
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0094641 A1

US 200700.94641A1

Darr et al. (43) Pub. Date: Apr. 26, 2007

(54) PRODUCT CONFIGURATION USING Publication Classification
CONFIGURATION PATTERNS

(51) Int. Cl.
(76) Inventors: Timothy P. Darr, Bristow, OK (US); G06F 9/44 (2006.01)

Raymond L. Beaumont, Austin, TX (52) U.S. Cl. .. T17/121
(US); Nirad P. Sharma, Austin, TX
(US)

(57) ABSTRACT
Correspondence Address:
HAMILTON & TERRILE, LLP In a particular embodiment, configuration patterns are used
P.O. BOX 203518
AUSTIN, TX 78720 (US) to provide solutions to configuration problems that repeti

tively occur. Use of configuration patterns in connection
(21) Appl. No.: 11/552,756 with a configuration model has many benefits. A configu

ration pattern is a parameterized or otherwise easily exten
(22) Filed: Oct. 25, 2006 sible solution to that problem, such that the solution is

reusable by modifying the parameters of the pattern or
Related U.S. Application Data extending the pattern in pre-defined ways. Configuration

patterns are inherently data-driven and provide improved
(63) Continuation of application No. 10/099.404, filed on maintenance for data and logic as well as reduced program

Mar. 15, 2002, now Pat. No. 7,188,335. ming effort. Configuration patterns can be reused within and
across different product families and can be specialized from

(60) Provisional application No. 60/343,670, filed on Dec. other patterns. Thus, the use of configuration patterns facili
28, 2001. Provisional application No. 60/343,666,
filed on Dec. 28, 2001.

INTERFACE

10O2 —

tates reduced maintenance cost and reduced programming
effort for product configuration data and logic systems.

PRODUCT
HIERARCHY
MODEL

Patent Application Publication Apr. 26, 2007 Sheet 1 of 12 US 2007/0094,641 A1

100 106

PRODUCT
CONFIGURATION

USER INPUT (OUTPUT)
CONFIGURATION ENGINE

108
11 O

Product Model

1O2
Configuration Patterns

FIG. 1

US 2007/0094,641 A1

/322 /

OOZ

Patent Application Publication Apr. 26, 2007 Sheet 2 of 12

Patent Application Publication Apr. 26, 2007 Sheet 3 of 12 US 2007/0094,641 A1

A - 3OO

2O2 ,
Component Class 322

AV
pattern context C: Component Class

N - 3O2 is pattern C \
ifexclusive patterns mC ConfigurationPattern 31 8

#pattern application priority F : float it pattern context C
AN -

328 332 — N 320
#pattern filters mCL

PatternFilter C PattenFilter

334 —
#pattern initializers mGL

Patterninitializer o Patterninitializer -- 3O4
330

requiressorceprovide
- - 31 O

3O8 M

configures 50ttingcard configategierfacecar
A 314

312 A

confiduration configureoptiäiffithfacecard Gr configureEléficatinterfacecard
- - - - - - - - - - - - - - - -

Patent Application Publication Apr. 26, 2007 Sheet 4 of 12 US 2007/0094,641 A1

400

&interface))
ConfigurationPattern

+isvalid(in inst Cl; Component Class); Boolean
+initialize(in inst CI: Component Class): Boolean

FIG. 4

500

cinterface)
Pattern Filter

+is Valid(in filter CL. PatternFilter, in pattern Cl: ConfigurationPattern, in inst Cl; Component Class) ; Boolean
++is Valid(in filter CL. Pattern Filter, in pattern C. ConfigurationPattern, in card C. Component Class): Boolean

FIG. 5

600

cinterface)
Patterninitializer

+initialize(in initializer CL. Patterninitializer, in pattern C. ConfigurationPattern, in inst Cl: Cornponent Class): Boolean

FIG. 6

US 2007/0094,641 A1

<!-- - - - - -,: - - - - – – – – – – – – – –

/

ZO
Z

| 0/

Patent Application Publication Apr. 26, 2007 Sheet 5 of 12

Patent Application Publication Apr. 26, 2007 Sheet 6 of 12

80
815

OpticallnterfaceCard InterfaceCardRequirement
A

#Card required CL

811

| 813
/

#wavelength plan C #wavelength mR
pattern context C: OpticallnterfaceCardrequirement

span F: float
ports required F. float

ConfigureOpticallnterfa
ceCard

OpticallnterfaceCard

(Configuration-patterms
Configure0pticallnterfaceCard

#fiber type
804
(Configuration-pattern)
ConfigurelnterfaceCard 807

802

- 808
spanmin range F : float = -1

805 810
(datatype)

pticalCarrierResourcek----------
(provides:

id #bitrate required R (provides:
O --

provid
#Connector type R provides:

809

(datatype)
ConnectorTypeResourcek

(datatype)
InterfaceTyperesourcek

812

818

Spanimax range F: float= 1 OOOO

(provides: (datatype)
FiberTypeResource

(datatype)
WavelengthResource

- 814

(provides:

816

FIG. 8

US 2007/0094,641 A1

Patent Application Publication Apr. 26, 2007 Sheet 7 of 12 US 2007/0094,641 A1

- 901A
4.

Data Sheet

Tributary Card

Common Product Information

Classification

Part Number

Unit Name

Description

Diagram Label
Effectivity Dates
O First Available

O Last Available

Marketing Collateral

Ports – Each tributary card offers one port type and some quantity of ports: e.g. port
type is DS-1 with 6 ports per tributary card.

Port Type

Port Qty per Card

Slotting (SlotCard Pattern) - This section is completed if the card is to be slotted.
Container Size (expressed in quantities of slots: e.g. Width = 2 means the card
occupies two adjacent slots that are side-by-side, Height = 2 means the tributary
card occupies two adjacent slots that are above/below one another)
o Width

o Height

Slotting Priority - How important is this card with respect to the other cards for
slotting purposes? You may want to review the slotting priorities assigned to other
cards that use the same slots. A priority of 100 is recommended for a typical
slotting priority. A priority greater than 100 indicates this card is more important. A
priority of less than 100 indicates this card is less important.

FIG. 9A

Patent Application Publication Apr. 26, 2007 Sheet 8 of 12 US 2007/0094,641 A1

901B
/

Possible Slots — The possible slots for this card is indicated in one of two ways:
slot type or an explicit list of slots. Slot type is a convenient way to describe a
collection of slots. Care should be taken to ensure that the type specified
identifies the correct collection of slots.

o Slot Type
o Explicit List

Sorting - Please check one slot sorting strategy from cach column:
None None

Left to Right Top to Bottom

Right to Left Bottom to Top

Filtering - Please check all required filtering Strategies:
None

Odd or Even Position

Shelf Type

Adjacency

Group

For Shelf Type filtering, please indicate the allowed shelf type(s):

For Adjacency filtering, please indicate the disallowed adjacent cards:

Protection Card Slotting — Please fill out this table if this tributary card can be
used as a protection card.

Patent Application Publication Apr. 26, 2007 Sheet 9 of 12 US 2007/0094,641 A1

- - 901C
/

Protection Information (ConfigureProtectionCard pattern)
o Please select one of the following protection schemes:

Nonc

1:1 Or 1-1

1:n

O For 1 in protection, please indicate the maximum quantity of tributary cards that
can be protected by the same protection card:

If protection is required, please specify the type for the protection card. Note
that the default type of the protection card is the same type of tributary card
described by this data sheet.

Supporting Equipment (ConfigureSupportingCard pattern) — Please indicate the
required quantity and part number for all additional equipment required by this
tributary card.

FIG. 9C

Patent Application Publication Apr. 26, 2007 Sheet 10 of 12 US 2007/0094,641 A1

USER
INTERFACE

PRODUCT
HIERARCHY
MODEL

A 106

FG, 10

Configuration System
- 106

Configuration Engine

Product Model

Configuration
Patterns

Nth ENTERPRISE

FIG. 11

Patent Application Publication Apr. 26, 2007 Sheet 11 of 12 US 2007/0094,641 A1

E.
to El 1206(4)

1206(1) O6(2) El

Network E
12O2

1204(3)
1204(2)

=
-- s

E. E. E O. F.

4 V . 4. (8) (7) 12O68 12O6(7
1206(3) 1204(N) 1204(N-1) 1204(4)

II
E. E.

