
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0259609 A1

Hansquine et al.

US 2005O259609A1

(43) Pub. Date: Nov. 24, 2005

(54)

(76)

(21)

(22)

(51)
(52)

SINGLE WIRE BUS INTERFACE

Inventors: David W. Hanscuine, San Diego, CA
(US); Brett C. Walker, San Diego, CA
(US); Muhammad Asim Muneer, San
Diego, CA (US)

Correspondence Address:
Qualcomm, NC
5775 Morehouse Drive
San Diego, CA 92121 (US)

Appl. No.: 10/851,787

Filed: May 20, 2004

Publication Classification

Int. Cl. .. H04L 12/50
U.S. Cl. .. 370/328

BASEBAND
PROCESSOR

220

(57) ABSTRACT

Embodiments disclosed herein address the need for a single
wire bus interface. In one aspect, a device communicates
with a Second device via a single wire buS using a driver for
driving the bus with a write frame comprising a start Symbol,
a write indicator Symbol, an address, and data Symbols. In
another aspect, the device receives one or more data Symbols
on the Single wire bus during a read frame. In yet another
aspect, a device communicates with a Second device via a
Single wire bus using a receiver for receiving a frame on the
Single wire bus comprising a start Symbol, a write indicator
Symbol, an address, and one or more data Symbols, and a
driver for driving return read data associated with the
address when the write indicator identifies a write frame.
Various other aspects are also presented. These aspects
provide for communication on a single wire bus, which
allows for a reduction in pins, pads, or inter-block connec
tions between devices.

210

Patent Application Publication Nov. 24, 2005 Sheet 1 of 20 US 2005/0259609 A1

O

N ve

lo

s
i D

s

e the5

Patent Application Publication Nov. 24, 2005 Sheet 2 of 20 US 2005/0259609 A1

210

BASEBAND
PROCESSOR

PRIOR ART
FIG. 2

FTM

01SLAVE IDPADDRESSP DATA IP ... ADDRESSP DATA IP
BTM

10 SLAVE ID PADDRESSP DATA P.
ITM

00sIDIMESSAGEP
PRIOR ART

FIG. 3

Patent Application Publication Nov. 24, 2005 Sheet 3 of 20 US 2005/0259609 A1

FAST TRANSFERMODE

ONE BYTE ONE BYTE ONE BYTE ONE BYTE ONE BYTE

Y s SLAVE D t ADDRESS DATA ADDRESS DATA
t

SBST

SBCK

Prior ART
FIG. 4

BULK TRANSFER MODE

ONE BYTE ONE BYTE ONE BYTE ONE BYTE ONE BYTE

SLAVED h ADDRESS DATA DATA DATA

PRIOR ART
F.G. 5

Patent Application Publication Nov. 24, 2005 Sheet 4 of 20 US 2005/0259609 A1

INTERRUPT TRANSFER MODE

ONE BYTE

MESSAGE

SBST

SBDT H
PRIOR ART
FIG. 6

BASEBAND
PROCESSOR

220

PRIOR ART

FIG. 7

Patent Application Publication Nov. 24, 2005 Sheet 5 of 20 US 2005/0259609 A1

210

BASEBAND
PROCESSOR

220

FIG. 8

Patent Application Publication Nov. 24, 2005 Sheet 6 of 20 US 2005/0259609 A1

WRITES 910

READS 920

1 ADDRESSP DATA IP

FIG. 9

MASTER CLOCKJ
START DATA

DLE SYMBOL SYMBOLS DLE

SSB DATA

SLAVE CLOCK

FIG. 10

Patent Application Publication Nov. 24, 2005 Sheet 7 of 20 US 2005/0259609 A1

MASTER DEVICE 220

SSB SSBIDATA IN
MASTER SSBIDATA OUT SSB DATA
1110 SSBIDATA OE

FIG. 11

MASTER DEVICE 22

SSB DATA IN
MSER SSBI DATA OUT SBCK/

SSB DATAO 1110A SSBIDATA OE

SSB SSB DATA IN
MASTER SSBIDATA OUT .
1110B SSB DATA OE SBSTI

SSB DATA1

SBST

SB STER SBDT IN
1220 SBDT OUT

SBDT OE

SBDTI
SSB -SSB DATA IN SSB DATA2

MASTER SSBIDATA OUT
1110C SSBIDATA OE

SSB MODE

FIG. 12

Patent Application Publication Nov. 24, 2005 Sheet 8 of 20

SSB

1310

SSB MODE
TCXO DIS

RESET TCXO DIS

SB
SLAVE SECK
1410 SBST

SBDT PO
SBDT OE

SLAVE SSB DATA OUT
SSB DATA IN

SSB DATA OE

FIG. 13

SSB MODE SSB CLK
TCXO DIS RESET
RESET TCXO D TCXO DIS SBCK IN

SBCKOUT
SBST OUT
SBST POIN
SBDT OE IN

SBST IN

SBDT PO OUT
SBDT OE OUT

S SSB DATA
P'-' SSBISLAVE CONVERTER 1420

SLAVE DEVICE 230

SSB MODE
TCXO DIS

RESET TCXO DIS

SB
SLAVE SECK
1410 SBS

SBDT PO
SBDT OE

FIG. 14

SLAVE DEVICE 230 SBST
SBCK

SBDTISSB DATA

FIG. 15

SSB MODE SSB CLK
TCXO DIS RESET

RESET TCXO DIS SBCK IN

SBCK OUT
SBST OUT
SBST PO IN
SBDT OE IN

SBST IN

SBDT PO OUT
SBDT OE OUT -QE

SSB DATA
SBDT IN SSB SLAVE CONVERTER 1420

SLAVE DEVICE 230

FIG. 16

SLAVE DEVICE 230

SSB DATA

US 2005/0259609 A1

SSB DATA

SBST

SBDTI
SSB
DATA

SBDTI
SSB
DATA

Patent Application Publication Nov. 24, 2005 Sheet 9 of 20 US 2005/0259609 A1

SSB CLOCK lllllll L' U L
ADDR A7-AO A7-AO FOR NEXT ACCESS

WR DATA D7-D0
READ
REO
ACK

DONE

SSB DATA ed d x 0.

s —
STATE DLE(0) SAMPLE (1)
STB Li'l L' U L

BITCNT 0 1 2 ... 9 10 ...

- -

FIG. 17

SSB CLOCK llllllll ' '
ADDR A7-AO A7-AO FOR NEXT ACCESS
READ

REO

RD DATA ID7-DO
ACK — —

DONE — Il
SSB DATA . . . X P X D7 X ...

SSB DATA OE l
STATE DLE(O) SAMPLE (1
STB

BITCNT O ... 10 11 ... 18 19

Patent Application Publication Nov. 24, 2005 Sheet 10 of 20 US 2005/0259609 A1

master SSBCLK

slave SSBDATA
ey masterssB_DATA Ao PDFDS
E" slave SSBLDATA
delay Umaster SSBIDATAX Ao X P X D7 X D6

FIG. 19

All registers are clocked with SSB CLK. Pay attention to inverted clocks.
SSB DATA DEL

SSB DATA IN

SSBDATA IN DEL

SREAD and BITCNT=(17+IDLE SYMS) 2050
SREAD and BITCNT=(19+IDLE SYMS) DONE DELX

STB

/ NOTE: Numbers in bold correspond to SEL RD DATA = 0
1110

FIG. 20

All registers are clocked with SSB CLK.

SSB DATAOUT READ & ADDR
RESET WR DATA and READ SSB DATAOE

SSB DATA WD

ON 2 f3O DIN 2140
SOUT SN SOUT S.
LSHIFTREG LSHIFTREG
LD

OVR MODE 2150

STB REQP or STB or OVRMODE

RD DATA PRE

tro
FIG. 21

Patent Application Publication Nov. 24, 2005 Sheet 11 of 20 US 2005/0259609 A1

All registers are clocked with SSB CLK.

RD DATAPRE RD DAA

SREAD and STB and RESET
and BITCNTE19

DONE DELX

BITCNT

2226

2230

E 5 READ REO SERVED SATE O D.

NOTE: Numbers in bold correspond to SEL RD DATA = 0

1110 /
FIG. 22

Patent Application Publication Nov. 24, 2005 Sheet 12 of 20 US 2005/0259609 A1

SSB DATA IN ADDR SLAVE

P. SSB DATA OUT WR STB RESSEE
SSB DATA OE WR DATA S
SSB CLK RD DATA BITS FOR

SSB SLAVE BUS SSB CLK SLAVE REGISTER
INTERFACE 2310 REGISTERS READS

SSB 2320

CLK u?'
1310 FIG. 23

SSBDATA

STATE Idle (O) sample (1) Idle (0)
STB - . - o
BITCNT O 1 2 3 - 9 10 ... 16 17 O

DONE

WRSTB

Patent Application Publication Nov. 24, 2005 Sheet 13 of 20 US 2005/0259609 A1

SSBLDATA ... X Ao XPX D7 XX Do X P \ .
SSBDATA-9E
SSBCLK LLL LL JUL.

STATE idle (0)

BITCNT 0 || 1 || 2 ... 9 10 ... 17 1819 O
DONE

ADDR — a
RD DATA D7-DO

RD DATA sampled in ssbi slave if

FIG. 25

Patent Application Publication Nov. 24, 2005 Sheet 14 of 20 US 2005/0259609 A1

All registers are clocked with SSB CLK. Pay attention to inverted clocks. 2614
8

2606 ow INPUT DATA SIZE

POUND ST N ATE

2608 ?o 262
SSB DATA IN FOUND ST In EN

P AREs
2624 262O

READ and BITCNT=(9 +SSB DATA WD) D DONE RESET EFF
READ and BTCNT=(1+SSBDATAWD)-l)

SHFREG STEB 2626
SN 2628 BO 2632 READ

O EN INPUT DATA SIZE X o

STB EN

D BITCNT=1 and STB
STATE STATE \-26.30 B7:0 2634 8 ADDR

EN
BITCNT-9 and SB

2636 WR DAA
SSB DATA WD BITSSB DATA. WD-1:O)

EN

READ and SB and
BITCNT=(9 +SSBIDATA WD)

WR STB

BITCNT >= 10 and BITCNT <= (9 +ssB DATA wo
and READ

SSB DATA OE REG
SSB DAIA WD RD DATA 24

BTCNT= 9 and SE and READ ld LSHIFTREG
SIN

O
RESET EFF

TCXO DIS SSB DATA OUT
RESET

aro- FIG. 26

Patent Application Publication Nov. 24, 2005 Sheet 15 of 20 US 2005/0259609 A1

WR DATA - 4 - 2710 a
WR REGXXX DATA

WRSTB X -

RDREGO DATA
RDREG1 DATA

RD DATA

RDREGn DATA

232O / FIG. 27

REC

CONT

TERM

DONE

SSB CLK

DONEDELX
SSB DATA X Do X /
STATE Sample (1) ldle (O)

STB

BITCNT 26 27 2829.3031320
FIG. 28

Patent Application Publication Nov. 24, 2005 Sheet 16 of 20 US 2005/0259609 A1

All registers are clocked with SSB CLK. Pay attention to inverted clocks. Assuming,
SSB DATA DEL SSB DATA WD = 8

SSBDATA IN

SSB DATA INDEL

FTMMODE
arm 2050

SREAD and BITCNT=(17+IDLE SYMS)
SREAD and BITCNT=(19+IDLE SYMS) D

STB DONE DELX

BITCNT=(31+IDLE SYMS) 2910

ro- FIG. 29

All registers are clocked with SSB CLK. CN EN and DSABLE TERM SYM
SHIF2LOWAL

O18, SLAVE D
SSBIDATA OUT OVR VALUE TERMSCONT | FTM Mode T a

RESE o

304 TERM CNT(0) 3010
RES

O) Sl ge LSHIFTREG
E EN

2110 3006
OVR MODE & ENTERM CNT

RECP or SB or TERM or REQP STB
EN TERM CNT or OVR MODE

O O 3O12

ADDR(6:0). FTMMODE WR DATA and READ SSB DATA OE
RECP SSB DATA WD 2150

DIN 2140
RES SOUT SIN O

C. D SHIFTREG 3022 SHFREG
EN D C EN

SSBDATAN DEL
FTMMODE RECP S3 RECP STB

3028
READ 8, READ SSB DATA WD

SHIFT2LOVA
READ & ADDR(7) RD DATA PRE

/ FG. 30
1110

Patent Application Publication Nov. 24, 2005 Sheet 17 of 20 US 2005/0259609 A1

All registers are clocked with SSBCLK.

Big 102 2208
STATE RD DATA PRE RD DATA

DONE DELX and AC P EN
FTMMODE

SREAD and SB and RESET DONEDEX FTM or
RESET or FTMMODE as and BTCNT=1926

BITCNT 27 SET CONT
P 3110

3116
OOOO

BITCNTLDVAL ONE
OOOOOO 3114

SREAD and (BITCNT=17+ IDLE SYMS)-
3112 SREAD and (BITCNT=19 + IDE SEE TCN-27- - REST

BTCNE2
READ FTMMODE & SREAD

rSE

DONE DELX

SREAD

ICN < 9/17 or BTCNT = 19/26 or SREA

2216

d) isis tially, s LD WA
EN D-EN

2214

STB

2222
STATE CNT RES

ter
2226

(BTCNT-28 and BITCNT <=31) and FTMMODE = TERM READ
(BITCNT->=27 and BITCNT <=31) and FTMMODEs TERM, WRITE

TERM READ 3150
3142 3.146 TERM write TERM

RESET 3148

TERM Co ERM CNT SREAD
SEND TERMSYM CNT 24

TERM Co Assuming,
SSBDATAWD = 8

tro
NOTE: Numbers in bold correspond to SEL RD DATA = O

FG. 31

Patent Application Publication Nov. 24, 2005 Sheet 18 of 20 US 2005/0259609 A1

All registers are clocked with SSB CLK.

RESET EFF

TCXO DIS
RESET

SBST IN
SBCKIN SSB MODE

SBST OUT

SBCK OUT
SBCK GEN

40- FIG. 32

Patent Application Publication Nov. 24, 2005 Sheet 19 of 20 US 2005/0259609 A1

FIG. 33

SSBLDATA X 7 \

SSB CLK
FOUNDT / \
SBST /
SBCK / \ y \, f \ /

Patent Application Publication Nov. 24, 2005 Sheet 20 of 20 US 2005/0259609 A1

All registers are clocked with SSB CLK. Pay attention to inverted clocks.

RESET EFF

SBST GEN

TCXODIS

SBDT PO OUT

40 FIG. 35

US 2005/0259609 A1

SINGLE WIRE BUS INTERFACE

RELATED APPLICATIONS

0001. The following U.S. patent application filed concur
rently herewith is related to this application: “SINGLE
WIRE AND THREE WIRE BUS INTEROPERABILITY,”
U.S. patent application Ser. No. (Attorney Docket
No. 030398U2).”

BACKGROUND

0002) 1. Field
0003. The present invention relates generally to inte
grated circuits, and more Specifically to communication
between master and Slave components using a single wire
buS interface.

0004 2. Background
0005 Wireless communication systems are widely
deployed to provide various types of communication Such as
Voice and data. Example wireleSS networks include cellular
based data Systems. The following are Several Such
examples: (1) the “TIA/EIA-95-B Mobile Station-Base Sta
tion Compatibility Standard for Dual-Mode Wideband
Spread Spectrum Cellular System” (the IS-95 standard), (2)
the standard offered by a consortium named "3rd Generation
Partnership Project” (3GPP) and embodied in a set of
documents including Document Nos. 3G TS 25.211, 3GTS
25.212, 3G TS 25.213, and 3G TS 25.214 (the W-CDMA
Standard), (3) the Standard offered by a consortium named
“3rd Generation Partnership Project 2" (3GPP2) and embod
ied in “TR-45.5 Physical Layer Standard for cdma2000
Spread Spectrum Systems” (the IS-2000 standard), and (4)
the high data rate (HDR) system that conforms to the
TIA/EIA/IS-856 standard (the IS-856 standard).
0006 A wireless communication device commonly
incorporates multiple components. For example, a baseband
processor may interface with one or more Radio Frequency
(RF) or other components. The baseband processor may
generate and receive baseband Signals, often in digital
format. One or more Integrated Circuits (ICs) may be
deployed to provide functions Such as analog to digital
conversion, digital to analog conversion, filtering, amplifi
cation, upconversion, downconversion, and many others.
Various parameters and commands may be written to one or
more Slave devices by a master device (Such as a baseband
processor). The master device may need to receive (i.e. read)
parameters and other data from one or more ancillary
components (Such as RFICs). Such configurations of master
devices and Slave devices may be deployed in devices
outside of the communications field as well.

0007 A Serial Bus Interface (SBI) protocol has been
deployed in the prior art, which uses three Signals to perform
communication between a master device and one or more
slave devices (i.e. a 3-wire interface). While the SBI pro
tocol allows for multiple slaves to share one interface, Some
components have demonstrated Sensitivity to activity of
other components on a shared interface. Thus, Some SBI
interfaces have been deployed with a single master and a
Single Slave device, to avoid Such interference. Adding
additional interfaces, as described, may require the addition
of three pins (or pads) to the master device for each
additional interface. This may add additional complexity

Nov. 24, 2005

and/or cost, due to increased die size, increased pin count,
etc. It is therefore desirable to reduce the number of pins
required to interface between a master device and a slave
device.

