the completely synchronous
V 5 programming model. After a request is dispatched to a particular thread the

Sservice() method of the appropriate servlet is called. When the service() method

Sreturns, the response is sent. This is a simple programming model which is

0suitable for many types of work, but is sub-optimal in the case that a asynchronous

event must occur before the response can be sent, because the thread running

the servlet must block until the event occurs.

It is generally desirable to overcome or ameliorate one or more of the above

described difficulties, or to at least provide a useful alternative.

Summary of the Invention:

In accordance with one aspect of the present invention, there is provided a system

for messaging and/or communicating service requests between an HTTP client

and a server, comprising:

a server that includes a servlet container process, a servlet process, and a

servlet response handler process executing on the server;

an HTTP software interface provided by the servlet container that receives

requests from an HTTP client, wherein a request from the HTTP client is

transmitted by the servlet container to the servlet; and

wherein the servlet upon receiving the request from the servlet container

immediately sets a response code to be used with a subsequent response,

releases the response handler to interleave the processing of subsequent

requests from the HTTP client or from other HTTP clients, and then

processes the original request by locating the required information, resetting

the response code, and sending the information to the HTTP client using the

servlet response handler.

P OPER\RJC%2D8\M 2002362656 I adoc5/I212008

00

-8-

In accordance with another aspect of the present invention, there is provided a

c method for messaging and/or communicating service requests between an HTTP

client and a server, comprising the steps of:

D receiving at a server that includes a servlet container process, a servlet

V 5 process, a servlet response handler process and an HTTP software interfaceIND

N executing thereon, a request from an HTTP client to access the servlet within

Sthe servlet container; and immediately
O setting a response code to be used with a subsequent response,

releasing the servlet response handler to interleave the processing of

subsequent requests from the HTTP client or from other HTTP clients,

processing the original request by locating the required information, resetting

the response code, and sending the information to the HTTP client using the

servlet response handler.

The invention preferably provides a system and method for asynchronous

threading which allows the service(method to return (and thus allowing the thread

to be freed up) before the response is ready to be sent. Then when the

asynchronous event later occurs the response may be completed and sent. An

example use of this mechanism is the use of JMS in conjunction with servlets.

In accordance with a preferred embodiment of the invention, the process begins

when a servlet is executed. The servlet builds a portion of a response, but typically

needs more data to complete the response. While it's waiting it queues a JMS

message requesting the data and sets the response object aside in a place where

it may be found when a JMS message containing the needed data arrives. At this

point the servlet may return, but the response will not yet be sent. At a later point

in time, when the data arrives via JMS for example, the corresponding response

object is retrieved. The remainder of the response can then be generated. When

the response is completed it can be explicitly sent to the client.

This feature is also available through the use of a JSP tag library. Using the tags

P: OPER\RJCO008\May2002362656 I spdoc-5/I22008

00

-9-

the JSP page author specifies what work should be done before the asynchronous

C event and which work should be done after the asynchronous event. This feature

integrates with the JSP context mechanisms to ensure that they are restored after

N the asynchronous event and that processing can continue uninterrupted.

V)

N Brief Description of the Drawings:
IcN

Preferred embodiments of the present invention are hereafter described, by way of

Snon-limiting example only, with reference to the accompanying drawings, in which:

Figure 1 shows an illustration of a J2EE compatible architecture that can utilize the

present invention.

Figure 2 shows an illustration of a threading policy with asynchronous thread pool

in accordance with an embodiment of the invention.

Figure 3 shows a diagram of a synchronous threading process.

Figure 4 shows a lifecycle of a single HTTP request that is processed using

traditional methods.

Figure 5 shows a lifecycle of a single HTTP request processed using

asynchronous messaging.

Figure 6 shows a lifecycle of a plurality of HTTP requests processed using

traditional methods.

Figure 7 shows a lifecycle of a plurality of HTTP requests processed using

asynchronous messaging.

Detailed Description of Preferred Embodiments of the Invention:

Broadly described, the invention preferably provides a system and method to allow

asynchronous threading. The invention can be incorporated into application server

systems that allow access to a servlet via an Application Program Interface (API),

or into other systems that benefit from asynchronous threading.

The typical Servlet APIs are completely synchronous. After a request is dispatched

to a thread, the service() method of the appropriate servlet is called. When the

P \0PER\RJC,2D09M\Ma2O2362656 I spa doc.5/I2/200

00

service() method returns, the response is sent. This simple programming model is

Ssuitable for many types of work, but is sub-optimal in those instances that an

asynchronous event must occur before the response can be sent, because the

D thread running the servlet must block until the event occurs.

