
(12) UK Patent (19) GB (11) 2 181 795 (13) B

(54) Title of Invention

Compressor having internal compliant seal

(51) INT CL⁴; F16J 15/02

(21) Application No
8620103

(22) Date of filing
19 Aug 1986

(30) Priority data

(31) 789891

(32) 21 Oct 1985

(33) United States of
America (US)

(43) Application published
29 Apr 1987

(45) Patent published
19 Oct 1988

(73) Proprietor(s)
American Standard Inc

(Incorporated in USA-
Delaware)

40 West 40th Street
New York
NY 10018
United States of America

(72) Inventor(s)
Robert E Utter

(74) Agent and/or
Address for Service
R G C Jenkins & Co
26 Caxton Street
London SW1H 0RJ

(52) Domestic classification
(Edition J)
F2B 1G 1X10 1X3
F1F EQ
U1S 2005 F1F F2B

(56) Documents cited
None

(58) Field of search
F2B
F1C
F1F
Selected US
specifications from
IPC sub-classes F16J
F04C F04D

2181795

111

FIG. 1

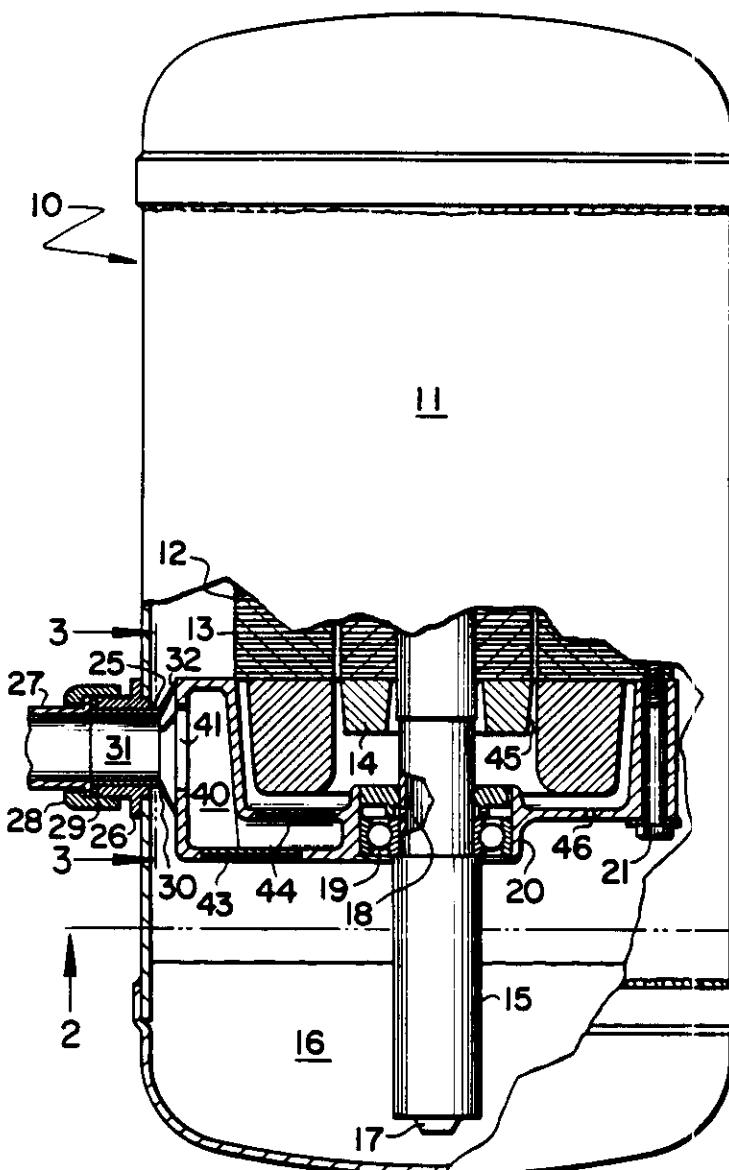


FIG. 3

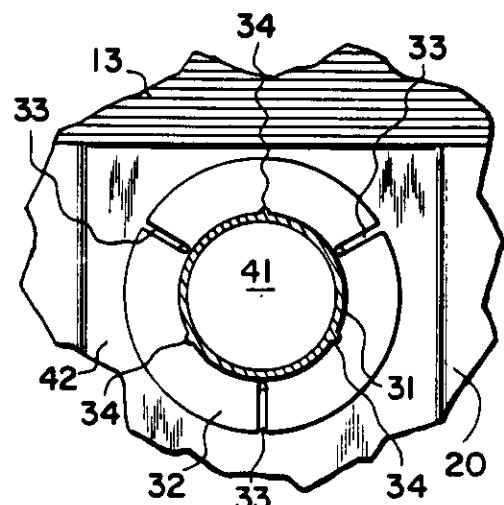


FIG. 4

2181795

COMPRESSOR HAVING INTERNAL COMPLIANT SEAL

Technical Field

This invention generally pertains to compressors having internal seals or connecting lines and 5 specifically to compressors having seals extending between a port in a compressor shell and another port in the wall of an internal chamber.