0008. There exist in the prior art a number of designs for
master devices and slave devices that support the SBI
interface. It may be desirable to provide for a new interface
to communicate with existing SBI components, to increase
interoperability, and to allow for new devices, either masters
or slaves, to be phased into use with each other, as well as
with legacy components. It is also desirable to provide a
means for existing designs to be modified for communica
tion on a reduced pin interface with a minimum amount of
design time to increase time to market for new products and
speed the rollout of the new interface.
0009. There is therefore a need in the art for a single wire
buS interface for communication between a master device
and one or more slave devices. There is a further need for
master devices, Slave devices, and converters that interop
erate with existing Serial bus interfaces, Such as those
adapted to the SBI protocol.

SUMMARY

0010 Embodiments disclosed herein address the need for
a single wire bus interface. In one aspect, a device commu
nicates with a Second device via a single wire bus using a
driver for driving the bus with a write frame comprising a
start symbol, a write indicator symbol, an address, and data
Symbols. In another aspect, the device receives one or more
data Symbols on the Single wire bus during a read frame. In
yet another aspect, a device communicates with a Second
device via a single wire buS using a receiver for receiving a
frame on the Single wire bus comprising a Start Symbol, a
write indicator Symbol, an address, and one or more data
Symbols, and a driver for driving return read data associated
with the address when the write indicator identifies a write
frame. Various other aspects are also presented. These
aspects provide for communication on a single wire bus,
which allows for a reduction in pins, pads, or inter-block
connections between devices.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is a general block diagram of a wireless
communication System capable of Supporting a number of
uSerS,

0012 FIG. 2 depicts a portion of a prior art mobile
station 106;
0013 FIG. 3 depicts the formats of the three transfer
modes of the SBI interface;

0014 FIG. 4 illustrates the Fast Transfer Mode (FTM)
acceSS type,

0.015 FIG. 5 illustrates the Bulk Transfer Mode (BTM)
acceSS type,

0016 FIG. 6 illustrates the Interrupt Transfer Mode
(ITM) access type;
0017 FIG. 7 depicts a prior art SBI configuration;
0018 FIG. 8 depicts an embodiment comprising a com
bination of SBI and Single-wire Serial Bus Interface (SSBI)
interfaces,

US 2005/0259609 A1

0019)
0020 FIG. 10 is a timing diagram illustrating an example
embodiment of the SSBI signaling scheme;
0021)
SSBI;

FIG. 9 illustrates the SSBI transfer format;

FIG. 11 is an example master device for Supporting

0022 FIG. 12 depicts an example master device config
ured to support SSBI or SBI;
0023 FIG. 13 is an example slave device for supporting
SSBI;
0024 FIG. 14 is an example slave device for supporting
SSBI and SBI, comprising an SBI slave and an SSBIslave
converter,

0025 FIG. 15 depicts the example slave of FIG. 14
configured for SSBI-only communication;
0.026 FIG. 16 depicts an example SSBI-only slave com
prising an SBI slave and an SSBI slave converter;
0027 FIG. 17 is a timing diagram illustrating SSBI
writes, and SSBI master signals;
0028 FIG. 18 is a timing diagram illustrating SSBI
reads, and SSBI master Signals,
0029 FIG. 19 illustrates the interrelationship between
the clocks in a master and slave device;
0030 FIGS. 20-22 detail portions of example logic suit
able for deployment in an example SSBI master;
0.031 FIG. 23 depicts an example embodiment of an
SSBI slave;
0.032 FIG. 24 is a timing diagram illustrating SSBI
writes, and SSBI slave signals;
0033 FIG. 25 is a timing diagram illustrating SSBI
reads, and SSBI Slave signals,
0034 FIG. 26 illustrates example circuitry suitable for
deployment in an example SSBI slave bus interface;
0.035 FIG. 27 depicts example logic suitable for deploy
ment as a Slave registers block;
0036 FIG. 28 illustrates the waveforms showing the end
of an example burst, including a termination Symbol;
0037 FIGS. 29-31 illustrate example circuitry suitable
for deployment in an example SSBI master, modified to
support FTM mode;
0038 FIG. 32 illustrates a portion of an SSBI slave
converter,

0039 FIG.33 depicts waveforms illustrating the start of
an FTM transfer;
0040 FIG. 34 depicts waveforms illustrating the end of
an FTM transfer; and
0041 FIG. 35 illustrates a portion of additional circuitry
for an example SSBI slave converter.

DETAILED DESCRIPTION

0.042 One or more exemplary embodiments described
herein are set forth in the context of a digital wireleSS data
communication system. While use within this context is
advantageous, different embodiments of the invention may

Nov. 24, 2005

be incorporated in different environments or configurations.
In general, the various Systems described herein may be
formed using Software-controlled processors, integrated cir
cuits, or discrete logic. The data, instructions, commands,
information, Signals, Symbols, and chips that may be refer
enced throughout the application are advantageously repre
Sented by Voltages, currents, electromagnetic waves, mag
netic fields or particles, optical fields or particles, or a
combination thereof In addition, the blocks shown in each
block diagram may represent hardware or method StepS.
0043 FIG. 1 is a diagram of a wireless communication
system 100 that may be designed to support one or more
CDMA standards and/or designs (e.g., the W-CDMA stan
dard, the IS-95 standard, the cdma2000 standard, the HDR
specification, the 1xEV-DV system). In an alternative
embodiment, system 100 may additionally support any
wireless standard or design other than a CDMA system.
0044) For simplicity, system 100 is shown to include
three base stations 104 in communication with two mobile
Stations 106. The base Station and its coverage area are often
collectively referred to as a “cell”. In IS-95, cdma2000, or
1xEV-DV systems, for example, a cell may include one or
more sectors. In the W-CDMA specification, each sector of
a base Station and the Sector's coverage area is referred to as
a cell. AS used herein, the term base Station can be used
interchangeably with the terms access point or Node B. The
term mobile Station can be used interchangeably with the
terms user equipment (UE), Subscriber unit, Subscriber sta
tion, access terminal, remote terminal, or other correspond
ing terms known in the art. The term mobile Station encom
passes fixed wireleSS applications.
004.5 The word “exemplary” is used herein to mean
“Serving as an example, instance, or illustration.” Any
embodiment described herein as “exemplary' is not neces
Sarily to be construed as preferred or advantageous over
other embodiments.

0046) Depending on the CDMA system being imple
mented, each mobile station 106 may communicate with one
(or possibly more) base stations 104 on the forward link at
any given moment, and may communicate with one or more
base Stations on the reverse link depending on whether or not
the mobile station is in soft handoff. The forward link (i.e.,
downlink) refers to transmission from the base station to the
mobile station, and the reverse link (i.e., uplink) refers to
transmission from the mobile Station to the base Station.

0047 FIG. 2 depicts a portion of a prior art mobile
station 106. The illustrations detailed throughout may also
be deployed in other wireleSS communication devices, Such
as a base Station 104, as well as any other device or devices
in which master/slave communication is desired. In this
example, a baseband processor 220 is deployed in connec
tion with one or more ancillary Integrated Circuits (ICs), as
well as other components, not shown. Baseband processor
220 provides communication processing for Signals to be
transmitted and received, in accordance with one or more
communication Systems or Standards, examples of which are
detailed above. A typical baseband processor 220 performs
digital processing of incoming and Outgoing Signals, and
may perform various other types of processing, including
running various applications. A baseband processor may
comprise various components, including one or more micro
processors, digital Signal processors, memory, and other

US 2005/0259609 A1

general or Special purpose circuitry of various types. A
baseband processor may comprise various components for
receiving and transmitting Signals according to one or more
communications Specifications or Standards, Such as encod
ers, interleavers, modulators, decoders, deinterleavers,
demodulators, Searchers, and various other components,
examples of which are well know in the art. A baseband
processor may incorporate digital circuitry, analog circuitry,
or a combination of both.

0.048. The ancillary ICs connected with baseband proces
sor 220 are labeled RFIC 230A-230N. Example ancillary
ICs include Radio Frequency (RF) ICs, which may incor
porate various functions Such as amplifiers, filters, mixers,
oscillators, digital-to-analog (D/A) converters, analog-to
digital (A/D) converters, and the like. The components
necessary for communication according to a Standard may
be incorporated in multiple RFICs 230. Any RFIC 230 may
include components that may be shared for use with multiple
communication systems. RFICs are shown for illustration
only. Any type of ancillary IC may be connected with
baseband processor 220.
0049. In this example, the RFICs 230 receive and/or
transmit via antenna 210, through which a link may be
established with one or more base stations 104. Antenna 210
may incorporate multiple antennas, as is well known in the
art.

0050 SBI Protocol
0051. For communication of various parameters and
commands, a 3-wire interface has been designed for Such
communication. This 3-wire interface is referred to as a
Serial Bus Interface (SBI). The 3-wire interface includes a
clock line (SBCK), a start/stop line (SBST), and a data line
(SBDT). The SBI interface is detailed further below. The
SBI interface designates a master device and one or more
Slave devices. In this example, the baseband processor 220
serves as the master, and one or more RFICs 230 serve as
slave devices. The SBI interface is not limited as such, and
the master and Slave devices may be of any type. In detailed
example embodiments below, baseband processor 220 may
be interchanged with master device 220, and RFIC 230 may
be interchanged with slave device 230. A baseband proces
Sor 220 may also communicate with various RFICs 230 on
various dedicated lines, either analog or digital, in addition
to the SBI bus, not shown.
0052) Note that, as shown in FIG. 2, multiple slave
devices may share the same three master device connections
(SBCK, SBST, and SBDT). Various other connections
between RFICs 230 and baseband processor may be
deployed, but are not shown in FIG. 2. A mobile station 106
may also incorporate various other components for use in
performing communications or running applications. Those
details are not shown, for clarity of discussion.
0053) The SBI interface defines three types of transfer
modes, the formats of which are depicted in FIG. 3. Fast
Transfer Mode (FTM) provides for multiple sequences of
accesses to any Slave, including both reads and writes. Each
access in the Sequence identifies the address to which or
from which the access is to be made.

0054 Bulk Transfer Mode (BTM) provides for multiple
Sequential accesses to a Single Slave. The accesses in a BTM
transfer may be reads or writes, but not both. The address for

Nov. 24, 2005

the bulk transfer need only be transmitted once. Multiple
reads or writes may occur Sequentially from this initial
address.

0.055 Interrupt Transfer Mode (ITM) is used to transfer a
single byte of encoded information. The Slave ID (SID)
indicates one of two slaves to receive the message. The 5-bit
message field provides for 32 possible messages. A pause bit
is transmitted after the message.
0056 FIGS. 4-6 depict timing waveforms for FTM,
BTM, and ITM, respectively. Each SBI access is performed
as follows. Transactions are initiated by pulling SBST low.
Transactions are terminated/completed by taking SBST
high. There is at least one clock in between transactions
(SBST and SBDT high). All changes in the state of SBDT
occur prior to a SBCK falling edge (generally there will be
Setup and hold parameterS Specified with respect to the
SBCK falling edge). The first data bit is latched on the
second falling edge after SBST has gone low. Data is
transmitted Most Significant Bit (MSB) first, Least Signifi
cant Bit (LSB) last. (Recall that for ITM, a single bit
identifies one of two slaves, followed by a message.) Unad
dressed slaves wait for the start bit of the next transaction.
Data may be both read and written during a single FTM
transaction. One or more pause bits are allocated for each
byte transmitted. Both master and slaves release the data bus
during pause bits (P) to avoid bus contention.
0057 The first two bits indicate the access type: 01 for
FTM, 10 for BTM, and 00 for ITM. The Slave ID is 6 bits
while the Address and Data fields are 8 bits each. Pause bits
(P) are inserted after each 8 bits to provide opportunities for
the slave to return data without causing bus contention. The
first bit of the Address field denotes whether the access is a
read (1) or write (0). For FTM and BTM, multiple accesses
can be done to the same slave without requiring the Slave ID
to be specified for each register access. FTM is the usual
method of performing register accesses. BTM is provided to
enable configuration of a larger group of consecutive
addresses. Only the first register address of the burst is
specified. For ITM, the Slave ID field is replaced with a 1 bit
SID field to specify which slave to access. Instead of
Register and Data fields, a 5-bit Message field is specified.

0058. In practice, it has turned out that, in some instances,
Radio Frequency (RF) ICs 230 are sensitive to interference
on a common bus. To avoid this interference, additional
buses have been deployed, to isolate the traffic on one bus
from one or more Sensitive devices 230. An example con
figuration is shown in FIG. 7. In FIG. 7, baseband processor
220 communicates with RFICs 230A-230J on individual
3-wire SBI buses dedicated to each device. In this example,
additional RFICs 230K and 230N are connected with a
shared SBI bus. Although adding buses can resolve inter
ference, it increases the number of pins required for the
baseband processor 220, as well as the number of master
controllers. For example, a baseband processor 220 may be
deployed with 3 or 4 SBI ports, requiring 9 or 12 pins,
respectively. The design may be complicated by overhead
required to share the available ports between the various
external chips 230.

0059) SSBI Protocol
0060. To provide the reduced interference desired for
Sensitive ancillary chipS 230, while reducing pin count, a

US 2005/0259609 A1

new Single-wire bus interface is provided, detailed further
below, referred to as a Single-Wire Serial Bus Interface
(SSBI). FIG. 8 depicts an example mobile station 106
deployed with an independent single-wire (SSBI) bus con
necting each RFIC 230A-230J with baseband processor 220.
3-wire SBI buses may also be deployed in combination with
SSBI buses, if desired. This is illustrated as shown with a
shared 3-wire bus connecting RFIC 230N-230K and base
band processor 220. Deploying the Single-wire interface
allows for reducing pin count, increasing the number of
ports, or both. Increasing the number of ports may alleviate
the design complication, mentioned above, that may occur
when two or more devices need to share a bus interface.
Note that, for clarity, in example embodiments detailed
below, the SSBI interface may be explained with respect to
pins and/or pads. The SSBI protocol is also applicable to
inter-die connections (i.e. pad to pad connections, without
pins), as well as inter-chip connections (i.e. block to block
connections, with neither pads nor pins). Those of skill in the
art will readily adapt the principles disclosed herein to apply
to these and various other embodiments.

0061 Alternate embodiments may include any number of
Single-wire buses, as well as any number of 3-wire buses. In
various embodiments, examples of which are detailed
below, pins may be configurable for use with either a 1-wire
or 3-wire bus interface.

0062) The example SSBI protocol detailed herein has the
following properties. The pin count required is reduced with
respect to the SBI interface. The bandwidth may be com
parable to or better than the SBI interface. The address is
increased to Support additional registers, thus Supporting
increasingly complex Slave devices. In this example, the
number of addressable registers is 256.
0063) To reduce the number of pins, the SSBI does not
include the clock line (SBCK) and the start/stop line
(SBST). The single line in the SSBI protocol is referred to
herein as SSBI DATA. The clock line having been removed
in the interface, a local clock is used at both the master and
the Slave device instead. The local clocks at the master
device and any slave devices do not need to be identical. The
protocol accounts for offsets in phase and frequency, as
detailed further below. A certain amount of frequency error
is tolerated, the amount depending on the Specific embodi
ment. The SSBI protocol is phase independent with respect
to the clocks of the master and slave devices. The local
clockS may be generated using local oscillators, derived
from other clock Sources, or various other clock generation
techniques known in the art. The SSBI interface
0064. Instead of a start/stop line, a start bit is inserted into
the data stream, and an idle state (IDLE) is defined. A
receiving device (i.e. a slave) may monitor the data line
(SSBI DATA), sampling the predetermined IDLE values,
and then beginning a transaction when a start symbol is
detected. When a transaction is completed, the data line may
be returned to the IDLE state, thus terminating the transfer.
0065. The SSBI protocol may be designed with timing
and waveforms Selected So as to facilitate an interface
between 1- and 3-wire interfaces. As will become clear, this
allows for migration from the 3-wire SBI protocol to the
1-wire SSBI protocol. For example, a master device may be
equipped with a logic circuit for generating both SBI and
SSBI formats, to facilitate communication with earlier gen

Nov. 24, 2005

eration Slave devices, as well as newer slave devices as they
are produced. In Similar fashion, an existing Slave device
may be equipped with conversion logic Such that either SBI
or SSBI formats may be received, allowing interoperability
with both earlier generation master devices and new master
devices. A slave may be equipped with 3 pins for the 3-wire
mode, a single pin of which is dedicated for SSBI DATA
when in SSBI mode. The mode may be selected by setting
pre-defined values on the unused pins when SSBI mode is
desired. Furthermore, a single pin Slave device may be
quickly developed by adding conversion logic to the existing
core, such that a single wire SSBI DATA may be translated
into legacy 3-wire SBI signals, for interfacing with the
existing core. Such conversion logic, detailed further below,
may be added to a slave device with minimal impact on the
existing functionality, allowing the new device to be devel
oped rapidly with high confidence. The benefits of reduced
interference due to Separate control lines, and pin count
reduction at the master and/or slave devices may thus be
achieved during a migration in the marketplace to three-wire
devices to Single-wire devices. Various example embodi
ments are detailed below.

