The present invention relates to an article comprising at least one fibrous support surface coated by at least two successive layers comprising: inner layer, in contact with the fibrous support, which is a coating consisting of a silicone elastomer, polyurethane or silicone-polyurethane; and a topcoat outer layer, in contact with the inner layer, which is a coating obtained by crosslinking a composition according to the invention. The first layer, that in contact with the fibrous support, is a layer based on a silicone elastomer, polyurethane or silicone-polyurethane composition that were crosslinked; The second layer, that in contact with the first layer, is a layer obtained by crosslinking according to the invention.
Fibrous Support Comprising A Silicone Coating

The present invention relates to an article comprising at least one fibrous support surface coated by at least two successive layers comprising:
- at least one inner layer (1), in contact with the fibrous support, which is a coating consisting of a silicone elastomer, polyurethane or silicone-polyurethane; and
- a topcoat outer layer (2), in contact with the inner layer (1), which is a coating obtained by crosslinking a composition according to the invention.

The first layer, that in contact with the fibrous support, is a layer based on a silicone elastomer, polyurethane or silicone-polyurethane composition that were crosslinked. The second layer, that in contact with the first layer, is a layer obtained by crosslinking according to the invention.

PRIOR ART

The general field of the invention is that of the use of silicone compositions, in particular those of the two-component or multicomponent type, that can be crosslinked by polyaddition reactions to produce an elastomer in a thin film as a coating for various fibrous supports, such as, for example, woven, knitted or nonwoven fibrous supports.

Such silicone coatings are generally obtained by coating the fibrous supports then by curing, which proceeds from the polyaddition of the unsaturated (alkenyl, e.g. Si-Vinyl) groups of a polyorganosiloxane to the hydrogens of another polyorganosiloxane.

There is, for many fibrous supports such as, in particular, in the field of airbags, flexible sealing
sleeves, clothing or architectural fabrics, a need to confer on the latter, via a silicone coating, both sealing properties and a low friction coefficient so that the surface of the support is not rough and abrasive to the touch. Also added to these properties is the need to obtain a silicone coating having the other properties required, as regards the mechanical properties, such as cohesion, flexibility, suppleness, resistance to fraying, tear strength, and also creasability.

In these applications it is often difficult to obtain a good compromise between these properties.

Currently, many motor vehicles are equipped with an acceleration sensor which measures the decelerations of the vehicle. When the reference value of the deceleration is exceeded, an explosive pellet initiates the combustion of a complementary charge, then that of the solid fuel; this solid fuel is converted to a gas and inflates the cushion. For more details on these individual airbags or inflatable cushions, reference may especially be made to French Patent FR-A-2 668 106.

The latter are generally formed from a cloth of synthetic fiber, for example of polyamide, covered on at least one of its faces by a layer of a silicone composition. These silicone compositions have therefore found a significant outlet in the coating of flexible - woven, knitted or nonwoven - materials used for manufacturing individual airbags for vehicle occupants.

Front airbags may be adaptative and may be deployed in proportion to the violence of the impact. Simple cut and sew airbags have been commonly used for front and side passenger protection in automotive vehicles. The protection system is now increasingly completed by side airbags, or curtains. For this type
of airbags, it is important that the airbags remain inflated as long as possible, especially when the motor vehicle undergoes an impact that causes it to undergo a series of rollovers. It is therefore important that these airbags are perfectly gastight from this point of view.

To increase the gastightness of airbags it is possible to use a particular technique for weaving the airbags, a one-piece woven technique (OPW), such as described in Applications GB 2383304 and GB 2397805. Examples of such OPW airbags can also be found in the following U.S. patents and patent publications: U.S. Pat. No. 5,685,347 entitled "Circular Air Bag Made of Two Simultaneously Woven Fabric" which issued to Graham et al. on Nov. 11, 1997; 2005/0161919 entitled "Airbag and Method of Producing an Airbag" invented by Berger et al.; and 2002/0140218 entitled "One-Piece Woven Airbag" invented by Beasley, Jr.

The airbag obtained is then covered, on its outer surface, with a large enough amount of silicone composition so as to ensure good airtightness.

However, the application of such an amount of a silicone composition to the surface of the airbags leads to a rough and abrasive surface being obtained that has a "tacky" feel and a high friction coefficient. Such a surface poses many problems during folding of the airbag, then during its inflation, leading to a difficulty in deploying or a preferential orientation that is not desired during the deployment, an excessive friction with the components of the motor vehicle, such as the glass of the side windows, and also risks of injuries for the passenger whose head or limbs rub against the deployed airbag.

It is therefore necessary to develop a silicone
coating, which makes it possible to provide the fibrous supports, especially for airbags, with the necessary gas tightness, which is not rough and abrasive and that has a softer feel and a low friction coefficient.

INVENTION

The Applicant has brought to light a silicone topcoat for fibrous supports that overcomes the aforementioned drawbacks.

