(12) STANDARD PATENT (11) Application No. AU 2010310827 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Virtual database system

(51) International Patent Classification(s)
GO6F 7/00 (2006.01)

(21) Application No: 2010310827 (22) Date of Filing: 2010.10.15
(87) WIPO No: WO11/049839

(30) Priority Data

(31) Number (32) Date (33) Country
12/603,541 2009.10.21 us
(43) Publication Date: 2011.04.28

(44) Accepted Journal Date: 2015.02.05

(71) Applicant(s)
Delphix Corp.

(72) Inventor(s)
Zha, Charlie Li;Yueh, Jedidiah

(74) Agent/ Attorney
FB Rice, Level 23 44 Market Street, Sydney, NSW, 2000

(56) Related Art
US 2009/0144224 A1
US 2004/0054648 A1

woO 2011/049839 A1 {00000 YO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

B

7R o
i T
//A)
T

) %5

VA0 00t
(10) International Publication Number

WO 2011/049839 A1

28 April 2011 (28.04.2011)
(51) International Patent Classification:
GO6F 7/00 (2006.01)
(21) International Application Number:
PCT/US2010/052960
(22) International Filing Date:
15 October 2010 (15.10.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/603,541 21 October 2009 (21.10.2009) Us
(71) Applicant (for all designated States except US): DLEL~
PHIX CORP. [US/US]; 960 San Antonio Road, Second
Floor, Palo Alto, CA 94303 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): ZHA, Charlie, Li
[US/US]; Delphix Corp., 960 San Antonio, Second Floor,
Palo Alto, CA 94303 (US). YUEH, Jedidiah [US/US],
Delphix Corp., 960 San Antonio Road, Second Floor,
Palo Alto, CA 94303 (US).
(74) Agents: HULSE, Robert, A. et al.; Fenwick & West

LLP, Silicon Valley Center, 801 California Street, Moun-
tain View, CA 94041 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, I, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: VIRTUAL DATABASE SYSTEM

Admiristration

]
|
i
!
System 240 !
|
!
Production Database ! virtual
Systern 110(b) ! - Daiskese
150(b} e System 130i¢)
i 4
‘_“w\ Database Storage :
—— : System 100 i
160(b) 170(c) !
i — !
i — ! Virtual
: _»] T Dalakase
! 170ib) i System 130(b
160(a) !
Production Database | 1
System 110(a) i !
: Tooia) 17Dia) :
- a,
L e .
| . Virlual
1 ! T~al Datatase
| : Syslem 130(a)
I
; i
i i
i FIG. 1 File Sharing
i Syste 120
; |
i

(57) Abstract: Information from multiplc databascs is retricved and stored on a databasc storage system. Multiple point-in-time
copies are obtained for each database. A point-in-time copy retrieves data changed in the database since the retrieval of a previous
point-in-time copy. A virtual database (VDB) is created by creating a set of files in the data storage system. Each file in the set of
files created for a VDB is linked to the database blocks on the database storage system associated with a point-in-time copy of the
source database. The set of files associated with the VDB are mounted on a database server allowing the database server to read
from and write to the set of files. Workflows based on VDBs allow various usage scenarios hased on databases to be implemented
efficiently, for example, testing and development, backup and recovery, and data warehouse building.

2010310827 21 Jan 2015

VIRTUAL DATABASE SYSTEM
BACKGROUND
{6001} This disclosure relates generally to databases, and in particular to storage efficient
systems for managing databases and lifecycle workflows based on databases.
[6002] Databases store the data that is critical to an organization and thus form an
important part of an organization’s information technology infrastructare. As the information
available in an organization grows, so does the complexity of the infrastructure required to
manage the databases that store the information. The increased complexity of the
infrastructure increases the resources required to manage the databases and the applications
that depend on the databases, These increased costs may include the costs associated with
hardware for managing the databases as well as the costs associated with additional personnel
needed to maintain the hardware, The increased complexity of the infrastructure alse affects
the maintenance operations assoclated with the databases, for example, causing backup and
recovery operations to take significantly longer.
{B063] In a{ypical organization’s infrastructure envivonment, production database servers
run applications that manage the day-to-day transactions of the organization. Changes to
production databases or to applications that depend on the production databases are tested on
copies of the databases to protect the production enviromment. Copies of the prodaction
databases may be required for several stages in the lifecycles of workflows associated with
the production database and applications that depend on the production databases. For
exanple, the stages in the lifecycle of a change incorporated in a production database may
include a development stage, a tuning stage, a testing stage, a guality assurance stage, a
certification stage, a training stage, and a staging stage. Making copies of the production
databases for each stage requires redundant and expensive hardware infrastructure as well as
the fime overhead required to copy the daty, which may take days or weeks. Additional
hardware also requires additional costs associated with physically storing the hardware, such
as flootr space requirements and costs related to power and cooling, Furthermors, redundant
hardware typically causes inefficient use of available resources.
[B304] Lifecycle workflows can be complex and often involve coordination across
multiple teams. Hence, making a database available for a specific purpose. such as for
supporting a particular stage in the lifecyele, may require further processing associated with
the databases. For example, databases often contain critival confidential information, causing
security and integrity to be important considerations in an environment managing databases.
As a result, access permissions reguired for different teams working on different stages are
1

2010310827 21 Jan 2015

often different. For example, data that can be accessed by personnel managing the
production database server is often different from data that can be accessed by & person
working in the testing stage of the lifecyele, This causes further complications related to
administration of permissions across various stages of the lifecyele of any workflow related
tv the databases.
10004a] Any discussion of documents, acts, materials, devices, articles or the like which
has been in.d‘uded in the present specification is not to be taken as an admission that any or all
of these matters form part of the prior art base or were common general knowledge iy the
field relevant to the present disclosure as it existed before the priority date of sach claim of
this application.

SUMMARY
{0805] To address the needs unmet by existing database technologies, the present
disclosure enables virtual databases that efficiently use storage and other computing
resources. Methods of creating a virtual database (VDR read different point-in-time copies
of a source database. A “source database” may include physical copigs of the database in an
enterprise that includes production database, standby database, and any other life cyele
databases. In the disclosure that follows “production database™ and “source database™ are
used interchangeably to mean the same. Multiple database blocks are read from the source
database and stored on a storage systemt. A database block is a vmit of data used by g
database and comprises a specific number of bytes stored in the storage. A database block
can also be referred to as a page. A portion of the database block stores metadata associated
with the database block. Examples of information that may be stored in the metadata of a
database block include information related to the data stored in the database block,
information related o objects of database that the database block is part of, or information
indicating when the data in the database block was updated. The information indicating
when a database block was updated may be available as a relative ordering of the database
blocks based on their time of update. The database blocks retrieved from the source database
and stored on the storage system correspond to different point-in-time copies of the source
database and at least some of the database blocks are associated with multiple point-in-time
copies of the source database, A set of files are created for a virtual datgbase, Each file in
the set of {iles created for a VDB is linked to the datgbase blocks on the storage system
associated with a point-in-time copy of the source database, The set of files associated with

the VIIB are mounted on a database server allowing the database server to read from and

2010310827 21 Jan 2015

write to the set of files. In an enthodiment, a virtual database may be created based on point-
in-thuie copies of another virtual database.

{60D6] In an embodiment, multiple VIXBs can be created based on the database blocks
associated with the same point-in-time copies of the source database. Alternatively, two
VIXBs created may be associated with different point-in-time copy of the source databases.
The database blocks stored on the storage system: may be shared between sets of files
associated with different VDBs, The sharing of database blocks stored on the storage system
may oceur between VIIBs associated with the same point-in-time copy of the source database
or between VD Bs associated with different point-in-time copies of the source database. In an
embodiment, pre-seript operations may be performed before Huking, loading, or provisioning
operations. The pre~script operation allows user specified operations to be executed, for
example, processing information that may not be stored in the source database, Similarly,
post-script operations may be performed after linking, loading, or provisioning operations. A
post-script operation may be assoclated with a pre-seript operation and perform further
processing on the mformation processed in the pre-seript operation.

{6007} in an embodiment, a request can be received from the database server to read the
data stored 10 the VDB, The dais requested is accessed from the database blocks and sent to
the database server in response to the read reguest. A request can be received from the
database server Lo write data to the VDB, A database block associated with a file in the set of
files associated with the VIIB is identified for writing the data sent in the write request. If the
database block identified is also associated with the second VDB, a copy of the database
block is made. The copied database block is linked to the filg and the data in the write
reguest is written to the copied database block. The original database block that was copled
remains associated with the second VDB allowing the second VDB to view data unchanged
by the write operation,

[6007a] The present disclosure provides a method for creating & vintual database system,
the method comprising: receiving different point-in-time copies of a source database, the
source database coniprising a plurality of database blocks; storing on a storage system,
database blocks for g plurality of different point-in- tinte copies of the source database,
wherein at least some of the stored database blocks are associated with multiple point-in-time
copies of the source database; creating a set of files for g virtual database, each file in the set
of files is linked to the database blocks on the storage system associated with a point-in-time
copy of the source database; and mounting the set of files associated with the virtual database
on a database server allowing the database server to read from and write to the set of files,

=
pe

2010310827 21 Jan 2015

[0067b] The present disclosure provides a computer-implemented system for creating a
virtual database, the system comprising: a computer processor; and a computer-readable
storage medinm storing computer program modules configured to execute on the computer
processor, the computer program modules comprising: 4 point-in-time copy manager module
configured to: receive different point-in-time copies of a sowrce database, the source database
comprising a plurality of database blocks; a storage allocation manager module configured to
store on a storage system, database blocks for a plurality of different point-in-time copies of
the source database, wherein at least some of the stored database blocks are associated with
multiple point-in-time copies of the source database; a virtual database manager module
configured to: create a set of files for a vittual datgbase; each file in the set of files linked to
the database blocks on the storage system associated with a point-in-time copy of the source
database; and a file sharing manager module configured to: mount the set of files associated
with the virtual database on & database server allowing the database server to read from and
write o the set of files.

[0087¢] The present disclosure provides a computer program produet having a computer-
readable storage medinm storing computer-executable code for creating a virtual database,
the code comprising: g point-in~time copy manager module configured 10: receive different
point-in-time copies of a source database, the source database comprising a plurslity of
database blocks; a storage allocation manager module configured to: store on a storage
system, database blocks for a plurality of different point-in- time copies of the source
database, wherein at least some of the stored database blocks are associated with multiple
point-in-time copies of the source database; a virtual database manager module configured to;
create a set of files for a virtual database, each file in the set of files linked o the database
blocks on the storage system associated with a point-in- time copy of the source database;
and a file sharing masager module configured to; mount the set of files associated with the
virtual database on a database server allowing the database server to read from and write to
the set of files,

{0874} The present disclosure provides a method for creating a virtual datghase system,
the method comprising; receiving point-in-time copies of a plurality of source databases, each

source database comprising a plurality of database blocks; storing on a storage system,
database blocks for the point-in-time copies of the plurality of source databases, wherein at
least some of the stored database blocks are associated with multiple peint-in-time copies of a
source database from the plurality of source databases; creating a set of files for a virtual
database, the set of files linked vo the database blocks on the storage system associated with

4

2010310827 21 Jan 2015

point-in-time copies of the plurality of source databases; and mounting the set of files

associated with the virtual database on a database server allowing the database server to read
from and write to the set of files.

{008] The features and advantages described in this summary and the following detailed
description are not all-inclusive., Many additional features and advantages will be apparent to

one of ordinary skill in the art in view of the drawings, specification, and claims,

BRIEF DESCRIPTION OF THE DRAWINGS
{0009 FIG. 1 is diagram illustrating how information is copied from a production
database to a database storage system and provisioned as virtual databases using a file sharing
system, in accordance with an embodiment of the disclosure.
[6019] FIG. Za is a diagram showing how o virtual database system may ran a different
version of the database server compared to the version of the database server on the
production database system that is the source of the database being virtualized, in accordance
with an embodiment of the disclosure.
{0011} FIG, 2b is a diagram showing bow a virinal database system may run using a
database server executing on an operating system that is different compared to the operating
system executing the database server of the production database system that is the sowrce of
the database being virtualized, in accordance with an embodiment of the disclosure.
{00121 FIG. 3 fs a schematic diagram of the architecture of a system that makes storage
efficient copies of information from a production database and provisions virtual databases,
in accordance with an embodiment of the disclosure.
{0013] FIG. 4 Hlustrates the inferaction between components of a database storage system
and the components of a production database system for making a storage efficient copy of
the production database on the database storage system, in accordance with an embodiment
of the disclosure,
[0014] FIG. 5 is a flowchart of a process for processing a strearn of data received by the
database storage system from a production database system to save the data in g storage
efficient way, in accordance with an embodiment of the disclosure.
{30151 FIG. 6 is a flowchart of a process for copying the transaction log files from a
production database syster to the database storage s

vstem to enable provisioning of virtual

S
L

databases at a given peint in time, in accordance with an embodiment of the disclosure,

L2t

2010310827 21 Jan 2015

{6016} FIG. 7 is a diagram of the files used for storing the transaction logs in the database
storage systern compared with the production database system, in accordance with an
embodiment of the disclosure.

[0017] FIG. § i3 a diagraw iHustrating how data for a database is maintained at different
points in time in the database storage systen, in acvordance with an embodiment of the
disclosare,

[0018] FIG. 9 is a flowchart of a process for creating a virtual database at a given point in
fime, in accordance with an embodiment of the disclosure,

[0019] FIG. 10 illustrates the creation of a read-write copy of a database at & given point
in time to provision a virtual database, in accordance with an embodiment of the disclosure.
{0026] FIG. 11 illustrates the crestion of a read-write copy of @ database at a different
point in time compared to FIG. 10 to provision a virtual database, in accordance with an
embodiment of the disclosure,

(0021} FIG, 12 tHustrates how database blocks stored on the storage system data siore
may be shared by file structures created for different VDRBs, in accordance with an
embodiment of the disclosure,

{8022} FIG. 13 tllustrates the ereation af a read-write copy of a database for provisioning
a virtual database based on transaction logs copied from the preduction database system, in
accordance with an embodiment of the disclosure,

(60231 FIG. 14 tlustrates the life cyeles of a database in a worktlow for making changes
to the database or to applications that depend on the database, in one example environment.
{80241 FIG. 15 illustrates a system environment for implementing a workflow for testing
and development of program code related to databases and database applications using
conventional methods.

[8025] FIG, 16 tlustrates a system environment for implementing a workflow for testing
and development of program code related to databases and datgbase applications using
VDBs, in accordance with an embodiment of the disclosure.

1026} FIG. 17 illustrates a system environment for implementing a workflow for a
multi-site testing and development of program code related to databases and database
applications using VDB, in accordance with an embodiment of the disclosure,

{60277 FIG. 18a illustrates a system environment for implementing a workflaw for

backup and recovery of databases using conventional methods.

2010310827 21 Jan 2015

[6028] FIG. 18b llustrates o system environment for implementing a workflow for
backup and recovery of daiabases using VDBs, in accordance with an embodiment of the
disclosure.

{80291 FIG. 19 illustrates a system environment for implementing a workflow for a
generie scenario that requires copying of information in a database from one machine to
another machine using conventional methods.

{80301 FIG. 20 illustrates a system euvironment for implementing a workflow based on

VDEBs for a generic scenario that requires copying of information in & database from one

machineg to another maching, in accordance with an embodiment of the disclosurs.

03311 FIG. 21 illustrates a system environment for implementing & workflow based on
VIBs for & scenario that requires copying of information in a database from one machine to
another machine, 1n accordance with another embodiment of the disclosuse.

{0032] FIG. 22 illustrates a systema environment for implementing a work{low based on
VDBs for a generit scenario that reguires copying of information in a database from a
rmachine different from the production database system to another machine, in accordance
with an embodiment of the disclosure,

{B033] FIG. 23 illustrates a system environment for implementing a workflow fora
scenatio for creating data warchouse and data marts from a database using conventional
methods.

13034} FI1G, 24 illustrates a system environment based on VDBs for implementing a
workflow for a scenario for creating data warchouse and data marts from a database, in
accordanee with an embodiment of the disclosure.