IND
N In one preferred embodiment, the invention provides an extension to the Servlet
IND

SAPI which allows the service() method to return (and thus allowing the thread to be

freed up) before the response is ready to be sent. Then when the asynchronous

event later occurs the response may be completed and sent. One example use of

this mechanism is the use of JMS in conjunction with servlets.

In this preferred embodiment, when a servlet is executed, it builds a portion of a

response, but then typically needs more data to complete the response. It queues

a JMS message requesting the data, and sets the response object aside in a place

where it may be found when a JMS message containing the needed data arrives.

At this point the servlet may return, but the response will not yet be sent. Later on,

when the required data arrives via JMS, the response object is retrieved. The

remainder of the response can then be generated, and when completed can be

explicitly sent to the client.

The invention is preferably primarily designed for use with application, transaction,

and messaging servers, such as the WebLogic family of products from BEA

Systems, Inc. At the core of the typical server's design is the threading model, the

policy by which threads are assigned to perform work requests. As servlet

requests arrive at the server they are dispatched to a thread. This thread is

responsible for executing the requested servlet. The server employs a threading

model which uses two thread pools an asynchronous pool (often referred to as

reader threads) and a synchronous pool (referred to as execute threads). This

combination of pools allows a developer or administration to effectively prioritize

requests while tolerating user code that performs blocking operations.

P PER\RJC2008\M yt21002362656 I sp doc.-512/2008

00

C

Figure 2 shows a threading policy mechanism 206 in accordance with an

c embodiment of the invention. The asynchronous thread pool 208 waits on an

asynchronous input mechanism 202 (muxer) for asynchronous read results to

I become available. Once a result is available a thread from the pool looks at the
V' 5 message and dispatches it by making the appropriate callbacks. The dispatch

N callbacks usually queue the request for later processing by the synchronousICN
Sthread pool. However certain non-blocking, priority requests are services directly in

0the callback. By aggressively accepting input high priority requests 214 do not wait

to be read while low priority requests 212 run. Since these threads should never

block there are usually a low number of them, perhaps one per processor (CPU).

WO 03/032181 PCT/US02/31727

-11

[0034] The synchronous thread pool 210 waits on a queue of

requests 204. Once a request is available a thread from the pool

processes takes the request from the queue, processes it, and sends

out the result 216. While processing the request the thread may execute

code, such as sending out the result, which causes the thread to block.

The number of threads should therefore be tuned so that there is always

one thread per CPU that is in the runnable state. The dispatch policies

are described in more detail in provisional application entitled, "SYSTEM

FOR APPLICATION SERVER MESSAGING WITH MULTIPLE

DISPATCH POOLS", Application Number 60/327,543, Inventor: Adam

Messinger, filed October 5, 2001 and copending utility application

entitled, "SYSTEM FOR APPLICATION SERVER MESSAGING WITH

MULTIPLE DISPATCH POOLS", Application Number

Inventors: Adam Messinger and Don Ferguson, filed October 3, 2002.

[0035] Figure 3 shows a traditional synchronous message

response mechanism. As shown therein, a request from the client

application 302, such as for example a Web browser application, is

transmitted to the application server via a servlet 304. The request may

be in the form of a hypertext transmission protocol (http) request 306,

for which the client will typically expect a hypertext markup language

(html) response 308. In the synchronous model the thread executes the

servlet and then immediately sends the response to the client when

execution of the servlet completes. The problem with this approach is

that the executing thread is consumed for the entire execution of the

servlet. If the servlet is performing tasks which block, perhaps waiting

for other data, then this can represent a waste of server resources.

WO 03/032181 PCT/US02/31727

-12-

[0036] Figure 4 illustrates a typical system lifecycle wherein a

client access a resource at a server. As shown in Figure 4, an HTTP

client 402 accesses a servlet 408, which typically runs on a remote web

server. It will be evident to one skilled in the art that while HTTP clients

are shown herein for purposes of illustration, the invention is not so

limited, but may be used with other types of client application. As shown

in the lifecycle diagram in Figure 4, the HTTP client accesses the

servlet via a servlet container 404. The servlet container is responsible

for receiving the HTTP request 410, and passing it to the servlet 408 for

processing. Much of the operation of processing this HTTP request

takes place at the servlet response level 406. As illustrated in Figure

4, with time increasing vertically down the page, the process continues

with an :init call 412 to the servlet, which is handled by the

response handler406. The servlet container then passes a service

request 414 to the servlet, to retrieve or to update data for example. A

typical use of such a system is in an e-commerce environment, wherein

the client application is designed to retrieve catalog listings, such as the

results of a search for flight times, etc. The servlet typically responds to

the request by writing output 416 to the servlet response handler. This

step is often required for buffering, and for optimization purposes.

