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Particular embodiments described herein provide for an
electronic device that can be configured to receive a remote
direct memory access (RDMA) message from a first virtual
machine located on a first network element, determine that
the RDMA message is destined for a second virtual machine
that is located on the first network element, and use a local
direct memory access engine to process the RDMA mes-
sage, where the local direct memory access engine is located
on the first network element. In an example, the electronic
device can be further configured to determine that the
RDMA message is destined for a third virtual machine on a
second network element, wherein the second network ele-
ment is different than the first network element and use an
other device acceleration driver to process the RDMA
message instead of the local direct memory access engine.
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VIRTUALIZED REMOTE DIRECT MEMORY
ACCESS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a national stage application under 35
U.S.C. § 371 of PCT International Application Serial No.
PCT/CN2016/112703, filed on Dec. 28, 2016 and entitled
“VIRTUALIZED REMOTE DIRECT MEMORY
ACCESS,” which is hereby incorporated by reference herein
in its entirety.

TECHNICAL FIELD

This disclosure relates in general to the field of comput-
ing, and more particularly, to virtualized remote direct
memory access.

BACKGROUND

Remote direct memory access (RDMA) allows computers
in a network to exchange data in main memory without
involving the processor, cache, or operating system of either
computer. Like locally-based direct memory access (DMA),
RDMA improves throughput and performance because it
frees up resources. RDMA also facilitates a faster data
transfer rate. More specifically, RDMA implements a trans-
port protocol in the network interface card (NIC) hardware
and supports a feature called zero-copy networking. Zero-
copy networking makes it possible to read data directly from
the main memory of one computer and write that data
directly to the main memory of another computer.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1 is a simplified block diagram of a communication
system to enable virtualized remote direct memory access in
accordance with an embodiment of the present disclosure;

FIG. 2 is a simplified block diagram illustrating example
details associated with a communication system to enable
virtualized remote direct memory access in accordance with
an embodiment of the present disclosure;

FIG. 3 is a simplified block diagram illustrating example
details associated with a communication system to enable
virtualized remote direct memory access in accordance with
an embodiment of the present disclosure;

FIG. 4 is a simplified block diagram illustrating example
details associated with a communication system to enable
virtualized remote direct memory access in accordance with
an embodiment of the present disclosure;

FIG. 5 is a simplified flowchart illustrating potential
operations that may be associated with the communication
system in accordance with an embodiment;

FIG. 6 is a simplified flowchart illustrating potential
operations that may be associated with the communication
system in accordance with an embodiment; and

FIG. 7 is a simplified flowchart illustrating potential
operations that may be associated with the communication
system in accordance with an embodiment.
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The FIGURES of the drawings are not necessarily drawn
to scale, as their dimensions can be varied considerably
without departing from the scope of the present disclosure.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Example Emobdiments

The following detailed description sets forth example
embodiments of apparatuses, methods, and systems relating
to a communication system for enabling virtualized remote
direct memory access. Features such as structure(s), function
(s), and/or characteristic(s), for example, are described with
reference to one embodiment as a matter of convenience;
various embodiments may be implemented with any suitable
one or more of the described features.

In the following description, various aspects of the illus-
trative implementations will be described using terms com-
monly employed by those skilled in the art to convey the
substance of their work to others skilled in the art. However,
it will be apparent to those skilled in the art that the
embodiments disclosed herein may be practiced with only
some of the described aspects. For purposes of explanation,
specific numbers, materials and configurations are set forth
in order to provide a thorough understanding of the illus-
trative implementations. However, it will be apparent to one
skilled in the art that the embodiments disclosed herein may
be practiced without the specific details. In other instances,
well-known features are omitted or simplified in order not to
obscure the illustrative implementations.

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof wherein
like numerals designate like parts throughout, and in which
is shown, by way of illustration, embodiments that may be
practiced. It is to be understood that other embodiments may
be utilized and structural or logical changes may be made
without departing from the scope of the present disclosure.
Therefore, the following detailed description is not to be
taken in a limiting sense. For the purposes of the present
disclosure, the phrase “A and/or B” means (A), (B), or (A
and B). For the purposes of the present disclosure, the phrase
“A, B, and/or C” means (A), (B), (C), (A and B), (A and C),
(B and C), or (A, B, and C).

For purposes of illustrating certain example techniques of
communication system 100, it is important to understand the
communications that may be traversing the network envi-
ronment. The following foundational information may be
viewed as a basis from which the present disclosure may be
properly explained.

End users have more communications choices than ever
before. A number of prominent technological trends are
currently afoot (e.g., more computing devices, more con-
nected devices, etc.). One trend is RDMA. RDMA is a direct
memory access from the memory of one computer, machine,
or device (a host device) into that of another computer,
machine, or device (a guest device) without involving either
one’s operating system. This allows computers in a network
to exchange data in main memory without involving the
processor, cache, or operating system of either computer.
RDMA can permit high-throughput and low-latency net-
working that improves throughput and performance because
it frees up resources and can also facilitate a faster data
transfer rate. RDMA supports zero-copy networking by
enabling a network adapter to transfer data directly to (or
from) application memory and eliminate the need to copy
data between application memory and the data buffers in the
operating system. Such transfers can require no or very little
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work to be done by CPUs, caches, or context switches, and
transfers can continue in parallel with other system opera-
tions.

When legacy applications with RDMA requirements (e.g.,
via open fabric enterprise distribution (OFED) application
program interfaces (APIs)) are migrated to virtualized net-
work environments, the expectation or desire is that those
applications should still run with the high performance of
RDMA. Currently, one solution is hardware assisted virtu-
alization where the hypervisor utilizes a single root input/
output virtualization (SR-IOV) to virtualize the real RDMA
devices and assign it to the corresponding VMs which run
those applications. The SR-IOV can virtualize a physical
RDMA device and share the virtual function (VF) of the
RDMA device with the VMs. A second current solution is a
para-virtualization method in the hypervisor where the
hypervisor exposes the para interface to the guest operating
system (OS) and emulates the para RDMA device and
re-directs data to a hypervisor’s RDMA stack. However,
these solutions rely on a real homogeneous RDMA device
and cannot support legacy applications with RDMA require-
ments in VMs and still achieve relatively high performance
without a homogeneous RDMA device.

