摩擦材料沟槽图案

摘要

根据示例性实施例，摩擦盘可以包括定位在盘的第一侧上的摩擦材料。摩擦材料可以包括多个第一沟槽和多个第二沟槽，所述多个第一沟槽从摩擦材料的内径部延伸到摩擦材料的外径部，并且所述多个第二沟槽在径向上从所述内径部延伸并且在外径部之前终止。多个第二沟槽可以具有大致均一的宽度。与多个第一沟槽相比，多个第二沟槽可以更深和更宽。多个第一沟槽和多个第二沟槽可以互相连接，从而使流体可以从多个第二沟槽流动到多个第一沟槽中。
1. 一种摩擦盘，包括：
 盘；和
 摩擦材料，所述摩擦材料定位在盘的第一侧上；
 所述摩擦材料包括横跨摩擦材料的宽度延伸的多个第一沟槽，和在径向方向上延伸的
 长度比摩擦材料的宽度小的多个第二沟槽，所述多个第二沟槽具有大致均一的宽度，所述
 多个第二沟槽比所述多个第一沟槽更深和更宽，所述多个第一沟槽和所述多个第二沟槽相
 互连接，使得流体能够从所述多个第二沟槽流进所述多个第一沟槽中。

2. 根据权利要求1所述的摩擦盘，其中：
 所述多个第一沟槽包括格状图案。

3. 根据权利要求1所述的摩擦盘，其中：
 所述多个第一沟槽包括规则形图案。

4. 根据权利要求1所述的摩擦盘，其中：
 所述多个第二沟槽在摩擦材料的宽度的50％和80％之间延伸。

5. 根据权利要求1所述的摩擦盘，其中：
 所述多个第二沟槽以相对于径向方向大于或等于1°的角度延伸。

6. 根据权利要求1所述的摩擦盘，其中：
 所述盘是离合器盘。

7. 根据权利要求1所述的摩擦盘，其中：
 所述盘是制动盘。

8. 一种摩擦盘，包括：
 盘；和
 摩擦材料，所述摩擦材料定位在盘的第一侧上；
 所述摩擦材料包括从摩擦材料的内径部延伸到摩擦材料的外径部的多个第一沟槽，和
 在径向方向上从所述内径部延伸并且在外径部之前终止的多个第二沟槽，所述多个第二沟
 槽具有大致均一的宽度，所述多个第二沟槽比所述多个第一沟槽更深和更宽，所述多个第
 一沟槽和所述多个第二沟槽相互连接，使得流体能够从所述多个第二沟槽流进所述多个第
 一沟槽中。

9. 根据权利要求1所述的摩擦盘，其中：
 所述多个第一沟槽包括格状图案。

10. 根据权利要求1所述的摩擦盘，其中：
 所述多个第一沟槽包括规则形图案。

11. 根据权利要求1所述的摩擦盘，其中：
 所述多个第二沟槽从所述内径部延伸到摩擦材料的宽度的50％和80％之间的位置。

12. 根据权利要求1所述的摩擦盘，其中：
 所述多个第二沟槽以相对于径向方向大于或等于1°的角度延伸。

13. 根据权利要求1所述的摩擦盘，其中：
 所述盘是离合器盘。

14. 根据权利要求1所述的摩擦盘，其中：
 所述盘是制动盘。
15.一种将沟槽定位在用于摩擦盘的摩擦材料中的方法，包括以下步骤：
将多个第一沟槽定位在摩擦材料的表面上，所述多个第一沟槽从摩擦材料的内径部延伸到摩擦材料的外径部；并且
将多个第二沟槽定位在摩擦材料的表面上，所述多个第二沟槽在径向方向上从所述内径部延伸并且在外径部之前终止，所述多个第二沟槽具有大致均匀的宽度，所述多个第二沟槽比所述多个第一沟槽相比更深和更宽，所述多个第一沟槽和所述多个第二沟槽相互连接使得流体能够从所述多个第二沟槽流到所述多个第一沟槽中。
16.根据权利要求11所述的方法，其中：
所述多个第二沟槽在所述多个第一沟槽之前被定位在摩擦材料上。
17.根据权利要求11所述的方法，其中：
所述多个第一沟槽包括格状图案。
18.根据权利要求11所述的方法，其中：
所述多个第一沟槽包括凹凸状图案。
19.根据权利要求11所述的方法，其中：
所述多个第二沟槽从所述内径部延伸到摩擦材料的宽度的50%和80%之间的位置。
20.根据权利要求11所述的方法，其中：
所述多个第二沟槽以相对于径向方向大于或等于1°的角度延伸。
摩擦材料沟槽图案