0.066 Table 1 shows the SSBI interface signals. The SSBI
interface consists of a Single pin per device called SSBI
DATA. SBST is removed since the start and end of a

transfer are denoted in the data stream itself. SBCK is
removed, as there is a common clock at both the master and
Slave. It is presumed that there is a clock available at both
the master and slave, referred to at SSBI CLK. Any com
mon clock may be used. There is no phase relationship
required between the master and Slave clocks. In one
embodiment, to Simplify routing, the two clockS may be
derived from the same Source. The two clocks should
generally be the same frequency, although Some frequency
error may be corrected for. Those of skill in the art will
readily tailor the amount of frequency error allowed for any
given embodiment in light of the teaching herein. This clock
needs to be on whenever SSBI communication is required.

TABLE 1.

Modified SSBI Master Port Descriptions

Signal Description

SSBI DATA SSBI Data line; bidirectional; connects master
device (i.e. baseband processor 220) to slave
device (i.e. RFIC 230)

SSBI CLK Local clock; generated at each master and slave
device for 1-wire operation

0067. In an example embodiment, the master device 220
comprises a pad for SSBI DATA with the following char
acteristics: The pad is bidirectional. It Supports drive
strengths of 2 mA in low-drive mode and 5 mA in high-drive
mode (this is consistent with the Settings used for example
SBI pads). The example pad contains a selectable pull-down
device, and a Selectable keeper device. Various other pads
may be deployed within the Scope of the present invention.
In alternate embodiments, Such as inter-block connections
on a single die, for example, pads may be Substituted with
alternate components, Such as tri-State drivers, muXes, and
the like, as is well known by those of skill in the art.
0068. In the example SSBI protocol, only one mode is
Supported, and only one register access per transfer is

US 2005/0259609 A1

supported. It may be thought of as a simplification of FTM,
without the need to specify the mode or slave ID. Since there
is only one slave expected on the bus (although addressing
Schemes may be used if two or more devices are desired,
described below), the slave ID bits are no longer required.
AS a result, there is very little overhead for each access when
compared to the SBI commands. The multiple 3-wire SBI
modes provided mechanisms for removing unneeded over
head in order to improve bandwidth and reduce latency. The
single SSBI format provides the same benefits.

0069 FIG. 9 illustrates the SSBI transfer format. A frame
may be a read frame 920 or a write frame 910. The first bit
denotes whether a read or write is performed. Read acceSS
is indicated by 1 and a write access by '0'. This assignment
is not arbitrary, but in fact it prevents the Slave from
accidentally Seeing the read operations if the SSBI master
block is inadvertently reset in the middle of an access. The
Address field is a full 8 bits, and since the read/write
indication is separate, all 256 addresses are now available to
both reads and write registers. In the example embodiment,
the address space is increased in SSBI vs. SBI. In alternate
embodiments, any address Space size may be deployed.

0070 The Data field is parameterized in various embodi
ments described below, and can be in range from 1-16, for
example. This parameter is identified below as SSBI
DATA WD. For both address and data fields, the values are

output MSB first. For writes, since the master continuously
drives the bus, no Pause bits (P) are required. For reads,
pause bits are used. To perform additional reads or writes, a
new command is initiated on the bus. This way, the Slave
always knows to expect 17 symbols for a write, and 19
symbols for a read (when SSBI DATA WD=8).
0.071) While it is expected that one slave will be Sup
ported per SSBI port, it is possible to support two slaves by
having each respond to a different set of SSBI register
addresses. For example, one slave could respond to
addresses 0-127, while the second responds to 128-255. By
using Such an approach, however, there may be loading
issueS on the board plus the usual interference problems, as
described above for the SBI protocol.
0.072 FIG. 10 is a timing diagram illustrating an example
embodiment of the SSBI signaling Scheme. In this example,
the data line (SSBI DATA) is low when indicating the idle
State. When data is to be sent, a Start bit is transmitted, a high
voltage (or “1”), in this example. The start bit is used to
center the receiver's Sample point for Sampling the incoming
data Stream. Following the Start bit is a stream of data. Since
the command formats are well defined, the receiver can
determine from the data Stream precisely how many bits will
be sent. Thus, the receiver knows when the transfer will
complete, and can reenter the idle State to wait for the next
start bit. The start bit and data bits are each two clock cycles
long, in this example, hence the Symbol period is two cycles
long. The data bits are transmitted high or low depending on
whether a 1 or 0 is being Sent. In an alternate embodiment,
each bit could be one clock cycle long. However, in Such a
case it may be difficult for the receiver to find the center of
a symbol since there would be only half a clock cycle of
accuracy. Thus, the receiver could not guarantee it would
avoid Sampling the Symbols when they are transitioning.
With the Symbols being two clock cycles long (or longer),
the receiver can guarantee it is Sampling the Symbols. Some

Nov. 24, 2005

where between 0.5 and 1.5 cycles into the symbol, hence at
least 0.5 clock cycles away from any transitions. The num
ber of clock cycles per Symbol may vary in alternate
embodiments.

0073. The clock at the receiver need not be aligned with
the data. So, in essence, the SLAVE CLOCK depicted in
FIG. 10 may shift left or right with respect to SSBI DATA.
In this example, the receiver Starts Sampling at the first
falling clock edge after SSBI DATA goes high. The sam
pling points are denoted by the dotted vertical lines. Each
Subsequent Symbol is Sampled every two clock periods from
that point until the access is completed. Following the IDLE
bit, another start Symbol may be transmitted.
0074 This SSBI protocol is resistant to frequency error.
The allowed amount of such error may be varied based on
the design choice in deployment of any particular embodi
ment. If an external clock is deployed and routed to one or
more of connected components, the interface Successfully
operates in the presence of variable clock skew between the
various components. Alternatively, one or more connected
components (i.e. the master and/or any slaves) may generate
their own clock, within the frequency error requirements as
designed.
0075. The transfer time of any access is not data-depen
dent. Transfer times are the same as for the example 3-wire
SBI bus interface. Any voltage levels may be chosen for the
various bit types, as will be clear to those of skill in the art.
In this example, as described above, the Start symbol is
Selected to be “1” (or a high voltage) to center the sample
strobe. Idle is set to “0” (or ground). This simplifies the
interface with unpowered chips. For example, RF chips (or
other slave devices) may be powered on and off to conserve
power. Setting idle to ground Simplifies this condition.
0076). In general, the master drives SSBI DATA. The
only time the master tri-States the bus is while read data is
being driven by the slave. At all other times, the master
drives the bus. Since both the master and slave devices will
at different times drive the data bus, to avoid contention on
the data line, the present driver of the bus releases the bus
for one symbol period (two cycles in this example) prior to
the next device being allowed to drive the bus. This duration
will be referred to as a Pause bit. Pause bits are identified by
“P” in FIG. 9. For the Pause bit, the value on the data line
may be held using a pad keeper, if one is deployed. It is
expected the Slave will respond with read data, using the
Same timing as the receiver approximates the master is
using, hence the read Symbols should appear approximately
where the master expects them.
0077. To understand the transition between drivers, con
sider the following: Subsequent to the master Sending the
LSB of the Address field for a read access, a Pause bit is
transmitted to allow time for the master to release the bus.
The slave responds by driving D7 through DO, followed by
releasing the data line for another Pause bit. The master may
then recapture control of the bus to transmit the next Symbol.
Contention is avoided since the Slave knows the master's
timing to an accuracy of half a clock cycle based on the Start
bit. Since the Pause bit is two clock cycles, it may appear as
Short as 1.5 cycles or as long as 2.5 cycles, depending on the
relative phases of the master and Slave clockS. AS long as the
buS delay is less than 1.5 cycles, there will be no contention.
0078. The 3-wire SBI interface has a SBST signal that
asserts for the duration of the transfer and deasserts when the

US 2005/0259609 A1

master is done. This makes it easy to forcibly put the Slave
into the idle state at any time. The master may ensure SBST
is deasserted and, whether the Slave is already idle or in the
middle of a transfer, it should realize there is no longer a
transfer and enter the idle state. With the 1-wire SBI
interface, there are no signals to clearly Specify this. Con
sider two cases: first is during power on reset, and Second
during normal operation. During power on, a master may
take into, consideration the amount of time required to reset
the various devices, and ignore SSBI activity until the reset
is complete. During normal operation, as long as the master
and Slaves remain in Sync, Such that the Slaves respond only
to the master and that the master SSBI block is never
forcibly reset during a SSBI transfer, there will be no issue.

0079 If there is a need to reset the SSBI master at some
arbitrary time, for whatever reason, it is possible that the
SSBI bus may be in the middle of a read, hence a slave
device will be driving the SSBI data bus. If the master is
forced into Idle state, it will also drive the data bus; hence
there may be contention. When the slave is not driving the
bus, in response to a read access, the master entering idle
will not cause contention, the Slave will either remain in the
idle State, or complete any current write access, then enter
idle State. (In this example, since the 1-wire formats are Such
that writes and reads are 17 and 19 symbol periods long, for
data width of 8 bits, at most, 19 symbol periods later, the
Slave is guaranteed to be in Idle State). To Solve the issue
when the slave may be driving the bus, the master may
refrain from actively driving the SSBI DATA line until it is
determined that the possible contention period is over. In the
example embodiment, the master will tristate SSBI DATA
and enable a pull-down device in the pad. A command to
reset a control register may be used to indicate that the
pull-down may be disabled. In an alternate embodiment, a
write access command may be used to reenable active
control of the bus by the master, disabling the pull-down, if
desired.

0080 Converting Between SBI and SSBI

0081. Described above are two protocols, SBI and SSBI,
which may be Supported using 3-wire or 1-wire interfaces
(perhaps requiring Some conversion features). Many devices
in operation today Support the SBI protocol on a 3-wire
interface. Example embodiments, various examples of
which are described herein, may include a master device 220
and one or more slave devices 230 that communicate using
SSBI on a Single wire interface. An example master device
220 for supporting SSBI is depicted in FIG. 11, and a
corresponding slave device 230 is depicted in FIG. 13. It
may be desirable for a master device 220 to support both SBI
and SSBI on either a 1-wire or a 3-wire interface, or a
combination of both. An example of Such a master is
depicted in FIG. 12. Similarly, a slave device may be
configured to receive either protocol on either a 1-wire or a
3-wire interface. An example of Such a slave device is
depicted in FIG. 14.

0082 FIG. 11 depicts an example master device 220
configured for SSBI communication on a single wire. A
microprocessor, or other device, communicates with the
SSBI master 1110 to perform read and write accesses
(details not shown). SSBI master 1110 may also receive or
generate other commands or Signals, examples of which are
detailed further below. The master device 220 transmits and

Nov. 24, 2005

receives data on SSBI DATA, which is connected to pad
1120. An example pad is described above. The pad input (PI)
is delivered to SSBI DATA IN on SSBI master 1110. The
output for pad 1120 is received from SSBI DATA OUT of
SSBI master 1110. The pad is enabled (or driven) in response
to SSBI DATA OE from SSBI master 1110. Other func
tions Such as keeperS and pull devices may be deployed as
well (details not shown). SSBI master 1110 transmits and
receives according to the SSBI protocol.

0.083 FIG. 13 depicts a slave device 230 configured for
SSBI communication on a single wire. Various blocks,
registers, functions, etc., may interface with the SSBI Slave
1310 (details not shown). SSBIslave 1310 may provide data
from write accesses, and Source data for read accesses, as
directed by a master device, such as device 220 shown in
FIG. 11. SSBIslave 1310 may also receive or generate other
commands or Signals, examples of which are detailed further
below. The slave device 230 transmits and receives data on
SSBI DATA, which is connected to pad 1320. An example
pad is described above. The pad input (PI) is delivered to
SSBI DATA IN on SSBI slave 1310. The output for pad
1320 is received from SSBI DATA OUT of SSBI slave
1310. The pad is enabled (or driven) in response to SSBI
DATA OE from SSBIslave 1310. Other functions such as

keepers and pull devices may be deployed as well (details
not shown). SSBIslave 1310 transmits and receives accord
ing to the SSBI protocol.

0084. On a baseband processor, Such as a master device
220, a bank of pins may be configurable to provide a
combination of Single and 3-wire interfaces. For example,
12 pins may be allocated, and configurable to provide a
variety of bus combinations. For example, 12 Single-wire
interfaces or four 3-wire interfaces may be deployed. Or, one
3-wire interface may be deployed with 9 single-wire inter
faces. Or two 3-wire interfaces may be deployed with 6
Single-wire interfaces. Or, three 3-wire interfaces may be
deployed with 3 single-wire interfaces. A limited subset of
the pins may be deployed to be configurable in multiple bus
interface types as well. Pins may be alternately configurable
for non-SSBI or non-SBI purposes as well. Those of skill in
the art will recognize that myriad combinations of pins and
configurable bus types may be deployed within the Scope of
the present invention.
0085. By Switching to single-wire buses, additional buses
may be deployed with fewer pins, and the number of
components Sharing a bus may be reduced. For example,
deploying point-to-point Single-wire buses allows for
reduced interference when compared to a shared bus, and the
Scheduling of traffic becomes Simpler and latency issues
may be avoided, as point-to-point connections remove the
bandwidth Scheduling required on a shared bus.

0.086 FIG. 12 depicts an example master device 220
configured to support SSBI or SBI. Three pins are shown,
which may be used for a 3-wire interface, or alternately for
three 1-wire interfaces. There are three SSBI masters 1110A
C, and an SBI master 1220. Three pads 1250A-C receive
signals via muxes 1230A-C and 1240A-C, respectively. The
muxes are controlled via a signal SSBI MODE, which
indicates whether SBI or SSBI mode will be selected. 82 An
SBI master 1220 is known in the art, and is not detailed
herein. An example embodiment of the SBI master 1220
may be of any type. Those of skill in the art will readily

US 2005/0259609 A1

adapt prior developed SBI devices or circuits, or may devise
new ones, to perform the requirements of an SBI System, as
described above. Example SSBI masters 1110 are detailed
further below. An example SSBI master may perform the
SSBI protocol, as described above, and may also perform
according to the SBI protocol, in order to facilitate compat
ibility with other devices (described further below).
0087 Pad 1250A is used to provide SBCK in SBI mode,
and is SSBI DATAO in SSBI mode. The pad input (PI) is
delivered as SSBI DATA IN to SSBI master 1110A. The
pad output comes through mux 1230A, and is SSBI
DATA OUT from SSBI master 1110A in SSBI mode, and
SBCK from SBI master 1220 in SBI mode. The output
enable (OE) comes through mux 1240A, and is SSBI
DATA OE from SSBI master 1110A in SSBI mode, and set

to high during SBI mode (because SBCK is not a tristate
Signal, it is always an output).
0088 Pad 1250B is used to provide SBST in SBI mode,
and is SSBI DATA1 in SSBI mode. The pad input (PI) is
delivered as SSBI DATA IN to SSBI master 1110B. The
pad output comes through mux 1230B, and is SSBI
DATA OUT from SSBI master 1110B in SSBI mode, and
SBST from SBI master 1220 in SBI mode. The output
enable (OE) comes through mux 1240B, and is SSBI
DATA OE from SSBI master 1110B in SSBI mode, and set

to high during SBI mode (because SBST is not a tristate
Signal, it is always an output).

0089 Pad 1250C is used to provide SBDT in SBI mode,
and is SSBI DATA2 in SSBI mode. The pad input (PI) is
delivered as SSBI DATA IN to SSBI master 1110C, as well
as SBDT IN to SBI master 1220. The pad output comes
through mux 1230C, and is SSBI DATA OUT from SSBI
master 1110C in SSBI mode, and SBDT OUT from SBI
master 1220 in SBI mode. The output enable (OE) comes
through mux 1240C, and is SSBI DATA OE from SSBI
master 1110C in SSBI mode, and is SBDT OE from SBI
master 1220 during SBI mode.
0090 The interface to a microprocessor, or other device
issuing access requests, is not shown. Each SSBI master
1110 and SBI master may be equipped with an interface for
performing read and write accesses through the respective
SSBI or SBI interface. In alternate embodiments, multiple
devices may share an interface with an SBI or SSBI master,
and thus an arbiter may be deployed to arbitrate accesses
between the multiple devices (not shown).
0.091 In an alternate embodiment, an SSBI master may
be deployed to support both SBI and SSBI protocols, with
1-wire or 3-wire support, as desired. While such an embodi
ment is not detailed, those of skill in the art will readily adapt
the embodiments described herein to perform this Support, if
desired.

0092. The master device 220 depicted in FIG. 12 is one
example of a device Suitable to migrate from 3-wire tech
niques to Single wire techniques. Master device 220 is
capable of communicating with legacy 3-wire Slave devices,
using the SBI protocol. It is also capable of performing SSBI
communications with up to 3 different Single-wire Slave
devices, Such as slave device 230 shown in FIG. 13. If
desired, an SSBI master 1110 may be modified to support all
or part of the SBI protocol, as desired, for compatibility with
other devices.

