
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0040762 A1

Flatland et al. (43) Pub. Date:

US 20110040762A1

Feb. 17, 2011

(54) SEGMENTING POSTINGS LIST READER

(75) Inventors: Steinar Flatland, Clifton Park, NY
(US); Jeff J. Dalton, Northampton,
MA (US)

Correspondence Address:
HESLN ROTHENBERG EARLEY & MEST
PC
S COLUMBIA. CIRCLE
ALBANY, NY 12203 (US)

(73) Assignee:

(21) Appl. No.:

GLOBALSPEC, INC., East
Greenbush, NY (US)

12/854,775

(60)

(51)

(52)
(57)

Related U.S. Application Data
Provisional application No. 61/233,427, filed on Aug.
12, 2009, provisional application No. 61/233,420,
filed on Aug. 12, 2009, provisional application No.
61/233,411, filed on Aug. 12, 2009.

Publication Classification

Int. C.
G06F 7/30 (2006.01)
U.S. Cl. 707/737, 707/E17.089; 707/749

ABSTRACT

A size of a posting list is determined as part of searching an
inverted index. The posting list is segmented for reading into
a plurality of segments based on the size. For example, the
segmenting may be performed if the size is larger than a
predetermined size. Finally, each of the plurality of segments

(22) Filed: Aug. 11, 2010 is read into memory.

200

2O2

206 /
/ InvertedlndexSearcher
Query | D. ----- -216

/ - N

Evaluation Logic
f \ - 214

Search I - --
Results \ /
\ \\ / 210 212 Posting File

\ \ // y / M 222 208 \ 77 2
W > -->

\ ^s.

PostingList Reader is

/ Sl s 220 Y A /
204 Y.

A
/

218

Patent Application Publication

104

Feb. 17, 2011 Sheet 1 of 9

Document Frequencies at Different Term Ranks
for 18.4 million document index

US 2011/0040762 A1

100

OOOOOO

6OOOOOO

5OOOOOO

4OOOOOO

3OOOOOO

2OOOOOO

OOOOOO

O -
S. S. SY S. &
$ $ is is 3.

m &S S (S &
* Sy

Term Rank

102 FIG. 1

Patent Application Publication

206

Query | >

Search
Results

208

204

/

Feb. 17, 2011 Sheet 2 of 9

Inverted indeXSearcher
21 -21

PostingListReader

US 2011/0040762 A1

200

214

/

FIG. 2

Posting File

Patent Application Publication Feb. 17, 2011 Sheet 3 of 9 US 2011/0040762 A1

300

/
310

Posting ListreadLimiter
302

Segmenting PostingListReader BufferFil|SizeSelectorFactory

314

12 3

Enhanced Buffered Reader

304

LexiconEntryToPostingListSegmentationMapper

... Posting ListLengthApproximationTable

306 Posting ListSegmentationTable

308

FIG. 3

Patent Application Publication

408
Posting ListSegmentationTable

N
404

Feb. 17, 2011 Sheet 4 of 9 US 2011/0040762 A1

400

/

406

/

N PostingListSegmentation

D PostingListSegmentation

PostingListSegmentations

Boolean isD 2 oolean isDirty;

Key Value

-
ce

--

|-b

-
-)

FIG. 4

PostingListSegmentation

Patent Application Publication Feb. 17, 2011 Sheet 5 of 9 US 2011/0040762 A1

500

o: /
DETERMINE POSTING

LIST SIZE

504 508

SIZE > SEGMENT /
PREDETERMINED Yes POSTINGLIST

SIZET

-
No READ SEGMENTS

INTO MEMORY

FIG. 5

Patent Application Publication Feb. 17, 2011 Sheet 6 of 9 US 2011/0040762 A1

602 604 606 508 610 S12 614
M M / M 1. /

inverted Segmenting Lexiconentry Posting List Enhanced Buffer valuation
Index PostingList TopostingList Length Buffered FilSize Logic

Searcher Reader Segmentation Mapper ApproximationTable Reader SelectorFactory

: 620
Nopen- N getPostingList D getPostingList
616 Segmentation 3. 622 624 PostingListLength < PostingList 2 9 9 " ". : Segmentation Approximation

—seek to start of posting list
: 630

resy b: makeApproximateBufferFillSizeSelector / >
BufferFISzeSelector N -

628 —setBufferFilSizeSelector N. D. 632 :
read posting b:

- T}636
— forward posting to evaluation logic D.

read posting b: --
{ 636 : 638

forward posting to evaluation logic 4 Di
640

false

Nose - : 642

FIG. 6

Y

Patent Application Publication Feb. 17, 2011 Sheet 7 of 9 US 2011/0040762 A1

702 704 706 708
Z a. a. a.

Inverted Segmenting Lexiconntry Enhanced
Index PostingList ToPostingList Se Riable Buffered E. Even

Searcher Reader SegmentationMapper 9 Reader

. . . . 718
open D getPostingList / i. 720 710 712 714

N Segmentation 2 —get 4 -> 22
- new empty / - null 726

segmentation --- - / :
seek to start of posting list: b

--- 730
rea/ b 1 getLimit 1)— D. a : n it

728 N : setBufferFillSizeSelector > :
734

get current position——bi.
t

read posting
1. :

forward posting to evaluation logic N >
read posting b. 740

- m

forward posting to evaluation logic / b
get current position : b.

- :
updatepostingList:

748 Segmentation putRefined by 746 4 -
true 744 -- s

---- ey. getLimit(2)
750 756- i. etBufferFilSizeselector D :

get current position b
-

read posting—b
-

forward oosting to evaluation logic— 7 ->
read posting — D 762 :

t
forward posting to evaluation logic N b

get current position——> :
updatepostingList

70 Segmentation t putRefined—b }768
- false | - n
- D 76 S COS goss- FIG. 7

Patent Application Publication Feb. 17, 2011 Sheet 8 of 9 US 2011/0040762 A1

392 94 396 39 8 3. O 3. 2 3. 4
Inverted Segmenting Lexiconentry Buffer
Index PostingList ToPostingList so Alable FilSize Even

Searcher Reader Segmentation Mapper SelectorFactory
818

6 820 : Open D etPostingList : :
Y Segmentati Yget up initialized

initialized r 826 : :
segmentation segmentation

seek to start of posting list:
: 830

- N - / makePreciseBufferFISzeselector >
828 N834 setBufferFilSizeSelector > .. : :

- read posting b 836 :
forward posting to evaluation logic N bi.

read posting b- :
4 i t 836 838 :

forward posting to evaluation logic Y >
840 t :

-(-true a t y : :
—rey- : 1 makePreciseBufferFil|SizeSelector >

842 N setBufferFilSizeSelector D. s 848 : --
- read posting : > 850 :

d gard posting to evaluation logic — 7)
t read posting 850 852 t

forward posting to evaluation logic N->
854

N. :
close->
856

FIG. 8 Y

Patent Application Publication Feb. 17, 2011 Sheet 9 of 9 US 2011/0040762 A1

900

/
908 - I/O

PROCESSOR H 902

MEMORY H 904

FIG. 9

US 2011/0040762 A1

SEGMENTING POSTINGS LST READER

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority under 35 U.S.C.
S119 to the following U.S. Provisional Applications, which
are herein incorporated by reference in their entirety:
0002 Provisional Patent Application Ser. No. 61/233,411,
by Flatland et al., entitled “ESTIMATION OF POSTINGS
LIST LENGTH IN A SEARCH SYSTEM USING AN
APPROXIMATION TABLE, filed on Aug. 12, 2009;
0003 Provisional Patent Application No. 61/233,420, by
Flatland et al., entitled “EFFICIENT BUFFERED READ
ING WITH A PLUG IN FOR INPUT BUFFER SIZE
DETERMINATION, filed on Aug. 12, 2009; and
0004 Provisional Patent Application Ser. No. 61/233,427,
by Flatland et al., entitled “SEGMENTING POSTINGS
LIST READER,” filed on Aug. 12, 2009.
0005. This application contains subject matter which is
related to the subject matter of the following applications,
each of which is assigned to the same assignee as this appli
cation and filed on the same day as this application. Each of
the below listed applications is hereby incorporated herein by
reference in its entirety:
0006 U.S. Non-Provisional patent application Ser. No.

by Flatland et al., entitled “ESTIMATION OF
POSTINGS LIST LENGTH IN A SEARCH SYSTEM
USING AN APPROXIMATION TABLE (Attorney Docket
No. 1634.068A); and
0007 U.S. Non-Provisional patent application Ser. No.

by Flatland et al., entitled “EFFICIENT BUFF
ERED READING WITH A PLUG INFORINPUT BUFFER
SIZE DETERMINATION’ (Attorney Docket No.
1634.069A).

TECHNICAL FIELD

0008. The present invention generally relates to reading
posting lists as part of searching an inverted index. More
particularly, the invention relates to segmenting a posting list
into a plurality of segments based on the size of the list.

BACKGROUND

0009. The following definition of Information Retrieval
(IR) is from the book Introduction to Information Retrieval
by Manning, Raghavan and Schutze, Cambridge University
Press, 2008:

0010 Information retrieval (IR) is finding material
(usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large
collections (usually stored on computers).