Assembly of a typically hermetic compressor often requires that components fit inside the hermetic shell 10 with very small tolerances for radial, axial, and angular position. This is particularly troublesome when attaching an internal suction line between a port in the shell and a port on an internal chamber attached to the compressor or motor body. 15 Manufacturing tolerance and human error can cause substantial variation in the initial position of the compressor/motor assembly relative to the port in the shell. These variables, coupled with the expected movement or vibration of the compressor/motor unit on 20 its mounts during operation of the compressor effectively dictate use of a flexible connecting line, sufficiently long to allow for flexure during assembly and slight movement during operation.

Even in designs in which the compressor and motor 25 are rigidly mounted within the hermetic shell rather than spring mounted, there is often a problem during assembly with maintaining a close tolerance in the position of internal components relative to the enclosing shell. For this reason, it is sometimes 30 difficult or time consuming to fit an internal connecting line between a port in the shell and a port on a chamber attached to the compressor/motor. Conventional techniques use flexible metal tubes of

annealed copper which are often longer than necessary to merely bridge the intervening space between the ports, since the extra length permits the tubing to bend without crimping or breaking. Such tubes may be 5 relatively expensive in material cost, and their use may require a larger hermetic shell to be used to accommodate their added volume.

It is an object of this invention to provide a compressor having a seal that connects a port in a 10 compressor shell with a port in an internal chamber and overcomes at least some of the above-mentioned problems.

According to a first aspect of the present invention there is provided a compressor having an 15 outer shell and an internal chamber spaced apart from the inner surface of the outer shell, and a seal extending between a first port disposed in the outer shell and a second port disposed in the chamber, said seal comprising: a tubular member sized to closely fit through the first port in the shell in sealing engagement therewith and including a compliant flange on one end, said flange overlying the outer surface of 5 the chamber around the second port, whereby the seal is operative to substantially confine fluid flow in the space between the first and second ports.

According to a further aspect of the present invention there is provided an hermetic shell 10 compressor used for compressing a fluid and including a suction port, an electric motor disposed inside the hermetic shell, an internal chamber spaced apart from the inner surface of the hermetic shell, and a port disposed in a wall defining the internal chamber 15 opposite the suction port, a seal extending between the suction port and the port in the internal chamber, said seal comprising: a cylindrical tubular member one

end of which slidingly engages the suction port, and a cone-shaped compliant flange on the other end of the tubular member, said flange abutting against the outer surface of the chamber wall and sized to fit around 5 the port in the internal chamber, whereby said seal is operative to convey substantially all the fluid entering the suction port into the chamber through the space between the hermetic shell and the internal chamber.

10 In order that the invention may be well understood, an embodiment thereof, which is given by way of example only, will now be described with reference to the accompanying drawings, in which:

15 Figure 1 shows a cross-sectional view of the seal, visible in a cutaway view of the hermetic shell of a compressor.

Figure 2 is a cross-sectional view of the compressor and seal taken along section line 2-2 of Figure 1.

20 Figure 3 is a cross-sectional view of a portion of the compressor taken along section line 3-3 of Figure 1.

Figure 4 is a perspective view of the seal comprising the subject invention.

25 A compressor system generally denoted by reference numeral 10 is shown in Figure 1. Compressor system 10 is a rotary compressor, housed in a hermetic shell 11. The actual compressor portion of system 10 is not shown in Figure 1 since details regarding the 30 compressor need not be disclosed to understand the form and function of the subject invention; however, in an actual application of the preferred embodiment of the invention, a scroll compressor is used. A sliding vane compressor or other rotary compressor 35 would be equally suitable.