1206(N) 12O6(N-1)

Patent Application Publication Apr. 26, 2007 Sheet 12 of 12 US 2007/0094,641 A1

1300

1316 1317

1319

VIDEO

1314

1313 1315

ProcessO VIDEO MAIN
r MEMORY MEMORY

1318

1310 1309

USER INPUT MASS
DEVICE(S) STORAGE

FIG. 13

US 2007/0094641 A1

PRODUCT CONFIGURATION USING
CONFIGURATION PATTERNS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

0001) This application claims the benefit of U.S. Provi
sional Application No. 60/343,670, filed Dec. 28, 2001 and
entitled “Product Configuration Using Configuration Pat
terns.

0002 This application claims the benefit of U.S. Provi
sional Application No. 60/343,666, filed Dec. 28, 2001 and
entitled “Telecommunications Configuration Model for
Product Configuration'.

0003. This application relates to “Telecommunications
Configuration Model for Product Configuration', applica
tion number (Attorney Docket No. 027-0008), with
common assignee and filed on Feb. 28, 2002.

BACKGROUND

Field of the Invention

0004 The present invention relates generally to the field
of computer-based product configuration.

Background Description

0005 Configuring a product refers to the process of
selecting, constructing, and connecting components to sat
isfy a particular need or request. Configuring a product has
been described, for example, in U.S. Pat. No. 5,515,524
entitled “Method and Apparatus for Configuring Systems’.
inventors J. Lynch and D. Franke. If a product is based on
a limited number of components, the process of configuring
the product can be relatively straightforward. “Component'
and “part are often used interchangeably to denote the
elements of a product.
0006. As product specifications become more customized
and varied, configuration alternatives increase and the task
of configuring a product becomes more complex. An
example of a complex product is a telecommunications
Switching system. The available configuration alternatives
of a telecommunications Switching system are numerous and
varied, including alternatives available when choosing the
equipment racks, shelves, communications boards, power
Supply, consoles, cables, and Software.
0007 Configuring a product generally requires compat
ibility between a selected component and other components
in the configured product. For example, a power Supply must
generally be sufficient to Supply power to all of the compo
nents of the product receiving power from the power Supply.
An equipment shelfhas only a certain number slots to handle
all of the boards installed in that shelf.

0008 To address the problem of configuring complex
products, configuration modeling software for automating
the configuration process has been developed. Configuration
modeling software is particularly applicable to constraint
based configuration systems. In general terms, a constraint
based system places constraints on the use of a component
in a configuration. For example, a hard disk drive cannot be
added to the configuration unless a compatible storage

Apr. 26, 2007

device controller is available for use by a requested Storage
device. The requirement of a controller is a “constraint’ on
the hard disk drive.

0009 While the configuration modeling software can
address configurations for complex products, the configu
ration modeling software itself is generally very complex
and requires a high level of skill and effort to maintain and
to create new product configurations. In addition, even
simple modifications to the configuration modeling software
may require significant time and effort to implement, leading
to significant cost and expense.
0010 Thus, creating systems for configuration of com
plex products such as telecommunications systems is a
complex task for the following reasons:

0011 1. The problem itself is difficult given the enormous
number of combinations to be considered when searching
through the space of configurable solutions; and

0012. 2. Creating a representation of the product (classes,
components and configuration logic) that is easy to main
tain and extend is very difficult, often requiring advanced
programming skill and deep domain knowledge.

0013 The activity of creating a representation of some
product to be configured by a configuration engine is gen
erally called “configuration modeling', or more simply
“modeling.” This activity includes the following tasks:

0014 1. Identifying the components that make up the
product being configured, and representing them in the
modeling language. These are physical things Such as
circuit boards, cables, shelves, racks, etc.

00.15 2. Identifying the logic required to configure the
components. Note: “logic' refers to relationships between
components which can be, for example, functional or
physical Such as how the components are connected, e.g.
a circuit board is slotted in a particular slot.

0016 3. Creating abstractions of the components to allow
the configuration engine to Solve a configuration problem
more efficiently and take advantage of inheritance, encap
Sulation (data hiding) and other object-oriented features
provided by most modem programming languages.

0017 4. Implementing the often-complex configuration
conditions in the representation or modeling language of
the configuration engine. Configuration conditions can be
expressed in a variety of ways including as rules and
constraints.

0018 5. Creating a model that is both maintainable and
extensible. It should be easy to add new parts and logic,
without invalidating the existing model.

0019 Tasks 1-2 require deep domain knowledge of the
type typically held by product managers or engineers (the
“product expert”) in the company that manufactures or sells
the product. Tasks 3-5 require advanced programming skill
and a high-degree of domain knowledge, typically held by
programmers (the “modeler).
0020. One of the difficulties and significant source of
expense in modeling a product results from the fact that it is
rare that one individual possesses the knowledge required
for tasks 1-5.

US 2007/0094641 A1

SUMMARY

0021. In one embodiment of the present invention, con
figuration patterns provide Solutions to configuration prob
lems that repetitively occurs for some product or family of
products. Configuration patterns can be developed for indus
try and product specific configuration problems such as the
difficult problems associated with configuring telecommu
nications optical Switches. In one embodiment, configura
tion patterns are organized into a hierarchy to achieve
programming efficiency. Multiple hierarchies could be cre
ated and applied by product configuration elements, such as
model classes and components. The pattern hierarchy can be
applied at any level of a product hierarchy.
0022. In one embodiment, a configuration model for use
with a product configuration Software system includes con
figuration patterns having configuration logic for performing
tasks related to a configuration of a product.
0023. In another embodiment, a product configuration
system includes a configuration engine and a product model
accessible by the configuration engine. The product model
includes configuration patterns having configuration logic
for performing tasks related to a configuration of a product.

0024. In another embodiment, a software distribution
method includes distributing a Software system to a first
enterprise, distributing the Software system to a second
enterprise. The Software system includes a configuration
engine and a product model. The product model includes
configuration patterns having configuration logic for per
forming tasks related to a configuration of a product.
0025. In another embodiment a configuration system
includes a model for use with a digital computing device, the
model configured to define a configuration model having
information about telecommunication industry components
and logic available for configuring a product in a telecom
munications industry system, the model including configu
ration patterns. The configuration system also includes a
configuration engine having access to the model, the con
figuration engine configured to select a plurality of the
telecommunication industry components of the configura
tion model for inclusion in the telecommunication industry
system in response to configuration requests.
0026. In another embodiment, a configuration apparatus
includes a model for use with a digital computing device, the
model configured to define a configuration model having
information about telecommunication industry components
and logic available for configuring a product, the model
including configuration patterns. The configuration appara
tus further includes a configuration engine having access to
the model, the configuration engine configured to use the
model to generate a product configuration.
0027. In a further embodiment, a method of configuring
a product using at least one configuration pattern of a
product model that includes components and logic used to
configure a product and structural relationships between
instances of the components in the product model, the
method comprising creating a product configuration using
the product model comprising receiving attributes to respec
tively control behavior of each configuration pattern,
wherein each configuration pattern includes reusable con
figuration logic for implementing repeatable configuration
functions, creating one or more instances of components in

Apr. 26, 2007

the model that are candidates for configuration in response
to configuration requests, for each of the component
instances, determining whether to apply any configuration
pattern during configuration of the component instance, and
evaluating the logic of any configuration patterns to be
applied to a configuration assistance in accordance with the
attributes received to control the configuration patterns.
0028. In another embodiment, a user interface for obtain
ing data useful for controlling behavior of configuration
patterns of a configuration model, the user interface includ
ing a display of information to prompt a user to supply data
for use by a configuration system in controlling the behavior
of configuration patterns in a configuration model.

BRIEF DESCRIPTION OF THE DRAWINGS

0029 FIG. 1 illustrates general representation of a con
figuration system.

0030 FIG. 2 illustrates one embodiment of a product
hierarchy model.
0031 FIG. 3 illustrates one embodiment of a pattern
hierarchy.