A communication system that can enable virtualized
RDMA, as outlined in FIG. 1, can resolve these issues (and
others). FIG. 1 is a simplified block diagram of a commu-
nication system 100 to illustrate an example use of virtual-
ized remote direct memory access (RDMA). Communica-
tion system 100 can include a plurality of network elements
1024-102d. Each network element can communicate with
other network elements using network 112. For example,
network element 102a can communicate with network ele-
ment 1024 using network 112. In some examples, a network
element can communicate with another network element
directly. For example, network element 1025 may be in
direct communication with network element 102c.

Network element 102a can include virtual machines
(VM) 104a and 1044, a hypervisor 106a, a processor 108,
and memory 110. Network element 1025 can include VMs
104c¢, 1044, and 104e, a hypervisor 1065, processor 108, and
memory 110. Network element 102¢ can include a hyper-
visor 106¢, processor 108, and memory 110. Network ele-
ment 102d can include VM 104/, a hypervisor 106d, pro-
cessor 108, and memory 110. Note that each network
element 102a-1024 can include one or more VMs or may not
include any VMs. Each network element 102a-102d may be
a host. Also, each network element 102a-1024d and each VM
104a-104f may be a host device or a guest device for RDMA
operations.

Elements of FIG. 1 may be coupled to one another
through one or more interfaces employing any suitable
connections (wired or wireless), which provide viable path-
ways for network communications. Additionally, any one or
more of these elements of FIG. 1 may be combined or
removed from the architecture based on particular configu-
ration needs. Communication system 100 may include a
configuration capable of transmission control protocol/In-
ternet protocol (TCP/IP) communications for the transmis-
sion or reception of packets in a network. Communication
system 100 may also operate in conjunction with a user
datagram protocol/IP (UDP/IP) or any other suitable proto-
col where appropriate and based on particular needs.

Communication system 100 can be configured to support
applications with RDMA requirements in a virtualization
environment with non-homogenous devices. For example,
communication system 100 can be configured to simulate/
emulate a RDMA device and allow for virtual RDMA
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communications between a host device (e.g., network ele-
ment 102a or VM 1044) and a guest device (e.g., network
element 1026 or VM 1045). The term “host” includes a
network element or device that includes a host device and/or
a guest device. The term “host device” includes a network
element, VM, or some other device that initiates the RDMA
operations. The term “guest device” includes a network
element, VM, or some other device that engages in the
RDMA operations with the host device. In some examples,
a host can include both the host device and the guest device.
In other examples, a first host can include the host device
and a second host can include the guest device.

In a specific example, communication system 100 can be
configured to provide a system, method, and apparatus for
virtualizing RDMA devices without requiring each device to
be a homogenous physical RDMA device. In a hypervisor
layer or network functions virtualization (NFV) layer, vari-
ous means can be used to accelerate the performance of the
system without a requirement for homogenous virtualiza-
tion. For example, if two VMs are in the same host (e.g., VM
104a and VM 1045 located in network element 102a), the
system can use a DMA copy mechanism or memory sharing
between the two VMs and a local DMA engine (e.g., local
DMA engine 136 illustrated in FIG. 2) may be leveraged. If
two VMs are not on the same host (e.g., VM 104aq is located
in network element 102a and VM 104c is located in network
element 1025), and if there is an available field program-
mable gate array (FPGA) (e.g., FPGA 148a and FPGA 1145
illustrated in FIG. 4), the applications in the guest device
(e.g., network element 1025) can call the FPGA for accel-
eration. If two VMs are not on the same host and there is no
acceleration device (e.g., no FPGA) and there are VM
communications through a virtualized network interface
controller (NIC) (e.g., virtualized NIC 150 illustrated in
FIG. 2) with RDMA capability (RNIC), the system can use
software emulation.

Ina VM, a virtualized RDMA device (e.g., virtual RDMA
engine 114 illustrated in FIG. 2) can be provided. The VM
can include a guest OS (e.g., OS 1184a) and in the guest OS
the applications with RDMA requirements can use available
transparent open fabrics enterprise distribution (OFED)
related APIs (e.g., libibverbs 114). This means that there is
no usage change for the applications. In a kernel space (e.g.,
kernel 112), there can be an RDMA driver (e.g., RDMA
driver 120). In a specific implementation, if the hypervisor
delivers with para-virtualization, then the RDMA driver
should be a para-virtualized RDMA driver. The term para-
virtualization includes an enhancement of virtualization
technology in which a guest OS is recompiled prior to
installation inside the virtual machine. Para-virtualization
can allow for an interface to a virtual machine that can differ
somewhat from that of the underlying hardware. The term
para-virtualized RDMA driver includes a driver in a guest
OS that collaborates with the hypervisor/VM with hypercall
to provide the RDMA features to applications in a guest OS.

In a specific example, for virtualized RDMA, a physical
device, such as a local DMA engine (e.g., local DMA engine
136 illustrated in FIG. 2) or an FPGA (e.g., FPGA 148a
illustrated in FIG. 4) can be configured to access all the
memory regions registered by the virtualized RDMA device
in the VM. For RDMA queue related managements, the
virtualized queues (e.g., send queues, receive queues,
completion queues, etc.) of the VMs can be mapped to
corresponding queues maintained by the hypervisor or net-
work functions virtualization (NFV) layer layer.

In an example implementation, the RDMA device emu-
lation layer in the hypervisor or the NFV can call corre-
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sponding primitives (e.g., RDMA operations such as read,
write, send, etc.) in different acceleration engines (e.g.,
acceleration engine 134). In work request (WR) operations
(e.g., read/write, send/receive, etc.), the key operations that
influence the performance of the system are RDMA read and
write. Those operations can be offloaded by an accelerate
engine (e.g., other device acceleration engine 116 shown in
FIG. 2). An RDMA read/write operation can include a
remote RDMA information that points to the key and
address exported by the remote RDMA side (<key, address>
field of RDMA related packets). The key can be a key
registered by the remote RDMA application and the address
can be a virtual address of the remote application. The
RDMA read/write operation can also include local memory
information (<address, length> field of RDMA related pack-
ets) that points to the exported local memory address and
length. The address in the local memory address can be the
virtual address of the application in the same host and the
length can be the length to send or receive data. For
offloading, the address needs to be passed into other device
acceleration driver 138 (or FPGA 148 (illustrated in FIG.
4)), local DMA engine 136, etc.