The present invention thus relates to an article comprising at least one fibrous support surface coated by at least two successive layers comprising:

- at least one inner layer (1), in contact with the fibrous support, which is a coating consisting of a silicone elastomer, polyurethane or silicone-polyurethane; and
- a topcoat outer layer (2), in contact with the inner layer (1), which is a coating obtained by crosslinking a composition consisting of:
 (A) at least 25% by weight, relative to the total weight of said composition, of at least one linear polyorganosiloxane A having per molecule:
 a) at least two vinylidimethylsiloxane end units M\(^{\nu_i}\),
 b) at least one vinylmethylsiloxane unit D\(^{\nu_i}\), and
 c) a degree of polymerization "DP" which is the number of repeating Si-O-Si units in the polymer over 150; and most preferably 150<DP<180;
 (B) at least one polyorganosiloxane B terminated at each of the chain ends by a vinylidimethylsiloxane unit;
 (C) at least one polyorganosiloxane C having, per molecule, at least two hydrogen atoms bonded to the silicon;
 (D) at least one platinum-based crosslinking catalyst D;
 (E) at least 35% by weight, relative to the total weight of said composition, of talc E;
 (F) up to 15% by weight, relative to the total weight
of said composition, of at least one polyorganosiloxane resin F comprising at least one alkenyl group;

(G) at least one crosslinking inhibitor G;

(H) up to 5 % by weight, relative to the total weight of said composition, of at least one adhesion promoter H which is an organosilicon compound comprising at least one epoxy radical;

(I) optionally up to 10 % by weight, relative to the total weight of said composition, of a filler I; and

(J) optionally at least one additive J.

The silicone coating obtained is suitable for conferring excellent mechanical qualities on the fibrous supports, such as cohesion, flexibility, suppleness, resistance to fraying, tear strength and combing strength, and also creasability, while obtaining an excellent compromise with regard to the gastightness, especially airtightness, properties and abrasion resistance properties (scrub test) and friction coefficient properties representative of a low friction coefficient. The solution of the invention furthermore makes it possible to obtain fibrous supports that also have the other expected and required properties such as good fire resistance and temperature resistance.

Owing to the properties and characteristics indicated above, it is possible to produce individual airbags for the occupants of a vehicle from open-weave fabrics as described above, in particular polyamide or polyester fabrics, which once coated have a good friction coefficient and good combing strength and tear strength, furthermore possessing optimal properties, especially impermeability, heat protection, porosity, foldability and fire resistance properties. This makes it possible to produce higher-performing and less expensive airbags than the airbags produced from the coated fabrics of the prior art.
The solution according to the invention also allows a better control of the desired thickness of silicone coating on the fibrous support, thus guaranteeing the best performances possible as regards impermeability and touch characteristics.

DETAILED SUMMARY OF THE INVENTION

The present invention thus relates to an article comprising at least one fibrous support surface coated by at least two successive layers comprising:
- at least one inner layer (1), in contact with the fibrous support, which is a coating consisting of a silicone elastomer, polyurethane or silicone-polyurethane; and
- a topcoat outer layer (2), in contact with the inner layer (1), which is a coating obtained by crosslinking a composition consisting of:
 (A) at least 25% by weight, relative to the total weight of said composition, of at least one linear polyorganosiloxane A having per molecule:
 a) at least two vinyl(dimethyl)siloxane end units M$_{Vi}^{i}$,
 b) at least one vinyl(methyl)siloxane unit D$_{Vi}^{i}$, and
 c) a degree of polymerization "DP" which is the number of repeating Si-O-Si units in the polymer over 150; and most preferably 150<DP<180;
 (B) at least one polyorganosiloxane B terminated at each of the chain ends by a vinyl(dimethyl)siloxane unit;
 (C) at least one polyorganosiloxane C having, per molecule, at least two hydrogen atoms bonded to the silicon;
 (D) at least one platinum-based crosslinking catalyst D;
 (E) at least 35% by weight, relative to the total weight of said composition, of talc E; and most preferably from 35% by weight to 60% by weight relative to the total weight of said composition,
 (F) up to 15% by weight, relative to the total weight of said composition, of at least one polyorganosiloxane...
resin F comprising at least one alkenyl group;
(G) at least one crosslinking inhibitor G;
(H) up to 5 % by weight, relative to the total weight of said composition, of at least one adhesion promoter H which is an organosilicon compound comprising at least one epoxy radical;
(I) optionally up to 10 % by weight, relative to the total weight of said composition, of a filler I; and
(J) optionally at least one additive J.

The present invention targets any product capable of being obtained by deposition onto a fibrous support of the aforementioned silicone layers. As examples, mention may be made of the airbags used for protecting the occupants of a vehicle, glass braids, such as the fiberglass sheaths for thermal and dielectric protection for electrical wires, conveyor belts, fire-resistant fabrics, thermal insulation, compensators, such as flexible sealing sleeves for pipework, clothing or else flexible materials intended to be used in interior or exterior textile architecture, such as tarpaulins, tents, stands and marquees.