Compressor system 10 is driven by an internal electric motor 12 which includes a stator 13 and rotor 14. A drive shaft 15 passes through rotor 14, and its lower end extends into a reservoir of oil 16. Centrifugal oil pump 17 is disposed at the lower distal end of drive shaft 15 and is operative to cause oil to flow upward through an internal bore 18 within the drive shaft, as it rotates. This oil is used to lubricate surfaces subject to friction within the compressor and bearings such as the lower drive shaft main bearing 19. Drive shaft main bearing 19 is supported by a cast framework member 20. Framework 20 is connected to stator 13 with three threaded bolts 21, disposed at spaced intervals around its periphery and completely underlies and encloses the lower end of motor 12.

Suction gas enters compressor system 10 through suction port 25 disposed in the side of hermetic shell 11. Included on the suction port is a threaded fitting 26 used to secure a suction line 27 by means of a mating threaded nut 28. The end of suction line 27 is drawn up against a square section teflon seal as the threaded nut 28 is tightened, thereby forming a hermetic seal. As nut 28 is tightened onto fitting 26, the end of suction line 27 also abuts against the end of seal 30, forcing it to slide inwardly within suction port 25.

Turning now to Figure 4, the structural details of seal 30 are shown apart from its installed application with greater clarity. Seal 30 includes a cylindrical tubular portion 31 having a diameter slightly smaller than the diameter of suction port 25. A conical flange 32 is formed on the end of seal 30 that extends inside of hermetic shell 11. Flange 32 includes three spaced apart radially aligned slots 33 which extend radially inward from its outer circumference almost to the tubular body portion. Slots 33 serve to increase the flexibility of conical flange 32, permitting it to flatten under compression. In the preferred embodiment, seal 30 is injection molded of a relatively stiff but flexible, plastic material. The elastic charac-

teristics of this material and provision of slots 33 contribute to the flexural compliancy of conical flange 32. Three ribs 34 are formed on the outer surface of the tubular portion 31 at spaced apart intervals. These ribs improve the ease with which seal 30 is slidingly fit within 5 suction port 25. Any small variations in the diameter of suction port 25 is compensated for by flexure of the wall of the tubular member 31 between each of the ribs 34, thereby substantially increasing its tolerance to such dimensional variations.

During assembly of compressor system 10, seal 30 is inserted 10 within suction port 25 from inside shell 11 prior to the installation of motor 12, and pushed-in until flange 32 abuts against the inside of hermetic shell 11. Once seal 30 is in place, motor 12 (and attached compressor — not shown) can be positioned and fastened in place within hermetic shell 11 without any interference in fit from the seal. Dis- 15 posed immediately opposite suction port 25, and defined by framework member 20, is an internal chamber 40. The outer wall of chamber 40 includes a port 41.

Prior to the installation of suction line 27, flange 32 does not contact the outer surface of framework 20, since, as explained 20 above, when seal 30 is initially installed, it is pushed all the way into suction port 25 from the inside of hermetic shell 11. After suc- tition line 27 is connected, seal 30 is forced inward toward the outer 25 surface of chamber 40, and conical flange 32 contacts that surface and flattens slightly around the periphery of port 41 under the force of compression provided by the connected suction line.

Referring to Figure 3, the outer surface of framework 20 is die cast to form a flat surface 42 around port 41 against which flange 32 abuts. The flat surface 42 improves the quality of the seal formed by conical flange 32 as it flattens under compression. The spacing be- 30 tween the inner surface of hermetic shell 11 around suction port 25 and surface 42 around port 41 is not critical, because conical flange 32

can flex (by flattening) up to one-quarter of an inch after it initially contacts surface 42. In addition to this tolerance for variation in the radial dimension, seal 30 also permits a substantial tolerance in axial dimension and in angular displacement of port 41 relative to 5 suction port 25, i.e., the relative displacement between the centers of port 41 and suction port 25. The diameter of the outer periphery of conical flange 32 is greater than the diameter of port 41. Since flange 32 is cone shaped and the periphery of the flange initially contacts flat surface 42, the center of suction port 25 (and of seal 30) 10 need not be perfectly aligned with the center of port 41 to provide an adequate seal.