When the host device (e.g., VM 1044a) and guest device
(e.g., VM 104b) are in the same host (e.g., network element
102a), an acceleration engine (e.g., acceleration engine 134)
can copy from address A to address B in the same operation
or function similar to a local DMA copy engine. As a result,
for the RDMA read/write, a hypervisor (e.g., hypervisor
106a, 1065, etc.), an FPGA (e.g., FPGA 148 illustrated in
FIG. 4) or some other device can obtain the physical address
from the remote information <key, address> field in address
lookup table 154 (illustrated in FIG. 2). The physical address
can be obtained from local information (e.g., <address,
length> field) in address lookup table 154. Data from a host
device to a guest device can be copied for an RDMA read
operation and data from the guest device to the host device
can be copied for an RDMA write operation. In addition, a
completion queue element (CQE) (e.g., CQE 160) can be
injected into the virtual completion queue of the RDMA
device when the RDMA read/writes are completed. The
CQE is an element that indicates when the RDMA read/
writes are completed or sent and the send and receive queues
(e.g., send queue 1424 and receive queue 144a) are empty
or have sent and received the RDMA data.

When the host device (e.g., VM 1044a) and guest device
(e.g., VM 104c¢) are not in the same host (e.g., VM 104a is
on network element 102¢ and VM 104c¢ is on network
element 1025), the acceleration engine can choose to use
other acceleration engines or an acceleration engine other
than the local DMA copy engine. If the host device (e.g., VM
104a) is connected to other devices by another host con-
troller adapter (HCA) (e.g., HCA 1564 or 1565 illustrated in
FIG. 4), the virtual queues from the guest device can be
mapped to the host device with some translation and the
HCA can be allowed to handle the RDMA read/writes.
When the RDMA read/writes are completed, the hypervisor
can perform some translations to the completion requests
and inject a CQE into the virtual completion queue of the
RDMA device.

If only an FPGA is available, then the RDMA read
process will be slightly different and needs the assistance of
the network element associated with the guest device, if the
network element associated with the guest device is also
using the same hypervisor. In this example, for a RDMA
write, the hypervisor network element associated with the
host device converts the RDMA write to TCP/IP requests
and leverages the FPGA to copy the data pointed to by the
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<address, length> field. The <address, length> field may be
part of RDMA related packets (e.g., libibverbs structure
packed) and the address portion can be obtained from
lookup table 154. The data pointed by the <address, length>
field can be obtained by the FPGA. The FPGA can be
configured to encapsulate the data, the <key, address> field,
and the destination information into network packets. When
the hypervisor in the network element associated with the
guest device receives such packets, the hypervisor can
identify the packet as a special packet and use the FPGA to
de-capsulate the data and extract the <key, address> field,
identify the guest device that is the target and append copy
the data to the address pointed to by the address in <key,
address> field. The <key, address> field may be part of
RDMA related packets (e.g., libibverbs structure packed)
and the address portion can be obtained from lookup table
154. The FPGA can send a response to the hypervisor
associated with the host device (e.g., the host hypervisor).
When the host hypervisor receives the response, the host
hypervisor can inject the CQE into the virtual completion
queue of the host device.

For an RDMA read, a hypervisor associated with the guest
device (e.g., a hypervisor in the host or device that includes
the guest device) can convert the RDMA read to TCP/IP
requests. The guest FPGA (e.g., an FPGA associated with
the guest device) can be configured to encapsulate the data
request from the host device with the <key, address> field
included in the network packets and the destination infor-
mation gained by the host associated with the guest device.
When the guest hypervisor (e.g., a hypervisor associated
with the guest device) receives such packets, the guest
hypervisor can identify the packets as a special TCP/IP
requests. The guest FPGA can be used to de-capsulate the
data and extract the <key, address> field, identify the guest
device, and continue to use the guest FPGA to copy the data
from the address in the <key, address> field. The guest
FPGA can encapsulate a response data packet and sent the
response to the host hypervisor (e.g., the hypervisor asso-
ciated with the host device). When the host hypervisor
receives the response, the host hypervisor can leverage the
host FPGA (e.g., the FPGA associated with the host device)
to de-capsulate the network packets, copy the data to the
address in the <address, length> field for the corresponding
guest device, and inject the CQE to the virtual completion
queue of the host device.

Turning to the infrastructure of FIG. 1, communication
system 100 in accordance with an example embodiment is
shown. Generally, communication system 100 can be imple-
mented in any type or topology of networks. Network 112
represent a series of points or nodes of interconnected
communication paths for receiving and transmitting packets
of information that propagate through communication sys-
tem 100. Network 112 offers a communicative interface
between nodes, and may be configured as any local area
network (LAN), virtual local area network (VLAN), wide
area network (WAN), wireless local area network (WLAN),
metropolitan area network (MAN), Intranet, Extranet, vir-
tual private network (VPN), and any other appropriate
architecture or system that facilitates communications in a
network environment, or any suitable combination thereof,
including wired and/or wireless communication.

In communication system 100, network traffic, which is
inclusive of packets, frames, signals (analog, digital or any
combination of the two), data, etc., can be sent and received
according to any suitable communication messaging proto-
cols. Suitable communication messaging protocols can
include a multi-layered scheme such as Open Systems
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Interconnection (OSI) model, or any derivations or variants
thereof (e.g., Transmission Control Protocol/Internet Proto-
col (TCP/IP), user datagram protocol/IP (UDP/IP)). mes-
sages through the network could be made in accordance with
various network protocols, (e.g., Ethernet, Infiniband,
Omni-Path, etc.). Additionally, radio signal communications
(e.g., over a cellular network) may also be provided in
communication system 100. Suitable interfaces and infra-
structure may be provided to enable communication with the
cellular network.

The term “packet” as used herein, refers to a unit of data
that can be routed between a source and a destination on a
packet switched network. A packet includes a source net-
work address and a destination network address. These
network addresses can be Internet Protocol (IP) addresses in
a TCP/IP messaging protocol. The term “data” as used
herein, refers to any type of binary, numeric, voice, video,
textual, or script data, or any type of source or object code,
or any other suitable information in any appropriate format
that may be communicated from one point to another in
electronic devices and/or networks. Additionally, messages,
requests, responses, and queries are forms of network traffic,
and therefore, may comprise packets, frames, signals, data,
etc.

In regards to the internal structure associated with com-
munication system 100, each network element 102¢-102d
can include memory elements for storing information to be
used in the operations outlined herein. Each network ele-
ment 102a-102d may keep information in any suitable
memory element (e.g., random access memory (RAM),
read-only memory (ROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), application specific integrated circuit (ASIC), non-
volatile memory (NVRAM), magnetic storage, magneto-
optical storage, flash storage (SSD), etc.), software,
hardware, firmware, or in any other suitable component,
device, element, or object where appropriate and based on
particular needs. Any of the memory items discussed herein
should be construed as being encompassed within the broad
term ‘memory element.” Moreover, the information being
used, tracked, sent, or received in communication system
100 could be provided in any database, register, queue, table,
cache, control list, or other storage structure, all of which
can be referenced at any suitable timeframe. Any such
storage options may also be included within the broad term
‘memory element’ as used herein.

