wo 2014/105164 A1 |[I1 I 0F OO O O

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2014/105164 A1

3 July 2014 (03.07.2014) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/28 (2006.01) GO6F 9/38 (2006.01) kind of national protection available): AE, AG, AL, AM,
21) International Apolication Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUSI013/047387 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
24 June 2013 (24.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
13/729.931 28 December 2012 (28.12.2012) ys (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: INTEL CORPORATION [US/US]; 2000 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Mission College Boulevard, M/S: RNB-4-150, Santa UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Clara, California 95054 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Tnventors: BEN-KIKI, Oren; Pob 14050, 61140 Tel-Aviv EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
. . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(IL). PARDO, Ilan; 19 Komemiut St, 47246 Ram-
: TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
at-Hasharon (IL). VALENTINE, Robert; Rechov KM. ML. MR. NE. SN. TD. TG
Hadganiot 33-5, 36054 Kiryat Tivon, HA (IL). ? ? - NE, SN, TD, TG).
Published:

74

Agents: MALLIE, Michael J. et al.; Blakely Sokoloff
Taylor & Zafman LLP, 1279 Oakmead Parkway,
Sunnyvale, California 94085 (US).

with international search report (Art. 21(3))

(54) Title: APPARATUS AND METHOD FOR FAST FAILURE HANDLING OF INSTRUCTIONS

REGI

1

PIPELINE 100
FETCH D;i'\é)%TH\TG [DECODE|ALLOC, RENAMING| SCHEDULE
102 104 108 108 10 12

READ!
IMEMORY READ}

FIG. 1A

ISTER

14

RITE BACK]_, .o T~ — |
EXECUTE STAGE I’TMEMORY FXCEPTION ¢y |
118 1

WRITE HANDLING |
118 122 |
L

124

[INSTRUCTION CACHEUNT 134 |4~

BRANCH PREDICTION |
UNIT 132 |

INSTRUCTION TLB UNIT 136 |

CORE 190
\

FRONT END UNIT
130

INSTRUCTION FETCH 138

DECODE UNIT 140

EXECUTICN ENGINE
UNIT 150

FIG.18

I SeT B ENT HINIT 1

I~ TRENAME/ALLOGATOR™ — 7

R Ap————

EXECUTION
UNIT(S)
162

EXECUTION CLUSTER(S) 160

MEMORY
ACCESS
UNIT(S) 164

MEMORY
UNIT 170

DATATLBUNIT L:
172 CACHE
UNIT
176

[DATA CACHE UNTT|
174 "]

(57) Abstract: A processor is described comprising: instruction failure logic to perform a plurality of operations in response to a de -
tected instruction execution failure, the instruction failure logic to be used for instructions which have complex failure modes and
which are expected to have a failure frequency above a threshold, wherein the operations include: detecting an instruction execution
failure and determining a reason for the failure; storing failure data in a destination register to indicate the failure and to specify de-
tails associated with the failure; and allowing application program code to read the failure data and responsively take one or more ac-
tions responsive to the failure, wherein the instruction failure logic performs its operations without invocation of an exception hand -
ler or switching to a low level domain on a system which employs hierarchical protection domains.

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

APPARATUS AND METHOD FOR FAST FAILURE HANDLING OF INSTRUCTIONS

BACKGROUND

Field of the Invention

This invention relates generally to the field of computer processors. More particularly,

the invention relates to an apparatus and method for fast failure handling of instructions.

Description of the Related Art

Invoking accelerators today requires going through a driver interface. In a system in
which a hierarchical protection domain is used, this means switching to ring 0 and copying data
to a different address space, which consumes significant time and processing resources. Due to
the high latency, such accelerator interfaces are also inherently asynchronous. Programmable
accelerators require the accelerated code to be implemented in their own instruction set
architecture (ISA).

Some current processor architectures attempt to address some of these concerns but
provide only a coarse-grained asynchronous mechanism with a high latency between the
accelerated task request and its execution. In addition, current architectures use a non-X86 ISA,
which requires a separate toolchain to generate and integrate the accelerated task with the main
x86 program.

