발명의 명칭: 산화 환원 전위 수용액을 사용한 2도 및 3도 화상의 치료방법

발명의 요약
적어도 24시간 동안 안정한 산화 환원 전위 (ORP) 수용액의 투여에 의한 화상, 바람직하게는 2도 및 3도 화상을 치료하는 방법을 제공한다.

대 표 도 - 도 1
(30) 우선권주장
60/667,101  2005년03월31일  미국(US)
60/676,883  2005년05월02일  미국(US)
60/730,743  2005년10월27일  미국(US)
60/760,557  2006년01월20일  미국(US)
60/760,567  2006년01월20일  미국(US)
60/760,635  2006년01월20일  미국(US)
60/760,645  2006년01월20일  미국(US)
명 세 서

청구범위

청구항 1
삭제

청구항 2
삭제

청구항 3
삭제

청구항 4
삭제

청구항 5
삭제

청구항 6
삭제

청구항 7
삭제

청구항 8
삭제

청구항 9
삭제

청구항 10
삭제

청구항 11
삭제

청구항 12
삭제

청구항 13
삭제

청구항 14
삭제

청구항 15
삭제

등록특허 10-1532778
청구항 16
삭제

청구항 17
삭제

청구항 18
삭제

청구항 19
삭제

청구항 20
삭제

청구항 21
삭제

청구항 22
삭제

청구항 23
삭제

청구항 24
삭제

청구항 25
삭제

청구항 26
차아염소산, 차아염소산 이온, 차아염소산나트륨, 아염소산 이온, 클로라이드 이온, 용해된 염소 기체 및 이들
의 혼합물로 이루어진 군 중에서 선택되는 유리 염소 종 50 ppm 내지 80 ppm을 포함하고, 적어도 2개월 동안 안
정하며, pH가 7.4 내지 7.6이고, 여기서 유리 염소 종이 15 ppm 내지 35 ppm의 차아염소산 및 25 ppm 내지 50
ppm의 차아염소산나트륨을 포함하는 것인 산화 환원 전위 수용액
을 포함하는, 환자의 2도 또는 3도 화상을 치료하기 위한 제약 제제.

청구항 27
삭제

청구항 28
제26항에 있어서, 화상에 용액을 분무함으로써 환자에게 투여되는 것인 제약 제제.

청구항 29
제28항에 있어서, 고압 관류 장치를 사용하여 화상에 용액을 분무함으로써 환자에게 투여되는 것인 제약 제제.

청구항 30
제28항에 있어서, 화상에 적어도 5분 동안 보습되는 것인 제약 제제.
청구항 31
제30항에 있어서, 화상에 적어도 15분 동안 보습되는 것인 제약 제제.

청구항 32
제26항에 있어서, 환자에게 적어도 매일 두어되는 것인 제약 제제.

청구항 33
제32항에 있어서, 환자에게 1일 3회 두어되는 것인 제약 제제.

청구항 34
삭제

청구항 35
삭제

청구항 36
제28항 내지 제33항 중 어느 한 항에 있어서, 환자가 화상의 치료 동안 항생제를 두어받지 않는 환자인 제약 제제.

청구항 37
삭제

청구항 38
삭제

청구항 39
삭제

청구항 40
삭제

발명의 설명

<관련 출원에 대한 교차 참조>
본원은 각각 그 전체 내용이 본원에 참고로 포함된, 2006년 1월 20일 출원된 미국 가출원 60/760,635, 2006년 1월 20일 출원된 미국 가출원 60/760,567, 2006년 1월 20일 출원된 미국 가출원 60/760,645, 2006년 1월 20일 출원된 미국 가출원 60/760,557, 2005년 10월 27일 출원된 미국 가출원 60/730,743, 2005년 5월 2일 출원된 미국 가출원 60/676,883, 2005년 3월 31일 출원된 미국 가출원 60/667,101, 및 2005년 3월 23일 출원된 미국 가출원 60/664,361을 기초로 한 우선권을 주장한다.

기술 분야
본 발명은 산화 환원 전위 수용액을 두어함으로써 화상, 바람직하게는 2도 및 3도 화상을 치료하는 방법에 관한 것이다.

배경 기술
초산화수(super-oxidized water)로도 또한 공지되어 있는 산화 환원 전위(ORP) 수는 다양한 환경에서 세균, 바이러스 및 포자를 포함하는 미생물을 박멸하기 위한 비-독성 소독제로서 사용될 수 있다. 예를 들어, ORP 수
OHP 수가 효과적인 소독제이지만, 이것은 통상적으로는 단지 몇 시간 또는 몇 시간에 한정된 적당 수준을 갖는다. 이러한 모든 수는 주로 OHP 수가 소독제로 사용될 곳에 근접해서 수행해야 한다. 이것은 보건위생 및 의료장치 분야에서 표면 및 의료 설비를 소독하기 위해서 적용될 수 있다. 유리하게는, OHP 수는 환경적으로 안전하며, 따라서 비용이 많이 들지 않는 적절한 비용을 피할 수 있다. OHP 수는 또한 상처 관리, 의료 장치 밀균, 식품 밀균, 병원, 소비자 가사 및 생화학 테러 방지에도 용도를 갖는다.

따라서, 장기간에 걸쳐서 안정한 OHP 수 및 이러한 OHP 수를 사용하는 방법에 대한 필요성이 존재한다. 또한, OHP 수를 상업적 규모의 양으로 제조하는 비용 효율적인 방법에 대한 필요성도 존재한다. 본 발명은 이러한 OHP 수 및 이러한 OHP 수를 제조하고 사용하는 방법을 제공한다.

ORP 수는 또한 미국 특허 출원 공개 2002/0160053 A1에 기술된 바와 같이 환자에서 조직세포 성장 촉진제로서도 사용되었다. 특히 다중-항생제 내성 세균의 치료를 위해 사용할 수 있다. 상기 악용은 예를 들어 아시네토테크티니아 베태키노사 (Acinetobacter baumannii), 스타필로코커스 아우레우스 (Staphylococcus aureus), 슈도모나스 아에루기노사 (Pseudomonas aeruginosa), 이. 콜리 (E. coli) 및 기타 세균을 포함한다. 따라서, 악용을 예방하기 위한, 환경 치료 시에 사용하기 위한 OHP 수가 포함되는 조성물을 정형하기 위해 필요성이 존재한다. 본 발명의 이들 및 그 밖의 다른 이점 및 본 발명의 추가의 특징은 본 명세서에 제시된 발명의 상세한 설명으로부터 명확할 것이다.

<발명의 개요>

본 발명은 적어도 24시간 동안 안정한 산화 환원 전위 (ORP) 수용액을 투여함으로써 환자에서 화상을 치료하는 방법을 제공한다. 본 발명은 또한 양극수 및 음극수를 포함하는 산화 환원 전위 수용액을 투여함으로써 환자에서 화상을 치료하는 방법에 관한 것이다. 한 실시예제에서, 본 발명의 방법에서 사용된 ORP 수용액은 하나 이상의 염소 종을 포함한다.

본 발명은 추가로 해를 입은 또는 손상된 조직을 적어도 24시간 동안 안정한 치료 유효량의 OHP 수용액과 접촉시키는 것을 포함하는, 해를 입은 또는 손상된 조직을 치료하는 방법에 관한 것이다. 상기 방법은 수술에 의해 해를 입은 또는 손상된 조직, 또는 반드시 수술과 관련되지 않은 원인, 예를 들어 화상, 밴 상처, 절개상, 창상, 발전, 레이, 자장, 감염 등에 의해 해를 입은 또는 손상된 조직을 치료하는 것을 포함한다.

본 발명의 다른 측면은 산화 환원 전위 수용액 및 증점제를 포함하는, 적어도 24시간 동안 안정한 국소 투여용 제제를 포함한다. 본 발명은 또한 (1) 산화 환원 전위 수용액 및 증점제를 포함하는, 적어도 24시간 동안 안정한 국소 투여용 제제 및 (2) 밀봉된 용기를 포함하는 제약 투여 형태에 관한 것이다.

본 발명은 적어도 24시간 동안 안정한 치료 유효량의 OHP 수용액을 적절한 양으로 상처에 적용하는 것을 포함하는, 적어도 24시간 동안 안정한 치료 유효량의 제제를 환자에게 국소 투여하는 방법에 관한 것이다. 본 발명은 적어도 24시간 동안 안정한 치료 유효량의 제제를 환자에게 국소 투여하는 것을 포함하는, 적어도 24시간 동안 안정한 치료 유효량의 제제를 환자에게 국소 투여하는 방법에 관한 것이다. 본 발명은 적어도 24시간 동안 안정한 치료 유효량의 제제를 환자에게 국소 투여하는 것을 포함하는, 적어도 24시간 동안 안정한 치료 유효량의 제제를 환자에게 국소 투여하는 방법에 관한 것이다.
제2막에 의해 염 용액 펜브로부터 분리된다. 장치는 염 이온 농도를 조절하고 유지하기 위해, 염 용액 펜브로 공급된 염 용액에 대한 제어된 시스템을 포함할 수 있다.

본 발명은 추가로 각각 양극 챔버, 음극 챔버 및 양극 챔버와 음극 챔버 사이에 위치하는 염 용액 펜브로 포함하고 양극 챔버는 양극 전극 및 제1막에 의해 염 용액 펜브로부터 분리되고 음극 챔버는 음극 전극 및 제2막에 의해 염 용액 펜브로로부터 분리된 적어도 2개의 전도 전지를 제공하고, 양극 및 음극 챔버를 통한 물의 유동 및 염 용액 펜브로를 통한 염 용액의 유동과 동시에 양극 전극 및 음극 전극에 전류를 공급하고, 전반 전기에 의해 생산된 산화 환원 전위 수용액을 수거하는 것을 포함하는, 산화 환원 전위 수용액을 제조하는 방법을 제공한다.

본 발명은 추가로 각각 양극 챔버, 음극 챔버 및 양극 챔버와 음극 챔버 사이에 위치하는 염 용액 펜브로 포함하고 양극 챔버는 양극 전극 및 제1막에 의해 염 용액 펜브로부터 분리되고 음극 챔버는 음극 전극 및 제2막에 의해 염 용액 펜브로부터 분리된 적어도 1개의 전도 전지를 제공하고, 양극 챔버 및 음극 챔버를 통한 물의 유동을 제공하고, 염 용액 펜브로를 통한 염 용액의 유동을 제공하고, 양극 및 음극 챔버를 통한 물의 유동 및 염 용액 펜브로를 통한 염 용액의 유동과 동시에 양극 전극 및 음극 전극에 전류를 공급하고, 전반 전기에 의해 생산된 산화 환원 전위수를 수거하는 것을 포함하는, 양극수 및 음극수를 포함하는 산화 환원 전위수용액의 제조 방법에 관한 것이다.

발명의 상세한 설명

본 발명은 적어도 24시간 동안 안정한 산화 환원 전위 (ORP) 수용액의 치료 유효량을 환자에게 투여하는 것을 포함하는, 환자의 병태를 예방 또는 치료하는 방법을 제공한다. 방법은 예를 들어 본 발명의 ORP 수용액으로 치료가능한 의학적 상태, 질병, 손상, 알레르기 등을 포함할 수 있다.

본 발명의 문제에서 환자, 예를 들어 동물, 특히 인간에게 투여되는 치료 유효량은 합리적인 기간에 걸쳐 환자에게서 치료가능한 또는 예방적 반응을 제공하는데 적절하다. 용량은 본 기술분야에서 잘 알려진 방법을 사용하여 쉽게 결정될 수 있다. 본 기술분야에서 숙련된 전문가는 특정 환자에게 대한 구체적인 유효량 수준이 다양한 인자에 따라 최적화될 수 있을음을 인지할 것이다. 예를 들어, 용량은 사용되는 특정한 ORP 수용액의 강도, 병자의 상태, 환자와의 치료기간, 치료의 성격 및 치료의 심도, 일반적인 건강상태, 성별, 식사 등에 따라서 결정될 수 있다. 용량의 크기는 또한 특정 ORP 수용액의 투여를 수반한 수도 있는 임의의 부작용의 존재, 성질 및 정도를 기준으로 하여 결정될 수 있다. 가능하다면 부작용을 최소로 유지시키도록 하는 것이 바람직하다.

특정 투여량에 대해 고려되는 요인은 예를 들어 생체이용성, 대사 프로파일, 투여 시간, 투여 경로, 배설 속도, 특정 환자에서 특정 ORP 수용액과 관련된 약력 등을 포함할 수 있다. 다른 요인은 예를 들어 치료를 특정 병기에 관한 ORP 수용액의 효능 또는 유효성, 치료 전에 또는 치료 과정 중에 나타나는 증상의 심도 등이 포함된다. 일부의 경우에, 치료 유효량을 구성하는 것은 또한 본질적으로는, 특정 병태의 치료 또는 예방을 위한 특정 ORP 수용액의 효능을 임상적인 면에서 합리적으로 예견하는 하나 이상의 분석, 예를 들어 생물학적 분석에 의해서 결정될 수 있다.

본 발명의 ORP 수용액은 기존의 병태를 치료하기 위해서 단독으로, 또는 하나 이상의 다른 치료제와 함께 환자, 예를 들어 인간에게 치료가능으로 투여될 수 있다. 본 발명의 ORP 수용액은 또한 병리화된 하나 이상의 원인 인자에 노출된 환자, 예를 들어 인간에게 단독으로, 또는 하나 이상의 다른 치료제와 함께 병리적으로 투여될 수 있다. 예를 들어, 본 발명의 ORP 수용액은 적합하게는 하나 이상의 감염 유발 미생물 (예를 들어, 바이러스, 세균 및/또는 진균)에 노출된 환자에게 그 환자에게서 감염 가능성을 억제 또는 감소시키거나, 이러한 노출의 결과로 나타나는 감염의 심도를 저하시키기 위해서 예방적으로 투여될 수 있다.

당업자는 본 발명의 ORP 수용액을 투여하는 적합한 방법을 이용할 수 있으며, 하나 이상의 투여기법을 사용할 수 있지만, 특정 조건은 다른 경로보다 더 적절하고 더 효과적인 방법을 사용할 수 있다는 것을 인식할 수 있음 것이다. 치료 유효량은 각각의 환자에게서 ORP 수용액의 "효과적인 수준"을 탐성을 나타내는 중요한 유효량을 포함한다. 치료 유효량은 예를 들어 환자에게서 병태를 예방 또는 치료하기 위한 본 발명의 ORP 수용액의 혼종 수준, 조직 수준 및/또는 세포내 수준을 수용하기 위해서 개개의 환자에게 투여되어야 하는 양으로 정의될 수 있다.

효과적인 수준이 투약을 위한 바람직한 종말점으로 사용되는 경우에, 실제 용량 및 투여 계획은 예를 들어 약학, 분포, 대사 등에 있어서의 환자 차이에 따라 달라질 수 있다. 효과적인 수준은 또한 본 발명의 ORP 수
용액이 본 발명의 ORP 수용액 이외의 하나 이상의 치료제, 예를 들어 하나 이상의 항감염제, 예를 들어, 미국특허 5,334,383 및 5,622,848에 기술된 것과 같은 하나 이상의 "감속제 (moderating agent)", "변조제 (modulating agent)") 또는 "중화제", 하나 이상의 소염제 등의 조합물로 사용되는 경우에 변화할 수 있다.

효과적인 수준을 결정하고/하나 또는 모니터하기 위하여 적절한 지시약 (indicator)이 사용될 수 있다. 예를 들어, 효과적인 수준은 적정 분석 (예를 들어, 분석학자)에 의해서, 또는 적절한 화자 생표 (예를 들어, 혈액 및/또는 조직)의 간접 분석 (예를 들어, 입상 화학 지시약을 사용함)에 의해서 결정될 수 있다. 효과적인 수준은 또한 약을 넘어 노 대사산물의 농도, 병태와 연관된 마커 (marker)의 변화 (예를 들어, 바이러스 감염의 경우에는 바이러스 수), 조직병리학 및 면역학적 분석, 병태와 연관된 증상의 감소 등과 같은 직접 또는 간접적인 관찰 결과에 의해서 결정될 수 있다.

본 발명의 ORP 수는 본 기술분야에서 공지된 임의의 적절한 두어 방법으로도 두어될 수 있다. 본 발명의 ORP 수는 본 기술분야에서 공지되어 있는 하나 이상의 제약상 운용되는 방법, 예를 들면, 분무 제 또는 화학제와 함께 두어될 수 있다. 본 기술분야에서 숙련된 전문가는 본 발명에 따른 ORP 수를 두어하기 위한 적절한 체계 및 도어 방법을 쉽게 결정할 수 있다. 임의의 필요한 용량의 조정은 예를 들어 부작용, 화자에 전반적인 상태의 변화 등과 같은 다른 인자들에 비추어서, 치료할 병태의 성질 및 심도에 부합하도록 숙련된 전문가에 의해서 이루어질 수 있다.

본 발명의 ORP 용액은 스팀 또는 스프레이나로서 상기도에 두어될 수 있다. 또한, 본 발명의 ORP 수용액은 에어로졸화 (aerosolization), 분무화 (nebulization) 또는 액체화 (atomization)에 의해서 두어될 수 있다. 본 발명의 ORP 수용액이 에어로졸화, 분무화 또는 액체화에 의해 두어되는 경우, 이것은 약 1 마이크로미터 내지 약 10 마이크로미터 범위의 작은 소적의 형태로 두어된 다.

에어로졸화, 분무화 및 액체화는 유용한 방법 및 장치는 당업계에 공지되어 있다. 예를 들어, 의료 분무기는 두어자에 의한 흡입을 위한 흡기 스트림 내로 제공된 용량의 생리학적으로 활성된 액체를 전달하기 위해 사용되었다 (예를 들어, 미국 특허 6,598,602 참조). 의료 분무기는 흡기와 함께 에어로졸을 생성하는 액체 소적을 사용한다. 다른 환경에서, 의료 분무기는 두어자에게 적합한 습도와함을 갖는 기체를 공급하기 위해 물 소적을 분사하기 위해 사용될 수 있고, 이것은 용기 스타일링이 기계적인 호흡 보조기, 예를 들어, 호흡기, 인공호흡기 또는 마취 전산시스템에 의해서 제공되는 경우에 특히 유용하다.

에시적인 분무기는 예를 들어 마우스파스를 통해 두어자의 흡입에 의해 생성되는 통과하는 공기 스트림 (흡기 스트림) 내로 의료용 액체의 소적을 분사하도록 작동하는 핸드 헬드 장치를 설명하고 있는 WO 95/01137에 설명되어 있다. 다른 예는 호흡 부진 환자에게 호흡 제어 및 중대를 제공하고 의약 액체를 환자와 기도 및 폐의 페로 내로 전달하기 위한 분무기를 포함하는 암양 인공호흡기 시스템을 설명하고 있는 미국 특허 5,388,571에 볼 수 있다. 미국 특허 5,312,281에는 낮은 온도에서 물 또는 액체를 미립자화시키고 보고된 바에 의하면 미스트의 크기를 조정할 수 있는 조용한 분무기가 기재되어 있다. 또한, 미국 특허 5,287,847은 생생, 소아 및 성인에게 의약 에어로졸을 전달하기 위한 것으로, 측정가능한 유속 및 배출 (output)용기를 갖는 공기역학적 분무 설비를 기술하고 있다. 추가로, 미국 특허 5,633,292에는 조용하고 미세한 분말을 포함하는 바이러스, 바이러스 및 감면 우산에 의한 체내 전달을 위한 원형 (ultrasonic atomizer)가 기술되어 있다.

본 발명의 방법은 또한 본 발명의 ORP 수용액에 의해 치료가 가능한 감염의 예방 또는 치료를 위해 사용될 수 있다. 감염은 하나 이상의 감염성 병원체, 예를 들어, 감염성 미생물에 의해 유발될 수 있다. 상기 미생물들 예를 들어, 바이러스, 세균 및 진균을 포함할 수 있다. 바이러스는 예를 들어 아데노바이러스, HIV, 라노바이러스 및 독감 바이러스로 이루어져 하나 이상의 바이러스를 포함할 수 있다. 세균은 예를 들어 에스치치아 칼리 (Escherichia coli), 슈도모나스 아데노토구아 (Pseudomonas aeruginosa), 스탈로코커스 아우테르스, 및 미코박테리움 트레포르모라서스 (Mycobacterium tuberculosis)로 이루어진 군 중에서 선택되는 하나 이상의 세균을 포함할 수 있다. 진균은 예를 들어 칸디다 아말리카 (Candida albicans), 바실러스 사브리타 부리발리스 (Bacillus subtilis) 및 바실러스 아스트로페우스 (Bacillus atrophaeus)로 이루어진 군 중에서 선택된 하나 이상의 진균을 포함할 수 있다. 본 발명의 방법은 또한 본 발명의 ORP 수용액에 의해 치료가 가능한 염증성 질환 또는 알레르기 반응을 예방 또는 치료의 목적으로 사용될 수 있다.

또한, 본 발병에 그려지는 ORP 수용액은 환자에게 의해 조절, 감소, 사멸 또는 박멸될 수 있는 유기체의 예를 들어 슈도모나스 아데노토구아, 에스치치아 칼리, 아세트로코커스 하이데아 (Enterococcus hirae), 아세토박테리움 바시바디니아 (Acinetobacter baumannii), 아세토박테리움 종, 박테로이데스 프라킬리스 (Bacteroides fragilis), 아세트로코커스 아레보시네스 (Enterobacter aerogenes), 엔터로코커스 과에칼리스
(Enterococcus faecalis), 반코마이신 내성-엔테로코커스 파에시움 (Enterococcus faecium) (VRE, MDR), 해모필루스 인플루엔자에 (Haemophilus influenzae), 클렙시엘라 육사토카 (Klebsiella oxytoca), 클렙시엘라 뉴모니아에 (Klebsiella pneumoniae), 마이코로포카스 루테우스 (Micrococcus luteus), 프로타에스 마라필리스 (Proteus mirabilis), 세라티아 마르세세스 (Serratia marcescens), 스타필로코스 아데루스, 스타필로코스스 에피터미더스 (Staphylococcus epidermidis), 스타필로코스스 해모필루스 인플루엔자에 (Staphylococcus haemolyticus), 스타필로코스스 호미니스 (Staphylococcus hominis), 스타필로코스스 사프로피티쿠스 (Staphylococcus saprophyticus), 트리코피토스스 트렌라타포이테스 (Trichophyton mentagrophytes), 칸디다 알비크스 및 칸디다 트로피칼리스 (Candida tropicalis)를 포함한다.