Inverted Index

0011. An inverted index is a data structure central to the
design of numerous modern information retrieval systems. In
chapter 5 of Search Engines. Information Retrieval in Prac
tice (Addison Wesley, 2010), Croft, Metzler and Strohman
observe:

0012. An inverted index is the computational equivalent
of the index found in the back of this textbook The
book index is arranged in alphabetical order by index
term. Each indexterm is followed by a list of pages about
the word.

Feb. 17, 2011

0013 In a search system implemented using a computer,
an inverted index often comprises two related data structures:

0.014) 1. Alexicon contains the distinct set of terms (i.e.,
with duplicates removed) that occur throughout all the
documents of the index. To facilitate rapid searching,
terms in the lexicon are usually stored in Sorted order.
Each term typically includes a document frequency and
a pointer into the other major data structure of the
inverted index, the posting file. The document frequency
is a count of the number of documents in which a term
occurs. The document frequency is useful at search time
both for prioritizing term processing and as input to
scoring algorithms.

0.015 2. The posting file consists of one posting list per
term in the lexicon, recording for each term the set of
documents in which the term occurs. Each entry in a
posting list is called a posting. The number of postings in
a given posting list equals the document frequency of the
associated lexicon entry. A posting includes at least a
document identifier and may include additional infor
mation Such as: a count of the number of times the term
occurs in the document; a list of term positions within
the document where the term occurs; and more gener
ally, scoring information that ascribes some degree of
importance (or lack thereof) to the fact that the document
contains the term.

0016. When processing a user's query, a computerized
search system needs access to the postings of the terms that
describe the user's information need. As part of processing
the query, the search system aggregates information from
these postings, by document, in an accumulation process that
leads to a ranked list of documents to answer the user's query.
0017. A large inverted index may not fit into a computer's
main memory, requiring secondary storage, typically disk
storage, to help store the posting file, lexicon, or both. Each
separate access to disk may incur seek time on the order of
several milliseconds if it is necessary to move the hard drive's
read heads, which is very expensive in terms of runtime
performance compared to accessing main memory.
0018. Therefore, it would be helpful to minimize accesses
to secondary storage for reading posting lists when searching
an inverted index, in order to improve runtime performance.

BRIEF SUMMARY OF INVENTION

0019. The present invention satisfies the above-noted need
by providing a posting list reader that reads a posting list
efficiently during inverted index searching by reducing the
number of accesses to secondary storage as compared to a
traditional buffered reading strategy that repeatedly uses a
uniform input buffer size.
0020. The posting list reader of the present invention will
be referred to as a segmenting posting list reader, to distin
guish it from posting list readers in general. Further, a posting
list segment refers to a sequence of adjacent postings within
a posting list. A complete segmentation of a posting list
breaks it up into one or more non-overlapping segments that
together include all the postings of the list.
0021. In accordance with the above, it is an object of the
present invention to provide a segmenting posting list reader
that can determine how many postings to read on each read
request.
0022. It is another object of the present invention to pro
vide a segmenting reader to read short posting lists in a single
burst of reading.

US 2011/0040762 A1

0023. It is still another object of the present invention to
provide a segmenting reader that automatically breaks long
posting lists into segments according to, for example, a strat
egy that may vary with the requirements of evaluation logic,
posting list organization, or other considerations. Each read
request preferably reads the next segment in one burst of
reading.
0024. It is yet another object of the present invention to
provide a segmenting reader with Support for posting list
segments of both exact and approximate size.
0025 Finally, it is another object of the present invention
to provide a segmenting posting list reader that learns,
remembers and applies posting list segmentations with only a
Small amount of up-front configuration.
0026. The present invention provides, in a first aspect, a
methodofreading a posting list. The method comprises deter
mining by a processor a size of a posting list as part of
searching an inverted index, segmenting the posting list for
reading by the processor into a plurality of segments based on
the size, and reading by the processor each of the plurality of
segments into memory.
0027. The present invention provides, in a second aspect,
a computer system for reading a posting list. The computer
system comprises a memory, and a processor in communica
tion with the memory to perform a method. The method
comprises determining a size of a posting list as part of
searching an inverted index, segmenting the posting list for
reading into a plurality of segments based on the size, and
reading each of the plurality of segments into memory.
0028. The present invention provides, in a third aspect, a
program product for reading a posting list. The program prod
uct comprises a storage medium readable by a processor and
storing instructions for execution by the processor for per
forming a method. The method comprises determining a size
of a posting list as part of searching an inverted index, seg
menting the posting list for reading into a plurality of seg
ments based on the size, and reading each of the plurality of
segments into memory.
0029. These, and other objects, features and advantages of

this invention will become apparent from the following
detailed description of the various aspects of the invention
taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0030. One or more aspects of the present invention are
particularly pointed out and distinctly claimed as examples in
the claims at the conclusion of the specification. The forego
ing and other objects, features, and advantages of the inven
tion are apparent from the following detailed description
taken in conjunction with the accompanying drawings in
which:

0031 FIG. 1 is a graph of term rank versus document
frequency;
0032 FIG. 2 is a block/flow diagram showing aspects of
inverted index searching;
0033 FIG. 3 is one example of a block/flow diagram for a
segmenting posting list reader, in accordance with aspects of
the present invention;
0034 FIG. 4 is an instance diagram for a posting list
segmentation table and associated objects;
0035 FIG. 5 is a flow diagram for one example of a
methodofreadingaposting list, inaccordance with aspects of
the present invention;

Feb. 17, 2011

0036 FIG. 6 is sequence diagram for one example of a
method of reading a short posting list comprising a single
Segment,
0037 FIG. 7 is a sequence diagram for one example of a
method of reading and learning the segmentation of a posting
list comprising two segments;
0038 FIG. 8 is a sequence diagram for one example of a
method of reading a posting list comprising two segments,
taking advantage of segmentation information learned and
remembered during an earlier read of the list; and
0039 FIG. 9 is a block diagram of one example of a
computing unit incorporating one or more aspects of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

0040 Posting lists in a search index are described by
Zipf's law, which states that given a corpus of natural lan
guage documents, the frequency of any word is inversely
proportional to its rank in the frequency table.
0041 FIG. 1 shows, for an index built from a natural
language corpus, a graph 100 of term rank 102 versus docu
ment frequency 104, where document frequency is the num
ber of distinct documents the term occurs in. Another way to
think about document frequency is posting list length. The
graph shows that most terms have very short posting lists, and
only relatively few posting lists are long.
0042. Observing that queries submitted to a search system
are little natural language documents, they too adhere to
Zipf's law. It follows that the relatively few long posting lists
in a search index are also the most frequently accessed during
query processing. An efficient read strategy for long posting
lists can help a search system deliver fast query run times. It
is convenient that the big posting lists are few. This makes it
feasible to craft and hold in memory exact read strategies for
these lists.

Inverted Index Searcher and Posting List Reader
0043. An information retrieval system 200 that searches
an inverted index comprises components similar to those
labeled InvertedIndexSearcher 202 and PostingListReader
204 in FIG. 2. An inverted index searcher manages the pro
cess of searching an inverted index, and a posting list reader
manages the details of reading a posting list from the posting
file 214.
0044) Inverted index searcher 202 takes a query 206 as
input and returns search results 208. Information contained in
the query includes, at a minimum, a term or terms describing
the user's information need. The query optionally includes
other features Such as, for example, Boolean constraints
(AND, OR, NOT), term weights, phrase constraints, or prox
imity restrictions. The query may be expressed literally as
submitted by the user, or it may already have been parsed and
structured. The search results returned, at a minimum, com
prise unique identifiers of the documents matching the query.
Often, the search results are returned in order of descending
relevance, and each search result may optionally include a
variety of other information Such as a score, date indexed,
document last modified date, a copy of the document as it was
indexed, the document's URL if applicable, document title, a
"snippet' or keywords in context showing how the query
matches the document, and application-specific metadata.
0045. A given inverted index searcher instance searches a
single inverted index. A large scale search engine may have

US 2011/0040762 A1

multiple inverted index searcher instances, spread out on
different servers in a server cluster. In this case, higher level
components, not pictured here, are responsible for broadcast
ing queries across inverted index search services and integrat
ing the results that come back.
0046 When inverted index searcher 202 receives query
206, it forwards it to the evaluation logic 216, which is the
code and associated data structures in the inverted index
searcher that executes the query and produces a list of search
results. The evaluation logic decides which posting lists to
read and dispatches any needed posting list readers. The
evaluation logic controls the details of reading, for example,
how many posting list readers to use at once, how much of
each posting list to read, the order in which lists are read,
whether to read a given list all at once, whether to alternate
between lists in Successive bursts of reading, etc. In the
example of FIG. 2, the evaluation logic has decided to open
three posting list readers (204, 210, and 212) simultaneously
over three different posting lists (218, 220 and 222, respec
tively). As postings are read, the evaluation logic aggregates
information in the postings by document and interprets Bool
ean operators and other advanced search language features to
identify matching documents. The end result is a list of search
results 208, often ranked in descending order of relevance, to
answer the user's query.
0047. As it executes a search, an inverted index searcher
requires data transfer from the posting file. As previously
mentioned, a large search index may require implementing
the posting file using secondary storage.
0048 FIG. 3 is one example of a block/flow diagram 300
for a segmenting posting list reader, in accordance aspects of
the present invention. The segmenting posting list reader
works together with several other components, pictured in
FIG. 3. Directionality of arrows in FIG. 3 indicates compo
nent usage, i.e., an arrow goes from a software component to
another component that it uses.