[0035] FIG. 25 {llustrates an embodiment of a compuiing machine that can read
instructions from a machine-readable medium and execute the instructions in a processor or
controller,

[B036] The figures depict various embodiments of the present disclosure for purposes of
iltustration only. One skilled in the art will readily recognize from the following discussion
that alternative embodiments of the structures and methods ilbustrated herein may be
employed without departing from the principles of the disclosure described herein,

DETAILED DESCRIPTION

Virtual Database Svstems

[8G37] In certain embodiments of the disclosure, one or more virtual databases are
created based on the state of a production database or a virtual database at a particular point
in time, and the virtual databases can then be individually accessed and medificd as desived.

&

2010310827 21 Jan 2015

A drtabase comprises data stored in a computer for use by computer irplemented
applications. A database server s a compuier program that can interact with the database aud
provides database services, for example, access to the data stored in the database. Database
servers include commercially available programs, for example, database servers included
with database management systems provided by ORACLE, SYBASE, MICROSOFT SQL
SERVER, IBM's DB2, MYSQL, and the like. A database may be implemented using a
database model, for example, a relational mode, object model, hierarchical mode or network
madel. The term “production database™ is used In particular examples to llustrate a vseful
appligation of the technology; however, it can be appreciated that the techniques disclosed
can be used for any database, regardless of whether the database is nsed as a production
database. Furthermore, embodiments can create a virtual database using storage level
snapshots of production databases or clones of production databases instead of a Hve
production database, The virtnal databases are “virtual” in the sense that the physical
implementation of the database files is decoupled from the logical use of the database files by
a database server,

{0838} in one embodinent, information from the production database is copled to a
storage system at various times, such as periodieally. This enables reconstruction of the
database files associated with the production database for these different points in time. The
information may be managed in the storage systent in an efficient manner so that copies of
information are made only if necessary, For example, if'a portion of the database is
unchanged from a version that was previously copled, that enchanged portion need not be

copied. A virtual database created for a point in time is stored as a set of files that contain the

6b

WO 2011/049839 PCT/US2010/052960

information of thc databasc as availablc at that point in time. Each filc includces a sct of
database blocks and the data structures for referring to the database blocks. In some
embodiments, the database blocks may be compressed in order to store them efficiently. In
some embodiments, the database blocks may be stored in the storage system data store 390 in
an encrypted form to increase security of stored data. A virtual database may be created on a
databasc scrver by creating the databasc files for the production databasc corresponding to
the state of the production database at a previous point in time, as required for the database
server. The files corresponding to the virtual database are made available to the database
server using a file sharing mechanism, which links the virtual database to the appropriate
database blocks stored on the storage system. The process of making the virtual database
available to a database server is called “provisioning” the virtual database. In some
embodiments, provisioning the virtual database includes managing the process of creating a
running database server based on virtual database. Multiple VDBs can be provisioned based
on the state of the production database at the same point in time. On the other hand, different
VDBs can be based on different point in time state of the same production database or
different production databases. In some embodiments, provisioned databases are monitored
for health and user actions. The database storage system 100 is notified of these events. The
databasc storagc system 100 handles these cvents bascd on cither built-in or uscr specified
rules. For example, if a user action affects availability of a virtual database, a warmning
message can be displayed on monitoring console or transmitted to a user via email. The
database server on which a virtual database has been provisioned can then read from and
write to the files stored on the storage system. A database block may be shared between
diffcrent files, cach file associated with a different VDB. In particular, a databasc block is
shared if the corresponding virtual database systems 130 are only reading the information in
the database block and not writing to the database block. In one embodiment, the virtual
database manager 375 makes copies of the database blocks only if necessary. For example, a
particular database block may be shared by multiple VDBs that read from the same database
block. But if one of virtual database systems 130 attempts to write to the database block, a
separate copy of the database block is made because the writing operation causes that
databasc block to be diffcrent for the VDB corrcsponding to that virtual database systems 130
than it is for the other VDBs.

[0039] FIG. 1 illustrates one embodiment for how information may be copied from a
production database to a database storage system and provisioned as virtual databases using a
file sharing system. The production database systems 110 manage data for an organization.

7

WO 2011/049839 PCT/US2010/052960

In some cmbodiments information may be copicd from storage level snapshots of production
databases or clones of production databases instead of a live production database. The
database storage system 100 retrieves data associated with databases from one or more
production database systems 110 and stores the data in an efficient manner, further described
below. A database administrator user interface 140 allows a database administrator to
perform various actions supported by the databasc storage system 100.

[0040] In response to a request from the administrator system 140, or based on a
predefined schedule, the database storage system 100 may send a request 150 for data to a
production database system 110. The production database system 110 responds by sending
information stored in the production database as a stream of data 160. The request 150 is sent
periodically and the production database system 110 responds by sending information
representing changes of data stored in the production database since the last response 160
sent by the production database system 110. The database storage system 100 receives the
data 160 sent by the production database system 110 and stores the data. The database
storage system 100 may analyze the data 160 received to determine whether to store the
information or skip the information if the information is not useful for reconstructing the
database at previous time points. The database storage system 100 stores the information
cfficicntly, for cxample, by keeping versions of databasc blocks that have changed and
reusing database blocks that have not changed. In an embodiment, database storage system
100 employs a hierarchical caching system where high speed solid-state drive (SSD) or
equivalent storage devices are configured for caching read operations and for persisting logs
for writing operations to magnetic disks.

[0041] To crecate a virtual databasc, the databasc storage system 100 crcatcs files that
represent the information corresponding to the production database system 110 at a given
point in time. The database storage system 100 exposes 170 the corresponding files to a
virtual database system 130 using a file sharing system 120. The virtual database system 130
runs a database server that can operate with the files exposed 170 by the database storage
system 100. Hence, a virtual copy of the production database is created for the virtual
database system 130 for a given point in time in a storage efficient manner.

[0042] FIG. 2 shows that a virtual databasc systcm 130 may run a diffcrent version of the
database server and/or a different operating system compared to the production database
system 110 that is the source of the database being virtualized. The virtual database files
stored in the database storage system 100 are appropriately modified so that the virtual
database system 130 can operate with the files even though the database server 230 has a

8

WO 2011/049839 PCT/US2010/052960

diffcrent version comparcd to the database scrver 205 and/or a diffcrent operating system 240
compared to operating system 210. As shown in FIG. 2(a) the database server 230 running
on the virtual database system 130 has version Vy which is different from the version Vx of
the database server 205 running on the production database system 110. Similarly, as shown
in FIG. 2(b) the operating system 240 running on the virtual database system 130 is OSy
which is diffcrent the operating system OSx running on the production databasc system 110.
In one embodiment, server 230 and 205 may run dissimilar database software programs. This
provides the ability to try different operating systems or database server versions for running
the database. In the case of database and/or application upgrade, patching, or migration, this
ability makes it easy to test the operation without any effect on production system.
Operations can be then certified in an isolated environment prior to deployment into a
production system. In some embodiments, the database storage system 100 may be executed
on a virtual machine provided by platform virtualization software or server virtualization
software that allows multiple operating systems to run on a host computer concurrently.

System Architecture

[0043] FIG. 3 shows a high level block diagram illustrating a system environment
suitable for making storage efficient copies of information from a production database and
provisioning onc or morc virtual databascs using that information. The systcm cnvironment
comprises on¢ or more production database systems 110, a database storage system 100, an
administration system 140, and one or more virtual database systems 130. Systems shown in
FIG. 3 can communicate with cach other if necessary via a network.

[0044] A production database system 110 is typically used by an organization for
maintaining its daily transactions. For cxamplc, an onlinc bookstorc may savc all the
ongoing transactions related to book purchases, book returns, or inventory control in a
production system 110. The production system 110 includes a database server 345, a
production DB data store 350, a vendor interface module 335, and a production system
library 385. In alternative configurations, different and/or additional modules can be
included in a production database system 110.

10045] The production DB data store 350 stores data associated with a database that may
represent for cxample, information representing daily transactions of an cnterprisce. The
database server 345 is a computer program that provides database services and application
programming interfaces (APIs) for managing data stored on the production DB data store
350. The production system library 385 provides APIs useful for extracting information from
the production database system 110. The vendor interface module 335 represents APIs

9

WO 2011/049839 PCT/US2010/052960

provided by a vendor for customizing functionality provided by the database scrver 345, for
example, APIs to retrieve database blocks that changed since a previous time point. An
example of a vendor interface module is the program code of a database server provided by
vendor ORACLE that implements RMAN APIs. Database servers provided by other
vendors, for example, MICROSOFT’s SQL SERVER or IBM’s DB2 have similar APIs. In
onc cmbodiment, the vendor interface module 335 mounts the production DB data storc 350
of the production database system 110 on the database storage system 100 using a file sharing
system similar to the file sharing system 120. Mounting the production DB data store 350 on
the database storage system 100 allows transfer of information stored on the production
database system 110 to the database storage system 100.

[0046] The production system library 385 may be implemented in different ways
depending on the requirements of the vendor interface module 335. In an embodiment, the
vendor interface module 335 loads the production system library 385 in order to call back
functions implemented in the production system library 385. For example, the production
system library 385 may be a shared object file with a “.s0” or a “.DLL” file extension that
contains exccutable program code that can be called by a C/C++ executable program or by a
JAVA program that uses the JAVA NATIVE INTERFACE for interaction with binary code
gencrated by C/C++ programs. Alternatively, the production system library 385 may be
implemented using the JAVA programming language and installed in the production database
system 110 as a file with “jar” extension. The java program requires a JAVA VIRTUAL
MACHINE running on the production database system 110 for execution. In another
embodiment, a part of the production system library 385 may be implemented as an
cxccutable “.s0” sharcd object file and another part of the production system library 385 may
be implemented as a JAV A program installed as a “.jar” file.

[0047] The vendor interface module 335 responds to requests from database storage
system 100, and in response to the requests, collects requested information from the
production DB data store 350 and returns the collected information to the database storage
system 100. The vendor interface module 335 may send request to the database server 345
for retrieving information from the production DB data store 350. The vendor interface
modulc 335 loads the program codc in the production system library 385 and invokes it to
transmit the stream of data for to the database storage system 100 for further processing. In
some embodiments the vendor interface module 335 may directly interact with the production
DB data store 350 instead of sending a request to the database server 345 to retrieve the
necessary database blocks. In other embodiments, the vendor interface module 335 may

10

WO 2011/049839 PCT/US2010/052960

retricve the neccssary databasc blocks from storage 1cvel snapshots of production databascs
or clones of production databases instead of a live production database.

[0048] The database storage system 100 retrieves information available in the production
database systems 110 and stores it. The information retrieved includes database blocks
comprising data stored in the database, transaction log information, metadata information
rclated to the databasc, information related to users of the databasc and the like. The
information retrieved may also include configuration files associated with the databases. For
example, databases may use vendor specific configuration files to specify various
configuration parameters including initialization parameters associated with the databases.
Copying the configuration files allows a VDB to be created with configuration parameters
similar to the source production database. In some embodiments, the configuration
parameters files may be modified by a database administrator using the user interface 395 to
customize the VDB configuration for a specific usage scenario. For example, the production
database may be accessed by a database server 345 using a particular cache size whereas the
corresponding VDB may be accessed by a database server 360 using a different cache size.
[0049] The information retrieved may also include information associated with
applications using the database, for example, an enterprise resource planning (ERP)
application may bc using thc databasc and may havc data specific to the ERP application.
Retrieving the ERP application data allows a similar ERP application to be executed with a
VDB created based on the production database system. This is beneficial for usage scenarios
where a VDB is created for an environment similar to the production environment, for
example, for testing and development. A database administrator can use the user interface
395 to specify logic for copying the information that is specific to a production cnvironment
as well as logic for appropriately installing the information with a VDB for use by a virtual
database system 130.

[0050] In some embodiments, information regarding users of the production database, for
example, the users with administrative privileges may be obtained by using specific APIs or
by running specific scripts on the production database. The information about the users can
be used to facilitate life cycle management of VDBs in the system. In an embodiment, a
databasc administrator is allowed to usc the uscr interface 395 in order to specify information
regarding user accounts to be created and their access permissions. For example, if the VDB
is created for testing purposes, test users may be created on the VDB for test organization
whereas if the VDB is created as a standby for the production database, only users with
production support roles should have access. In some embodiments, access permission may

11

WO 2011/049839 PCT/US2010/052960

specify if a user can provision a privilcged VDB. Onc cxamplc of privileged VDB is a VDB
with full access to non-public information (information that may not be accessible to non-
privileged users), for example, social security numbers or credit card information. The
corresponding un-privileged VDB is a VDB with non-public information masked or
scrambled. Another example of privileged VDB is a VDB with sensitive data accessible
transparently. The corresponding un-privileged VDB is a VDB with scnsitive information
encrypted.

[0051] In some embodiments, access privileges are simplified to three levels:
administrator, owner, and auditor. Administrator has full control of all managed objects
including databases and hosts. The control available to an administrator included policy
management. Owner has access to use of resources, for example, an owner can provision a
VDB. Auditor can view logs but may not have rights to consume system resources.

[0052] The data stored in the storage system data store 390 can be exposed to a virtual
database system 130 allowing the virtual database system 130 to treat the data as a copy of
the production database stored in the production database system 110. The database storage
system 100 includes a point-in-time copy manager 310, a transaction log manager 320, a
interface manager 330, a system configuration manager 315, a storage allocation manager
365, a filc sharing manager 370, a virtual databasc managcer 375, and a storage systcm data
store 390. In alternative configurations, different and/or additional modules can be included
in the database storage system 100.

[0053] The point-in-time copy manager 310 interacts with the production database
system 110 by sending a request to the vendor interface module 335 to retrieve information
representing a point-in-time copy (also referred to as a “PIT copy™) of a databasc stored in the
production DB data store 350. The point-in-time copy manager 310 stores the data obtained
from the production database system 110 in the storage system data store 390. The data
retrieved by the point-in-time copy manager 310 corresponds to database blocks (or pages) of
the database being copied from the production DB data store 350. After a first PIT copy
request to retrieve information production DB data store 350, a subsequent PIT copy request
may need to retrieve only the data that changed in the database since the previous request.
The data collected in the first request can be combined with the data collected in a sccond
request to reconstruct a copy of the database corresponding to a point in time at which the
data was retrieved from the production DB data store 350 for the second request.

[0054] The transaction log manager 320 sends request to the production database system
110 for retrieving portions of the transaction logs stored in the production database system

12

WO 2011/049839 PCT/US2010/052960

110. In somc cmbodiments, the request from the transaction log manager 320 is sent to the
vendor interface module 335. The data obtained by the transaction log manager 320 from the
vendor interface module 3335 is stored in the storage system data store 390. In one
embodiment, a request for transaction logs retrieves only the changes in the transaction logs
in the production database system 110 since a previous request for the transaction logs was
proccsscd. The databasc blocks retricved by a point in time copy manager 310 combined
with the transaction logs retrieved by the transaction log manager 320 can be used to
reconstruct a copy of a database in the production system 110 corresponding to times in the
past in between the times as which point-in-time copies are made.

[0055] The storage allocation manager 365 provides the functionality of saving data
retrieved from the production database system 110. For example, the point-in-time copy
manager 310 may call APIs of storage allocation manager to save blocks of data retrieved
from the production database system 110. The storage allocation manager 365 keeps track of
the various versions of cach block of data that may be obtained from the production database
system 110. For a given time point, the storage allocation manager 365 can be requested to
provide the latest version of a block of data obtained before the given time point. The storage
allocation manager 365 can also be used for making copies of blocks of data. 1f a block of
data is copicd for rcad-only purposcs, the storage allocation manager 365 allocatcs only
sufficient storage to keep a pointer of reference to the exiting block of data. However, if an
attempt to write to the copied block of data is made, the storage allocation manager 365
allocates sufficient storage to make an actual copy of the block of data to avoid updating the
original block of data.