ORP 수용액은 또한 바이러스, 예를 들어 아데노바이러스, 인간 면역 결핍 바이러스 (HIV), 리노바이러스, 인플루엔자 (예를 들어, 인플루엔자 A), 간염 (예를 들어, A형 간염), 로타바이러스, 조류 독감 바이러스, 호흡기 세포 융합 바이러스, 단순 포진 바이러스, 수두 대상 포진 바이러스, 풍진 바이러스, 및 다른 감수성 바이러스를 조절, 감소, 사멸 또는 박멸하기 위해 본 발명에 따라 사용될 수 있다.

다른 실시예에서, 본 발명의 방법은 본 발명의 ORP 수용액을 비경구 투여하는 것을 포함한다. 비경구 투여는 본 발명의 ORP 수용액을 정맥내, 피하, 근내, 또는 복강내 투여하는 것을 포함할 수 있다. 바람직한 실시예에서, 본 발명의 ORP 수용액은 본 발명의 방법에 따라 병태를 예방 또는 치료하기 위해 정맥내 투여된다. 적합한 병태는 예를 들어 바이러스성 심근염, 다발 경화증 및 AIDS를 포함할 수 있다. 예를 들어, ORP 수용액의 정맥내 투여는 바이러스성 심근염, 다발 경화증, 및 AIDS를 치료하는 방법을 기재하고 있는 미국 특허 5,334,383 및 5,622,848을 참조한다.

본 발명은 손상되거나 해를 입은 조직을 본 발명의 ORP 수용액의 치료 유효량과 접촉시키는 것을 포함하는, 손상되거나 해를 입은 조직을 치료하는 방법을 추가로 제공한다. 본 발명에 따라서 손상되거나 해를 입은 조직을 치료하기 위해서 손상되거나 해를 입은 조직을 접촉시키는데 적합한 어떠한 방법이라도 사용될 수 있다. 예를 들어, 손상되거나 해를 입은 조직은 손상되거나 해를 입은 조직을 ORP 수와 접촉시키기 위해서 조직을 본 발명의 ORP 수용액으로 관류함으로써 본 발명에 따라서 치료될 수 있다. 방법으로 (및 추가로), 본 발명의 ORP 수용액은 손상되거나 해를 입은 조직이 ORP 수와 접촉하도록 스팀 또는 스프레이로서, 또는 전술한 바와 같이 에어로졸화, 분무화 또는 미립자화에 의해서 투여될 수 있다. 본 발명의 방법은 수술에 의해서 손상되거나 해를 입은 조직을 치료하는데 사용될 수 있다. 수술은 예를 들어 근관 수술, 발치, 치은 수술 등과 같은 치과 수술이 포함될 수 있다. 본 발명의 방법은 또한 반드시 수술에 의해서 야기되지 않는 하나 이상의 화상, 벤 상처, 찰과상, 찰상, 발진, 궤양, 자창, 이들의 조합 등에 의해서 손상되거나 해를 입은 조직을 치료하기 위해서 사용될 수 있다. 또한, 본 발명의 방법은 구강 수술, 그raft 수술, 임플란트 (implant) 수술, 이식 수술, 주성 수술, 혈관 수술, 방사선, 화학요법 및 이들의 조합에 의해서 손상되거나 해를 입은 조직을 치료하기 위해서 사용될 수 있다. 구강 수술에는 예를 들어 근관 수술, 발치, 치은 수술 등과 같은 치과 수술이 포함될 수 있다.

본 발명의 방법은 또한 반도시 수술에 의해서 야기되는 것이 아닌 하나 이상의 화상, 벤 상처, 찰과상, 찰상, 발진, 궤양, 자창, 이들의 조합 등에 의해서 손상되거나 해를 입은 조직을 치료하기 위해서 사용될 수 있다. 이러한 방법은 예를 들어 본 발명에 따른 바와 같이 치과수술, 세균 및 진균으로 이루어진 군으로부터 선택된 하나 이상의 미생물과 같은 하나 이상의 감염성 병원체에 의해서 야기될 수 있다. 본 발명은 추가로 본 발명의 ORP 수용액의 항감염량과 표면을 접촉시키는 것을 포함하는, 표면을 소독하는 방법을 제공한다. 본 발명의 방법에 따르면, 표면은 이용가능한 적합한 방법을 사용하여 접촉될 수 있다. 예를 들어, 표면은 본 발명에 따라 표면에 소독되어도 본 발명의 ORP 수용액으로 표면을 관류함으로써 접촉될 수 있다. 표면의 요소는 본 발명에 따라 소독되어도 본 발명의 ORP 수용액을 스팀 또는 스프레이로서, 또는 본 명세서에 기술된 바와 같이 에어로졸화, 분무화 또는 미립자화에 의해서 표면에 적용함으로써 접촉될 수 있다. 또한, 본 발명의 ORP 수용액은 본 명세서에 기술된 세정 와이프 (cleaning wipe)로 표면에 적용될 수 있다. 본 발명에 따라 표면을 소독하므로 표면은 감염성 미생물이 제거될 수 있다. 방법으로 (또는 추가로), 본 발명의 ORP 수용액은 표면에 적용하여 감염에 대한 장벽 (barrier)을 제공함으로써 본 발명에 따라 표면을 소독할 수 있다.
본 발명의 방법은 생물학적, 무생물적 표면 또는 이들 표면의 조합 표면을 소독하기 위해서 사용될 수 있다. 생물학적 표면에는 예를 들어 구강, 동강 (sinus cavity), 두개강, 복강 및 흉강과 같은 하나 이상의 체관 내의 조직이 포함될 수 있다. 구강 내의 조직은 예를 들어 구강 조직, 치은 조직, 혀 조직, 하 조직 및 인후 조직을 포함한다. 생물학적 조립은 또한 피부 근육 조직, 뼈 조직, 기관 조직, 점막 조직, 무세포 및 세포-피부 내재 물, 다른 생명공학 처리된 조직, 피부 이식물, 벼이 및 성인 줄기세포 또는 분화된 세포 (예를 들어 섬유아세포, 갈각세포) 및 이들이 조립을 포함할 수 있다. 무생물 표면에는 예를 들어 수술에 의해서 이식될 수 있는 장치, 보철장치 및 의료장치 및 수술 중에 노출될 수 있는 내부 기관, 내장, 근육 등을 포함한다. 본 발명의 방법에 따르면, 수술 동안 노출될 수 있는 내부 장기, 내장, 근육 등의 표면은 예를 들어 수술 환경의 열균성을 유지하기 위해 소독될 수 있다.

본 발명은 산화 환원 전위 (ORP) 수용액 및 향상된 효능 및 안정성을 제공하기 위한 증점제를 포함하는 국소 투여용 제제를 제공한다.

본 발명의 제제에 존재하는 물의 양은 일반적으로 제제의 중량을 기준으로 하여 약 10 중량% 내지 약 95 중량%이다. 바람직하게는, 존재하는 물의 양은 약 50 중량% 내지 약 90 중량%이다.

발명의 제제는 바람직하게는 양극수 및 음극수를 포함하는 ORP 수용액을 포함한다. 양극수는 본 발명에 사용되는 전해 전지의 양극 챔버에서 생산된다. 음극수는 전해 전지의 음극 챔버에서 생산된다.


바람직한 증점제는 아크릴산계 중합체이다. 보다 바람직하게는, 증점제는 고모질량의 가교결합된 아크릴산계 중합체이다. 상기 증점제는 하기의 화학식의 구조를 갖는다.

```
\[
\text{H} \quad \text{H} \\
\text{O} \quad \text{O} \\
\text{O} \quad \text{O}
\]
```

이러한 증점제는 노베온 (Noven2)에 의해서 상품명 카르보폴 (Carbopol™)로 판매된다. 카르보폴 중합체는 일반적으로 증점제로 사용하기 위한 유동성 조절제 (rheology modifier), 현탁화제 및 다양한 개인 위생 제품, 약제 및 가정용 세정제에서의 안정화제로서 공급된다. 카르보폴 (등록상표) 중합체는 고체 (예를 들어, 분말) 또는 액체 형태로 사용될 수 있다.

본 발명에서 사용할 수 있는 적합한 아크릴산계 중합체는 단독중합체 또는 공중중합체일 수 있다. 적합한 단독중합체는 바람직하게는 알릴 슈크로스 또는 알릴펜타에리트리톨에 의해서 가교결합될 수 있다. 아크릴산의 적합한 공중중합체는 장쇄 (C10-C30) 알킬 아크릴레이트에 의해서 변형되며, 바람직하게는 아크릴에리트리톨에 의해서 가교결합될 수 있다.

카르보폴 (등록상표) 중합체는 최대 점도를 수득하기 위하여 중화된다. 공급된 상태로서, 카르보폴 (등록상표) 중합체는 건조하고, 단단하게 코일화된 산성 분자이며, 수소 결합에 의해서 코일화된 구조로 유지된다. 일반 물 또는 다른 용매에 분산되지, 상기 중합체는 수화하고 부분적으로 코일이 풀리기 시작한다. 카르보폴 (등록상표) 중합체로부터 최대 점도를 수득하는 가장 통상적인 방법은 산성 중합체를 범으로 전환시키는 것이다. 이것은 수산화나트륨 (NaOH) 또는 트리에탄올아민 (TEA)과 같은 등장성 액체에 의해서 중화시킴으로써 쉽게 달성된다. 상기 중화는 끝내 중합체의 "코일을 풀고" 분자체 효율적인 점도 형태로 팽창시킨다.

적합한 증점제는 외관, 전단 저항성, 이온 저항성 및 열안정성과 같은 다른 특징뿐만 아니라 제제에 대하여 바
람직한 점도를 수득할 수 있다. 예를 들어, 카르보폴(등록상표) 934는 3000 센티포아즈 (cps)보다 큰 점도를 갖는 현탁액 또는 에멀젼(투명한 겔보다)인 체제에 바람직하다. 카르보폴(등록상표) 974P는 그의 유리한 생물 접착 특성 (bioadhesive property)을 위해서 대신 사용될 수 있다.

임의의 적합한 양의 증점제가 체제에 대해 목적하는 점도를 수득하도록 본 발명의 체제에 존재한다. 일반적으로, 증점제의 양은 체제의 종량보다 약 0.1% 내지 약 50% 중량 propor를 수득할 수 있다. 바람직하게는, 증점제의 양은 약 0.1 내지 약 10% 중량 propor이다.

다른 측면에서, ORP 수용액의 부피를 기준으로 한 증점제의 양은 일반적으로 약 0.1% 중량/부피 (mg/ml) 내지 약 50% 중량/부피 (mg/ml)이다. 바람직하게는, 증점제의 양은 약 0.1% w/v 내지 약 10% w/v이다.

증점제의 양은 일반적으로 ORP 수용액 250 ml당 약 0.1 g 내지 약 50 mg이다. 바람직하게는, 존재하는 증점제의 양은 ORP 수용액 250 ml당 약 1 mg 내지 약 20 mg, 가장 바람직하게는 ORP 수용액 250 ml당 약 3 mg 내지 약 15 mg 증점제를 포함할 수 있다.

아크릴산-계 증점제가 저농도로 사용되는 경우에, 체제는 미끄러운 느낌으로 쉽게 유동한다. 보다 높은 농도에서 본 발명의 체제는 고점도를 가지며, 의가소성 (pseudoplastic)이고 유동에 대해서 저항성이다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다.

본 발명의 체제는 임의의 적합한 증점제를 포함할 수 있다. 임의의 적합한 증점제가 체제의 목적하는 pH를 수득하기 위해서 사용될 수 있다. 임의의 적합한 증점제는 본 발명의 체제를 전기 형성 (pseudoplastic)하고 유동에 대해서 저항성을 갖는다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다.

본 발명의 체제는 임의의 적합한 증점제를 포함할 수 있다. 임의의 적합한 증점제가 체제의 목적하는 pH를 수득하기 위해서 사용될 수 있다. 임의의 적합한 증점제는 본 발명의 체제를 전기 형성 (pseudoplastic)하고 유동에 대해서 저항성을 갖는다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다.

임의의 적합한 양의 증점제가 본 발명의 체제에 포함될 수 있다. 일반적으로, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 바람직하게는, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 부피를 기준으로 하여, 체제의 양은 ORP 수용액의 부피를 기준으로 하여 약 0.1 내지 약 10% 중량 propor의 양으로 존재한다.

체제는 증점제가 본 발명의 체제에 포함된 경우에, 체제는 ORP 수용액의 250 ml당 약 1 ml 내지 약 100 ml의 양으로 첨가할 수 있다. 바람직하게는, 체제는 ORP 수용액의 250 ml당 약 10 ml 내지 약 50 ml의 양으로 첨가할 수 있다. 추가로, 고체 형태 일 때, 증점제는 상기 액체 형태에 대응하는 고체의 양으로 첨가할 수 있다.

체제는 추가로 착색제, 방향제, 완충제, 생리학적 사용에 의한 단체 및/또는 부형제 등과 같은 추가의 성분들로 만들어질 수 있다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다. 일반적으로, 증점제는 본 발명의 체제에 포함될 수 있다. 임의의 적합한 양의 증점제가 본 발명의 체제에 포함될 수 있다. 일반적으로, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 바람직하게는, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 부피를 기준으로 하여, 체제의 양은 ORP 수용액의 부피를 기준으로 하여 약 0.1 내지 약 10% 중량 propor의 양으로 존재한다.

체제는 추가로 착색제, 방향제, 완충제, 생리학적 사용에 의한 단체 및/또는 부형제 등과 같은 추가의 성분들로 만들어질 수 있다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다. 일반적으로, 증점제는 본 발명의 체제에 포함될 수 있다. 임의의 적합한 양의 증점제가 본 발명의 체제에 포함될 수 있다. 일반적으로, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 바람직하게는, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 부피를 기준으로 하여, 체제의 양은 ORP 수용액의 부피를 기준으로 하여 약 0.1 내지 약 10% 중량 propor의 양으로 존재한다.

체제는 추가로 착색제, 방향제, 완충제, 생리학적 사용에 의한 단체 및/또는 부형제 등과 같은 추가의 성분들로 만들어질 수 있다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다. 일반적으로, 증점제는 본 발명의 체제에 포함될 수 있다. 임의의 적합한 양의 증점제가 본 발명의 체제에 포함될 수 있다. 일반적으로, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 바람직하게는, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 부피를 기준으로 하여, 체제의 양은 ORP 수용액의 부피를 기준으로 하여 약 0.1 내지 약 10% 중량 propor의 양으로 존재한다.

체제는 추가로 착색제, 방향제, 완충제, 생리학적 사용에 의한 단체 및/또는 부형제 등과 같은 추가의 성분들로 만들어질 수 있다. 전단력이 혼합기 또는 펌프에 의해서 적용되는 경우에, 결보기 점도는 감소되며, 체제는 둔감될 수 있다. 일반적으로, 증점제는 본 발명의 체제에 포함될 수 있다. 임의의 적합한 양의 증점제가 본 발명의 체제에 포함될 수 있다. 일반적으로, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 바람직하게는, 증점제의 양은 체제의 종량의 약 0.1 내지 약 10% 중량 propor이다. 부피를 기준으로 하여, 체제의 양은 ORP 수용액의 부피를 기준으로 하여 약 0.1 내지 약 10% 중량 propor의 양으로 존재한다.
는 제제를 수독할 수 있도록 허용할 수 있다.

착색제 또는 방향제는 또한 카르보폴(등록상표)과 같은 중점제를 ORP 수에 용해시키기 전 또는 후에, 그러나, 중화 단계 전에 혼합물에 첨가될 수 있다.

본 발명의 제제의 물리적 특성은 제제에 존재하는 ORP 수용액의 물리적 특성과 일반적으로 동일하다. ORP 수용 액의 특성은 중점제 및 임의의 중화제를 첨가한 후에도 유지된다. 예를 들어, ORP 수용액 자체, 및 ORP 수용액 을 함유하는 제제의 안정성 및 pH는 일반적으로 동일하다. 따라서, 본 명세서에 기술된 ORP 수용액의 모든 특징은 본 발명의 제제에 적용된다.

예를 들어, 본 발명의 제제는 일반적으로 적어도 약 20시간 동안, 전형적으로 적어도 2일 동안 안정하다. 보다 일반적으로는, 제제는 적어도 약 1주일 (예를 들어, 1주일, 2주일, 3주일, 4주일 등) 동안, 바람직하게는 적어도 2개월 동안 안정하다. 보다 바람직하게는, 제제는 그 제조 후에 적어도 6개월 동안 안정한다. 원래 더 바람직하게는, 제제는 적어도 1년, 가장 바람직하게는 적어도 3년 동안 안정하다.

제제의 pH는 일반적으로 약 6 내지 약 8이다. 바람직하게는 제제의 pH는 약 6.2 내지 약 7.8, 가장 바람직하게는 약 7.4 내지 약 7.6이다.


페이스트는 일반적으로 종종 수성 또는 지방성 비히클에 분산된 고체의 대부분 (예를 들어, 20% 내지 50%)을 함유하는 반고체 혼합물 또는 현탁액이다. 로션은 일반적으로 수성 비히클 및 임의의 물질 (50% 초과)을 함유하는 액체 혼합물이다. 액체로 포장된 반고체 혼합물 또는 현탁액이다. 페이스트는 일반적으로 다른 화학성 성분들과 함께 담제의 일부로서 안화수소 또는 폴리에틸렌 글리콜을 함유할 수 있는 반고체 혼합물 또는 현탁액이나。

본 발명의 제제가 겔 형태일 때, 겔의 점도는 실온 (예를 들어 약 25℃)에서 약 10,000 내지 약 100,000 센티포와즈 (cps) (예를 들어 약 15,000 cps, 약 20,000 cps, 약 25,000 cps, 약 30,000 cps, 약 35,000 cps, 약 40,000 cps, 약 45,000 cps, 약 50,000 cps, 약 55,000 cps, 약 60,000 cps, 약 65,000 cps, 약 70,000 cps, 약 75,000 cps, 약 80,000 cps, 약 85,000 cps, 약 90,000 cps, 약 95,000 cps, 또는 이들의 범위)이다.

겔의 pH는 일반적으로 약 6.0 내지 약 8.0이야. 상기 pH를 초과하면, 카르보폴(등록상표) 중합체와 같은 중점제의점도는 감소하여 불충분한 국소용 제제를 생성시킬 수 있다. 바람직하게는, 겔의 pH는 약 6.2 내지 약 7.8, 보다 바람직하게는 약 7.4 내지 약 7.6이다.

본 발명의 제제는 다양한 형태로 조제하여 적용할 수 있다. 특히, 본 발명의 제제는 헤어, 마우스, 레트, 페지, 스, 망, 망, 페거이, 토끼, 기나다 피그, 헬 스타, 새 및 인간에게 적용될 수 있다. 국소 두부는 피부에 대한 적용뿐만 아니라 경구, 비내, 기관지 내 및 직장 두부 경로를 포함한다.

본 발명에 따라 치료될 수 있는 환자에 따라 치료를 위해서 인간 및/또는 동물을 포함하는 환자에게 국소 두부하게 적합하다. 특히, 본 발명의 제제는 중성 동물(예를 들어, 마우스, 레트, 페지, 스, 망, 망, 페거이, 토끼, 기나다 피그, 헬 스타, 새 및 인간에게 적용될 수 있다. 국소 두부는 피부에 대한 적용뿐만 아니라 경구, 비내, 기관지 내 및 직장 두부 경로를 포함한다.

본 발명에 따라 치료될 수 있는 환자에 따라 치료를 위해서 인간 및/또는 동물을 포함하는 환자에게 국소 두부하게 적합하다. 특히, 본 발명의 제제는 중성 동물(예를 들어, 마우스, 레트, 페지, 스, 망, 망, 페거이, 토끼, 기나다 피그, 헬 스타, 새 및 인간에게 적용될 수 있다. 국소 두부는 피부에 대한 적용뿐만 아니라 경구, 비내, 기관지 내 및 직장 두부 경로를 포함한다.

추가로, 본 발명은 산화 환원 전위 수용액 및 중점제를 포함하는 제제를 상처에 적용함으로써 환자에서 상처 치유를 촉진하는 방법에 관한 것이다. 치료되는 상처는 임의의 수술, 외상 또는 다른 수단에 의해 야기된 것일 수 있다. 치료되는 상처는 임의의 수술, 외상 또는 다른 수단에 의해 야기된 것일 수 있다. 치료될 수 있는 상처는 예를 들어, 당뇨성 두부 외상이다.

본 발명은 추가로 ORP 수용액 및 중점제를 포함하는 제제를 국소 두부함으로써 혼자나의 병태를 예방하는 방법에 관한 것이다. 예를 들어, 제제 (예를 들어 겔 형태의)는 치유를 촉진하기 위한 개발된 상처에 대한 장벽으로서
사용될 수 있다. 구체적으로, 제제(예를 들어 젤 형태의)는 상처의 표면, 예를 들어 신경 및 혈관 합병증을 유발하기 쉬운 당뇨병의 즉각 응급 대응에 적용될 수 있다. 이와 같이 적용된 제제는 상기 상처가 당뇨병 환자의 감염에 대한 주요 입구이기 때문에 감염에 대한 장벽을 제공할 수 있다.

제제는 예를 들어 감염을 포함하여 환자의 성병을 예방하기 위해 사용될 수 있다. 예방될 수 있는 상기 감염은포진, 인간 면역 결핍 바이러스 (HIV) 및 결 감염을 포함한다. 제제가 젤 형태일 때, 제제는 상처가 변성된 상태인 경우(즉, 수일) 또는/또는(예를 들어, 수개월)임이 될 수 있다.