Segmenting Posting List Reader
0049. The main component in FIG. 3 is the Segmenting
Posting List Reader 302 (SPLR) whose purpose is to read
posting lists during an inverted index search and make them
available to the evaluation logic, in accordance with the effi
ciencies of the present invention, i.e., reducing the number of
reads compared to a conventional reader.
0050. The SPLR is implemented using several other soft
ware components that are introduced here and described in
greater detail below. The purpose of the LexiconEntryToPost
ingListSegmentationMapper 304 is to provide a mapping
from each lexicon entry to a segmentation of the associated
posting list, thereby determining for each term in the index
both the number of bursts of reading to fully read the posting
list and the postings that will be read by each Successive read
request. The LexiconEntryToPostingListSeg
mentationMapper delegates work optionally to a Post
ingListLength ApproximationTable 306 and to a PostingList
SegmentationTable 3O8. A
PostingListLength ApproximationTable provides accurate
estimates of posting list size, typically in bytes. The Post
ingListSegmentationTable stores segmentations of the rela
tively few but frequently accessed posting lists that are larger
than a predetermined size. A PostingListReadLimiter 310
helps the SPLR learn segmentations of long posting lists that
do not have segmentations in the PostingListSegmentationT
able yet, by defining the boundaries between read bursts. An

Feb. 17, 2011

enhanced buffered reader 312 uses configurable predeter
mined buffer fill size strategies to read from secondary stor
age more efficiently than a conventional buffered reader.
Finally, a BufferFillSizeSelectorFactory 314 manufactures
predetermined buffer fill size strategies used to configure an
enhanced buffered reader.
0051) To describe the public interface of the SPLR, it is
necessary to first define a LexiconEntry. A LexiconEntry is a
record retrieved from the inverted index's lexicon. A Lexico
nEntry comprises at least three fields: term, document fre
quency, and posting file start offset. The term is an indexed
word or phrase. The document frequency is the length of the
term's posting listin number of postings. The posting file start
offset is the offset, typically in bytes, in the posting file where
the posting list of the term starts. A LexiconEntry consisting
of only these 3 fields will be referred to below as a minimal
lexicon entry.
0.052 A LexiconEntry may optionally include, for
example, a postings file end offset and/or posting list length.
A posting file end offset is the offset, typically in bytes, in the
posting file where the posting list of the term ends. A posting
list length is the length of the posting list of the term, again,
typically in bytes. If a lexicon entry has either or both of these
fields it will be referred to below as an extended lexicon entry.
0053 As will become clear, whether a lexicon entry is
minimal or extended affects whethera PostingListLength Ap
proximationTable is required in the implementation of the
SPLR.
0054) The public interface of the SPLR preferably
includes the following methods:

0.055 1. void open (LexiconEntry lexiconEntry)—Pre
pares the SPLR for reading the posting list indicated by
the LexiconEntry. This method has no return value, as
indicated by “void.”

0056 2. Boolean read ()—Read a burst of postings. The
preferred implementation is to forward these postings
directly to the evaluation logic via a callback, so it is
Suggested here that the postings read are not the return
value of this method. Because the SPLR automatically
decides how many postings to read, the read()method
needs no input parameter Such as the number of postings
to read. The method returns a Boolean value: whether
there are more postings to read, i.e. whether it makes
sense for the client to call read() again to do another
burst of reading.

0057 3. Void close ()—Closes the reader, releasing any
resources such as memory and/or file handles. This
method should leave the SPLR in a state where open()
can be called again. Making the SPLR reusable in this
way facilitates managing resource pools, which is con
Venient for building the larger search system. The close(
) method has no return value (void).

0.058 A discussion of the various software components,
pictured in FIG. 3, that help implement the SPLR, follows.
This, in turn, is followed by some examples of the SPLR in
action, illustrated by sequence diagrams, and pseudocode for
a proposed SPLR implementation.

PostingListReadLimiter
0059. The purpose of the PostingListReadLimiter is to
give the SPLR a strategy whereby it can learn the complete
segmentation of a long posting list.
0060. The public interface to the PostingListReadLimiter
consists of the following method: PostingListReadLimit

US 2011/0040762 A1

getLimit (int readSequenceNumber). The getLimit method
takes as input a readSequenceNumber, which is an integer
greater than or equal to one. A posting list is read using one or
more bursts of reading, one burst per segment. The first seg
ment is designated readSequenceNumber 1, the second as
readSequenceNumber 2, and the readSequenceNumber
increases by 1 for each Successive burst of reading. The
getLimit function returns a PostingListReadLimit that is used
by the implementation of the SPLR's read()method to know
when to stop reading during a burst with a given readSequen
ceNumber.
0061 The details of how to best define the PostingLis
tReadLimit will vary depending upon the posting list struc
ture of the inverted index and associated evaluation logic.
0062. In a score sorted index, the postings of each posting

list are sorted into descending order by score, so that the
evaluation logic gets the postings first with the highest scores,
considered the most important. For example, in “Pruned
Query Evaluation Using Pre-Computed Impacts. In Pro
ceedings 29th Annual International ACM SIGIR Conference
(SIGIR 2006), pp. 372-379, Seattle, Wash., August 2006,
incorporated herein by reference in its entirety, V. N. Anh and
A. Moffat describe a technique to achieve fast search runtime
and a guarantee of search result quality (i.e., relevance) using
pruned query evaluation with score-at-a-time processing of
an impact-sorted index. In their approach, the postings of
each posting list are ordered by descending impact, where
impact is a measure of the importance of a term in a docu
ment. In their approach, a posting list is read using a sequence
ofbursts of reading, and within each burst, each posting read
contributes the same partial score value toward the score of
each document encountered. With a score-Sorted posting list
organization, to help achieve efficient data access, it is pref
erable to align the segment boundaries of the present inven
tion with the static score or impact boundaries that are built
into the posting list.
0063. With a score sorted index, the PostingListRead
Limit is preferably defined as the minimum impact or score
(more generally, the minimum relevance indicator) to read
during a burst of reading. To enforce the limit, a burst of
reading includes all remaining postings with a score greater
than or equal to the minimum score that is the PostingLis
tReadLimit for the current readSequenceNumber. The imple
mentation of PostingListReadLimit getLimit (int readSe
quenceNumber) in this case is a trivial. The
PostingListReadLimiter has as part of its state an array of
scores indexed by read sequence number, and the getLimit
method simply does an array lookup and returns a score. The
array of scores used by the PostingListReadLimiter is pref
erably configurable through a file or database read by the
search system on startup.
0064. In a document sorted index, another common index
organization that is simple and offers good compression char
acteristics, the postings of each posting list are sorted by
document identifier. It is not possible to segment Such an
index for reading on score boundaries.
0065 One example strategy to segment a posting list of a
document sorted index is to make each Successive burst of
reading bigger, for example, doubling the size of each Suc
cessive read. The intuition is to attempt to satisfy the evalua
tion logic's information need with minimal data transfer, but
if the evaluation logic remains unsatisfied, then issue bigger
and bigger reads to deliver the needed information with a
relatively small number of separate accesses to secondary

Feb. 17, 2011

storage. To implement a strategy like this, the PostingLis
tReadLimit is a minimum number of bytes, for example, to
read during a burst. The burst of reading continues until the
minimum number of bytes for the readSequenceNumber has
been read or until end of list, whichever comes first. The
implementation of PostingListReadLimit getLimit (int read
SequenceNumber) is straight forward in this case. The Post
ingListReadLimiter has as part of its state an array of sizes in
bytes indexed by read sequence number, and the getLimit
method simply does an array lookup and returns a size. The
array of sizes used by the PostingListReadLimiter is prefer
ably configurable through a file or database read by the search
system on startup.

PostingListSegmentationTable
0.066 A PostingListSegmentationTable is a table of post
ing list segmentations randomly accessible by term, where a
term is an indexed word or phrase. The segmentation infor
mation in the table may be complete or incomplete. The
SPLR adds segmentation information as it becomes known.
0067 FIG. 4 shows the structure of a PostingListSegmen
tationTable 400, which is preferably held in main memory
during search evaluation and also saved to a persistent storage
medium for long term storage. The PostingListSegmenta
tionTable includes a hash table 402 keyed on indexed term
404. Each key is mapped to a PostingListSegmentation object
406. The PostingListSegmentationTable has a Boolean flag,
is Dirty 408, indicating whether the PostingListSegmenta
tionTable has changed since the last save to persistent storage.
0068 A PostingListSegmentation object 406 describes a
complete or partial segmentation of a posting list. Recall that
a posting list segment is a sequence of adjacent postings
within a posting list. A complete segmentation of a posting
list breaks it up into one or more non-overlapping segments
that together include all the postings of the list.
0069. A PostingListSegmentation object has the follow
ing object state:

0070) 1. Term term Unique identity of the term whose
posting list is being segmented.

0071 2. int postingListSegmentLengths—An array
of 0 or more segment lengths in bytes. The length of this
array indicates the number of segments that are known.
(An array of size 0 is an initial condition, since a posting
list generally has at least one item on it.)