The fibrous supports intended to be coated may be, for example, woven, nonwoven or knit fabrics or more generally any fibrous support chosen from the group of materials comprising: glass, silica, metals, ceramic, silicon carbide, carbon, boron, natural fibers such as cotton, wool, hemp, linen, artificial fibers such as viscose, or cellulose fibers, synthetic fibers such as polyesters, polyamides, polyacrylics, chlorofibers, polyolefins, polyimides, synthetic rubbers, polyvinyl alcohol, aramids, fluorofibers, phenolics, etc.

The airbags preferably used within the context of the invention are one-piece woven airbags, such as mentioned in Applications GB 2383304 and GB 2397805. These airbags may be based on various fibrous materials,
such as for example polyamides or polyesters. Other suitable OPW airbags can also be found in the following U.S. patents and patent publications: U.S. Pat. No. 5,685,347 entitled "Circular Air Bag Made of Two Simultaneously Woven Fabric" which issued to Graham et al. on Nov. 11, 1997; 2005/0161919 entitled "Airbag and Method of Producing an Airbag" invented by Berger et al.; and 2002/0140218 entitled "One-Piece Woven Airbag" invented by Beasley, Jr.

It is possible to use a wide variety of two-component or one-component organopolysiloxane compositions that crosslink at ambient temperature or at high temperature via polyaddition reactions, mainly by reaction of hydrosilyl groups with alkenylsilyl groups, generally in the presence of a metallic catalyst, preferably a platinum catalyst. These compositions are described, for example, in Patents US-A-3 220 972, 3 284 406, 3 436 366, 3 697 473 and 4 340 709.

According to another embodiment, the linear polyorganosiloxane A has per molecule:

a) at least two vinylidimethylsiloxane end units M^vi,
b) at least one vinylmethylsiloxane unit D^vi,
c) at least 140 dimethylsiloxane units D and
d) a degree of polymerization "DP" which is the number of repeating Si-O-Si units in the polymer over 150; and most preferably 150<DP<180

The dynamic viscosity at 25°C of the linear polyorganosiloxane A is generally comprised between 300 mPa.s and 600 mPa.s.

All the viscosities in question in the present document correspond to a dynamic viscosity value which is measured, in a manner that is known per se, at 25°C, with a Brookfield type device.
According to a preferred embodiment of the invention, the linear polyorganosiloxane \(A \) is of the following formula:

\[
M^{vi} \ D_{x} \ D^{vi}_{y} \ M^{vi}
\]

With: \(Vi = \) vinyl group,

\[
M^{vi} = (Vi) (CH_{3})_{2} Si0i/2,
\]

\[
D_{x} = (CH_{3})_{2} Si0_{2/2} \text{ and } x \text{ is an integer number},
\]

\[
D^{vi} = (Vi) (CH_{3})Si0_{2/2} \text{ and } y \text{ is an integer number},
\]

and \(x+y > 150 \) and most preferably \(150 < x+y < 180 \).

The polyorganosiloxane \(B \) terminated at each of the chain ends by a vinyldimethylsiloxane unit \(M^{vi} \) may have other units of formula:

\[
(R) \ 2Si02/2
\]

in which \(R \) symbols, are identical or different, and represent an organic radical selected from the group consisting of: methyl, ethyl, propyl, isopropyl, butyl, isobutyl, n-pentyl, t-butyl, chloromethyl, dichloromethyl, a-chloroethyl, a,\(\beta \)-dichlороethyl, fluoromethyl, difluoromethyl, a,\(\beta \)-difluoroethyl, 3,3,3-trifluoropropyl, trifluorocyclopropyl, 4,4,4-trifluorobutyl, 3,3,4,4,5,5-hexaf luoropentyl, \(\beta \)-cyanoethyl, \(\beta \)-cyanopropyl, phenyl, p-chlorophenyl, m-chlorophenyl, 3,5-dichlorophenyl, trichlorophenyltetraclorophenyl, 0-, p- or m-tolyl, a,\(\alpha \),a-trifluorotolyl, and xylyl groups such as 2,3-dimethylphenyl or 3,4-dimethylphenyl groups.

The dynamic viscosity at 25°C of the linear polyorganosiloxane \(B \) is generally comprised between 100 mPa.s and 600 000 mPa.s when it is a silicone oil and over 600 000 mPa.s and up to 3 million mPa.s when it is a silicone gum.

The polyorganosiloxane \(C \) generally comprises siloxyl units of formula:
\[H_d L_e SiO^{\frac{4-(d+e)}{2}} \]

(C-1)

in which:
- the groups \(L \), which may be identical or different, each represent an alkyl group containing from 1 to 8 carbon atoms inclusive, advantageously chosen from methyl, ethyl, propyl and 3,3,3-trifluoropropyl groups, or an aryl group, advantageously chosen from groups and advantageously a xylyl, tolyl or phenyl radical,
- \(d \) is 1 or 2, \(e \) is 0, 1 or 2, the sum \(d + e \) is equal to 1, 2 or 3, and
- optionally, at least some of the other units being units of mean formula:
\[L_g SiO^{\frac{4-g}{2}} \]

(C-2)

in which:
- the groups \(L \), which may be identical or different, each represent an alkyl group containing from 1 to 8 carbon atoms inclusive, advantageously chosen from methyl, ethyl, propyl and 3,3,3-trifluoropropyl groups, or an aryl group, advantageously chosen from groups and advantageously a xylyl, tolyl or phenyl radical and \(g \) is equal to 0, 1, 2 or 3.