본 발명의 제제는 균주, 바이러스 및/또는 바이러스에 대해서 원하는 치료학적 효과를 제공하는 치료 효소량으로 사용되거나 적용될 수 있다. 본원에서 사용되는 바와 같이, 치료 효소량은 치료하거나 예방되는 병해의 치료를 제공하는 제제의 양을 의미한다. 예를 들어, 감염을 치료하기 위해서 사용되는 경우에, 제제의 치료 효소량은 제제의 치료 효과를 감소시키고/시키거나, 추가의 감염을 방지하는데 효과적인 양을 포함할 수 있다. 본 기술분야에서 숙련된 전문가에 의해서 인지되는 바와 같이, 제제를 두어함으로써 제공되는 본 발명의 제제의 효용은 단기간(즉, 수일) 및/또는(예를 들어, 수개월)임이 될 수 있다.

제제는 또한 환자에게서 목적으로 효과가 관찰될 때까지 충분한 기간에 걸쳐서, 예를 들어, 1일, 2일, 수일, 1주일, 또는 수주일에 걸쳐서 적용될 수 있다.

제제는 임의의 적합한 방식으로도 적용될 수 있다. 예를 들어, 제제의 양은 치료할 환자의 표면에 적용한 다음 에, 환자 자신의 손가락을 사용하여 균일하게 펼쳐 바를 수 있다. 별법으로, 건강관리 제공자(health care provider)가 제제를 환자의 조직에 적용할 수 있다. 적합한 도구를, 예를 들어, 협응용 아이드 또는 클로스(clot)를 제제를 적용하기 위해서 사용할 수 있다.

본 발명의 ORP 수는 전기분해 또는 산화환원 반응으로도 볼 수 있는 산화/환원 반응에 의해서 생성될 수 있고, 여기서 전기적 에너지가 사용되어 수용액 중에서 하나 이상의 화학적 변화를 생성시킨다. 전기적 에너지는 전자를 하나의 포인트로부터 전류의 형태로 또다른 포인트로 전도시킴으로써 물에 도입되고 물을 통해서 수송된다. 전류를 발생시키고 유지시키기 위해서는, 물 중에 전하 캐리어가 존재하여야 하며, 캐리어가 이동하도록 만드는 힘이 존재하여야 한다. 전하 캐리어는 금속 및 반도체의 경우에서와 같이 전자일 수 있으며, 이들은 용액의 경우에 양이온 및 음이온일 수 있다.

환원 반응은 본 발명에 따라 ORP 수용액을 제조하는 방법에서 용액에서 일어나는 반면에, 산화 반응은 양극에서 일어난다. 일어나는 특정 환원 및 산화 반응은 국제출원 공개 WO 03/048421 A1에 기술되어 있다.

본 명세서에 기술된 바와 같이, 양극에서 발생된 용액은 양극수라고 불리며, 용액에서 발생된 용액은 음극수라고 불린다. 양극수는 전화반응으로부터 생성된 산화된 종을 함유하는 반면에, 음극수는 전화로부터 환원된 종을 함유한다.

양극수는 일반적으로 약 1 내지 약 6.8의 낮은 pH를 갖는다. 양극수는 일반적으로 양의 영소 기체, 클로라이드 이온, 염산 및/또는 차아염소산을 포함한 다양한 형태의 염소를 함유한다. 양의 영소 기체, 염산기체 및/또는 오존을 포함하는 다양한 형태의 산소가 존재한다. 양극수는 일반적으로 약 7.2 내지 약 11의 높은 pH를 갖는다. 음극수는 일반적으로 수소 기체, 히드록실 라디칼 및/또는 나트륨 이온을 함유할 수 있다.

본 발명의 ORP 수용액은 산성, 중성 또는 염기성일 수 있으며, 일반적으로 약 1 내지 약 14의 pH를 갖는다. 일반적으로 약 1 내지 약 4.5의 pH를 갖는다. ORP 수용액의 pH는 약 3 내지 약 8이다. 보다 바람직하게는, ORP 수용액의 pH는 약 4.5 내지 약 7.8이며, 가장 바람직하게는 pH는 약 7.4 내지 약 7.6이다.

본 발명의 ORP 수용액은 산성, 중성 또는 염기성일 수 있으며, 일반적으로 약 1 내지 약 14의 pH를 갖는다. 이 pH에서 ORP 수용액은 ORP 수용액과 접촉하게 되는 인간 피부와 같은 표면을 손상시키거나 감염을 유발할 수 있으므로, 일반적으로 ORP 수용액의 pH는 약 3 내지 약 8이다. 보다 바람직하게는, ORP 수용액의 pH는 약 4.5 내지 약 7.8이며, 가장 바람직하게는 pH는 약 7.4 내지 약 7.6이다.

본 발명의 ORP 수용액은 일반적으로 -1000 밀리볼트 (mV) 내지 +3500 밀리볼트 (mV)의 산화/환원 전위를 갖는다. 이 전위는 금속 전극에 의해서 탐지되고 동일한 용액 내에서의 기준 전극과 비교한 것으로 전극을 수용하거나 전달시키는 용액의 전장(즉, 전위)의 척도이다. 이 전위는 전극에서 표준기준은 영소/염소 전극에 따라서 ORP 수용액의 전위를 밀리볼트로 측정하는 것을 포함하는 표준 전극에 의해서 측정할 수 있다. ORP 수용액은 일반적으로 ~400 mV 내지 +1300 mV 또는 +1150 mV의 전위를 갖는다. 바람직하게는, ORP 수용액은 0 mV 내지 +1250 mV, 보다 더 바람직하게는 +500 mV 내지 +1250 mV의 전위를 갖는다. 본 발명의 ORP 수용액은 +800 mV 내지 +1100 mV, 가장 바람직하게는 +800 mV 내지 +1000 mV의 전위를 갖는다.
다양한 이온 종 및 다른 종이 본 발명의 ORP 수용액 내에 존재할 수 있다. 예를 들어, ORP 수용액은 염소 (예를 들어, 유리 염소 및 임의로 결합된 염소) 및 오존 및 포화산소와 같은 다양한 미생물에 해롭다는 ORP 수용액의 소독 능력에 기여하는 것으로 생각된다.

유리 염소는 일반적으로 차이아염소산 (HClO), 차이아염소산 이온 (ClO⁻), 및 차이아염소산나트륨 (NaOCl), 그리고 다른 라디칼 염소 종을 포함하며, 이들은 액체까지는 아니다. 차이아염소산 대차이아염소산 이온의 비는 pH에 따라 좌우된다. pH 7.4에서, 차이아염소산 수준은 약 25 ppm 내지 약 75 ppm이다. 온도도 유리 염소 성분의 비에 영향을 미친다.

결합된 염소는 일반적으로 0.03 ppm 내지 0.16 ppm, 가장 바람직하게는 약 0.05 ppm 내지 0.10 ppm의 수준이다. 오존은 임의로 약 0.03 ppm 내지 0.2 ppm, 가장 바람직하게는 약 0.10 ppm 내지 0.16 ppm의 수준이다.

ORP 수용액 내에 존재하는, 전술한 염소 종 및 Cl⁻, ClO₃⁻, ClO₂ 및 ClO⁻와 같이 측정하기 어려울 수 있는 추가의 종을 포함하는 화학물질 종의 총량은 바람직하게는 약 2 밀리몰 (mM)의 범위이다. 존재하는 화학적 종의 수준은 또한 (스핀 트랩 (spin trap) 분자로서 템폰 (Tempone) H를 사용하여) ESR 분광법에 의해서 측정될 수 있다.

본 발명의 ORP 수용액은 일반적으로 적어도 약 24시간 동안, 및 일반적으로 적어도 약 2일 동안 안정하다. 보다 일반적으로, 수용액은 적어도 약 2주 (예를 들어, 2주, 3주, 4주 등) 동안, 바람직하게는 적어도 약 2개월 동안 안정하다. 본 발명의 ORP 수용액은 일반적으로 적어도 약 2개월 동안 안정하다. 보다 바람직하게는, ORP 수용액은 그의 제조 후에 적어도 6개월 동안 안정하다. 보다 더 바람직하게는, ORP 수용액은 적어도 1년 동안, 가장 바람직하게는 적어도 3년 동안 안정하다.

본원에서 사용되는 바와 같이, 용어 "안정한"은 일반적으로 그의 제조 후에 상생적인 상태 (즉 실온) 하에 특정 기간 동안 ORP 수용액이 오존에 의도하는 그의 용도, 예를 들어 오염 방지, 소독, 멸균, 항-미생물 세정, 및 상처 세정에 적합한 상태로 유지하는 능력을 의미한다.

본 발명의 ORP 수용액은 또한 가속 조건, 일반적으로 약 30℃ 내지 약 60℃에서 적어도 약 90일, 바람직하게는 약 180일 동안 적정시에 안정하다.

용액에 존재하는 이온 및 다른 종의 농도는 일반적으로 ORP 수용액의 보관 수명 동안 유지된다. 일반적으로, 유리 염소, 차이아염소산 및 임의로 오존 및 파산화수소의 농도는 ORP 수용액의 제조 후에 적어도 약 2개월 동안 그의 초기 농도의 약 70% 이상으로 유지한다. 바람직하게는, 상기 농도는 ORP 수용액의 제조 후에 적어도 약 2개월 동안 그의 초기 농도의 약 80% 이상으로 유지된다. 보다 바람직하게는, 상기 농도는 ORP 수용액의 제조 후에 적어도 약 2개월 동안 그의 초기 농도의 약 90% 이상, 가장 바람직하게는 약 95% 이상으로 유지된다.
본 발명의 ORP 수용액의 안정성은 ORP 수용액에 노출시킨 후 생물에 존재하는 유기체의 양의 감소를 기초로 하여 결정될 수 있다. 유기체 농도 감소의 측정은 설립된 실험을 수행할 수 있다. 적합한 유기체는 예를 들어 에스세레치아 클라리, 스타필로코커스 아우레우스, 칸디다 알비칸스, 및 바실러스 아트로파에우스 (Bacillus atrophaeus) (종전의 비. 섭틸리스 (B. subtilis)) 등 포함하여, 이들로 제한되지 않는다. ORP 수용액은 생존 미생물 농도의 4 로그 (10^4) 감소를 제공할 수 있는 저-수준 소독제 및 생존 미생물 농도의 6 로그 (10^6) 감소를 제공할 수 있는 고-수준 소독제로서 모두 가능할 수 있다.

본 발명의 한 측면에서, ORP 수용액은 용액을 제조한 지 적어도 2개월 후에 측정하면, 1분 동안 노출시킨 후 총 유기체 농도의 적어도 4 로그 (10^4) 감소를 제공할 수 있다. 바람직하게는, ORP 수용액은 용액을 제조한 지 적어도 6개월 후에 측정할 때에, 유기체 농도의 상기 감소를 제공할 수 있다. 보다 바람직하게는, ORP 수용액은 용액을 제조한 지 적어도 1년 후에 측정할 때에, 가장 바람직하게는 ORP 수용액을 제조한 지 적어도 3년 후에 측정할 때에 유기체 농도의 상기 감소를 제공할 수 있다.

본 발명의 다른 측면에서, ORP 수용액은 ORP 수용액을 제조한 지 적어도 2개월 후에 측정할 때 노출 1분 내에 다양한 미생물로 이루어지는 군 중에서 선택되는 생존 미생물 농도의 적어도 6 로그 (10^6) 감소를 제공할 수 있다: 에스세레치아 클라리, 슈도모나스 아에루기노사, 스타필로코커스 아우레우스 및 칸디다 알비칸스. 바람직하게는, ORP 수용액은 용액을 제조한 지 적어도 6개월 후에, 보다 바람직하게는 적어도 1년 후에 측정할 때에, 에스세레치아 클라리, 슈도모나스 아에루기노사, 스타필로코커스 아우레우스 또는 칸디다 알비كان스 유기체 농도의 상기 감소를 달성할 수 있다. 바람직하게는, ORP 수용액은 그를 제조한 지 적어도 2개월 후에 측정할 때 노출 1분 내에 생존 미생물 농도의 적어도 7 로그 (10^7) 감소를 제공할 수 있다.

본 발명의 ORP 수용액은 일반적으로 ORP 수용액을 제조한 지 적어도 2개월 후에 측정할 때, 노출 1분 이내에 에스세레치아 클라리, 슈도모나스 아에루기노사, 스타필로코커스 아우레우스 및 칸디다 알비칸스를 포함하고 이로 제한되지 않는 생존 미생물의 샘플을 약 1×10^6 내지 약 1×10^8 유기체/㎖의 초기 농도로부터 약 0 유기체/㎖의 최종 농도로 감소시킬 수 있다. 이것은 유기체 농도의 6 로그 (10^6) 내지 8 로그 (10^8) 감소다. 바람직하게는, ORP 수용액은 용액을 제조한 지 적어도 6개월 후에, 보다 바람직하게는 제조한 지 적어도 1년 후에 측정할 때에 에스세레치아 클라리, 슈도모나스 아에루기노사, 스타필로코커스 아우레우스 또는 칸디다 알비칸스 유기체 농도의 상기 감소를 달성할 수 있다. 바람직하게는, ORP 수용액은 그를 제조한 지 적어도 2개월 후에 측정할 때 노출 1분 내에 생존 미생물 농도의 적어도 7 로그 (10^7) 감소를 제공할 수 있다.

발명으로, 본 발명에 따라 사용되는 ORP 수용액은 ORP 수용액을제조한 지 적어도 2개월 후에 측정할 때, 노출 5분 이내에 바실러스 아트로파에우스 포자와 포자 현탁액 농도의 6 로그 (10^6) 감소를 제공할 수 있다. 바람직하게는, 본 발명에 따라 사용되는 ORP 수용액은 제조한 지 적어도 6개월 후에, 더욱 바람직하게는 제조한 지 적어도 1년 후에 측정할 때에, 바실러스 아트로파에우스 포자 현탁액 농도의 상기 감소를 달성할 수 있다.

ORP 수용액은 또한 ORP 수용액을제조한 지 적어도 2개월 후에 측정할 때, 노출 10분 이내에 바실러스 아트로파에우스 포자 현탁액 농도의 6 로그 (10^6) 감소를 제공할 수 있다. 바람직하게는, 본 발명에 사용되는 ORP 수용액은 제조한 지 적어도 6개월 후에, 더욱 바람직하게는 제조한 지 적어도 1년 후에 측정할 때, 바실러스 아트로파에우스 포자 현탁액 농도의 상기 감소를 달성할 수 있다.

ORP 수용액은 또한 ORP 수용액을제조한 지 적어도 2개월 후에 측정할 때, 노출 15분 이내에 바실러스 아트로파에우스 포자 현탁액 농도의 6 로그 (10^6) 감소를 제공할 수 있다. 바람직하게는, 본 발명에 사용되는 ORP 수용액은 제조한 지 적어도 6개월 후에, 더욱 바람직하게는 제조한 지 적어도 1년 후에 측정할 때, 바실러스 아트로파에우스 포자 현탁액 농도의 상기 감소를 달성할 수 있다.
과산화수소는 일반적으로 약 0.01 ppm 내지 약 200 ppm, 바람직하게는 약 0.05 ppm 내지 약 100 ppm의 양으로 ORP 수용액에 존재한다. 보다 바람직하게는, 과산화수소는 약 0.1 ppm 내지 약 40 ppm, 가장 바람직하게는 약 1 ppm 내지 약 4 ppm의 양으로 존재한다.

유리 염소 종의 총량은 일반적으로 약 10 ppm 내지 약 400 ppm, 바람직하게는 약 50 ppm 내지 약 200 ppm, 가장 바람직하게는 약 50 ppm 내지 약 80 ppm이다. 차아염소산의 양은 일반적으로 약 15 ppm 내지 약 35 ppm이다. 차아염소산나트륨의 양은 일반적으로 약 25 ppm 내지 약 50 ppm이다. 이산화염소 수준은 일반적으로 5 ppm 미만이다.

일반적으로, ORP 수용액은 적어도 약 1 주 동안 안정하다. 바람직하게는, ORP 수용액은 적어도 약 2개월 동안 안정하고, 보다 바람직하게는, ORP 수용액은 그의 제조 후 적어도 약 6개월 동안 안정하다. 훨씬 더 바람직하게는, ORP 수용액은 적어도 약 3년 동안 안정하다.

상기 실시예에서 ORP 수용액의 pH는 일반적으로 약 6 내지 약 8이다. 바람직하게는, ORP 수용액의 pH는 약 6.2 내지 약 7.8, 가장 바람직하게는 약 7.4 내지 약 7.6이다.

본 발명은 어떠한 방식으로도 제한하지 않으면서, pH를 조절하면 염소 종, 예를 들어 차아염소산 및 차아염소산 이온이 공존하는 안정한 ORP 수용액을 얻을 수 있다고 생각된다.

그 제조 후에, 본 발명의 ORP 수용액 또는 제제는 예를 들어 병원, 요양원, 진료소, 의료 설치물, 처가 치료소 등을 포함하는 의료 시설과 같은, 최종 사용자에게 분배 및 판매하기 위하여 밀봉된 용기에 놓릴 수 있다. 본 발명에 따른 제약 투여 형태는 본원에 기재된 국소 투여 제제 및 제제가 포함되는 밀봉된 용기를 포함한다.

용기에 포함되는 ORP 수용액 또는 제제의 밀봉성 및 안정성을 유지하는 임의의 적합한 밀봉용 용기를 사용할 수 있다. 용기는 ORP 수용액 또는 제제의 성분, 예를 들어 ORP 수용액 및 증점제와 상용성인 임의의 물질로 제작될 수 있다. 용기는 일반적으로 ORP 수용액 내에 존재하는 이온이 임의의 폭간격이 있는 정도로 용기에 반응하지 않도록 비반응성이어야 한다.

바람직하게는, 용기는 플라스틱 또는 유리로 제작된다. 플라스틱은 용기를 선반 위에서 저장할 수 있도록 경질일 수 있다. 별명으로, 플라스틱은 유연한 맥이 같이 유연할 수 있다.

적합한 플라스틱에는 예를 들어 플리프로필렌, 폴리에스테르 테레프탈레이트 (PET), 폴리에틸렌, 플리알코로일, ABS 수지, 폴리에틸렌, 폴리비닐 클로라이드, 및 이들의 혼합물이 포함된다. 바람직하게는, 용기는 고밀도 폴리에틸렌 (HDPE), 저밀도 폴리에틸렌 (LDPE) 및 선형 저밀도 폴리에틸렌 (LLDPE)으로 이루어진 군으로부터 선택된 플리에틸렌을 포함한다. 가장 바람직하게는, 용기는 고밀도 폴리에틸렌이다.

용기는 투여되는 ORP 수용액 또는 제제의 밀봉성 및 안정성을 유지하는 임의의 적합한 밀봉용 용기를 사용할 수 있다. 예를 들어, 용기는 트위스트-오프 (twist-off) 방식의 캡 (cap) 또는 스토퍼(stopper)에 의해서 밀봉될 수 있다. 일방으로, 개방부는 호일층 (foil layer)으로 더 밀봉할 수도 있다.

밀봉된 용기의 헤드스페이스 (headspace) 기체는 ORP 수용액 또는 ORP 수용액을 포함하는 제제의 다른 성분과 반응하지 않는 공기 또는 다른 적합한 기체일 수 있다. 적합한 헤드스페이스 기체는 질소, 산소 및 이들의 혼합물을 포함한다.

본 발명은 추가로 양극수 및 음극수를 포함하는 ORP 수용액을 제공한다. 양극수는 본 발명에 사용되는 환경에 존재하는 원치 않는 유해한 물질의 활성을 억제하기 위해 소독제, 세척제, 세
정제, 방부제 등으로서 매우 광범한 용도를 갖는다. ORP 수용액으로 처리될 수 있는 물질은 예를 들어 유기체 및 알레르겐을 포함한다.

ORP 수용액은 다음과 같은 대표적인 용도에 적합하다: 의료, 치과 및/or는 수의학적 장비 및 장치; 식품 산업 (예를 들어, 경질 표면, 균생: 병원/치료 시설 (예를 들어, 경질 표면); 미용업 (예를 들어, 세정 화장품: 하드 드라이브); 및 생물학적 태우 방지 (예를 들어, 단체열, 감염성 미생물).


본 발명을 어떠한 방식으로 제한하지 않으면서, ORP 수용액은 그와 접촉하는 세균을 박멸하고 단백질 및 DNA를 포함하여 세균 세포 성분을 파괴하는 것을 생각한다.

예를 들어, ORP 수용액은 ORP 수용액을 제조한 지 적어도 2개월 후에 측정할 때 노출한 지 30초 내에, 슈도모나스 아에루기노사, 에스체리치아 콜라이, 엔테로코커스 하이데, 아세틸로박터 바이모나, 아세틸로박터 증, 박테리아 플라그리스, 엔테로박터 아예로코커스, 엔테로코커스 파데스테로스, 레오타물스 일레포미스에, 클립시엘라 옥시토카, 클립시엘라 뉴모나시아, 마이코코커스 투데우스, 프로테우스 미라킬리스, 세라티아 마르체세스, 스타필로코커스 아우테우스, 스타필로코커스 에피코커키다, 스타필로코커스 쉴리티카, 스타필로코커스 호미니스, 스타필로코커스 스트레포테스, 스타필로코커스 뉴모나시아, 스타필로코커스 피로코커스, 칸디다 알바كان스 및 칸디다 트라포미코리스로 이루어진 군 중에서 선택된 생존 미생물 샘플의 농도를 적어도 약 5 로그 (10^5) 감소시킬 수 있다.