Additionally, each network element 102a-1024 may
include a processor that can execute software or an algo-
rithm to perform activities as discussed herein. A processor
can execute any type of instructions associated with the data
to achieve the operations detailed herein. In one example,
the processors could transform an element or an article (e.g.,
data) from one state or thing to another state or thing. In
another example, the activities outlined herein may be
implemented with fixed logic or programmable logic (e.g.,
software/computer instructions executed by a processor) and
the elements identified herein could be some type of a
programmable processor, programmable digital logic (e.g., a
field programmable gate array (FPGA), an EPROM, an
EEPROM) or an ASIC that includes digital logic, software,
code, electronic instructions, or any suitable combination
thereof. Any of the potential processing elements, modules,
and machines described herein should be construed as being
encompassed within the broad term ‘processor.”

Network elements 102a-102d can be network elements
and include, for example, physical or virtual servers or other
similar devices that may be used in a network or cloud
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services architecture. Cloud services may generally be
defined as the use of computing resources that are delivered
as a service over a network, such as the Internet. The
services may be distributed and separated to provide
required support for network elements. Typically, compute,
storage, and network resources are offered in a cloud infra-
structure, effectively shifting the workload from a local
network to the cloud network. A server can be a network
element such as a server or virtual server and can be
associated with clients, customers, endpoints, or end users
wishing to initiate a communication in communication sys-
tem 100 via some network. The term ‘server’ is inclusive of
devices used to serve the requests of clients and/or perform
some computational task on behalf of clients within com-
munication systems 100.

Turning to FIG. 2, FIG. 2 is a simplified block diagram of
a portion of communication system 100 to illustrate an
example use of virtualized RDMA. Network element 1024
(a host device) can include virtual machines 104a and 1045,
hypervisor 1064, an other device acceleration engine 116, a
virtualized NIC 150, and memory 152. Memory 152 can
include an address lookup table 154. Each VM (e.g. VM
104a and 104b) may have access to address lookup table 154
or each VM may have an associated lookup table 154. Other
device acceleration engine 116 may be or have access to a
field programmable gate array (FPGA) or some other engine
or element that can help facilitate a virtualized RDMA
environment. NIC 150 is an RNIC with RDMA capability.

VM 104aq can include a virtual RDMA engine 114 and an
operating system 118a. Operating system 118a can include
an application library 120 and a kernel 122. Application
library 120 can include libibverbs 124. Kernel 122 can
include RDMA driver 126. VM 1045 can include virtual
RDMA engine 114 and an operating system 1185. Operating
system 1185 can include an application library 120 and a
kernel 122. Application library 120 can include libibverbs
124. Kernel 122 can include RDMA driver 126. Applica-
tions with RDMA requirements can use the transparent open
fabrics enterprise distribution (OFED) related APIs (e.g.,
libibverbs 124) in operating system 118a and 1185.

Hypervisor 106a can include a RDMA emulation engine
130, a RDMA stack 132, an acceleration engine 134, a local
DMA engine 136, an other device acceleration driver 138,
and an emulation engine 140. Emulation engine 140 can be
configured as an RDMA software emulation engine. Net-
work elements 1025-102d can include similar elements as
those illustrated in FIG. 2, some of the elements illustrated
in FIG. 2, a different number or instance of each element
illustrated in FIG. 2, or other variations. Local DMA engine
136 can be configured to a DMA copy mechanism or
memory sharing between the two VMs on the same host.
Because the VMs are on the same host, the memory for the
VMs can be relatively easily shared for the RDMA opera-
tions.

In the hypervisor or NFV layer, RDMA emulation engine
130 can be configured to intercept all the RDMA device
emulation related control operations for VM 104a and VM
1045 in network element 1025. VM 104a and VM 1045 can
each be configured for virtualized RDMA. RDMA stack 132
can be configured to implement RDMA operation related
stacks. Acceleration engine 134 can be configured to handle
the RDMA operations in different manners depending on if
the host device and the guest device are on the same host or
if the host device and the guest device are on different hosts.
If the host device (e.g., VM 1044) and the guest device (e.g.,
VM 1045) are on the same host (e.g., network element
102a), acceleration engine 134 can use RDMA emulation
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engine 130 and local DMA engine 136 to facilitate the
RDMA operations between the host device and the guest
device. If the host device (e.g., VM 1044a) and the guest
device (e.g., VM 104c¢) are on different devices (e.g., VM
1044 is on network element 102¢ and VM 104c¢ is on
network element 1025), acceleration engine 134 can use
device acceleration driver 138 or FPGA 148a (illustrated in
FIG. 4) to facilitate the RDMA operations between the host
device and the guest device. If the host device (e.g., VM
104a) and the guest device (e.g., VM 104c¢) are on different
devices and and there are VM communications through a
virtualized network interface controller (NIC) (e.g., virtual-
ized NIC 150), acceleration engine 134 can use emulation
engine 140 to virtually simulate RDMA operations.

Using local DMA 136 engine or other device acceleration
driver 138, the system can provide for relatively high
performance virtualized RDMA devices or close to the
performance of physical RDMA devices for the VMs. This
can allow communication system 100 to be configured to
virtualize a high performance RDMA device without requir-
ing corresponding homogenous physical devices. The term
“homogenous physical device” includes physical devices
that are in the same category but may include some minor
different features. For examples, RDMA NIC is a device
category, and there are different RDMA NICs. Each one of
the different RDMA NICs are homogeneous devices. The
term “non-homogenous” devices includes heterogenous
devices or devices that are not in the same category of
devices.

RDMA emulation engine 130 can be configured to emu-
late RDMA behaviors of physical RDMA devices. Other
device acceleration driver 138 can be configured to use
physical acceleration methods by other physical devices
(e.g., FPGA, etc.). Emulation engine 140 can be configured
to virtually simulate the RDMA device behaviors through
NIC 150. Libibverbs 124 includes a library that allows
programs and processes to use RDMA protocol verbs for
direct access to RDMA hardware.