0032 FIG. 4 illustrates one embodiment of an interface
for configuration patterns.

0033 FIG. 5 illustrates one embodiment of an interface
for a configuration pattern filter class.
0034 FIG. 6 illustrates one embodiment of an interface
for configuration pattern initializer class.
0035 FIG. 7 illustrates the activity of a configuration
pattern on a component.

0036 FIG. 8 illustrates one embodiment of a pattern used
for configuring an optical interface circuit board.
0037 FIGS.9A,9B, and 9C illustrate one embodiment of
consecutive computer interface displays presented to a prod
uct expert for entering data associated with an optical
tributary board.
0038 FIG. 10 illustrates a general flow diagram of a
method of creating a product base.
0039 FIG. 11 illustrates a general block diagram that
illustrates a software distribution method.

0040 FIG. 12 represents a block diagram illustrating a
network environment in which the configuration system 100
and modeling may be practiced.
0041 FIG. 13 illustrates a general purpose computer with
which configuration system 100 and modeling processes can
be implemented.

0042. The use of the same reference symbols in different
drawings indicates similar or identical items.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

0043 Configuration systems, particularly constraint
based configuration systems utilize models of products to
generate configurations. Note: The term “product is used
generically to refer to tangible products as well as intangible
products, such as services. The increasing number and
complexity of product configuration options and the increas

US 2007/0094641 A1

ing complexity of products in general has resulted in a
significant increase in the complexity of product configura
tion models. Configuration systems, as described, for
example, in U.S. Pat. No. 5,515,524 entitled “Method and
Apparatus for Configuring Systems, inventors J. Lynch and
D. Franke (referred to as the “Lynch/Franke Patent” and
hereby incorporated by reference in its entirety), have been
Successfully developed and used to solve the problem asso
ciated with the enormous number of combinations to be
considered when searching through the space of config
urable solutions.

0044) However, the modeling process for complex prod
ucts poses a difficult problem associated with creating a
representation of the product (e.g. classes, components, and
configuration logic) that is easy to maintain and extend.
Conventional technology has struggled with the difficulty
and expense of solving this problem with the solution often
requiring advanced programming skill and deep domain
knowledge throughout the modeling development and main
tenance process. Thus, the need has arisen for computer
based assistance with the configuration modeling process.
To address this problem, configuration patterns have been
developed and are, for example, incorporated as part of a
configuration product model.
0045 Referring to FIG. 1, configuration patterns 102
have been introduced into the configuration system 100
having an architecture that, in one embodiment, includes
configuration patterns 102 as part of product model 104. It
has been observed that common modeling Solutions to
common problems abound in configuration problems. In
many cases, common modeling problems can be solved
efficiently using configuration patterns (also referred to as
"patterns” for conciseness). In one embodiment, a configu
ration pattern 102 is a solution to a configuration problem
that repetitively occurs for some product or family of
products (collectively a “product”). The configuration pat
tern 102 is a parameterized or otherwise easily extensible
solution to that problem, such that the solution is reusable by
modifying the parameters of the pattern or extending the
pattern in well-defined ways. For example, slotting a card
with 1+1 protection, i.e. for each card a second, identical
card is required for redundancy, is a common configuration
problem in which a card is slotted, with an additional
protection card slotted adjacent to it. The modeling problem
can be solved using a slot-card-with-1+1-protection con
figuration pattern. Thus, each time user input 108 makes a
request to the configuration engine 106 for a card that
requires 1+1 protection, the configuration engine 106 can
use the model 104 and specifically the slot-card-with-1+1-
protection configuration pattern of patterns 102 to determine
if the request can be accommodated and a product configu
ration output 110 generated that slots the requested card plus
a protection card. In general, the configuration engine 106
and model 104 describe the components and logic for
configuring a complex product that satisfies a particular set
of needs or request inputs. The Lynch/Franke Patent
describes an example configuration engine 106 and its
interaction with a general model.
0046) The behavior of the model with configuration pat
terns when used by a configuration engine is determined in
part by data provided by the product expert. For example,
the data provides information that specifies values of
attributes that influence the configuration solutions deter

Apr. 26, 2007

mined by a configuration engine when using the model. By
separating the data that drives the configuration logic from
generalized portions of the model representing generalized
configuration logic, configuration models are easier to main
tain and extend and reduce significant portions of the
modeling process to essentially that of data entry by a
product expert. Thus, pattern-based modeling allows the
modeling process to be separated into two aspects: (1)
development of the configuration product model based on a
generalized modeling language (developed and maintained
by modelers skilled in the particular modeling language) and
(2) provision of product data that customizes a particular
model for a particular product (maintained by product
experts not necessarily skilled in the particular modeling
language). The embodiment in aspect (1) above is a pre
packaged configuration model, which provides commonly
encountered configuration tasks and accepts a variety of data
provided by the product expert. Once a model has been
developed using patterns, some embodiments of the inven
tion provide tools such as user interface 901 to a product
expert that allow the product expert to customize the model
through data entry.
0047 Configuration Patterns.
0048 Embodiments of pattern-based modeling provide,
for example, the following benefits:

0049 Simpler modeling patterns help to decompose
the problem of configuring a product; modeling is
reduced to identifying the patterns that apply to the
product and gathering the data required by the patterns.

0050 Less custom code and more standardization in
the event that an exact pattern does not exist to address
Some configuration task, the amount of custom code
required to model the configuration task is less when
existing patterns are extended or a new pattern is
created that uses existing patterns. Extending an exist
ing pattern is generally no more complicated than
overriding a small number of functions to implement
the new, desired behavior.

0051 Guidelines for good modeling the guidelines
and rules for creating patterns are often the result of
years of modeling experience and are excellent guide
lines to follow for creating models that are easy to
maintain and extend.

0.052 Facilitating reuse and extensibility—new con
figuration patterns can be constructed from existing
patterns.

0053 Ease of maintenance—using patterns can reduce
a significant amount of modeling to mainly a data-entry
task by a product expert, or modeler working with a
product expert.

0054 Quality patterns may be packaged as a prod
uct, instead of custom code, which allows for more
rigorous quality engineering certification.

0055. A configuration pattern can be reused to solve a
variety of problems by changing the parameters of the
pattern; an application of a configuration pattern is the
parameterization of the pattern for a specific problem. Thus,
applications of the pattern can be maintained as data. The
data that drives the configuration pattern can be represented
in XML or any other structured data format. Implementation

US 2007/0094641 A1

of the pattern is done in any configuration engine modeling
language with Sufficient robustness and expressiveness to
facilitate the desired model characteristics. Such modeling
languages include JavaTM from California based Sun Micro
systems and CML, the configuration modeling language of
Austin, Tex. based Trilogy Software, Inc.T.M.
0056. The following is a list of properties of embodi
ments of configuration patterns:
0057 1. Data-Driven—configuration patterns are inher
ently data-driven (controlled); the behavior of an existing
pattern is customized by Supplying values, which are the
definitions of components and resources, for the pattern
attributes. This property makes it easy to maintain prod
uct-bases, i.e. a model that also contains information
about elements available to configure a system, Such as
components and resources.

0.058 2. Reusable—configuration patterns can be reused
within and across different product families.

0059) 3. Inheritable—configuration patterns can be spe
cialized from other patterns.

0060 4. Constructive generally, though not exclu
sively, patterns add components to the configuration or
establish relationships among existing components in the
configuration.

0061. In general, patterns are essentially responsible for
providing configuration logic to the configuration engine,
whether it be slotting a card, configuring an amplifier card
for an optical interface card, or configuring the high-speed
interface lines and their supporting cards for an optical
add-drop multiplexer. In response to a user input 108 con
figuration task related request, the configuration engine 106
applies the appropriate patterns 102 to components (not
shown) in the configuration model, i.e. when a component is
instantiated (i.e. created). Thus, the logic associated with the
patterns 102 will be evaluated by the configuration engine
106 in the context of that component to perform the
requested configuration task. Which pattern or patterns are
appropriate for application is described in more detail below
with reference to the applied patterns 228 attribute. The “if”
associated with an attribute name indicates that the attribute
in the particular depicted embodiment is a protected attribute
that can only be used by selected classes, such as descendent
classes.