When the servlet container then requests that the response be returned

to the client, it sends a send request 418 to the response handler,

and the response handler returns the :send response 420 to the

servlet container. The response is then sent as an HTTP response 422

to the client.

[0037] Figure 5 illustrates a similar life cycle that may be used in

accordance with an embodiment of the invention. As shown in Figure

WO 03/032181 PCT/US02/31727

-13-

again an HTTP client 502 is used to access a remote server, server

resource or servlet 508. The HTTP request 510 is handled by a servlet

container 504 which issues an :init request 512 to the servlet

response handler 506. This time however, when the :service

request 514 is transmitted to the servlet for processing, the servlet

returns 516 immediatelyto the response handler. This immediate return

frees up the response handler for handling subsequent requests, in that

it does not need to wait for the servilet to actively return data in order to

handle those requests. After a period of time t 520, when the servlet

has the appropriate data to return to the requests, it sends a send

signal 518 to the response handler, which then sends the send

response 522 to the servlet container. The subsequent HTTP

response 524 is transmitted to the client as before.

[0038] As part of the process described above, the servlet sets a

response code until it has something else to transmit, effectively taking

the responsibility for responding away from the container level and

placing it at the servlet level. In practice the amount of time that the

servlet waits to issue the :send response can be defined as some

arbitrary amount, or can be performed as the result of an asynchronous

message, for example as the result of receiving a JMS message

indicating that the information is available to be transmitted to the client.

This type of processing is useful in, for example, e-commerce sites

where a user typically experiences a delay time in awaiting search

results. When processing is performed according to the invention,

instead of merely having a frozen screen, the user may receive some

items of information, while other items are returned piecemeal as the

servlet finds the appropriate data and returns it. At the same time the

WO 03/032181 PCT/US02/31727

-14-

servlet response handler is available to handle other client requests.

The type of data that is returned immediately, and the type that is

returned later, can be specified by the developer.

[0039] Figures 6 and 7 illustrate in more detail the operation of

the invention, as it may be applied to service multiple requests. As

shown in Figure 6, when asynchronous messaging is not used,

subsequent requests from clients must be handled in a sequential

manner. So, for example, in Figure 6, a first HTTP request 410 from

client A is handled by the servlet container 404 and servlet response

handler406 and completely processed, priorto a second HTTP request

430 from client B 403 being handled. The overall result is one of taking

twice as much time to process HTTP requests from the two clients. If

the requests were not handled in this sequential manner, it is very likely

that one or more requests would create a backlog for other requests

such that the user would experience a delay in processing.

[0040] Figure 7 illustrates a life cycle of a mechanism in

accordance with an embodiment of the invention in which asynchronous

messaging is used to process multiple requests from a single client,

and/or requests from multiple clients, in an asynchronous manner, such

that the processing can be run in different threads. As shown in Figure

7, a first HTTP client A 502 and a second HTTP client B 503 access a

servlet resource 508 using the mechanisms described above. In

accordance with this embodiment, when a first HTTP request A 510 is

received at the servlet container, it is handled by the response handler

using an :init A call 512, and then passed as a :service

request 514 to the servlet 508. The servlet returns 516 immediately to

the servlet response handler, which then frees up the response handler

WO 03/032181 PCT/US02/31727

for handling other requests. As shown in Figure 7, a second HTTP

request B is handled immediately as an init B call 532 by the

servlet response handler, and passed to the servlet as a :service

request 534 for processing. Again, the servlet returns immediately 536.

Interleaving the messages in this manner reduces the overall time for

processing both requests, and allows the servlet to return information to

the client when and if it becomes available. For example, as shown in

Figure 7, when the servlet finds the information necessary to respond

to request A it returns that send response A signal 522 to the

servlet container for sending on to the client as HTTP response A 524.

A second send response B signal 542, and HTTP response B

544 is similarly handled in the same way.

Implementation

[0041] The file servlet can be replaced by a fast file servlet on

platforms that support the asynchronous sending of files over the

network. The implementation of this type of servlet requires the addition

of asynchronous responses for servlets, which is discussed below.