[0056] The filc sharing manager 370 allows filcs stored in the storage system data storce
390 to be shared across computers that may be connected with the database storage system
100 over the network. The file sharing manager 370 uses the file sharing system 120 for
sharing files. An example of a system for sharing files is a network file system (NFS). A
system for sharing files may utilize fiber channel Storage area networks (FC-SAN) or
network attached storage (NAS) or combinations and variations thereof. The system for
sharing files may be based on small computer system interface (SCSI) protocol, internet
small computer systcm interface (iISCSI) protocol, fiber channcl protocols or other similar
and related protocols. In some embodiments, the database storage system 100 may utilize a
logical volume manager. Sharing a file stored in the storage system data store 390 using the
file sharing manager 370 allows a remote computer, for example, the virtual database systems
130 to access the data in the shared file. A remote system may be able to read and write

13

WO 2011/049839 PCT/US2010/052960

from/to the filc shared by the storage systecm data storc 390. In an ecmbodiment, files arc
organized in a format emulating a given file system disk layout, such as the file system of
WINDOWS operating system called NTFS or the UNIX file system (UFS).
[0057] The virtual database manager 375 receives requests for creation of a virtual
database for a virtual database system 130. The request for creation of a virtual database may
be sent by a databasc administrator using the administration system 140 and identifics a
production database system 110, a virtual database system 130, and includes a past point-in-
time corresponding to which a virtual database needs to be created. The virtual database
manager 375 creates the necessary files corresponding to the virtual database being created
and shares the files with the virtual database system 130. The database administrator for a
virtual database system 130 may be different from a database administrator for the production
database system 110.
[0058] The interface manager 330 renders for display information necessary for display
using the administration system 140. A database administrator user can see information
available in the storage system data store 390 as well as take actions executed by the database
storage system. For example, a database administrator can see the different production
databases stored in the storage system data store 390 obtained from different production
databasc systems 110. As another cxample, the databasc administrator can request the
database storage system 100 to make a PI'T copy of a database stored on a production
database system 110 at a particular point-in-time. In an embodiment, the interface manager
330 allows external applications to access information of the database storage system 100.
For example, the database storage system may provide application programming interface
(API) to allow third party vendors to write applications bascd on databasc storage systcm
100. In an embodiment, the interface manager 330 provides web services that allow web
applications to access information available in the database storage system 100. For
example, the database storage system can be part of a cloud computing environment. A third
party vendor can use web services to implement various workflow scenarios based on VDB,
for example the various workflow scenarios described herein. This allows automation of the
workflow scenarios based on VDBs.
[0059] The systecm configuration manager 315 allows a databasc administrator using the
administration system 140 to setup or change the configuration of the database storage
system 100. For example, when the database storage system is being initially setup or at a
later stage, the system configuration manager 315 allows a database administrator user or an
agent to specify production database systems 110 and virtual database systems 130 to connect
14

WO 2011/049839 PCT/US2010/052960

to. Thc system configuration manager 315 also allows a uscr with appropriatc rolcs and
privileges to sctup policies specifying the schedule with which the point-in-time copy
manager 310 retrieves PIT copies of databases in the production database systems 110 as well
as the frequency and the times at which the transaction log manager 320 retrieves updates to
online transaction logs from the production database systems 110. In an embodiment, a
schedule can specify the frequency and times during the day for the PIT and log retricval
actions or it could be an a periodic schedule specifying the calendar days when the same
action should take place.
[0060] In an embodiment, policies can be defined by a database administrator and stored
in the system configuration manager 315 for various operations associated with the loading of
point-in-time copies from production database systems 110, loading of transaction logs from
the production database systems 110, purging of information from the database storage
system 100 including point-in-time copies of databases and transaction log information, and
provisioning of virtual database systems. A policy specifies rules for executing the specific
operation. For example, a policy may specify the operation to be executed based on a
predetermined schedule. A policy may determine when to purge PIT copies stored in the
database storage system 100 based on number of PIT copies that have been accumulated for a
production databasc. A policy may mcasurc storagc availability to determinc when to purge
information. For example, if the amount of storage available reaches below a threshold
level, old PIT copies of selected databases may be purged. The policy may also specify
priority of production databases to be used before purging information, for example, low
priority database information is purged before purging high-priority database information. In
a particular workflow scenario, a policy may dctermine when to obtain new information from
a production database and automatically update VDB information and provision the updated
VDB based on the new information.
[0061] A virtual database system 130 includes a database server 360 and a VDB system
library 380. The database server 360 is similar in functionality to the database server 345 and
is a computer program that provides database services and application programming
interfaces (APls) for managing data stored on a data store 350. The data managed by the
databasc scrver 360 may be stored on the storage system data store 390 that is sharcd by the
database storage system 100 using a file sharing system 120. The VDB system library 380
contains program code for processing requests sent by the database storage system 100. In
alternative configurations, different and/or additional modules can be included in a virtual
database system 130.

15

WO 2011/049839 PCT/US2010/052960

[0062] FIG. 4 shows the intcractions between the databasc storage system 100 and the
production database system 110 to make point-in-time copies of the data stored in a database
in the production database system 110. The point-in-time copy manager 310 sends 405 a
request to the vendor interface module 335 of the production database system 110 for
retrieving data associated with a database of the production database system 110. In an
cmbodiment, the request 405 is sent using the sccure shell or SSH network protocol that
allows data to be interchanged between two networked devices. The request 405 may be sent
in response to a request from the administration system 140 or may be configured as a
periodically scheduled action. For example, the database storage system 100 may be
configured to send 405 a request to the production database system 110 at a predetermined
time every day. The system environment illustrated in FIG. 4 does not require a process
dedicated with the database storage system 100 to be constantly executed on the production
database system 480. This is beneficial to the production database system 480 since a
process dedicated to sending information to the database storage system 100 may consume
significant resources of the production system and may not be desirable. Hence, the database
storage system sends the requests 405, 450 whenever it needs information from the
production database system 480.

[0063] The production databasc system 480 scnds the requested data to the point-in-time
copy manager 310. If the request 405 is the first request for data associated with a database
stored on the production database system 110, the production database system 480 sends the
data of the entire database in reply. In response to subsequent requests 405, the production
database system 480 sends only the data of the database blocks that changed since the last
time a reply was sent 430 in responsc to a previous request 405.

[0064] In an embodiment, the vendor interface module 335 sends 410 a request to the
database server 345 to collect the information required for the reply 430. The vendor
interface module 335 also loads the program code available in the production system library
385. The database server sends 415 a request for the necessary data to the data store 350 and
receives the requested data in response 420. The database server 345 sends 425 the requested
data to the vendor interface module 335 in response to the request 410. The vendor interface
module 335 invokes 470 the production system library 385 to package the data reccived 425
from the database server into a format that can be processed by the point-in-time copy
manager 310. The production system library 385 sends 430 the requested data stream that is
formatted appropriately to the point-in-time copy manager 310. The production system
library 385 sends 430 the information sent 425 by the database server to the point-in-time

16

WO 2011/049839 PCT/US2010/052960

copy manager 310. The vendor interface module 335 in conjunction with the program codc
of the production system library 385 builds the data stream for processing by the database
storage system 100.
[0065] In other embodiments, the vendor interface module 335 in conjunction with the
production system library 385 obtains the required data directly from the data store 350 and
scnds 430 the data to the point-in-time copy manager 310. Typically, these cmbodiments arc
beneficial when the database server 345 does support appropriate APIs for extracting the
necessary information. In these embodiments, the production system library 385 includes
code to analyze the structures of the files of the database stored in the data store 350 and also
includes code to process metadata associated with database blocks stored in the data store 350
to find database blocks that changed since a previous time point.
[0066] The reply 430 is a stream of data comprising database blocks that may be stored in
multiple files in the data store 350. The stream of data corresponding to the reply 430 may
interleave information associated with the different database blocks, for example, database
blocks obtained from different files may be interleaved. Hence, the program code of the
point-in-time copy manager 310 processes the data stream without assuming any particular
order of the database blocks received in the data stream. These database blocks may also
belong to different databascs.
[0067] FIG. 5 shows a flowchart of the process illustrating the processing of a stream of
data received from a production database system 110 by the point-in-time copy manager 310.
The point-in-time copy manager 310 receives 510 the stream of data including blocks
changed since the last PIT copy. The point-in-time copy manager 310 processes the stream
of data to identify 515 databasc blocks in the strcam of data. Each databasc block includces
metadata that contains information regarding the database block, for example, database object
this block belongs to, the size of the database block, the file from which the database block
was obtained, the offset within the file where the database block was stored, and a log
sequence number that specifies the order in which database blocks are updated in the
database in the production database system 110.
10068] The point-in-time copy manager 310 analyzes 520 the metadata for each database
block to determincg if the databasc block needs to be stored in the storage system data storc
390 or it can be eliminated. For example, the log sequence number in the metadata of the
database block may indicate that even though the production system library 385 sent 430 the
database block along with the data stream, the database block was never updated since the
last reply 430 received from the production system library 385. Hence, the block need not be
17

WO 2011/049839 PCT/US2010/052960

storcd in the storage system data storc 390 and can be skipped. Other cxamplces of databasc
blocks that need not be stored include temporary database blocks, session specific database
blocks, and empty database blocks that have no data written in them. Another example of
database blocks that need not be stored includes database blocks that are not meaningful or
inaccessible to database software. Another example includes database blocks that have been
marked deleted, empticd, or invalidated by databasc softwarc.

[0069] In the above embodiment, the information sent 430 by the production database
system 480 included unnecessary blocks that were eliminated after the data stream was
received by the database storage system 100. In other embodiment, some or all of the
unnecessary blocks may be eliminated while the data stream is built by the production system
library 385. In this embodiment, the data stream sent 430 to the database storage system 100
by the production database system 480 is reduced in size resulting in efficient communication
between the two systems.

[0070] By skipping database blocks that do not need to be stored as well as by using
compression of the stored database blocks, the database storage system may achieve
significant savings in terms of storage required for the database files compared to the
production database system for the data corresponding to the same database. For example,
the storage spacc occupiced by the data corresponding to a production databasc in the storage
system data store 390 may be a quarter of the space occupied by the production database in
the production DB data store 350. Note that the entire information corresponding to the
production database system is obtained by the first PIT copy. Subsequent PIT copies obtain
only the changed information in the production DB and can be much smaller than the
information containcd in the first PIT copy.

[0071] If the point-in-time copy manager 310 determines 525 that a database block in the
data stream can be skipped, the point-in-time copy manager 310 proceeds to identify 515 the
next database block for processing. In an embodiment, the point-in-time copy manager 310
uses the database block size available in the stream metadata to identify database block
boundaries in the stream of data. Each block is then processed accordingly.

10072] If the point-in-time copy manager 310 determines that the database block in the
data strcam nccds to be stored in the data storage system data storc 390, the point-in-time
copy manager 310 analyzes the database block metadata to map 530 the database block to a
database file and a location within the file. The point-in-time copy manager 310 sends 435 a
request to the storage allocation manager 365 to save 535 the database block. The storage
allocation manager 365 stores 440 the database block in the appropriate file associated with

18

WO 2011/049839 PCT/US2010/052960

databasc block in thc storage systcm data storc 390. The point-in-time copy manager 310
checks 540 if the data stream is processed completely. If there is unprocessed data remaining
in the data stream, the point-in-time copy manager 310 proceeds to identify the next block of
data for processing.

[0073] The storage allocation manager 365 may keep several different versions of the
databasc block in thc storage systcm data storc 390 corresponding to the data in the databasc
block if it is updated at different points in time. The file in which the database block is saved
comprises a file header including metadata associated with the file and a sequence of
database blocks. Each vendor specific database server 345 organizes the database
information as a set of files that the database server 345 is capable of processing. The
organization of information using the set of files for the database may be vendor specific and
the database storage system incorporates the program logic to organize the database
information in vendor specific organization of files. The point-in-time copy manager 310
creates a set of files structure that may be similar to the set of files of the database in the data
store 350. However, the information in the storage system data store 390 may include
multiple versions of the database blocks, each corresponding to updated information at
different points in time. In an embodiment, the storage allocation manager 365 stores the
databasc blocks associated with the files in an cfficicnt manner, such that a copy of a
database block is made only if the database block was updated for a point-in-time. For
example, if a block B1 is updated at time T1 but not at time T2, whereas a block B2 is
updated at time T1 and T2 both, the data structure of the storage system data store 390 does
not keep a copy of the database block B1 for time T2 whereas it keeps a version of the
databasc block B2 for timc T2.

[0074] FIG. 4 also illustrates the interaction of the transaction log manager 320 with the
production system library 385. The transaction log manager 320 retrieves incremental
changes made to the transaction logs in a database in the production database system 110
since a previous time point. In an embodiment, the request 445 1s sent using the secure shell
or SSH network protocol. The request 445 may identify the database for which information
is required and provide a time value corresponding to the previous time point the transaction
log information was rcceived. The production system library 385 sends 450 the requested
information in response to the request 445 to the transaction log manager 320. The vendor
interface module 335 may obtain the requested information either by calling the database
server 345 APIs or by directly interacting with the data store 350, as described above. The
incremental changes to the database logs obtained from the production database system 110

19

WO 2011/049839 PCT/US2010/052960

arc saved by the transaction log manager 320 by sending a request 460 to the storage
allocation manager 365 that stores 440 the information in the storage system data store 390.
[0075] FIG. 6 shows a process for copying the transaction log files from a production
database system 110 to the database storage system 100. The transaction log manager 320
sends 600 a request to the production database system 110 for retrieving the updates to
transaction logs sincc the last update was reccived by the transaction log manager 320. The
transaction log manager 320 receives 610 the response from the production database system
110 as a data stream. The transaction log manager 320 analyzes the data stream received to
determine 620 the log file to which the transaction log data needs to be written. It is possible
that the data received in a data stream needs to be written to multiple log files. The
transaction log manager 320 writes 630 the online transaction log data from the data stream
to the appropriate log file.

[0076] In an embodiment, the transaction log manager 320 waits 640 a predetermined
interval of time between log file updates and sends 650 the next request to the production
database system 110 to check if new updates to the transaction log updates are available. If
no updates were made to the production database during this time interval, the production
database system 110 informs the transaction log manager 320 accordingly. If no new updates
to transaction log for this timc intcrval arc availablc, the transaction log manager 320 waits
640 for another interval of time. If the response from the production database system 110
indicates that updates to transaction logs are available, the transaction log manager 320 sends
600 the next request to the production database system 110 for retrieving the next update to
the transaction logs.

[0077] The incremental changes to the transaction logs may be obtained by the
transaction log manager 320 much more frequently compared to the point-in-time copy made
by the point-in-time copy manager 310. For example, the point-in-time copy manager may
make a point-in-time copy of a database stored in the production database system 110 once a
day whereas the incremental changes to the transaction logs may be obtained by the
transaction log manager 320 every five minutes. Obtaining incremental changes to the
transaction logs at a high frequency provides the ability to recreate a copy of a database from
the production databasc systcm 110 at a time point in between the times that a point-in-time
copy is made by the point-in-time copy manager 310.

[0078] The production database system 110 may reuse the transaction log files in a
circular fashion, thereby overwriting the previous log files. However, the database storage
system 100 creates a new log file each time it determines to close the log file to which data is

20

WO 2011/049839 PCT/US2010/052960

currently being written to start writing to a different log file. FIG. 7 compares the log files of
the production database system 110 with the log files of the database storage system 100.
The log files 710 for the production database system represent online transaction log files. A
limited number of files are typically allotted for storing the online transaction logs. For
example, FIG. 7 shows three files 710(a), 710(b), and 710(c) allotted by the production
databasc system 110 for storing the onlinc transaction logs.

[0079] As shown in FIG. 7, the arrows 730 indicate a change of the transaction log file to
which the transaction logs are being written by the production database system 110 at a given
time Ti (the times T1, T2, T3, are assumed monotonically increasing). For example, at time
T1, the production database system 110 stopped writing the transaction logs to the file 710(a)
and started writing the transaction logs to the file 710(b). Similarly at time T2, the
production database system 110 stopped writing the transaction logs to the file 710(b) and
started writing the transaction logs to the file 710(c). At time T3, the production database
system 110 stopped writing the transaction logs to the file 710(c) and decided to reuse the
transaction log file 710(a). Before reusing a transaction log file, the production database
system 110 ensures that the transaction logs available in the transaction log file are applied to
the appropriate database. The log file changes at times T4, T5, T6 are similar to the changes
described above. Henee, the production databasc system may typically rcuse the transaction
log files in a circular fashion to reuse storage.