In an example implementation, network elements 102a-
102d are network elements, meant to encompass network
appliances, servers (both virtual and physical), routers,
switches, gateways, bridges, load balancers, processors,
modules, or any other suitable virtual or physical device,
component, element, or object operable to exchange infor-
mation in a network environment. Network elements may
include any suitable hardware, software, components, mod-
ules, or objects that facilitate the operations thereof, as well
as suitable interfaces for receiving, transmitting, and/or
otherwise communicating data or information in a network
environment. This may be inclusive of appropriate algo-
rithms and communication protocols that allow for the
effective exchange of data or information.

In certain example implementations, the functions out-
lined herein may be implemented by logic encoded in one or
more tangible media (e.g., embedded logic provided in an
ASIC, digital signal processor (DSP) instructions, software
(potentially inclusive of object code and source code) to be
executed by a processor, or other similar machine, etc.),
which may be inclusive of non-transitory computer-readable
media. In some of these instances, memory elements can
store data used for the operations described herein. This
includes the memory elements being able to store software,
logic, code, or processor instructions that are executed to
carry out the activities described herein.

In an example implementation, network elements of com-
munication system 100, such as network elements 102a-
102d may include software modules (e.g., RDMA emulation
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engine 130, RDMA stack 132, acceleration engine 134, local
DMA engine 136, other device acceleration driver 138, and
emulation engine 140) to achieve, or to foster, operations as
outlined herein. These modules may be suitably combined in
any appropriate manner, which may be based on particular
configuration and/or provisioning needs. In some embodi-
ments, such operations may be carried out by hardware,
implemented externally to these elements, or included in
some other network device to achieve the intended func-
tionality. Furthermore, the modules can be implemented as
software, hardware, firmware, or any suitable combination
thereof. These elements may also include software (or
reciprocating software) that can coordinate with other net-
work elements in order to achieve the operations, as outlined
herein.

Turning to FIG. 3, FIG. 3 is an example block diagram
illustrating example details associated with communication
system 100, in accordance with an embodiment. In an
example, network element 1024 can include VM 104a and
1045. Because VM 104a and 1045 are on the same host
(e.g., network element 102a) RDMA emulation engine 130
in hypervisor 106 can be configured to facilitate RDMA
operations between VM 104a and 10464.

More specifically, because VM 104a and VM 1045 are on
the same host or device, acceleration engine 134 can use
RDMA emulation engine 130 and local DMA engine 136 for
an RDMA read/write using send queue 142a and receive
queue 144a in VM 1044, send queue 1425 and receive queue
14454 in hypervisor 106a, and send queue 142¢ and receive
queue 144¢ in VM 10454. A physical address for send queue
142a and receive queue 144a can be obtained from the <key,
virtual address> field. The physical address for send queue
142¢ and receive queue 144¢ can be obtained from the
<address, length> field. Data 158 from send queue 142a to
receive queue 144¢ can be copied for RDMA read in send
queue 1425 and data 158 from send queue 142¢ to receive
queue 1444 can be copied for RDMA write in send queue
14254. In addition, a CQE 160 can be injected into comple-
tion queue 146a, 1465, and 146¢ when the RDMA read/
writes are complete.

Turning to FIG. 4, FIG. 4 is an example block diagram
illustrating example details associated with communication
system 100, in accordance with an embodiment. In an
example, network element 1024 can include VM 104/ hyper-
visor 1064, other device acceleration engine 116, FPGA
148a, and HCA 156a. Network element 102¢ can include
hypervisor 106¢, other device acceleration engine 116,
FPGA 148b, and HCA 1565. In this example, VM 104f7is the
host device and network element 102¢ is the guest device.
Because VM 104fis not a part of network element 102¢ (or
is a VM included in network element 102¢) RDMA emula-
tion engine 130 cannot be used to facilitate RDMA opera-
tions.

When the host device (e.g., VM 104f) and the guest device
(e.g., network element 102c¢) are not in the same device (e.g.,
VM 104f and network element 102¢ are not on the same
device or part of the same device), acceleration engine 134
can use other device acceleration engine 116 or an accel-
eration engine other than the local DMA copy engine. If VM
104f'is connected to network element 102¢ by another HCA
1564, the virtual queues from VM 104f can be mapped to
network element 102¢ with some translation, and HCA 1565
in network element 102¢ (the guest device) can be allowed
to handle the RDMA read/writes. When the RDMA read/
writes are completed, hypervisor 106d can perform some
translations to the completion requests and inject CQE 160
into complete queue 1464 of VM 104f.
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If an FPGA is available (e.g., FGPA 148a), then the
RDMA read process will be slightly different then as
described with respect to FIG. 3 where the VMs are on the
same host. The RDMA process will require the assistance of
the network element 102¢ which acts as the remote host. For
a RDMA write, hypervisor 1064 can be configured to
convert data 158 in send queue 1424 to TCP/IP requests and
leverage FPGA 148a to copy the data pointed to by the
<address, length> field. In an example, the data pointed to by
the <address, length> field can be found by using an address
translation table and hypervisor 1064 can obtain the data and
encapsulate the data plus <key, address> field and the
destination information into network packets. When hyper-
visor 106¢ receives the encapsulated packets, it can identify
the encapsulated packets as a special packet and use FPGA
1486 to de-capsulate the data and extract the <key, address>
field. Hypervisor 106¢ can also identify the destination of
the data (e.g., network element 102¢ or a VM) and append
copy the data to the address pointed to by the address in the
<key, address> field. FPGA 14856 can send a response to
hypervisor 1064 (the initiator hypervisor). When hypervisor
106d receives the response, hypervisor 1064 can inject CQE
160 into completion queue 1464.

For an RDMA read, hypervisor 1064 can convert the
RDMA read data 158 to TCP/IP requests. FPGA 148a can
encapsulate the data request with the <key, address> field
and the destination information. When hypervisor 106¢
receives such packets, it can identify the packets as a special
TCP/IP requests, use FPGA 1485 to de-capsulate the data
and extract the <key, address> field, identify the host device
and continue to use FPGA 1486 to copy the data from the
address in <key, address> field. Finally, FPGA 1486 can
encapsulate a response data packet and sent it to hypervisor
106d. When the hypervisor 1064 receives the response,
hypervisor 1064 can leverage FPGA 148a to de-capsulate
the network packets, copy the data to the address in
<address, length> field for VM 104/, and inject CQE 160 to
completion queue 1464 and 146e.