[0001] 交叉引用相关申请

技术领域
[0003] 本发明总体上涉及用于离合器或制动盘的摩擦面的沟槽图案。

背景技术
[0004] 离合器或制动盘可以包括内部金属芯部，摩擦材料布置在该芯部的一侧或两侧上。摩擦材料可以包括沟槽图案，所述沟槽图案允许流体在沟槽图案中流过摩擦材料。流体可以从离合器或制动盘的内径部流动到外径部，将热量传递远离摩擦材料。

发明内容
[0005] 本发明内容被提供以介绍选择的概念，所述概念在下文的详细说明书中和附图中进一步被描述。本发明内容旨在确定随附权利要求的关键特征或本质特征，也不旨在用作确定随附权利要求的范围的辅助手段。
[0006] 根据本发明的一个方面，摩擦盘可以包括定位在盘的第一侧上的摩擦材料。摩擦材料可以包括横跨摩擦材料的宽度延伸的多个第一沟槽，和在径向方向上延伸的长度比摩擦材料的宽度小的长度的多个第二沟槽。所述多个第二沟槽可以具有大致均一的宽度。所述多个第二沟槽可以比所述多个第一沟槽更深和更宽。所述多个第一沟槽和所述多个第二沟槽可以互相连接，从而流体可以从所述多个第二沟槽流到所述多个第一沟槽中。
[0007] 根据本发明的一个方面，摩擦盘可以包括盘和定位在盘的第一侧上的摩擦材料。摩擦材料可以包括多个第一沟槽和多个第二沟槽，所述多个第一沟槽从摩擦材料的内径部延伸到摩擦材料的外径部，并且所述多个第二沟槽在径向方向上从所述内径部延伸并且在外径部之前终止。所述多个第二沟槽可以具有大致均一的宽度。所述多个第二沟槽可以比所述多个第一沟槽更深和更宽。所述多个第一沟槽和所述多个第二沟槽可以互相连接，从而流体可以从所述多个第二沟槽流到所述多个第一沟槽中。
[0008] 根据本发明的一个方面，将沟槽定位在用于摩擦盘的摩擦材料中的方法可以包括：将多个第一沟槽定位在摩擦材料的表面上，所述多个第一沟槽从摩擦材料的内径部延伸到摩擦材料的外径部；以及将多个第二沟槽定位在摩擦材料的表面上，所述多个第二沟槽在径向方向上从内径部延伸并且在外径部之前终止，所述多个第二沟槽具有大致均一的宽度。所述多个第二沟槽比所述多个第一沟槽更深和更宽，所述多个第一沟槽和所述多个第二沟槽相互连接使得流体可以从所述多个第二沟槽流到所述多个第一沟槽中。所述多个第二沟槽可以在所述多个第一沟槽之前定位在摩擦材料上。
[0009] 根据本发明的一个方面，将沟槽定位在用于离合器或制动盘的摩擦材料中的方法
可以包括由摩擦材料的板材冲制一环；利用粘合剂浸渍环；在摩擦材料的环内径部中冲制径向沟槽；将摩擦材料的环结合到金属芯部；以及在摩擦材料的环压印沟槽图案。

[0010] 从以下详细描述和附图中，这些特征和其它特征将变得显而易见，其中多个特征通过举例以被示出和描述。本发明能够使用其它的和不同的构造，并且其多个细节能够在多个其它方面进行修改，而均未脱离本发明的范围。因此，详细描述和附图被认为实际上是说明性的而非限制性的或局限性的。

附图说明
[0011] 附图的详细描述涉及以下附图，其中：
[0012] 图1表示根据一个实施例的传动装置的示意图；
[0013] 图2是根据一个实施例的离合器的透视图；
[0014] 图3是根据一个实施例的摩擦盘的透视图；
[0015] 图3A是根据一个实施例的摩擦盘的局部放大透视图；
[0016] 图4是根据一个实施例的摩擦盘的透视图；
[0017] 图5是根据一个实施例的在图3所示的摩擦盘的剖视图；以及
[0018] 图6是根据一个实施例的图示将沟槽定位在用于离合器或制动盘的摩擦材料中的方法的流程图。
[0019] 在所有的附图中，类似的附图标记用于指示类似的元件。