0062 Product Hierarchy Model
0063. In a configuration model that uses patterns, product
domain knowledge will generally be defined in a product
hierarchy model 200. FIG. 2 illustrates an example product
hierarchy model. In one embodiment of product modeling
hierarchy 200, which is explained in more detail in the
Lynch/Franke Patent (particularly with reference to FIG. 3
of the Lynch/Franke Patent), the Component Class 202 is
the most general class or “thing in the model; all other
classes and components descend from the Component Class
202. Each descendent class can inherit data and logic
associated with higher-level classes through which a class
descends. The example product modeling hierarchy 200
contains three base classes, Composite Base Class 204.
Connector Base Class 206, and Container Base Class
208. The Component Class 202, Composite Base Class
204 and Part Class 1 contain product data Such as part

Apr. 26, 2007

numbers, descriptions, and the type and number of ports
provided by an optical interface card. Product modeling
hierarchy 200 is further organized to contain derived classes
such as Part Class 1210, Part Class 2212, Part
Class 3214, and Part Class 4216. Part Class 5 descends

directly from Component Class 202. Each Part Class X
class represents broad component categories Such as optical
interface cards. Although only one generation of derived
classes is shown, multiple generations of derived classes can
descend from base classes. The Part Classes terminate with
component types, for example, Component 1220, Compo
nent 2222, Component 3224. Component 4226, Compo
nent 5236. Component 6238 descends directly from Com
ponent Class 202. Component types are generically referred
to herein as "components. Components Y include actual
components that can be instantiated and configured such as
“OC-3 optical interface card with SC connectors’. When the
configuration engine 106 utilizes a particular Part Class X
of the product model 104 to comply with a user input 108,
an instantiated member, Component Y of the particular
Part Class X is created.

0064. The Component Class 202 also contains data
related to the configuration patterns 218 that it can apply. In
one embodiment, for each class and component in the
product modeling hierarchy 200 the attribute “applied pat
terns 228 specifies which configuration patterns 218 will be
applied. For each class and component in the product
modeling hierarchy 200 attributes “required patterns 232
and “optional patterns 230 define the required patterns and
optional patterns, respectively. The attribute applied pat
terns 228 is the union of the required patterns 232 and
optional patterns 230, filtered to remove exclusive patterns
and Sorted by pattern application priority, which provides an
ordering on the patterns. Pattern application ordering can be
indicated in any manner using any techniques including
numerical techniques, non-numeric partial orders, repre
sented by directed graph structures, and other reference
techniques. In other embodiments, ConfigurationPatterns
218 descend from other members of the product modeling
hierarchy 200. By descending from the highest node of
product modeling hierarchy 200, all classes and components
of product modeling hierarchy 200 are able to apply Con
figurationPatterns 218 through inheritance.

0065. In one embodiment, those configuration patterns
218 specified in required patterns 232 are always applied to
the class (or component) the attribute is set on. Configura
tion patterns 218 specified in optional patterns 230 can be,
but do not have to be applied. In this embodiment, only the
applied configuration patterns 218 are evaluated (applied)
during creation or instantiation of the component. In one
embodiment, product managers enter data on individual
components and select those patterns that are applicable to
the selected components using, for example, the data entry
displays discussed in conjunction with FIGS. 9A, 9B, and
9.C.

0066 Choice of a particular pattern is made by matching
the functions of existing patterns to the configuration needs
of a component. For example, an optical interface card
might have the following patterns selected for application to

US 2007/0094641 A1

the components in the product hierarchy model 200 associ
ated with an optical interface card:

0067 SlotCard—responsible for finding a slot for the
card in a shelf or rack, given the characteristics of the
card.

0068 AmplifyOpticalSignal—responsible for config
uring an optical amplifier card, given characteristics of
the card, the fiber that it is connected to, and the
network or which it is a part.

0069. Other example optical related configuration pat
terns are listed below:

0070 FilterSlotsByHighSpeed Interface this filter is
used by the SlotCard pattern to select slots for an
optical interface card or optical amplifier card based on
the specific network application that the card Supports,
and the fiber link within that network application.

0071 ConfigureInterfaceCard the ConfigureInter
faceCard pattern (a sub-pattern of the RequiresResour
ceProvider pattern, described below) is used by an
interface-card requirement component to instantiate
one or more interface cards, based on the type of
interface (DS-1, DS-3, Ethernet, OC-12, OC-48, etc.),
and the type of interface card (tributary, transmitter,
receiver, etc).

0072 ConfigureElectrical InterfaceCard the Con
figureElectrical InterfaceCard pattern (a sub-pattern
(descendent) of the ConfigureInterfaceCard pattern) is
used by an electrical interface-card requirement com
ponent to instantiate one or more electrical interface
cards, based on the type of interface (DS-1, DS-3,
Ethernet, etc.), and the type of interface card (tributary,
transmitter, receiver, etc).

0073 ConfigureCptical InterfaceCard the Configure
Optical|nterfaceCard pattern (a sub-pattern (descen
dent) of the ConfigureInterfaceCard pattern) is used by
an optical interface-card requirement component to
instantiate one or more optical interface cards, based on
the type of optical interface (OC-3, OC-12, OC-48,
etc.).

0074 ConfigureElectricalTributary—the Configure
ElectricalTributary pattern (a sub-pattern of the Con
figureElectrical InterfaceCard pattern) is used by an
electrical tributary requirement component to instanti
ate one or more electrical interface cards with or
without protection, based on the type of interface
(DS-1, DS-3, Ethernet, etc.). These cards are generally
used to drop bandwidth in an add/drop multiplexer or
CrOSS COnnect.

0075 ConfigureCpticalTributary—the Configure0pti
calTributary pattern (a sub-pattern of the Configure
Optical|nterfaceCard pattern) is used by an optical
tributary requirement component to instantiate one or
more optical interface cards with or without protection,
based on the type of optical interface (OC-3, OC-12,
OC-48, etc.). These cards are generally used to drop
bandwidth in an add/drop multiplexer or cross connect.

0076 ConfigureHighSpeedInterfaceCard the Con
figureHighSpeedInterfaceCard pattern is used by a
high-speed interface card requirement to configure the

Apr. 26, 2007

high-speed interface cards that connect a network ele
ment (node) to a network. A network application is
defined by a certain number of high-speed interface
card requirements. Example network applications
include UPSR, BLSR (two-fiber and four-fiber), Ter
minal, and Regenerator (two-fiber and four-fiber).

0077 RequiresDispersionCompensation the
RequiresDispersionCompensation pattern (a Sub-pat
tern of the ConfigureSupportingCard pattern), is used
by an optical-interface card (the compensated card), to
configure a dispersion compensation card (the compen
Sating card). The compensated card requires the com
pensating card to compensate for chromatic dispersion
(distortion of the signal because different frequencies of
the signal have different propagation characteristics),
and other dispersion types, of the optical signal over
long distances.

0078 RequiresOpticalConnector AdapterKit the
RequiresOpticalConnector AdapterKit pattern is used
to configure a connector adapter kit when the connector
of the card using the pattern is different from the
required connector, or when the card using the pattern
does not have a specific connector type.

0079 Example general patterns are listed below:
0080 ConfigureBundle the ConfigureBundle pattern

is used to instantiate abundle or kit of components that
always come with the component applying the pattern.
An example of a bundle or kit is the bracket, nuts and
bolts for attaching a shelf to a rack.

0081 RequiresResourceProvider the RequiresRe
SourceProvider pattern is used by a component to
instantiate one or more instances to satisfy a require
ment for a specific resource and quantity. This pattern
is typically an abstract pattern; meaning that it is not
used directly, but is used by other patterns. Examples of
patterns that might use this pattern are those that
configure interface cards by the type of port (resource)
provided by the card.

0082 Containment—the Containment pattern is used
by a component (the containee) that needs to be placed
into a container (the container).

0083) DateEffectivityFilter this filter is used by con
figuration patterns to only select components for instan
tiation that are effective for a given point of time,
usually the current day.