Synchronous and Asynchronous Responses

[0042] When a servlet request from a remote client is serviced a

response is often required. This response can either be synchronous,

in that it is sent by the same thread that processed the request, or

asynchronous in that it is sent later in a different thread. This analysis

is from the server's perspective. From the clients perspective eithertype

of response may or may not block waiting for it depending upon how the

remote request was made.

WO 03/032181 PCT/US02/31727

-16-

[0043] Currently most requests are handled in a synchronous

manner. When a servlet request is serviced all processing must be

completed before the servicing thread can move on to another request.

This synchronous model is the one specified by the RMI and servlet

specifications. The traditional reason for this is that writing

asynchronous code is very difficult and thus prone to error.

[0044] There are certain situations where the abilityto respond to

requests in an asynchronous manner would be very helpful for

conserving threads. This is typically true in cases where the server

needs to make one or more long running requests of external resources

or where the server needs to wait on some condition while processing

the request. An example of this is a client request to dequeue from a

JMS queue that is currently empty. In a synchronous model the thread

servicing the request blocks until there is a message in the queue to

return to the client. In an asynchronous model the thread can set the

request aside and continue servicing other requests. When a message

is placed in the queue the request can be found and a response sent to

the client. The invention allows servers to support asynchronous

responses to RMI and servlet requests.

Servlets

[0045] Particular servlets can be declared as asynchronous in

their deployment descriptor. When the service method of an

asynchronous servlet returns, no further action will be taken on that

request. The servlet is responsible for storing the request someplace

such that after some other action takes place it can be retrieved and the

response sent. At this point a special send() method must be called on

WO 03/032181 PCT/US02/31727

-17-

the request which will flush the streams, log the request, and, if it is a

keep alive connection then register the socket with the muxerto receive

more data. It is important to create implementations that ensure

resources are appropriately freed by timing out long running requests,

thus freeing resources for garbage collection and other cleanup.

JSP

[0046] An asynchronous model may also be supported in a

similar manner through the use of JSP tag libraries. These tag libraries

are used by the http developer/page author to designate which portion

of the web page should be executed prior to the asynchronous event

and which portion should be executed after the asynchronous event.

The tag libraries allow the author to gain access to an object which

should be notified when the asynchronous event occurs and JSP page

execution should resume.

[0047] When using the tag libraries the execution context of the

page may be automatically stored before registering for the

asynchronous event. In this way it is possible to hide many of the

details of asynchronous programming from the JSP author. The JSP

need not be concerned about state maintenance. State stored in any

of the standard scopes (page, request, session or application) will

continue to work as they would using a synchronous JSP.

[0048] The foregoing description of the present invention has

been provided for the purposes of illustration and description. It is not

intended to be exhaustive or to limit the invention to the precise forms

disclosed. Obviously, many modifications and variations will be

apparent to the practitioner skilled in the art. The embodiments were

P \OPER\RJC2O0S8MyQ002362656 I spj dc5,I V2008

00

-18-

chosen and described in order to best explain the principles of the invention and

N its practical application, thereby enabling others skilled in the art to understand the

invention for various embodiments and with various modifications that are suited to

D the particular use contemplated. It is intended that the scope of the invention be

V) 5 defined by the following claims and their equivalence.IND

C
(N

Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or

group of integers or steps but not the exclusion of any other integer or step or

group of integers or steps.

The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication

(or information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

P.OPER\2oo&\M~y2002362656 I sp da.5/IV2/OOS

00
O

O -19-

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A system for messaging and/or communicating service requests between an

HTTP client and a server, comprising:
INO

5 a server that includes a servlet container process, a servlet process, and a
INO
N servlet response handler process executing on the server;
\0
C, an HTTP software interface provided by the servlet container that receives

Srequests from an HTTP client, wherein a request from the HTTP client is

CN transmitted by the servlet container to the servlet; and

wherein the servlet upon receiving the request from the servlet container

immediately sets a response code to be used with a subsequent response,

releases the response handler to interleave the processing of subsequent

requests from the HTTP client or from other HTTP clients, and then

processes the original request by locating the required information, resetting

the response code, and sending the information to the HTTP client using the

servlet response handler.

2. The system of claim 1 wherein the subsequent response is triggered by a

response command from the HTTP client to send additional response data.

3. The system of claim 1 wherein the system includes an extension to the

HTTP interface that allows a service method to return, and the thread

handling that service method to be released before the response is ready to

be sent.

4. The system of claim 1 further including a Java Messaging Service (JMS),

wherein the servlet builds a portion of a response, queues a JMS message

requesting the data, and creates a response object as the response code,

which is later retrieved when another JMS message containing the

requested data arrives.