Turning to FIG. 5, FIG. 5 is an example flowchart
illustrating possible operations of a flow 500 that may be
associated with virtualized RDMA, in accordance with an
embodiment. In an embodiment, one or more operations of
flow 500 may be performed by RDMA emulation engine
130, RDMA stack 132, acceleration engine 134, local DMA
engine 136, other device acceleration driver 138, and emu-
lation engine 140. At 502, a RDMA message from a first
VM, to a second VM, is received. At 504, the system
determines if the first VM and the second VM are on the
same host. If the first VM and the second VM are on the
same host, then a direct memory access engine on the host
is used to process the RDMA message, as in 506. For
example, VM 104a and 1045 are on the same network
element 102a and local DMA engine 136 can be used to
process RDMA messages between VM 104a and 1045.

If the first VM and the second VM are not on the same
host, then the system determines if an other device accel-
eration driver can be used to process the message, as in 508.
If an other device acceleration driver can be used to process
the message, then the other device acceleration driver issued
to process the message, as in 510. For example, other device
acceleration driver 138 may be used to process the RDMA
message. In an example, the other device acceleration driver
may be a FPGA (e.g., FPGA 1484a) or an HCA (e.g., HCA
156a). If an other device acceleration driver cannot be used
to process the message, then the message is process by a
emulation engine, as in 512. For example, the message may
be processed by emulation engine 140.
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Turning to FIG. 6, FIG. 6 is an example flowchart
illustrating possible operations of a flow 600 that may be
associated with virtualized RDMA, in accordance with an
embodiment. In an embodiment, one or more operations of
flow 600 may be performed by RDMA emulation engine
130, RDMA stack 132, acceleration engine 134, local DMA
engine 136, other device acceleration driver 138, and emu-
lation engine 140. At 602, an RDMA message from a first
VM on a first host, to a second VM on a second host, is
received. At 604, the system determines if the first host is
coupled to the second host by a host controller adapter. If the
first host is coupled to the second host by a host controller
adapter, then virtual queues are mapped between the first
VM and the second VM and the host controller adapter is
used to process the message, as in 608. For example, if a first
host (e.g., network element 102a or VM 104a) is coupled to
a second host (e.g., network element 1024 or VM 104f) by
a host controller adapter (e.g., HCA 1564 and 1565), then
send queues 142a and 142d, receive queues 144a and 1444,
and complete queues 146a and 1464 can be mapped between
VM 104a and VM 104f and a hypervisor (e.g., hypervisor
106a or 1064) can implement the queues in a shared memory
model and VM 104a and 104d can share the access privilege
to the queues (e.g., send queues 142a and 142d, receive
queues 144q and 1444, and complete queues 146a and 1464)
in the shared memory model. If the first host is not coupled
to the second host by a host controller adapter, then a field
programmable gate array is used to process the message, as
in 610.

Turning to FIG. 7, FIG. 7 is an example flowchart
illustrating possible operations of a flow 700 that may be
associated with virtualized RDMA, in accordance with an
embodiment. In an embodiment, one or more operations of
flow 700 may be performed by RDMA emulation engine
130, RDMA stack 132, acceleration engine 134, local DMA
engine 136, other device acceleration driver 138, and emu-
lation engine 140. At 702, a RDMA message from a first VM
on a first host to a second VM on a second host is to be
received by a FPGA on the first host. At 704, a hypervisor
on the first host converts the message to a TCP/IP request.
At 706, the FPGA on the first host encapsulates the TCP/IP
request. At 708, the encapsulated TCP/IP request is sent to
the second VM on the second host. At 710, a hypervisor on
the second host identifies the encapsulated TCP/IP request as
a special request and forwards it to a FPGA on the second
host. At 712, the FPGA on the second host decapsulates the
request and communicates the message of the second VM on
the second host.

Note that with the examples provided herein, interaction
may be described in terms of two, three, or more network
elements. However, this has been done for purposes of
clarity and example only. In certain cases, it may be easier
to describe one or more of the functionalities of a given set
of flows by only referencing a limited number of network
elements. It should be appreciated that communication sys-
tem 100 and its teachings are readily scalable and can
accommodate a large number of components, as well as
more complicated/sophisticated arrangements and configu-
rations. Accordingly, the examples provided should not limit
the scope or inhibit the broad teachings of communication
system 100 and as potentially applied to a myriad of other
architectures. For the purposes of the present disclosure, the
phrase “A and/or B” means (A), (B), or (A and B). For the
purposes of the present disclosure, the phrase “A, B, and/or
C” means (A), (B), (C), (A and B), (A and C), (B and C), or
(A, B, and C).
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Although the present disclosure has been described in
detail with reference to particular arrangements and con-
figurations, these example configurations and arrangements
may be changed significantly without departing from the
scope of the present disclosure. Moreover, certain compo-
nents may be combined, separated, eliminated, or added
based on particular needs and implementations. Addition-
ally, although communication system 100 have been illus-
trated with reference to particular elements and operations
that facilitate the communication process, these elements
and operations may be replaced by any suitable architecture,
protocols, and/or processes that achieve the intended func-
tionality of communication system 100.

Numerous other changes, substitutions, variations, altera-
tions, and modifications may be ascertained to one skilled in
the art and it is intended that the present disclosure encom-
pass all such changes, substitutions, variations, alterations,
and modifications as falling within the scope of the
appended claims. In order to assist the United States Patent
and Trademark Office (USPTO) and, additionally, any read-
ers of any patent issued on this application in interpreting the
claims appended hereto, Applicant wishes to note that the
Applicant: (a) does not intend any of the appended claims to
invoke paragraph six (6) of 35 U.S.C. section 112 as it exists
on the date of the filing hereof unless the words “means for”
or “step for” are specifically used in the particular claims;
and (b) does not intend, by any statement in the specifica-
tion, to limit this disclosure in any way that is not otherwise
reflected in the appended claims.

OTHER NOTES AND EXAMPLES

Example C1 is at least one machine readable storage
medium having one or more instructions that when executed
by at least one processor, cause the at least one processor to
receive a remote direct memory access (RDMA) message
from a first virtual machine located on a first network
element, determine that the RDMA message is destined for
a second virtual machine that is located on the first network
element, and use a local direct memory access engine to
process the RDMA message, wherein the local direct
memory access engine is located on the first network ele-
ment.

In Example C2, the subject matter of Example C1 can
optionally include where the instructions, when executed by
the by at least one processor, further cause the at least one
processor to determine that the RDMA message is destined
for a third virtual machine on a second network element,
wherein the second network element is different than the first
network element and use an other device acceleration driver
to process the RDMA message instead of the local direct
memory access engine.