Clearly, some of the suction gas flowing through suction port 25 and through seal 30 leaks out through slots 33. However, the fluid surrounding chamber 40 within hermetic shell 11 is substantially at 15 compressor suction pressure and that pressure is less than 1 psi lower than the pressure of suction fluid entering suction port 25. Since there is a very small differential pressure between the fluid in chamber 40 and the fluid surrounding chamber 40 enclosed within hermetic shell 11, a very small percentage of the suction gas flowing through 20 seal 30 leaks out through the imperfect seal caused by slots 33. The relatively small leakage that does occur, is of little significance since any fluid that leaks into the volume enclosed by shell 11 still enters the compression cycle. It is only necessary that a substantial portion of the suction fluid passing through seal 30 enter chamber 40. 25

As shown in Figures 1 and 2, chamber 40 is generally "L" shaped in cross section, and rectangular in plan view. An access plug 43 is installed in a hole formed in framework 20 during assembly of compressor 10, as is a filter screen 44. Suction gas entering suction port 25 flows through internal seal 30 and into chamber 40 so that it 30 can be channeled through motor 12 for cooling purposes prior to enter-

ing the compression cycle. The suction gas flowing out of chamber 40 passes through filter screen 44 and up through the rotor/stator annulus 45 to cool the windings on stator 13. Any oil carried with the suction gas into the area of the motor 12 flows back into reservoir 16 through 5 an oil drain orifice 46 disposed within the bottom of framework member 20, on the side opposite chamber 40.

Internal seal 30 provides an inexpensive means for directing suction gas from a suction port 25 to an internal chamber 40 without the use of a bulky and expensive internal connecting line. In addition, seal 30 improves the ease with which compressor 10 is assembled 10 during manufacture, allows substantial tolerance in the dimensions between the ports which it seals and between which it conveys suction fluid, and is sufficiently compliant to maintain an adequate seal even during vibration of the motor 12 relative to hermetic shell 11 during 15 operation of compressor system 10. It will be appreciated, that although internal seal 30 is a relatively simple component, it provides substantial advantages over the known prior art.

Modifications to the preferred embodiment of the subject invention will be apparent to those skilled in the art within the scope 20 of the claims that follow hereinbelow.

CLAIMS:

1. A compressor having an outer shell and an internal chamber spaced apart from the inner surface of the outer shell, and a seal extending between a 5 first port disposed in the outer shell and a second port disposed in the chamber, said seal comprising: a tubular member sized to closely fit through the first port in the shell in sealing engagement therewith and including a compliant flange on one end, said flange 5 overlying the outer surface of the chamber around the second port, whereby the seal is operative to substantially confine fluid flow in the space between the first and second ports.
2. A compressor as in claim 1 wherein the flange 10 includes a plurality of radial slots spaced apart at intervals around its circumference and operative to improve the flexibility of the flange permitting it to better conform to the outer surface of the internal chamber and to flatten against that surface under a 15 compressive force.
3. A compressor as in claim 1 or claim 2 wherein the first port includes a fitting adapted to connect to a suction line through which fluid to be compressed flows into the compressor, said suction line abutting 20 against the end of the tubular member, forcing the tubular member toward the chamber.
4. A compressor as in any one of claims 1 to 3 wherein the compressor further includes an electric motor disposed within the outer shell, said motor 25 including a stator and a rotor.

5. A compressor as in any one of claims 1 to 4 wherein the chamber is disposed at one of the electrical motor, adjacent to the stator.

6. A compressor as in any one of claims 1 to 5
5 wherein said tubular member is operative to convey fluid from the first port into the chamber via the second port, and wherein said fluid is used to cool the electric motor as the fluid flows out of the chamber and through a gap between the rotor and the
10 stator.

7. A compressor as in any one of claims 1 to 6 wherein the tubular member is a cylinder and wherein the flange extends outward from the tubular member forming a cone which can be flattened by compression
15 to seal against the outer surface of the chamber, around the second port.

8. An hermetic shell compressor used for compressing a fluid and including a suction port, an electric motor disposed inside the hermetic shell, an
20 internal chamber spaced apart from the inner surface of the hermetic shell, and a port disposed in a wall defining the internal chamber opposite the suction port, and a seal extending between the suction port and the port in the internal chamber, said seal
25 comprising: a cylindrical tubular member one end of which slidably engages the suction port, and a cone-shaped compliant flange on the other end of the tubular member, said flange abutting against the outer surface of the chamber wall and sized to fit around
30 the port in the internal chamber, whereby said seal is operative to convey substantially all the fluid

entering the suction port into the chamber through the space between the hermetic shell and the internal chamber.

9. A compressor as in claim 8 wherein the
5 suction port is adapted to connect to a suction line
using a nut and mating threaded fitting, and wherein
as the nut is tightened on the threaded fitting, the
suction line seats against said one end of the tubular
member causing it to slide within the suction port and
10 to compress the compliant cone-shaped flange at the
other end of the tubular member, flattening the flange
against the outer surface of the chamber wall.