Nov. 24, 2005

0093. One technique for migrating from a 3-wire SBI
interface to a single wire interface for a slave device 230 is
depicted in FIG. 14. In this embodiment, an SBIslave 1410
(which may be a new design, or may be any SBI compatible
device already designed) is coupled with SSBI slave con
verter 1420. Accesses are performed (writes to or reads
from) the slave device 230 via an interface with SBI slave
1410 (not shown). SBI slave device 230 communicates
using 3 wires, and the SBI protocol. The 3 wires are
intercepted by the SSBI slave converter 1420, which per
forms conversion required to allow Single-wire communi
cation. In this example, 3-wire communication is also Sup
ported, so that this slave 230 may communicate with either
an SBI or SSBI master. Example SSBI slave converter
embodiments are detailed below, and others will be apparent
to those of Skill in the art in light of the teachings herein. In
alternate embodiments of slave devices 230, an SSBIslave
may be designed to Support both protocols. One advantage
of designing a converter 1420, as shown in FIG. 14, is that
an existing slave device 230 may already be designed with
a 3-wire interface, and to speed time to market with a new
Single-wire interface, a converter may be simply inserted
into the device without the need to redesign the existing
COC.

0094) In the slave device 230 of FIG. 14, the SBCK input
is received via pad 1430 and delivered to SBCK IN of SSBI
slave converter 1420. The SBST input is received via pad
1440 and delivered to SBST IN of SSBI slave converter
1420. These inputs are used for SBI communication, and
may be used to enable SSBI mode otherwise (as detailed
further below). Pad 1450 receives and transmits SBDT in
SBI mode or SSBI DATA in SSBI mode. The pad input (PI)
connection to pad 1450 is connected to both SSBI DATA on
SSBIslave converter 1420 and SBDT IN of SBIslave 1410.
The pad output (PO) and output enable (OE) connections to
pad 1450 come from SBDT PO OUT and SBDT OE OUT
of SSBI slave converter 1420, respectively. SSBI slave
converter 1420 also receives a clock input, CLK, at SSBI
CLK, and a reset signal RESET. These signals may be

generated internally to Slave device 230, or may be gener
ated externally.

0.095 SSBIslave converter 1420 generates and receives
SBI signals for interfacing with SBI slave 1410. SBCK
OUT and SBST OUT are generated and connected to
SBCK and SBST of SBI slave 1410, respectively.
SBDT PO and SBDT OE are intercepted and received at
SSBI slave converter 1420 as SBST POIN and SBD
TOE IN, respectively.

0096) This example embodiment SSBI slave converter
1420 also generates other miscellaneous signals. SSBI
MODE indicates, when asserted, that the slave device 230

is operating in SSBI mode. Otherwise, the slave device is
operating in SBI mode. This signal is used for conversion,
detailed further below, and is delivered as an output for
optional use by external blockS. Signals for managing clock
disabling are also generated, which may be used to disable
and enable one or more clocks, for power Savings, or other
purposes. The signal TCXO DIS is asserted to disable a
clock. The signal RESET TCXO DIS is asserted to reen
able the clock. Example embodiments illustrating the use of
each of the signals depicted in FIG. 14 are detailed further
below.

US 2005/0259609 A1

0097. An SSBI Slave Converter block 1420 may deter
mine whether the slave is in 1-wire or 3-wire mode, in order
to mux between these modes. Mode determination may be
performed by examining SBCK and SBST from the pads
(i.e. pads 1430 and 1440). In 3-wire mode, there is never a
condition where SBST=1 and SBCK=0, hence that condi
tion may be used to assert SSBI MODE which controls
SBI/SSBI muxing. As mentioned above, in this example,
SSBI MODE is also output from the SSBIslave converter
1420 in case it is needed for various other purposes.
Example embodiments illustrating this functionality are
detailed below.

0098. A slave device 230, as shown in FIG. 14, may be
used for either 1-wire or 3-wire communication, as
described above. In an example embodiment, this slave
device 230 may be configured to Support only Single wire
SSBI communication. FIG. 13 depicts a slave device con
sisting of an SSBI slave 1310 that is used solely for SSBI
communication. FIG. 15 depicts a configuration in which a
slave device 230, comprising an SBIslave 1220 and an SSBI
slave converter 1420, as depicted in FIG. 14, may also be
deployed for SSBI mode only. In this example, the SBCK
input may be tied to ground. The SBST may be tied high.
This will indicate to the SSBIslave converter 1420 to remain
in SSBI mode. Note that no mode pin or other selection
device is needed. SSBI DATA may then be directly con
nected to the joint SBDT/SSBI DATA pad, and SSBI com
munication may then be carried out.
0099 FIG. 16 shows another embodiment, essentially
performing the same as shown in FIG. 15. In this example,
however, the pins for SBCK IN and SBST IN may be
removed (i.e. pads 1430 and 1440 are removed, or deployed
for other purposes). Internally to slave device 230, the
SBCK input to SSBI slave converter 1420 is tied low, and
SBST is tied high. Thus, a combination 1-wire/3-wire slave
may be designed, and with these simple modifications, the
extra pins for SBI mode are not needed. The remaining
connections are identical to those described with respect to
FIG. 14.

0100 A variety of techniques may be used to perform 1
wire to 3 wire conversion. The SSBI Slave Converter block
1420 examines the SBDT data stream and generates SBCK
and SBST therefrom. Various example embodiments,
detailed below, illustrate techniques for performing this
conversion. Among others, three issues may arise with
conversion. First, the data rates of the 1-wire Scheme should
be matched with the 3-wire Scheme. Second, a variable
number of register reads and writes in one transfer may be
supported. Third, slave SBI blocks may need to be effec
tively reset during a multiple access transfer.

0101 For the first issue, if the 1-wire and 3-wire schemes
adopt the same data rate, the issue is resolved transparently.
Otherwise, buffers may be deployed to accommodate vari
ance in the rates between the two schemes. Those of skill in
the art will recognize how to perform the correct buffering
in various embodiments, and Such buffering is not detailed
further herein. In example embodiments described below, a
common rate is shared between SBI and SSBI interfaces,
although other alternate embodiments are envisioned.
0102) For the second issue, 3-wire SBI protocols use
SBST to denote the start and end of a transfer, thus a given
transfer may contain one or many register reads and writes.

Nov. 24, 2005

With a 1-wire bus, it is necessary to inform the slave when
the last register access of a multi-access transfer is com
pleted. In one embodiment, a header may be added to each
transfer Specifying how many register accesses to expect.
This may introduce overhead. In an alternate embodiment, a
termination Symbol may be sent after the final register
acceSS is done. This also adds overhead, but the overhead
may be less than with a header. In embodiments detailed
below, a termination symbol will be deployed to resolve the
second issue. When the termination symbol is seen by a
receiver, it knows the transfer has ended and can enter the
idle state and wait for the next start bit. Such a termination
symbol will be optionally inserted when used for this mode
of operation, Specifically when interfacing with a slave that
needs to support both 3-wire and 1-wire protocols. The
termination Symbol need not be deployed in alternate con
figurations.
0103) A termination symbol needs to be unique from the
regular data Stream. In this example embodiment, the ter
mination Symbol is defined as a Sequence of high and low
values that alternate every clock cycle for 4 cycles. In
example embodiments detailed herein the Sequence is 101
0, but alternate Sequences will be apparent to those of Skill
in the art. Because the Signal alternates each clock cycle in
a termination Sequence, instead of every two clock cycles in
ordinary communication, it is distinguished uniquely from
anything else in the data Stream. Hence, the termination
Sequence (“T”) may be sent at any time. Example receiver
circuitry for detecting the termination symbol is detailed
below with respect to FIG. 34, which illustrates the wave
form on the data line including the termination Symbol.
0104 For the third issue, a slave SSBI block waits for the
termination Symbol to determine when the transfer is done.
Thus, it is possible for the master and Slave to get out of Sync
when the master goes into idle mode while the Slave is in the
middle of a transfer. In Such a Situation, the slave remains
indefinitely in this state until the end of the next transfer the
master initiates. So, to force the Slave into the idle State more
quickly, an option will be provided to arbitrarily transmit
termination Symbols. This technique is illustrated in detailed
embodiments below.

01.05 SSBI Master
0106. In any embodiment including an SSBI master, one
or more SSBI master blocks 1110 may be deployed. The
SSBI masters 1110 may be identical, or one or more of them
may be customized in Some way. In this Section, an example
SSBI master block 1110 is described. The ports for this
example are detailed in Table 2. Timing diagrams for write
and read procedures are detailed in FIGS. 17 and 18,
respectively. The interrelationship between the clocks in a
master and slave device is depicted in FIG. 19. FIGS. 20-22
detail portions of example logic Suitable for deployment in
the example SSBI master 1110. It will be clear to those of
skill in the art that these example embodiments Serve as
illustrations only, and various alternatives will be clear in
light of the teaching herein.
0107 An example SSBI Master may have the following
properties: It may operate with a pad (i.e. 1120) for SSBI
DATA with a keeper to ensure the Signal does not float and

a pulldown device that may be enabled (details not shown).
Modifications for alternate pad configurations will be appar
ent to those of skill in the art. A status bit may be provided

US 2005/0259609 A1

to allow software to determine if the current SSBI transac
tion has completed or not. For reads, the transaction may not
be considered completed until the requesting logic or Soft
ware application has read the returned data. A mode may be
provided such that an SSBI command may be held off until
a hardware enable Signal asserts, or else takes effect imme
diately if the enable signal is already asserted. This may be
useful when a read or write is to be performed at a known
time. For example, measurements of a Slave device may be
performed when the Slave device is in a consistent State. An
output signal indicating when a write has occurred may be
provided. Thus, the requesting logic or application may use
the knowledge of the completed write to perform Subsequent
actions. This may be useful when configuring Slave devices
such as RFICs that may need calibration, for example.
0108). The SSBI master 1110 is responsible for converting
a read or write request into the Signaling on the 1-wire SSBI
bus. This block is also responsible for de-Serializing read
register data from the SSBI bus. An optional SSBI arbiter
block (not shown) may be deployed for arbitrating requests
from multiple controlling parties (called hosts). An arbiter
may take requests from the hosts using the same Signaling
expected by the SSBI master 1110. An arbiter may perform
arbitration, allowing the winner's request to go through
while Stalling requests from the other hosts. Depending on
the host type, different logic may be used. The SSBI master
1110 may be used to provide an interface by which a host,
i.e. a microprocessor, can program accesses with the SSBI
through Software. A System deployed with three hosts, for
example, may be deployed using the building blocks of an
arbiter and one or more SSBI masters, while a system only
requiring one host may be deployed without an arbiter and
the host may interface directly with the SSBI Master bus
interface.

0109) As one example of the flexibility with which
embodiments may be deployed, a hardware parameter,
SSBI DATA WD, is defined for parameterizing various
SSBI blocks. The read/write timing waveforms described in
FIGS. 17-19, 24-25, 28, 33-34, and related figures corre
spond to SSBI DATA WD=8.
0110 FIGS. 17-22 illustrate one example SSBI master
1110 embodiment. This embodiment is suitable for deploy
ment when only the native SSBI formats need to be Sup
ported. Various modifications may be made for various
alternate embodiments. Modifications to this embodiment
are detailed for Supporting FTM transferS (an example of a
legacy SBI format) over the SSBI bus are described in an
alternate embodiment, detailed with respect to FIGS. 28-31,
below.

Port

SSBI CLK
RESET

SSBI DATA DELI1:0 Input

IDLE SYMS1:0 Input

SEL RD DATA1:0 Input
REO

Nov. 24, 2005

0111 AS described above, one or more of various types
of hosts may interface with an SSBI master 1110, with one
or more arbiters and other interface logic for communication
there with. In one example embodiment, one or more of the
hosts may be a microprocessor, DSP, other general or Special
purpose processor, or any other logic deployed for Such
interface. Input and output Signals and/or commands are
defined for clarity of illustration below, as shown in Table 2.
These input and output signals and commands are detailed
further below, along with example embodiments for pro
ducing or responding to them. Those of Skill in the art will
recognize various alternative interface designs that may be
deployed. AS Various hosts, Such as microprocessors, may
have varying interfaces for performing accesses Such as
writes, reads, and returning Status results and Signals, one of
skill in the art may readily modify the interface illustrated,
or determine appropriate logic for interfacing with one or
more hosts of various types. These details are omitted in the
following discussion for clarity. AS general examples, a host
may interface with an SSBI master using any combination of
read, write, data, address, and other Signals to generate
commands and Set parameters. Writing to or reading from
pre-defined registers, or bit locations therein, may be used
for Setting parameters or issuing commands, a technique
well known in the art.

0112 The SSBI master 1110 interfaces with the SSBI
bus. It receives signals describing the SSBI command to
perform, then generates or monitors the Serial SSBI data
stream. This example SSBI master is ambivalent about how
many entities (i.e. hosts) may initiate SSBI commands, and
any desired arbitration or muxing is dealt with external to
this block. In this example, the SSBI master idles until it
receives an access request or other command. It then asserts
an acknowledge line, performs the transaction, and, upon
completion of the access, generates a pulse on a done line,
indicating that it is ready to Start the next access. For both
reads and writes, the acknowledge Signal will pulse when the
transaction has been Sampled and is starting. Whatever logic
(i.e. host) made the request may then change the register
information (address, data, etc.) to prepare for the next
request and may assert the request line again if desired.
When the first access is completed, the done signal asserts.
While a write command may not require monitoring the
done signal, unless that information is useful for Some
portion of the requesting application, the done signal is
useful for Sampling the returned data for reads.

TABLE 2

SSBI Master Port Descriptions

Direction Description

Input Clock
Input Synchronized version of a reset signal

Specifies amount of delay of SSBI DATA IN
in /2 clock units
Specifies minimum number of idle symbols
between back to back transfers
Specifies which RD DATA value to select

Input Request asserts to inform interface to perform a
read or write, remains high until ACK asserts

US 2005/0259609 A1
10

TABLE 2-continued

SSBI Master Port Descriptions

Port Direction Description

READ Input Control signal indicating a request is to perform
a read

ADDR7:0 Input Slave register address for transfer
WR DATA Input Write data for slave register
SSBI DATA WD-1:0
OVR VALUE Input Value to be driven on SSBI DATA in override

mode
OVR MODE Input Control signal to enable override mode
SSBI DATA PDEN Input Pulldown enable for SSBI DATA pad; asserted

on reset; deasserted by subsequent command to

Nov. 24, 2005

carry on normal SSBI activity
SSBI DATA IN Input SSBI DATA input
SSBI DATA OUT Output SSBI DATA output
SSBI DATA OE Output Output enable for SSBI DATA pad
RD DATA Output Read data returned by slave register
SSBI DATA WD-1:0
ACK Output Pulses when the SSBI transaction has been

accepted and will start
DONE Output Pulses when the SSBI transaction has been

completed; may be used to sample RD DATA
for reads

STATE INV Output Inverse of STATE signal
READ REQ SERVED Output Set for duration read request is being served

0113 Timing diagrams for writes and reads are shown
separately in FIG. 17 and FIG. 18, respectively. The dis
cussion corresponding to these figures may be applied to the
example embodiment detailed further below with respect to
FIGS. 20-22. For both access types, a merged SSBI DATA
bus is shown instead of separate SSBI DATA IN and SSBI
DATA OUT. In an example configuration of pad circuitry,

anything on SSBI DATA OUT will appear on SSBI
DATA IN. For writes, SSBI DATA IN will be ignored.

For reads, SSBI DATA OUT is driven onto the SSBI
DATA pad only when SSBI DATA OE is asserted. The

waveform for SSBI DATA uses the notation RW to denote
the read/write bit (1 is read, 0 is write, in this example), A7
to A0 for the address bits, D7-D0 for the data bits (SSBI
DATA WD=8), and P for the pause bit. Note that alternate

embodiments may include Smaller or larger address Spaces,
as well as different data widths (i.e. SSBI DATA WD not
equal to 8).

0114. The SSBI master resets into an Idle state (indicated
on the STATE line) and remains there until it sees REQ
assert. The SSBI master then Samples the other input signals,
asserts ACK, and generates the Serial data Stream output
onto SSBI DATA. At the end of the access, DONE is pulsed
to indicate the conversion is complete. Once ACK asserts,
Starting in the following clock cycle, REQ can be asserted
for the next access. That access will be held off until the
current one completes. In this example, REO, ADDR,
WR DATA (for a write) and READ will reflect the param
eters for a next access until ACKasserts for that access (after
which the parameters may change for a Subsequent access).
In FIGS. 17 and 18, the second access (REQ and ACK) is
shown dotted. If the second request is made before the first
one completes, the SSBI master may start the next transfer
without any intervening idle Symbols. A Slave should not
need to See a low to high transition to detect the Start Symbol.
It should be content to sample the start symbol without a

prior idle symbol, hence the SSBI master may be designed
to support this option. However, in this embodiment, a
software programmable parameter, IDLE SYMS, is defined
to insert 1 to 3 idle symbols in between each transfer, as
desired.

0115) In FIG. 17, when REQ asserts, ADDR, WR DATA
and READ are sampled into a shift register (i.e. shift
registers 2130 and 2140, and flip-flop. 2110) along with a
start bit. STATE becomes SAMPLE.(1), and STB begins
toggling. STB acts as a counter enable causing BITCNT to
count symbols transmitted. All 18 bits of the transfer (the
start bit--READ+ADDR--DATA) are shifted by the shift
register every other clock cycle. During the Second half of
the last symbol (D0), DONE is pulsed. Another signal
introduced below, DONE DELX (not shown in FIG. 17)
may pulse at this time as well, or it may pulse IDLE SYMS
Symbol periods later. If there is no outstanding request,
DONE DELX resets STATE to Idle (0) and the SSBI master
waits for the next assertion of REQ. If there is an outstanding
request, the REQ signal is effectively observed during the
same cycle DONE DELX asserts, causing ACK to assert in
the Subsequent cycle, and keeping STATE at SAMPLE (1).
Such a transfer continues as described for the first transfer.