0072. 3...boolean complete Whether the segmentation
is complete.

0.073 4. boolean approximate true if the values in
postingListSegmentLengths should be treated as
approximate sizes; false if the values in postingListSeg
mentLengths should be treated as exact sizes.

0074. A PostingListSegmentation also has a convenience
method numSegments() to return the number of segment
lengths that are known. This is the length of the postingList
SegmentLengths array.
0075 A PostingListSegmentationTable includes the fol
lowing public methods:

0.076 1. PostingListSegmentation get (Term key)—
Given a term, return its segmentation, if any. If the indi
cated key has no segmentation, return null.

0.077 2. PostingListSegmentation put (PostingListSeg
mentation segmentation)—Put the segmentation passed
in into the table, keyed on its term. Returns the previous
value associated with the key (if any) or null. This

US 2011/0040762 A1

method is useful for initially populating the table, for
example, if loading it from a persistent data store.

0078. 3. PostingListSegmentation putRefined (Post
ingListSegmentation segmentation)—Replaces the
PostingListSegmentation associated with the key that is
the term of the segmentation passed in. This key will be
updated to map to the segmentation parameter if the key
currently has no value or if both of the following condi
tions hold: (a) the current value of the key is incomplete
(complete=false) and (b) the current value of the key
has a postingListSegmentLengths array that is shorter
than the postingListSegmentLengths array in the seg
mentation that is the parameter to the method. Returns
the displaced PostingListSegmentation or null if no
value was displaced by this operation. A null return
value occurs ifa key is set for the first time, or if the put
fails because the required conditions do not hold. If this
method modifies the PostingListSegmentationTable, it
sets the is Dirty flag to true.

(0079 4. boolean is Dirty () Returns the value of the is
Dirty flag, indicating whether the PostingListSegmen
tationTable has been modified since it was last saved to
a persistent storage medium. Mutations caused by the
putRefined method cause the is Dirty flag to become
true.

0080) 5. void clearDirty () Set the is Dirty flag to
false, to indicate that the PostingListSegmentationTable
is unmodified/clean. This method is called when a dirty
PostingListSegmentationTable has been successfully
saved to a persistent storage medium. The method
returns nothing.

0081. In a search system that is under load, the get() and
putRefinedOmethods may be called concurrently by multiple
threads of execution. These methods should be synchronized
to avoid erroneous behavior.

PostingListLength ApproximationTable

0082 A PostingListLength ApproximationTable provides
accurate estimates of posting list size, typically in bytes. The
main method on a PostingListLengthApproximationTable is:
0083 PostingListLength Approximation getPost
ingListLength Approximation (documentFrequency)—Re
turns a PostingListLength Approximation for a posting list
with the indicated document frequency (document frequency
is the same thing as posting list length).
0084. A PostingListLength Approximation includes the
following information: ranged; average posting list length in
bytes for this range; and standard deviation of posting list
length in bytes for this range.
0085 For a detailed discussion of a PostingListLength Ap
proximationTable refer to U.S. Non-Provisional patent appli
cation entitled “ESTIMATION OF POSTINGS LIST

Feb. 17, 2011

LENGTH IN A SEARCH SYSTEMUSING AN APPROXI
MATION TABLE (Attorney Docket No. 1634.068A) filed
concurrently herewith.

LexiconEntryToPostingListSegmentationMapper

I0086. The purpose of this component is to map a lexicon
entry to a PostingListSegmentation. The PostingListSegmen
tation is useful to the SPLR, representing what is known about
how to best break a given posting list into segments for
reading.
0087. The LexiconEntryToPostingListSeg
mentationMapper delegates work to a PostingListSegmenta
tionTable and optionally to a PostingListLength Approxima
tionTable as will be spelled out below.
0088. A LexiconEntryToPostingListSeg
mentationMapper has the following public methods:

0089. 1. PostingListSegmentation getPostingListSeg
mentation (LexiconEntry lexiconEntry) Given a Lexi
conEntry, return the PostingListSegmentation to be used
by the SPLR to read the posting list.

0090 2. PostingListSegmentation updatePostingList
Segmentation (PostingListSegmentation segmenta
tion)—Update a posting list segmentation in the Post
ingListSegmentationTable. (As the SPLR discovers
segmentation information, it will call this method to
report what it has learned.) This method simply del
egates work to the PostingListSegmentationTable's
putRefined method.

0091 Internally, the LexiconEntryToPostingListSeg
mentationMapper knows how to discriminate between long
and short posting lists. A short posting list is one that is short
enough to read in its entirety in one burst of reading. A long
posting list is one that should be broken into multiple seg
ments and read in pieces. The exact methodology to discrimi
nate between long and short posting lists could vary and is left
to the implementer. In one example, the inflection point on the
graph of document frequency over term rank (see FIG. 1) can
be used as the dividing line between short and long posting
lists.
0092. As described above, different possible implementa
tions of LexiconEntry include: a minimal lexicon entry that
includes just term, document frequency and posting file start
offset; and a more extended lexicon entry that adds posting
file end offset or posting list length in bytes.
0093. The implementation of getPostingListSegmenta
tion varies depending upon whether a LexiconEntry is mini
mal or extended. Examples of Java-like pseudocode for these
two scenarios is given below. In the pseudocode below, first
LongDocumentFrequency is the length of the shortest post
ing list that is considered long as opposed to short per the
discussion above.
0094. Example Pseudocode for getPostingListSegmenta
tion, Minimal Lexicon Entry

PostingListSegmentation
getPostingListSegmentation (LexiconEntry le) {
if (le.documentFrequency >= firstLongDocumentFrequency) {

PostingListSegmentation segmentation =
postingListSegmentationTable..get(le.term):

if (segmentation == null) {
if This is a long posting list, but there is no

US 2011/0040762 A1

-continued

if segmentation information yet.
return a new PostingListSegmentation with the
following state:

term = le. term
postingListSegmentLengths = trivial empty list
complete = false
approximate = false

else {
if This is a long posting list, and segmentation info
f f is available; return it.
return segmentation;

else {
// This is a short posting list. We will approximate its
if length, because the minimal lexicon entry does not include
if this information.
PostingListLength Approximation la =

postingListLength ApproximationTable.
getPostingListLength Approximation(le.documentFrequency);

// Let numPostingListStdDevs be a configured number
if standard deviations of posting list length
approximatePostingListLengthBytes =

la.averagePostingListLengthBytes +
(numPostingListStdDevs*la.stddevPostingListLengthBytes);

return a new PostingListSegmentation with the following
State:

term = le. term
postingListSegmentLengths = a list of one item, the

approximatePostingListLengthBytes computed above
complete = true;
approximate = true;

Feb. 17, 2011

0095 Example Pseudocode for getPostingListSegmenta
tion, Extended Lexicon Entry

PostingListSegmentation
getPostingListSegmentation (LexiconEntry le) {
if (le.documentFrequency >= firstLongDocumentFrequency) {

PostingListSegmentation segmentation =
postingListSegmentationTable..get(le.term):

if (segmentation == null) {
if This is a long posting list, but there is no
if segmentation information yet.
return a new PostingListSegmentation with the
following state:

term = le. term
postingListSegmentLengths = trivial empty list
complete = false
approximate = false

else {
if This is a long posting list, and segmentation info
f f is available; return it.
return segmentation;

else {
if This is a short posting list, and we know its exact
if length from the extended lexicon entry.
return a new PostingListSegmentation with the following
State:

term = le. term
postingListSegmentLengths = a list of one item, the

exact length of the posting list in bytes, obtained
from the LexiconEntry le either by Subtracting starting
from ending posting file offsets or simply by using an
explicit posting list length in bytes from the
lexicon entry

-continued

complete = true;
approximate = false;

Enhanced Buffered Reader

(0096. The buffered reader used by the SPLR is an
enhanced buffered reader that uses configurable predeter
mined buffer fill size strategies to read from secondary stor
age more efficiently than a conventional buffered reader.
0097. For a detailed discussion of enhanced buffered read
ers, refer to U.S. Non-Provisional patent application entitled
EFFICIENT BUFFERED READING WITH A PLUG IN
FOR INPUT BUFFERSIZE DETERMINATION’ (Attorney
Docket No. 1634.069A) filed concurrently herewith.

BufferFillSizeSelectorFactory

(0098. The BufferFillSizeSelectorFactory is used to make
BufferFillSizeSelector objects for plugging into the enhanced
buffered reader. A BufferFillSizeSelector object is a prede
termined buffer fill size strategy. More specifically, a Buffer
FillSizeSelector is an ordered sequence of (fillSize, num
TimesToUse) pairs, where fillSize indicates how much of an
enhanced buffered reader's internal input buffer to fill when a
buffer fill is needed, and numTimesToUse indicates how
many times to use the associated fillSize.
(0099. The object state of the BufferFillSizeSelectorFac
tory includes maxBufferSize, which is the largest read system

US 2011/0040762 A1

call that can be issued, typically in bytes, based on the maxi
mum available input buffer size of the enhanced buffered
reader. In one example, a large maxBufferSize (of 20 mega
bytes or so) is used on a commodity server with an index of 20
million web documents.
0100. The BufferFillSizeSelectorFactory provides the fol
lowing public methods:

0101 1. BufferFillSizeSelectorFactory (int maxBuffer
Size) Constructs a new BufferFillSizeSelectoryFac
tory. The constructor simply records the maxBufferSize
as object state, for future reference.