具体实施方式
[0020] 在上述附图中和以下详细描述中公开的实施例不旨在穷举本发明或将本发明限制到这些实施例。而是，具有可以在未脱离本发明范围的情况下进行的多个变化和修改。
[0021] 图1图示了用于诸如例如拖拉机的车辆或工作机械的传动装置100。本发明还适用于其它的电动或机动车辆、机械或设备。传动装置100可以包括一个或多个离合器102。例如，根据一个实施例，传动装置100可以包括输入离合器L、R、R；速度离合器S1、S2、S3和S4；和档位离合器R1、R2和R3。
[0022] 图2图示了离合器102。离合器102可以包括离合器鼓104、一个或多个离合器盘106和一个或多个离合器板108。离合器盘106和离合器板108可以交替，以形成离合器单元110。离合器盘106和离合器板108可以是金属板或钢片。离合器盘106可以包括位于盘106的一侧或两侧上的摩擦材料120。离合器盘106可以包括位于内径部处的花键112，以与接合的毂或齿轮上的对应的花键或齿轮接合。离合器板108可以包括位于外径部处的花键114，以与离合器鼓104中的对应花键接合。当离合器102被接合或部分地接合时，流体流过摩擦材料120中的沟槽图案，以冷却摩擦材料120。当离合器102被脱离接合时，在离合器盘106和离合器板108之间具有相对运动。该相对运动在离合器盘106和流体之间产生阻力或摩擦，该阻力或摩擦可以被摩擦材料120中的沟槽图案减少或最小化。
[0023] 图3和3A图示摩擦盘106，如离合器或制动盘。该摩擦盘可以包括位于盘的一侧或两侧上的摩擦材料120。摩擦材料120可以是各种不同的摩擦材料，包括但不限于，相对较软的摩擦材料。摩擦材料120具有内径部122、外径部124和宽度126。摩擦材料120可以包括多个第一沟槽130和多个第二沟槽140。所述多个第一沟槽130可以包括在摩擦材料120的
表面或面121上延伸的任何沟槽图案，其中该沟槽图案形成从摩擦材料120的内径部122延伸到外径部124的一个或多个通道。所述多个第一沟槽130可以包括格状图案。所述多个第一沟槽130可以包括以直角或其它角度交叉的两组或两套平行沟槽132、134。第一组沟槽132具有第一宽度和第一深度，并且第二组沟槽132具有第二宽度和第二深度。第一宽度和第二宽度可以是大致相同的或者不同的，并且第一深度和第二深度可以是大致相同的或者不同的。可替换地，所述多个第一沟槽130可以包括组合形图案，其中沟槽在径向方向上从内径部122延伸到外径部124，例如如图4所示。所述多个第一沟槽130可以被压印或压纹在摩擦材料120的表面121中。与切割沟槽相比，压印或压纹沟槽可以减少阻力，减少阻力降低了能量损耗并且增加了效率。

[0024] 所述多个第二沟槽140可以包括在径向方向上从摩擦材料120的内径部122朝外径部124延伸的径向沟槽，如图3和3A所示。所述多个第二沟槽140可以与摩擦材料120的内径部122相交并且延伸一长度142，长度142小于摩擦材料120的宽度126。所述多个第二沟槽140可以在外径部124之前终结或终止。所述多个第二沟槽140都可以具有相同长度或者可以具有不同的长度。所述多个第二沟槽140的长度142可以在摩擦材料120的宽度126的10%～90%、20%～90%、30%～90%、40%～90%、45%～85%、50%～80%、55%～75%、60%～70%或60%～65%的范围内延伸。所述多个第二沟槽140沿着每个沟槽的长度可以具有大致均一的或恒定的宽度144。所述多个第二沟槽140可以比所述多个第一沟槽130更宽。

[0025] 所述多个第二沟槽140可以以相对于径向方向的角度148从摩擦材料120的内径部122朝外径部124延伸，例如如图4所示。相对于径向方向的角度148可以是在径向线116的任意一侧的，朝向或远离离合器或制动盘106的转动方向的，从0°到90°的任何角度或角度的范围。相对于径向方向或径向线116的角度148可以包括从0°到90°的一个或多个范围。角度148可以大于或等于1°、2°、5°或10°。可替换地，所述多个第二沟槽140可以以在径向方向或径向线116的1°、2°、5°或10°内的角度148在径向方向上延伸。多个第一沟槽130和多个第二沟槽140的任何组合可以被使用。