0084 FilterSlotsByExplicitlist this filter is used by
the SlotCard pattern to only select slots that are mem
bers of an explicit list of slots.

0085 FilterSlotsByShelf this filter is used by the
SlotCard pattern to only select slots that are in a certain
type of shelf.

0.086 FilterSlotsByOddEvenPosition this filter is
used by the SlotCard pattern to only select slots that
have an even or odd slot position, but not both.

0087 FilterSlotsByGroup this filter is used by the
SlotCard pattern to slot the card in a specific slot group.
A slot group is a collection of slots, usually related by
physical proximity.

US 2007/0094641 A1

0088 ConfigureSupportingCard the ConfigureSup
portingCard pattern is used by a card (the Supported
card) to instantiate another card (the Supporting card).
The Supported card requires the Supporting card for its
correct operation.

0089 ConfigureProtectionCard the ConfigurePro
tectionCard pattern (a sub-pattern of the ConfigureSup
portingCard pattern) is used by a card (the protected
card) to instantiate another card (the protecting card).
The protected card requires the protecting card for
redundancy and/or fail-over.

0090 Pattern Hierarchy Definition
0091. In one embodiment, all configuration patterns that
are relevant for a certain configuration model are defined in
a pattern hierarchy 300 illustrated in FIG. 3. A pattern
hierarchy is used, for example, to achieve programming
efficiency by allowing patterns to inherit common functions
and attributes while allowing customization in descendent
patterns through addition of functionality and attributes.
Descendent patterns may also override all or a portion of
inherited functionality and attributes.
0092. The pattern hierarchy 300 contains a general pat
tern class referred to as ConfigurationPattern 302 and
descendent pattern classes 304 that descend from Configu
rationPattern 302 and inherit ancestor class attributes.
Example descendent pattern classes 304 are RequiresRe
sourceProvider 306 and ConfigureSupportingCard 308,
which descends directly from ConfigurationPattern 302, and
ConfigureInterfaceCard 310, which descend directly from
RequiresResourceProvider 306. The Configure0pticalInter
faceCard 312 and ConfigureElectricalinterfaceCard 314 pat
terns descend directly from the ConfigureInterfaceCard 310
pattern. The descendent pattern classes 304 are described
above.

0093. A pattern can be defined for (and applied to)
disjoint hierarchies within the product modeling hierarchy
200, i.e. to any class or component in the product modeling
hierarchy 200. In the embodiment depicted in FIG. 3,
ConfigurationPatterns 302 is applied to Component Class
322. If the ConfigurationPatterns 302, as defined in the
product model 104, completes Successfully, i.e. the configu
ration is valid, the instance of the ConfigurationPatterns 302
is deleted to free up memory for future configuration evalu
ations. In one embodiment, a transient property is estab
lished to delete ConfigurationPattern 302. This property can
be inherited through any descendent of ConfigurationPat
terns 302.

0094. The optical application pattern hierarchy 300
example provides an example of how a component instance
applies patterns. Patterns are applied to components such
that the logic associated with the pattern is used by the
component to perform some configuration task. Access to
the instance for which the pattern is being evaluated, or the
component that is using the pattern, is given by the pat
tern context CI 318 attribute, which is an inverse attribute
of the attribute pattern CI 320, which points to the pattern
being evaluated. The component applying the pattern
depicted in FIG. 3 is pattern context Cl:Component Class
322. ConfigurationPatterns 302 could also be applied, for
example, to any descendent of Component Class 202. Such
as Composite Base Class 204, Connector Base Class 206,
Container Base Class 208, Part Class X, or Compo
nent Y.

Apr. 26, 2007

0095) A pattern preferably does not contain any product
data as part of its definition so as to allow patterns to be
applied freely without being constrained by specific product
data. All product and domain specific data is preferably
defined in the product hierarchy model 200, as described
above.

0096. For each pattern, the attribute pattern applica
tion priority F 324, which is in one embodiment a floating
point variable, specifies an ordering over the patterns that are
applied to a component to control the dependencies between
patterns. Patterns 218 with higher values are applied first in
one embodiment. For example, the SlotCard pattern must be
evaluated before the ConfigureProtectionCard pattern, since
the ConfigureProtectionCard pattern requires that the card
that requires protection is slotted.

0097 Patterns 218 can be mutually exclusive because
certain components in the product hierarchy model 200 may
not have the same pattern behavior (configuration logic) of
two different patterns at the same time. Therefore, for each
pattern, the attribute exclusive patterns mCL 326 specifies
which patterns are mutually exclusive with the pattern.

0098 Patterns can also be used to do global and contex
tual filtering and initializations. This is logic that can be
applied to all instances and candidate components for instan
tiation or a Subset of instances and candidate components for
instantiation that satisfy some context in the product. The
global and contextual filtering could include effectivity
filtering for determining when a particular component can
didate for instantiation can be configured and initialization
of component instance attributes after instantiation. Filters
provide a way to customize the behavior of a pattern in
pre-defined ways by adding filters to a multi-valued list that
is applied by all patterns. Similarly, initializers can provide
a way to initialize attributes on instances created by or used
by all patterns. The PatternFilter 328 and Pattern Initializer
330 classes are provided for this purpose. PatternFilter 328
and Pattern Initializer 330 classes implement the IPattern Fil
ter and IPattern Initializer interfaces, respectively, to perform
the predetermined filtering and initialization.

0099] The pattern filters. mCL attribute 332 contains a
list of filters to be applied by the pattern for global filtering
and the pattern initializers mCL334 attribute contains a list
of initializers to be applied by the pattern for global initial
izations. In one embodiment, the attributes pattern fil
ters. mCL attribute 332 and pattern initializers. mCL 334
should only be used for global and contextual filtering and
initialization with pattern specific filtering and initialization
being performed via interfaces specific to the pattern. More
details on filtering and initialization are provided below.

0.100 Example Pattern Application and Evaluation

0101 The following section describes one embodiment
of the application and evaluation of patterns for configura
tion. When a component is created or instantiated, all
specified patterns (listed in applied patterns 228) will be
created and evaluated in the order in which they appear in
the list. The specific pattern logic (configuration logic)
depends on the pattern.

0102) The attribute applied patterns 228 is evaluated by
configuration engine 106 (i.e. pattern instances will be

US 2007/0094641 A1

created) for all components, according to the following
rules:

0103 1. Uniqueness: It is preferably illegal to apply any
pattern in conjunction with one or several of its derived
patterns. Out of each branch in the pattern hierarchy 300
only one pattern, the most specific pattern, will be evalu
ated.

0104 2. Sequence: The modeler will specify the order of
patterns in a declarative manner using the patter appli
cation priority F attribute.

0105. In one embodiment, an instance of a configuration
pattern is a transient object. It will be instantiated, then
evaluated, and upon completion it will be deleted to free
available memory space. When a pattern is created, the
attribute pattern context CI 320 will be set to keep track of
the instance for which this pattern is being evaluated, and the
attribute pattern CI 318 will be set to the pattern that is
being evaluated.

0106 The following is an example of establishing
instance dependencies during pattern application. Whether a
configuration engine 106 utilizes instances of components is
a matter of design choice but can be preferable for control
ling memory usage. Additionally, by creating multiple
instances of a component, each instance of the component
can be assigned different attribute values.

0107 When an instance A, such as a working interface
card, requires an instance B. Such as a protection card for the
working interface card, it is said that A“depends on B, such
that if B is deleted. A should be deleted as well. Dependen
cies between different instances (between the instance on
which the patterns are applied and the instance(s) being
created) will be established as described below. There will
never be any dependencies on pattern instances because
pattern instances only exist temporarily and are deleted after
evaluation.

0108. The following approach can be used to establish
dependencies:

0109 Consider that A is a component instance that has
pattern instances {P1, P2, ..., Pn} associated with it. If in
the process of evaluating the logic for P1, a component
instance B is created, configuration engine 106 performs the
following:

0110
cable,

1. A establishes a dependency on B; and, if appli

0111) 2. B establishes a dependency on A.

0112 This dependency will be established as follows:

0113 1. Create pattern instance P1.