0102 2. BufferFillSizeSelector makePreciseBuffer
FillSizeSelector (long numEBytesToRead) This
method returns a BufferFillSizeSelector to read a pre
cise number of bytes with a minimum number of reads,
taking into account the maxBufferSize.

(0103) 3. BufferFillSizeSelector make Approximate
BufferFillSizeSelector (long approximateNum
BytesToRead, int supplementalReadSize). This
method returns a BufferFillSizeSelector that will read
approximateNumEBytesToRead with a minimum num
ber of reads, and will thereafter revert to using buffer fills
of the supplementalReadSize if more information is
needed.

0104. In the discussion that follows, let “f” represent the
operation of integer division, and “96' represent the operation
of integer modulo.
0105 To implement makePreciseBufferFillSizeSelector,
there are two cases to consider, where numBytesToRead is
the input to makePreciseBufferFillSizeSelector, and max
BufferSize is the largest read system call that can be issued in
bytes:

0106 Case 1: maxBufferSize>=numEytesToRead
0107 Case 2: maxBufferSize-numEytesToRead

0108. A discussion of these cases follows.
Case 1: maxBufferSize>-numEBytesToRead
0109 Build a one-stage predetermined buffer fill size
strategy as indicated below in Table I.

TABLE I

Stage Fill Size Number of Times to Use

1 numBytesToRead 1

0110. The above strategy, when installed in an enhanced
buffered reader, will read exactly numEBytesToRead bytes of
data using a single system call.
Case 2: maxBufferSize.<numBytesToRead
0111. In this case, build a predetermined buffer fill size
strategy that generally has two stages, as indicated in Table II.
However, the second stage is not necessary when the max
BufferSize evenly divides numEBytesToRead.

TABLE II

Stage Fill Size Number of Times to Use

1 maxBufferSize numBytesToRead/maxBufferSize
2 numBytesToRead% 1

maxBufferSize

0112 The above strategy, when installed in an enhanced
buffered reader, will read exactly numEBytesToRead bytes of
data with the minimum possible number of read system calls.

Feb. 17, 2011

0113 To implement make ApproximateBufferFillSiz
eSelector, there are two cases to consider, where approxi
mateNumEBytesToRead is input to make ApproximateBuffer
FillSizeSelector, and maxBufferSize is the largest read
system call that can be issued in bytes:

0114 Case 3:
maxBufferSize>-approximateNumEBytesToRead

0115 Case 4:
maxBufferSize-approximateNumEBytesToRead

Also, recall that a SupplementalReadSize is provided as input
to make ApproximateBufferFillSizeSelector. A discussion of
these cases follows.
Case 3: maxBufferSize>-approximateNumEBytesToRead
0116 Build a two-stage predetermined buffer fill size
strategy as indicated below in Table III.

TABLE III

Stage Fill Size Number of Times to Use

1 approximateNumBytesToRead 1
2 supplemental ReadSize Repeat as necessary

0117 The above strategy, when installed in an enhanced
buffered reader, will read approximateNumEBytesToRead
bytes of data using a single read system call and thereafter
will perform as many additional system calls of the Supple
mental read size as necessary.
Case 4: maxBufferSize<approximateNumbytesToRead
0118. In this case, build a predetermined buffer fill size
strategy that generally has three stages, as indicated below in
Table IV. However, the second stage is not necessary when the
maxBufferSize evenly divides the approximateNumEBytesTo
Read.

TABLE IV

Stage Fill Size Number of Times to Use

1 maxBufferSize approximateNumEytesToRead,
maxBufferSize

2 approximateNumBytesToRead 1
% maxBufferSize

3 supplementalReadSize Repeat as necessary

0119 The above strategy, when installed in an enhanced
buffered reader, will read approximateNumEBytesToRead
bytes of data with the minimum possible number of read
system calls and thereafter will perform as many additional
system calls of the Supplemental read size as necessary.
0.120. One example of a method of reading a posting list
will now be described with reference to the flow diagram 500
of FIG. 5. A processor (e.g., as part of a computing unit) is
used to determine the size of a posting list as part of an
inverted index search, step 502. Once the size is determined,
an inquiry is made as to whether the size is larger than a
predetermined size, inquiry 504. If the size is equal to or
Smaller than the predetermined size, i.e., not larger than the
predetermined size, then the entire posting list is read into
memory as a single segment, step 506. However, if the size is
larger than the predetermined size, then the posting list is
segmented, step 508. In one example, the segmenting uses at
least one predetermined segment size. In another example,
the segmenting uses at least one estimated segment size, and
the actual read size is at least the estimated size. The estimated

US 2011/0040762 A1

segment size may be stored in a data structure for reuse. The
segments, by whatever method of segmentation, are then each
read into memory, step 506.

SPLR Operational Examples

0121 Having described the SPLR and each of its subcom
ponents from FIG. 3 in some detail, and providing the basic
method above, some examples of how these components
work together to read posting lists will now be presented.
0122. In a first example, the sequence diagram 600 in FIG.
6 shows interactions between an inverted index searcher 602,
SegmentingPostingListReader 604, LexiconEntryToPost
ingListSegmentationMapper 606, PostingListLength Ap
proximationTable 608, enhanced buffered reader 610, Buff
erFillSizeSelectorFactory 612 and evaluation logic 614 as the
inverted index searcher reads a short posting list consisting of
only a single segment. In this example, a minimal lexicon
entry is being used and therefore a PostingListLength Ap
proximationTable is also used.
0123. The inverted index searcher begins a reading session
by calling the open method 616 on the SPLR, passing in the
lexicon entry of the posting list to read. The SPLR saves a
reference to this lexicon entry as part of its state to help
control the reading session. The SPLR calls getPostingList
Segmentation 618 on the LexiconEntryToPostingListSeg
mentationMapper, forwarding the lexicon entry. The Lexico
nEntryToPostingListSegmentationMapper examines the
document frequency of the lexicon entry and consults its
method of discriminating between long and short posting
lists. The LexiconEntryToPostingListSegmentationMapper
determines that the posting list to read is short and calls
getPostingListLengthApproximation 620 on the Post
ingListLength ApproximationTable, providing as input the
document frequency of the lexicon entry. A Post
ingListLength Approximation is returned to the LexiconEn
tryToPostingListSegmentationMapper 622, which then
builds a complete, approximate PostingListSegmentation,
incorporating the term from the lexicon entry and a single
posting list segment length equal to the average posting list
length in bytes plus the desired number of standard deviations
from the PostingListLength Approximation. The LexiconEn
tryToPostingListSegmentationMapper returns this newly
built PostingListSegmentation to the SPLR 624, where it
becomes part of the SPLR's state to control the reading ses
sion. The SPLR finishes the execution of its open()method by
initializing various miscellaneous state variables and finally
seeking the enhanced buffered reader to the start of the post
ing list 626 by passing the posting file start offset of the
lexicon entry to the enhanced buffered reader's seek method.
At this point, the open method called by the inverted index
searcher returns, and the SPLR is ready to accept a read call.
(0.124. The inverted index searcher calls the SPLR's read.(
)method 628. Based on the state established during the open.(
)method, the SPLR recognizes that the posting list being read
consists of a single segment with an approximate length in
bytes. The SPLR forwards the approximate number of bytes
to read to the BufferFillSizeSelectorFactory's make Approxi
mateBufferFillSizeSelector method 630. A predetermined
buffer fill size strategy in the form of a BufferFillSizeSelector
object is returned to the SPLR 632, which it installs in the
enhanced buffered reader by calling setBufferFillSizeSelec
tor 634. The SPLR next uses the enhanced buffered reader to
read all of the postings in this relatively short posting list 636,
forwarding each posting to the evaluation logic 638. Finally,

Feb. 17, 2011

the SPLR's read method returns false to the inverted index
searcher 640, indicating that there are no more postings avail
able to be read, and the inverted index searcher calls close 642
on the SPLR to end the reading session.
0.125. In a second example, the sequence diagram 700 in
FIG. 7 shows interactions between an inverted index searcher
702, SegmentingPostingListReader 704, LexiconEntryTo
PostingListSegmentationMapper 706, PostingListSegmen
tationTable 708, enhanced buffered reader 710, PostingLis
tReadLimiter 712 and evaluation logic 714 as the inverted
index searcher reads a posting list consisting of two segments.
In this example, the segmentation of the posting list is
unknown and has to be learned as the posting list is read.
0.126 The inverted index searcher begins a reading session
by calling the open method on the SPLR 716, passing in the
lexicon entry of the posting list to read. The SPLR saves a
reference to this lexicon entry as part of its state to help
control the reading session. The SPLR calls getPostingList
Segmentation on the LexiconEntryToPostingListSeg
mentationMapper 718, forwarding the lexicon entry. The
LexiconEntryToPostingListSegmentationMapper examines
the document frequency of the lexicon entry and consults its
method of discriminating between long and short posting
lists. The LexiconEntryToPostingListSegmentationMapper
determines that the posting list to read is long and calls get()
on the PostingListSegmentationTable 720, passing in the
term of the lexicon entry as the key for the lookup. The
PostingListSegmentationTable consults its hash but finds no
mapping from the term to a PostingListSegmentation. In this
scenario, the posting list has not been read since the inverted
index was deployed, and its segmentation is unknown. The
get() call returns null to the LexiconEntryToPostingListSeg
mentationMapper 722, indicating that no segmentation infor
mation is available. In response, the LexiconEntryToPost
ingListSegmentationMapper creates a new incomplete,
precise (i.e. complete false, approximate false) PostingList
Segementation, incorporating the term from the lexicon entry,
and using an empty array of posting list segment lengths. This
new empty PostingListSegmentation is returned to the SPLR
724, where it becomes part of the SPLR's state to control the
reading session. The SPLR finishes the execution of its open.(
)method by initializing various miscellaneous state variables
and finally seeking the enhanced buffered reader to the start of
the posting list 726 by passing the posting file start offset of
the lexicon entry to the enhanced buffered reader's seek
method. At this point, the open method called by the inverted
index searcher returns, and the SPLR is ready to accept a read
call.