[0080] The database storage system does not use a circular reuse strategy for log file data
because the database storage system keeps the historical information for a much longer time
determined by the log retention policy, based on the transaction logs. Keeping the historical
information bascd on the transaction logs provides the ability to crcatc VDBs for past time
points. VDBs can be created for past time points as long as transaction logs necessary to
reconstruct the database snapshot corresponding to the past time points are available. A
strategy based on circular reuse of transaction log files results in earlier transaction logs being
overwritten. Hence, a database system using circular reuse strategy for the log files can only
reconstruct database snapshots based on the transaction logs for recent time points for which
the transaction logs have not been overwritten.

[0081] The logs filcs 720 stored in the databasc storage system 100 arc rctained log files.
The arrow 740 represents transfer of information from a transaction log file 710 of the
production database system 110 to the retained log file 720 of the database storage system
100. Each arrow 740 may correspond to several requests 445 being sent from the transaction
log manager 320 to the production database system 110 and several responses being sent 450

21

WO 2011/049839 PCT/US2010/052960

by the production databasc system 110 that arc proccsscd by the transaction log manager 320
and stored.
[0082] For example, arrow 740(a) indicates copy of information from log file 710(a) to
720(a) during the time interval T1 to T2. At time T2, the production database system started
writing transaction logs to file 710(b). The database storage system creates a new log file
720(b) and arrow 740(b) indicatcs the transfer of transaction log information from file 710(b)
to log file 720(b). The above process continues, but at time T3, even though the production
database system starts reusing the log file 710(a), the database storage system creates a new
log file 720(d). Arrow 740(d) indicates copy of transaction log information to log file 720(d).
Accordingly, the transaction log information from the same transaction log file of the
production database system 110 may be copied to multiple log files in the database storage
system 100 at different times. For example, the information in transaction log file 710(a) is
copied to log file 720(a) between T0 and T1, to log file 720(d) between T3 and T4, and to log
file 720(g) between time T6 and T7. The database storage system 100 avoids reuse of the log
files to keep the transaction log information for as long as possible as determined by the log
retention policy. This allows a user to recreate a snapshot of a database at a previous time
point for which the transaction log information is available.
[0083] FIG. 8 illustratcs the information obtaincd at different points in time by the
database storage system 390 from various production database systems 110 that is stored in
the storage system data store 390. FIG. 8 shows information related to two databases, DB1
and DB2 obtained from the production database system 110. The information 850
correspond to data obtained for database DB1 whereas the information 860 correspond to the
data obtaincd for databasc DB2. Thc information 850 or 860 compriscs a sct of databasc
blocks and a set of transaction logs. The information 850(a) represents the first PIT copy of
database DB1 obtained from the production database system 110. The information 850(b)
represents the first transaction log update for the database DB since the first PIT copy and
the information 850(¢) represents the second transaction log update for the database DB1
since the first PIT copy. The information 850(d) represents second PIT copy of the database
DBI. The information 850(d) stores only the database blocks that were changed in the
databasc DB1 sincc the first PIT copy was madc. The information 850(c) represents the first
transaction log update for the database DB1 since the second PIT copy. Similarly the
information 860 correspond to the database DB2. The time Ti indicated next to a information
850 corresponds to the time that information was copied in the structure. For a PIT Copy
(without log updates, for example, 850(a) or 850(d)) made by a PIT copy manager 310, the
22

WO 2011/049839 PCT/US2010/052960

time Ti represents the time of the last update made to the databasc blocks before the PIT copy
was made. For information corresponding to a log update, for example, 850(b), 850(c), or
850(e), the time Ti represents the time of the last transaction log in the corresponding set of
the transactions logs stored.
[0084] The arrow 810 shown in FIG. 8 represents the step of creating the files
representing a read/write copy of a databasc bascd on the information 850 as performed by
the virtual database manager 375. The arrows 830 represent the step of making the files 870
available to the virtual database system 130 via the file sharing system 120. FIG.9isa
flowchart of the process for creating a virtual database. The virtual database manager 375
receives 905 a request to create a virtual database for a Virtual Database System 130. The
request to create a VDB may be received from the administration system 140. The request to
create a VDB may include details of the production database system 110 and the
corresponding database that needs to be made available as a VDB, the virtual database
system 130 for which the VDB needs to be created, and a past time point Tn for which the
database snapshot needs to be created as a VDB.
[0085] The virtual database manager 375 identifies 910 the recent most PIT copy
associated with time Tj, such that Tj<Tn. The virtual database manager 375 further identifies
915 a portion of the log filc updates for the time period from Tj to Tn. The rcad/write file
structure 870 is created 920 by making storage efficient copies of the database blocks in the
identified PIT copy and the appropriate portions of the log files. The appropriate transaction
logs can be applied to a VDB created based on a PIT copy so as to create a snapshot of the
source database for a time point that occurs after the PIT copy was made. Accordingly, even
though a PIT copy may be madc periodically, for cxample, daily, a VDB can be created for
any time point in between PIT copies by appropriately applying the transaction logs to a
previous PIT copy. For example, a PIT copy may have been made from a production
database at midnight on a particular date. However a VDB can be created based on the state
of the production database at a particular time later during the day, for example, 10:25am,
even though no PIT copy was made at that particular time. The changes in the production
database from midnight to the particular time are obtained from the transaction logs.
[0086] The mechanism of making storage cfficient copics of the file structurc is further
described herein. The virtual database manager 375 sends 935 (indicated by arrow 830 in
FIG. &) handles to the read/write file structure to the associated virtual database system 130.
In some embodiments, the virtual database manager 375 makes the file structures available to
the virtual database system 130 by sending a request to the file sharing manager 370. The file
23

WO 2011/049839 PCT/US2010/052960

sharing managcer 370 in responsc, sharcs the appropriate files with the virtual databasc system
130 using the file sharing system 120. The virtual database manager 375 also sends 930 a
request to the virtual database system 130 to perform recovery 930 of the new virtual
database by applying the appropriate retained logs to the database blocks. In some
embodiments, the recovery of the database is automatically performed by the database when
the databasc scrver starts in the virtual databasc system 130.
[0087] FIG. 10 indicates how storage efficient copies are made to create a read/write file
structure representing a VDB, As shown in FIG. 10, the structures 1010 represent the files
corresponding to a database on the production database system 110 . The structures Fi and
Gi represent database blocks stored in the files 1010 respectively (Fi refers to F1, F2, F3,...
and similarly Gi refers to G1, G2, G3,...). The arrows 1015 represent the process of making
PIT copies at different time points Ti. The first PI'T copy 1030 made at time TO needs to
copy all the necessary database blocks of the database. For example, Fli represents a copy of
block Fi and block G1i represents a copy of block Gi. The PIT copy 1035 made at time T1
copies only the blocks that changed since the last PIT copy and may copy much less data
compared to the first PIT copy. Similarly at time T2 another PIT copy 1040 is made copying
the database blocks that changed since the previous PIT copy 1035.
[0088] Assuming the PIT copy 1040 is the last PIT copy madc for the configuration
shown in FIG. 10, the VDB file structures 1050 are created for time point T2. When the
structure 1050 are created, the blocks V11, V12,..., V25 may be implemented as pointers to
the actual database block that stores the data. For example, V11 represents the information in
block F1 and since the block F1 was never updated during copies made at time T1 and T2,
V11 points at F11. V12 represents the information in block F2 and sincc F2 was updated at
time T1, V12 points at the block F22. Similarly, V13 corresponds to block F3 that was
updated at time T2 and points at the block F33.
[0089] FIG. 11 illustrates the file structures 1150 created for time point T1. Note that
U13 corresponding to block F3 points at F13 since the block F3 was never updated for time
point T1. Also, Ul4 points at block F24 corresponding to block F4 copied at time T1. None
of the structures in 1150 point at PIT copy 1040 since the PIT copy 1040 was made after the
time point T1.
[0090] FIG. 12 illustrates how database blocks stored on the storage system data store
390 may be shared by file structures created for different VDBs. FIG. 12 shows the file
structures corresponding to the file 1005 of the production system database 110 created for
VDBs as illustrated in FIG. 10 and FIG. 11. As shown in FIG. 12, the block V13 and V14 of
24

WO 2011/049839 PCT/US2010/052960

the filc structure C50 point at the latest copy of the blocks F33 and F34 that arc not sharcd
with the VDB files 1150 for time T1. However, block V11 of VDB files 1050 at T2 shares
block F11 with block U11 of VDB files 1150 at T1. Similarly block V12 of 1050 shares
database block F22 with block U12 of 1150. The sharing of blocks across multiple VDBs
results in efficiently utilization of data stored in the storage system data store 390. In case,
onc of the VDBs attcmpts to writc to a sharcd databasc block, a copy of the shared databasc
block is made for the VDB attempting to write. The remaining VDBs that shared the
database block continue to share the original database block. Accordingly, any changes to
the copied database block are not visible to the remaining VDBs since the changes are
specific to the VDB that is writing to the database block.
[0091] A VDB may be created using a point-in-time copy of another VDB as a source.
For example, assume VDB is created and provisioned to a virtual database system 130.
Database blocks associated with the VDB are copied when the virtual database system 130
writes to the database blocks for the first time. Point-in-time copies of VDB are also made
based on a predefined schedule. This allows a user to create a second virtual database VDB2
based on a point-in-time copy of VDBI1. Transaction logs of VDB1 are also stored, allowing
a user to create the second virtual database VDB2 based on any previous state of VDB1 that
may be in-between point-in-time copics of VDBI.
[0092] FIG. 13 further illustrates incorporation of log files in the VDB file structures
1350 that corresponds to a database snapshot for a time point T1+t2 that occurs before T2.
As shown in FIG. 13, the log file data L1 is copied by the transaction log manager 320 at
time T1+t1 and the log file data L2 is copied at time T1+t2. Additional log data L3 written in
the production databasc system 110 is not shown copicd to the databasc storage systcm and
may be copied at a time after T1+t2. The file structure 1350 created for a VDB includes
structure VL11 that points to the appropriate log file data representing the log information
copied between time T1 and T1+t2, represented by L1 and L2. When the database server at
the virtual database system 130 starts, the logs pointed at by structure V11 may be applied to
the database blocks 1035 using the database recovery process.
10093] Since the structure 1050 illustrated in F1G. 10, structure 1150 illustrated in FIG.
11, or structurc 1350 illustrated in F1G. 13 arc rcad/write structurcs, the virtual databasc
system 130 is allowed to read from these structures as well as write to them. When the
virtual database system 130 writes to a block Vij, space is allocated for the database block
and the data of the corresponding database block copied to the space allocated. For example,
if the virtual database system 130 writes to the block V11, space is allocated and block F11
25

WO 2011/049839 PCT/US2010/052960

copicd to the allocatcd block. Hence the original copy of the block F11 is maintained as a
read only copy and the virtual database system 130 is allowed to write to a copy of the
appropriate database block created specifically for the virtual database system 130. This can
be considered a lazy mechanism for creating copies of the database blocks that copies a
database blocks only if the corresponding virtual database system 130 writes to the database
block. Sincc the number of blocks that a virtual databasc system 130 writes to may be a
small fraction of the total number of blocks associated with the VDB, the above structure
stores the data associated with the VDB in a highly storage efficient manner. A database
block that is not written to by virtual database systems 130 may be shared by several virtual
database systems without being copied for a specific virtual database systems 130.

VDB Operations

[0094] FIG. 14 illustrates an example of the life cycles of a database in a workflow for
making changes to the database or to applications that depend on the database. As shown in
FIG. 14, copies of a production database 1405 may be made for several purposes including
development, tuning, testing, quality assurance, certification, training, and staging. Making
copies of large databases by conventional means can be a slow process. Furthermore,
running different copies of databases on different machines results in inefficient usage of the
hardwarc. Various workflow sccnarios associated with databascs can be simplificd and made
highly efficient by creating virtual databases instead of making physical copies of the
databases. Multiple virtual databases can be stored in a database storage system 100 and the
available resources of the system can be utilized efficiently.

[0095] The steps performed in a workflow scenario based on VDBs can be significantly
diffcrent from the opcrations performed for the same workflow scenario using conventional
systems. These steps may be executed by a database administrator of the database storage
system 100 or executed automatically using a script. Various operations associated with a
virtual database are described below.

[0096] The link operation provides information necessary to access a database on a
production database system 110 to the system configuration manager 315 of the database
storage system 100. The information necessary to access the database enables the database
storage system 100 to retricve data from the production databasc system 110. The
information may include the name of the database, network address of the production
database system 110 hosting the database, and access control information. As part of the
linking operation, the database storage system may communicate with the production
database system 110 to validate the information of the database. The database storage system

26

WO 2011/049839 PCT/US2010/052960

100 can retricve databasc blocks from the linkcd databasc in the production databasc systcm
110 and store them in the storage system data store 390. The database blocks stored in the
storage system data store 390 can be used to create virtual databases. In some embodiments,
linking may specify that only a part of source database needs to be copied rather than the
whole source database. For example, in relational databases a part of the source database
could be a table spacc, a sct of onc or more tables, a subsct of a table, or a sct of subscts of
tables. In an embodiment, a user can specify a script for computing a part of a database.
[0097] The load operation retrieves data from a database of the production database
system 110 for storage in the database storage system 100. The database needs to be linked
to the database storage system 100 before the database can be loaded. If the load operation is
retrieving the data of the database for the first time, the entire data available in the database is
retrieved. As a result, the first load operation can be slow and may take several hours or days
depending on the size of the database and the network bandwidth based on state of the art
hardware. Subsequent load operations may take significantly less time since they retrieve
only changes in the database since a previous load operation. The load operation is
performed periodically to obtain the changes to the database on an ongoing basis. The load
operation may obtain database blocks of the database and/or transaction logs representing
updates to the databasc since a previous point in time. The input required for the load
operation includes information identifying a previously linked database. If only a part of the
source database is specified in linking, only that part will be loaded.

[0098] The load operation can also incrementally update information available in a VDB.
The information obtained from the production database system 110 by a database storage
systcm 100 may be updated periodically. As the information obtained from the production
database system 110 available in the database storage system is updated, the information
provisioned to the virtual database system 130 can also be updated. It is possible that the data
in the VDB is updated by the virtual database system 130. In this case, the incremental load
identifies the updates made by the virtual database system 130 and compares them with the
changes retrieved from the production database system 110. If there are no conflicts in the
two sets of updates, the load operation can succeed by applying the changes of the production
databasc system 110 to thc VDB. If there arc conflicts, a report of the conflicts may be
presented to a database administrator and input requested from the database administrator to
help resolve the conflicts. In one embodiment, the conflicts between the updates from the
two sources are detected by identifying the database blocks affected by the two updates. 1If
there is no overlap between the database blocks of the two sets of updates, the database

27

WO 2011/049839 PCT/US2010/052960

storage system 100 determincs that there arc no conflicts. If only part of source databasc is
specified in linking, only changes to that part will be loaded.
[0099] The provision operation creates a virtual database in the database storage system
100 and makes it available to a virtual database system 130. The virtual database may be
created based on a point-in-time copy of a source database or a point-in-time copy of another
virtual databasc. Onc or morc rcad/writc filcs may be created for the VDB and shared with
the virtual database system 130 using the file sharing system 120. The read/write files
include structures that point to database blocks stored in the storage system data store 390.
The input required for the provision operation includes information identifying a previously
linked and loaded database or an existing VDB, a previous time point corresponding to the
desired state of the database, and information identifying a virtual database system 130 for
which the virtual database is being provisioned. In some embodiments, a part of a VDB
could be provisioned. Similarly, parts from different VDBs may be provisioned together to
form a new VDB. In other embodiments, several VDBs may be provisioned together as a
group using application specific coordination scheme. These group oriented provisioning
may involve provisioning or coordination of provisioning of application logic or
configuration.
[0100] The bookmarking opcration marks an application significant point in timc in onc
or more virtual databases. The resulting “bookmark” can be used to direct provisioning
operation. Typically, the operation is triggered by user or external program through
administration system 140. Database storage system 100 returns a token as the resulted
“bookmark” is stored in database storage system 100. Later, user or external programs can
provision the VDB or the group of VDBs to the samc application significant point in time
using returned token. For example, an external program may wish to capture production
database in certain state, such as right after a massive batch processing run. User could
invoke bookmarking operation via administration system 140 and save returned token. Later,
user can provision the VDB to the same state by supplying saved token. In some
embodiments, tokens are in the form of string.
[0101] The refresh operation corresponds to the database storage system 100 periodically
updating a VDB bascd on the latcst information from the source databasc system 110. For
example, a VDB may be used for a reporting system that generates report for users to view.
The refresh operation automatically loads the latest information periodically from a
production database system 110, for example, daily. The VDB being refreshed is shutdown.
The VDB is updated with the latest point-in-time copy of the production database system 110
28

WO 2011/049839 PCT/US2010/052960

and thc VDB restarted. Accordingly, the uscrs of the corresponding virtual databasc systecm
130 see the latest reports based on the latest point-in-time copy of the data in the production
database system 110. In an embodiment, the VDB may also be refreshed based on
transaction logs obtained in between point-in-time copies obtained from production database
system 110. The input required for a refresh operation includes information identifying a
VDB to be refreshed and a schedulce for refreshing the data.