0116 FIG. 18 illustrates a read operation. The block
performs the same steps as for writes except that SSBI
DATA OE de-asserts once A0 has been transmitted. The

connected Slave device then has control of the bus to return
Slave register data. Once the Slave has returned Such data,
there is another pause bit, after which the master may drive
the bus again. The read bits enter a shift register (i.e. shift
registers 2130 and 2140), which is relatched in the cycle
preceding DONE assertion. This performed this way in this
example to prevent RD DATA from toggling unnecessarily,
Since RD DATA may be feeding large clouds of muxing or
other logic. Logic receiving RD DATA may sample it using

US 2005/0259609 A1

DONE as the enable. Subsequent requests may be handled
in Similar fashion as for writes, described above.

0117. One consideration is the time at which the SSBI
master should sample the SSBI DATA bus for the read bits.
In the ideal case, the SSBI DATA bus should appear to the
master as shown in FIG. 18. There may be various factors
at work to prevent this ideal Situation though: for example,
Sampling uncertainty at the receiver due to blind phase
detection, as well as various delays including pad, board,
and internal chip delayS.
0118 FIG. 19 illustrates these phenomena. The top
waveform shows SSBI CLKat the SSBI master. The second
pair of waveforms illustrates what SSBI DATA looks like at
the master and Slave devices assuming no delayS. The third
set of waveforms show what happens when there is % of an
SSBI CLK cycle of delay in each direction. The effect is
that the read data may appear on SSBI DATA at the master
device one full clock period later than in the case where
there are no delayS. In addition, the example Slave device
will sample the symbols somewhere between 25-75% into
its clock period. As a result, there is uncertainty in Sampling
the data at the right time on the master Side.
0119). In the example embodiment, some flexibility is
added in the SSBI master to mitigate against these effects.
There are two Software-programmed features that allow for
a robust System able to handle delays up to 3 clock periods.
0120) The first feature is delaying SSBI DATA IN. As
discussed above, the Sampling uncertainty at the Slave
device may not be adjusted for at the master device, assum
ing true blind phase detection. However, the delays for a
given SSBI port will be relatively fixed in a given system
deployment. As a result, if there is very little delay, the
Sampling point may be pulled in earlier. With relatively large
delays, the Sampling point may be pushed out. To accom
plish this easily in the example SSBI master, flexibility is
added to delay the incoming SSBI DATA IN signal by 0,
0.5, 1 or 1.5 clock periods. Then for all cases, the delayed
version of SSBI DATA IN will be sampled in FIG. 18 at
the end of the Symbol periods. In any given deployment,
other delays (including fewer or greater choices) may be
used (i.e. 0.5 and 1.5 cycles only).
0121 The second feature allows control of the BITCNT
cycle in which RD DATA returned by the slave device is
captured. In FIG. 18, it is shown that RD DATA is available
in cycle 19. However, the data may also be captured in a
cycle later then 19. The time when the SSBI master again
takes control of the SSBI DATA line may also be adjusted
so as to give time for RD DATA to be ready. This feature is
controlled based on the parameter SEL RD DATA. For
example, when SEL RD DATA=00, the numbers in bold in
FIGS. 20 and 22, detailed below, are used as shown. When
SEL RD DATA=01, these numbers are incremented by 1.
0122) These settings may be selected using a variety of
techniques. One technique is for the designer to carefully
look at the timing and understand the various delayS. Alter
natively, a trial and error approach may be adequate. For
example, a procedure may simply read a slave register
expecting a particular value, then adjust the Setting if the
value returned is incorrect.

0123 FIGS. 20-22 illustrate example circuitry suitable
for deployment in an example SSBI master 1110. Various

Nov. 24, 2005

modifications and alternatives will be apparent to those of
skill in the art in light of the teaching herein. The top of FIG.
20 illustrates logic for delaying SSBI DATA IN based on
SSBI DATA DEL, SSBI DATA IN DEL is generated as
follows. SSBI DATA is fed into flip-flops 2010 and 2030.
Note that all clocked devices in FIGS. 20-22 are clocked by
SSBI CLK, or its inverse (shown with the conventional
notation of a bubble in front of the clock input). Note that
flip-flop 2010 is clocked with the inverse of SSBI CLK, and
flip-flop 2030 is clocked with SSBI CLK directly. The
output of flip-flop 2010 is directed to the input of flip-flop
2020. SSBI DATA IN is delivered to one input of mux
2040, as are the outputs of flip-flops 2010-2030. SSBI
DATA DEL is used to select one input of mux 2040 as the

output, or SSBI DATA IN DEL.
0.124 Below, in FIG. 20, is logic for generating
DONE DELX based on IDLE SYMS. In this example,
DONE DELX is formed in logic 2050 as the AND of STB
and the OR of (NOT SREAD AND BITCNT=17+IDLE
SYMS) and (SREAD and BITCNT=19+IDLE SYMS).

Recall that numbers in bold correspond to SEL RD DATA=
0, and the numbers may be modified for other values, as
described above.

0.125 FIG. 21 shows the entire shift register chain
described above with respect to FIGS. 17 and 18. Starting
at the lsb, this chain is composed of a SSBI DATA WD bit
shift register 2140, a 9-bit shift register 2130 and a single
register (or flip-flop) 2110 that drives SSBI DATA OUT. In
this example, the one bit register 2110 is initially pre-loaded
with the start symbol. The signal REQP is used to latch the
request information into the shift register chain. The 9-bit
shift register 2130 is pre-loaded with the read/write bit and
the address bits (the & indicates concatenation). The SSBI
DATA WD bit shift register 2140 is pre-loaded with write

data for write operations or all O’s for read operations. The
0S ensure that at the end of a read operation, a 0 ends up in
the one bit register 2110 feeding SSBI DATA OUT, which
is used for the Idle state in this example. The signal STB is
used to enable the shift register chain to shift. During a
transfer, STB will assert every other clock cycle (detailed
further below).
0.126 The shift input to shift register 2140 is determined
as the output of mux 2150, which selects a 0 when SSBI
DATA OE is asserted, and SSBI DATA IN DEL other

wise. The parallel output of shift register 2140 may be made
available as RD DATA PRE. The shift output of shift
register 2140 is connected to the shift input of shift register
2130. The shift output of shift register 2140 encounters
additional logic in this example, to illustrate another
optional feature. An override mode is defined to allow the
value indicated by parameter OVR VALUE to override the
OR 2120 of the shift output of shift register 2130 with REQP
(used in normal SSBI operation) when OVR MODE is
asserted, which, in this example, is Selected in muX 2160.
The output of mux 2160 is delivered to the input of flip-flop
2110 (shown as a flip-flop resettable by RESET). The output
of flip-flop. 2110 produces SSBI DATA OUT.
0127 FIG. 22 illustrates additional control logic for
SSBI master 1110. Once STATE is 1 (the output of Set/Reset
(SR) flip-flop. 2220), the counter 2228 for generating
BITCNT is enabled. For writes, the shift register chain
(2110, 2130, and 2140) is enabled every other clock cycle

US 2005/0259609 A1

until all the data goes out, while 0’s are shifted into the
chain. For reads, the start symbol and address bits are shifted
out, while O's are shifted in. However, when it is time to
sample incoming read data, SSBI DATA IN DEL is
sampled by the SSBI DATA WD bit shift register 2140
used for write data. Once all bits of the read data have been
shifted in, they are available on RD DATA PRE and
relatched in register 2208 to generate RD DATA in the cycle
before the DONE assertion. This enable is formed as the
AND of SREAD, NOT STB, NOT RESET, and BITCNT=
19.

0128 STATE is generated as the output of SR flip-flop
2220. The set input to SR flip-flop 2220 is formed as the
AND 2216 of REOP and NOT RESET. The reset input to SR
flip-flop 2220 is formed as the OR 2218 of DONE DELX
and RESET.

0129. STB (also labeled as CNT EN) is formed as the
output of resettable flip-flop 2224. The input to this flip-flop
is the inverse 2226 of its output, thus the creation of STB
alternating every clock cycle when the flip-flop is not being
reset. The reset input is formed as the OR 2222 of REQPand
NOT STATE

0130 BITCNT (a 5-bit signal in this example, alternate
embodiments may provide different parameters requiring
alternate values throughout FIGS. 20-22) is formed as the
output of counter 2228. The reset of counter 2228 is identical
to the reset of flip-flop 2224. The enable of counter 2228 is
CNT EN (or STB), which allows for counting during a
transmission or reception, as described above.
0131 SREAD is formed as the output of flip-flop 2210,
which is reset via signal RESET. Flip-flop 2210 is enabled
with REQP. The D input to flip-flop 2210 is READ.
0132) In this example, a signal READ REQ SERVED is
generated for use by other logic as the AND 2230 of SREAD
and STATE.

0133) REQP is formed as the AND 2204 of REQ and the
OR 2202 of NOT STATE (STATE INV) and
DONE DELX. REQP is delayed by a clock cycle in flip
flop 2206 to produce ACK.
0134. In this example, upon reset, STATE and SSBI
DATA OUT will synchronously clear. SSBI DATA P
DEN asynchronously sets causing SSBI DATA OE to go
low. In this example, when a Software application initiates
Some SSBI activity, it writes to a control register, or uses
Some alternate signaling technique, to reset the SSBI
DATA PDEN bit. This changes SSBI DATA OE to 1

and the SSBI master 1110 starts driving “0” on SSBI DATA
(as detailed above). Thus, SSBI DATA OE is formed as the
AND 2214 of NOT SSBI DATA PDEN and the output of
flip-flop. 2212. Flip-flop. 2212 is reset with RESET Flip-flop
2212 is enabled by STB. The D input to flip-flop 2212 is
formed by the OR of BITCNT-9, BITCNTs=19, and NOT
SREAD

0135) Again, recall that numbers in bold correspond to
SEL RD DATA=0, and the numbers may be modified for
other values, as described above. All the registers in FIG.22
are clocked with SSBI CLK.
0.136) SSBI Slave
0137 FIG. 23 depicts an example embodiment of SSBI
slave 1310. Example SSBI slave bus interface port descrip
tions are detailed in Table 3. In this example SSBIslave bus

Nov. 24, 2005

interface 2310 is connected with slave registers block 2320.
The single wire SSBI data bus is connected with a pad (not
shown), and incoming data is delivered to SSBI slave bus
interface 2310 on SSBI DATA IN. Outgoing data is deliv
ered on SSBI DATA OUT, with the directionality of the
pad controlled via SSBI DATA OE. The SSBI CLK signal
is delivered as a clock to SSBI slave bus interface 2310.
Slave registers block 2320 may also receive SSBI CLK, but
it is optional (an optional mechanism for determining
whether or not the SSBI CLK is operational is detailed
below). Slave register accesses are made between SSBI
slave bus interface 2310 and slave registers 2320 via the
ADDR, WR STB, WR DATA, and RD DATA signals. The
outputs of the slave registers are delivered for use by the
slave device 230. Read values from the slave device 230 are
delivered to slave registers 2320 for access via the SSBI bus.
0138. The SSBI Slave Bus Interface 2310 is responsible
for doing Serial to parallel conversion on the 1-wire bus
Signal and converting it into a read or write request. This
request is Sent to slave registers block 2320, which contains
the write registers and is responsible for muXing read
registers. This example configuration is one embodiment
that has the advantage that the SSBIslave bus interface 2310
may be designed to be identical for various Slave designs,
while logic that is particular to a slave is deployed in Slave
registers block 2320. Various alternatives may also be
deployed.

0139 SSBIslave bus interface 2310 examines the SSBI
DATA line for the start symbol, which denotes the start of

a transfer. It then looks at the first symbol to determine if it
is a read or write, then Scans in the address bits. Once all the
address bits are scanned in, they are fed out as ADDR to the
slave registers block 2320. For a write, the data bits are
shifted in and then fed as WR DATA to the slave registers
block 2320 along with a strobe, WR STB. WR STB is used
by the slave registers block 2320 to sample the address
(ADDR) and data (WR DATA) fields. For a read, after
ADDR is passed to the slave registers block 2320, during the
pause bit the SSBI read register data (RD DATA) is sampled
by the SSBIslave bus interface 2310 and then shifted out bit
by bit onto the SSBI bus. Once a single transaction is
complete, the SSBIslave bus interface 2310 awaits the next
start bit.

0140. In this example, multiple transactions terminated
with a termination symbol (such as BTM, described above)
are disallowed. This configuration provides simplified
design (less hardware, fewer cases to test), and is Suitable for
deployment when there is little advantage to allowing mul
tiple transfers, i.e. the overhead for an individual transfer is
relatively small. Alternate embodiments may allow for mul
tiple transactions terminated with a termination Symbol.
0.141. In alternate embodiments, other versions of the
SSBI slave bus interface 2310 may be deployed. One
difference may be in the number of output ports. A configu
ration may have one set of ADDR, WR STB, WR DATA,
and RD DATA, or additional sets of these signals. By
including additional Sets, multiple banks of read and/or write
registers may be accessed independently. Another option is
to have either a bidirectional databuS or Separate buses for
read and write data. Various other alternatives will be
apparent to those of skill in the art. For clarity of discussion,
the example embodiments detailed below will comprise a
single set of ADDR, WR STB, WR DATA, and
RD DATA, with separate buses for read and write data.

US 2005/0259609 A1
13

TABLE 3

SSBI Slave Bus Interface Port Descriptions

Nov. 24, 2005

Port Direction Description

SSBI CLK Input Clock
RESET Input Synchronized version of a reset signal
SSBI DATA IN Input SSBI DATA input from chip pad
SSBI DATA OUT Output SSBI DATA output to chip pad
SSBI DATA OE Output Output enable for SSBI DATA pad
ADDR7:0 Output Latched SSBI address
WR STB Output Write strobe; May be used as clock for SSBI

write registers
WR DATA Output Latched SSBI register write data
Port Direction Description
SSBI DATA WD-1:0
RD DATA Input Muxed SSBI register read data; sampled before
SSBI DATA WD-1:0 ADDR changes
TCXO DIS Input 0 in normal operation; 1 when SSBI CLK is

off, may be stored in a slave register
RESET TCXO DIS Output Used to reset TCXO DIS register bit

0142 Writes and reads are shown separately in FIG. 24
and FIG. 25, respectively. The discussion corresponding to
these figures may be applied to the example embodiment
detailed further below with respect to FIGS. 26-27. The
read/write timing is described for the case when SSBI
DATA WD is 8. Alternatives for SSBI DATAWD are

described with respect to FIGS. 26-27. For both access
types, a merged SSBI DATA bus is shown instead of
separate SSBI DATA IN and SSBI DATA OUT. In an
example configuration of pad circuitry, anything on SSBI
DATA OUT will appear on SSBI DATA IN. For writes,

SSBI DATA IN will be ignored. For reads, SSBI
DATA OUT is driven onto the SSBI DATA pad only when

SSBI DATA OE is asserted. The waveform for SSBI
DATA uses the notation RW to denote the read/write bit(1

is read, 0 is write, in this example), A7-AO for the address
bits, D7-D0 for the data bits, and P for the pause bit. Note
that alternate embodiments may include Smaller or larger
address spaces, as well as different data widths (i.e. SSBI
DATA WD not equal to 8).

0143. In FIG. 24, when the start bit is found,
FOUND ST goes high. It is generated through logic that,
when STATE is Idle (0), simply samples SSBI DATA every
clock cycle until a high is found. FOUND ST is generated
a half clock cycle later to allow for metastability resolution.
FOUND ST causes STATE to become Sample (1), which in
turn allows STB to toggle. STB, in turn, causes BITCNT to
increment. STB is used as an enable to sample the symbols
into the shift register (i.e. 2628). The shift register has a
number of bits indicated by INPUT DATA SIZE. This
constant has a value that is the larger of 8 or SSBI
DATA WD. BITCNT (i.e. 2646) keeps track of how many

bits have been sampled. Once all the address bits are latched
in (denoted by BITCNT=8), the contents of the shift register
are relatched (i.e. 2634) and output onto ADDR. This
relatching is optional, the purpose of which is to conserve
power in the Slave registers block, since ADDR will poten
tially feed a reasonably large amount of muX logic. Simi
larly, once all the data bits are latched in (denoted by
BITCNT=16), the contents of the shift register are relatched
(i.e. 2636) and output onto WR DATA. WR STB is pulsed
so the slave registers block 2320 knows to perform the write.

DONE asserts when BITCNT=17, to reset STATE to Idle
(0), So the process may repeat if needed.

014.4 FIG. 25 illustrates a read operation. The block
performs the same StepS as for writes through to outputting
the address on ADDR. Not shown in the previous figure,
RD DATA may be muxed based on ADDR, so even for
writes, RD DATA may potentially change when ADDR
changes, even though it is ignored. During the BITCNT=9
cycle, RD DATA is sampled into a shift register (i.e. 2660),
and shifted bit by bit onto the SSBI DATA OUT line.
SSBI DATA OE asserts to indicate when to drive data onto
the SSBI DATA pad and remains high until all the data has
been shifted onto the bus. DONE asserts when BITCNT=19,
to reset STATE to Idle, so the process may repeat if needed.