POPER\RJC200S\May\2002362656 I spa dc-5/12/2008

00

0

The system of claim 1 wherein the system sets a period of time for which to

Ssend the subsequent response, after which period of time the servlet sends a

send signal to the response handler, which then signals the servlet container

N to send the subsequent response to the client.
V)

N 6. The system of claim 1 wherein the system is used to provide information

Swithin a search function to a user of a web page, and wherein the system

provides partial items of information to the user's screen, while other items of

information are returned as subsequent responses to the user's screen as

the servlet finds the appropriate data.

7. A method for messaging and/or communicating service requests between an

HTTP client and a server, comprising the steps of:

receiving at a server that includes a servlet container process, a servlet

process, a servlet response handler process and an HTTP software interface

executing thereon, a request from an HTTP client to access the servlet within

the servlet container; and immediately

setting a response code to be used with a subsequent response,

releasing the servlet response handler to interleave the processing of

subsequent requests from the HTTP client or from other HTTP clients,

processing the original request by locating the required information, resetting

the response code, and sending the information to the HTTP client using the

servlet response handler.

8. The method of claim 7 wherein the subsequent response is triggered by a

response command from the HTTP client to send additional response data.

9. The method of claim 7 wherein the system includes an extension to the

HTTP interface that allows a service method to return, and the thread

handling that service method to be released before the response is ready to

be sent.

P:oPER\RJC%20oosM0UY22362636 I spa dOc./1212008

00
O

O -21-

c 10. The method of claim 7 further including a Java Messaging Service (JMS),

wherein the servlet builds a portion of a response, queues a JMS message

D requesting the data, and creates a response object as the response code,

5 which is later retrieved when another JMS message containing the

N requested data arrives.
IN

11. The method of claim 7 wherein the system sets a period of time for which to

send the subsequent response, after which period of time the servlet sends a

send signal to the response handler, which then signals the servlet container

to send the subsequent response to the client.

12. The method of claim 7 wherein the system is used to provide information

within a search function to a user of a web page, and wherein the system

provides partial items of information to the user's screen, while other items of

information are returned as subsequent responses to the user's screen as

the servlet finds the appropriate data.

13. A system for messaging and/or communicating service requests between an

HTTP client and a server substantially as hereinbefore described, with

reference to the accompanying drawings.

14. A method for messaging and/or communicating service requests between an

HTTP client and a server substantially as hereinbefore described, with

reference to the accompanying drawings.

Client

clint t*-

Client TierI

102

I EJB Containi

112

Enterprise
PP Information

Systems

(RDBMS, ERP,
Legacy Applications)

Presentatio
Container

(Serviets,
JSP Pages, JNDI, JMSHTML,

114 I XML)

Application Server Tier

104

Backend Tier

106

FIGURE I

206

Thread ing

202

IIAsynchror

212

Low Priority
Request

205

Resource

Queue
of

Requests

204

I Synchronous
P. Thread

Pool

210

Result

216

FIGURE 2

306
http 312

Java
Object

Request

Application
Server

310

302 html
308

Response
Queue

314

FIGURE 3

WO 03/032181 PCT/US02/31727
417

402 404 406 408

TP Serviet ServIet
t.nt: Container: Response: Serviet:

410

Jnt 412

:serice 414

Time

:seJnd 418wrtou

j~respn sJe. 42041
41

tp respnse

422

(Single Request)

FIGURE 4

WO 03/032181 PCT/UJSO2/31727
.517.

506 508

Serviet
Response: ServIet:

:ini=11-512

:serl~ce 514

Time

516+

:send responsel-, 522 d52
518

(Single Request)

FIGURE

WO 03/032181 PCT/US02/31727
.6/7

402 403 404 406 408

F] HTTP Serviet Serviet
A: Client B: I IContainer: Response: Serviet:

410

:h ttp requ est A
:h

:service 414

Time

:send 418 write otu

:send response 420 416

:http response

422

~4tB it B 432

430 :service 434

44 mend:: 438 wri ete u

:tp:send respose B 440 436

(Multiple Requests)

FIGURE 6

WO 03/032181 PCTJS02I3 1727
717

14 506 408

~etle

Z itU1A 512

:service 514

:initB 552 doTime

~itB 532516

:sice V 534

ti 520

536

518

:send A

:send response A 522

[send response BF 542 write ouptt 2 540

538

(Multiple Requests)

FIGURE 7

	Abstract
	Description
	Claims
	Drawings