[0102] The pre-script operation corresponds to execution of special purpose instructions
that perform specific tasks before performing another database storage system 100 operation.
For example, a pre-script operation may be performed before provisioning a VDB or a load
of a database from the production database server 110. A database may be used along with
applications that require application specific data stored outside the database. When the
database is refreshed or loaded, a pre-script operation can be executed to load the application
specific data to the database storage system 100. The input to the pre-script operation may
include an executable script specifying the operations to be performed and details of the
database storage system 100 operation before which the pre-script operation is performed.
[0103] The post-script operation corresponds to execution of special purpose instructions
that perform specific tasks after performing database storage system 100 operation. For
cxamplc, a post-script opcration may be performed after provisioning a VDB to a virtual
database system 130. Testing and development of an application using the database in the
production database system 110, can be performed by running a similar application using a
testing or development virtual database system 130. In this scenario, the application specific
data copied from the production database server 110 by the pre-script operation may have to
be further copicd to the virtual databasc system 130 that runs a corresponding application.
The instructions for copying the application specific data from the database storage system
100 to the virtual database system 130 are executed as a post-script operation after the
provision operation. The input to the post-script operation includes an executable script
specifying the operations to be performed and details of the database storage system 100
operation after which the post-script operation is performed.

10104] The pre-script and post-script operations can be associated with various VDB
opcrations. For cxample, pre-script operation can be performed before a refresh operation
and a corresponding post-script operation performed after the refresh operation to allow
copy/installation of specific information before/after the refresh operation. Similarly, pre-
script/post-script operations may be associated with other VDB operations including link,
load, provision, and export among other operations. For example, during linking or loading

29

WO 2011/049839 PCT/US2010/052960

data from a sourcc databasc, pre-scripting/post-scripting operations allow scrubbing of data
by using compression, masking, or removing data including columns or rows of database
tables. Pre-scripting and post-scripting allows dealing with application data associated with
applications using the source database and/or the VDB. Pre-scripting and post-scripting
allows management of system environment issues associated with provisioning of VDBs and
allows starting/stopping activitics beforc/after a VDB is provisioned.

[0105] The share operation corresponds to granting permission to another user in order to
allow the user to access a VDB. In an embodiment, the share operation may include the step
of creating a new VDB and provisioning it for sharing with a new user or a set of users. For
example, in a test and development environment, after reaching a particular stage of
development using a VDB, the VDB may be shared with test users. The input required for a
share operation may include information a VDB to be shared, information identifying users
with whom the VDB is shared and access control information identifying the level of
permissions granted to the users.

[0106] The export operation copies the information available in a database from one
computer to another. Typically the information is copied to a target computer for assembly
as a database. A stage operation corresponds to an export operation that copies the database
information to a staging scrver. A staging scrver is typically used for performing system
level testing of a database before using changes made to the database or to a database
application in a production environment. The input to the export operation includes,
information identifying the VDB to be exported and information identifying the target
machine to which the data from the VDB needs to be exported.

[0107] The mask opcration corrcsponds to altering or skipping specific information in a
database when the information in the database is being copied. For example, when a copy of
a database is made, sensitive information in the source may not be copied to the target.
Another example is that data is scrambled when database is provisioned. Examples of
sensitive information include credit card information or social security numbers. Example
scenarios where database information is masked include making a copy of a production
database for testing purposes. Users of the database that perform testing using a VDB may
not nced the sensitive information stored in the production databasc system 110. Other
operations that can transform data being copied from a source database include compress and
encrypt. The compress operation transforms the data by preserving the original information
but the converting the format of the data so that it occupies less space when stored. The
encrypt operation transforms the data to a format that cannot be read by applications that do

30

WO 2011/049839 PCT/US2010/052960

not have the logic to decode the encrypted information. The inputs to the mask, compress, or
encrypt operations include information identifying a source VDB and a target database. The
target database may itself be a VDB or the data can be exported to a conventional system.
[0108] The purge operation deletes information not needed from a VDB. Typically
information is purged when it occupies large amount of space and is not needed anymore. For
cxamplc, a databasc may be storing cvent data associated with cvents occurring in a system
over a long period of time. Old data that is not needed any more or data that has been
archived can be purged from the database. The purge operation can be performed when the
database information is copied by skipping the information to be purged from the copy
operation. The inputs for a purge operation can include information identifying a source
VDB and a target database. The target database can be a VDB or it can be a conventional
database.

[0109] The extract, transform, and load (ETL) operations refers to typical operations
performed in a data warchousing project. The extract step retrieves data from a source, the
transform step modifies the data based on certain operational needs and the load operation
loads the data to a target system. The input required by the ETL operations includes
information identifying a source database, information identifying a target database, and
opcrations to be performed for transformation of the data. The inputs for the ETL operation
can include information identifying a source VDB and a target database. The target database
can be a VDB or it can be a conventional database.

[0110] The replicate operation transfers changes from the data stored in a source storage
system to a target storage system. The data being replicated can either be a VDB or the data
storcd in the storage system data storc 390, corresponding to the databasc blocks obtained
from one or more production database systems 110. The source and target storage systems
need to be setup appropriately for the replicate operation. Program code for replication on
the source storage system may periodically identify the changes in the data stored in the
source storage system and send the changes to the target storage system. Similarly, program
code on the target storage system may receive the changes form the source storage system
and process them appropriately to incorporate the changes. Replication can be used for high-
availability by mirroring the data from the source storage system to the target storage system.
The target storage system is available for use in case the source storage system becomes
unavailable for some reason. The inputs for the replicate operation may include information

identifying a source system and a target system.

31

WO 2011/049839 PCT/US2010/052960

[0111] The backup opcration crcates a copy of the data available in a storage system such
that the backup copy of the storage system can be used to reconstruct information of the
original storage system in case the original data is lost. The restore operation recovers the
information available in the backup copy and reconstructs the information. Note that any
changes in the original storage system since the backup was created may be lost, unless the
update information is saved in somc format. In somc cmbodiments, the backup information
is stored on large storage systems with possibly slow retrieval speed, for example, tape
backup systems.

[0112] Other VDB operations based on the concepts defined herein can be defined and
used for datacenter workflow automation. VDB operations can also be created by combining
existing VDB operations. Different workflow scenarios that utilize the above operations
based on VDBs or database storage systems 100 are described below. For each workflow
scenario, a brief description of the scenario based on conventional systems is compared with
the scenario based on virtual databases.

Test and Development Workflow

[0113] FIG. 15 illustrates a scenario for a test and development workflow based on a
production environment using conventional databases. As shown in FIG. 15, the production
databasc system 1505 includcs a databasc 1500 uscd in a production cnvironment. Testing
and development of software used in the production environment by conventional systems
may require multiple copies of data stored in the database 1500. As shown in FIG. 15, the
database 1500 is copied 1550 to the data store 1515 of a development system 1510.
Development activities may be performed on the development system 1510 for certain period
of timc. Pcriodically, the databasc in data storc 1515 is further copicd to a data storc 1525 in
a test system 1520 for performing testing of the software and/or the database. Issues found in
the test system 1520 may provide feedback 1575 that may require further development
activities. The process of development and testing may be repeated multiple times. At
certain stage, the database may be copied from the test system 1520 to the data store 1535 of
the quality assurance (QA) system 1530 for quality assurance that may include testing of
performance, system integration, certification, and user acceptance. Feedback 1570 based on
QA system 1530 may rcequire further development using the development system 1510, The
overall process of development, testing and QA may be repeated multiple times. When
satisfactory QA testing is performed, the database may be further copied to the data store
1545 of a staging system 1540. The final changes in the software or database are propagated
1560 to the production database system 1505, for example, via an upgrade procedure.

32

WO 2011/049839 PCT/US2010/052960

[0114] FIG. 16 illustratcs the scenario for the test and development workflow based on
virtual databases. Several steps requiring copies of database made by the workflow described
in FIG. 15 are eliminated as a result of the use of virtual databases. A database 1500 from the
production database system 1505 is linked and loaded 1665 to the database storage system
100. A virtual database corresponding to the database 1500 is provisioned 1640 to the
devclopment system 1610. The virtual databasc created for the development system 1610
can be refreshed 1670 multiple times based on a schedule. When the development activity on
the VDB reaches a particular stage, the VDB is shared with a test system 1615, thereby
providing appropriate access to the users of the test system 1615. Sharing of the development
VDB with the test VDB may involve creating a test VDB based on a point-in-time copy of
the development VDB. Feedback 1575 provided by the test system 1615 may require
repeated provision 1640, refresh 1670, and share 1645 operations. When the development
and testing reaches a particular stage, the VDB is further shared 1650 with a QA system 1630
and stored in the data store 1635. Sharing of the test or development VDB with the QA
system may require creating a QA VDB based on a point-in-time copy of the corresponding
test/development VDB. Alternatively, the development VDB is exported to the QA system.
A VDB may also be staged 1655 directly to the data store 1645 of the staging system 1640.
[0115] In somc organizations, different activitics involved in a workflow may be
performed by different physical locations. For example, production server may be located in
one site of the organization whereas development and testing may be performed in another
site of the organization. The other site performing development and testing may be offshore,
resulting in slow network communication between the two sites. In this scenario, the
devclopment system 1510 and test system 1520 shown in FIG. 15 may be available on onc
site and the remaining systems including the production system 1500, the QA system 1530,
and the staging system 1540 on a different site.

[0116] FIG. 17 shows the interaction between the various systems for this scenario. As
shown in FIG. 17, the sites are named first site 1765 and second site 1760. A database
storage system 1715 is available on the first site 1765 and a second database storage system
1705 is available in the second site 1760. A database stored in the production database
system 1505 is linked and loaded 1775 into the databasc storage system 1715 in the first site
1765. The data corresponding to the database is replicated 1725 from database storage
system 1715 to the database storage system 1705. The replication operation 1725 may also
be combined with other operations including masking, purging, compression, and encryption.
The information may have to be masked and purged since the development/testing may be

33

WO 2011/049839 PCT/US2010/052960

offshorc and the users in the sccond site 1760 may not have acccess to specific information
available in the production database. The information may also be compressed to reduce the
time taken to transfer the data over the network and encrypted to avoid the data being stolen.
The database is provisioned 1740 and refreshed 1770 for the development system 1610 and
shared 1745 with the test system 1615 as necessary. Changes made to the database stored in
the storage system data storc 1710 as a result of the testing and development can be
propagated back to the database storage system 1715 and stored in the storage system data
store 1720. The propagation of these changes can be performed via a replication 1730
operation that can be combined with compression and encryption. The updated database in
database storage system 1715 is exported 1750 to the QA system 1630 and/or exported 1755
to the staging system 1640.

Backup and Restore

[0117] FIG. 18(a) illustrates the scenario for backup and restore of databases. There may
be multiple database systems 1810 in an enterprise that are copied 1825 to the data store 1820
of the backup system 1815. The backup system 1815 may store the backup data in persistent
memory, for example, a large disk storage unit and/or use a tape backup unit. In
conventional systems the operation copy 1825 corresponds copying database blocks in the
databasc 1810 or to cxporting the data in the databasc 1810 to onc or morc filcs, copying the
files to the backup system 1815 to be stored in the data store 1820. Some of the database
systems 1810 may store snapshots of the databases on the system that also need to be backed
up. A database system 1810 may mirror a database using another database system and
synchronize changes in the mirrored database with the original database 1810. The mirror
databasc may nced to be backed up into the backup system 1815, In some systems additional
standby databases may be used along with a database 1810 to protect the data from failures
and disasters. The standby databases may also be backed up using the backup system 1815.
An example of a vendor specific utility that helps with backups of databases is RMAN for
use with ORACLE databases.

[0118] FIG. 18(b) illustrates the scenario for restore of databases using a database storage
system 1890, replacing the need for traditional backup and recovery. In this embodiment, the
databasc storagc system 1890 itsclf acts as storage for copics of the databascs 1860 in the
database systems 1865. The copy operation 1825 is obviated by the link and load operation
1830. The advantages of using link and load operations supported by the database storage
system 1890 are that it transfers much smaller amount of data from the database 1860 to the
database storage system 1890 compared to full and incremental backups. Furthermore,

34

WO 2011/049839 PCT/US2010/052960

subscquent updatcs of databascs 1860 performed using the link and load 1830 opcrations
transfer only the changes that occur in the databases 1860 on an ongoing basis, without the
need to repeat a full load. As a result, the amount of data transferred from the databases 1860
to the storage system data store 1840 is significantly smaller than in a backup solution.
Therefore, much less storage space is occupied by the data in the storage system data store
1840 and the transfer of data from the databascs 1860 to the storage system data store 1840
requires much less time.

[0119] In anather embodiment, the data available in the storage system data store 1840 is
backed up 1855 using a backup system 1845. The backup operation 1855 may initially copy
the entire data available in the storage system data store 1840 and subsequently copy 1855
incremental changes of the data stored in the storage system data store 1840. The amount of
data stored in the storage system data store 1840 can be significantly less than the amount of
data stored by the data store 1820 of the backup system 1815 since only changes made to the
databases 1860 are stored in the storage system data store 1840. Hence the time required to
link/load the data in databases 1860 to the storage system data store 1840 combined with the
time taken to backup 1855 the data of storage system data store 1840 can be significantly less
than the time taken by the backup operations 1825 in a large enterprise, especially when it
comgs to the load and timce required from the source databascs.

Maintaining Database Replicas

[0120] In several workflow scenarios, information in a source database is periodically
copied to a target database. For example, information may be copied from a source database
to a target database used for recovery of information in case the source database is destroyed
in a disastcr (the process known as disaster recovery). Information may also be copicd to onc
or more databases to increase the availability of the data to users. For example, if the source
database is down for maintenance or for other reasons, the target database can be made
available to the users. In some usage scenarios, information is copied from a source database
to a target database that is used for reporting purposes. The execution of reports on a
production database system may cause significant load on a database. Since the production
database system is used for transaction processing, it is preferred that a different server
synchronized with the databasc on the production databasc systecm be uscd for gencrating
reports. The target database is updated frequently to provide up-to-date reports using the
reporting infrastructure. Another scenario that requires copy of information from a source
database to a target database is the migration of databases from one machine to another.
Migration of databases may be required when an enterprise upgrades software to newer

35

WO 2011/049839 PCT/US2010/052960

versions, for cxample, upgradces to a newer version of operating system, a newer version of
database management system, a newer version of an application, or upgrade to new hardware.
Migration of databases may also be required from one physical location to another, for
example, when a company is acquired by another company.