In Example C3, the subject matter of any one of Examples
C1-C2 can optionally include where the instructions, when
executed by the by at least one processor, further cause the
at least one processor to map virtual queues between the first
virtual machine and the third virtual machine if the first
network element is coupled to the second network element
by a host controller adapter.

In Example C4, the subject matter of any one of Examples
C1-C3 can optionally include where the other device accel-
eration driver is a field programmable gate array (FPGA).

In Example C5, the subject matter of any one of Examples
C1-C4 can optionally include where the instructions, when
executed by the by at least one processor, further cause the
at least one processor to convert the RDMA message to a
TCP/IP request.
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In Example C6, the subject matter of any one of Examples
C1-CS can optionally include where the FPGA encapsulates
the TCP/IP request.

In Example C7, the subject matter of any one of Examples
C1-C6 can optionally include where a second hypervisor on
the second network element identifies the encapsulated
TCP/IP request and forwards the encapsulated RCP/IP
request to a second FPGA on the second network element.

In Example C8, the subject matter of any one of Examples
C1-C7 can optionally include where the first virtual machine
and the second virtual machine are non-homogenous
devices.

In Example C9, the subject matter of any one of Examples
C1-C7 can optionally include where the first virtual
machine, the second virtual machine, and the third virtual
machine are non-homogenous devices.

Example S1 is a system for virtualized remote direct
memory access, the system can include memory and at least
one process to receive a remote direct memory access
(RDMA) message from a first virtual machine on a first
network element, determine that the RDMA message is
destined for a second virtual machine that is located on the
first network element, wherein the first virtual machine and
the second virtual machine are non-homogenous devices,
and use a local direct memory access engine to process the
RDMA message, wherein the local direct memory access
engine is located on the network element.

In Example S2, the subject matter of Example S1 can
optionally include where the at least one processor is further
configured to determine that the RDMA message is destined
for a third virtual machine on a second network element,
wherein the second network element is different than the first
network element and use an other device acceleration driver
to process the RDMA message instead of the local direct
memory access engine.

In Example S3, the subject matter of any one of the
Examples S1-S2 can optionally include where the at least
one processor is further configured to map virtual queues
between the first virtual machine and the third virtual
machine if the first network element is coupled to the second
network element by a host controller adapter.

In Example S4, the subject matter of any one of the
Examples S1-S3 can optionally include where the other
device acceleration driver is a field programmable gate array
(FPGA).

In Example S5, the subject matter of any one of the
Examples S1-S4 can optionally include where the at least
one processor is further configured to convert the RDMA
message to a TCP/IP request and encapsulate the TCP/IP
request.

In Example S6, the subject matter of any one of the
Examples S1-S5 can optionally include where a second
hypervisor on the second network element identifies the
encapsulated TCP/IP request and forwards the encapsulated
RCP/IP request to a second FPGA on the second network
element.

In Example Al, an apparatus can include at least one
memory element, at least one processor coupled to the at
least one memory element, one or more virtual RDMA
engines that, when executed by the at least one processor, is
configured to one or more virtual RDMA engines that, when
executed by the at least one processor, are configured to
receive a RDMA message from a first virtual machine on a
first network element, determine that the RDMA message is
destined for a second virtual machine on the first network
element, wherein the first virtual machine and the second
virtual machine are non-homogenous devices, and use a
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local direct memory access engine to process the RDMA
message, wherein the local direct memory access engine is
located on the network element.

In Example, A2, the subject matter of Example Al can
optionally a hypervisor, where a hypervisor is configured to
determine that the RDMA message is destined for a third
virtual machine that is not located on the same network
element as the first virtual machine and use an other device
acceleration driver to process the RDMA message instead of
the local direct memory access engine.

In Example A3, the subject matter of any one of Examples
A1-A2 can optionally include where the hypervisor is fur-
ther configured to map virtual queues between the first
virtual machine and the third virtual machine if the first
network element is coupled to the second network element
by a host controller adapter.

In Example A4, the subject matter of any one of Examples
A1-A3 can optionally include where the other device accel-
eration driver is a field programmable gate array (FPGA).

In Example A5, the subject matter of any one of Examples
Al-A4 can optionally include where the apparatus is further
configured to convert the message to a TCP/IP request.

Example M1 is a method including receiving a remote
direct memory access (RDMA) message from a first virtual
machine on a first network element, determining that the
RDMA message is destined for a second virtual machine
that is located on the first network element, wherein the first
virtual machine and the second virtual machine are non-
homogenous devices, and using a local direct memory
access engine to process the RDMA message, wherein the
local direct memory access engine is located on the first
network element.

In Example M2, the subject matter of Example M1 can
optionally include determining that the RDMA message is
destined for a third virtual machine on a second network
element, wherein the second network element is different
than the first network element and using an other device
acceleration driver to process the RDMA message instead of
the local direct memory access engine.

In Example M3, the subject matter of any one of the
Examples M1-M2 can optionally include mapping virtual
queues between the first virtual machine and the third virtual
machine if the first network element is coupled to the second
network element by a host controller adapter.

In Example M4, the subject matter of any one of the
Examples M1-M3 can optionally include where the other
device acceleration driver is a field programmable gate array
(FPGA).

In Example M5, the subject matter of any one of the
Examples M1-M4 can optionally include converting the
message to a TCP/IP request.

Example AA1 is an apparatus include means for receiving
a remote direct memory access (RDMA) message from a
first virtual machine located on a first network element,
means for determining that the RDMA message is destined
for a second virtual machine that is located on the first
network element, and means for using a local direct memory
access engine to process the message, wherein the local
direct memory access engine is located on the network
element.

In Example AA2, the subject matter of Example AA1 can
optionally include means for determining that the RDMA
message is destined for a third virtual machine on a second
network element, wherein the second network element is
different than the first network element and use an other
device acceleration driver to process the RDMA message
instead of the local direct memory access engine.
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In Example AA3, the subject matter of any one of
Examples AA1-AA2 can optionally include means for map-
ping virtual queues between the first virtual machine and the
third virtual machine if the first network element is coupled
to the second network element by a host controller adapter.

In Example AA4, the subject matter of any one of
Examples AA1-AA3 can optionally include where the other
device acceleration driver is a field programmable gate array
(FPGA).

In Example AAS, the subject matter of any one of
Examples AA1-AA4 can optionally include means for con-
verting the RDMA message to a TCP/IP request.

In Example AAG6, the subject matter of any one of
Examples AA1 AAS can optionally include where the FPGA
encapsulates the TCP/IP request.