0145 Note that read data is output a full clock cycle early
(% a symbol period). This reduces the effectiveness of the
pause bit between the address and read data. In this case,
there is one clock cycle of nonoverlap time. An advantage of
this approach is that if SSBI read data is shifted out when
SSBI write data would be seen, from the point of view of the
master, the read data will appear late due to the round trip
delay. By outputting the read data early, it will be offset by
the round trip delay, making it appear closer to when the
master really expects to see it.

0146 Because of blind phase detection, there is no guar
antee that SSBI CLK will be lined up with SSBI DATA as
shown in the figures. The figures show SSBI CLK at one
extreme, perhaps the “best case”. The “worst case” will be
such that the start bit is found one full clock cycle later,
resulting in all the signals (except SSBI DATA) being
shifted to the right by one clock cycle. This does not
introduce a problem. Instead of sampling the symbols 25%
into the symbol period, they will be sampled 75% into the
symbol period. For reads, instead of driving SBI read data/3
symbol period early, it will be /2 symbol period late. This
one cycle of variability is reduced to half a cycle, by using
the LATE Signal. It is generated by the circuit Similar to the
one for FOUND ST (both detailed further below), except

US 2005/0259609 A1

that it works on opposite clock edges. When LATE is 0,
SSBI DATA OUT and SSBI DATA OE are delayed by
half a clock cycle before being used. When LATE is 1, they
are used as is. The circuitry associated with the LATE Signal
also exists for the SSBI slave converter 1420, introduced
above and detailed further below with respect to FIGS.
32-35.

0147 Another optional feature may be included such that
the master device 220 may disable the slave clock by setting
some slave register bit, denoted here as TCXO DIS. When
this bit is set, the slave SSBI CLK will turn off. To enable
the clock again, the master device transmits the Sequence 0
to 1 to 0 to the slave. This is captured by the slave, which
generates the RESET TCXO DIS signal. This signal resets
TCXO DIS, which in turn again enables the SSBI CLK for
the slave. This feature allows the master to put the SBIslave
device in Sleep mode and hence Saves power (detailed
further below).
0148 FIG. 26 illustrates example circuitry suitable for
deployment in an example SSBI slave bus interface 2310.
Various alternatives for the control mechanisms shown may
be deployed, using any combination of logic, State
machines, microcode, Software, and the like. In this
example, BITCNT denotes the various states required. Note
that the control signals depend on SSBI DATA WD, and
may change in accordance with changes thereon.
014.9 The parameter INPUT DATA SIZE is computed
as the maximum 2614 of 8 and SSBI DATAWD. In the
example embodiment, both parameters are known apriori
and used to generate a specific logic configuration for the
selected SSBI DATA WD parameter. An alternate embodi
ment may be deployed to accommodate programmable
values for SSBI DATA WD. Thus, for example, the bit
selections for the inputs to registers 2632-36 may include
logic before and after to accommodate programming
changes. Another option is to have a programmable ADDR
size, with Similar changes for accommodating different
values of ADDR. These details are not shown. Those of skill
in the art will readily adapt these and other options in light
of the teaching herein. For clarity of discussion, the follow
ing assumes a set SSBI DATAWD and INPUT DATA
SIZE for a given deployment.
0150. Note that all clocked devices in FIG. 26 are
clocked by SSBI CLK, or its inverse (shown with the
conventional notation of a bubble in front of the clock
input). Unless otherwise noted, the registers detailed below
are clocked by SSBI CLK.
0151. In this example, locating the start bit is performed
as follows. SSBI DATA IN is latched by flip-flop. 2602 with
inverted SSBI CLK and by flip-flop 2610 with SSBI CLK.
The output of flip-flop 2602 is latched by flip-flop. 2604 with
SSBI CLK to produce FOUND ST_N. The output of flip
flop 2610 is latched by flip-flop 2612 with inverted SSBI
CLK to produce FOUND ST. All four flip flops are reset

by the OR (2606, 2608) of STATE and RESET EFF.
FOUND ST N is latched by flip-flop. 2618 to produce
LATE, enabled by the AND 2616 of FOUND ST and NOT
STATE. FOUND ST is latched by flip-flop. 2622 to produce
STATE, clocked by the inverse of SSBI CLK. Flip-flop
2622 is asynchronously reset by RESET EFF. The enable
for flip-flop 2622 is determined by the output of mux 2620,
which selects DONE when STATE is asserted and
FOUND ST otherwise.

Nov. 24, 2005

0152) DONE is determined as the AND 2626 of STB and
the OR 2624 of two inputs. The first input to OR 2624 is the
AND of NOT READ and BITCNT=9+SSBI DATA WD.
The second input to OR 2624 is the AND of READ and
BITCNT=11+SSBI DATA WD.
0153. SSBI DATA IN is shifted into shift register 2628
with the inverse of SSBI CLK, enabled by the AND 2630
of NOT STB and STATE. The parallel output of shift
register 2628 is of size INPUT DATA SIZE. The least
Significant output bit is latched in register 2632, enabled by
the AND of STB and BITCNT=1, to produce READ. The 8
least significant output bits are latched in register 2634 to
produce ADDR, enabled by the AND of STB and BITCNT=
9. The output bits SSBI DATA. WD-1 to 0 are latched in
register 2636 to produce WR DATA, enabled by the AND
of NOT READ, STB, and BITCNT-9--SSBI DATA WD.
This enable signal is also latched in register 2638 to produce
WR STB, asynchronously reset by RESET EFF.
0154). STB is formed as the output of flip-flop 2640,
taking its input as NOT STB, and reset by NOT STATE.
NOT STB is formed by inverter 2644 inverting STB. NOT
STB is latched in flip-flop 2642 to produce NOT STB D.
The output of counter 2646 forms BITCNT, which is reset
by the OR of NOT STATE and DONE, and enabled by STB.
O155 The optional clock disabling circuit, described
above, is implemented in this example as follows. TCXO
DIS is latched in flip-flop 2648, clocked by SSBI
DATA IN. The output of flip-flop 2648 is latched by

flip-flop 2650 to produce RESET TCXO DIS, which is
clocked by NOT SSBI DATA IN. Both flip-flops are reset
asynchronously by RESET.
0156 RESET EFF is formed as the output of flip-flop
2672, the input of which is the output of flip-flop 2670. The
input to flip-flop. 2670 is the output of flip-flop. 2668, which
takes a '0' as its input. All three flip-flops are asynchronously
set by the OR 2666 of TCXO DIS and RESET,
O157 SSBI DATA OUT is selected via mux 2664 as the
shift output of shift register 2660 when LATE is asserted.
SSBI DATA OUT is selected via muX 2664 as the output of
flip-flop. 2662 when LATE is not asserted. Flip-flop. 2662
takes as its input the shift output of shift register 2660,
clocked by the inverse of SSBI CLK. The parallel input to
shift register 2660 is the SSBI DATAWD wide RD DATA
input. The shift input to shift register 2660 is a '0'. Shift
register 2660 is loaded by the AND of READ, NOT STB,
and BITCNT=9. Shifting of shift register 2660 is enabled by
the AND 2658 of NOT STB D, READ, and SSBI
DATA OE REG.
0158) SSBI DATA OE is selected via mux 2656 as
SSBI DATA OE REG when LATE is asserted. SSBI
DATA OE is selected via mux 2656 as the output of

flip-flop. 2654 when LATE is not asserted. Flip-flop. 2654
takes as its input SSBI DATA OE REG, clocked by the
inverse of SSBI CLK. SSBI DATA OE REG is formed as
the output of flip-flop. 2652. The input to flip-flop. 2652 is the
AND of READ, BITCNTs=10, and BITCNT-(9+SSBI
DATA WD). Flip-flop 2652 is enabled by STB, and asyn

chronously reset by RESET EFF.
0159 FIG. 27 depicts example logic suitable for deploy
ment as slave registers block 2320. In this example, SSBI
DATA WD is set to 8 for illustrative purposes. Register

US 2005/0259609 A1

2710 is an example register for Storing an output
WR REGXXX DATA. It receives WR DATA as its input,
which may be clocked by WR STB. Many write registers
may be deployed, and XXX may be Substituted with an
appropriate identifier. Note that for a particular address, not
all of the WR DATA bits may need to be latched, and thus
the corresponding Storage elements may be eliminated. An
enable signal for each register 2710 may be enabled accord
ing to the corresponding address, controlled by ADDR
(details not shown). In an alternate embodiment, SSBI CLK
may be used as the clock, with WR STB incorporated in an
enable signal. The various WR REGXXX DATA outputs
may be delivered to the slave device 230, as desired.
0160 RD DATA is formed, in this example, by the
output of mux logic 2720, selected in accordance with
ADDR. Various mux implementations may be deployed,
Such as traditional multiplexers, combinatorial logic, tri
state bus techniques, and the like. The inputs to mux 2720
are n input signals denoted RDREG0 DATA-RDREGn
DATA, and are assigned according to the corresponding

address designations. These inputs may come from any
where within the slave device 230, as desired.

0161 SSBI Master Supporting FTM
0162 This section illustrates an example embodiment of
an SSBI master 1110 adapted to support SBI FTM mode,
detailed above. FIGS. 28-31, and their corresponding
descriptions, detail the changes required in the example
SSBI Master described with respect to FIGS. 20-22, above,
to support FTM commands over a single wire bus. This
SSBI master 1110 is capable of supporting both SSBI
Commands and FTM commands (the mode selected based
on a configuration bit called FTM MODE). Table 4 shows
additional ports for this example embodiment, which may be
combined with the ports of Table 2.

TABLE 4

Modified SSBI Master Port Descriptions

Port Direction Description

DISABLE TERM SYM Input In FTM mode, when set, will
suppress the termination symbol
from being sent to the Slave
at the end of transfer

SEND TERM SYM Input In FTM mode, pulses to send
just the termination symbol to
the Slave

FTM MODE Input FTM mode enable bit
SLAVE ID5:0 Input Input Slave ID

0163) The signal FTM MODE, when set, indicates an
access will be in FTM mode. For non-FTM mode accesses,
the waveforms and circuit may be Similar to the non
modified circuit, described above with respect to FIGS.
17-22. At a high level, to support FTM mode, the following
changes need to be made: First, the command format will
match FTM mode for 3-wire mode. Second, the circuit
needs to identify when a burst of transferS is completed So
it can send a termination symbol. Third, IDLE SYMS will
specify the number of idle symbols in between two bursts,
rather than between individual accesses.

0164. To simplify the following description, the term
access will be used to refer to an individual read or write.

Nov. 24, 2005

The term burst will be used to refer to a sequence where a
Slave ID is transmitted, followed by one or more accesses,
then terminated by transmitting a termination Symbol. Alter
nate embodiments may implement alternatives to the termi
nation Symbol, examples of which are given above. Thus, a
burst may have one access or several. Note that in non-FTM
mode, there are no bursts. All accesses are treated as Single
CCCSSCS.

0.165 For a burst, the first access is preceded with the
transmission of the start bit, mode bits and slave ID. Sub
Sequent accesses may be made without these transmissions.
A signal CONT is defined, an example of which is detailed
in FIG. 31 (as the output of flip-flop 3110), and is used to
denote whether an access is the first access (O) or a later
access (1). CONT asserts in the same cycle that REQP
would assert for the Second acceSS and will remain asserted
until the termination symbol is sent. In this way, CONT may
be used to configure the shift chain correctly to bypass the
start bit, mode bits and slave ID (detailed further below).
0166 As the first access completes, CONT asserts and
DONE pulses. REQ may be examined while DONE is high
to determine if there is a Subsequent access in this burst. If
So, ACK pulses, the new parameters are latched into the Scan
chain as normal, except that the Scan chain will be config
ured to bypass the mode bits and slave ID. Also, BITCNT
will be pre-loaded with 10 instead of 0, since the start bit,
mode bits, slave ID and first pause bit are skipped. DONE
asserts for each access as it completes.

0167 At the end of a burst (whether it includes one
transfer or a bunch of transfers), a termination symbol needs
to be output. TERM asserts for the duration the termination
symbol is sent. During this time, BITCNT needs to incre
ment every cycle instead of every other cycle and the pattern
output is 1010. Alternate embodiments may utilize alternate
termination Symbol patterns. Once the termination Symbol
has been sent, an internal "done” signal, DONE DELX,
needs to be generated and delayed according to IDLE
SYMS Such that the next burst can start when available.
FIG. 28 illustrates the waveforms showing the end of an
example burst. Note that, in this example embodiment, STB
pulses twice during the termination Symbol, although it may
be ignored by the circuit (detailed further below).
0168 FIGS. 29-31 illustrate example circuitry suitable
for deployment in an example SSBI master 1110, modified
to support FTM mode. Various other modifications and
alternatives will be apparent to those of skill in the art in
light of the teaching herein.

0169 FIG.29 illustrates the modified logic dependent on
the configuration parameters. SSBI DATA IN DEL gen
eration is the same as in the original circuit. DONE DELX
generation differs based on FTM MODE. In FTM MODE,
this signal pulses at the end of a burst. Since at that time,
BITCNT increments every clock cycle, STB can be ignored.

0170 AS in FIG. 20, the top of FIG. 29 illustrates logic
for delaying SSBI DATA IN based on SSBI DATA DEL.
SSBI DATA IN DEL is generated just as in FIG. 20.
SSBI DATA is fed into flip-flops 2010 and 2030. Note that
all clocked devices in FIGS. 20-22 are clocked by SSBI
CLK, or its inverse (shown with the conventional notation

of a bubble in front of the clock input). Note that flip-flop
2010 is clocked with the inverse of SSBI CLK, and flip-flop

US 2005/0259609 A1

2030 is clocked with SSBI CLK directly. The output of
flip-flop 2010 is directed to the input of flip-flop 2020.
SSBI DATA IN is delivered to one input of mux 2040, as
are the outputs of flip-flops 2010-2030. SSBI DATA DEL
is used to select one input of mux 2040 as the output, or
SSBI DATA IN DEL.

0171 Again, DONE DELX is based on IDLE SYMS.
As in FIG.20, logic 2050 produces AND of STB and the OR
of (NOT SREAD AND BITCNT=17+IDLE SYMS) and
(SREAD and BITCNT=19+IDLE SYMS). Mux 2910 is
added to produce DONE DELX. DONE DELX is selected
as the output of logic 2050 when FTM MODE is not
asserted, and as BITCNT=31+IDLE SYMS when FTM
MODE is asserted. Recall that numbers in bold correspond

to SEL RD DATA=0, and the numbers may be modified for
other values, as described above. AS before, for Simplicity,
all the numbers correspond to the case when SSBI
DATA WD=8.
0172 Most of the modifications to the logic design
pertain to the shift register chain, which are shown in FIG.
30. This chain is extended Such that it can store the mode bits
(O1) and SLAVE ID, along with pause bits, which are
present after every set of 8 bits. These additional pause bits
are treated as transmissions (the data values themselves are
irrelevant) as opposed to tri-stating the bus (like a prior art
SBI block may have done). There is no longer a need to
tri-state the bus every 8 symbol periods.

0173 This example modified shift register chain is bro
ken up as follows. SSBI DATA OUT is still produced as the
output of register 2110, which is used to hold the start bit for
the first access of a burst or READ for Subsequent accesses
of a burst. Register 2110 is still reset with RESET. The
enable is modified from FIG. 21, and is formed as the OR
of REQP, STB, OVR MODE, TERM and EN TERM
CNT. The modification is the addition of the TERM and
EN TERM CNT signals into the OR logic. The input is
taken from mux 3004 (compared with mux 2160 in FIG.
21), and is used to select shift values based on the mode,
detailed further below.

0174. Two shift registers 3014 and 3016 are deployed
which are 8 and 2 bits wide, respectively. The 8-bit shift
register 3014 stores the mode bits (01) and SLAVE ID. The
2-bit shift register 3016 stores the pause bit and READ bit
for the first access in FTM MODE, or stores the READ bit
and address bit 7 when not in FTM MODE. This input is
labeled SHIFT2LDVAL, which is formed as the output of
mux 3028, detailed further below. The 7-bit shift register
3018 stores the lower 7 bits of the address (recall that in the
SBI protocol, only 7 bits of address are used). Note that shift
registers 3016 and 3018 take the place of shift register 2130
(shown in FIG. 21) when not in FTM mode. The three shift
registers form a Single chain, in that the shift output of shift
register 3018 is connected to the shift input of shift register
3016, and the shift output of shift register 3016 is connected
to the shift input of shift register 3014. All three shift
registers 3014-3108 are enabled with STB, and loaded with
REOP.

0175 Shift register 2140 is identical to FIG. 21. The
SSBI DATA WD bit shift register 2140 is pre-loaded with
write data for write operations or all O’s for read operations.
The shift input to shift register 2140 is determined as the
output of mux 2150, which selects a 0 when SSBI
DATA OE is asserted, and SSBI DATA IN DEL other

wise. The parallel output of shift register 2140 may be made

Nov. 24, 2005

available as RD DATA PRE. As with the other shift reg
isters, shift register 2140 is loaded with REQP and enabled
with STB.

0176) Register 3022 is added for use in FTM MODE to
store a pause bit. Register 3022 is reset by REQP. The final
pause bit for FTM mode isn't directly stored, but is shifted
in to register 3022 from the shift output of shift register
2140.