한 실시예시에서, 본 발명에 따라 투여되는 ORP 수용액은 ORP 수용액을 제조한 지 적어도 약 2개월 후에 측정할 때, 노출한 지 3분 이내에 에스체리치아 콜라이, 슈도모나스 아예루기노사, 스타필로코커스 아우데우스 및 칸디다 알바커르스트를 포함하여 아예 제한되지 않는 생존 미생물 샘플의 농도를 약 1×10^6 내지 약 1×10^8 유기체/㎖의 초기 농도로부터 약 0 유기체/㎖의 최종 농도로 감소시킬 수 있다. 이것은 유기체 농도의 약 6 로그 (10^6) 내지 8 로그 (10^8) 감소에 대응한다. 바람직하게는, 본 발명에 따라 투여되는 ORP 수용액은 제조한 지 적어도 약 6개월 후에, 보다 바람직하게는 제조한 지 적어도 약 1년 후에 측정할 때 에스체리치아 콜라이, 슈도모나스 아예루기노사, 스타필로코커스 아우데우스 또는 칸디다 알바커르스트 유기체의 약 10^6 내지 10^8 감소를 달성할 수 있다.

의료, 치과 및/or는 수의학적 장비 및 장치; 식품 산업 (예를 들어, 경질 표면, 과일, 야채, 육류); 병원/치료 시설 (예를 들어, 경질 표면); 미용업 (예를 들어, 세정 화장품: 하드 드라이브); 및 생물학적 태우 방지 (예를 들어, 단체열, 감염성 미생물).
그 \(10^3\)를 초과하여 감소시킬 수 있다. 바람직하게는, ORP 수용액은 제조한 지 적어도 약 6개월 후, 더욱 바람직하게는 제조한 지 적어도 약 1년 후에 측정할 때, 바이러스 농도의 약 \(10^3\) 초과의 감소를 달성할 수 있다.

본 발명에 따라 투여되는 ORP 수용액은 추가로 ORP 수용액을 제조한 지 적어도 약 2개월 후에 측정할 때 약 5분 노출 내에 미코박테리움 보비스 \((Yersinia enterocolitica)\)의 성장을 완전히 억제할 수 있다. 바람직하게는, ORP 수용액은 제조한 지 적어도 약 6개월 후, 더욱 바람직하게는 제조한 지 적어도 약 1년 후에 측정할 때 미코박테리움 농도를 완전히 억제할 수 있다.

따라서, ORP 수용액에 의한 치료에 의해서 조절, 감소, 사멸 또는 박멸될 수 있는 유기체는 세균, 진균, 효모 및 바이러스를 포함하고, 이로 제한되지 않는다. 감수성 세균은 예서체리아 콜라이, 스타필로코커스 아유제우스, 바실러스 아트로피에우스, 스트렙토코커스 피오게네스, 살모넬라 콜레아구스아, 슈도모나스 아예미노시아, 시델라 디세테리아에 \((Shigella dysenteriae)\) 및 다른 감수성 세균을 포함한다. ORP 수용액으로 치료할 수 있는 진균 및 효모는 예를 들어 칸디다 알비칸스 및 트리코피토리마나 \((Trichophyton mentagrophytes)\)를 포함한다. ORP 수용액은 또한 바이러스, 예를 들어 아데노바이러스, 인간 면역 결핍 바이러스 \((HIV)\), 리노바이러스, 인플루엔자 \((플루, 인플루엔자 A)\), 간염 \((플루, A형 간염)\), 코로나 바이러스 \((예를 들어, 중증 급성 호흡 증후군 \((SARS)\)의 원인 바이러스)\), 로타바이러스, 호흡기 세포 융합 바이러스, 단순 포진 바이러스, 수두 대상 포진 바이러스, 티돈 바이러스, 및 다른 감수성 바이러스에도 적용될 수 있다.

바람직한 실시예에서, 본 발명의 ORP 수용액은 1도, 2도 또는 3도 완화 환자를 치료하기 위해 투여될 수 있다. 복합 화상, 예를 들어 2도 및 3도 화상이 있는 환자는 ORP 수용액으로 치료될 수 있다. 1도 완화는 표피 또는 표피 아래의 진피를 포함한다. 3도 완화는 표피, 진피 및 피하조직을 포함한다. 보다 바람직하게는, ORP 수용액은 2도 또는 3도 화상 환자를 치료하기 위해 투여된다. 본 발명에 따라 치료하기 적합한 완화는 예를 들어 병, 끓는 물, 여과 물, 주요 및 전기적 접촉을 포함하는 다양한 손상에 의해 발생하고, 일반적으로 환자의 조직의 약 0% 내지 약 69%까지 침범한다.

ORP 수용액은 약제의 적합한 방식으로 완화 환자에게 투여될 수 있다. ORP 수용액은 분무, 목욕법 \((bathing)\), 젖과 \((wiping)\) 또는 다른 방식에 의한 화상의 보습에 의해 국소 투여될 수 있다. ORP 수용액은 완화를 치료하기 위해 충분한 양으로 투여된다. ORP 수용액은 적어도 1일 1회, 바람직하게는 그보다 빈번하게 완화에 투여된다. 보다 바람직하게는, ORP 수용액은 3일 3회 완화에 투여된다.

ORP 수용액은 약제의 적합한 방식으로 완화 환자에게 투여될 수 있다. ORP 수용액은 분무, 목욕법 \((bathing)\), 젖과 \((wiping)\) 또는 다른 방식에 의한 화상의 보습에 의해 국소 투여될 수 있다. ORP 수용액은 완화를 치료하기 위해 충분한 양으로 투여된다. ORP 수용액은 적어도 1일 1회, 바람직하게는 그보다 빈번하게 완화에 투여된다. 보다 바람직하게는, ORP 수용액은 3일 3회 완화에 투여된다.

화상은 완화를 부분적으로 또는 완전히 ORP 수용액에 침지시킬 수 있다. 일반적으로, ORP 수용액은 화상의 약 15분 동안 침지되며, 화상의 표면은 ORP 수용액으로 침지되어야 한다. ORP 수용액은 약 3일 동안 침지되며, 화상의 표면은 ORP 수용액으로 침지되어야 한다. ORP 수용액은 약 3일 동안 침지되며, 화상의 표면은 ORP 수용액으로 침지되어야 한다. ORP 수용액은 약 3일 동안 침지되며, 화상의 표면은 ORP 수용액으로 침지되어야 한다. ORP 수용액은 약 3일 동안 침지되며, 화상의 표면은 ORP 수용액으로 침지되어야 한다. ORP 수용액은 약 3일 동안 침지되며, 화상의 표면은 ORP 수용액으로 침지되어야 한다.
장치를 위한 관류 용액으로서 사용될 수 있다. 적합한 히드로서리 장치는 예를 들어 스미스 앤 네프 (Smith and Nephew)에 의해 미국에서 시판되는 VersaJet 장치, 메다시스 (Medaxis)에 의해 유럽에서 시판되는 Debritom, 드로얄 (DeRoyal)에 의해 미국 및 유럽에서 시판되는 Pulsavac를 포함할 수 있다. ORP 수용액은 장치의 미생물 부하를 감소시키고 피사 조직 제거를 효과적으로 할 수 있는 많은 경미성 미스트 (mist)의 형성을 방지함으로써 장치와 상승 효과를 보이는 용액을 수용할 수 있는 것으로 생각된다. 따라서, 장치는 본 발명에 따라 디스플레이 관류액을 사용하여 화상의 피사 조직 제거를 위해, 감염 과정의 감소를 위해, 및 감염성 미스트의 형성 방지를 위해 사용될 수 있다.

본 발명에 따라 부중되는 ORP 수용액은 또한 부중을 감소시키고 혈류를 증가시키기 위해 사용되는 흡입 장치의 관류 용액으로서 사용될 수 있다. 적합한 흡입 장치는 예를 들어 하나 이상의 대표 보조 (assisted) 상처 투착 장치, 예를 들어 키네틱 컨셉트, 인크. (Kinetic Concepts, Inc.)에 의해 미국에서 시판되는 V.A.C. 등록상표 및 V.A.C. (등록상표) 인스틸 (Instill™) 장치를 포함할 수 있다. ORP 수용액은 미생물 부하를 감소시키면서 임증 알레르기 과정을 억제함으로써 장치와 상승 효과를 보이는 용액을 수용할 수 있는 것으로 생각된다. 따라서, 장치는 본 발명에 따라 조직 감염 또는 피사 조직을 치료 또는 예방하기 위해 간헐적인 또는 연속적인 관류에 의해 개방된 화상 상처에 적용될 수 있다.

임의로, 생명공학 처리된 피부 (Apligraf, 오르가노제네시스, 인크 (Organogenesis, Inc., 캔터), 무세포 피부 대용물 (오아시스 운드 매트릭스 (Oasis Wound Matrix), 웰포인트 (Healthpoint)), ORP 수용액의 효과적 적용 및 국소 상처 대체 또는 고압 상처 처리 (예를 들어, 고압 부츠 (boots), 벤토-옥스 시스템 (Vent-Ox System))를 포함하여 복수의 면역보강제 요법도 본 발명에 따라 이용될 수 있다.

위험한 경우 ORP 수용액의 투여는 확성한 조직을 촉진하기 위해 피부 이식판과 조합하여 사용될 수 있다.

ORP 용액의 투여는 임의로 국소 및/또는 전신 항생제와의 투여와 조합될 수 있다. 적합한 항생제는 피내활성, 세팔로스포린 또는 다른 β-세말로스포린, 마크로라이드 (예를 들어, 에리쓰로마이신, 6-0-메틸에리쓰로마이신, 및 아이트로마이신), 플루오로페나플로산, 솔론하마이드, 테스트라사이클린, 아미노글리코시드, 클리네아미신, 칠들, 메트라니줄, 백마이신, 클로프레니노글로틴, 항균 효과를 갖는 그의 유도체 및 이들의 조합을 포함할 수 있고, 이로 제한되지 않는다. 적합한 항혈액제는 또한 항혈액제, 예를 들어 안미로페나플로산 B, 풍무코나간, 풍무코산, 펭트모신, 토코나질, 곰 유도체, 및 이들의 조합을 포함할 수 있다. 적합한 소염제는 예를 들어 하나 이상의 소염 약물, 예를 들어 하나 이상의 소염 스테로이드 또는 하나 이상의 비-스테로이드 소염 약물 (NSAID)을 포함할 수 있다. 예시적인 소염 약물은 예를 들어 시클로필린, FK 결합 단백질, 항 시토킨 항체 (예를 들어 항-TNF), 스테로이드 및 NSAID를 포함할 수 있다.

본 발명에 따라 고압 분무는 화상 치유를 촉진하기 위해 피부 이식판과 조합하여 사용될 수 있다. 본 발명에 따라 고압 분무는 또한 2도 및/또는 3도 화상은 초기에 피사 조직 제거한 후, 고압 관류 장치를 사용하여 ORP 수용액을 분무할 수 있다. 화상 청소에 사용되는 ORP 수용액의 양은 바람직하게는 장치에 따라 충분한 양이다. 이와 같은 경우 화상은 적합한 시간 동안 ORP 수용액에 침액된다. ORP 용액은 장치에 의해 ORP 수용액을 부드럽게, 음영이 적합한 시간, 바람직하게는 약 5분 내지 약 15분 동안 화상을 보습하도록 한다. 방부 및 보습은 1일 약 3회 반복된다. ORP 수용액의 분무 사례에서, 화상의 표면은 표면의 보습이 이루어지지 않는다.

화상에 대한 고압 관류, 임의로 침액, 분무 및 보습의 과정은 적합한 간격으로 반복될 수 있다. 바람직하게는, 화상에 대해 고압 분무하고, 임의로 침액시키고, 분무하고 보습하는 과정은 적어도 약 1주일, 보다 바람직하게는 약 1일 1회 반복된다. ORP 수용액은 본 발명에 따라 화상 치료는 화상의 부분을 치료할 수 있는 것으로, 이것은 일반적으로, ORP 수용액은 적어도 약 3일 동안 매일 적용된다. 일반적으로, ORP 수용액은 적어도 약 5일, 바람직하게는 적어도 약 7일, 보다 바람직하게는 적어도 약 10일 동안 매일 적용된다. 화상 치유는 일반적으로 흉터 수축 및 상피화 비율에 의해 측정된다.

본 발명의 ORP 수는 또한 환경에 존재하는 알레르겐의 활성 억제에 사용하기 적합하다. 본원에서 사용되는 바와 같이, 알레르겐은 감수성이 있는 사람 또는 동물에서 유해한 반응, 또는 알레르지를 촉발할 수 있는 세균, 진균, 효모, 또는 바리어 이외의 다른 임의의 물질을 포함한다. 본원에서 사용되는 알레르겐은 영향을 하지 않는 알레르겐을 축소한 후에 사용한다. 인체에 의해 유해할 수 있는 알레르겐은 본 발명에 따라 사용되는 바와 같이, 알레르겐을 감수성이 있는 사람 또는 동물에서 유해한 반응, 또는 알레르지를 촉발할 수 있는 세균, 진균, 효모, 또는 바리어 이외의 다른 임의의 물질을 포함한다. 본원에서 사용되는 알레르겐은 영향을 하지 않는 알레르겐을 축소한 후에 사용한다. 본원에서 사용되는 바와 같이, 알레르겐은 감수성이 있는 사람 또는 동물에서 유해한 반응, 또는 알레르지를 촉발할 수 있는 세균, 진균, 효모, 또는 바리어 이외의 다른 임의의 물질을 포함한다. 본원에서 사용되는 알레르겐은 영향을 하지 않는 알레르겐을 축소한 후에 사용한다. 본원에서 사용되는 바와 같이, 알레르겐은 감수성이 있는 사람 또는 동물에서 유해한 반응, 또는 알레르기를 촉발할 수 있는 세균, 진균, 효모, 또는 바리어 이외의 다른 임의의 물질을 포함한다. 본원에서 사용되는 알레르겐은 영향을 하지 않는 알레르겐을 축소한 후에 사용한다. 본원에서 사용되는 바와 같이, 알레르겐은 감수성이 있는 사람 또는 동물에서 유해한 반응, 또는 알레르기를 촉발할 수 있는 세균, 진균, 효모, 또는 바리어 이외의 다른 임의의 물질을 포함한다. 본원에서 사용되는 알레르겐은 영향을 하지 않는 알레르겐을 축소한 후에 사용한다. 본원에서 사용되는 바와 같이, 알레르겐은 감수성이 있는 사람 또는 동물에서 유해한 반응, 또는 알레르기를 촉발할 수 있는 세균, 진균, 효모, 또는 바리어 이외의 다른 임의의 물질을 포함한다. 본원에서 사용되는 알레르겐은 영향을 하지 않는 알레르겐을 축소한 후에 사용한다. 본원에서 사용되는 바와 같이, 알레르겐은 감수성
직업성 알레르겐은 예를 들어 고분자량 물질, 예를 들어 다이소시아네이트 및 일부 지질에서 발견되는 다른 물질을 포함한다. 작업장에 존재할 수 있는 다른 화학적 알레르겐은 예를 들어 안히드라이드, 항생제, 목분 및 염료를 포함한다. 많은 단백질은 식물성 검, 효소, 동물 단백질, 곤충, 식물 단백질 및 괴물을 포함하는 직업성 알레르겐일 수 있다.


본 발명에 따라 투여되는 ORP 수용액은 정상 조직 및 정상 포유동물 세포에 대한 독성이 실질적으로 존재하지 않음을 밝혔다. 본 발명에 따라 투여되는 ORP 수용액은 전력세포생존성의 유의한 감소, 세포자멸의 유리한 증가, 세포 노화의 유의한 촉진 및/또는 포유동물 세포에서 유의한 산화성 DNA 손상을 야기하지 않는다. 아마도 놀랍게도, 본 발명에 따라 투여되는 ORP 수용액의 소독력이 과산화수소와 거의 동등하지만 과산화수소가 정상 조직 및 정상 포유동물 세포에 대해 갖는 것보다 유리하게 특성이 더 낮음을 고려할 때 비-독성이 특히 유리하다. 상기 발견은 본 발명에 따라 투여되는 ORP 수용액이 예를 들어 인간을 포함하는 포유동물에서 사용하기 안전함을 입증한다.

본 발명에 따라 투여되는 ORP 수용액에 대해, 세포 생존률은 ORP 수용액에 약 30분 노출된 후에 바람직하게는 적어도 약 65%, 보다 바람직하게는 적어도 약 70%, 보다 더 바람직하게는 적어도 약 75%이다. 또한, 본 발명에 따라 투여되는 ORP 수용액은 바람직하게는 ORP 수용액과 약 30분 이하 동안 접촉할 때 (예를 들어, ORP 수용액과 약 30분 또는 약 5분 접촉한 후에) 단지 약 10% 이하의 세포, 보다 바람직하게는 약 5% 이하의 세포, 보다 더 바람직하게는 약 3% 이하의 세포만이 그 세포 표면 상의 염액신-1에 노출되지 않는다는 점도 본 발명의 특성이다. 또한, 본 발명에 따라 투여되는 ORP 수용액은 ORP 수용액을 사용한 만성 노출 후에 바람직하게는 약 15% 미만의 세포, 보다 바람직하게는 약 10% 미만의 세포, 보다 더 바람직하게는 약 5% 미만의 세포가 SA-β-가락토시다제 효소를 발현하도록 한다. 본 발명에 따라 투여되는 ORP 수용액은 바람직하게는 염수 용액에 의해 유도되는 동일한 비율의 산화성 DNA 애덕트 형성은, 예를 들어 동등한 조건 하에 처리된 세포에서 가산화수소에 의해 정상적으로 유도되는 산화성 DNA 애덕트 형성의 약 20% 미만, 약 10% 미만, 또는 약 5% 이하의 산화성 DNA 애덕트 형성을 유도한다.

본 발명에 따라 투여되는 ORP 수용액은 유의한 RNA 분해를 야기하지 않는다. 따라서, ORP 수용액에 약 30분 노출한 후 또는 약 30분 동안 노출한 지 약 3시간 후에 인간 세포 배양물로부터 추출하여 변성 케 펩타이드에 의해 분석된 RNA는 일반적으로 유의한 RNA 분해를 보이지 않을 것이고, 일반적으로 리보좀 진행세포 RNA (즉 28S 및 18S)에 대응하는 2개의 특유한 밴드를 보일 것이다. 이것은 본 발명에 따라 투여되는 ORP 수용액이 RNA를 실질적으로 무순상 상태로 유지시킬 수 있다. 유사하게, ORP 수용액에 약 30분 노출한 후 또는 약 3시간 노출한 후에 인간 세포 배양물로부터 추출한 RNA는 상기 각 인간 GAPDH (글리세르알데히드-3-포스페이트 데히드로게나제) 유전자와의 머리 및 중복 (RT-PCR)에 적용되어 RT-PCR 산물의 역전이현성 DNA 상의 GAPDH 밴드를 생성시킬 수 있다. 이와 대조적으로, 유사한 기간 동안 HP로 처리된 세포는 유의한 RNA 분해를 보이고,利于의 GADPH RT-PCR 산물을 거의 보이지 않았다.

본 발명에 따라 투여되는 ORP 수용액은 요구되는 살균, 살바이러스, 멸균 및/또는 항알레르겐 효과를 제공하기에 적합한 임의의 양으로 사용되거나 적용될 수 있다.

ORP 수용액은 임의의 적합한 방식으로 소독 및 멸균하기 위해서 적용될 수 있다. 예를 들어, 의료 또는 치과용 설비를 소독 및 멸균하기 위해, 설비는 설비 상에 존재하는 유기체의 수준을 감소시키는데 충분한 시간 동안 ORP 수용액과 접촉된다.

경질 표면의 소독 및 멸균을 위해서는, ORP 수용액을 ORP 수용액이 저장되는 용기로부터 적절 경질 표면에 적용할 수 있다. 예를 들어, 의사 또는 치과용 설비를 소독 및 멸균하기 위해, 설비는 설비 상에 존재하는 유기체의 수준을 감소시키는데 충분한 시간 동안 ORP 수용액과 접촉된다.
ORP 수용액은 기체 상에 분배된다. ORP 수용액은 함께 사용하거나, 피복시키거나, 기체에 다른 식으로 적용할 수 있다. 바람직하게는, 기체는 세정 와이프를 최종 사용자에게 분배하기 전에 ORP 수용액으로 전처리한다.

세정 와이프를 기체는 임의의 적합한 수불용성 흡수재 또는 흡수재 물질을 포함할 수 있다. 매우 다양한 물질이 기체로 사용될 수 있다. 이것은 충분한 수분 강도, 마모성(abrasivity), 로프트(loft) 및 다공성 등을 가져야 한다. 또한, 기체는 의도하는 용도를 방해할 정도로 ORP 수용액의 안정성에 영향을 미치지 않아야 한다. 그의 예로는 시트 기체, 직조 기체, 하이드로인팅글(hydroentangled) 기체 및 스폰지가 포함된다.

기체는 하나 이상의 층을 가질 수 있다. 각각의 층은 동일하거나 상이한 조직(texture) 및 마모성을 가질 수 있다. 조직이 상이한 것은 물질의 상이한 배합물의 사용 또는 상이한 제조 공정의 사용으로 인한 것으로도 되어 있다. 기체는 처리될 표면에 ORP 수용액을 송달하기 위한 비핵을 제공한다.

기체는 단일 부직시트 또는 다중 부직시트일 수 있다. 부직시트는 목재 짜의, 합성섬유, 천연섬유, 및 이들의 혼합물로 만들어질 수 있다. 기체에 사용하기에 적합한 섬유는 폴리에스테르, 레이온, 나일론, 폴리프로필렌, 폴리에틸렌, 그 밖의 셀룰로스 종합체 및 이들의 상성물로도 포함된다. 부직물에는 용융취입, 공형성(coform), 공기-적층(air-laid), 스펀본드(spun bond), 습식적층(wet laid), 본디드-카드드(bonded-carded) 형 물질, 하이드로인팅글(또한, 스펀레이스(spunlaced)로도 공지됨) 물질, 및 이들의 조합물을 포함하는 부직 상용 시트 물질이 포함될 수 있다. 이들 물질은 상성 또는 천연 섬유 또는 이들의 조합물을 포함할 수 있다. 결합제가 임의로 기체 내에 존재할 수 있다.