[0121] FIG. 19 illustrates a system environment for copying information from one or
morc sourcc databasc systcms 1905 to target databasc systems 1905. FIG. 19 illustrates the
copy or transfer 1950 of information from a source data store 1935 in a source database
system 1905 to a target data store 1940 in a target database system 1910. In other
embodiments, information from one source data store 1935 may be transferred to more than
one target data store 1940. Alternatively, information in more than one source data store
1935 may be transferred 1950 to a single target data store 1940.

[0122] Various parameters related to the copy 1950 operation including the rate of
transfer, frequency of transfer, type of information being transferred may depend on the
specific scenario. The source database systems 1905 and the target databases 1910 may be
situated in different physical locations, for example, geographically separate locations
illustrated as the first site 1955 and the second site 1960. Typically machines situated in
different physical locations have slow network communication compared to machines
situatcd in the same physical location. Embodiments described herein apply to source and
target database systems situated in the same physical location as well as different locations.
[0123] FIG. 20 illustrates a system environment based on virtual databases stored in
database storage systems 100 for implementing a workflow scenario conventionally
implemented as shown in FIG. 19. As shown in FIG. 20, the data in the databases stored in
sourcc data storcs 1935 is linked and loaded 2020 to the storage systcm data store 2025 of the
source database storage system 2005. The operation 2020 may include subsequent load
operations performed to update the data in the storage system data store 2025 based on
updates in the source database system 1905. The data in the storage system data store 2025
of the source database storage system 2005 is transmitted 2015 to the storage system data
store 2030 of the target database storage system 2010. The operation 2015 may be a copy
operation that copies the entire information in the storage system data store, a backup
opcration, or a rcplicatc opceration that incrementally copics updates in storage system data
store 2025 to the storage system data store 2030.

[0124] In the scenario of migration of databases, the operation 2015 may copy the entire
data in the storage system data store 2025. In the scenario of replication, the changes in the
storage system data store 2025 may be copied periodically to the storage system data store

36

WO 2011/049839 PCT/US2010/052960

2030. Thc changes to storage systecm data storc 2030 may be applicd to VDBs provisioned to
target database systems 1910 using the refresh operations. If any changes are made to the
VDBs by the target database system 1910, the changes may be propagated back to the storage
system data store 2025,

[0125] The operation 2030 makes databases stored in the storage system data store 2030
availablc to target databasc systcms 1910. In the scenario of high-availability systcms, the
operation 2030 may correspond to provisioning a VDB from the storage system data store
2030 to target database systems 1910. In the scenario of disaster recovery, the operation
2030 may correspond to exporting a database to the target database systems 1910. As shown
in FIG. 20, there can be VDBs provisioned 2035 by the source database storage system 2005
to VDB systems 2040. Equivalent VDBs can be created using the data in the target database
storage system 2010 and provisioned 2045 to VDB systems 2050. Any changes made to the
VDBs in the source database storage system 2005 are automatically saved in the storage
system data store 2025 and get propagated to the target database storage system 2010 by the
transfer operation 2015.

[0126] In one embodiment, the target database storage system 2010 may have all the
modules illustrated in FIG. 3 prior to the operation 2015. In another embodiment, a machine
that docs not have the modulcs of a databasc storage system shown in FIG. 3 may be
provided for use as the target database storage system 2010. For example, a uses may
provide a new machine that does not have all the necessary software installed on it to act as a
database storage system 100. In this embodiment, the operation 2015 copics the program
code that implements the modules of a database storage system to the target machine along
with the data stored in the storage system data storc 2025, The program codc copicd to the
target machine is installed and prepared for execution. Accordingly, the machine provided
for use as the target database storage system 2010 is prepared to execute the modules of a
database storage system 100. After the data associated with database stored in the storage
system data store 2025 is copied to the storage system data store 2030, the target database
storage system 2010 can perform VDB related operations, for example, creating a virtual
database or provisioning 2045 a virtual database to a VDB system 2050.

[0127] FIG. 21 illustratcs anothcer cmbodiment of a system cnvironment based on
database storage systems 100 for implementing a workflow scenario conventionally
implemented as shown in FIG. 19. The source database systems 1905 are directly linked and
loaded 2110 into the database storage system 2105. As illustrated in FIG. 21, the database
storage system 2105 may be available in a different site 1960 or physical location as the site

37

WO 2011/049839 PCT/US2010/052960

1955 storing the sourcc databascs or the two systems may be in the same sitc. The changes to
the source data store 1935 of the source database systems 1905 are loaded 2110 to the
database storage system 2105 periodically. The database storage system 2103 acts as the
copy of the databases in source data stores 1935 that can be used for disaster recovery.
Virtual databases can be created in the database storage system 2105 and provisioned for
availability to thc VDB system 2150.

[0128] In an embodiment, the database storage system 2105 can also be used in a high
availability scenario where it acts as a standby system that can be used when the source
database system 1905 is down. The database storage system 2105 acts as a standby database
by creating a VDB and provisioning 2115 the created VDB to the VDB system 2150. The
VDB system 2150 can acts as the standby database when the corresponding source database
system 1905 is down. The database request that were processed by the source database
system 1905 can be processed by the VDB system 2150 while the source database system
1905 is down. When the source database system 1905 is ready to process requests, the
changes made to the VDB by the VDB system 2150 are exported to the source storage
system. After applying the changes from the VDB system 2150 to the source database
system 19335, the database requests can be diverted back to the source database system 1905.
[0129] FIG. 22 illustratcs anothcer cmbodiment of a system environment bascd on data
storage systems for implementing a workflow scenario conventionally implemented as shown
in FIG. 19. In some enterprises, there may be existing systems that replicate data from source
database systems 1905 to target database systems 1910. Accordingly, it may not be
necessary to link and load the data to a database storage system 2200 directly from the source
databasc system 1905 as illustratcd in FIG. 21. As shown in the FIG. 22, the link load 2265
operation can be performed using the information available in the target database systems
1910 to which information form source database systems 1905 is being copied. Linking and
loading the data from the database storage system may result in load on the source database
system 1905 that can be avoided by retrieving the appropriate information from the mirror
systems, for example, the target database systems 1910. This leaves the source storage
systems 1903 undisturbed while providing the necessary information to the database storage
systcm 2200.

Workflow for Managing a Data Warchouse

[0130] FIG. 23 illustrates a system environment for creating a data warehouse and data
marts using data available in databases. The production database system 2305 contains the
latest information based on transactions in one or more databases stored in the data store

38

WO 2011/049839 PCT/US2010/052960

2330. Information from onc or morc production databasc systems 2305 may be assimilatcd
2380 into the data store 2340 of an operational data store 2310 for analysis purposes. The
data in the operational data store 2310 is further processed 2385 by an extract transform and
load (ETL) system 2355. The data processed by the ETL system 2355 is sent 2375 to the
data warchouse system 2315. The ETL system 2355 may temporarily store the data for
proccssing. The processing performed by the ETL system 2355 allows the data to be stored
in the data store 2360 of the data warchouse system 2315 in specific format useful for
reporting and analysis operations specific to a data warchouse system 2315. Subsets of data
stored in the data store 2360 may be computed 2370 for storage in data stores 2365 of data
mart systems 2320 intended for analysis of the subsets of data for specific purposes. Since
data is stored in data stores of several systems described above, the data may be backed up
2350 using a backup system 2325 and stored in a backup data store 2335. The above process
may maintain multiple copies of the same data in different systems even though the data may
not have changed. Besides, several different computer systems are used for storing the data,
thereby resulting in inefficient utilization of resources.

[0131] FIG. 24 illustrates an embodiment of a system environment based on a database
storage system 100 for implementing a workflow scenario conventionally implemented as
shown in FIG. 23. The databascs in the data storc 2330 of the production databasc systcm
2305 are linked and loaded 2450 to the database storage system 2400. After the initial load
operation 2450, subsequent loads 2450 only transfer data that has changed in the
corresponding databases in the data store 2330. A virtual database can be created and
provisioned 2455 for use as the operational data store 2310. The ETL system 2355 processes
2385 the data obtained from the VDB associated with the opcerational data store 2310 and
sends 2375 the processed data to the data warchouse system 2315. The data stored in the data
store 2360 of the data warehouse 2315 is linked and loaded 2460 to the database storage
system 2400. The database storage system 2400 can create VDBs and provision 2470 them
by for use by data mart systems 2320. Systems including the operational data store 2310,
ETL system 2355, and data mart systems 2320 may not need to store the corresponding
databases locally and can utilize the storage system data store 2490 for storing the databases.
Furthcrmore, the process of backing up the various databascs in the above workflow is
achieved by backing up 2465 the storage system data store 2490 to the data store 2335 of the
backup system 2325. As described in the workflow scenario of backup in FIG. 18, the
backup performed using the database storage system 2400 as shown in FIG. 24 can be more
efficient compared to individual backups performed by various systems as shown in FIG. 23.

39

WO 2011/049839 PCT/US2010/052960

The backup of storage systecm data storc 2490 is cfficicnt because the amount of data being
backed up can be significantly less since the storage system data store 2490 efficiently stores
copies of data and also because transferring data from a single system can be more efficient
than transferring data from multiple systems.

Computing Machine Architecture

[0132] FIG. 25 is a block diagram illustrating componcnts of an cxamplc machinc ablc to
read instructions from a machine-readable medium and execute them in a processor (or
controller). Specifically, FIG. 25 shows a diagrammatic representation of a machine in the
example form of a computer system 2500 within which instructions 2524 (e.g., software) for
causing the machine to perform any one or more of the methodologies discussed herein may
be executed. In alternative embodiments, the machine operates as a standalone device or may
be connected (e.g., networked) to other machines. In a networked deployment, the machine
may operate in the capacity of a server machine or a client machine in a server-client network
environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
[0133] The machine may be a server computer, a client computer, a personal computer
(PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a cellular
telephone, a smartphone, a web appliance, a network router, switch or bridge, or any machine
capablc of cxccuting instructions 2524 (scquential or otherwise) that specify actions to be
taken by that machine. Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of machines that individually or
jointly execute instructions 2524 to perform any one or more of the methodologies discussed
herein.
[0134] The cxample computer system 2500 includes a processor 2502 (c.g., a central
processing unit (CPU), a graphics processing unit (GPU), a digital signal processor (DSP),
one or more application specific integrated circuits (ASICs), one or more radio-frequency
integrated circuits (RFICs), or any combination of these), a main memory 2504, and a static
memory 2506, which are configured to communicate with each other via a bus 2508. The
computer system 2500 may further include graphics display unit 2510 (e.g., a plasma display
panel (PDP), a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)). The
computcr system 2500 may also include alphanumeric input device 2512 (c.g., a keyboard), a
cursor control device 2514 (e.g., a mouse, a trackball, a joystick, a motion sensor, or other
pointing instrument), a storage unit 2516, a signal generation device 2518 (e.g., a speaker),
and a network interface device 2520, which also are configured to communicate via the bus
2508.

40

WO 2011/049839 PCT/US2010/052960

[0135] The storage unit 2516 includes a machine-readable medium 2522 on which is
stored instructions 2524 (e.g., software) embodying any one or more of the methodologies or
functions described herein. The instructions 2524 (e.g., software) may also reside,
completely or at least partially, within the main memory 2504 or within the processor 2502
(e.g., within a processor’s cache memory) during execution thereof by the computer system
2500, thc main memory 2504 and the processor 2502 also constituting machinc-rcadable
media. The instructions 2524 (e.g., software) may be transmitted or received over a network
2526 via the network interface device 2520.

[0136] While machine-readable medium 2522 is shown in an example embodiment to be
a single medium, the term “machine-readable medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed database, or associated caches
and servers) able to store instructions (e.g., instructions 2524). The term “machine-readable
medium” shall also be taken to include any medium that is capable of storing instructions
(e.g., instructions 2524) for execution by the machine and that cause the machine to perform
any one or more of the methodologies disclosed herein. The term “machine-readable
medium” includes, but not be limited to, data repositories in the form of solid-state memorices,
optical media, and magnetic media.

Additional Configuration Considcrations

[0137] Throughout this specification, plural instances may implement components,
operations, or structures described as a single instance. Although individual operations of
one or more methods are illustrated and described as separate operations, one or more of the
individual operations may be performed concurrently, and nothing requires that the
opcrations be performed in the order illustrated. Structurcs and functionality presented as
separate components in example configurations may be implemented as a combined structure
or component. Similarly, structures and functionality presented as a single component may
be implemented as separate components. These and other variations, modifications,
additions, and improvements fall within the scope of the subject matter herein.

[0138] Certain embodiments are described herein as including logic or a number of
components, modules, or mechanisms. Modules may constitute either software modules
(c.g., codc ecmbodicd on a machinc-readable mcedium or in a transmission signal) or hardware
modules. A hardware module is tangible unit capable of performing certain operations and
may be configured or arranged in a certain manner. In example embodiments, one or more
computer systems (e.g., a standalone, client or server computer system) or one or more
hardware modules of a computer system (e.g., a processor or a group of processors) may be

41

WO 2011/049839 PCT/US2010/052960

configurcd by softwarc (c.g., an application or application portion) as a hardwarc modulc that
operates to perform certain operations as described herein.

[0139] In various embodiments, a hardware module may be implemented mechanically
or electronically. For example, a hardware module may comprise dedicated circuitry or logic
that is permanently configured (e.g., as a special-purpose processor, such as a field
programmablc gatc array (FPGA) or an application-spccific intcgrated circuit (ASIC)) to
perform certain operations. A hardware module may also comprise programmable logic or
circuitry (e.g., as encompassed within a general-purpose processor or other programmable
processor) that is temporarily configured by software to perform certain operations. It will be
appreciated that the decision to implement a hardware module mechanically, in dedicated and
permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by
software) may be driven by cost and time considerations.

[0140] Accordingly, the term “hardware module” should be understood to encompass a
tangible entity, be that an entity that is physically constructed, permanently configured (c.g.,
hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to
perform certain operations described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodiments in which hardware modules
arc tcmporarily configurcd (c.g., programmed), cach of thc hardwarc modules nced not be
configured or instantiated at any one instance in time. For example, where the hardware
modules comprise a general-purpose processor configured using software, the general-
purpose processor may be configured as respective different hardware modules at different
times. Software may accordingly configure a processor, for example, to constitute a
particular hardwarc module at onc instancc of time and to constitute a diffcrent hardwarc
module at a different instance of time.

[0141] Hardware modules can provide information to, and receive information from,
other hardware modules. Accordingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple of such hardware modules exist
contemporaneously, communications may be achieved through signal transmission (e.g., over
appropriate circuits and buses) that connect the hardware modules. In embodiments in which
multiplc hardwarc modulcs arc configurcd or instantiated at diffcrent times, communications
between such hardware modules may be achieved, for example, through the storage and
retrieval of information in memory structures to which the multiple hardware modules have
access. For example, one hardware module may perform an operation and store the output of
that operation in a memory device to which it is communicatively coupled. A further

42

WO 2011/049839 PCT/US2010/052960

hardwarc modulc may then, at a latcr time, access the memory device to retricve and process
the stored output. Hardware modules may also initiate communications with input or output
devices, and can operate on a resource (e.g., a collection of information).

[0142] The various operations of example methods described herein may be performed,
at least partially, by one or more processors that are temporarily configured (e.g., by
softwarc) or pcrmancntly configurcd to perform the relevant operations. Whether
temporarily or permanently configured, such processors may constitute processor-
implemented modules that operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodiments, comprise processor-
implemented modules.

[0143] Similarly, the methods described herein may be at least partially processor-
implemented. For example, at least some of the operations of a method may be performed by
one or processors or processor-implemented hardware modules. The performance of certain
of the operations may be distributed among the one or more processors, not only residing
within a single machine, but deployed across a number of machines. In some example
embodiments, the processor or processors may be located in a single location (e.g., within a
home environment, an office environment or as a server farm), while in other embodiments
the proccessors may be distributed across a number of locations.

[0144] The one or more processors may also operate to support performance of the
relevant operations in a “‘cloud computing” environment or as a “software as a service”
(SaaS). For example, at least some of the operations may be performed by a group of
computers (as examples of machines including processors), these operations being accessible
via a nctwork (c.g., the Intcrnet) and via onc or morce appropriatc interfaces (c.g., application
program interfaces (APIs).)