10. A compressor as claimed in claim 8 or claim
9 wherein the flange includes a plurality of spaced
15 apart radial slots which are operative to permit the
cone-shaped flange to flatten under compression.

11. A compressor as claimed in any one of claims
8 to 10 wherein the electric motor includes a rotor
and a stator, and wherein the internal chamber is
20 disposed adjacent one end of the electric motor.

12. A compressor as claimed in any one of claims
8 to 11 wherein the tubular member is operative to
convey suction fluid into the internal chamber so that
said fluid can flow between the rotor and stator to
25 cool the motor before the fluid is compressed.

13. A compressor as claimed in any one claims 8
to 12 wherein the tubular member and the cone-shaped
flange are molded as a single piece from compliant
plastic material.

14. A compressor as claimed in any one of claims 8 to 13 wherein the tubular member includes a plurality of integral ribs on its outer surface running parallel to its longitudinal axis.

5 15. A seal for a compressor substantially as herein particularly described with reference to and as illustrated in the accompanying drawings.

OA80-01

OPTICS - PATENTS

07/10/92 16:14:49

PAGE: 1

RENEWAL DETAILS

PUBLICATION NUMBER

GB2181795

PROPRIETOR(S)

American Standard Inc, Incorporated in USA - Delaware, W R Grace Building, 1114 Avenue of the Americas, New York, New York 10036, United States of America

DATE FILED 19.08.1986

DATE GRANTED 19.10.1988

DATE NEXT RENEWAL DUE 19.08.1993

DATE NOT IN FORCE

DATE OF LAST RENEWAL 07.08.1992

YEAR OF LAST RENEWAL 07

STATUS PATENT IN FORCE

REGISTER ENTRY FOR GB2181795

1 Application No GB8620103.5 filing date 19.08.1986

Priority claimed:

21.10.1985 in United States of America - doc: 789891

Title INTERNAL COMPLIANT SEAL FOR COMPRESSOR

Applicant/Proprietor

AMERICAN STANDARD INC, Incorporated in USA - Delaware, 40 West 40th
Street, New York, N Y 10018, United States of America

[ADP No. 00307959003]

Inventor

ROBERT E UTTER, Route 1 - Box 133, Genoa, Wisconsin 54632, United States
of America [ADP No. 03833423001]

Classified to

F2B F1F U1S
F16J

Address for Service

R G C JENKINS & CO, 26 Caxton Street, LONDON, SW1H 0RJ, United Kingdom
[ADP No. 00000950001]

Publication No GB2181795 dated 29.04.1987

Examination requested 19.05.1987

Patent Granted with effect from 19.10.1988 (Section 25(1)) with title
COMPRESSOR HAVING INTERNAL COMPLIANT SEAL

27.09.1988 Section 32 Application filed
Entry Type 10.1 Staff ID. JB Auth ID. BACK

27.09.1988 Section 32 Application filed
Entry Type 10.1 Staff ID. JB Auth ID. BACK

24.10.1988 Notice of mortgage to
BANKERS TRUST COMPANY, 9th Floor, 4 Albany Street, New York, New
York 10006, United States of America [ADP No. 04012456001]
dated 29.06.1988. Certified copy of the mortgage filed on 2197405
Entry Type 8.8 Staff ID. JB Auth ID. BACK

24.10.1988 Notification of agreement between
AMERICAN STANDARD INC. / TRANE AIR CONDITIONING COMPANY, 40 West
40th Street, New York, NY 10006, United States of America
[ADP No. 05615547001]

and

BANKERS TRUST COMPANY, 9th Floor, 4 Albany Street, New York, New
York 10006, United States of America [ADP No. 04012456001]
dated 29.06.1988. Certified copy of the agreement filed on 2197405
Entry Type 8.5 Staff ID. JB Auth ID. BACK

TIMED: 07/10/92 16:14:23

REGISTER ENTRY FOR GB2181795 (Cont.)

PAGE: 2

28.09.1992 Notification of change of Applicant/Proprietor address of
AMERICAN STANDARD INC, Incorporated in USA - Delaware, 40 West 40th
Street, New York, N Y 10018, United States of America
[ADP No. 00307959003]

to

AMERICAN STANDARD INC, Incorporated in USA - Delaware, W R Grace
Building, 1114 Avenue of the Americas, New York, New York 10036,
United States of America [ADP No. 00307959005]
dated 23.09.1992. Official evidence filed on 2196419
Entry Type 7.3 Staff ID. KH Auth ID. EO

***** END OF REGISTER ENTRY *****