I0127. The inverted index searcher calls the SPLR's read.(
)method 728. Based on the state established during the open.(
)method, the SPLR recognizes that the posting list consists of
multiple segments, that the segment boundaries are unknown,
and the segment boundaries need to be learned. Because this
is the first call to read in this session, the SPLR forwards the
value 1 (one) to the getLimit method of the PostingListRea
dLimiter 730. The PostingListReadLimiter returns a Post
ingListReadLimit 732, an indication of how far the SPLR
may read during this first read call. With this information, the
SPLR is almost ready to read postings. Since the SPLR does
not know the size in bytes of the segment it is about to read, it
calls setBufferFillSizeSelector 734 to installa default prede
termined buffer fill size strategy on the enhanced buffered
reader that always buffers several disk blocks worth of data
whenever the buffered reader needs more data. This strategy

US 2011/0040762 A1

is acceptable for learning a new segmentation, after which a
better strategy will be available.
0128. Before reading any postings, the SPLR is careful to
note the current logical position of the enhanced buffered
reader in the posting file 736. Knowing the read start position
will allow the SPLR to know the length of the segment later
when reading stops. The SPLR now uses the enhanced buff
ered reader to read postings 738, forwarding each one to the
evaluation logic as soon as it is read 740, stopping when the
PostingListReadLimit is reached or at end of posting list,
whichever comes first. In this case, reading stops because the
PostingListReadLimit is reached. Once again the SPLR gets
the current logical position from the enhanced buffered reader
742. The difference between this second logical position and
the first one that was obtained is the length of the segment just
read. The SPLR creates and remembers an updated Post
ingListSegmentation object that includes the new segment
length just learned. The SPLR then passes the updated Post
ingListSegmentation to the updatePostingListSegmentation
method of the LexiconEntryToPostingListSeg
mentationMapper 744, to preserve the updated segmentation
information for reuse by future read sessions. The Lexico
nEntryToPostingListSegmentationMapper simply forwards
the PostingListSegmentation to the putRefined method of the
PostingListSegmentationTable 746, where the PostingList
Segmentation is stored for reuse. Because reading stopped
due to the PostingListReadLimit (and not due to end of post
ing list), there are more postings to read and the SPLR's read
method returns true 748 to the inverted index searcher to
indicate this fact.

0129. The inverted index searcher then calls the SPLR's
read method a second time 750. Based on the state of the
SPLR after the first read call, the SPLR recognizes that the
posting list consists of multiple segments, more postings are
available, but the extent of the next segment to read is
unknown and has to be learned. Because this is the second call
to read in this session, the SPLR forwards the value2 (two) to
the getLimit method of the PostingListReadLimiter 752. The
PostingListReadLimiter returns a PostingListReadLimit
754, an indication of how far the SPLR may read during this
second read call. The SPLR now follows the same steps it
used during the first read call, installing a default predeter
mined buffer fill size strategy on the enhanced buffered reader
756, noting the read start position by getting the current
logical position from the enhanced buffered reader 758, and
reading postings 760 and forwarding each one to the evalua
tion logic 762. As before, reading stops when the PostingLis
tReadLimit is reached or at end of posting list, whichever
comes first. In this case, reading stops because end of posting
list is reached.

0130. The SPLR then gets the current logical position
from the enhanced buffered reader 764. The difference
between this second logical position and the first one that was
obtained is the length of the segment just read. The SPLR
creates and remembers an updated PostingListSegmentation
object that includes both the new segment length just learned
and the new knowledge that the segmentation of this posting
list is complete (complete=true). The SPLR then passes the
updated PostingListSegmentation to the updatePostingList
Segmentation method of the LexiconEntryToPostingList
SegmentationMapper 766, to preserve the updated segmen
tation information for reuse by future read sessions. The
LexiconEntryToPostingListSegmentationMapper simply
forwards the PostingListSegmentation to the putRefined

Feb. 17, 2011

method of the PostingListSegmentationTable 768, where the
PostingListSegmentation is stored for reuse. Because reading
stopped this time due to end of posting list, there are no more
postings to read and the SPLR's read method returns false to
the inverted index searcher to indicate this fact 770. Finally,
the inverted index searcher calls close to close this read ses
Sion 772.

I0131. In a third example, the sequence diagram 800 in
FIG. 8 shows interactions between an inverted index searcher
802, SegmentingPostingListReader 804, LexiconEntryTo
PostingListSegmentationMapper 806, PostingListSegmen
tationTable 808, enhanced buffered reader 810, BufferFill
SizeSelectorFactory 812 and evaluation logic 814 as the
inverted index searcher reads a posting list consisting of two
segments. In this example, the segmentation of the posting list
is known. This scenario shows the benefit of learning and
reusing posting list segmentations for large, frequently
accessed posting lists.
0.132. The inverted index searcher begins a reading session
by calling the open method on the SPLR 816, passing in the
lexicon entry of the posting list to read. The SPLR saves a
reference to this lexicon entry as part of its state to help
control the reading session. The SPLR calls getPostingList
Segmentation on the LexiconEntryToPostingListSeg
mentationMapper 818, forwarding the lexicon entry. The
LexiconEntryToPostingListSegmentationMapper examines
the document frequency of the lexicon entry and consults its
method of discriminating between long and short posting
lists. The LexiconEntryToPostingListSegmentationMapper
determines that the posting list to read is long and calls get()
on the PostingListSegmentationTable 820, passing in the
term of the lexicon entry as the key for the lookup. The
PostingListSegmentationTable consults its hash and finds
that the term is mapped to a complete, precise (i.e.
complete true, approximate-false) PostingListSegmenta
tion with 2 segments. The get() call returns this PostingList
Segmentation to the LexiconEntryToPostingListSeg
mentationMapper 822, which in turn simply returns it to the
SPLR 824, where it becomes part of the SPLR's state to
control the reading session. The SPLR finishes the execution
of its open()method by initializing various miscellaneous
state variables and finally seeking the enhanced buffered
reader to the start of the posting list 826 bypassing the posting
file start offset of the lexicon entry to the enhanced buffered
reader's seek method. At this point, the open method called by
the inverted index searcher returns, and the SPLR is ready to
accept a read call.
I0133. The inverted index searcher calls the SPLR's read.(
)method 828. Based on the state established during the open.(
)method, the SPLR recognizes that the posting list being read
consists of two segments of known sizes in bytes. The SPLR
forwards the exact size in bytes of the first segment to the
BufferFillSizeSelectorFactory's makePreciseBufferFillSiz
eSelector method 830. A predetermined buffer fill size strat
egy in the form of a BufferFillSizeSelector object is returned
to the SPLR 832, which it installs in the enhanced buffered
reader by calling setBufferFillSizeSelector 834. The SPLR
next uses the enhanced buffered reader to read all of the
postings in the first segment of this posting list836, forward
ing each posting to the evaluation logic 838. Finally, the
SPLR's read method returns true to the inverted index
searcher 840, indicating that there are more postings available
to be read.

US 2011/0040762 A1
10

0134. The inverted index searcher again calls the SPLR's
read() method 842. Based on the state after the first read call,
the SPLR recognizes that there is another segment of known
size in bytes available to read. The SPLR forwards the exact
size in bytes of the second segment to the BufferFillSizeSe
lectorFactory's makePreciseBufferFillSizeSelector method
844. A predetermined buffer fill size strategy in the form of a
BufferFillSizeSelector object is returned to the SPLR 846,
which it installs in the enhanced buffered reader by calling
SetBufferFillSizeSelector 848. The SPLR next uses the
enhanced buffered reader to read all of the postings in the
second segment of this posting list 850, forwarding each
posting to the evaluation logic 852. Finally, the SPLR's read
method returns false 854 to the inverted index searcher, indi
cating that there are no more postings available to be read, and
the inverted index searcher closes the read session by calling
close() on the SPLR856.

Common Pseudocode for a SPLR Implementation
0135. The SPLR and its subcomponents, pictured in FIG.
3, were described above. Note that flexibility in the design of
the SPLR allows for several different scenarios, for example:

0.136 1. Minimal or extended lexicon entry, which
implies the presence or absence of the Post
ingListLength ApproximationTable, which in turn
requires differences in implementation of the Lexico
nEntryToPostingListSegmentationMapper;

0.137 2. Different posting list organizations (e.g., score
sorted or document id sorted):

(0.138. 3. Flexibility of discriminating between “short”
and “long posting lists; exact method to be chosen by
implementer, and

0.139 4. Different ways of implementing PostingLis
tReadLimit (e.g., using a sequence of limiting scores or
a sequence of limiting read sizes).