0114 2. In the logic for the pattern P1, instantiate
instance B.

0115 3. Establish dependencies between instance A (the p
pattern context) and instance B whereby A establishes the
dependency on B.

Apr. 26, 2007

0116 Filters and Initializers
0.117) In one embodiment, filters and initializers can be of
two forms:

0118 1. Global global filters are applied to all candi
date components for instantiation and instances to do Such
things as effectivity dating filtering. Thus, the function for
doing the filtering need only be written once, and applied
where needed. These filters can be applied for every
instance, candidate component for instantiation, or for any
Subset of instances.

0119 2. Context it is often that case that a component
candidate for instantiation or instance is only valid in a
certain state or context; for example, OC-48interface card
oc48 card 1 may be needed if there are OC-3tributaries in
the product, while card oc 48 card2 may be needed if
there are not OC-3tributaries in the product. These filters
can be applied for every component of the given type.

0120 Referring to FIGS. 3 and 4, the ConfigurationPat
tern 302 class uses the interface IConfigurationPattern 400
to filter and initialize component instances or candidate
components for instantiation. In one embodiment, the ICon
figurationPattern 400 contains two functions:

0121 is Valid(). The purpose of the is Valid() func
tion is to determine if an instance or candidate com
ponent for instantiation is valid in the context of a
pattern. By default, the is Valid() function iterates over
all the filters applied to the pattern. Versions of this
function exist for instances and candidate components
for instantiation. The “boolean” nomenclature in the
context of FIG. 4 and similar figures indicates that the
function evaluates to either “true' or “false'.

0.122 initialize() The purpose of the initializes()
function is to initialize attributes on the instantiated
instance. By default, the initializes() function iterates
over all the initializers applied to the pattern.

0123 Referring to FIG. 5, the PatternFilter class 328
(FIG. 3) uses the interface IPatternFilter 500 to implement
filtering logic. Each sub-class of the PatternFilter class 328
overrides the functions in the IPatterFilter interface to imple
ment the logic specific to that filter.
0.124
function:

0.125 is Valid() The purpose of this function is to
determine if a component instance or candidate com
ponent for instantiation is valid in the context of a filter.
By default, the function returns TRUE. Versions of this
exist for instances and candidate components for
instantiation.

In one embodiment, IPatternFilter 500 contains one

0.126 An example implementation of the is Valid() func
tion for effectivity-dating filtering:

class DateEffectivity Filter: PatternFilter.{ }
function Boolean is Valid on DateEffectivityFilter(Component candidate)
{

f/The candidate attribute is a candidate for instantiation by some
pattern.
//Its effectivity range, defined by the attributes
effectivity start date and

US 2007/0094641 A1

-continued

fieffectivity end date must include the current date.
if

current-date.<=candidate.effectivity end date
AND
current-dates=candidate.effectivity start date

)then
return TRUE

else
return FALSE

0127. Referring to FIG. 6, the Pattern Initializer class 600
uses the interface IPattern Initializer (FIG. 3) to implement
the initialization logic. Each sub-class of the Pattern Initial
izer class 600 overrides the functions in the IPatternInitial
izer interface to implement the logic specific to that initial
1Z.

0128. In one embodiment, Pattern Initializer class 600
contains one function:

0.129 initialize() The purpose of this function is to
initialize attributes on the instantiated instance. By
default, the function returns TRUE.

0130 Pattern Activity
0131 FIG. 7 presents a summary of the descriptions
above by illustrating the activity of a pattern on a compo
nent. Each component has a list of patterns that it needs to
apply, stored in the attribute applied patterns 702. The
diagram in FIG. 7 illustrates the application of a single
pattern in this list; this activity is repeated for each element
of the list. The component instance applying the patterns is
denoted pattern context CI 704. For simplification, the
pattern illustrated in this diagram simply instantiates another
component, dependent instance CI: Component 708. An
example pattern that demonstrates the activities depicted in
FIG. 7 is a pattern that configures an amplification card for
an optical interface card, based on the fiber type and span of
a transmission line. It will be apparent to those of ordinary
skill in the art that more complicated patterns can be created
using the principles of pattern application depicted in FIG.
7 and described below.

0132) The configuration engine 106 evaluates the pat
terns stored in the attribute applied patterns 228 (FIG. 2).
The pattern, Configuration Pattern 716, is instantiated (mes
sage instantiate() 703 from the pattern context CI 704 to
Configuration Pattern 716), and then applies pattern logic
contained in Configuration Pattern 716 to pattern contex
t CI 704 (message applyPatternLogic() from the pattern to
the context). The logic involved in this Configuration Pat
tern 716 involves instantiating dependent instance CI:
Component 708 using the instantiate() message 709.
Because of the transitory nature of the pattern instance,
configuration engine 106 establishes dependency between
dependent instance CI: Component 708 and pattern
context CI 704 via the establish Dependency() message.

This dependence can be used so that if any dependent
instances were to be deleted, the pattern context CI com
ponent 704 would be deleted as well, as described previ
ously. Once the dependency is established the pattern logic
of Configuration Pattern 716 is complete (the return()
message 713) and Configuration Pattern 716 is destroyed
(the destroy () message 714).

Apr. 26, 2007

0.133 As the diagram shows, pattern instances are tran
sient objects that live only as long as necessary to achieve
the task they are designed to perform.
0134)
0.135) In pattern-based configuration, the primary task of
the modeler becomes studying the product to be modeled
and identifying the patterns that are necessary for configur
ing the product. Patterns are identified by recognizing gen
erally repetitive tasks that occur over and over again across
product families. This introduces a level of abstraction that
was not previously available.

Identifying Patterns

0.136 Some common patterns that are used in configuring
optical telecommunications equipment are the following:
0.137 1. Card Slotting Optical interface cards (OC-3,
OC-12, etc.) and “common cards (CPUs, memory, power
cards, etc) must be placed into slots in a shelf or card cage,
Subject to provisioning rules such as:

0.138 (a) Cards can only go into certain slots (even
slots only, slots numbered 1, 2, 3, 4, etc).

0.139 (b) Cards are slotted in a left-to-right, right-to
left, etc. manner.

0140 (c) Cards are slotted in a specific shelf (high
speed transport shelf, management shelf, tributary
shelf, etc.).

0.141 (d) Cards are slotted in groups or quadrants (a
tributary card that is used on the working high-speed
line is slotted in quadrant 1-slots 1.2, 3, 4).

0.142 2. Protection. To support redundancy and fail
over, optical cards are often configured with protection of
the following types:

0.143 (a) 1+1—each working card requires a protec
tion card.

0.144 (b) 1xN each set of N working cards requires
a protection card.

Protection also impacts slotting provisioning rules. For
example, 1+1 protection may require that the working
card be placed in an odd-numbered slot and the pro
tection card in the adjacent even-numbered slot to the
right.

0145 3. Amplification. In optical networking, amplifi
cation is often needed when transmitting a signal over
long distances. The rules for configuring amplification
cards include the following:

0146 (a) Minimum span—the span, or distance
between nodes on a network is one of the primary
determining characteristics as to whether amplification
is needed.

0147 (b) Fiber type—the type of fiber can determine
the type of amplification card needed and the span for
which amplification is required.

0.148. A list of broad patterns for a particular domain is
usually easily identifiable with experience in configuring
products in that domain. The details and specifics of the
patterns can be discovered with the help of product
expert(s).