The dynamic viscosity at 25°C of this polyorganosiloxane \(C \) is at least equal to 10 mPa.s and preferably between 20 and 1000 mPa.s. The polyorganosiloxane \(C \) may be formed solely from units of formula (C-1) or may also comprise units of formula (C-2). The polyorganosiloxane \(C \) may have a linear, branched, cyclic or network structure.

Examples of units of formula (C-1) are \(H(C\text{=}\text{Me})_2 SiO_{1/2}, \)
\(H(CH_3)SiO_{2/2} \) and \(H(C_6H_5)SiO_{2/2} \).

The examples of units of formula (C-2) are
Examples of polyorganosiloxanes C are linear and cyclic compounds, for instance:
- dimethylpolysiloxanes containing hydrogeno-dimethylsilyl end groups,
- copolymers containing (dimethyl) (hydrogenomethyl) polysiloxane units containing trimethylsilyl end groups,
- copolymers containing (dimethyl) (hydrogenomethyl) polysiloxane units containing hydrogenodimethylsilyl end groups,
- hydrogenomethylpolysiloxanes containing trimethylsilyl end groups, or
- cyclic hydrogenomethylpolysiloxanes.

The polyorganosiloxanes C may optionally be a mixture of a dimethylpolysiloxane containing hydrogenodimethylsilyl end groups and of a polyorganosiloxane comprising at least three hydrogenosiloxyl group.

The ratio of the number of hydrogen atoms linked to silicon in the polyorganosiloxane C to the total number of groups containing alkenyl unsaturation of the polyorganosiloxanes A, B and F is between 0.4 and 10 and preferably between 0.6 and 5.

In particular, a polyorganosiloxane C corresponding to a poly (dimethyl) (hydromethyl) siloxane oil terminated at each of the chain ends by a \((\text{CH}_3)_2\text{HSiO}_{1/2}\) unit \(M^n\) is preferred.

Catalyst D consisting of at least one metal, or compound, from the platinum group are well known. The platinum group metals are those known under the name of platinoids, a term that encompasses, besides platinum, ruthenium, rhodium, palladium, osmium and iridium. Preferably, platinum and rhodium compounds are used. It

Talc E is a natural mineral, with a sheet silicate structure. It has a platy morphology. Talc is a hydrated magnesium covered silica with the chemical formula of Mg₃Si₂O₅(OH)₂. It is a white, apple green, gray powder with luster pearly or greasy, and a Mohs hardness of 1 to 1.5

Polyorganosiloxane resin F comprising at least one alkenyl group are polyorganosiloxane resin comprising at least one, preferably at least two, alkenyl. These silicone resins are branched POS polymers that are well known and are commercially available. They have, per molecule, at least two different units chosen from those of formula R³SiO₁/₂ (M unit), R₂SiO₂/₂ (D unit), R¹SiO₃/₂ (T unit) and SiO₄/₂ (Q unit). The radicals R¹ are identical or different and are chosen from linear or branched alkyl radicals, vinyl, phenyl and/or 3,3,3-trifluoropropyl radicals. At least some of the radicals R¹ are vinyl groups (Vi), with a weight content of Vi in particular between 0.1 and 2%. Preferably, the alkyl radicals have from 1 to 6 carbon atoms inclusive. More particularly, mention may be made, as alkyl radicals R¹, of methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals. The vinyl groups are borne by the M, D or T
units. As an example, mention may be made of the vinyl MDQ resins, such as MDViQ, or else MMViQ resins (D\textsuperscript{vi} is represented by the formula (R\textsuperscript{SiC}), for which one radical R1 corresponds to a vinyl residue; M\textsuperscript{vi} is represented by the formula R1SiO\textsubscript{1}/\textsubscript{2} for which one radical R1 corresponds to a vinyl residue).

In a preferred embodiment, the polyorganosiloxane resin \textbf{F} is selected from the group consisting of:

a) a MDViQ resin with:
 - M = (CH\textsubscript{3})\textsubscript{3}SiO\textsubscript{1}/\textsubscript{2},
 - D\textsuperscript{vi} = (CH\textsubscript{3})(R1)SiO\textsubscript{2}/\textsubscript{2}, and
 - Q = SiO\textsubscript{4}/\textsubscript{2};

b) a MMViQ resin with:
 - M = (CH\textsubscript{3})\textsubscript{3}SiO\textsubscript{1}/\textsubscript{2},
 - M\textsuperscript{vi} = (CH\textsubscript{3})\textsubscript{2}(R1)SiO\textsubscript{1}/\textsubscript{2}, and
 - Q = SiO\textsubscript{4}/\textsubscript{2};

in which R1 corresponds to a vinyl radical.