적합한 부직 물질은 기체의 예로는 리틀 래피즈 코퍼레이션(Little Rapids Corporation)의 100% 셀룰로스와딩 grade 1804, 애메리칸 난-우본스 코퍼레이션(American Non-wovens Corporation)의 100% 폴리프로필렌 니들펀치(needlepunch) 물질 NB 701-2.8/R, 알스트롬 파이버 콤포지트(Ahlstrom Fibre Composites)의 셀룰로스성 및 합성 섬유의 물질인 하이드라스푼(hydraspun) 8579, 및 피지아이 논우본스 폴리머 콤포지트(PGI Nonwovens Polymer Corp.)의 70% 비스코스/30% PES 코드(Code) 9881이 포함된다. 세정 와이프에 사용하기에 적합한 부직 기체의 추가의 예는 미국 특허 4,781,974, 4,615,937, 4,666,621 및 5,908,707 호 및 국제특허출원공고WO 98/03713, WO 97/40814, 및 WO 96/14835에 기술되어 있다. 기체는 또한 면섬유, 면/나일론 혼방 또는 다른 직물과 같은 제직물로 만들어질 수도 있다. 소せ을에 초유할 수 있는 재생 셀룰로스, 폴리우레탄 포움 등이 다른 사용하기에 적합할 수 있다.

기체의 액체 부하능(loading capacity)은 그의 건조 중량의 적어도 약 50%~1000%, 가중 바람직하게는 적어도 약 200%~8000%이어야 한다. 이것은 기체 중량의 1/2 내지 10배의 부하를 표현한다. 기체의 중량은 약 0.01 내지 약 1,000 g/m², 가중 바람직하게는 25 내지 120 g/m²("기초 중량(basis weight)"으로 불림)으로 변화하지만, 이로 제한되지 않으며, 일반적으로 적절한 형태 및 크기로 절단되거나, 다이(die)-절단되거나 또는 다른 식으로 크기에 맞게 만들어진 시트 또는 흡으로 생산된다. 세정 와이프는 바람직하게는 약 25 내지 약 250 뉴톤(Newton)/m, 더욱 바람직하게는 약 75-170 뉴톤(주로 제한되지 않음)인 특정의 습윤 인장강도를 가질 수 있다.

ORP 수용액은 임의의 적합한 방법에 의해서 기체에 분배, 함침, 코팅, 피복 또는 다른 식으로 적용될 수 있다. 예를 들어, 기체의 각각의 부분들은 별개의 양의 ORP 수용액으로 처리될 수 있다. 바람직하게는, ORP 수용액에 의한 기체 물질의 연속 흡수의 대량 처리가 수행된다. 기체 물질의 전체 흡수 ORP 수용액에 절삭시킬 수 있다. 방법으로, 기체 레이지에 감김에 따라서, 또는 설계된 부직 기체의 생장 중에 ORP 수용액은 밸런스에 부하되거나, 게 락 공급된다. 기체의 개별적으로 절단되고 크기를 맞춘 부분의 스택(stack)은 제조자에 의해서 그의 용기 내에서 ORP 수용액으로 함침시키거나 코팅할 수 있다.

세정 와이프는 임의로 와이프의 특성을 개선시키기 위한 추가의 성분들을 함유할 수 있다. 예를 들어, 세정 와이프는 임의의 특성을 개선시키기 위하여 중합체, 재생성성세, 폴리아크릴라이드, 폴리카보닐알킬, 용매, 크리에이티브, 농축제, 수분품(thickener), 염료, 착색제, 방향제 및 이들의 혼합물을 추가로 포함할 수 있다. 이들 임의의 성분은 의도하는 용도를 방해할 정도로 ORP 수용액의 안정성을 악영향을 미치지 않아야 한다. 세정 와이프 내에 임의로 포함될 수 있는 다양한 성분의 예는 미국 특허 6,340,663, 6,649,584 및 6,624,135에 기술되어 있다.

본 발명의 세정 와이프는 일반 엽본가능하거나 아교로 붙일 수 있는 열교가소성 오버랩(overlap) (예를 들어, 폴리에틸렌, 마イラ(Mylar) 등)에 의해서 개별적으로 밀봉될 수 있다. 와이프는 또한 더욱 경제적인 분배를 위
께서 다수의 개별적인 시트로 포장될 수도 있다. 세정 와이프는 우선 기재의 다수의 시트를 분배기 내에 배치한 다음에, 기재 시트를 본 발명의 ORP 수용액과 접촉시킴으로써 제조될 수 있다.

분배기는 밀폐부 (closure)를 갖는 캐니スター (canister), 또는 밀폐부를 갖는 터브 (tub)를 포함하며, 이들로 제한되지 않는다. 분배기 상의 밀폐부는 습윤된 와이프를 외부 환경으로부터 빼돌리고, 액체 성분의 조리 휴장을 방지하기 위한 것이다.

분배기는 기재 및 ORP 수용액 둘 다와 상응성을 임의의 적합한 물질로 제조될 수 있다. 예를 들어, 분배기는 고밀도 폴리에틸렌, 폴리프로필렌, 폴리아세테트, 폴리에틸렌 테레프탈레이트 (PET), 폴리비닐 클로라이드 (PVC) 또는 그 밖의 다른 강성 플라스틱과 같은 플라스틱으로 만들어질 수 있다.

와이프의 연속적 웹은 분배기의 상부에 있는 많은 개방부를 통해서, 가장 바람직하게는 밀폐부를 통해서 빠져나올 수 있다. 이어서, 웹으로부터 와이프의 목적으로하는 길이 및 크기를 맞추는 수단이 필요할 수 있다. 웹을 목적으로 한다면 다단계를 거쳐야 할 것이다. 이들 중 어떤 단계의 효율성을 높이기 위해 자동화가 필요할 수 있으며, 비제한적인 예로는 기계를 사용하여 단단한 곡면으로 자르는 것을 말할 수 있다. 별법으로, 와이프의 연속적 웹은 곡면을 יתר적으로 분할한 크기 또는 길이로 세그먼트를 나누거나, 간격, 분말되거나, 구멍을 내거나, 또는 부분적으로 갈배질될 수 있으며, 이것은 여러 단단한 에지에 대한 필요성을 제공할 수 있다. 또한, 와이프는 하나의 와이프를 제거하면 다음 와이프가 앞으로 진행되도록 서로 끼워져 있을 수도 있다.

본 발명의 ORP 수용액은 별법으로, 공기와 같은 기상 매질을 통해서 환경 내로 분산될 수도 있다. ORP 수용액은 임의의 적합한 수단에 의해서도 공기 중으로 분산될 수 있다. 예를 들어, ORP 수용액은 기재의 적합한 크기의 소로서, 분배된다. 입에 분산될 수도 있다.

소규모 적용을 위해서, ORP 수용액은 스탠드파이프 (standpipe) 및 펌프를 포함하는 스프레이 병을 통해서 분배될 수 있다. 별법으로, ORP 수용액은 에어로졸용기로 분배될 수 있다. 분배물질의 분산은 나머지 용기 및 펌프를 포함한다. 분배는 작동기 (actuator) 및 닫 튜브 (dip tube)를 통해 이루어진다. 용기는 분배물질을 분배하는 와이프를 아래로부터 분배된다. 에어로졸 용기의 다양한 성분은 ORP 수용액과 상용성이다. 적합한 작동기는 탄화수소, 탄화수소 또는 탄화수소와 같은 압축 기체를 포함할 수 있다. 에어로졸 시스템은 일반적으로 크기가 약 0.15 μm 내지 5 μm인 소적을 생성한다.

ORP 수용액은 빠져나온 기기의 기기를 위한 에어로졸 형태로 분배될 수 있다. ORP 수용액은 빠져나온 기기의 기기를 위한 에어로졸 형태로 분배될 수 있다. ORP 수용액은 빠져나온 기기의 기기를 위한 에어로졸 형태로 분배될 수 있다. ORP 수용액은 빠져나온 기기의 기기를 위한 에어로졸 형태로 분배될 수 있다. ORP 수용액은 빠져나온 기기의 기기를 위한 에어로졸 형태로 분배될 수 있다. ORP 수용액은 빠져나온 기기의 기기를 위한 에어로졸 형태로 분배될 수 있다.
양극 챔버 (102)는 양극 전극 (120)과 양극 이온 교환막 (122)에 의해서 염용액 챔버로부터 분리된다. 양극 전극 (120)은 양극 전극 (120)과 염용액 챔버 (106) 사이에 위치한 막 (122)에 의해서 양극 챔버 (102)에 접촉하도록 배치될 수 있다. 범위적으로, 막 (122)가 막 (122)과 염용액 챔버 (106) 사이에 위치한 양극 전극 (120)에 의해서 양극 챔버 (102)에 접촉하게 배치될 수 있다.

음극 챔버 (104)는 음극 전극 (124)와 음극 이온 교환막 (126)에 의해서 염 용액 챔버로부터 분리된다. 음극 전극 (124)는 음극 전극 (124)와 염용액 챔버 (106) 사이에 위치한 막 (126)에 의해서 음극 챔버 (104)에 접촉하도록 배치될 수 있다. 범위적으로, 막 (126)가 막 (126)과 염용액 챔버 (106) 사이에 위치한 음극 전극 (124)에 의해서 음극 챔버 (104)에 접촉하게 배치될 수 있다. 전극은 일반적으로 전압 전위 (voltage potential)가 양극 챔버와 음극 챔버 사이에 적용되도록 금속으로 제작된다. 금속 전극은 일반적으로 평면상이며, 이온교환막과 유사한 치수 및 단면 표면적을 갖는다. 전극은 이온 교환막 표면의 상당 부분이 그들 각각의 양극 챔버와 음극 챔버에서 물에 노출되도록 배열된다. 이것은 염 용액 챔버, 양극 챔버 및 음극 챔버 사이에 이온 종의 이동을 허용한다. 바람직하게는, 전극은 전극의 표면을 가로질러서 균일한 간격을 두고 다수의 통로 (passage) 또는 구멍 (aperture)을 갖는다.

전기적 전위의 공급원은 양극 챔버 (102)에서 산화 반응 및 음극 챔버 (104)에서 환원 반응을 이끌도록 양극 전극 (120) 및 음극 전극 (124)에 연결된다. 전해 전지 (100)에 사용된 이온교환막 (122) 및 (126)은 클로라이드 이온 (Cl⁻)과 같이 염 용액 챔버 (106)과 양극 챔버 (102) 사이에서, 및 나트륨 이온 (Na⁺)과 같이 염 용액 챔버 (106)과 음극 챔버 (104) 사이에서 이온 교환이 이루어지도록 임의의 적합한 물질로 제작될 수 있다. 양극 이온 교환막 (122) 및 음극 이온 교환막 (126)은 동일하거나 상이한 제작 물질로 만들어질 수 있다. 바람직하게는, 양극 이온 교환막은 불소화된 중합체로 이루어진다. 적합한 불소화된 중합체로는 예를 들어 폴리프루오로우레탄/PTFE 중합체 및 폴리프루오로우레탄/TFE 중합체와 같은 폴리프루오로우레탄 중합체 및 중합체가 포함된다. 이온교환막은 물질의 단일층 또는 다수의 층으로 제작될 수 있다.

전해 전지 (100)에 사용된 물 공급원은 임의 적합한 물 공급원일 수 있다. 물은 시 자치단체의 물 공급원으로부터 제공될 수 있거나, 범위적으로 전해 전지에서 사용하기 전에 전처리될 수 있다. 최적화하는 물 공급원은 영화수, 정제수, 증류수 및 탈이온수로 구성된 군으로부터 선택된다. 보다 바람직하게는, 전처리된 물 공급원은 영화수, 정제수, 증류수 및 탈이온수로 구성된 군으로부터 선택된다. 

염 용액은 염 용액 챔버 (106)에서 사용하기 위한 염 수용액은 ORP 수용액을 생산하기에 적합한 이온 종을 포함하는 염의 염 수용액일 수 있다. 바람직하게는, 염 수용액은 정상적으로 사용되는 염 용액으로 물리적 구조와 생물학적 반응에 영향을 주지 않는 고온을 유지하는 용액이다. 염 용액은 염의 혼합물을 함유할 수 있다. 일부 염 용액은 염의 혼합물을 함유할 수 있다. 염 용액은 포함하는 염의 종류 및 콘텐츠에 따라 다소 다를 수 있다. 염 용액의 적합한 종류는 염 용액의 종류 및 콘텐츠에 따라 다소 다를 수 있다. 염 용액은 포함하는 염의 종류 및 콘텐츠에 따라 다소 다를 수 있다. 3-챔버 전해 전지 (200)는 양극 챔버 (202), 음극 챔버 (204) 및 염 용액 챔버 (206)를 포함한다. 양극 (208) 및 음극 (210)에 대해 적합한 전류를 인가하면, 염 용액 (206)을 통해서 유동하는 염 용액에 존재하는 이온은 음의온 교환막 (212) 및 양의온 교환막 (214)을 통해서 각각 양극 챔버 (202) 및 음극 챔버 (204)를 통해서 유동하는 물 안으로 이동한다.
(202)를 통해서 유동하는 양극수 (220)으로 이동한다.

바람직하게는, 염 용액 (216)은 나트륨 이온 (Na⁺) 및 클로라이드 이온 (Cl⁻) 이온을 모두 함유하는 수성 염화나트륨 (NaCl)이다. Na⁺ 양이온은 염 용액 (216)으로부터 음극수 (218)로 이동한다. Cl⁻ 음이온은 염 용액 (216)으로부터 양극수 (220)로 이동한다.

나트륨 이온 및 클로라이드 이온은 양극 챔버 (202) 및 음극 챔버 (204)에서 더 반응을 수행할 수 있다. 예를 들어, 클로라이드 이온은 양극수 (220)에 존재하는 다양한 산소 이온 및 다른 종 (예를 들어, 유리 산소 라디칼, O₂⁻, O₃⁻)과 반응하여 ClO⁻ 및 ClO₂⁻를 생성할 수 있다. 그 밖의 다른 반응은 또한 유리 산소 라디칼, 수소 이온 (H⁺), 산소 (O₂에서), 오존 (O₃) 및 광촉매를 포함하는 양극 챔버 (202)에서 일어날 수도 있다. 음극 챔버 (204)에서는 수소 기체 (H₂), 수산화나트륨 (NaOH), 히드록시드 이온 (OH⁻), ClO⁻⁻ 및 ClO⁻⁻를 생성할 수 있다.

본 발명은 추가로 적어도 2개의 3-챔버 전해 전지를 사용하여 ORP 수용액을 생산하는 방법 및 장치를 제공한다. 본 발명의 3-챔버 전해 전지는 로지스틱 도식의 도 3에 나타내었다.

이 방법 (300)은 2개의 3-챔버 전해 전지를 구체적으로 제1 전해 전지 (302) 및 제2 전해 전지 (304)를 포함한다. 물은 물 공급원 (305)로부터 제1 전해 전지 (302)의 양극 챔버 (306) 및 음극 챔버 (308)로 및 제2 전해 전지 (304)의 양극 챔버 (310) 및 음극 챔버 (312)로 전달, 펌프 또는 다른 식으로 분배된다. 일반적으로, 본 발명의 방법은 약 1 리터/분 내지 약 50 리터/분의 ORP 수용액을 생산할 수 있다. 본 방법에서 생산된 양극수의 나머지 부분은 빌린다. 양극수는 혼합탱크 (314)에 첨가하여 사용될 수 있다. 그 밖의 다른 방법은 분배기에 보낼 수 있다. 기체 분리기는 생산 공정 중에서 음극수에서 형성된 수소 기체와 같은 기체를 제거한다.

혼합탱크 (314)는 임의로 재순환 펌프 (315)에 연결되어 전해 전지 (302) 및 (304)로부터의 양극수와 일부의 음극수가 균질하게 혼합되도록 한다. 또한, 혼합탱크 (314)는 임의로 ORP 수용액의 수온 및 pH를 모니터링하여 적합한 상태를 유지할 수 있다. ORP 수용액은 혼합탱크의 위치에서 또는 그에 근접하여 소독 또는 열처리하기 위하여 펌프 (317)에 의해 혼합탱크 (314)로부터 전달될 수도 있다. 발생으로, ORP 수용액은 분리기 (316) 또는 기체 분리기 (318)에 보내질 수 있다. 기체 분리기는 생산 공정 중에서 양극수에서 형성된 수소 기체와 같은 기체를 제거한다.

혼합탱크 (314)는 임의로 재순환 펌프 (315)에 연결되어 전해 전지 (302) 및 (304)로부터의 양극수와 일부의 음극수가 균질하게 혼합되도록 한다. 또한, 혼합탱크 (314)는 임의로 ORP 수용액의 수온 및 pH를 모니터링하여 적합한 상태를 유지할 수 있다. ORP 수용액은 혼합탱크의 위치에서 또는 그에 근접하여 소독 또는 열처리하기 위하여 펌프 (317)에 의해 혼합탱크 (314)로부터 전달될 수도 있다. 발생으로, ORP 수용액은 분리기 (316) 또는 기체 분리기 (318)에 보내질 수 있다. 기체 분리기는 생산 공정 중에서 양극수에서 형성된 수소 기체와 같은 기체를 제거한다.

본 발명은 추가로 적어도 2개의 3-챔버 전해 전지를 사용하여 ORP 수용액을 생산하는 방법 및 장치를 제공한다. 본 발명의 3-챔버 전해 전지는 로지스틱 도식의 도 3에 나타내었다. 이 방법 (300)은 2개의 3-챔버 전해 전지를 포함한다. 물은 물 공급원 (305)로부터 제1 전해 전지 (302)의 양극 챔버 (306) 및 음극 챔버 (308)로 및 제2 전해 전지 (304)의 양극 챔버 (310) 및 음극 챔버 (312)로 전달, 펌프 또는 다른 식으로 분배된다. 일반적으로, 본 발명의 방법은 약 1 리터/분 내지 약 50 리터/분의 ORP 수용액을 생산할 수 있다. 본 방법에서 생산된 양극수의 나머지 부분은 빌린다. 양극수는 혼합탱크 (314)에 첨가하여 사용될 수 있다. 그 밖의 다른 방법은 분배기에 보낼 수 있다. 기체 분리기는 생산 공정 중에서 양극수에서 형성된 수소 기체와 같은 기체를 제거한다.

혼합탱크 (314)는 임의로 재순환 펌프 (315)에 연결되어 전해 전지 (302) 및 (304)로부터의 양극수와 일부의 음극수가 균질하게 혼합되도록 한다. 또한, 혼합탱크 (314)는 임의로 ORP 수용액의 수온 및 pH를 모니터링하여 적합한 상태를 유지할 수 있다. ORP 수용액은 혼합탱크의 위치에서 또는 그에 근접하여 소독 또는 열처리하기 위하여 펌프 (317)에 의해 혼합탱크 (314)로부터 전달될 수도 있다. 발생으로, ORP 수용액은 분리기 (316) 또는 기체 분리기 (318)에 보내질 수 있다. 기체 분리기는 생산 공정 중에서 양극수에서 형성된 수소 기체와 같은 기체를 제거한다.

이 방법 (300)은 추가로 제1 전해 전지 (302)의 염 용액 챔버 (322) 및 제2 전해 전지 (304)의 염 용액 챔버 (324)에 염 용액을 제공하기 위한 염 용액 재순환 시스템을 포함한다. 염 용액은 염 링크 (320)에서 제조된다. 염 용액은 펌프 (321)에 의해 제1 전해 전지 (322) 및 (324)로 전달된다. 바람직하게는, 염 용액은 우선 염 용액 챔버 (322)를 통과하고, 이어서 염 용액 챔버 (324)를 통해서 연속하여 유동한다. 발생으로, 염 용액은 두개의 염 용액 챔버에서 로케짐될 수도 있다. 염 링크 (320)에 복귀하기 전에, 염 용액은 필요에 따라서 ORP 수용액의 온도를 조절하기 위해서 혼합탱크 (314) 내의 열 환기가 (326)를 통해서 유동할 수 있다. 염 용액에 존재하는 이온은 제1 전해 전지 (302) 및 제2 전해 전지 (304)에서 시간이 경과함에 따라서 고갈된다. 이온의 추가는 주기적으로 혼합탱크 (314)에서 발생된 양극수 및 음극수에 전달된 이온을 대체시킬 수 있다. 이온의 추가는 주기적으로 혼합탱크 (314)에서 발생된 양극수 및 음극수에 전달된 이온을 대체시킬 수 있다. 이온의 추가는 주기적으로 혼합탱크 (314)에서 발생된 양극수 및 음극수에 전달된 이온을 대체시킬 수 있다. 이온의 추가는 주기적으로 혼합탱크 (314)에서 발생된 양극수 및 음극수에 전달된 이온을 대체시킬 수 있다. 이온의 추가는 주기적으로 혼합탱크 (314)에서 발생된 양극수 및 음극수에 전달된 이온을 대체시킬 수 있다.
본 음극수의 일부를 수집하기 위한 혼합탱크를 포함한다. 바람직하게는, 장치는 추가로 전해 전지의 음용액 펄비에 공급된 영용액의 재순환이 가능하도록 영 재순환 시스템을 포함한다.

이하의 실시예는 본 발명을 추가로 설명하는 것으로서, 물론 본 발명의 범위를 어떠한 방식으로도 제한하는 것으로 이해하지 않아야 한다.

실시예 1-3

이들 실시예는 본 발명의 ORP 수용액의 특성을 설명하는 것이다. 실시예 1-3에서 ORP 수용액의 샘플은 본 명세서에 기술된 방법에 따라 분석하여 각각의 샘플에 존재하는 이온 종 및 그 밖의 다른 화학물질 종의 물리적 특성 및 수준을 결정하였다. 이산화염소, 오존 및 과산화수소에 대해 얻은 결과는 상기 종을 측정하기 위해 사용된 표준 시험을 기초로 한 것이다. 그러나, 결과는 상이한 종을 나타낼 수 있고, 이것은 또한 양성 시험 결과를 생성시킬 수 있다. 또한, 이산화염소, 오존 및 과산화수소가 차이소산염과 반응하여 그의 소비 및 다른 종 (예를 들어, HCl 및 O3)의 생성을 유도할 수 있음을 보고되었다. ORP 수용액의 각각의 샘플에 대한 pH, 산화-환원 전위 (ORP) 및 존재하는 이온 종은 표 1에 제시된다.