US 2007/0094641 A1

0149 Consider the task of configuring an OC-48optical
interface card that requires the patterns identified above.
Without using patterns, custom code would need to be
written for each component or class. An example is shown
below. This is time-consuming and error prone. A similar
function would need to be written, and tested for each type
of component. This function assumes a number of Support
functions, not shown, to implement Smaller pieces of con
figuration logic. These Support functions would also need to
be developed and maintained, increasing the complexity of
the overall modeling task. These Support functions are
indicated below.

function configure0C48Card ()
{

if card-requires-slotting if support function
oc48-slots=available slots for this-card if Support function
for each slot, in set of oc48-slots

if slot, is-compatible-with this-card
place this-card in slot,

if no-slot-found return-with-failure
if card-requires-protection if Support function

instantiate protection-card Support function
if card-requires-1+1-protection

protection-slots=available 1+1 slots if Support function
if card-requires-1Xn-protection

protection-slots=available 1Xn slots if Support function
if protection-slots is empty

continue
else

for each slot in protection-slots
place protection-card in slot, /support function

if card-requires-amplification if Support function
if span of this-card-span-required-for-amplification

instantiate amplification-card if Support function
place amplification-card in some slot if Support function

if Support function
f support function

0150. Alternatively, the following segment shows how
this problem would be solved using configuration patterns.

define-component
name: OC48-1
type: OC48InterfaceCard
applied patterns=

SlotCard,
ConfigureProtectionCard,
AmplifyOpticalSignal

// Define the attributes for the SlotCard pattern

slot type=InterfaceCardSlot
slot sorting direction=Left-To-Right

// Define the attributes for the ConfigureProtectionCard pattern

protection type=1+1

// Define the attributes for the AmplifyOpticalSignal pattern

minimum amplification distance=10km
amplifier card type=OpticalAmplifierCard

0151 Each pattern applied to the component above
assumes certain data set on a component, as shown in the
example.

Apr. 26, 2007

0152 Given that an optical interface card generally
requires amplification, the AmplifyOpticalSignal pattern
simplifies the task of gathering information. Patterns help to
focus attention on what information needs to be collected to
accurately configure the product. For example, the Ampli
fyOpticalSignal pattern requires the following information:
0.153 1. The minimum distance at which amplification is
required, given by the attribute minimum amplification
distance attribute above.

0154 2. The type of amplifier card needed, given by the
attribute amplifier card type above.

0.155. Using patterns, a simple data sheet can be con
structed to help gather information for patterns. A sample
data sheet for tributary cards is shown in FIG. 9. This data
sheet can be used by a product expert, or by a modeler
working with a product expert, to gather the attributes for a
pattern. It can also be used to identify the gaps in the logic
of existing patterns.
0156 Pattern identification requires a moderate level of
product knowledge, and the ability to implement configu
ration logic, either extensions of existing patterns, or new
patterns, using the modeling language of a configuration
engine.
O157 Creating Patterns
0158 Rules for Creating Patterns
0159 1. Define a class descended from Configuration
Pattern.

0.160 2. If the class defined in 1. is a specialization of an
existing pattern, override the necessary functions to
implement the desired behavior.

0.161 3. If the class defined in 1. is not a specialization of
an existing pattern, implement the pattern logic as nec
essary.

0162 4. Whenever the pattern logic instantiates a new
component, correct dependencies can be established as
described previously.

0.163 5. When filtering instances or candidate compo
nents for instantiation, call the is Valid() function on the
pattern to take into account global and contextual filter
ing.

0.164 6. When instantiating instances, call the initialize 9.
) function on the pattern to take into account global and
contextual initializations.

0.165 Pattern Development Guidelines
0166 1. Because patterns do not have any product
specific data associated with them, all logic-driving data
is stored on the pattern context (pattern context CI).

0.167 2. Functions that support the logic of the pattern are
to be written on the pattern class. This includes such
things as filtering, initialization, and determining whether
or not a piece of pattern logic is to be applied.

0.168. 3. Functions that return data may be written on the
product class. This may include Such things as returning
values for Sorting, and returning data that drives the
pattern logic. Default implementations must be provided
for all functions.

US 2007/0094641 A1

0169. 4. Any global or contextual filtering and initializa
tion should be implemented by adding the appropriate
filters and initializers to the pattern filters. mCL and
pattern initializers mCL attributes of the top-level Con
figurationPattern class. Note: Filters and initializers can
be added to the pattern filters mCL and pattern initial
izers mCL attributes of descendents of the Configura
tionPattern class. Preferably, such filters and initializers
are implemented as part of the pattern interface.

EXAMPLE

0170 FIG. 8 illustrates the Configure0ptical Interface
Card pattern 802. The ConfigureCptical InterfaceCard pat
tern 802 is used to instantiate one or more optical interface
cards 801, based on the type of optical interface (OC-3,
OC-12, OC-48, etc) required. The Configure0pticalInter
faceCard pattern 802 could be used to, for example, satisfy
the requirements of an optical tributary or a high-speed
interface.

0171 The characteristics of the required optical interface
card 801 are specified by the attributes in the OpticalInter
faceCardRequirement 804 component, as shown in the
diagram. Specifically, optical interface cards may be
described by the following:

0172 Card type—the type of optical interface card
required, specified by the card required CL 815
attribute on the Optical InterfaceCardRequirement 804
component.

0.173) Number of ports required the number of ports
required from the optical interface card, specified by
the ports required F attribute on the Optical|nterface
CardRequirement 804 component.

0.174 Bit rate the bit rate required from the optical
interface card, specified by the bitrate required R 805
attribute on the Optical InterfaceCardRequirement 804
component.

0175 Fiber type the type of fiber supported by the
optical interface card, specified by a fiber type resource
provided by the card. The fiber type requirements are
specified by the fiber type R 807 attribute on the
Optical|nterfaceCardRequirement 804 component.

0176 Connector type—the type of connector Sup
ported by the optical interface card, specified by a
connector type resource provided by the card. The
connector type requirements are specified by the con
nector type R 809 attribute on the Optical|nterface
CardRequirement 804 component.

0.177 Wavelength plan—a group of wavelengths,
specified by wavelength resources provided by the
optical interface card(s) 801. The wavelength plan
requirements are specified by the wavelength plan C
811 attribute on the OpticalInterfaceCardRequirement
804 component; the attribute wavelengths mR on the
WavelengthPlan class 803 list the wavelengths in the
wavelength plan.

0.178 Span—the range, within which the interface card
can operate, specified by the span min range F
815(inclusive) and span max range F 817 (exclusive)
attributes on the optical interface card(s) 801. The span

Apr. 26, 2007

requirements are specified by the span F 818 attribute
on the Optical|nterfaceCardRequirement 804 compo
nent.

0.179 Interface type—the type of interface (transmit
ter, receiver, transceiver) provided by the optical inter
face card. The interface type requirements are specified
by the interface type R 819 attribute on the Opti
calinterfaceCardRequirement 804 component.

0180 For configuring optical interface cards without
customizations:

0181 1. In one embodiment, define cards descended from
the Optical|nterfaceCard 808 class, with the following
resources and attribute values:

0182 REQUIRED provide resources of type Opti
calCarrierResource 810 (or its descendents).

0183) REQUIRED} provide resources of type Inter
faceTypeResource 812 (or its descendents).

0184 OPTIONAL) provide resources of type Wave
lengthResource 814 (or its descendents).

0185 OPTIONAL) provide resources of type Fiber
TypeResource 816 (or its descendents).

0186 OPTIONAL values for the min span range F
and max span range E. attributes.

0187 OPTIONAL provide resources of type Con
nectorTypeResource 818 (or is descendents).

0188 2. Request an instance of an Optical|nterfaceCar
dRequirement 804 component class:

0189 Initialize the attributes for card type, number of
ports required, bit rate, fiber type, connector type,
wavelength plan, and span to match the requirements of
the optical interface card.

0190. The IConfigure0ptical InterfaceCard interface con
tains functions that can be overridden by patterns that
specialize this pattern. Patterns generally include interfaces
to make extending the patterns easier. An example of a
pattern that would override the Configure0ptical Interface
Card pattern 802 is the Configure0pticalTributary pattern,
which includes the option of whether or not the card needs
to be protected. Creating the Configure0pticalTributary
pattern is simply a matter of overriding a single function to
initialize attributes on the instantiated interface card, indi
cating whether or not protection is needed.
0191) Product Expert-Data Entry
0.192 Referring to FIGS. 9A, 9B, and 9C (collectively
FIG. 9), as stated above once a model has been developed
using patterns, Some embodiments of the invention provide
tools to a product expert that allow the product expert to
customize the model through data entry. FIG. 9 presents an
example computer interface that could be presented to a
product expert for entering data associated with an optical
tributary card. As the product expert proceeds to provide the
data requested in user interfaces 901A, 901B, and 901C
(collectively referred to as “user interface 901), the data
entered by the product expert would be used to populate the
product model 104 with data for use by configuration engine
106 during configuration of a product.