Optionally, the said polyorganosiloxane resin \textbf{F} could be in solution in a polydimethylsiloxane oil terminated at each of the chain ends by a (CH\textsubscript{3})\textsubscript{2}ViSiO\textsubscript{1}/\textsubscript{2} unit.

For the crosslinking inhibitor \textbf{G}, it is possible to use those conventionally employed in polyaddition crosslinking reactions in the silicone field. They may especially be chosen from the following compounds:

- polyorganosiloxanes substituted by at least one alkenyl which may optionally be present in cyclic form, tetramethylvinyltetrasiloxane being particularly preferred;
- organic phosphines and phosphites;
- unsaturated amides;
- alkylated maleates; and
- acetylenic alcohols.
As acetylenic alcohols (cf. FR-B-1 528 464 and FR-A-2 372 874), which are among the preferred thermal blockers for the hydrosilylation reaction, it is especially possible to choose 1-ethynyl-1-cyclohexanol, 3-methyl-1-dodecyn-3-ol, 3,7,11-trimethyl-1-dodecyn-3-ol, 1,1-diphenyl-2-propyn-1-ol, 3-ethyl-6-ethyl-1-nonyl-3-ol, 2-methyl-3-butyn-2-ol, 3-methyl-1-pentadecyn-3-ol, diallyl maleate or derivatives of diallyl maleate.

Such an inhibitor may be present in an amount of at most 3000 ppm, preferably in an amount of 100 to 1000 ppm relative to the total weight of the polyorganosiloxanes A, B and F.

The adhesion promoter H is an organosilicon compound comprising at least one epoxy radical.

As regards to adhesion promoter H, it is envisaged in accordance with the invention to choose it from:

a) either the products (IV.2a) corresponding to the following general formula:

\[
\begin{align*}
\text{(R}_6^\text{O})_{1-y} & \quad \text{X} \\
\text{Si} & \quad \text{R}_y \\
\text{Y}
\end{align*}
\]

(IV.2a)

in which formula:

- \(\text{R}^6 \) and \(\text{R}^7 \) are \(\text{C}_1 \) to \(\text{C}_4 \) alkyl radicals,
- \(y \) is equal to 0, 1, 2 or 3, and
- \(\text{X} \) being defined by the following formula:

\[
\begin{align*}
\text{X} &= \text{E} \\
\text{CR}^9 & \quad \text{CR}^9 \\
\text{O} & \quad \text{D}_3
\end{align*}
\]
with:
- E and D, which are identical or different radicals chosen from linear or branched C1-C4 alkyls,
- z, which is equal to 0 or 1,
- R⁸, R⁹ and R¹⁰, which are identical or different radicals representing hydrogen or a C₁ to C₄ alkyl radicals, and

b) or the products (IV.2b) consisting of epoxy-functional polydiorganosiloxanes comprising:
 (i) at least one siloxyl unit of formula:

\[X_p G_q SiO^\frac{4-(p+q)}{2} \]

(IV.2b1)

in which formula:
- X is the radical as defined above for formula (IV.2a),
- G is an alkyl groups containing from 1 to 8 carbon atoms inclusive, optionally substituted
 with at least one halogen atom, or an aryl groups,
- p = 1 or 2,
- q = 0, 1 or 2,
- p + q = 1, 2 or 3, and

(2i) optionally at least one siloxyl unit of formula:

\[G_r SiO^\frac{4-r}{2} \]

(IV.2b2)

in which formula G has the same meaning as above and r is equal to 0, 1, 2 or 3.

The most preferred adhesion promoter \(H \) is 3-glycidoxypropyltrimethoxysilane (GLYMO).

As filler I, it may be possible to use a silica with a BET specific surface area of at least 50 m²/g. The fillers are advantageously processed by treatment
with various organosilicon compounds usually used for this purpose. Thus, these organosilicon compounds may be organochlorosilanes, diorganocyclosiloxanes, hexaorganodisiloxanes, hexaorganodisilazanes or diorganocyclosilazanes (French patents FR-A-1 126 884, FR-A-1 136 885 and FR-A-1 236 505, and British patent GB-A-1 024 234).

According to the invention the composition may also comprise as filler a standard semi-reinforcing or packing filler such as diatomaceous earth, ground quartz, carbon black, titanium dioxide, aluminium oxide, hydrated alumina, expanded vermiculite, non-expanded vermiculite, calcium carbonate that may has undergone a compatibilization treatment, zinc oxide, mica, iron oxide, barium sulfate, slaked lime, etc. Calcium carbonate eventually surface treated by known agent (such stearic acids,...) is the most preferred.

In a manner that is known per se, the composition according to the invention may further comprise an additive for example solvent such as tetradecene, stabilizer such as metaphosphoric acid derivatives in polydimethylsiloxane, colorants, flame retardants, bactericides, mineral or organic pigments and also those for improving the fire resistance, such as compounds containing a phenyl group substituted with an amino (secondary or tertiary) group. Examples of such additives are found in the reference US 5 516 938. The useful amounts of such additives are generally between 0.01 and 1 part by weight relative to the total amount of the composition.