표 1

<table>
<thead>
<tr>
<th>ORP 수용액 샘플에 대한 물리적 특성 및 존재하는 이온 종</th>
<th>실시예 1</th>
<th>실시예 2</th>
<th>실시예 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.45</td>
<td>7.44</td>
<td>7.45</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>+879</td>
<td>+881</td>
<td>+874</td>
</tr>
<tr>
<td>종 Cl⁻ (ppm)</td>
<td>110</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>결합된 Cl⁻ (ppm)</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

이들 결과에 의해서 입증되는 바와 같이, ORP 수용액은 소독, 살균 및/또는 세정에 사용하기에 적합한 물리적 특성을 갖는다.

실시예 4-10

이들 실시예는 본 발명에 따른 ORP 수용액에 다양한 양의 표백제를 첨가하는 것을 설명한다. 특히, 이들 실시예는 조성물의 항미생물 활성 및 직물 표백능을 입증한다.

실시예 4-10

10% 클로록스 (Clorox™) 표백 용액은 증류수를 사용하여 제조하였다. 그 후, 10% 표백 용액을 사용하여 이하의 용액을 제조하였다: 80% ORP 수용액/20% 표백제 (실시예 4); 60% ORP 수용액/40% 표백제 (실시예 5); 40% ORP 수용액/60% 표백제 (실시예 6); 20% ORP 수용액/80% 표백제 (실시예 7); 및 0% ORP 수용액/100% 표백제 (실시예 8). 100% ORP 수용액/50% 표백제 (실시예 9) 및 0.01% 트윈 (Tween) 20 세제를 함유하는 ORP 수용액 (실시예 10)을 포함하는 두 가지 대조용액을 또한 비교용으로 사용하였다. 상기 샘플의 물리적 특성, 특히 pH, 산화-환원 전위 (ORP), 종 염소 (Cl⁻) 함량, 차이염소산 (HClO) 함량, 이산화염소 함량 및 폐옥 사이드 함량을 측정하였으며, 표 2에 제시한다.

표 2

<table>
<thead>
<tr>
<th>ORP 수용액/표백제 조성물의 물리적 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
</tr>
<tr>
<td>실시예 4</td>
</tr>
<tr>
<td>실시예 5</td>
</tr>
<tr>
<td>실시예 6</td>
</tr>
<tr>
<td>실시예 7</td>
</tr>
<tr>
<td>실시예 8</td>
</tr>
<tr>
<td>실시예 9</td>
</tr>
<tr>
<td>실시예 10</td>
</tr>
</tbody>
</table>
표백제의 일부분으로서 첨가된 큰 볼러스 (bolus)의 염소 이온은 n.d. 표식으로 나타낸 바와 동일하게 이산화염소 및 퍼옥사이드 수준의 정확한 측정을 방해하였다. 또한, 이산화염소 및 퍼옥사이드에 대해 얻은 결과는 상기 종을 측정하기 위해 사용된 표준 시험을 기초로 한 것이다. 그러나, 결과는 상이한 종을 나타낼 수 있고, 이것은 또한 양성 시험 결과를 생성시킬 수 있다. 또한, 이산화염소 또는 퍼산화수소가 차아염소산염과 반응하여 그의 소비 및 다른 종 (예를 들면, HCl 및 HOCl)의 생산을 유도할 수 있음을 보고되었다. 이들 시험에 입증하는 바와 같이, 표백제를 첨가하거나 첨가하지 않은 ORP 수용액의 차아염소산 수준은 유사하다.

실시예 4-10의 샘플을 바실러스 서브틸리스 변종 니게르 (Bacillus subtilis var. niger) 포자 (에스피에스 메디칼 (SPS Medical, 미국 뉴욕주 러쉬)로부터 수득된 ATCC #9372)를 사용하여 고포자수 시험 (high spore count test)에 적용하였다. 포자 현탁액은 (열균 후드 내에서 증발시킴으로써) 100 마이크로리터당 4x10^6 포자로 농축하였다. 포자 현탁액의 100 마이크로리터 샘플을 실시예 4-10에서의 각각의 샘플 900 마이크로리터와 혼합하였다. 샘플은 표 3에 기술된 바와 같이 1 내지 5분 동안 실온에서 인큐베이팅하였다. 나타낸 시점에서, 100 마이크로리터의 배양된 샘플을 각각의 TSA 플레이트 상에 도말하고, 35℃±2℃에서 24시간 동안 인큐베이팅한 후에, 각각의 플레이트 상에 생성된 콜로니의 수를 측정하였다. 대조 플레이트는 출발 포자 농도가 > 1x10^6 포자/100 마이크로리터였음을 나타내었다. 다양한 인큐베이팅 시간에서 다양한 샘플에 대한 바실러스 포자의 농도 (2회 측정치의 평균)를 표 3에 나타낸다.

### 표 3

<table>
<thead>
<tr>
<th>바실러스 포자 농도 (포자/100 마이크로리터)</th>
</tr>
</thead>
<tbody>
<tr>
<td>시간</td>
</tr>
<tr>
<td>실시예 4</td>
</tr>
<tr>
<td>실시예 5</td>
</tr>
<tr>
<td>실시예 6</td>
</tr>
<tr>
<td>실시예 7</td>
</tr>
<tr>
<td>실시예 8</td>
</tr>
<tr>
<td>실시예 9</td>
</tr>
<tr>
<td>실시예 10</td>
</tr>
</tbody>
</table>

이들 결과가 입증하는 바와 같이, 표백제 (10% 표백제 수용액으로서)의 농도가 증가함에 따라서, 사멸된 바실러스 포자의 양은 2-3 분 동안 배양된 샘플의 경우에 감소된다. 그러나, 5분 동안 인큐베이팅된 샘플의 경우에 는 표백제 농도가 바실러스 포자 사멸에 영향을 미치지 않는다. 또한, 이 결과는 ORP 수용액에 대한 0.01% 세제의 첨가는 포자 사멸을 감소시키지 않는 것을 입증한다.

실시예 4-10의 샘플을 직접 표백 실험에 적용하였다. 샘플을 시험한 직물은 암청색 염료 패치 (patch)를 갖는 100% 레이온의 소아용 티셔츠였다. 염색된 직물의 2인치 정사각형 조각은 50 ml 플라스틱 트layui 넣었다. 각각의 직물 조각을 실시예 4-10의 샘플 응액으로 담았다. 각직물의 중액에 의해서 측정된 것으로서, 완전한 표백이 수득될 때까지의 경과된 시간을 표 4에 나타낸다.

### 표 4

<table>
<thead>
<tr>
<th>직물 샘플의 완전한 표백까지의 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>실시예</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
이들 실험에 의해서 입증되는 바와 같이, 조성물에서 ORP 수용액의 농도가 증가함에 따라서, 완전한 표백이 수득될 때까지의 시간은 증가한다.

실시예 11

본 실시예는 본 발명의 ORP 수용액의 독물학적 프로필에 관한 것이다. 본 발명의 ORP 수용액의 예인 마이크로신 (Microcyn) 60 (또는 M60)이 본 연구에서 사용되었다.

안전성의 관점에서, M60은 국제 표준 (AAMI 1997; NV SOP 16G-44; PFEUM 2000)에 따라서 시행된 것으로 토끼의 피부 또는 결막에 대한 자극성이 없었다. 또한, 래트에서의 급성 흡입 독성 시험은 이 경로에 의한 마이크로신 60의 투여가 안전함을 입증하였다.

마이크로신 60의 잠재적인 자극 효과는 토끼에서의 1차적 안구 자극 시험 (primary ocular irritation study)에서 증가되었다. 0.1 ml 투여와 마이크로신 60을 3마리의 뉴질랜드 흰토끼의 오른쪽 눈에 접안하였다. 각각의 동물의 왼쪽 눈은 대조군으로서 처리하지 않았다. 눈을 각막 크림 형성 또는 혼탁, 홍채의 염증, 및 결막의 발적 (redness) 또는 결막부종에 대해서 1, 24, 48 및 72시간에 관찰하고, 평점을 매겼다. 모든 동물은 또한 사망률 및 발생 정병에 대하여 1일 1회 관찰하였다.

시험 중의 어느 시점에서도 처리된 눈 또는 대조군 군의 어떤 것에서도 눈 자극의 징후는 관찰되지 않았다. 모든 동물은 시험 기간 중에 임상적으로 건강한 것으로 나타났다. 이러한 발견은 마이크로신 60이 양성 자극 반응을 야기하지 않을음을 나타냈다.

급성 흡입 독성 시험을 또한 래트에서 수행하여 마이크로신 60의 잠재적 흡입 독성을 측정하였다. 10마리의 스프래그-도울리 (Sprague-Dawley) 알바노 래트를 희석되지 않은 마이크로신 60으로부터 생성된 에어로졸에 4시간 동안 노출시켰다. 마이크로신 60의 농도는 2.16 mg/L이었다. 모든 동물의 사망률 및 독성의 임상적/거동적 징후를 노출시킨 날에 추적 및 그 후 14일 동안 1일 1회 관찰하였다. 모든 동물은 제14일에 안락사시켰다.

모든 동물은 노출을 시작한 지 4.5 및 6시간 후에 매우 미약하거나 미약한 털 세우기 및 매우 미약하게 감소된 활성을 나타내었지만, 다음날까지 증상은 보이지 않았고, 연구 기간 중에 임상적으로 정상인 것으로 나타났다. 한 마리의 사망자는 0일과 7일 사이에 체중이 증가하지 않았다. 마이크로신 60의 투여가 안전함을 입증하였다. 모든 동물은 제14일에 안락사시켰다.

추가의 독물학적 시험을 토끼에서 수행하였다. 에어로졸 초산화된 물 (1 ml)을 15, 30, 45 및 60일 동안 1일 3회 식 20마리의 뉴질랜드 흰토끼에게 양압 장치에 의해서 오른쪽 비공에 충달한다. 흡입-대조 비공은 어떤 처리하지 않고 그대로 두었다. 비처리된 및 M60 처리된 비공으로부터 수득한 비점막 생검 (nasomucosa biopsy)을 각각의 시점에 5마리의 동물로부터 수득하였다. 그 후, 이들 조직을 광학 및 전자 현미경 하에서 관찰한다. 완전한 의학적 검사를 각각의 동물에서 적절으로 수행하여 비폐색, 안면 통증, 압박, 점액농성 콧물, 및 편두감을 기록한다. 부작용은 아주 드물고, 완화하며 일시적인 것으로 보고되었다.

비점막에 대한 변화는 M60을 60일 동안 비내 적용한 후에 나타났다. 60일에 모든 생체에서 경미한 상피의 파괴, 상피하 부위의 이산성 염증성 혈관 및 혈의 과다형성이 있었다. 초미세구조적 관찰 하에서, 본 연구자들은 상피세포의 만성적 변화 (ultrastructural)을 관찰할 수 있었다. 본 연구자들은 상피세포 내에서 다양한 보안성 (cyst-like) 변화가 나타났으며, 미토콘드리아는 압축되고 변형되었고, 막의 일부가 용해되었다. 일부 상피세포는 압박되었으며, 상피 성장을 겪고 있었고, 그의 막은 용해되었으며, 세포간 공간이 확대되었다. 일부 세포는 기저막으로부터 박리되었다. 기저세포 (tunica proria)는 경미하게 부종이 있었다.

본 연구는 M60이 60일 동안 비내 투여한 후에 비점막을 경미하게 자극할 수 있음을 입증한다. 그러나, 이 손상은 최소였고, 가역적이었으며, 따라서 M60의 비내 경미로는 안전한 것으로 생각될 수 있다. 이것은 비점막 이 수년 동안 흡안 혈관수축제를 적용한 후에 심각하게 손상될 수 있지만, 이것은 이들 약물의 중단한 후에 정상으로 회복될 것이라는 사실을 기초로 한다. 이것은 기저세포 및 기저막이 손상 후에 안정하게 남아 있는지 여부에 따른 비점막의 재생 과정에 기인할 수 있다. 이들은 기저세포는 기저막을 따라 분포를 이동하여 박리면을 덮을 수 있다. 따라서, M60 처리 후에 일부 부분의 상피세포의 경미한 기저막의 관찰 하에서도 기저막은 없는 것이었다. 래트의 무력한 경미한 자극 섬유를 생성하는 단백질의 성장을 억제하였으며, 래트의 무력하게 경미한 경미한 상피세포는 상피가 결여된 부위 정보로 성장하였다. 래트, 국소 스테로이드를 또한 적용하여 비점막의 구조 및 기능의 회복을 촉진시킬 수 있었다.

결론적으로, 5일 동안 M60의 비내 투여는 상기 결과에서 입증하였다. 래트의 경미한 경미한 변화는 작고
가역적이었다. 따라서, M60의 비내 독성이 생략하게 사용될 수 있었다.

실시예 12

본 실시예는 예시적인 ORP 수의 활성, 안정성, 및 독성 결여를 입증한다.

[0229] 본 연구에 사용된 한 예시적인 ORP 수용액은 최근에 방부제로서 멕시코 시장에 도입된 “마이크로신”으로 알려진 것이다. 마이크로신은 멕시코 보건국 (Secretariat of Health of Mexico)에서 수용한 인증서에 따르면 금균, 발균 및 상처 방부 환경을 갖는 중성 pH의 초산화 용액이다. 마이크로신은 순수한 물 및 염 (NaCl)으로부터 제조되고, 낮은 농도의 나트륨 (예를 들어, <55 ppm) 및 염소 (예를 들어, <80 ppm)를 함유하고, pH는 7.2 내지 7.8이고, 산화 반응-환원 전위는 840 mV 내지 960 mV이다. 마이크로신은 한 농도로만 제조되고, 환성화되거나 화학적 필요가 없다.

[0230] 상기 용액은 역삼투에 의해 제조된 물로부터 제조된 후, 고압 및 염화나트륨에 의해 생성된 전기화학 구배에 적용된다. 이러한 방식으로, 전기화학 구배가 생성되는 다중 챔버에서 형성되는 반응성 중한 마이크로신이 생성시키기 위해 제어된 방식으로 선택된다. 그 결과는 높은 산화 반응-환원 전위 (+840 mV 내지 +960 mV) 및 이에 따른 높은 항균 활성을 부여하는 제어된 환경의 유리 라디칼을 갖는 용액이다.

[0231] 차이염소산 및 차이염소산나트륨은 낮은 농도의 기타 성분, 특히 예를 들어 과산화수소, 오존, 클로라이드 이온, 헤모리드 및 수산화나트륨과 함께 마이크로신에 포함되는 가장 풍부한 성분이다. 특정 이온에 매이기 원하지 않지만, 소독 효과는 반드시 염소의 양에 의존하지는 않고, 마이크로신 내의 나트륨 및 염소 수준이 각각 50 및 60 ppm이기 때문에 오히려 유리 라디칼에 의존하는 것으로 생각된다. 또한, 공헌에 보고된 다른 초산화 용액과 달리, 마이크로신은 중성 pH (6.4-7.8)를 갖고, 부식성이 아니며, 2년까지 보관시에 안정하다. 상기 모든 특성 때문에 고수준 소독제로서 효과적이고 무생물적 표면 및 조직 모두에 사용하기 적합한 초산화 용액을 제조할 수 있다.

[0232] 가속 안정성 시험은 2년 동안 그의 소독 활성을 상실하지 않으면서 크고 상이한 온도 조건, 즉 4 내지 65℃에서 보관될 수 있음을 입증하였다. 상기 장기 보관 안정성은 또한 제조 직후에 사용시에만 효과적인 염소 수준의 초산화 용액과 상이한 것이다. 즉, 마이크로신은 그의 형상수용성을 상실하지 않으면서 4년간의 보관조건에서도 보관 및 배포할 수 있는 반면에, 다른 용액은 그 용액을 사용하고자 하는 모든 병원에서 고가의 특수 기기에 의해 생산되어야 한다. 그럼에도 불구하고, 제조자는 마이크로신 용기를 일시 개봉하면 급한 환경 및 일정한 결과를 보장하기 위해서는 30일 내에 사용되어야 한다고 권장하고 있다.

[0233] 마이크로신은 단지 하나의 농도로만 제조되기 때문에, 마이크로신의 용량은 단지 피부面积당 적용되는 부피의 변화에 의해 변화될 수 있다. 독성학적 연구에서, 무손상 피부에 국소 적용되는 마이크로신의 용량은 0.05 내지 0.07 mL/cm²로 상이하였고, 급성 피부 독성 연구에서 및 피부 자극 조사에서, 용량은 8.0 mL/cm²이 하이되었고, 같은 상처에 대한 일일 적용을 조사한 연구에서는 마이크로신은 0.09 mL/cm²의 용량으로 적용되었다.

[0234] 4 내지 24시간 노출시에는 단일 적용을 마이크로신을 무손상 피부에 국소 적용하는 독성학적 연구를 수행하였다. 7일 동안 마이크로신의 1일 1회 또는 2회의 다중 적용을 래트의 상처에 대해 평가하였다. 급성 자극 및 피부 독성에 대한 마이크로신의 효과를 평가하기 위해서 토끼의 무손상 피부에 대해 두 연구를 수행하였다. 생검시에 임상 징후, 피부 자극, 또는 피부의 이상이 마이크로신에 노출된 어떠한 동물에서도 관찰되지 않았다. 급성 및 전신 독성을 마우스의 복강내 주사에 의해 평가하였다. 이를 위해, 5마리의 마우스에게 단일 용량 (50 mL/kg)의 마이크로신을 복강내 경로로 주입하였다. 동일한 방법으로, 5마리의 대조 마우스에게 단일 용량 (50 mL/kg)의 염수 용액 (0.9%의 염화나트륨)을 주사하였다. 상기 조사에서는, 복강내 단일 용량의 마이크로신을 투여한, LD50이 50 mL/kg을 초과하는 임의의 동물에서 사망률 또는 임의의 전신 독성 증거가 관찰되지 않았다.

[0235] 마이크로신을 흡수시키고 임의의 고유한 독성 효과를 특성화하기 위해 마이크로신을 경구 경로로 라트에 투여를 검증하였다.
하였다. 이를 위해, 단일 용량 (4.98 mL/kg)을 스프라그-도우리 (Sprague-Dawley) 종의 3마리의 알비노 래트에게 식도관에 의해 투여하였다. 단일 경구 용량의 마이크로신에 노출된 임의의 동물의 사망률, 임상 징후 또는 생검 이상이 존재하지 않았다.

국소 적용된 마이크로신의 안구 자극 가능성을 또한 토끼에서 평가하였다. 안구 자극 또는 임의의 다른 임상 징후가 안구 경로를 통한 국소 투여에 의해 마이크로신에 노출된 임의의 동물에서 관찰되지 않았다.

흡입에 의한 감각 독성 가능성은 결정하기 위해 마이크로신을 흡입 경로에 의해 적용하였다. 모든 동물은 노출 후에 흡입 시험 후에 대조군 동물 및 처리 시험 후에 평가된 동물 (유도에 의해 처리됨)에서 관찰되지 않았다. 따라서, 마이크로신은 감각 반응을 야기하지 않는다.

따라서, 무손상 피부, 깊은 개방성 피부 상처, 결막낭에 경구 및 흡입 경로에 의해 또는 복강내 주사에 의해 사용될 때, 마이크로신은 그 안구 자극 또는 임의의 동물에서 관찰되지 않았다. 또한, 500명의 향수의 조사 결과에서 상처가 피부 및 점막에서 매우 다양한 횟수를 보이고, 우수한 반응성 및 안정성의 결과를 보였다. 따라서, 국소 적용된 마이크로신은 상기 임상 시험에서 효과적이며, 약물 반응성이 우수하다고 한다.

마이크로신을 사용한 다수회의 미생물 시험이 미국과 멕시코에서 수행되었다. 처음 노출 수초 내에 90% 초과의 세균이 박멸된다. 상기 표준에 따라 마이크로신이 보이는 항균 및 항진균 활성을 표 5에 요약한다.

<table>
<thead>
<tr>
<th>세균</th>
<th>카탈로그</th>
<th>작용 시간 (99.999% 미만의 감소)</th>
</tr>
</thead>
<tbody>
<tr>
<td>스트레포부라스 아예루사시</td>
<td>ATCC 25619</td>
<td>1분</td>
</tr>
<tr>
<td>스타페리코커스 아우레우스</td>
<td>ATCC 6538</td>
<td>1분</td>
</tr>
<tr>
<td>에스페레라 칼라아</td>
<td>ATCC 11299</td>
<td>1분</td>
</tr>
<tr>
<td>살모넬라 티피 (S. typhi)</td>
<td>CDC 99</td>
<td>1분</td>
</tr>
<tr>
<td>간디바 알킬라스</td>
<td>ATCC</td>
<td>1분</td>
</tr>
<tr>
<td>바실러스 서브릴리스</td>
<td>BS72</td>
<td>10분</td>
</tr>
<tr>
<td>저 포자 (10⁴)</td>
<td></td>
<td>15분</td>
</tr>
<tr>
<td>고 포자 (10⁶)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0246] 마이크로신을 사용한 다수회의 미생물 시험이 미국과 멕시코에서 수행되었다. 처음 노출 수초 내에 90% 초과의 세균이 박멸된다. 상기 표준에 따라 마이크로신이 보이는 항균 및 항진균 활성을 표 5에 요약한다.

포 5

살바이러스 활성 실험은 PAHO [Pan-America Health Organization]/WHO 프로토콜에 따라서 수행되었다.

살바이러스 활성에 대해, 마이크로신은 5분 이내에 인간 면역결핍 바이러스 (군주 SF33)의 바이러스 부하를 3 로그 오차까지 감소시키는 것으로 나타났다. 이것은 마이크로신에 의해 처리된 바이러스의 시험에서 세포방사 효과의 부재에 의해 및 항원 App24 수준에 의해서 증명되었다 (이들 실험은 미국 환경 보호청 (United States Environmental Protection Agency)(DIS/TSS-7/1981. 11. 12)의 살바이러스체 프로토콜에 따라서 수행되었다.