0177 Since this SSBI master supports normal SSBI
mode accesses as well as FTM mode, various muXes are
used to either Select or bypass additional bits required for
FTM mode. Additionally, in FTM MODE, extra logic is
used to bypass the mode bits, slave ID, and pause bit during
the Second and additional accesses of a burst, in accordance
with the signal CONT.
0178 Mux 3020 is used to select the output of register
3022 as the shift input to shift register 3018 when in FTM
mode. Otherwise, register 3022 is bypassed, and the output
of shift register 2140 is selected.
0179 SHIFT2LDVAL is produced as the output of mux
3028. In FTM mode, READ is concatenated to form the
2-bit value. Otherwise, READ is concatenated with
ADDR(7) (as in FIG. 21) to form the 2-bit value.
0180. Mux 3010 is selectable with FTM MODE to
bypass or include shift register 3014 in the shift chain. In
FTM mode, the shift out of shift register 3014 is selected. In
non-FTM mode, the output of shift register 3016 is selected.
The output of mux 3010 is delivered to OR gate 2120, along
with REQP, as described with respect to FIG. 21. The output
of OR gate 2120 is the bitstream for normal SSBI operation,
and for the first access in FTM mode (not including the
termination portion of the access, when applicable).
0181 Mux 3006 selects various bitstreams depending on
the current mode. The Select line is formed as the concat
enation of TERM and CONT (shown as TERM & CONT).
In SSBI mode, TERM and CONT will always be deasserted,
so the output of OR gate 2120 is selected. The output of OR
gate 2120 is also selected in FTM mode for the first access,
in which case the termination Symbol is not yet to be sent
(TERM is not asserted) and a continuing access is not in
progress (CONT is not asserted).
0182 Prior to termination, and during second and Sub
sequent accesses, CONT will be asserted, so mux 3006 will
select the output of mux 3012. Mux 3012 is used for FTM
mode, and may be used to bypass the mode bits, Slave ID,
and pause bit during the Second and additional accesses of
a burst. When REOP is asserted, READ is selected as the
output of mux 3012, otherwise the shift output of shift
register 3018 is selected.
0183 Since, in this example, the termination symbol
toggles every clock cycle, the termination Symbol is formed
by inserting the termination Symbol bits cycle-by-cycle into
the final register 2110 feeding SSBI DATA OUT, TERM is
used to identify when the termination symbol is sent. This is
implemented by feeding NOT CNT EN into register 2110
as it toggles every cycle (using the inverse of CNT EN as
the input allows the output of register 2110 to be in-phase
with CNT EN). As described above, register 2110 is
enabled every clock cycle, due to the TERM signal in the
OR logic feeding the enable.
0184. In this example, there are two special cases regard
ing the termination Symbol. First, to SuppreSS Sending a
termination symbol to slave, DISABLE TERM SYM may

US 2005/0259609 A1

be asserted. One example for using this feature is to Stop
slave SSBI CLK by writing to the slave register bit, TCXO
DIS, as described above. After the write completes, there

should be no activity on SSBI DATA until the time the slave
clock is to be enabled again. After this Special access,
DISABLE TERM SYM may be used to block NOT
CNT EN from being sent to final register 2110 feeding
SSBI DATA OUT. Thus, when TERM is enabled, mux
3006 selects the AND of NOT CNT EN and NOT DIS
ABLE TERM SYM.
0185. In the second case, an option is provided to send a
termination Symbol without any prior access. This is
achieved by asserting SEND TERM SYM. This may be
useful when the SSBI master 1110 is reset in the middle of
a transfer, for example. In Such a situation, to avoid the SBI
slave being stuck in an infinite FTM loop, the master may
send a termination symbol to return the slave to Idle mode
again. To enable this second feature, mux 3004 is deployed
to select the input for register 2110. As in FIG. 21, OVR
MODE is used to select OVR VALUE to allow for direct

control of the shift chain. When OVR MODE is not
asserted, an assertion of EN TERM CNT selects NOT
TERM CNT(0) as the output of mux 3004. Generation of
TERM CNT is detailed below. When neither OVR MODE
nor EN TERM CNT are asserted, the output of mux 3006
is selected for input to register 2110.
0186 FIG. 31 illustrates additional control logic for
SSBI master 1110, modified to support FTM mode. Com
pare this example with the example described with respect
to FIG.22. This logic performs all the same functions as the
earlier embodiment, with the following modifications.
0187. As before, REQP is formed as the output of AND
2204, with REQ as one of the inputs. For REQP generation,
DONE is added so that multiple accesses can be acknowl
edged within a burst. REQP is latched in flip flop 2206 to
produce ACK. The other input to AND 2204 is generated as
the OR 3102 of NOT STATE, the AND of DONE and
FTM MODE, and the AND of DONE DELX and NOT
FTM MODE. Compare this logic with the logic of OR 2202
in FIG. 22.

0188 As before, RD DATA is generated as the output of
register 2208, which takes RD DATA PRE as its input. The
enable term is modified to include an additional term for
FTM mode. The enable is formed by the AND of SREAD,
NOT STB, NOT RESET, and BITCNT=19/26. The notation
BITCNT=19/26 translates to: when FTM MODE=0, look
for BITCNT=19; when FTM MODE=1, look for BITCNT=
26.

0189 In FTM mode, DONE generation occurs using a
later BITCNT that is not SREAD dependent, as reads and
writes in FTM mode take the same amount of time. This is
implemented in this example with mux 3.114. The select line
for mux 3.114 is FTM MODE & SREAD. When FTM
MODE is asserted, the output of mux 3.114 is BITCNT=27

when SREAD is not asserted and BITCNT=27 otherwise.
When FTM MODE is not asserted, and SREAD is not
asserted, the output of mux 3.114 is formed as the AND of
NOT SREAD and BITCNT=(17+IDLE SYMS). When
FTM MODE is not asserted, and SREAD is asserted, the
output of mux 3.114 is given as the AND of SREAD and
BITCNT=(19+IDLE SYMS). DONE is formed as the out
put of register 3118, which takes as its input the AND 3116
of NOT STB and the output of mux 3114, and is reset with
RESET.

0190. Logic is added to generate CONT and TERM,
which are all 0 when FTM MODE is 0. CONT is set to one

Nov. 24, 2005

during the same cycle for which DONE asserts and will clear
when DONE DELX FTM pulses. CONT is formed as the
output of register 3110. This register is set when BITCNT=
27, and reset with the OR of DONE DELX FTM, RESET,
or NOT FTM MODE. (DONE DELX FTM will be either
DONE DELX FTM WR or DONE DELX FTM RD
depending on whether a write or read is being performed.
DONE DELX FTM WR is given by BITCNT-31+IDLE
SYMS, and DONE DELX FTM RD is given by
23+IDLE SYMS)
0191 TERM is used to force BITCNT to increment every
clock cycle during the termination symbol. TERM is formed
as the output of mux 3.150, which uses SREAD as its select
line. When SREAD is asserted, TERM READ is selected,
otherwise TERM WRITE is selected. TERM READ is
formed as the AND of FTM MODE, BITCNTs=28, and
BITCNT<=31. TERM WRITE is formed by the AND of
FTM MODE, BITCNTs=27, and BITCNT-31.
0192 SREAD, STATE, CNT EN, and STB are gener
ated the same as in FIG.22. SREAD is formed as the output
of register 2210, with READ as the input and REQP as the
enable. STATE is generated as the output of SR flip-flop
2220. The set input to SR flip-flop 2220 is formed as the
AND 2216 of REOP and NOT RESET. The reset input to SR
flip-flop 2220 is formed as the OR 2218 of DONE DELX
and RESET.

0193 STB (also labeled as CNT EN) is formed as the
output of resettable flip-flop 2224. The input to this flip-flop
is the inverse of its output, thus the creation of STB
alternating every clock cycle when the flip-flop is not being
reset. The reset input, CNT RES, is formed as the OR 2222
of REOP and NOT STATE.
0194 BITCNT (a 6-bit signal in this example, alternate
embodiments may provide different parameters requiring
alternate values throughout FIGS. 29-31) is formed as the
output of counter 3140 (compare with counter 2228 in FIG.
22). The enable of counter 3140 is the OR 3138 of CNT EN
(or STB) and TERM. In contrast with example of FIG. 22,
in this example, the width of BITCNT is increased by 1 bit
since with IDLE SYMS>0 or SSBI DATA WD>8,
BITCNT may count past 31. The load value for BITCNT is
now dependent on whether or not the acceSS is the first of a
burst. AS Such, CONT is used as the select line for muX3112,
which, when asserted, selects 001010 as the value of
BITCNT LDVAL, and 000000 otherwise.
0.195 TERM CNT, which is used to form the termina
tion symbol when SEND TERM SYM is asserted, as
described above, is formed as follows. EN TERM CNT is
formed as the output of SR flip-flop 3144. The set input
asserts EN TERM CNT when SEND TERM SYM is
asserted. EN TERM CNT is deasserted when the termina
tion symbol is completed, as indicated by TERM CO. The
reset for flip-flop 3144 is thus the OR 3142 of RESET and
TERM CO. TERM CNT is a 2-bit signal in this example,
although other termination Symbols of various other sizes
and waveforms may be deployed within the scope of the
present invention. TERM CNT is formed as the output of
counter 3148, whose carryout is assigned to TERM CO.
Counter 3148 is always enabled, except when reset by the
OR 3146 of RESET and NOT EN TERM CNT. Thus,
when EN TERM CNT asserts, the reset to counter 3148 is
deasserted, which causes the counter to count until the
carryout TERM CO asserts, in turn deasserting EN TER
M CNT
0196) Recall that an SSBI master 1110 does not use a
slave ID for SSBI mode, although slave IDs may be required

US 2005/0259609 A1

for SBI mode. Since the slave device will decode the slave
ID, it needs to be specified by the microprocessor, or other
host device, through a control register, or other techniques
well known in the art. This slave ID field may be output to
the SSBI master 1110 for each transaction. Note that, unlike
with SBI, this field may be programmed just once and never
needs to change, when a Single slave is connected to an SSBI
port. In addition, FTM MODE specifies whether the trans
fer should be done in FTM mode or not which allows the
same SSBI master 1110 to be used with true 1-wire slaves as
well as 1-wire slaves that use an SSBI to SBI converter
block, Such as block 1420, detailed further below.
0197) SSBI Slave Supporting FTM
0198 For a slave device that needs to support the 3-wire
bus and 1-wire bus, one approach is to design the slave to
retain a 3-wire SBI support block 1220 as shown in FIG. 14,
and to add an SSBI slave converter 1420 that allows it to
interface to a 1-wire bus. The SSBI slave converter block
1420 may be used to convert 1-wire Signaling to generate the
SBST and SBCK signals and feed those to the existing
3-wire SBI slave circuitry 1220. Thus, for this example, in
1-wire mode, FTM commands must be used, as SSBI
commands would not be properly interpreted by the 3-wire
slave circuitry 1220. Table 5 includes port descriptions for
an example SSBI slave converter 1420.

TABLE 5

SSBI Slave Converter Port Descriptions

Nov. 24, 2005

combination never occurs during normal 3-wire transferS.
This option for Selecting the mode avoids the need for a
dedicated mode Selection pin or register. If 3-wire mode is
selected, then the SBST and SBCK signals are muxed
through to the outputs of this block, as detailed further
below.

0201 In 1-wire mode, the SSBI slave converter block
1420 examines the SSBI DATA line for the start symbol,
which is used to assert SBST and start SBCK toggling. The
SSBI slave converter block 1420 also looks for the termi
nation symbol, which is used to de-assert SBST and halt
SBCK toggling. Write data goes directly to the SBI slave
block, and, Similarly, read data is returned directly onto
SBDT. An example embodiment illustrating these features is
detailed below with respect to FIGS. 32-35.
0202 FIG. 32 illustrates a portion of SSBI slave con
verter 1420. The circuitry shown is responsible for deter
mining whether the mode is 1-wire or 3-wire. SSBI MODE
goes high for 1-wire mode when SBCK=0 while SBST=1,
as shown by the AND 3250 of SBST IN and NOT
SBCK IN. SSBI MODE is delivered as an output, in this
example, in case other functions or blockS operate in accor
dance with the selected mode. SSBI MODE is also used to
control muxes 3260 and 3270. When in 3-wire mode, i.e.
SSBI MODE is not asserted, the SBCK and SBST pad

Port Direction Description

SSBI CLK Input Clock
RESET Input Async input. This block will stretch it until

TCXO turns on.
SBST IN Input SBST input from chip pad.
SBCK IN Input SBCK input from chip pad.
SSBI DATA Input SSBI DATA/SBDT input from chip pad.
SBST OUT Output 3-wire SBST signal going to SBI Slave block.
SBCK OUT Output 3-wire SBCK signal going to SBI Slave block.
SBDT PO IN Input 3-wire SBDT, PO signal coming from SBI

Slave block.
SBDT OE IN Input 3-wire SBDT, OE signal coming from SBI

Slave block.
SBDT PO OUT Output 3-wire SBDT, PO signal going to chip pad.
SBDT OE OUT Output 3-wire SBDT, OE signal going to chip pad.
SSBI MODE Output SBCK IN and SBST IN indicating that the

slave is in 1-wire mode.
TCXO DIS Input It comes from slave register block. It is 0 is

normal operation, 1 when SSBI CLK is off.
RESET TCXO DIS Output It goes to slave register block to reset

TCXO DIS register bit.

0199 An example SSBI slave converter 1420 may be
used for converting SSBI signaling into SBI signaling when
in 1-wire mode, or bypassing Such conversion when in
3-wire mode. Specifically, SSBIslave converter takes in the
SSBI DATA line, among others, and generates the SBCK
and SBST signals for a standard 3-wire SBIslave block. In
this example, SBDT does not need to be generated in SSBI
slave converter 1420, as it is may be directly connected
between the pad and 3-wire slave block, as described above
with respect to FIG. 14.

0200. The SBST and SBCK inputs may be used to
determine if 1-wire or 3-wire operation is desired. 1-wire
mode is selected when SBST=1 and SBCK=0, as Such a

inputs (SBST IN and SBCK IN, respectively) are selected
for output to SBST OUT and SBCKOUT, respectively.
When in 1-wire mode, i.e. SSBI MODE is asserted, muxes
3260 and 3270 select SBST GEN and SBCK GEN to be
output on SBST OUT and SBCKOUT, respectively.

0203 RESET EFF is a stretched reset signal, generated
So that it is a minimum of two clock cycles. This ensures that
RESET EFF will be eventually seen by the circuitry even if
the clock is off. Asynchronously settable flip-flops 3220,
3230, and 3240 are set by the OR 3210 of TCXO DIS and
RESET, RESET EFF is formed as the output of flip-flop
3240. The input of flip-flop 3240 is the output of flip-flop

US 2005/0259609 A1

3230, whose input is the output of flip-flop 3220. The input
to flip-flop 3220 is set to zero.
0204. In this example, SSBI DATA should be very simi
lar to SBDT, so that write and read timing is relatively the
same, regardless of whether or not the SSBI to SBI conver
sion occurs. Consider an example where SSBI DATA is
sampled and SBDT is created with even one clock cycle
delay. This would cause the slave SBI block (i.e. 1220) to
See all accesses one cycle later. For writes, this likely would
not be a problem. For reads, though, when the returned data
appears, it would come out one cycle later than when the
master device would be expecting it. As a result, it is
necessary that the SSBI DATA be fed onto SBDT without
any register delayS. AS Such, the next problem is to detect the
start symbol and generate the SBST and SBCK signals in
time to meet the SBI slave timing. This may be somewhat
tricky, since in the duration of two symbols (the start symbol
and first data symbol), the SSBIslave converter 1420 needs
to do the following: 1. Recognize the start symbol. 2. Force
SBST to assert (go low). 3. Force SBCK low, then allow it
to toggle Such that a falling edge occurs every two clock
cycles. 4. The second SBCK falling edge will be used to
sample SBDT in the SBI Slave.
0205 Consider an example in which the SSBI DATA
line is in the idle state, then the SSBIslave converter 1420
samples the SSBI DATA line on SSBI CLK rising until it
sees a start symbol. FIG.33 illustrates the waveforms for the
start of the transfer. The start symbol is “found” and the
Signal “deglitched” in half a clock cycle causing
FOUND ST to assert. This asynchronously forces SBST
low, which in turn disables the circuit Searching for the Start
symbol. FOUND ST is delayed half a clock cycle, ANDed
with itself, then used to cause the first falling edge and rising
edge of SBCK to occur. SBST and FOUND ST are used
together to enable SBCK to toggle. Since the SBI slave
samples the symbols on SBCK falling, they are effectively
being sampled 25% into the symbol period.
0206 Note that SSBI CLK may not be lined up as
shown. What is depicted in FIG. 33 is actually the “best”
case. The “worst' case occurs such that the start symbol is
not detected immediately, but rather a full clock cycle later.
In this case, all the signals, FOUND ST, SBST, SBCK shift
to the right by 1 clock cycle. Accordingly, the data Symbols
are being sampled 75% into the symbol period. As will be
apparent, for both cases, SBST and SBCK may be generated
correctly with respect to SSBI DATA. LATE is similar to
the identically named Signal, detailed above with respect to
FIG. 25, which helps in reducing this one cycle of variabil
ity (in SBDT PO and SBDT OE) to half a clock cycle.
0207. The waveforms for the end of a transfer are shown
in FIG. 34. Capturing the termination symbol may be
Somewhat complicated Since it toggles every clock cycle for
four consecutive clock cycles. This example termination
Symbol is Selected, because it is the shortest waveform that
is distinguishable from any Symbol data. An example circuit
used to sample this waveform basically samples SSBI
DATA over 4 clock cycles looking for the pattern. A

Separate circuit operates in parallel but Sampling on the
falling clock edge. This is necessary since, if the SSBI CLK
rising edge is aligned with the termination Symbol transi
tions, there's no guarantee the Symbol will be caught by the
first circuit. Hence, together, both circuits guarantee the
termination symbol will be found.