The composition according to the invention makes it possible to obtain fabrics coated with thin water-repellent layers of silicone elastomers that have good mechanical properties of suppleness, tear strength and
resistance to fraying and that release little heat in the case of combustion.

The inner layer (1) in contact with the fibrous support is a coating consisting of a silicone elastomer, polyurethane or silicone-polyurethane. Various types of these compositions may be used.

It is possible to use a wide variety of multicomponent, two-component or one-component organopolysiloxane compositions that crosslink at ambient temperature or at high temperature via, in particular, polyaddition, hydrosilylation or radical reactions to produce an elastomer. As a polyaddition reaction, mention may especially be made of the reaction of hydrosilyl groups with alkenylsilyl groups, generally in the presence of a metal catalyst, preferably a platinum catalyst (see, for example, Patents US-A-3 220 972, 3 284 406, 3 436 366, 3 697 473 and 4 340 709).

Mention may especially be made of a silicone elastomer composition obtained by crosslinking a polyorganosiloxane mixture capable of crosslinking via polyaddition reactions comprising at least:
- one polyorganosiloxane having, per molecule, at least two C2-C6 alkenyl groups bonded to the silicon;
- one polyorganosiloxane having, per molecule, at least two hydrogen atoms bonded to the silicon; and
- in the presence of an effective amount of platinum-based crosslinking catalyst.

These polyorganosiloxanes may be the same as those described previously for the outer layer (2). The composition may also comprise various additives used for the formation of the outer layer (2).
The silicone elastomer composition preferably comprises reinforcing fillers, such as those described previously, especially polyorganosiloxane resins, and/or silica that has preferably been treated, more preferably in proportions between 5 and 50% of the inner layer.

Another subject of the present invention is a process for coating a fibrous support, in which:
- deposited on the surface of a fibrous support is a silicone elastomer composition that can be crosslinked by polyaddition, hydrosilylation or radical reactions; and it is optionally crosslinked to form the inner layer (1), and
- deposited on the inner layer (1) is the composition according to the invention and as described above that can be crosslinked by polyaddition reaction defined previously, and it is crosslinked so as to form the outer layer (2).

The deposition steps are advantageously carried out by coating. The coating step may especially be carried out using a knife, in particular a knife-over-roll, a floating knife or a knife-over-blanket, by transfer, by padding, that is to say by squeezing between two rolls, or else by lick roll, rotary machine, reverse roll. For application of the outer layer an engraved roll or a transfer roll are particularly useful.

Next crosslinking are carried out, preferably by hot air or electromagnetic radiation, for example infrared radiation, especially for 10 seconds to 5 minutes, preferably from 10 to 60 seconds, at a crosslinking temperature without exceeding the degradation temperature of the fibrous support.
It should be noted that it is possible to crosslink or not to crosslink the composition applied to form the inner layer (1) before depositing the composition for the outer layer (2). In the case where the composition applied to form the inner layer (1) is not crosslinked, its crosslinking will be carried out when the crosslinking of the composition for forming the outer layer (2) is carried out.

The amount of silicone elastomer composition applied is such that it enables the formation of an inner layer (1) having a surface density between 10 and 200 g/m², preferably between 40 and 120 g/m². Generally, a final deposited thickness after crosslinking between 30 and 70 µm will be aimed for.

The amount of the composition according to the invention that can be crosslinked by polyaddition reaction applied is such that it allows the formation of an outer layer (2) having a surface density between 10 and 40 g/m², preferably between 10 and 35 g/m². Generally, a final deposited thickness after crosslinking between 1 and 50 µm.

In the context of one-piece woven airbags, the silicone coating that is the subject of the invention is formed on the outer surface of said airbag, in contact with the user or the various vehicle components.

Another embodiment of the invention concerns an article characterized in that the fibrous support is an airbag used for protecting the occupants of a vehicle.

Finally, the fibrous support is a one-piece woven airbag for protecting the occupants of a vehicle; and characterized in that the silicone elastomer coating is located on the outer surface of said airbag, in contact with the user or the various components of the vehicle.
A specific language is used in the description so as to facilitate the understanding of the principle of the invention. It should nevertheless be understood that no limitation to the scope of the invention is envisaged by the use of this specific language. Modifications, improvements and perfections may especially be envisaged by a person skilled in the art in question on the basis of his own general knowledge.

The term "and/or" includes the meanings "and", "or", and also all the other possible combinations of the elements connected to this term.

Other details or advantages of the invention will appear more clearly in light of the examples given below solely by way of indication.

EXPERIMENTAL SECTION

In these examples, the dynamic viscosity at 25°C was measured using a Brookfield viscometer.