In Example AA7, the subject matter of any one of
Examples AA1-AAG6 can optionally include where a second
hypervisor on the second network element identifies the
encapsulated TCP/IP request and forwards the encapsulated
RCP/IP request to a second FPGA on the second network
element.

In Example AAS8, the subject matter of any one of
Examples AA1-AA7 can optionally include where the first
virtual machine and the second virtual machine are non-
homogenous devices.

In Example AA9, the subject matter of any one of
Examples AA1-AA7 can optionally include where the first
virtual machine, the second virtual machine, and the third
virtual machine are non-homogenous devices.

Example X1 is a machine-readable storage medium
including machine-readable instructions to implement a
method or realize an apparatus as in any one of the Examples
Al-A5, or M1-MS5. Example Y1 is an apparatus comprising
means for performing of any of the Example methods
M1-MS5. In Example Y2, the subject matter of Example Y1
can optionally include the means for performing the method
comprising a processor and a memory. In Example Y3, the
subject matter of Example Y2 can optionally include the
memory comprising machine-readable instructions.

What is claimed is:

1. At least one machine non-transitory readable storage
medium having instructions stored thereon, wherein the
instructions, when executed by at least one processor cause
the at least one processor to:

receive a remote direct memory access (RDMA) message

from a first virtual machine located on a first network
element;

determine whether the RDMA message is destined for a

second virtual machine that is located on the first
network element or is destined for a third virtual
machine that is located on a second network element,
the second network element different than the first
network element; and

use a local direct memory access engine to process the

RDMA message if the RDMA message is destined for
the second virtual machine, wherein the local direct
memory access engine is located on the first network
element or, if the RDMA message is destined for the
third virtual machine, use virtual queues mapped
between the first virtual machine and the third virtual
machine if the first network element is communica-
tively coupled to the second network element by a host
controller adapter.

2. The at least one machine readable storage medium of
claim 1, wherein the instructions, when executed by the at
least one processor further cause the at least one processor
to:
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determine that the RDMA message is destined for the
third virtual machine on the second network element;

determine the first network element is communicatively
coupled to the second network element by a host
controller adaptor; and

use the host controller adaptor to process the RDMA

message instead of the local direct memory access
engine.
3. The at least one machine readable storage medium of
claim 1, the instructions, when executed by the at least one
processor further cause the at least one processor to:
determine that the RDMA message is destined for the
third virtual machine on the second network element;

determine the first network element is not communica-
tively coupled to the second network element by a host
controller adaptor; and

use a field programmable gate array (FPGA) to convert

the RDMA message to a TCP/IP request to have the
FPGA process the RDMA message instead of the local
direct memory access engine.
4. The at least one machine readable storage medium of
claim 3, wherein the FPGA encapsulates the TCP/IP request.
5. The at least one machine readable storage medium of
claim 4, wherein a second hypervisor on the second network
element identifies the encapsulated TCP/IP request and
forwards the encapsulated TCP/IP request to a second FPGA
on the second network element.
6. The at least one machine readable storage medium of
claim 1, wherein the first virtual machine, the second virtual
machine, and the third virtual machine are non-homogenous
devices.
7. A system for virtualized remote direct memory access,
the system comprising:
memory; and
at least one processor to:
receive a remote direct memory access (RDMA) mes-
sage from a first virtual machine on a first network
element;
determine whether the RDMA message is destined for
a second virtual machine that is located on the first
network element, wherein the first virtual machine
and the second virtual machine are non-homogenous
devices, or whether the RDMA message is destined
for a third virtual machine that is located on a second
network element, the second network element dif-
ferent than the first network element; and
use a local direct memory access engine to process the
RDMA message if the RDMA message is destined
for the second virtual machine, wherein the local
direct memory access engine is located on the first
network element or, if the RDMA message is des-
tined for the third virtual machine, use virtual queues
mapped between the first virtual machine and the
third virtual machine if the first network element is
communicatively coupled to the second network
element by a host controller adapter.
8. The system of claim 7, wherein the processor is further
configured to:
determine that the RDMA message is destined for the
third virtual machine on the second network element;

determine the first network element is communicatively
coupled to the second network element by a host
controller adaptor; and

use the host controller adaptor to process the RDMA

message instead of the local direct memory access
engine.
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9. The system of claim 7, wherein the processor is further
configured to:
determine that the RDMA message is destined for the
third virtual machine on the second network element;

determine the first network element is not communica-
tively coupled to the second network element by a host
controller adaptor;

use a field programmable gate array (FPGA) to convert

the RDMA message to a TCP/IP request to have the
FPGA process the RDMA message instead of the local
direct memory access engine.

10. The system of claim 9, wherein the processor is
further configured to:

use the FPGA to encapsulate the TCP/IP request.

11. The system of claim 10, wherein a second hypervisor
on the second network element identifies the encapsulated
TCP/IP request and forwards the encapsulated TCP/IP
request to a second FPGA on the second network element.

12. A method comprising:

receiving a remote direct memory access (RDMA) mes-

sage from a first virtual machine on a first network
element;
determining whether the RDMA message is destined for
a second virtual machine that is located on the first
network element, wherein the first virtual machine and
the second virtual machine are non-homogenous
devices, or whether the RDMA message is destined for
a third virtual machine that is located on a second
network element, the second network element different
than the first network element; and
using a local direct memory access engine to process the
RDMA message if the RDMA message is destined for
the second virtual machine, wherein the local direct
memory access engine is located on the first network
element or, if the RDMA message is destined for the
third virtual machine, using virtual queues mapped
between the first virtual machine and the third virtual
machine if the first network element is communica-
tively coupled to the second network element by a host
controller adapter.
13. The method of claim 12, further comprising:
determining that the RDMA message is destined for the
third virtual machine on the second network element;

determining that the first network element is communi-
catively coupled to the second network element by a
host controller adaptor; and

using the host controller adaptor to process the RDMA

message instead of the local direct memory access
engine.
14. The method of claim 12, further comprising:
determining that the RDMA message is destined for the
third virtual machine on the second network element:

determining the first network element is not communica-
tively coupled to the second network element by a host
controller adaptor:

using a field programmable gate array (FPGA) to convert

the RDMA message to a TCP/IP request to have the
FPGA process the RDMA message instead of the local
direct memory access engine.

15. The method of claim 14, further comprising:

encapsulating the TCP/IP request using the FPGA.

16. The method of claim 14, wherein the FPGA encap-
sulates the TCP/IP request.
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