Nov. 24, 2005

0208 FIG. 35 illustrates a portion of additional circuitry
for an example SSBI slave converter 1420. The stretched
reset, RESET EFF, causes SBST GEN and SBCK GEN to
asynchronously go high. The Stretched reset is used to
ensure it remains asserted until SSBI CLK has turned on.
This reset also resets part of the circuitry generating
FOUND T, detailed below.
0209 SSBI DATA is latched with SSBI CLK in register
3508, which is reset with NOT SBST GEN. The output of
register 3508 is delivered as the input to register 3510,
clocked by the inverse of SSBI CLK, also reset with NOT
SBST GEN. The output of register 3510 is labeled
FOUND ST, indicating a start has been found.
0210 SSBI DATA is also input to register 3502, clocked
by the inverse of SSBI CLK. The output of register 3502 is
input to register 3504, the output of which is labeled
FOUND ST_N. Both registers 3502 and 3504 are reset by
RESET EFF. FOUND ST N is latched in register 3506,
clocked by SSBI CLK, to produce LATE. Register 3506 is
enabled by FOUND ST.
0211 FOUND ST is used to asynchronously set flip-flop
3518, the output of which is inverted 3520 to produce
SBST GEN. Thus, a found start bit asserts (drives low)
SBST GEN. Recall that NOT SBST GEN resets the reg
isters 3508 and 3510 which generate FOUND ST, thus
FOUND ST will be deasserted until the current access or
accesses are complete, and a new start bit is found. Flip-flop
3518 is clocked by the inverse of SSBI CLK, and reset by
RESET EFF. A zero is clocked in when enabled by
FOUND T, which indicates a termination symbol has been
found, detailed further below.

0212) Register 3522, reset by RESET EFF, takes
FOUND ST as an input and delays it by a cycle. Its output,
SBCKEN, is delivered to NAND 3524, along with
FOUND ST, which is used to force SBCK GEN low
through AND 3526. The other input to AND 3526 is used to
generate SBCK GEN when NAND 3524 is not forcing
SBCK GEN low, and comes from the output of register
3514. Register 3514 is clocked by the inverse of SSBI CLK,
and is asynchronously set with RESET EFF. Its output, in
addition to being delivered to AND 3526, is inverted in
inverter 3516. Its input is generated as the OR 3512 of
SBST GEN, FOUND ST, FOUND T, and the output of
inverter 3516. SBCK EN and FOUND T are used to stop
SBCK from toggling before SBST de-asserts.
0213 AS described above, two circuits are deployed to
identify the termination symbol. In each circuit, SSBI
DATA is shifted into two series of 5 registers, 3528-3536

and 3542-3550, respectively. The termination symbol pat
tern is detected with two AND gates, 3538 and 3552. The
first circuit has register 3528 clocked by the inverse of
SSBI CLK, and registers 3530-3536 clocked by SSBI
CLK. Registers 3528, 3530, and 3532 are asynchronously

reset by RESET EFF. The termination pattern is located
with the AND 3538 of the inverse of register 3530, register
3532, the inverse of register 3534, and register 3536. The
second circuit has register 3542 clocked by SSBI CLK, and
registers 3542-3550 clocked by the inverse of SSBI CLK.
Registers 3542, 3544, and 3546 are asynchronously reset by
RESET EFF. The termination pattern is located with the
AND 3552 of the inverse of register 3544, register 3546, the
inverse of register 3548, and register 3550. The OR 3540 of

US 2005/0259609 A1

the two circuits (whose outputs are the outputs of ANDS
3538 and 3552) creates FOUND T, indicating a termination
symbol has been found.
0214) Note that FOUND T may be 1 or 1.5 cycles long
depending on whether one or both circuits detect the termi
nation Symbol. This may constrain how quickly a Subse
quent transfer may be made on the bus. In the example
embodiment, this will not cause any problem. In an alternate
embodiment, a master can force SSBI DATA to transfer an
idle symbol for at least one symbol period, if needed.
0215 Note further that this circuit will not assert
FOUND T unless a termination-symbol is present. Given
that data Symbols change every two clock cycles, if the clock
is not aligned with the Symbol transitions, Sampling a
Symbol in two consecutive clock cycles will Sample the
Same value, not the alternating value for the termination
Symbol. If the Sampling clock is aligned with the Symbol
edges, then it may Sample either the previous or new symbol
value. As an example, consider a case where the first Sample
edge is aligned with the Symbol transition, hence So is the
third edge, but not the Second and fourth, as those would
occur in the middle of a Symbol. Keeping in mind that the
desired pattern is 1010, for the second and fourth samples to
See a 0, the two data symbols have to be 0. If that is true, then
the third sample will have to be 0, since the data did not
change. As a result, FOUND T will not assert. A similar
argument can be made for the case where the Second and
fourth samples are aligned with symbol boundaries while the
first and third are not.

0216) Again, note that SSBI CLK may not be lined up as
shown in FIGS. 33 and 34. What is depicted is actually the
“best” case. The “worst' case occurs Such that the termina
tion Symbol is detected half a clock cycle later. In this case,
FOUND T shifts to the right by half a clock cycle, which
doesn’t affect SBST or SBCK. As can be seen, for both
“best” and “worst' cases, extra SBCK pulses are passed to
the SBI Slave block. It is expected that the SBI Slave will
ignore the extra data bits once SBST is deasserted.
0217 LATE is used to alter the timing of the SBDT
output when in SSBI MODE. SBDT OE OUT is formed
as the output of mux 3560, which takes as its inputs
SBDT OE IN and a delayed version, as latched in register
3558. Register 3558 takes SBDT OE IN as its input and
delays the input by one cycle. SBDT PO OUT is formed as
the output of mux 3566, which takes as its inputs SBDT.
PO IN and a delayed version, as latched in register 3564.

Register 3564 takes SBDT PO IN and delays the input by
one cycle. The select for both muxes 3560 and 3566 is
formed as the OR 3562 of LATE and NOT SSBI MODE.
Thus, when not in SSBI MODE, SBDT OE OUT is
selected as SBDT OE IN, and SBDT PO OUT is selected
as SBDT PO IN. The same selection is made for both when
in SSBI MODE and LATE is not asserted. When LATE is
asserted in SSBI MODE, the delayed versions of SBD
TOE IN and SBDT PO IN are selected for their respec
tive outputs.

0218) RESET TCXO DIS is formed as the output of
register 3556, which takes the output of register 3554 as its
input. Register 3554 receives TXCO DIS as its input.
Register 3554 is clocked by SSBI DATA. Register 3556 is
clocked by the inverse of SSBI DATA. Both registers are
asynchronously reset by RESET. Thus, when TCXO DIS is

Nov. 24, 2005

asserted, a rising edge of SSBI DATA sets register 3554,
and a Subsequent falling edge of SSBI DATA Sets register
3556, asserting RESET TCXO DIS. As such, SSBI DATA
can be used to assert RESET TCXO DIS, when the clock
(i.e. SSBI CLK, as well as other clocks) is disabled. In an
example embodiment, RESET TCXO DIS may be used to
re-enable one or more disabled clockS.

0219. Additional Alternate Embodiments
0220 Additional embodiments are envisioned. For
example, it may be desirable to interface newer SSBIslave
devices with legacy SBI masters. As such, a 3-wire to 1-wire
converter may be deployed, receiving the SBST, SBCK, and
SBDT signals and generating a single SSBI DATA signal
therefrom. Such a converter may be deployed within an
SSBIslave device, to allow for either type of interface to be
supported, without the use of an SBI slave, as detailed
above. Alternately, Such a converter may be added to a
legacy master device, to intercept the 3-wire protocol and
generate a Single wire interface therefrom. In other alterna
tives, the converters described herein may be deployed as
Standalone components, external to either a master or Slave
of either type (SBI or SSBI).
0221) Another embodiment of a slave may include both
SBI and SSBIslave interfaces. A sensor may be deployed to
monitor an incoming data line (which may be shared for
both SSBI DATA or SBDT), and determine which type of
protocol is being used on the incoming lines. In the alter
native, a slave may be programmable to Select one slave
interface or the other (SBI or SSBI). Those of skill in the art
will recognize myriad combinations of 3-wire and 1-wire
masters, Slaves, and converters, which may be deployed
within the Scope of the present invention, in light of the
teaching herein.

0222 Those of skill in the art would understand that
information and Signals may be represented using any of a
variety of different technologies and techniques. For
example, data, instructions, commands, information, Sig
nals, bits, Symbols, and chips that may be referenced
throughout the above description may be represented by
Voltages, currents, electromagnetic waves, magnetic fields
or particles, optical fields or particles, or any combination
thereof.

0223 Those of skill would further appreciate that the
various illustrative logical blocks, modules, circuits, and
algorithm Steps described in connection with the embodi
ments disclosed herein may be implemented as electronic
hardware, computer Software, or combinations of both. To
clearly illustrate this interchangeability of hardware and
Software, various illustrative components, blocks, modules,
circuits, and Steps have been described above generally in
terms of their functionality. Whether such functionality is
implemented as hardware or Software depends upon the
particular application and design constraints imposed on the
overall System. Skilled artisans may implement the
described functionality in varying ways for each particular
application, but Such implementation decisions should not
be interpreted as causing a departure from the Scope of the
present invention.

0224. The various illustrative logical blocks, modules,
and circuits described in connection with the embodiments
disclosed herein may be implemented or performed with a

US 2005/0259609 A1

general purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard
ware components, or any combination thereof designed to
perform the functions described herein. A general purpose
processor may be a microprocessor, but in the alternative,
the processor may be any conventional processor, controller,
microcontroller, or State machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more microprocessors in conjunc
tion with a DSP core, or any other such configuration.
0225. The steps of a method or algorithm described in
connection with the embodiments disclosed herein may be
embodied directly in hardware, in a Software module
executed by a processor, or in a combination of the two. A
Software module may reside in RAM memory, flash
memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of Storage medium known in the art. An
exemplary Storage medium is coupled to the processor Such
the processor can read information from, and write infor
mation to, the Storage medium. In the alternative, the Storage
medium may be integral to the processor. The processor and
the storage medium may reside in an ASIC. The ASIC may
reside in a user terminal. In the alternative, the processor and
the Storage medium may reside as discrete components in a
user terminal.

0226. The previous description of the disclosed embodi
ments is provided to enable any person skilled in the art to
make or use the present invention. Various modifications to
these embodiments will be readily apparent to those skilled
in the art, and the generic principles defined herein may be
applied to other embodiments without departing from the
Spirit or Scope of the invention. Thus, the present invention
is not intended to be limited to the embodiments shown
herein but is to be accorded the widest Scope consistent with
the principles and novel features disclosed herein.

What is claimed is:
1. A device, operable to communicate with a Second

device via a Single wire bus, comprising:
a driver for driving the Single wire bus with a write frame,

the write frame comprising a start Symbol, a write
indicator Symbol, one or more Symbols indicating an
address, and one or more data Symbols.

2. The device of claim 1, further comprising:
a receiver for receiving one or more data Symbols on the

Single wire bus during a read frame;
and wherein:

the driver further drives the single wire bus for one or
more portions of the read frame and releases the Single
wire bus for one or more portions of a read frame, the
driven portion of the read frame comprising a start
Symbol, a read indicator Symbol, and one or more
Symbols indicating an address, the released portion of
the read frame comprising one or more data Symbols
Surrounded by pause Symbol durations.

3. The device of claim 1, wherein zero or more idle
Symbols are transmitted on the Single wire bus.

Nov. 24, 2005

4. The device of claim 3, wherein an idle symbol is driven
by the driver.

5. The device of claim3, further comprising a pull device,
the pull device for driving the single wire bus to the idle
symbol.

6. The device of claim 1, further comprising a keeper for
keeping a value on the Single wire bus.

7. A device, operable to communicate with a Second
device via a Single wire bus, comprising:

a receiver for receiving a frame on the Single wire bus, the
frame comprising a Start Symbol, a write indicator
Symbol, one or more Symbols indicating an address,
and one or more data Symbols when the write indicator
symbol identifies a write frame;

a driver for driving return read data on the Single wire bus
when the write indicator symbol identifies a read frame,
the return read data associated with the address.

8. A device, comprising:
a port for connecting to a single wire bus,
a signal generator for generating a first single Signal

comprising one or more idle Symbols, a Start Symbol, a
write indicator Symbol, one or more Symbols indicating
an address, and one or more data Symbols when the
write indicator Symbol indicates a write;

a driver for driving the first Signal on the Single wire bus
through the port in a first mode and releasing the Single
wire bus through the port in a Second mode,

a receiver for receiving a Second Signal from the Single
wire bus through the port, the Second Signal being
active during a portion of time the driver is operating in
the Second mode, when the write indicator Symbol
indicates a read, the Second Signal comprising return
read data in response to the address.

9. The device of claim 8, wherein the port comprises a
pad.

10. The device of claim 8, wherein the port comprises a
pin.

11. The device of claim 8, wherein the port comprises an
intra-chip connection.

12. The device of claim 8, wherein the port comprises an
inter-chip connection.

13. A System, operable to communicate with a Second
device via a Single wire bus, comprising:

a single wire bus,
a first device comprising a driver for driving the Single

wire bus with a write frame, the write frame comprising
a start Symbol, a write indicator Symbol, one or more
Symbols indicating an address, and one or more data
Symbols, and

a Second device comprising a receiver, connected to the
Single wire bus, for receiving the write frame.

14. The device of claim 13, wherein:
the first device further comprises a receiver for receiving

one or more data Symbols on the Single wire bus during
a read frame;

and wherein the driver of the first device further drives the
Single wire bus for one or more portions of the read
frame and releases the Single wire bus for one or more

US 2005/0259609 A1

portions of a read frame, the driven portion of the read
frame comprising a start Symbol,

a read indicator Symbol, and one or more Symbols indi
cating an address, the released portion of the read frame
comprising one or more data Symbols Surrounded by
pause Symbol durations.

15. The device of claim 14, wherein the second device
further comprises a driver for driving return read data on the
single wire bus when the write indicator symbol identifies a
read frame, the return read data associated with the address,
and wherein the receiver further receives a frame on the
Single wire bus, the frame comprising a start Symbol, a write
indicator Symbol, one or more Symbols indicating an
address, and one or more data Symbols when the write
indicator symbol identifies a write frame.

16. A method for communication on a single wire bus
comprising:

transmitting a start Symbol;
transmitting a write indicator Symbol;
transmitting one or more Symbols indicating an address,
transmitting one or more data Symbols when the write

indicator Symbol indicates a write access, and
receiving one or more data Symbols when the write

indicator Symbol indicates a read access.
17. The method of claim 16, further comprising transmit

ting one or more idle Symbols.
18. A method for communication on a single wire bus

comprising:
receiving a start symbol;
receiving a write indicator Symbol;
receiving one or more Symbols indicating an address,
receiving one or more data Symbols when the write

indicator Symbol indicates a write access, and
transmitting one or more data Symbols when the write

indicator Symbol indicates a read access.
19. The method of claim 18, further comprising storing

the received data Symbols in accordance with the received
address when the write indicator Symbol indicates a write
CCCSS.

20. The method of claim 18, further comprising retrieving
data in accordance with the received address for transmis
Sion when the write indicator Symbol indicates a read access.

21. A device comprising:
means for transmitting a start Symbol on a Single wire bus,

22
Nov. 24, 2005

means for transmitting a write indicator Symbol on the
Single wire bus,

means for transmitting one or more Symbols indicating an
address on the Single wire bus,

means for transmitting one or more data Symbols when
the write indicator Symbol indicates a write acceSS on
the Single wire bus, and

means for receiving one or more data Symbols when the
write indicator Symbol indicates a read acceSS on the
Single wire bus.

22. A device comprising:
means for receiving a start symbol on a single wire bus,
means for receiving a write indicator Symbol on the Single

wire bus;
means for receiving one or more Symbols indicating an

address on the Single wire bus,
means for receiving one or more data Symbols when the

write indicator Symbol indicates a write acceSS on the
Single wire bus, and

means for transmitting one or more data Symbols when
the write indicator Symbol indicates a read access on
the Single wire bus.

23. Computer readable media operable to perform the
following Steps:

transmitting a start symbol;
transmitting a write indicator Symbol;
transmitting one or more Symbols indicating an address,
transmitting one or more data Symbols when the write

indicator Symbol indicates a write access, and
receiving one or more data Symbols when the write

indicator Symbol indicates a read access.
24. Computer readable media operable to perform the

following Steps:
receiving a start Symbol;
receiving a write indicator Symbol;
receiving one or more Symbols indicating an address,
receiving one or more data Symbols when the write

indicator Symbol indicates a write access, and
transmitting one or more data Symbols when the write

indicator Symbol indicates a read access.

k k k k k