마이크로신의 살바이러스 활성은 H1V 및 폴리오 바이러스에 대하여 최근에 미국에서 수행된 시험에서 최근에 확인되었으며, 리스테리아 모노모코터데네스 (Listeria monocytogenes), MRSA 및 마이크로박테리움 투페르쿨로시스에 대한 그의 활성도 또한 기록되었다. 즉, 마이크로신은 추천된 바와 같이 투여된 경우에 1 내지 15분의 노출에 의하여 세균, 진균, 바이러스 및 포자를 박멸할 수 있는 것으로 입증되었다.
본 실험에에는 예시적인 ORP 수용액인 마이크로신의 효과적인 항미생물 용액으로서의 용도를 입증한다.


하기 표는 5.0 Log10보다 큰 수준으로 감소된, 시험된 모든 집단에 대한 30초 노출 마크 (mark)시의 상기 시험관 내 시간-사멸의 평가 결과를 요약한 것이다.

<table>
<thead>
<tr>
<th>번호</th>
<th>미생물 종</th>
<th>초기 집단 (CFU/mL)</th>
<th>노출 후 집단 (CFU/mL)</th>
<th>Log10 감소</th>
<th>감소율</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>아시노세타미시 배우만바이 (ATCC #19003)</td>
<td>2.340 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.3692</td>
<td>99.9999</td>
</tr>
<tr>
<td>2</td>
<td>아시노세타미시 배우만바이 임상 단리물</td>
<td>1.8150 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.2589</td>
<td>99.9999</td>
</tr>
<tr>
<td>3</td>
<td>백테로이데스 프라각리스 (ATCC #43858)</td>
<td>4.40 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>7.6435</td>
<td>99.9999</td>
</tr>
<tr>
<td>4</td>
<td>백테로이데스 프라각리스 임상 단리물 BSL1 #601901B86</td>
<td>2.70 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>7.4314</td>
<td>99.9999</td>
</tr>
<tr>
<td>5</td>
<td>레티카 알바마스 (ATCC #10231)</td>
<td>2.70 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.3345</td>
<td>99.9999</td>
</tr>
<tr>
<td>6</td>
<td>레티카 알바마스 임상 단리물 BSL1 #042905Ca</td>
<td>5.650 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.7520</td>
<td>99.9999</td>
</tr>
<tr>
<td>7</td>
<td>레티코버티 아메로게네스 (ATCC #95007)</td>
<td>1.2250 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.0881</td>
<td>99.9999</td>
</tr>
<tr>
<td>8</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>1.0150 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.0965</td>
<td>99.9999</td>
</tr>
<tr>
<td>9</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>2.610 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.4166</td>
<td>99.9999</td>
</tr>
<tr>
<td>10</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #061901B62</td>
<td>1.2850 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.1089</td>
<td>99.9999</td>
</tr>
<tr>
<td>11</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #061901B62</td>
<td>3.250 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.5119</td>
<td>99.9999</td>
</tr>
<tr>
<td>12</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #061901B62</td>
<td>1.130 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>6.0531</td>
<td>99.9999</td>
</tr>
<tr>
<td>13</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>5.000 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>5.6990</td>
<td>99.9999</td>
</tr>
<tr>
<td>14</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>3.950 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>5.5966</td>
<td>99.9997</td>
</tr>
<tr>
<td>15</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>6.650 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>5.8238</td>
<td>99.9998</td>
</tr>
<tr>
<td>16</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>7.40 x 10^3</td>
<td>&lt;1.00 x 10^3</td>
<td>5.8692</td>
<td>99.9998</td>
</tr>
<tr>
<td>17</td>
<td>레티코버티 아메로게네스 임상 단리물 BSL1 #042905Bea</td>
<td>1.5050 x 10^4</td>
<td>&lt;1.00 x 10^4</td>
<td>5.1775</td>
<td>99.9999</td>
</tr>
<tr>
<td>번호</td>
<td>종류</td>
<td>배양성분</td>
<td>배양성분 성분</td>
<td>배양성분 성분</td>
<td>배양성분 성분</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>17</td>
<td>레모플루스 염증판매액배양성분</td>
<td>백주성분 1 x 10^6</td>
<td>&lt;1.00 x 10^6</td>
<td>5.2788</td>
<td>99.9995</td>
</tr>
<tr>
<td>18</td>
<td>레모플루스 염증판매액배양성분</td>
<td>백주성분 1 x 10^7</td>
<td>&lt;1.00 x 10^7</td>
<td>6.0492</td>
<td>99.9999</td>
</tr>
<tr>
<td>19</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^8</td>
<td>&lt;1.00 x 10^8</td>
<td>6.2577</td>
<td>99.9999</td>
</tr>
<tr>
<td>20</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^9</td>
<td>&lt;1.00 x 10^9</td>
<td>6.1430</td>
<td>99.9999</td>
</tr>
<tr>
<td>21</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^10</td>
<td>&lt;1.00 x 10^10</td>
<td>5.9978</td>
<td>99.9999</td>
</tr>
<tr>
<td>22</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^11</td>
<td>&lt;1.00 x 10^11</td>
<td>5.8420</td>
<td>99.9999</td>
</tr>
<tr>
<td>23</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^12</td>
<td>&lt;1.00 x 10^12</td>
<td>6.1804</td>
<td>99.9999</td>
</tr>
<tr>
<td>24</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^13</td>
<td>&lt;1.00 x 10^13</td>
<td>6.2028</td>
<td>99.9999</td>
</tr>
<tr>
<td>25</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^14</td>
<td>&lt;1.00 x 10^14</td>
<td>6.3212</td>
<td>99.9999</td>
</tr>
<tr>
<td>26</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^15</td>
<td>&lt;1.00 x 10^15</td>
<td>5.8096</td>
<td>99.9999</td>
</tr>
<tr>
<td>27</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^16</td>
<td>&lt;1.00 x 10^16</td>
<td>6.1414</td>
<td>99.9999</td>
</tr>
<tr>
<td>28</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^17</td>
<td>&lt;1.00 x 10^17</td>
<td>5.7443</td>
<td>99.9999</td>
</tr>
<tr>
<td>29</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^18</td>
<td>&lt;1.00 x 10^18</td>
<td>6.0663</td>
<td>99.9999</td>
</tr>
<tr>
<td>30</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^19</td>
<td>&lt;1.00 x 10^19</td>
<td>5.9978</td>
<td>99.9999</td>
</tr>
<tr>
<td>31</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^20</td>
<td>&lt;1.00 x 10^20</td>
<td>6.5641</td>
<td>99.9999</td>
</tr>
<tr>
<td>32</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^21</td>
<td>&lt;1.00 x 10^21</td>
<td>6.1775</td>
<td>99.9999</td>
</tr>
<tr>
<td>33</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^22</td>
<td>&lt;1.00 x 10^22</td>
<td>6.0969</td>
<td>99.9999</td>
</tr>
<tr>
<td>34</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^23</td>
<td>&lt;1.00 x 10^23</td>
<td>6.2405</td>
<td>99.9999</td>
</tr>
<tr>
<td>35</td>
<td>클립사포스 오식요배양성분</td>
<td>백주성분 1 x 10^24</td>
<td>&lt;1.00 x 10^24</td>
<td>99.9999</td>
<td>99.9999</td>
</tr>
</tbody>
</table>
그의 미생물 감소는 5.0 Log₁₀ 미만에서 측정되었지만, 마이크로신은 또한 표 6에 포함되지 않은 3개의 나머지 종에 대한 항미생물 활성을 보였다. 보다 구체적으로, 마이크로신에 대한 30초 노출은 스트렙토코커스 뉴모니아에 (임상 단리물: BSLI #072605Spn1)의 집단을 4.5 Log₁₀보다 큰 수준으로 감소시켰고, 이것은 상기 종에 대한 검출 한계이었다. 또한, 칸디다 투피세알리스 (ATCC #750)로 시험할 때, 마이크로신은 30초 노출 후 3.0 Log₁₀을 초과한 미생물 감소를 보였다. 추가로, 칸디다 투피세알리스 (BSLI #042905Ct)로 시험할 때, 마이크로신은 20분 노출 후 3.0 Log₁₀을 초과한 미생물 감소를 보였다.

시험관내 시간-사멸 평가의 예시적인 결과는 마이크로신 산화 환원 전위수가 넓은 스펙트럼의 시험 미생물에 대해 신속한 (즉, 대부분의 경우에 30초 미만) 항미생물 활성을 보임을 입증한다. 평가된 50개의 그람 양성, 그람 음성 및 효모종 중에서 47개의 미생물 집단은 생성물에 노출한 지 30초 내에 5.0 Log₁₀보다 큰 수준으로 감소 하였다.

이 실험은 예시적인 ORP 수용액인 마이크로신 대 히비클렌스 (HIBICLENS)(등록상표) 클로르헥시딘 글루코네이트 용액 4.0% (w/v) 및 0.9% 염화나트륨 관류액 (USP)의 항미생물 활성을 비교하여 보였다. 시험관내 시간-사멸 평가를 대조 생성물을 히비클렌스(등록상표) 클로르헥시딘 글루코네이트 용액 4.0% (w/v) 및 a 멸균 0.9% 염화나트륨 관류 용액 (USP)을 사용하여 실시에 13에 기재된 바와 같이 수행하였다. 각 각의 대조 생성물은 구체적으로 데터티브 파이날 모노그래프 (Tentative Final Monograph)에 표시된 10개의 아메리칸 타임 웨스터 컬렉션 (ATCC) 균주의 현탁액에 대해 평가하였다. 이어서, 수집된 데이터를 실시예 11에 기독된 마이크로신 미생물 감소 활성에 대해 분석하였다.

마이크로신 산화 활성 전위수는 5개의 시험 균주의 미생물 집단을 히비클렌스(등록상표) 클로르헥시탄 클로르네이트 용액 4.0% (w/v) 및 0.9% 염화나트륨 관류액 (USP)의 항미생물 활성을 비교하여 보였다.
비클렌스가 시험 검출 한계만큼 집단을 감소시켰기 때문이다 (상기 경우에, 4.8 Log_{10}보다 큰 수준으로). 별규 0.9% 염화나트륨 관류 용액은 상기 논의한 각각의 6개의 시험 균주의 미생물 집단을 20분 노출 후에 0.3 Log_{10} 미만의 수준으로 감소시켰음을 알 수 있다. 

마이크로선 산화 환원 전위수는 시험된 4개의 시험 균주, 즉 엔테로코커스 파예칼리스 (ATCC #29212), 스타필로코커스 아우레우스 (ATCC #6538 및 ATCC #29213), 및 스타필로코커스 에피데미디스 (ATCC #12228)에 대해 히비클렌스(등록상표)와 염화나트륨 관류액 관류에 모두보다 큰 항미생물 활성을 제공하였다. 하기 표는 상기 4개의 종에 대한 시험관내 시간-사멸 평가의 미생물 감소 결과를 요약한 것이다.

표 7

<table>
<thead>
<tr>
<th>미생물 종</th>
<th>노출 시간</th>
<th>Log_{10} 감소</th>
<th>마이크로선</th>
<th>히비클렌스(등록상표)</th>
<th>NaCl 관류액</th>
</tr>
</thead>
<tbody>
<tr>
<td>엔테로코커스 파예칼리스 (ATCC #29212)</td>
<td>30초</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>1분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>3분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>5분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>7분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>9분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>11분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>13분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>15분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td></td>
<td>20분</td>
<td>6.4166</td>
<td>6.4166</td>
<td>6.4166</td>
<td>7.0187</td>
</tr>
<tr>
<td>스타필로코커스 아우레우스 (ATCC #6538)</td>
<td>30초</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>1분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>3분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>5분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>7분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>9분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>15분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td></td>
<td>20분</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
<td>6.1775</td>
</tr>
<tr>
<td>스타필로코커스 아우레우스 (ATCC #29213)</td>
<td>30초</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>1분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>3분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>5분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>7분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>9분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>11분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>13분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>15분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td></td>
<td>20분</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
<td>6.2405</td>
</tr>
<tr>
<td>스타필로코커스 에피데미디스 (ATCC #12228)</td>
<td>30초</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>1분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>3분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>5분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>7분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>9분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>11분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>13분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>15분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
<tr>
<td></td>
<td>20분</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
<td>5.6385</td>
</tr>
</tbody>
</table>

한편, 마이크로선은 일부 종에서 보다 신속한 항미생물 반응 (즉, 30초 미만)을 보인다. 또한, 마이크로선에 노출시키면 표 7에 나열된 모든 종에서 총 미생물 감소가 보다 크게 나타난다.

실시예 15

본 실시예는 환자에 대한 국소 투여에 적합한 본 발명의 제제를 제공한다. 제제는 다음과 포함한다:
실시예 16
본 실시예는 환자에 대한 국소 두어에 적합한 본 발명의 제제를 제공한다. 제제는 다음을 포함한다:

<table>
<thead>
<tr>
<th>성분</th>
<th>양</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORP 수용액</td>
<td>250 mL</td>
</tr>
<tr>
<td>카르보폴(등록상표) 중합체 분말 (증점제)</td>
<td>15 g</td>
</tr>
<tr>
<td>트리에탄올아민 (중화제)</td>
<td>80 mL</td>
</tr>
</tbody>
</table>

실시예 17
본 실시예는 환자에 대한 국소 두어에 적합한 본 발명의 제제를 제공한다. 제제는 다음을 포함한다:

<table>
<thead>
<tr>
<th>성분</th>
<th>양</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORP 수용액</td>
<td>1000 mL</td>
</tr>
<tr>
<td>카르보폴(등록상표) 중합체 분말 (증점제)</td>
<td>15 g</td>
</tr>
<tr>
<td>트리에탄올아민 (중화제)</td>
<td>80 mL</td>
</tr>
</tbody>
</table>

실시예 18
본 실시예는 ORP 수용액 및 증점제를 포함하는 본 발명의 제제의 제조를 설명한다.

ORP 수용액을 유리 비이커 또는 자아 (jar)와 같은 적합한 용기에 넣는다. 카르보폴(등록상표) 974P 중합체는 거친 체 (또는 여과기 (strainer))를 통과시켜 빠른 살포를 허용하면서 동시에 어떤 큰 응집체라도 파쇄가 가능하도록 한다. 그 후, 카르보폴(등록상표) 974P를 증점제로서 첨가한다. 카르보폴(등록상표) 중합체는 당여리가 형성되는 것을 방지하고, 따라서 과도하게 긴 혼합 사이클을 피하기 위해서 서서히 첨가한다.

용액은 분말이 실온에서 용해하도록 카르보폴(등록상표) 중합체를 첨가하는 동안 빠르게 혼합시킨다. 그 후, 중화제인 트리에탄올아민을 용액에 첨가하고, 전기 혼합기 또는 그 밖의 다른 적합한 장치를 사용하여 균질한 젤이 수득될 때까지 혼합시킨다. 카르보폴(등록상표) 중합체 조성품에 중화제를 첨가하여 제제를 젤로 전환시킨다.

실시예 19
본 실시예는 소아 화상 환자에서 화상, 특히 2도, 및 3도 화상의 치료를 위한 본 발명에 따른 ORP 수용액의 용도를 설명한다.

총 64명의 인간 소아 화상 환자를 ORP 수용액으로 치료하였다. 연구군은 통상적인 화상 요법으로 치료된 64명의 환자로 이루어진 대조군과 비교하였다. 연구군은 다음과 같이 구성되었다: 1도 화상 환자 1명, 1도와 2도의 조합 화상 환자 6명, 2도 화상 환자 38명, 3도 화상 환자 4명, 및 2도와 3도 조합 화상 환자 15명. 또한, 연구군은 다음 신체 비율의 화상 (즉, 화상 정도)을 갖는 환자로 구성되었다: 0 내지 9% 정도의 화상을 갖는 환자 10명, 10 내지 19% 정도의 화상을 갖는 환자 27명, 20 내지 29% 정도의 화상을 갖는 환자 11명, 30 내지 39% 정도의 화상을 갖는 환자 8명, 40 내지 49% 정도의 화상을 갖는 환자 4명, 50 내지 59% 정도의 화상을 갖는 환자 1명, 60 내지 69% 정도의 화상을 갖는 환자 3명, 각각의 화상에 대해 초기에 과상 조직 제거를 수행하였다. 용액을 고압 관류 (irrigation) 장치를 사용하여 본체에 의해 적용하였다. 이어서, 용액을 분부에 의해 적용하고, 5 내지 15분 동안 화상을 보습하도록 유지시키고, 이를 1일 3회 반복하였다. 화상은 용액의 두여 사이에 드레싱하지 않았다.

화상 표면 상의 미생물의 존재를 결정하기 위해 체취한 배양품에서, ORP 수용액으로 치료된 6명의 환자만이 입원 7-15일 후에 양성 배양물을 보인 반면에, 대조군에서는 22명의 환자가 양성 배양물을 보였다. 연구군 (58)
및 대조군 (42)의 나머지 환자는 음성 배양물을 보였다. 연구군 및 대조군의 양성 배양물에 존재하는 미생물을 표 8에 제시한다.

표 8

<table>
<thead>
<tr>
<th>화상 미생물</th>
<th>대조군</th>
<th>연구군</th>
</tr>
</thead>
<tbody>
<tr>
<td>스타필로코커스 아우레우스</td>
<td>56.0</td>
<td>57.1</td>
</tr>
<tr>
<td>엔테로바커 클로모아케 (clonae)</td>
<td>8.0</td>
<td>28.2</td>
</tr>
<tr>
<td>스타필로코커스 해모립티코스</td>
<td></td>
<td>14.2</td>
</tr>
<tr>
<td>슈도모나스 아에루기노사</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>커读后感스 알바리나스</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>케이시앤라 الوح</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>총</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

ORP 수용액의 투여 빈도는 각각의 환자의 화상의 특성에 따라 상이하였다. 연구군 및 대조군의 화상 등급에 의한 평균 입원 기간을 표로 만들었다. 1도 화상의 경우, 평균 입원은 연구군 (6명의 환자)에서 4.6일인 반면에, 대조군 (45명의 환자)에서 19.2일이었다. 2도 화상의 경우에는, 평균 입원은 연구군 (45명의 환자)에서 10.6일인 반면, 대조군 (9명의 환자)에서 26.9일이었다. 3도 화상에 있어서는, 평균 입원은 연구군 (14명의 환자)에서 29.5일인 반면, 대조군 (10명의 환자)에서 39.8일이었다. 전체적으로, 평균 입원 기간은 소아 화상 환자에게 본 발명의 ORP 수용액을 투여할 때 28.6일에서 14.9일로 48% 감소하였다. 화상 정도를 기초로 한 대조군 대 연구군의 평균 입원 일수를 표 9에 제시한다.

표 9

<table>
<thead>
<tr>
<th>화상 정도</th>
<th>대조군의 입원 일수</th>
<th>연구군의 입원 일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 내지 9%</td>
<td>16.1</td>
<td>6.9</td>
</tr>
<tr>
<td>10 내지 19%</td>
<td>11.7</td>
<td>8.2</td>
</tr>
<tr>
<td>20 내지 29%</td>
<td>8.6</td>
<td>22.7</td>
</tr>
<tr>
<td>30 내지 39%</td>
<td>40.2</td>
<td>16.8</td>
</tr>
<tr>
<td>40 내지 49%</td>
<td>32.3</td>
<td>26.5</td>
</tr>
<tr>
<td>50 내지 59%</td>
<td>0 (치료된 환자 없음)</td>
<td>55</td>
</tr>
<tr>
<td>60 내지 69%</td>
<td>34.3</td>
<td>68.0</td>
</tr>
</tbody>
</table>

본 실시예로부터 알 수 있는 바와 같이, 본 발명의 ORP 수용액은 소아 화상 환자에게 투여하여 입원 기간을 단축시킬 수 있다.

실시예 20

본 실시예는 항생제를 투여하지 않으면서 본 발명의 ORP 수용액을 소아 화상 환자에게 투여하는 것을 설명한다.

실시예 19에 기재된 바와 같이 입원 7-15일 후에 측정시에 음성 미생물 배양물을 보인 연구군의 58명의 환자를 양성 배양물 항생제로 치료하지 않았다. 성공 환자군의 평균 입원 기간은 12.3일이었다. 대조군에서, 항생제는 ORP 수용액의 투여에 추가하여 46명의 환자에게 사용하였다. 미생물의 양성 배양물은 28.6일에서 14.9일로 48% 감소하였다. 화상 정도를 기초로 한 대조군 대 연구군의 평균 입원 일수를 표 9에 제시한다.

실시예 21

본 실시예는 인간 이배체 신음아세포 (HDF)의 생존성에 대한 예시적인 ORP 수용액 대 과산화수소 (HP)의 효과를 입증한다. 성공적인 독성을 연구하기 위해, HDF를 시험관 내에서 ORP 수용액 및 과산화수소 (HP)에 노출
시켰다. HP는 전해세포에 독성이고, 세포자멸 및 괴사를 증가시키고, 세포 생존성을 감소시키는 것으로 알려져 있다. 본 실험에서, 세포 생존성, 세포자멸 및 괴사는 5 및 30분 동안 순수한 ORP 수용액 및 880 mM HP (HP의 방부 용도를 위해 사용되는 농도)에 노출된 HDF에서 측정하였다.

HDF 배양액은 3개의 상이한 음경 포피로부터 얻고, 이를 본 연구를 위해 함께 모아 동결보존하였다. 이배체 세포만을 모든 실험에 사용하였다. 세포 주기 분석에서, DNA 이배체성은 적어도 총 20,000회로부터 수집된 CV < 7%의 단일 G0-G1 피크 및 대응하는 G2/M 피크의 존재로서 정의되었다. 도 4A-4C는 5 및 30분의 노출 시간에 따른 결과를 각각 백색 및 흑색 막대로 표시한 그래프이다. 상기 파라미터의 동시 분석은 A) 7-아미노악티노마이신 D (7-AAD); B) 애넥신 V-FITC 및 C) 요오드화프로피듐을 사용하여 유동 세포 측정에 의해 동일한 세포 집단에서 수행하였다. 도 8A-8C는 비율값을 평균 ± SD (n=3)로 표현하였다.