US 2007/0094641 A1

0193 Referring to FIGS. 1,9, and 10, in one embodiment
the configuration engine 106 uses a compiled version of
product model 104, referred to as a product base 1002.
Different configuration engines are designed to use configu
ration logic and data information in different formats. In one
embodiment of configuration engine 106, Such as the con
figuration engine described in the Lynch/Franke Patent, it is
preferable that product model 104 be compiled into a
product base 1002. In the embodiment set forth in FIG. 10,
the compilation operation 1004 functions to compile the
product data 1006, configuration patterns 102, product mod
eling hierarchy 200 of product model 104 into product base
1002, which is directly useable by configuration engine 106.
In this embodiment, the product base 1002 becomes the
product model utilized by configuration engine 106 to
generate a product configuration. In other embodiments,
product model 104 may be created in a state that is directly
useable by configuration engine 106.

0194 Configuration System Distribution

0.195 Referring to FIG. 11, a method of distributing the
configuration system 100 incorporating the product model
104 with configuration patterns 102 to multiple enterprise
users is shown. The configuration system 100 includes the
configuration engine 116 and the product model 104. The
configuration system 100 is copied and distributed to a
plurality of different enterprises, such as first enterprise
1102, second enterprise 1104, and Nth enterprise 1106. As
illustrated, the configuration system 100 may be distributed
to several different enterprises. Once the configuration sys
tem 100 has been distributed, each of the enterprises may
use the system 200 to build product specific and company
specific configuration models for use in Software enabled
configurations of various selected products. Each enterprise,
by adding specific product data, can customize the configu
ration system for Such enterprise's specific needs. The
configuration system 100 may be embedded into an article
of manufacture, such as a tape or other software storage
device or tangible medium.

0196. FIG. 12 is a block diagram illustrating a network
environment in which the configuration system 100 and
modeling may be practiced. Network 1202 (e.g. a private
wide area network (WAN) or the Internet) includes a number
of networked server computer systems 1204(1)-(N) that are
accessible by client computer systems 1206(1)-(N), where N
is the number of server computer systems connected to the
network. Communication between client computer systems
1206(1)-(N) and server computer systems 1204(1)-(N) typi
cally occurs over a network, Such as a public Switched
telephone network over asynchronous digital Subscriber line
(ADSL) telephone lines or high-bandwidth trunks, for
example communications channels providing T1 or OC
3 service. Client computer systems 1206(1)-(N) typically
access server computer systems 1204(1)-(N) through a ser
Vice provider, e.g., an Internet service provider Such as
America On-LineTM, and the like by executing application
specific software, commonly referred to as a browser, on one
of client computer systems 1206(1)-(N).

0197) Client computer systems 1206(1)-(N) and/or server
computer systems 1204(1)-(N) may be, for example, com
puter systems of any appropriate design, including a main
frame, a mini-computer, a personal computer system, or a
wireless, mobile computing device. These computer systems

Apr. 26, 2007

are typically information handling systems, which are
designed to provide computing power to one or more users,
either locally or remotely. Such a computer system may also
include one or a plurality of input/output (“I/O”) devices
coupled to the system processor to perform specialized
functions. Mass storage devices such as hard disks, CD
ROM drives and magneto-optical drives may also be pro
vided, either as an integrated or peripheral device. One Such
example computer system is shown in detail in FIG. 13.

0198 Embodiments of the configuration system 100 and
modeling processes can be implemented on a computer
system such as a general-purpose computer 1300 illustrated
in FIG. 13. Input user device(s) 1310, such as a keyboard
and/or mouse, are coupled to a bi-directional system bus
1318. The input user device(s) 1310 are for introducing user
input to the computer system and communicating that user
input to processor 1313. The computer system of FIG. 13
also includes a video memory 1314, main memory 1315 and
mass storage 1309, all coupled to bi-directional system bus
1318 along with input user device(s) 1310 and processor
1313. The mass storage 1309 may include both fixed and
removable media, such as other available mass storage
technology. Bus 1318 may contain, for example, 32 address
lines for addressing video memory 1314 or main memory
1315. The system bus 1318 also includes, for example, an
n-bit DATA bus for transferring DATA between and among
the components, such as CPU 1309, main memory 1315.
video memory 1314 and mass storage 1309, where “n” is,
for example, 32 or 64. Alternatively, multiplex DATA/
address lines may be used instead of separate DATA and
address lines.

0199 I/O device(s) 1319 may provide connections to
peripheral devices, such as a printer, and may also provide
a direct connection to a remote server computer systems via
a telephone link or to the Internet via an internet service
provider (ISP). I/O device(s) 1319 may also include a
network interface device to provide a direct connection to a
remote server computer systems via a direct network link to
the Internet via a POP (point of presence). Such connection
may be made using, for example, wireless techniques,
including digital cellular telephone connection, Cellular
Digital Packet Data (CDPD) connection, digital satellite
data connection or the like. Examples of I/O devices include
modems, sound and video devices, and specialized commu
nication devices such as the aforementioned network inter
face.

0200 Computer programs and data are generally stored
as instructions and data in mass storage 1309 until loaded
into main memory 1315 for execution. Computer programs
may also be in the form of electronic signals modulated in
accordance with the computer program and data communi
cation technology when transferred via a network. The
method and functions relating to configuration system 100
and modeling processes may be implemented in a computer
program alone or in conjunction with hardware implemen
tations. Furthermore, context Subsystem data structures can
be implemented in CPU 1300 and utilized by CPU 1300 or
by other data processing systems that have access to the data
Structures.

0201 The processor 1313, in one embodiment, is a 32-bit
microprocessor manufactured by Motorola, such as the
680100 processor or microprocessor manufactured by Intel,

US 2007/0094641 A1

such as the 801086, or Pentium processor. However, any
other Suitable single or multiple microprocessors or micro
computers may be utilized. Main memory 1315 is comprised
of dynamic random access memory (DRAM). Video
memory 1314 is a dual-ported video random access memory.
One port of the video memory 1314 is coupled to video
amplifier 1316. The video amplifier 1316 is used to drive the
display 1317. Video amplifier 1316 is well known in the art
and may be implemented by any suitable means. This
circuitry converts pixel DATA stored in video memory 1314
to a raster signal suitable for use by display 1317. Display
1317 is a type of monitor suitable for displaying graphic
images.
0202 The computer system described above is for pur
poses of example only. The configuration system 100 and
modeling processes may be implemented in any type of
computer system or programming or processing environ
ment. It is contemplated that the configuration system 100
and modeling processes might be run on a stand-alone
computer system, Such as the one described above. The
configuration system 100 and modeling processes might
also be run from a server computer systems system that can
be accessed by a plurality of client computer systems
interconnected over an intranet network. Finally, the con
figuration system 100 and modeling processes may be run
from a server computer systems that is accessible to clients
over the Internet.

0203 Many embodiments of the present invention have
application to a wide range of industries including the

Apr. 26, 2007

following: computer hardware and software manufacturing
and sales, professional services, financial services, automo
tive sales and manufacturing, telecommunications sales and
manufacturing, medical and pharmaceutical sales and manu
facturing, and construction industries.
0204 The above disclosed subject matter is to be con
sidered illustrative and the appended claims are intended to
cover all such modifications and other embodiments which
fall within the true spirit and scope of the present invention.
For example, although the use of patterns within the frame
work of product hierarchies and pattern hierarchies may be
preferable, depending, for example, on the particular con
figuration system being used, patterns do not have to be used
in conjunction with product hierarchies and pattern hierar
chies. They can be used in virtually any instance where a
Solution to a configuration problem repetitively occurs. To
the maximum extent allowed by law, the scope of the present
invention is to be determined by the broadest permissible
interpretation of the following claims and their equivalents
and shall not be restricted or limited by the foregoing
detailed description.

1. A configuration model for use with a product configu
ration Software system, the configuration model comprising:

configuration patterns having configuration logic for per
forming tasks related to a configuration of a product.

2.-43. (canceled)