A composition according to the invention was prepared by mixing a bicomponent RTV-2 described in Table 1 and as followed: 4 parts by weight of formulation A and one part by weight of formulation XL.
Formulation A

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyorganosiloxane A: $M_5^{IV}D_{15},D_{IV}^{VI}M_1^{VI}$</td>
<td>40.81</td>
</tr>
<tr>
<td>Filler E: Talc</td>
<td>54.05</td>
</tr>
<tr>
<td>Filler I: Calcium carbonate (reference ALBACAR® 5970, that has not been the subject of a compatibilization treatment having a d_{50} particle size of 2 µm.)</td>
<td>2.70</td>
</tr>
</tbody>
</table>

GLYMO: 1.80

Silcolease Pt catalyst sold by Bluestar Silicones: 0.63

Formulation XL

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture of 70% by weight of MMIVQ resin F in solution in 12% by weight of a polydimethylsiloxane oil B terminated at each of the chain ends by a $(CH_3)2ViSiO{1/2}$ unit, having a viscosity of 10 000 mPa.s and 18% by weight of an organic solvent (tetradecene derivative) J</td>
<td>58.12</td>
</tr>
<tr>
<td>Poly (dimethyl) (hydromethyl) siloxane oil C terminated at each of the chain ends by a $(CH_3)3SiOi{1/2}$ with a dynamic viscosity at 25°C of 34 mPa.s</td>
<td>32.48</td>
</tr>
<tr>
<td>Additive J: Stabilizer metaphosphoric acid derivatives in polydimethylsiloxane</td>
<td>0.02</td>
</tr>
<tr>
<td>Polyorganosiloxane B: gum = Polydimethyl with methylvinylsiloxane end groups gum</td>
<td>8.99</td>
</tr>
<tr>
<td>Crosslinking inhibitor G: 1-ethynylcyclohexanol (ECH)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Table 1: Composition of bi-component RTV-2

Example 2: Preparation of coated woven fabrics

The woven fabric was a PET fabric. It was coated with an inner layer (1) of RTV-2 TCS 7750 silicone sold by Bluestar Silicones (coating weight: 60g/m²; curing condition: 150°C for 15 min by press machine and this was repeated twice).
<table>
<thead>
<tr>
<th>Tensile strength at Break (Mpa)</th>
<th>5.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation at Break (%)</td>
<td>ISO 37 679</td>
</tr>
<tr>
<td>Modulus 100%</td>
<td>0.489</td>
</tr>
<tr>
<td>Tear Strength (KN/m)</td>
<td>ASTM D 624 A 14.11</td>
</tr>
<tr>
<td>Shore A Hardness</td>
<td>ASTM D 2240 20.60</td>
</tr>
</tbody>
</table>

Table 2: Physical properties of the inner layer (1).

Then, mixing of the amounts of crosslinking and catalyzing preparations indicated in Table 1, was carried out during the formation of the coating bath, before application to the coated woven fabric.

The coating bath was applied to the fabric (from 10 to 15 g/m²) that had already been coated by the inner layer (1) of silicone with Meyer bar so as to form the outer layer (2) (topcoat). Next, the coated woven fabric was passed into a ventilated heating chamber (curing conditions 160°C for 2 minutes or 180°C for 20 s).

The physical properties of the topcoat (outer layer (2)) were measured and quoted in Table 3. (Results are obtained by following ISO 8295:2004 or ASTM-D1894)

<table>
<thead>
<tr>
<th>Coefficient of friction (COF)</th>
<th>160°C for 2min</th>
<th>180°C for 20 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd (dynamic friction force)</td>
<td>0.195</td>
<td>0.229</td>
</tr>
<tr>
<td>Kf (static friction force)</td>
<td>0.210</td>
<td>0.233</td>
</tr>
</tbody>
</table>
Table 3: Physical properties of the topcoat (outer layer (2))
1. A article comprising at least one fibrous support surface coated by at least two successive layers comprising:
 - at least one inner layer (1), in contact with the fibrous support, which is a coating consisting of a silicone elastomer, polyurethane or silicone-polyurethane; and
 - a topcoat outer layer (2), in contact with the inner layer (1), which is a coating obtained by crosslinking a composition consisting of:
 (A) at least 25% by weight, relative to the total weight of said composition, of at least one linear polyorganosiloxane A having per molecule:
 a) at least two vinyl(dimethyl)siloxane end units M_v, and
 b) at least one vinylmethyldisiloxane unit D_v, and
 c) a degree of polymerization "DP" which is the number of repeating Si-O-Si units in the polymer over 150; and most preferably 150<DP<180
 (B) at least one polyorganosiloxane B terminated at each of the chain ends by a vinyl(dimethyl)siloxane unit;
 (C) at least one polyorganosiloxane C having, per molecule, at least two hydrogen atoms bonded to the silicon;
 (D) at least one catalyst D consisting of at least one metal, or compound, from the platinum group;
 (E) at least 35% by weight, relative to the total weight of said composition, of at least one talc E;
 (F) up to 20% by weight, relative to the total weight of said composition, of at least one polyorganosiloxane resin F comprising at least one alkenyl group;
 (G) at least one crosslinking inhibitor G;
 (H) up to 5% by weight, relative to the total weight of said composition, of at least one adhesion promoter H which is an organosilicon compound comprising at least one epoxy radical;
 (I) optionally up to 10% by weight, relative to the
total weight of said composition, of a filler I; and
(J) optionally at least one additive J.