0140. The pseudocode below applies equally to all the
scenarios listed above; thus, it is the common pseudocode for
a SPLR implementation.
0141 As a prerequisite to understanding the pseudocode
for methods of the SPLR, it is helpful to first understand the
data members that are part of its state. The following data
members are initialized by sending object references to the
SPLR's constructor.

0.142 1. BufferedReader bufferedReader This is an
enhanced buffered reader that is open over the posting
file. It has a large input buffer (perhaps 20 MB for a large
Scale index on a commodity server);

0143 2. LexiconEntryToPostingListSeg
mentationMapper lexiconEntryToPostingListSeg
mentationMapper,

public boolean read() {
if Reminder:

Feb. 17, 2011

0144) 3. BufferFillSizeSelectorFactory bufferFillSiz
eSelectorFactory; and

0145 4. PostingListReadLimiter postingListReadLim
iter.

0146 The SPLR has additional state that is set up as part of
a call to its open (lexiconEntry) method. These data members
are documented here.

0147 5. LexiconEntry lexiconEntry—Lexicon entry of
the posting list to read;

0.148 6. PostingListSegmentation pls The most com
plete segmentation of this posting list currently avail
able;

0.149 7. int readNum—A count of how many times the
read method has been called. This variable is set to 1
throughout the first call to read() to 2 throughout the
second call to read() and so on;

0.150 8.boolean done Whether end of posting list has
been reached; and

0151 9. int numPostingsRead The number of post
ings that have been read.

0152 The SPLR has three public methods:
0.153 1. void open (LexiconEntry lexiconEntry)
0154) 2. boolean read()
(O155 3. void close()

0156 Open() should be called first to prepare for reading.
Read() may be called multiple times. Each call to read()
reads a segment of postings, and the boolean return value
indicates whether there is another segment available. Finally,
a well behaved client calls close() to signal the end of the
reading session.
0157. The pseudocode below is Java-like. Java operators
and Java-like syntax are used, and array indexes start at 0.
Example pseudocode for each of the SPLR's public methods
follows.
0158 Example pseudocode for open method

public void open(LexiconEntry aLexiconEntry) {
// Set the SPLR data member, lexiconEntry, based on the
aLexiconEntry passed in lexiconEntry = aLexiconEntry;
// Set the SPLR data member, pls by lookup in the
pls = lexiconEntryToPostingListSegmentationMapper.

getPostingListSegmentation(lexiconEntry);
if Initialize various other SPLR data members
readNum = 0:
done = false;
numPostingsRead = 0;
// Seek enhanced buffered reader to start of posting list
bufferedReaderseek(lexiconEntry.postingFileStartOffset);

0159. Example Pseudocode for read method

This method returns true if there are more postings to read and false
otherwise.

read Num = readNum + 1:
if (done) {

return false; if nothing else to read

// NOTE: && is logical AND: == is the equality test
if (pls.complete && pls.approximate && (pl.s.num Segments() == 1)) {

// This is a short posting list for which we have an
if approximate size in bytes.
fi Any read beyond the first segment is trying to go too far.

US 2011/0040762 A1 Feb. 17, 2011
11

-continued

if (read Num > 1) {
done = true; if just to be sure
return false; if nothing else to read

fi readNum is 1. This is the first read of a 1-segment list.
readShortPostingList

(pls.postingListSegmentLengthsreadNum-1, lexiconEntry.documentFrequency);
done = true;
return false; if nothing else to read

else if (! pls.approximate) { // NOTE: means logical NOT
if The segmentation has or will have precise information.
if A precise segmentation has been or will be learned.
if The segmentation may or may not be complete at this time.
if (read Num <= pls.numSegments()) {

if Segment size for this read is known.
read PostingListSegment(pls.postingListSegmentLengthsread Num-1);
if If the last segment has been read, set the done flag
if ((read Num == pls.numSegments()) && pls.complete) {

done = true;

return (done); whether more postings

if If the program gets here, readNum > pls.numSegments
if The program is trying to read past known segmentation info.
if (pls.complete) {

// There's nothing else to learn.
done = true;
return false; if nothing else to read

if If the program gets here, there ARE more postings.
// There's segmentation information to be learned.
PostingListReadLimit readLimit =

postingListReadLimitergetLimit(readNum);
readAndLearnSegmentation (readLimit);
if pls has been maintained by the call to readAndLearnSegmentation
if If the last segment has been read, set the done flag
if ((read Num == pls.num Segments()) && pls.complete) {

done = true;

return (done); whether more postings
else {

// This should never happen, if the
// LexiconEntryToPostingListSegmentationMapper
if is building valid PostingListSegmentations.
Log an error;
done = true;
return false; if nothing else to read

private void readShortPostingList
(int approximateNumBytesToRead, int documentFrequency) {
BufferFilSize:Selector bufferFilSize:Selector =

bufferFillSizeSelectorFactory.
makeApproximateBufferFillSizeSelector

(approximateNumEytesToRead, SupplementalReadSize());
buffered Reader.setBufferFillSizeSelector(bufferFillSizeSelector):
while (numPostingsRead < documentFrequency) {

use bufferedReader to read posting:
forward posting to evaluation logic;
numPostingsRead = numPostingsRead +1;

private int supplementalReadSize() {
// Return the number of bytes to read for the relatively rare case
if when the approximate covering read size for a short posting list
fi was insufficient. A value like a several kilobytes is fine.

private void read PostingListSegment(int numBytesToRead) {
BufferFilSize:Selector bufferFilSize:Selector =

bufferFillSizeSelectorFactory.
makePreciseBufferFillSizeSelector(numEytesToRead);

buffered Reader.setBufferFillSizeSelector(bufferFillSizeSelector):
// Get the current logical offset of the buffered reader from start
if of data.
long startOffset = bufferedReader.offset();
. We want to read to here.

US 2011/0040762 A1 Feb. 17, 2011
12

-continued

long targetOffset = startOffset + numBytesToRead;
while (bufferedReader.offset() < targetOffset) {

use bufferedReader to read posting:
forward posting to evaluation logic;
numPostingsRead = numPostingsRead +1;

private void readAndLearnSegmentation(PostingListReadLimit readLimit) {
if A segmentation strategy is being learned here.
// We do not know a better strategy to use.
bufferedReadersetBufferFillSizeSelector(getTraditionalBufferingStrategy());
if Get current logical position within posting data
long startOffset = bufferedReader.offset();
while (readLimit has not been exceeded &&.

numPostingsRead < lexiconEntry.documentFrequency) {
use bufferedReader to read posting:
forward posting to evaluation logic;
numPostingsRead = numPostingsRead +1;

long endOffset = bufferedReader.offset();
long newSegmentLength = endCoffset - startOffset:
PostingListSegmentation new Pls =

a copy of the pls data member, with the following
adjustments applied:

1. A single additional element has been added to the postingListSegmentLengths
array: the new SegmentLength learned above

2. if the while loop above reached end of posting list, i.e. (numPostingsRead ==
lexiconEntry.documentFrequency) then set complete = true

if Save the segmentation we learned for reuse, to read more intelligently next time.
lexiconEntryToPostingListSegmentationMapper.

updatePostingListSegmentation (new Pls);
// And don't forget to maintain this object's state.
pls = new Pls;

private BufferFillSizeSelector getTraditionalBufferingStrategy() {
// This method returns a buffering strategy that says to buffer
if several disk blocks whenever data needs to be read from the
fit operating system, until further notice. We use this buffering
if strategy only while learning a segment boundary for the first
if time.

0160 Example pseudocode for close method 0.161. As evident in the pseudocode above, the implemen
tation of the SPLR's read method has to handle different cases
defined by the combination of the PostingListSegmentation

public void close() { state and the readNum. Recall that the readNumis 1 through
i. In this basic implementation, close does not need to do anything. out the first call to read, 2 throughout the second call to read,
// The next call to open() will fully reset all SPLR state and so on. The combination of the PostingListSegmentation
fi for the next reading session. We assume it is OK to leave the
ff buffered reader open over the posting file between read sessions. (pls) state and the readNum defines cases as described in

Table V below.

TABLEV

readNum vs.
pls.complete pls.approximate pls.numSegments Comments

true true > Short posting list, single approximately
sized segment. The client is trying to
read too far.

true true <= Short posting list, single approximately
sized segment. About to read the first
and only segment.

true false > Posting list could be long or short. Its
segmentation is complete, and the client
is trying to read beyond the end of the
list.

US 2011/0040762 A1

TABLEV-continued

read Num vs.
pls.complete pls.approximate pls.numSegments Comments

true false <=

Feb. 17, 2011

Posting list could be long or short. Its
segmentation is complete, and the size of
the next segment to read is known.

false true > Invalid state. Incomplete approximate
PostingListSegmentations are never
created.

false true <= Invalid state. Incomplete approximate
PostingListSegmentations are never
created.

false false > The current posting list is long and
incompletely segmented, and the next
read will learn a new segmentation.

false false <= The current posting list is long and
incompletely segmented, but the size of
the next segment to read is known.