[0145] The performance of certain of the operations may be distributed among the one or
more processors, not only residing within a single machine, but deployed across a number of
machines. In some example embodiments, the one or more processors or processor-
implemented modules may be located in a single geographic location (e.g., within a home
environment, an office environment, or a server farm). In other example embodiments, the
onc or more proccssors or processor-implemented modules may be distributed across a
number of geographic locations.

[0146] Some portions of this specification are presented in terms of algorithms or
symbolic representations of operations on data stored as bits or binary digital signals within a
machine memory (e.g., a computer memory). These algorithms or symbolic representations

43

WO 2011/049839 PCT/US2010/052960

arc cxamples of tcchniques uscd by thosc of ordinary skill in the data proccssing arts to
convey the substance of their work to others skilled in the art. As used herein, an “algorithm”
is a self-consistent sequence of operations or similar processing leading to a desired result. In
this context, algorithms and operations involve physical manipulation of physical quantities.
Typically, but not necessarily, such quantities may take the form of electrical, magnetic, or
optical signals capablc of being stored, accessed, transferred, combined, compared, or

otherwise manipulated by a machine. It is convenient at times, principally for reasons of

common usage, to refer to these signals using words such as “data,” “content,” “bits,”

23 4¢ 29 << 2 & 23 <e, TS 23 ¢

“values,” “elements,” “symbols,” “characters,” “terms,” “numbers,” “numerals,” or the like.
These words, however, are merely convenient labels and are to be associated with appropriate
physical quantities.

[0147] Unless specifically stated otherwise, discussions herein using words such as

2% << 9% cc 99 <

“processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the
like may refer to actions or processes of a machine (e.g., a computer) that manipulates or
transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-volatile memory, or a combination
thereof), registers, or other machine components that receive, store, transmit, or display
information.

[0148] As used herein any reference to “one embodiment” or “an embodiment” means
that a particular element, feature, structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. The appearances of the phrase “in one
embodiment” in various places in the specification are not necessarily all referring to the
samc cmbodiment.

[0149] Some embodiments may be described using the expression “coupled” and
“connected” along with their derivatives. Tt should be understood that these terms are not
intended as synonyms for each other. For example, some embodiments may be described
using the term “connected” to indicate that two or more elements are in direct physical or
electrical contact with each other. In another example, some embodiments may be described
using the term “coupled” to indicate that two or more elements are in direct physical or
clectrical contact. The term “coupled,” howcever, may also mcan that two or morc clements
are not in direct contact with each other, but yet still cooperate or interact with each other.
The embodiments are not limited in this context.

9% &és

comprising,” “includes,” “including,”

RIS

[0150] As used herein, the terms “comprises,
“has,” “having” or any other variation thereof, are intended to cover a non-exclusive

44

2010310827 21 Jan 2015

inclusion. For example, a process, method, article, or apparatus that comprises a list of

- clements is not necessarily limited to only those elements but may include other elements not

expressly listed or inherent to such process, method, article, or apparatus, Further, unless
expressly stated to the comdrary, “or™ refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the following: A is true {or present)
and B is false (or not present), A is false {or not present) and B is true (or present), and hoth
A and B are true (or present).

{8184] In addition, use of the “a” or “an™ are employed to deseribe elements and
components of the embodiments hevein. This is done merely for convenience and to give a
general sense of the disclosure. This description should be read to include one or at least one
and the singuiar also includes the plural unless it is obvious that it is meant otherwise,

{31521 Upon reading this disclosure, those of skill in the art will appreciate still additional
alternative structural and functional designs for a system and a process for creating virtual
databuses from point-in-time copies of production databases stored in 4 storage manager.
Thus, while particular embodiments and applications have been illustrated and described, it is
to be understood that the disclosed embodiments are not limited to the precise construction
and components disclosed hereln, Various modifications, changes and variations, which will
be apparent to those skilled in the art, may be made in the arrangement, operation and details
of the method and apparatus disclosed herein without departing from the spirit and scope

defined in the appended claims.

et
L

2010310827 21 Jan 2015

What ts claimed is:

1. A wmethod for creating a virtual database system, the method comprising:

receiving different point-in-time copies of a source dalabase, the source detabase
comprising a plurality of database blocks;

storing on a storage system, database blocks for a plurality of different pointin- time
copies of the source database, wherein at least some of the stored database blocks are
associated with multiple point-in-time copies of the source database;

creating a set of files for a virtual database, each file in the set of files is linked to the
database blocks on the storage system associated with a point-in-time copy of the source
database; and

mounting the set of {iles associated with the virtual database on a database server
allowing the database server to read from and weite to the set of files.

2. The method of claim 1, further comprising:

receiving a read request for data in the set of files associated with the virtual database
from the database server;

aceessing data in at least one database block associgted with a file in the set of files;
and -

sending the data in response to the read request.

3. The method of claim 1 or 2, further comprising:

sending a request {o receive a polnt-in-time copy of a source database,

4. The method of elaim 1, 2 or 3, wherein the source database is a storage level
snapshot of a production database.

3. The method of any one of the preceding claims, wherein the source database is a
standby database that replicates a production database.

6. The method of any one of the preceding claims, wherein the virtual database is a
first virtual database and the source database is a second virtual database.

7. The method of any one of the preceding claims, further comprising:

associating the sotrce database with a predetermined policy for managing point- in-
time copies of the source database.

8. The method of claim 7, wherein the predetermined policy specifies a schedule for
receiving point-in-time copies of the sowrce database.

9. The method of ¢laim §, wherein the schedule specifies calendar days for recelving

point-in~time copies of the source database.

46

2010310827 21 Jan 2015

10. The method of claim 7 or 8, wherein the predetermined policy spscifies a schedule
for purging the point-in-time copy after a retention period.

11. The method of ¢laim 7, 8 or 10, wherein the predetermined policy specifies
purging the point-in-time copy based on availability of space on the storage sysiem.

12. The method of any one of the preceding claims, wherein the storage system is
running on a virtual machine.

13. The method of any one of the preceding claims, further comprising:

sending program code to a production database system associated with the souree
database, wherein the program code s configured o send point-in-time copies of the source
database.

14, The method of any one of the preceding claims, further comprising:

recetving information describing transaction logs from the source database

wherein the transaction logs represent changes to the source database since a previous
point-tu-time copy was recetved.

15. The method of any one of the preceding claims, further comprising:

receiving information describing transaction logs from the sowee database,

wherein information describing transaction logs represents changes to the sourse
database since a previous receipt of information deseribing fransaction logs,

16, The method of claim 15, further comprising;

managing transaction jogs associated with the source datahase based on a
predetermined policy.

17. The wethod of claim 15 or 16, wherein the predetermined policy specifies s
schedule for receiving transaction logs of the source database.

18. The method of claim 17, wherein the schedule specifics calendar days for
receiving transaction logs of the source database.

19, The method of claim 15, 16 or 17, wherein the predetermined policy specifies a
schedule for purging the transaction logs after & retention period.

20. The method of claim 15, 16,17 or 19, whereln the predetermined policy specifies
purging the transaction logs based on availability of space on the storage system,

21. The method of any one of the preceding claims, wherein the database serverisa
first database server and the source database is for a second database server and the version of
the first database server is different from the version of the second database server,

22. The method of any one of the preceding claims, wherein the database serveris a

first database server and the source database is for a second database server and the first

47

2010310827 21 Jan 2015

database server is munning on an operating system that is different from operating system on
which the second database server is running,

23. The method of any one of the preceding clalms, wherein the set of files is a first
set of files, the virtual database is a first virtual database, and the database server is a first
database server, the method further comprising:

creating a second set of files for a second virtwal database, each file in the second set
of files linked to the database blocks on the storage system associated with the point-in-time
copy of the source database; and

mounting the seeond set of files associated with the second virtual database on a
second database server allowing the second database server to read from and write to the
second set of files.

24. The method of claim 23, wherein at least some of the stored database blocks
associated with the first set of files are also associated with the second set of files.

25, The method of clatm 23 or 24, further comprising:

receiving a request to write data to the first virtual database from the database server;
and

tdentifying a database block assoeiated with a file in the first set of files associated
with the {irst virtual database,

26. The method of any one of the preceding elaims, wherein the set of files is a first
set of files, the virtual database is a first virtual database, the database server isa fivst
database server, and the peint-in-time copy is the first paint-in-time copy, the methad further
comprising:

creating a second set of files for a second virtual database, each file in the seeond set
of files linked to the database blocks on the storage system associated with a second point-in-
timie copy of the source database; and

mounting the second set of files agsociated with the second virtual database on a
second database server allowing the second database server to read from and write to the
second set of files,

27, The method of claim 23, wherein at least some of the siored database blocks
associated with the first set of files are also agsociated with the second set of files.

responsive to the database block being also associated with the second set of filas
associated with the second virtual database, copying the database block; and

linking the copied database block with the file and writing the data to the copied

database block.

4%

2010310827 21 Jan 2015

28. The method of any ene of the preceding clatms, whereln receiving point-in-time
copies comprises receiving data streams corresponding to the point-in-time copies, wherein
cach data stream comprises data from database blocks associated with the source database.

29. The method of claim 28, Ruther comprising:

analyzing the data streams received to identify database blocks; and

storing the identified database bloacks,

30, The method of claim 28 or 29, wherein a data steeam corresponding to a first
point-in-time copy includes database blocks changed in the source database since a previous
point-in-tine copy was received.

31. The method of claim 28, 29 or 30, further comprising:

analyzing the data streams received to identify database blocks and snalyzing the
metadata of database blocks to determine the length of the database blocks for processing the
data stream,

32. The method of any one of clains 28 to 31, further comprising:

analyzing the data streams received to identily database blocks and analyzing the
metadata of database blocks to determine whether the database block needs to be stored.

33. The wmethod of any one of clalms 28 to 32, fether comprising:

analyzing the data streams received to identify database blocks and determining not to
store the database blocks that are one of temporary database blocks, empty database blocks,
or database blocks that did not change since a previous retrieval of point-in-time copy of the
source databage,

34. The method of claim 13, further comprising:

storing the information describing the transaction logs in hierarchical memory storage
devices,

35. The method of any one of the preceding claims, wherein mounting the set of files
is storage protocol independent,

36. The method of any one of the preceding claims, further comprising:

compressing the database blocks prior to storing on the storage system.

37. The method of any one of the preceding claims, wherein the source database is a
portion of a production database.

38, The method of claim 37, wherein the portion of the production database comprises
a table space.

38. The method of claim 37 or 38, wherein the portion of the production database

comprises at loast a database table,

49

2010310827 21 Jan 2015

40. The method of any one of the preceding claims, wherein the database blocks
Hinked with the set of files comprise a portion of the source databage.

41. The method of any one of the preceding claims, wherein the datahase blocks
linked with the set of files comprise at least a database table associated with the source
database.

42. The method of any one of the preceding claims, wherein the virtual database is a
privileged virtual database that allows access to all infermation.

43, The method of any one of the preceding claims, wherein the virtual database is &
non-privileged virtual database that allows access to a subset of information considered non-
sensitive information.

44. The method of claim 43, wherein the virtual database is 8 non-privileged virtual
database that masks sensitive information.

45, The method of any one of the preceding claims, further comprising:

associating a point-in-time copy with a bookmark token; and

specifying the bookmark token to specify the point-in-time copy of the source
database for use in ereating a virtual database.

46. The method of claim 48, further comprising:

storing the bookmark token.

47. The method of any one of the preceding claims, further comprising:

associating the virtual database with one or more privileges specifying accessibility of
mformation to a user with a given privilege.

48. The method of any one of the preceding clatins, wherein a privilege s one oft

administrator privilege allowing policy management;

owner privilege allowing provisioning of VI?Bs; and

auditor privilege allowing viewing of information assoctated with VDBs,

49, A computer-implermented system for creating a virtual database, the system
comprising

a compuler processor; and

a computer-readable storage medium storing computer program modules configured
to- execute on the computer processor, the computer program modules comprising:

a point-in-time copy manager module conligured to;

receive different point-in-time copies of a source database, the source database
comprising a plurality of database blocks;

a storage allocation manager module configured to:

50

2010310827 21 Jan 2015

w2

tore on a storage system, database blocks for a plurality of different point-in-time
copies of the source database, wherein at least some of the stored database blocks are
associated with multiple point-in~time copies of the source database;

a virtual database manager module configured to:

create a set of files fora virtual database, each file in the set of files Hinked to the
database blocks on the storage system associated with a point-in-time copy of the source
database; and a file sharing manager module configured tor

mount the set of files associgted with the virtual database on a database server
allowing the database server to read from and write to the set of files.

30. The system of claim 49, wherein the virtual database manager module is finther
configured to;

receive a read request for data in the set of files associated with the virtual database
from the database server;

access data in at least one database block associated with a file in the set of files; and

send the data in response 1o the read request.

51, The system of clair 49 or 50, wherein the set of files is a first set of files, the
virtual database is a first virtual database, and the virtual database manager module is further
configured to:

receive a regquest to write data to the first virtaal database from the database server;

tdeniify a database block associated with & file u the frst set of {iles associated with
the first victual database; and

responsive to the database block being alse associated with a second set of files
assoctated with a second virtual database, copy the database block; and

link the copied database block with the file and write the data to the copied database
block,

52, The system of claim 49, 50 or 31, wherein the point-in-time copy manager module
is further configured to:

send a request to receive 4 point-in-time copy of a source database,

33, The system of any one of claims 49 to 52, wherein the point-instime copy
manager module receives poini-in-time copies comprising data sireams, wherein a data
streamy comprises data from database blocks of the source database.

54, The system of any one of claims 49 to 53, wherein the point-in-time copy
manager module is further configured to

analyze the data streams received to identify database blocks to be stored.

31

2010310827 21 Jan 2015

55. The system of any one of claims 49 to 34, wherein the data stream comprises
database blocks changed in the source database since a previous point-in-time copy was
received.

36, A computer program product having a computer-readable storage medium storing
computer-executable code for creating a virtual database, the code comprising:

a point-in-iime copy manager module configured to:

receive different point-in-time copics of a source database, the source database
comprising 8 plurality of database blocks;

a storage allocation manager module configured to:

store on g storage system, database blocks for a plurglity of different point-in- time
copies of the source database, wherein at least some of the stored database blocks are
assoctated with multiple pointin-time copies of the source database;

a virtnal database mansger module configured to:

create a set of files for & virtual database, each file in the set of files Hnked 1o the
database blocks on the storage system gssociated with a point-in- time copy of the soaree
database; and

a file shaving manager module configured to:

mount the set of files associated with the virtnal database on a database server
allowing the database server to read from and write to the set of files.

37. A method for creating a virtual database system, the method comprising:

receiving point-in-time copies of a plurality of souree databases, each source database
comprising a plurslity of database blocks;

storing on a storage system, database blocks for the point-in-time copies of the
phurality of source databases, wherein at least some of the stored database blocks are
associated with multiple point-in-time copies of a source database from the plurality of
sourge databases;

creating a set of files for a virtual database, the set of files linked to the database
blocks on the storage system associated with point-in-time copies of the plurality of soutce
databases; and

mounting the set of files associated with the virtual database on a database server
allowing the database server to read from and write to the set of files.

58. A method for creating a virtual database system of claim 1 or 57 and substantially

as hereinbefore described with reference to the accompanying drawings.

Ty
B3

2010310827 21 Jan 2015

39, A computer-implemented system for creating a virtual database substantially as
hereinbefore deseribed with reference to the accompanying drawings.

60. A computer program product having a computer-readable storage medivm storing
computer-executable code for creating a virtual database substantially as hereinbefore

described with reference to the accompanying drawings.