2. The article as claimed in claim 1 characterized in that the linear polyorganosiloxane A is of the following formula:

\[M^{vi} D_x D^{vi}_y M^{vi} \]

With: \(Vi = \) vinyl group,
\[M^{vi} = (Vi) (CH_3)_2 Si0_1/2, \]
\[D_x = (CH_3)_2 Si0_{2/2} \] and \(x \) is an integer number,
\[D^{vi} = (Vi) (CH_3)Si0_{2/2} \] and \(y \) is an integer number,
and \(x+y > 150 \) and most preferably \(150 < x+y < 180. \)

3. The article as claimed in claim 1 characterized in that the filler E is Talc.

4. The article as claimed in claim 1 characterized in that the polyorganosiloxane resin F is selected from the group consisting of:
 a) a \(MD^{vi}_Q \) resin with:
 - \(M = (CH_3)_3 Si0_{1/2}, \)
 - \(D^{vi} = (CH_3) (R^1) Si0_{2/2}, \) and
 - \(Q = Si0_{4/2}; \)
 b) a \(MM^{vi}_Q \) resin with:
 - \(M = (CH_3)_3 Si0_{1/2}, \)
 - \(M^{vi} = (CH_3)2 (R^1) Si0_{1/2}, \) and
 - \(Q = Si0_{4/2}; \)
 in which \(R^1 \) corresponds to a vinyl radical.

5. The article as claimed in claim 1 characterized in that the adhesion promoter H is 3-glycidoxypropyltrimethoxysilane (GLYMO).

6. The article as claimed in claims 1 characterized in that the fibrous support is an airbag used for protecting the occupants of a vehicle.

7. The article as claimed in any one of claims 1 or 6
characterized in that the fibrous support is a one-piece woven airbag for protecting the occupants of a vehicle; and that the silicone elastomer coating is located on the outer surface of said airbag, in contact with the user or the various components of the vehicle.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
B32B 5/02(2006.01)i; D06N 3/12(2006.01)i; C09D 183/04(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
B32B, D06N, C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI, EPODOC, CNKI, CNPAT: coat+, elastomer, vinyldimethylsiloxane terminated, hydrogen, catalyst, platinum, talc, alkenyl, inhibitor, promot+, epoxy, filler, additive

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>CN 101443512 A (UESTAR SILICANES FRANC) 27 May 2009 (2009-05-27) claims 1-19, description page 2 line 18 to page 2 line 18</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>CN 1798889 A (DOW CORNING COR) 05 July 2006 (2006-07-05) claims 1-4; description paragraph [0047]</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>CN 101535429 A (UESTAR SILICANES FRANC) 16 September 2009 (2009-09-16) the whole document</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "Y" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "G" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "P" document member of the same patent family

Date of the actual completion of the international search 12 September 2014
Date of mailing of the international search report 28 September 2014

Name and mailing address of the ISA/
STATE INTELLECTUAL PROPERTY OFFICE OF THE P.R.CHINA(IS/A/CN)
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing 100088 China
Facsimile No. (86-10)62019451

Authorized officer CHEN, Xiujuan
Telephone No. (86-10)62085042

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 101443512 A</td>
<td>27 May 2009</td>
<td>JP 2009531552 A</td>
<td>03 September 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080078723 A</td>
<td>27 August 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101443512 B</td>
<td>13 February 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009298367 A1</td>
<td>03 December 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007071631 A1</td>
<td>28 June 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2894997 A1</td>
<td>22 June 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4804540 B2</td>
<td>02 November 2011</td>
</tr>
<tr>
<td>CN 1798889 A</td>
<td>05 July 2006</td>
<td>WO 2004109008 A1</td>
<td>16 December 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006217016 A1</td>
<td>28 September 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1629150 A1</td>
<td>01 March 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060007057 A</td>
<td>23 January 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100378268 C</td>
<td>02 April 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007526400 A</td>
<td>13 September 2007</td>
</tr>
<tr>
<td>CN 1968805 A</td>
<td>23 May 2007</td>
<td>CN 100515757 C</td>
<td>22 July 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008503655 A</td>
<td>07 February 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1776194 B1</td>
<td>23 March 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4938655 B2</td>
<td>23 May 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 602005027079 D1</td>
<td>05 May 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005282453 A1</td>
<td>22 December 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 1203502 B1</td>
<td>21 November 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006007404 A2</td>
<td>19 January 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7611998 B2</td>
<td>03 November 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 200604597 P4</td>
<td>29 June 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070024610 A</td>
<td>02 March 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006007404 A3</td>
<td>19 October 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2006014727 A1</td>
<td>01 July 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 275722 B</td>
<td>06 May 2010</td>
</tr>
<tr>
<td>CN 101535429 A</td>
<td>16 September 2009</td>
<td>US 2008085942 A1</td>
<td>10 April 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090076957 A</td>
<td>13 July 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008040791 A1</td>
<td>10 April 2008</td>
</tr>
</tbody>
</table>