세포 생존성은 ORP 수용액 및 HP에 5분 노출한 후에 각각 75% 및 55%이었다 (도 4A). 노출을 30분으로 연장하면, 세포 생존성은 각각 60% 및 5%로 더욱 감소하였다. 분명한 사실은, ORP 수용액이 괴사를 통해 세포 사멸을 유도한다는 사실이고, 이는 15%의 세포가 두 노출 시간에서 유동 세포 측정 분석에서 요오드화프로피듐을 포함하였기 때문이다 (도 4C). 임의의 특정 이론에 매이기를 원하지 않지만, 상기 결과는 세포가 성장인자 또는 이론이 참가되지 않은 상태에서 ORP 수용액 중에서만 유지되기 때문에 마이크로현 (13 mOsm)의 저장성에 의해 유지되는 삼투 효과에 의한 것일 수 있다. 세포자멸은 단지 3%의 ORP 수용액 처리된 세포만이 세포 표면에 애넥신-V (세포자멸 마커)를 노출하기 때문에 그에 의해 ORP 수용액이 세포 사멸을 유도하는 메카니즘으로 보이지 않는다 (도 4B). 상기 비율은 대조군에서 측정된 것과 실질적으로 유사하였다. 이와 대조적으로, HP는 5 및 30분 노출 후에 각각 20% 및 75%의 처리된 세포의 괴사 및 15% 및 20%의 세포자멸을 유도하였다. 상기 결과는 함께 (비희석된) ORP 수용액이 방부 농도의 HP보다 HDF에 대한 독성이 훨씬 더 낮음을 보여준다.

실시예 22

본 실험에서, DNA 손상 및 DNA 애덕트 8-히드록시-2'-데옥시구아노신 (8-OHdG)의 형성에 대한 예시적인 ORP 수용액의 효과를 과산화수소 (HP)와 비교하여 보여준다. 세포에서 8-OHdG 애덕트의 생성은 DNA의 특정 잔기의 산화성 손상의 마커이다. 또한, 상기 애덕트의 높은 세포 수준은 돌연변이 발생, 발암 및 세포 노화와 밀접하게 관련된다.

도 5는 30분 동안의 대조군 처리, ORP 수용액 처리 및 HP 처리 후에 HDF로부터의 DNA 샘플에 존재하는 8-OHdG 애덕트의 수준을 보여준다. DNA는 노출 직후 (T0, 백색 막대) 또는 시험 기간 3시간 후 (T3, 흑색 막대)에 추출하였다. DNA를 소화시키고, 8-OHdG 애덕트를 제조자의 지시에 따라 ELISA 키트로 측정하였다. 값 (ng/mL)은 평균 ± SD로 제시된다 (n=3). 30분 동안 ORP 수용액에 노출한 경우, 30분 동안 인큐베이팅한 후의 대조군 세포에 비해 처리된 세포에서 애덕트의 형성이 증가되지 않았다. 이와 대조적으로, 치사 농도 미만 및 비치료 적 HP 농도 (500 μM HP)의 고희석된 HP로 30분 처리하면 대조군 처리된 ORP 수용액 처리된 세포에 비해 8-OHdG 애덕트의 수가 약 25배 증가하였다.

실시예 23

본 실험에서, 낮은 농도의 예시적인 ORP 수용액 대 HP에 대한 만성 노출에 대한 효과를 입증한다. 만성 산화성 스트레스는 세포의 조기 노화를 유도한다고 알려져 있다. 지속적인 산화성 스트레스를 모방하기 위해서, 1차 HDF 배양액을 20회의 군집 배가 (doubling) 동안 낮은 농도의 ORP 수용액 (10%) 또는 비치료적 ORP 수용액 및 HP (5 μM)에 만성적으로 노출시켰다. SA-β-갈락토시다제 효소의 발현 및 활성은 시험관 내 또는 생체 내에서 노화 과정과 관련된 것으로 보고된 것에 따랐다. 본 실험에서, SA-β-갈락토시다제 효소의 발현은 ORP 수용액 또는 HP에 HDF를 1개월 동안 연속 노출시킨 후에 분석하였다. 그 결과를 도 6에 도시하였다. 효소 SA-β-갈락토시다제의 발현은 하げる 해양의 원인 및 영향에 대한 해양 내 또는 생체 내에서 돌연변이 발생 또는 발암을 유도하지 않을 것임을 나타낸다.
부터 ORP 수용액은 조기 세포 노화의 유도자가 아니라고 결론내릴 수 있다.

실시예 24

본 실시예는 예시적인 ORP 수용액을 사용한 독성 연구 결과를 보여준다.

급성 전신 독성 연구는 예시적인 ORP 수용액인 마이크로신 60의 잠재적인 전신 독성을 결정하기 위해 마우스에서 수행하였다. 5마리의 마우스에게 복강내 경로에 의해서 단일 용량 (50 mL/kg)의 마이크로신 60을 주사하였다. 5마리의 대조 마우스에게 단일 용량 (50 mL/kg)의 염수 (0.9% 염화나트륨)를 주사하였다. 모든 동물에서 사망률 및 유해한 반응을 주사 직후, 주사 4시간 후, 및 이어서 7일 동안 1일 1회 관찰하였다. 모든 동물을 또한 주사 전 및 제7일에 체중을 측정하였다. 연구 동안 사망은 발생하지 않았다. 모든 동물은 연구 기간 내내 임상적으로 정상으로 보였다. 모든 동물의 체중이 증가하였다. 본 연구로부터 추정된 마이크로신 60 급성 복강내 LD50는 50 mL/kg을 초과하였다. 본 실시예에는 마이크로신 60이 유의한 독성을 보이지 않고 본 발명에 따른 치료 용도에 안전함을 입증한다.

실시예 25

본 실시예는 예시적인 ORP 수용액의 잠재적인 세포유전학적 독성을 결정하기 위해 수행된 연구를 보여준다.

ORP 수용액의 마우스에 대한 복강내 주사의 돌연변이 유발 잠재력을 평가하기 위해 예시적인 ORP 수용액 (마이크로신 10%)을 사용하여 미소핵 (micronucleus) 시험을 수행하였다. 포유동물의 생체내 미소핵 시험은 뇌의 성숙 다양한 적혈구의 염색체 또는 유사분열 기구의 손상을 야기하는 물질을 확인하기 위해 사용된다. 성기 손상은 늙은 (larming) 염색체 단편 또는 단리된 전체 염색체를 포함하는 세포의 구조체인 "미소핵"을 형성시킨다. ORP 수용액 연구는 각각 10마리의 마우스 (수컷 5마리/암컷 5마리)의 3개의 군, 즉 ORP 수용액을 투여한 실험군: 0.9% NaCl 용액을 투여한 음성 대조군: 및 돌연변이원성 시클로포스파미드 용액을 투여한 양성 대조군을 포함하였다. 실험 및 음성 대조군에는 각각 ORP 수용액 또는 0.9% NaCl 용액을 2일 (제1일 및 2일) 동안 연속적으로 복강내 주사하였다 (12.5 ml/kg). 양성 대조군 마우스에는 제2일에 시클로포스파미드 (8 mg/mL, 12.5 ml/kg을 단일 복강내 주사로 투여하였다. 모든 마우스를 주사 직후에 암반의 유해한 반응에 대해 관찰하였다. 모든 동물은 연구 기간 내내 임상적으로 정상으로 보였고, 어떠한 독성 징후도 임의의 군에서 보이지 않았다. 제3일에, 모든 마우스의 체중을 측정하고, 희생시켰다. 대퇴골을 특별한 방법으로 임의의 2개의 군으로 분할하고, 굽수를 추출하고, 2개의 도말 표본을 각각의 마우스로부터 제작하였 다. 각각의 동물에 대한 근골수 스라이드를 40X 배율로 관찰하였다. 총 적어도 200개의 적혈구를 계수함으로써 근골수 지수인 다염성 적혈구 (PCE) 대 정염성 적혈구 (NCE)의 비율을 각각의 마우스에 대해 결정하였다. 이어서, 마우스당 최소 2000개의 측정 가능한 PCE의 미소핵화된 다양성 적혈구의 발생률을 평가하였다. 데이터의 통계적 분석은 통계 소프트웨어 패키지 (Statview 5.0, 에스에이에스 인스티튜트 인크. (SAS Institute Inc., 미국))로부터 만과 휘트니 (Mann and Whitney) 시험 (5% 위험 역치에서)을 사용하여 수행하였다. 양성 대조군 마우스는 그의 각각의 음성 대조군에 비해 통계상 유의하게 더 낮은 PCE/NCE 비를 나타냈다 (수컷: 0.77 대 0.90 및 암컷: 0.73 대 1.02), 처리된 근골수에 대한 시클로포스파미드의 독성을 보였다. 그러나, ORP 수용액 처리된 마우스 및 음성 대조군의 PCE/NCE 비 사이에 통계상 유의한 차이가 존재하지 않았다. 유사하게, 양성 대조군 마우스는 수용액 처리된 마우스 (수컷: 11.0 대 1.4 / 암컷: 12.6 대 0.8) 및 음성 대조군 (수컷: 11.0 대 0.6 /암컷: 12.6 대 1.0) 모두에 비해 통계상 유의하게 매우 많은 미소핵 함유 다양성 적혈구를 보유하였다. ORP 수용액 처리된 및 음성 대조군 마우스에서 미소핵 함유 다양성 적혈구의 수 사이에 통계상 유의한 차이가 존재하지 않았다.

본 실시예에는 마이크로신 10%가 마우스에게 복강내 주사한 후에 독성 또는 돌연변이 유발 효과를 유도하지 않았음을 입증한다.

실시예 26

본 연구는 예시적인 ORP 수용액에 독성이 존재하지 않음을 입증한다.

본 연구는 예시적인 ORP 수용액에 독성이 존재하지 않음을 입증한다.
포용해 또는 독성의 임의의 증거를 보이지 않은 반면, 양성 및 음성 대조군은 예상된 바와 같은 결과를 보였다.

본 연구를 기초로 하여, 더마신은 성숙 섬유아세포에 대해 세포독성 효과를 생성시키지 않는다고 결론을 내릴 수 있다.

실시예 27

본 연구는 예시적인 ORP 수용액인 더마신의 국소 허용성 및 전층의 피부 상처 치유 모델에서 상처층의 조직병리학에 대한 그의 효과를 평가하기 위해 16마리의 래트를 사용하여 수행하였다. 상처는 대상 래트의 옆구리에 만들었다. 차요 과정 동안, 피부 섹션을 좌측 또는 우측 옆구리에서 채취하였다 (예를 들어, 각각 더마신 처리 및 염수 처리).

더마신 및 염수 처리된 외과적 상처 부위의 마손 트리크롬 (Masson’s trichrome) 염색 섹션 및 콜라겐 타입 II 염색 섹션을 인증된 수의학적 병리학자에 의해 평가하였다. 섹션은 연결 조직 중성, 섬유아세포 형태 및 콜라겐 형상, 단면에 신생 표피의 존재, 염증 및 피부 콜라겐 형성 정도의 표시로서 콜라겐 타입 2 발현의 양에 대해 평가하였다.

조사 결과는 더마신이 래트에 잘 허용됨을 보여준다. 두 옆구리의 상처 (각각 더마신 처리 및 염수 처리된)로부터의 피부 섹션에 처리 관련 조직병리학적 범위가 존재하지 않았다. 염수 처리된 상처 부위와 더마신 처리된 상처 부위 사이에 관리되는 조직병리학적 차이가 존재하지 않았고, 이는 더마신 치료가 잘 허용됨을 나타낸다.

염수 처리된 상처 부위와 더마신 처리된 상처 부위 사이에 콜라겐 타입 2 발현의 유의한 차이가 존재하지 않았고, 이는 더마신이 상처 치유 동안 섬유아세포 또는 콜라겐 합성에 대해 유해한 효과를 갖지 않음을 나타낸다.

실시예 28

본 연구는 복사뼈에서 먼 괴사 조직 (궤양)의 치료시에 Versajet™ (스미스 앤 내뷰) 제트 세척 시스템의 대체용액으로서 본 발명에 따라 사용되는 예시적인 ORP 수용액인 더마신의 안전성 및 효능을 표준요법에 비교하여 입증하기 위해 수행할 수 있다.

이것은 전향 (prospective), 무작위, 이중 맹검 대조 연구일 것이다. 약 30명의 환자 (더마신 군의 약 20명/대조군의 약 10명)가 연구에 참여할 것이다. 본 연구를 위한 집단은 하지 궤양 (예를 들어, 당뇨성 족부 궤양, 정맥 울혈 궤양) 환자일 것이다. 모든 연구의 포함 및 배제 기준은 연구에 등록되기 전에 적합한 환자에 대해 제0 일에 충족되어야 한다. 포함 기준은 다음과 같다: 환자는 18세 이상이고, 환자의 하지 궤양에는 괴사 조직이 존재하고 제트 세척 시스템에 의한 기계적인 괴사 조직 제거술의 후보이고, 환자의 치료는 복사뼈에서 별리 위치하고, 환자의 궤양 표면적은 1.0 cm

배제 기준은 다음과 같다: 환자는 치료되는 사지의 임의의 일부 상에 괴저에 대한 임상 증거가 존재하고, 환자의 궤양은 연구 기간 동안 상처 또는 절단될 것으로 예상되고, 환자는 전신성 중증 병성 간염 (SIRS)의 후속 증상을 보이고, 환자의 궤양의 종 표면적은 1 cm 미만이고, 환자는 조사자가 환자를 본 연구에 대해 부적절한 것으로 판단하기 위한 하나 이상의 의학적 상태(들) (신장, 간, 혈액, 신경, 또는 면역 질환 포함) 보이고, 환자는 현재 또는이전에 적절한 상처 치료 또는 수의학적 치료를 받아온 적이 있으며, 또는 연구 과정 동안 상처 악화를 없애지 못할 것으로 예상되고, 환자는 모든 괴사 조직의 완전한 제거가 가능할 것으로 예상되고, 환자의 궤양은 골수염이 존재하고, 환자는 본 연구를 완료하기 위한 환자의 능력을 심하게 손상시키는 임의의 상태(들)가 존재한다.

고지 동의서를 받은 후, 포함 및 배제 기준이 충족된 후에, 환자를 다운 처리 중의 하나로 무작위로 분류할 것이다 (1:1 무작위 분류): 더마신군 - 제트 세척 시스템을 사용한 더마신 + 흔드로겔 상처 드레싱 요법의 사용; 대조군 - 염수 (제트 세척 시스템을 사용한 표준 처리) + 흔드로겔 상처 드레싱 요법의 사용.

다마신으로 무작위 분류된 각각의 환자에게 연구 용에 더마신을 투여하고, 환자의 상처의 기계적인 괴사 조직 제거술 동안 Versajet 제트 세척 시스템을 사용할 것이다. Versajet의 표준 압력 설정은 복사뼈에서 면 당뇨성 족부 궤양에 대해 사용될 것이다. 피사 조직 제거술 후에, 더마신은 조직 파편을 잃지 않는 상처층을 세정하기 위해
충분한 양으로 상처에 적용될 것이다. 상처는 히드로겔 드레싱으로 덮일 것이다. 상처는 히드로겔 드레싱으로 덮일 것이다. 상처는 히드로겔 드레싱으로 덮일 것이다. 드레싱 교체시마다, 상처를 더마신으로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 드레싱 교체시마다, 상처를 더마신으로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 드레싱 교체시마다, 상처를 더마신으로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 드레싱 교체시마다, 상처를 더마신으로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 상처는 히드로겔 드레싱으로 덮일 것이다. 상처는 히드로겔 드레싱으로 덮일 것이다. 상처는 히드로겔 드레스

각각의 대조군 환자에게 대조군 용액 (염수 용액)을 투여하고, 환자의 상처의 기저부인 피부 조직을 제거한 후 Versajet 제트 세척 시스템을 사용한 것이다. 피부 조직 제거술 후에, 염수로 상처를 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 드레싱 교체시마다, 상처를 염수로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 드레싱 교체시마다, 상처를 염수로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다. 드레싱 교체시마다, 상처를 염수로 세정하고, 새 히드로겔 드레싱으로 덮을 것이다.

상처의 유해 조직 제거술은 각각의 대조 방문시에 수행할 수 있다. 임의의 피부 조직은 상처 평가 전에 제트 세척기로 피부 조직에 제거할 것이다. 개방형 조직의 조사에 따른 조직 파편은 더마신 또는 염수로 세정될 것이다. 무작위 분류에 따라, 방문 사이에, 환자는 더마신 형식에서 대조군 약물 또는 염수로 세정할 것이다. 무작위 분류에 따라, 상처 사진은 피부 조직 제거술 후에 방문시마다 찍을 것이다.

1차 효능 종점은 (1) 상처에서 세균의 감소, (2) 상처 영역의 감소, (3) 육아 조직의 발생일 것이다. 안전성은 연구에 무작위 분류된 모든 환자에서 평가될 것이다. 응급하고 심각한 유해 사건의 치료는 기록될 것이다.

실시에 29

본 연구는 하지 궤양의 피부 조직 치료시 Jet-Ox ND 세척 시스템의 대체 용액으로서 예시적인 ORP 수용액인 더마신의 안전성 및 효능을 Jet-Ox ND 시스템에 의해 사용되는 표준요법에 비교하여 입증할 것이다.

Jet-Ox ND 시스템은 그 아래의 건강한 조직을 손상시키지 않으면서 혈관 염증의 제어된 분류 세척을 통해 만성 상처로부터 피부 조직을 제거한다. 본 연구는 약물 생성 및 대조군의 조사에 따른 연구 대상자 중 하지 무릎 아래의 피부 조직을 제거할 것이다. 응급한 경우, 환자는 더마신을 대조군 약물 또는 대조군 약물을 사용하지 않는 경우, 상처의 재발에 초의를 기울임.
체적으로 참고로 포함된 것을 나타내고 본 명세서에 전체로서 기술된 것처럼 동일한 정도로 참고로 포함한다.

본 발명의 기술하는 문맥에서 (특히, 이하의 청구범위의 문맥에서) 용어 부정관사 ("a"와 "an") 및 정관사 ("the") 및 유사한 지시어의 사용은 본 명세서에서 다른 식으로 지시되거나 문맥에 의해서 명백히 반대되는 것이 아닌 한은 단수 및 복수를 모두 포함하는 것으로 이해되어야 한다. 용어 "이루어지는", "갖는", "포함하는" 및 "함유하는"는 다른 식으로 지시되지 않는 한은 제한이 없는 용어 (즉, "포함하며", "로 제한되지 않는"을 의미함)로 이해되어야 한다. 본 명세서에서 값의 범위를 열거한 것은 본 명세서에서 다른 식으로 나타내지 않는 한은 단수 및 복수를 모두 포함하는 것으로 이해되어야 한다. 단어 "이루어지는", "갖는", "포함하는" 및 "함유하는"는 다른 식으로 지시되지 않는 한은 제한이 없는 용어 (즉, "포함하며", "로 제한되지 않는"을 의미함)로 이해되어야 한다. 본 명세서에서 기술된 모든 방법은 본 명세서에 다른 식으로 나타내거나, 다른 식으로는 문맥에 의해서 명백하게 반대되지 않는 한은 임의의 적합한 순서로도 수행될 수 있다. 본 명세서에서 제공된 임의의, 그리고 모든 예 및 예시적 용어 (예를 들어, "-와 같은")의 사용은 단지 본 발명을 더 잘 설명하기 위한 것이며, 다른 식으로 특허청구되지 않는 한은 본 발명의 범위에 대한 제한을 두고자 하는 것은 아니다. 본 명세서의 어떤 언어도 본 발명을 실시하는데 필수적인 것으로서 어떤 비-특허청구된 요소를 나타내는 것으로 이해 되지 않는 것이다.

본 발명을 수행하기 위하여 본 발명자들에게 공지된 최상의 모드를 포함한 본 발명의 바람직한 구체예가 본 명세서에 기술되어 있다. 이들 바람직한 구체예의 변형은 전술한 설명을 익으므로써 본 기술분야에서 통상적으로 숙련된 전문가에게 명백하게 될 것이다. 본 발명자들은 숙련된 전문가가 필요에 따라서 이러한 변형을 사용할 것으로 예상하며, 본 발명자들은 본 명세서에 구체적으로 기술된 것과는 다른 식으로 본 발명을 실시하고자 한다. 따라서, 본 발명은 적용가능한 범에서 허용하는 범위에 따라서 본 명세서에 첨부된 특허청구범위에 열거된 내용의 모든 변형 및 등가물이 포함한다. 또한, 그에 모든 가능한 변형에서 숙련된 요소들의 모든 조합은 본 명세서에 다른 식으로 나타내거나, 다른 식으로는 문맥에 의해서 명백하게 반대되지 않는 한 본 발명에 포함된다.

도면의 간단한 설명

도 1은 본 발명의 산화 환원 전위 수용액을 생산하기 위한 3-챔버의 (three-chambered) 전해 전지 (electrolysis cell)의 모식도이다.

도 2는 3-챔버의 전해 전지를 도시한 것으로서, 전지에서 생성된 이온 음을 보여준다.

도 3은 본 발명의 산화 환원 전위수를 생산하기 위한 방법의 개략적 흐름도이다.

도 4A-4C는 예시적인 ORP 수용액 (MCN) 대 과산화수소 (HP)로 처리된 인간 진피 섬유아세포 (HDF)에서 세포 존재성, 세포자멸 및 괴사의 비교 그래프이다.

도 5는 예시적인 ORP 수용액 (MCN) 대 500 μM 과산화수소 (HP)로 처리된 HDF에서 8-히드록시-2'-데옥시구아노신 (8-OHdG) 애드.jackson 그래프이다.

도 6A-6B는 낮은 농도의 예시적인 ORP 수용액 (MCN) 대 과산화수소 (HP)에 대한 만성 노출 후에 HDF에서 β-갈락토시다세과 연관된 노화의 발현을 보여준다.
도면68