0%
3

PCT/US2010/052960

WO 2011/049839

1/25

|
02} wosAs
Buneys syl 4

(B)0C] waisAg
aseqgele(]

[BNHIA

/

{T)0CT weysAs
aseqele(q

[enpIA

(e)os1

(@oz1

L OId

(e)oglL

gt

(0)0ET wasAs
aseqele(q

[enpIA

s
-

(9)osL

00T waisAs
abrl0o)g asegeieq

071 walsAg
uonensIuIWpY

(e)01 1 woisAs

@seqejeq uonoNpoId

(@011 weisAs

aseqejeq uononNpold

WO 2011/049839 PCT/US2010/052960

2/25

Production Database Virtual Database

! !
! !
| |
: - System 130
System 110 I Database Storage ! yeem =
| |
205 210 i System 100 | 230
Database Operating [I Database
Server System ! ! Server
. | | .
Version VX OSx i 220 i Ve.r.s.l.?n. V_y_
g Virtual g
[Database [240
Database : DB1 : Operating
DB | i System
! !
! !
! !
! !
' !
|

FIG. 2(a)

Production Database Virtual Database

! |
[[
| |
: System 130
System 110 I Database Storage ! yetom =2
| |
205 210 | System 100 i 230
Database Operating [I Database
Server System ! ! Server
. | | .
Version Vx OSx i 220 | Version Vx
g Virtual ,
[Database ! 240
Database : DB1 : Operating
DB1 i , System
i | OSy
i |) .-
! |
! |
! |
| |
|

FIG. 2(b)

PCT/US2010/052960

3/25

WO 2011/049839

, € Old
CMLM\M._ JOAIBS aINpPo 2l019
mm>w asegeie(] \J aoepo| ejeq ga
) Jopus uonoNpPo.
T (€J09E m_ommm/ BoNpo.d
— Jobeuepy
2I0)S ele
(®)06T weishs oreho Sbot sseqereq REiqT PO
aseqele([enMIA [enpIA weysAs aseqeleq
\\J ﬂ Lonanpold aﬂg
(\ (e3¢
Ateaqr JoNIBS (eJ0rT wayshs
woysAs aseqejeq Jebeuepy 1obeuepy 1aBeuey eseqejeq uononpold
gan g)09¢ Buieys uoIjeo0| Y uoneinbiuon
(@)08E a4 obelolg weishs
oI e ST 3|NPON 21018
(@)0ET wayshs soea| eleq dd
aseqele(|enMUIA JOPUDA uolonNpold
sobeuely Jebeuep Jobeuey (g)5see
601 Adog swiy
sdeL/u| ul 1UIo Keign
Aieiqi oee uonoesued | :l.n_ : BETNETS
: BEVNETS 0% 01c WoIsAS
weisAg 4 aseqgele
asegele(uononpo.d ACHE
SoA 1)09¢ (Q)SBE
(3)08¢ _ 00T Weishs
abe.0)s aseqejeq 01T walshAs
(OJ0ST Wwashs soepia| aseqeje(U0INPOId
aseqele(|[BNLIA 1980
G6<
P waisAs

uonesIuIWPY

PCT/US2010/052960

WO 2011/049839

4/25

AT

06€ 9.0)S ejeQ
wo)sAg abeiois

Y

Jebeuepy
60T 0sy
“"/
uolnoesuel |
JobBeuey i/ 0cE
uonedo|y
obeioig
&9 Jebeuepy
ey AdoD swi|
uj juiod SOt
e | T—m M

007 wolsAs
sbrlo1g 9segrIR(

1144

v Old
21015
eled gd
uononpo.d SL¥
Aeugin
0St wolsAg Janiesg
uoidnNpoId asegeleq
Gg¢ (323
/r S|NPOoIA
QoBLIdU| oLy
JOPUD A
el Gee
037 woisAg

asege)eq uononpo.d

WO 2011/049839

5/25

510
Receive stream of data including blocks
changed since the last point-in-time copy

515
Identify next block of data in the stream

PCT/US2010/052960

A 4

520
Analyze metadata of block to determine if
block can be eliminated

. Skip Block?

530
Map database block to a database file and
location within the file

535
Save block of data associated with the
database file in a storage efficient manner.

540 . NO
All data of stream

. e
~._ processed?

FIG. 5

WO 2011/049839

6/25

600
Send request to production database
server for changes to online transaction

PCT/US2010/052960

YES New updates to \\NO
~.__online transaction .~

log data \10\93 available 2
610 650

Receive data stream comprising changes
to online transaction log data since the last
update received

Send request to production database
system to check if new updates to
online transagctions available

A

620
Determine log file(s) to which online
transaction log data needs to be written

640

Wait predetermined time interval
between log file updates

-

630
Write online transaction log data received
to log file

FIG. 6

PCT/US2010/052960

WO 2011/049839

7/25

4 Old

—(B)ozL —nozL _{(9)oz2 _—P)ozL _(o)ozL _a)ozL _(e)ozzL
- Rl -t Rl -t Rl -t [—
YAl 9L Gl vl €L Al L 0L
S
T~ X X X / v /s v /s v
_ —~ AN § N mf/. pa L L
(BYoyz T Plovze N (pov X s s e
NN AN pa / 001 walsAs
N\ ~. N7) N7/ 7) obeiois eseqgeje(
\ = / £/ / /
ovz> \ \JA/ Lo\ oy L(eov.
N7 N o<~ 7
\/ N/ A
6L L
zL L oL
\
o1 \
el — =
[,)
(d)oLL 0€L - (oL “(e)oLL

(90T T weishAs
asegele(q uoijonpold

PCT/US2010/052960

WO 2011/049839

8/25

8 9Ol

!
0zl weishs
Buieys sii4

(G)0CT weishs
aseqgeleq

[enpiIA

(9)ors

D)0C] WasAg
aseqgele(

[enpIA

(e)0ES

7

Adoo sypn/pesy — g s1epdn

\ 6o -z AdoD LId - zaa

//
N

Qo8

@ij/
) (e)o18__

7
s/

/

L @epdn 607 -z AdoD 1id - zga |

_ Z Ao Lid -zga |

/

(ozg— [€ evepdn 601 - | Adoo Lid—zga] |

| 2 s1epdn 6o - | Adoo Lid -zaa [—

| 1 @epdn 607 -1 AdoD 1id -zaa |—.

_ | kdoD 11d —z9a [

G1 | L aepdn 601 -z Adoo Lid - 1ga |—

pL | ¢ AdoD 11d - 180 |

= €l zawepdnbol-| Adoo Lid-18d|—

AdaD slupy/pesy — z elepdn
Bo7 -1 AdoD 11d - 19Q

/

Z1 | 1 s1epdn Bo— | Adoo 11d - 1ga |—

HL | | AdoQ Lid - 18a |

\‘ 06¢ 2101S ele(

/Eougw sbeloig

~.

_(ogg
_(2)098

_(p)og8

N

_(0)098

_(9)098

I\,

_(e)og8

\

_(9)oc8

[,

_(p)ocs

oY

_(9)0s8

N,

_(q)oc8

_(e)os8

WO 2011/049839

9/25

Receive request for creation of VDB for

905

time Tn

Identify recent most PIT copy for time Tj,

910

such that Tj < Tn

\ 4

915
Identify portion of log files for the time

period from Tjto Tn

A

920
Create read/write file structure by making
storage efficient copy of data and log files

A

925

Send handles to read/write file structure to

virtual database system

PCT/US2010/052960

A 4

930
Send request to perform recovery of new
virtual database

FIG. 9

PCT/US2010/052960

WO 2011/049839

10/25

0L Ol

lsofpioleroleiofio]

aleralera|ina] fe——

A

A

A

\ 4

rea feea|
w

0501

|sznlren szn|zznien |

NN

21 awi] Joj s9|i4 9an

007 weysAg
abei0)g aseqele

\

——(0)51L01

—(e)oLol

—e)slL0l
A — (a)si01
/
o [so]roeo [zo]io [{—
T LLewll |74 | ed 24 | 14 T}v
ARSI
L\\ 011 waishs

aseqejeq Uononpold

C(@o10L

PCT/US2010/052960

WO 2011/049839

11/25

0GlL L

Ll OI4

lsiofrioferofeiofio|

[rraleraferaia

|sen|ven feen|eznlien|

[rinleinfein|iin|

|1 BwWll 404 S9ll4 gdA

001 waisAg
abeu0)g aseqgeieq

————} 3} } } 01 awil
|]] |]

szofveo] | 1 1 [red]| | feed| | je— LT ownL

W W : :

T T T T T T @E_
_ 245 m o Jed m o« ¢l ol
t t t AN
_ “ “ G20l
1 1	
1	

|so|vo |eo [eo |10

[va|ea]ea | 1a

(

011 WoisAsg
asege)e(uononpold

PCT/US2010/052960

12/25

¢l Old

WO 2011/049839

0£04—
A
//
e pid | e1d | zia | i
4 »
| \
| \
— yzd 2 | |
A \
Ge0lL— 4 » ! \
/ | /\ \
0roL— R :
N AR \
S pedi leed | 1N \
) a \ \
. NN
__ £ \
/7 S
s v
0511 ., N\ 00l
/ i 7 7 N\ /J
— rinlernfein|iin alenlenlual |
1 swWi] Jol ss|i4 ddA ¢l swi] Jof s9li4 daAn
001 Wa1sAg

obelI01g aseqgeleq

PCT/US2010/052960

WO 2011/049839

13/25

Geo vw\,

0s€L~)

€L Ol
010l
_mro_ﬁw_mro_mwo_:o_ _in__mﬁ__mr__ﬂ“__ 0z |[so]e[eo w0 Tl/\v
\\
—— “ _ LLowll |4 | e]2a | 14 Tj/v
seofrzo] 1 11 [rea] i feea] ——50€l
[[_ 7 4
— T e ge
| | | | | | | | | —_—
L e
A \ 2 |
B o oo
| | | | | | | | | |
| | | | | | | | | |
1 1 1 | 1 1 1 1 | 1 agmu—w>w

lsenven [ezn [zznfien |

[raleialeialiia] 1]

¢i+| 1 swl] Joi ss|l4 gdA

00T Woi1sAg

abe.0)g aseqeleq

aseqe)eq uoIoNpPo.d

WO

1405

2011/049839 PCT/US2010/052960

g@\\w_

it ees,
i

7%
7
7

7
7
2
Z
s

7

&

i
7

R
NN

o

R 3

DR T
N RN 3
T

;X\\‘:?\Qﬁ\\\\\\\\\

RS

o

N

e,

-

i

s
i
ic

75

TR
N

2
7
%
7
7
%
7
%

i

s

Z
7
s
o
7
=

3
_ll
NS

e
7

7

WO 2011/049839 PCT/US2010/052960

15/25
1570
1575
Yy v

Development Test System QA System Staging
System 1510 1520 1530

> —P> ——

1555 1560 1565

l 1560

Production Database
1550 System 1505

Database

FIG. 15 (prior art) 1500

WO 2011/049839

16/25

1575

4 Yy

Developm
ent System
1610

1640

1670

Test
System
1615

Database Storage
System 100

Storage

System
Data Store
390

QA
System
1630

PCT/US2010/052960

Staging
System 1640

1560

1665

FIG. 16

Production Database
System 1505

Database
1500

PCT/US2010/052960

WO 2011/049839

17/25

00G1L

aseqeieq

TOG) walshs
aseqeljeq uononpold

09S1

Gral

2l101S ejeq

7OT waishs
Buibeyg

Gasi

SVARCISREE |

09/1 S)S pUodsg

_ _
_ _
_ _
_ _
_ _
_ _
. oel !
i _
_ _
_ _
SLLL _ GcLl |
—> abelog _ ! abelioig
> _ |
|
S ! _ —
GOZT waishs
STZT washs | _
_ e
obeloig asegeieq _ | obelI01g aseqgeleq
| |
_ _
_ _
_ ovLL
gG.ll 0S/1 _ _ SvLl 0/J1
|
| |
_ | SToT orar
_ _ WoISAS weIsAg Jue
_ _ 1891 wdojanaQg
_ _
| ! I)
! _
! _
WaISAS YD _ _ v
_ 0.6l I
|
" [
|
| |
! _

WO 2011/049839 PCT/US2010/052960

18/25
DB System DB System DB System
1805(a) 1805(b 1805(c)
DB DB DB
1810(a) 1810(b 1810(c)
l 1825(b)
1825(a) Backup System 1815 1825(c)
Data Store
1820
FIG. 18(a) (prior art)
DB System DB System DB System
1865(a) 1865(b) 1865(c)
DB DB DB
1860(a) 1860(b) 1860(c)

1830(a) 1830(b) 1830(c)

Database Storage
System 1890 Backup System 1845

Storage >
1855 Data Store

1850

FIG. 18(b)

WO 2011/049839

e e

First Site 1955

Source database

System 1905(a)

Source Data

19/25

1950(a)

Source database

System 1905(b)

1950(b)

—— e e —_

PCT/US2010/052960

Second Site 1960

Target database

System 1910(a)

Target database

System 1910(b)

Target Data

Store

FIG. 19 (prior art)

PCT/US2010/052960

WO 2011/049839

20/25

ejeq 1ebie |

(9)0161 waisAs

oseqelep 196.1e |

21018

eieq 19b.ie |

BJ01 6T Wwoyshks

aseqeiep 19618 |

(a)oeoz

(e)ocoe

0¢ Old
1 _
0¢€0¢
2I0JS Eje(
WweIsAg
abelio)s < 10z

0lL0¢
WwolsAg abeliois

asegele(10bue |

Gt0c

0s0¢
wolsAs

adn

0961 S)S puodssg

abeloi1g

G00¢
wosAg obeuoig

aseqeje(99.N0S

(@)0202

ple 904N0S

(9)G061 weishs

aseqejep 90IN0g

T~

(8)0z0z

Geoc

0102
WwolsAs

adn

e1e 99.N0S

(B)G061 weysAs

aseqejep 89IN0g

G661 SN 18l

PCT/US2010/052960

WO 2011/049839

21/25

0Sl¢
WoISAg

adA

Slic

obelo)1g

G0l¢ waishg
abelolg esegeieq

0961 S}S puodsg

(@oriz

(e)oLiz

(9)G061 waishs

aseqejeq 92In0g

e 904N0S

(B)3061 wayshs

aseqejeq 92In0g

GGGl dUs 184

J

WO 2011/049839 PCT/US2010/052960

22/25

Source database Target database

System 1905(a) 1950(a) System 1910(a)
2265(a) | Database Storage
System 2200

EEEEEEEE—

Source Data Target Data

Store

Storage

System
Data Store
390

System 1905(b) 1950(b) System 1910(b)
—————————>

Source database Target database /

2265(b)

Target Data

FIG. 22

PCT/US2010/052960

WO 2011/049839

23/25

(Le oud) £z ‘D14

Hep ejeq

(8)og

Hep ejeq

Gl CZ WoisAs
asnoyalepp

Bledg

Geee

21015 BlEQ

Gtz WwoisAg dnyoeg

(a)osez

(e)osez

GlE2

6Gee
WoSAS

113

Geee

210]1g ejeq
[euonesadQ

08€c

G0Ce WaIshg
asegele(
uonRonNpold

PCT/US2010/052960

WO 2011/049839

24/25

(9)0zee
WoISAS

Jep eled

(ejocee
WaISAS

Hep ejeq

(@)0.¥Z

09vc

09¢¢
8l0]1g B1e(

Gglee

asnoyalepp
ejeq

vc Old

Geee

2J01S ejeq

wasAg dnyoeg

GL€e¢c

A
abesog SovT
GOV weisks e
abelo)1g aseqele
cov2 0Sve
woishg [au01s BlEQ
113 S8EC | |euopesadp

(AT
asegeleq
uononpoud

WO 2011/049839 PCT/US2010/052960

25/25
/2500
—
2562 PROCESSOR CRAPHICS .
L —P|
2524~ INSTRUCTIONS DISPLAY
2504 | MAINMEMORY ALPHA-NUMERIC ==
< > -
2504 T INSTRUCTIONS INPUT DEVICE
| s S e
<« «—
VEMORY BUS DEVICE
N
2508
—~ NErwork STORAGE UNIT .,
2520 MACHINE-
Nevoe [+—™ [« reADsBLE [3520
MEDIUM
INSTRUCTIONS 1 504
2526 SIGNAL
<«——» GENERATION [o518
DEVICE

FIG. 25

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