0162 The definition of the cases in Table V depends upon
how PostingListSegmentation objects are created by the
LexiconEntryToPostingListSegmentationMapper. An
awareness of this dependency is helpful for understanding
and possibly evolving the pseudocode that was presented.

Persistence of PostingListSegmentationTable
0163 The PostingListSegmentationTable will be updated
dynamically as the SPLR's read method is called. When the
search service shuts down, the PostingListSegmenationTable
is preferably saved to disk or other nonvolatile storage
medium. To avoid losing the work of learning segmentations,
the PostingListSegmenationTable could also be saved auto
matically (like every 5 or 10 minutes or so) if it has become
dirty.

Performing Index Maintenance
0164. If the inverted index changes, the PostingListSeg
mentation table becomes invalid. On any index maintenance,
all persistent and in-memory copies of this table must be
deleted. The system can then re-learn the up-to-date segmen
tations.

0.165. The present invention includes the following
aspects:

0166 1. Learning posting list segmentation strategy
dynamically as the search system executes searches.

0.167 2. Supporting a plug-in (PostingListReadLimiter
in the above example) that is used by the posting list
reader to determine how to segment large posting lists
into pieces. This PostingListReadLimiter can be tailored
to fit the posting list organization and query logic.

0168 3. Minimizing access to secondary storage via
dynamically crafted read strategies for large posting
lists, rather than a traditional buffered reader.

0169. 4. Supporting optional use of a Post
ingListLength ApproximationTable (as described
above) if lexicon entries contain minimal information
(to save space in memory) and do not include the length
of the posting list in bytes.

0170 5. Using an enhanced BufferedReader (as
described in section above) to plug application-specific
knowledge of good read sizes into the low level I/O
system.

0171 The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of a
computer program product for efficient reading of posting
lists as part of inverted index searching. The computer pro
gram product comprises a storage medium readable by a
processor and storing instructions for execution by a proces
sor for performing a method. The method includes, for
instance, determining by a processor a size of a posting list as
part of searching an inverted index, segmenting the posting
list by the processor for reading into a plurality of segments
based on the size, and reading by the processor each of the
plurality of segments into memory.
0172 Methods and systems relating to one or more
aspects of the present invention are also described and
claimed herein.
0173 Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed inven
tion.
0.174. In one aspect of the present invention, an application
can be deployed for performing one or more aspects of the
present invention. As one example, the deploying of an appli
cation comprises providing computer infrastructure operable
to perform one or more aspects of the present invention.
0.175. As a further aspect of the present invention, a com
puting infrastructure can be deployed comprising integrating
computer readable code into a computing system, in which
the code in combination with the computing system is
capable of performing one or more aspects of the present
invention.
0176). As yet a further aspect of the present invention, a
process for integrating computing infrastructure comprising
integrating computer readable code into a computer system
may be provided. The computer system comprises a com
puter readable medium, in which the computer medium com
prises one or more aspects of the present invention. The code
in combination with the computer system is capable of per
forming one or more aspects of the present invention.
0177. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an

US 2011/0040762 A1

embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0.178 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable storage medium. A computer
readable storage medium may be, for example, but not limited
to, an electronic, magnetic, optical, or semiconductor system,
apparatus, or device, or any Suitable combination of the fore
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0179. In one example, a computer program product
includes, for instance, one or more computer readable media
to store computer readable program code means or logic
thereon to provide and facilitate one or more aspects of the
present invention. The computer program product can take
many different physical forms, for example, disks, platters,
flash memory, etc.
0180 Program code embodied on a computer readable
medium may be transmitted using an appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0181 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language. Such as Java,
Smalltalk, C++ or the like, and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0182 Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the

Feb. 17, 2011

processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0183 These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0.184 The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0185. The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0186. A data processing system 900, as shown in FIG. 9.
may be provided Suitable for storing and/or executing pro
gram code is usable that includes at least one processor 902
coupled directly or indirectly to memory elements 904
through a system bus 906. The memory elements include, for
instance, local memory employed during actual execution of
the program code, bulk storage, and cache memory which
provide temporary storage of at least Some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.
0187. Input/Output or I/O devices 908 (including, but not
limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory media,
etc.) can be coupled to the system either directly or through
intervening I/O controllers. Network adapters may also be
coupled to the system to enable the data processing system to
become coupled to other data processing systems or remote
printers or storage devices through intervening private or
public networks. Modems, cable modems, and Ethernet cards
are just a few of the available types of network adapters.
0188 The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular

US 2011/0040762 A1

forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components and/or groups thereof.
0189 The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present invention has been presented for
purposes of illustration and description, but is not intended to
be exhaustive or limited to the invention in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiment with various modifications as are suited to the
particular use contemplated.

1. A method of reading a posting list, the method compris
ing:

determining by a processor a size of a posting list as part of
searching an inverted index;

segmenting the posting list for reading by the processor
into a plurality of segments based on the size; and

reading by the processor each of the plurality of segments
into memory.

2. The method of claim 1, wherein the segmenting is per
formed if the size is larger than a predetermined size.

3. The method of claim 2, further comprising reading by
the processor all of the posting list at once if the size is the
predetermined size or Smaller.

4. The method of claim 1, wherein the segmenting is per
formed using at least one predetermined segment size.

5. The method of claim 1, wherein the segmenting is per
formed for at least one segment using at least one estimated
segment size.

6. The method of claim 5, wherein at least one actual read
size for the at least one segment is greater than or equal to at
least one of the at least one estimated segment size, the
method further comprising storing by the processor the at
least one actual read size in a data structure for reuse.

7. The method of claim 1, wherein the posting list includes
a plurality of relevance indicators for a plurality of postings in
the posting list, wherein the posting list is sorted into descend
ing order by relevance, and wherein the segmenting is per
formed for at least one segment using at least one relevance
indicator.

8. The method of claim 7, wherein the reading comprises
reading for the at least one segment until reaching a relevance
indicator lower than the at least one relevance indicator, the
method further comprising storing by the processor a read
size for the at least one segment in a data structure for reuse.

9. The method of claim 7, wherein the plurality of rel
evance indicators comprises a plurality of scores.

Feb. 17, 2011

10. A computer system for reading a posting list, the com
puter system comprising:

a memory; and
a processor in communication with the memory to perform

a method, the method comprising:
determining a size of a posting list as part of searching an

inverted index;
segmenting the posting list for reading into a plurality of

segments based on the size; and
reading each of the plurality of segments into memory.

11. The system of claim 10, wherein the segmenting is
performed if the size is larger than a predetermined size.

12. The system of claim 10, further comprising reading all
of the posting list at once if the size is the predetermined size
or Smaller.

13. The system of claim 10, wherein the segmenting is
performed using at least one predetermined segment size.

14. The system of claim 10, wherein the segmenting is
performed for at least one segment using at least one esti
mated segment size.

15. The system of claim 14, wherein at least one actual read
size for the at least one segment is greater than or equal to at
least one of the at least one estimated segment size, the
method further comprising storing the at least one actual read
size in a data structure for reuse.

16. The system of claim 10, wherein the posting list
includes a plurality of relevance indicators for a plurality of
postings in the posting list, wherein the posting list is sorted
into descending orderby relevance, and wherein the segment
ing is performed for at least one segment using at least one
relevance indicator.

17. The system of claim 16, wherein the reading comprises
reading for the at least one segment until reaching a relevance
indicator lower than the at least one relevance indicator, the
method further comprising storing a read size for the at least
one segment in a data structure for reuse.

18. The system of claim 16, wherein the plurality of rel
evance indicators comprises a plurality of scores.

19. A program product for reading a posting list, the pro
gram product comprising:

a storage medium readable by a processor and storing
instructions for execution by the processor for perform
ing a method, the method comprising:
determining a size of a posting list as part of searching an

inverted index;
segmenting the posting list for reading into a plurality of

segments based on the size; and
reading each of the plurality of segments into memory.

20. The program product of claim 19, wherein the segment
ing is performed if the size is larger than a predetermined size.

21. The program product of claim 20, further comprising
reading all of the posting list at once if the size is the prede
termined size or Smaller.

22. The program product of claim 19, wherein the segment
ing is performed using at least one predetermined segment
size.

23. The program product of claim 19, wherein the segment
ing is performed for at least one segment using at least one
estimated segment size.

US 2011/0040762 A1

24. The program product of claim 23, wherein at least one
actual read size for the at least one segment is greater than or
equal to at least one of the at least one estimated segment size,
the method further comprising storing the at least one actual
read size in a data structure for reuse.

25. The program product of claim 19, wherein the posting
list includes a plurality of relevance indicators for a plurality
of postings in the posting list, wherein the posting listis Sorted
into descending orderby relevance, and wherein the segment

Feb. 17, 2011

ing is performed for at least one segment using at least one
relevance indicator.

26. The program product of claim 25, wherein the reading
comprises reading for the at least one segment until reaching
a relevance indicator lower than the at least one relevance
indicator, the method further comprising storing a read size
for the at least one segment in a data structure for reuse.

27. The program product of claim 25, wherein the plurality
of relevance indicators comprises a plurality of scores.

c c c c c