[0026] 所述多个第一沟槽130和所述多个第二沟槽140相互连接或连通，使得流体可以在多个沟槽130、140之间流动。例如，流体可以在摩擦材料120的内径部122处或附近流进多个第一沟槽130或多个第二沟槽140中。流体可以从前一个第一沟槽130流进多个第二沟槽140中，或流体可以从前摩擦材料120的外径部124在多个第一沟槽130中继续流动。流体可以从多个第二沟槽140朝摩擦材料120的外径部124流进多个第一沟槽130中。流体可以在摩擦材料120的外径部124处或附近从多个第一沟槽130离开摩擦材料120的表面121或面。多个第二沟槽140中包含多个第一沟槽130增加通过沟槽的流体流量，这增加了摩擦材料120的能量容量。径向沟槽140的长度、宽度、深度和数量可以改变以调节通过沟槽的流体的体积，该体积影响摩擦材料120的能量容量。增加流体流量增加摩擦材料120的能量容量；并且减小流体流量减少摩擦材料120的能量容量。

[0027] 图5图示了离合器或制动盘106的剖视图。摩擦材料120可以位于盘106的一侧或两侧上。摩擦材料120中的多个第一沟槽130可以具有深度136，摩擦材料120中的多个第二沟槽140可以具有深度146。多个第一沟槽130的深度136可以是恒定的或均一的。摩擦材料120中的多个第二沟槽140的深度146可以是恒定的或均一的。多个第二沟槽140的深度146可以大于多个第一沟槽130的深度136。多个第二沟槽140的深度146可以延伸通过
摩擦材料120的厚度128，以到达离合器或制动盘106。在本实施例中，多个第二沟槽140中的流体接触离合器或制动盘106，从而增加热量在流体和离合器或制动盘106之间的传输。多个第二沟槽140的深度146可以沿着沟槽的长度142改变。多个第二沟槽140的深度146可以
沿着长度142倾斜或倾斜，使得在沟槽的一个端部处的深度146与另一个端部相比更浅。当
离合器或制动器由于多个第二沟槽140中的流体量而分离或脱离按合时，多个第二沟槽140
中的流体可以提供分离力。

图6图示了根据一个实施例的用于将沟槽定位在用于离合器或制动盘的摩擦材料
中的方法的流程图，可以在本文中描述并且在多个图中图示的一个或多个实施例中执行该
方法。在步骤200处，方法开始。

在步骤202处，由摩擦材料的板材冲压具有内径部122和外径部124的环。

在步骤204处，用诸如胶的粘合剂浸渍摩擦材料120的环。

在步骤206处，在摩擦材料120的环的内径部122中冲制朝外径部124部分地延伸的
径向沟槽140。径向沟槽140可以延伸通过摩擦材料120的厚度128。径向沟槽140可以具有大
致均一的宽度。

在步骤208处，将摩擦材料120的环结合到金属芯部或盘106。

在步骤210处，在摩擦材料120的表面中压印或压纹沟槽130的图案。沟槽130的图
案在摩擦材料120的表面上延伸并且与径向沟槽140相比可以更浅。

在步骤212处，完成根据一个实施例的将沟槽定位在用于离合器或制动盘的摩擦
材料中的方法。在其它的实施例中，这些步骤或操作中的一个或多个可以被省略、重复或再
排序并且仍然实现期望的结果。

在没有以任何形式限制下文所述的权利要求的范围、说明或应用的情况下，本文
中的公开的示例性实施例中的一个或多个的技术效果是摩擦材料中的减少离合器或制动盘
和流体之间的阻力或摩擦的沟槽图案。本文中的示例性实施例中的一个或多个的另一
技术效果是摩擦材料中的提供较高能量容量的沟槽图案。本文中的示例性实施例中的
一个或多个的另一技术效果是最大化摩擦材料的表面积或面积的沟槽图案。本文中的示例性
实施例中的一个或多个的另一技术效果是摩擦材料中的在盘和板之间提供分离力的
沟槽图案。

本文中使用的术语用于描述特定的实施例或实现方式，并且不旨在限制本发明。
如本文所用，单数形式“a”，“an”和“the”旨在还包括多个形式，除非上下文以其他方式清楚
地指示。将进一步理解，在本说明书中，“具有”、“带有”、“有”、“包括”、“包含”、
“含有”、“等”的术语的任何使用，表示规定特征、整数、步骤、操作、元件和/或构件的存
在，但是不排除一个
多个其它的特征、整数、步骤、操作、元件、构件和/或其组合的存在或附加。

本文中与附图标记一起使用的标记“A”和“B”仅用于在描述设备的多个实现方式
时清楚起见。

本文中讨论的方法、过程或系统中的任一个中的步骤或操作的一个或多个可以被
省略、重复或再排序，并且在本发明的范围中。

尽管上文描述了本发明的示例性实施例，但是这些描述应该不被视为具有限制性
或约束性意义。而是，具有可以在没有脱离随附权利要求的范围的情况下做出的多个变化
和修改。
图1
图3
图3A
图6