In addition, current asynchronous hardware accelerators (e.g., GPUs) allow the
accelerated task to execute unrelated to the application thread that triggered it. This allows the
application thread to handle exceptions and/or interrupts without affecting the accelerated task,
and even allow the application thread to migrate between cores without impacting the
accelerated task location on the system.

Current synchronous hardware accelerators need to ensure that interrupts, exceptions,
context switches and core migrations are still functionally correct and ensure forward progress.
This is done either by (1) ensuring the accelerator is short enough and doesn’t cause any
exceptions, so that any interrupts are deferred until the accelerator is done; (2) maintaining the
accelerator’s forward progress in existing architectural registers (e.g., REPMOV); or (3) defining
new architectural registers to hold the accelerator status, and adding them to

XSAVE/XRESTORE.

BRIEF DESCRIPTION OF THE DRAWINGS
A better understanding of the present invention can be obtained from the following

detailed description in conjunction with the following drawings, in which:

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

FIG. 1A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention;

FIG. 1B is a block diagram illustrating both an exemplary embodiment of an in-order
architecture core and an exemplary register renaming, out-of-order issue/execution architecture
core to be included in a processor according to embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and a multicore processor with
integrated memory controller and graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accordance with one embodiment of the
present invention;

FIG. 4 illustrates a block diagram of a second system in accordance with an embodiment
of the present invention;

FIG. 5 illustrates a block diagram of a third system in accordance with an embodiment of
the present invention;

FIG. 6 illustrates a block diagram of a system on a chip (SoC) in accordance with an
embodiment of the present invention;

FIG. 7 illustrates a block diagram contrasting the use of a software instruction converter
to convert binary instructions in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention;

FIG. 8A illustrates a processor architecture in which embodiments of the invention may
be implemented;

FIGS. 8B-C illustrate registers for storing data used to invoke accelerators and review
results;

FIGS. 9A-C illustrate method for invoking an accelerator in accordance with one
embodiment of the invention;

FIG. 10 illustrates a method for processing complex instructions which fail often;

FIG. 11 illustrates one embodiment of the invention which uses a stack for storing
accelerator state information.

FIGS. 12A and 12B are block diagrams illustrating a generic vector friendly instruction
format and instruction templates thereof according to embodiments of the invention;

FIGS. 13A-D are block diagrams illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention; and

FIG. 14 is a block diagram of a register architecture according to one embodiment of the

invention.

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

FIG. 15 illustrates a computer system in accordance with certain embodiments of the

invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of the embodiments of the invention
described below. It will be apparent, however, to one skilled in the art that the embodiments of
the invention may be practiced without some of these specific details. In other instances, well-
known structures and devices are shown in block diagram form to avoid obscuring the

underlying principles of the embodiments of the invention.

Exemplary Processor Architectures and Data Types

Figure 1A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention. Figure 1B is a block diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to embodiments of the invention. The
solid lined boxes in Figures 1A-B illustrate the in-order pipeline and in-order core, while the
optional addition of the dashed lined boxes illustrates the register renaming, out-of-order
issue/execution pipeline and core. Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

In Figure 1A, a processor pipeline 100 includes a fetch stage 102, a length decode stage
104, a decode stage 106, an allocation stage 108, a renaming stage 110, a scheduling (also
known as a dispatch or issue) stage 112, a register read/memory read stage 114, an execute stage
116, a write back/memory write stage 118, an exception handling stage 122, and a commit stage
124.

Figure 1B shows processor core 190 including a front end unit 130 coupled to an
execution engine unit 150, and both are coupled to a memory unit 170. The core 190 may be a
reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 190 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, coprocessor core, general purpose computing graphics
processing unit (GPGPU) core, graphics core, or the like.

The front end unit 130 includes a branch prediction unit 132 coupled to an instruction
cache unit 134, which is coupled to an instruction translation lookaside buffer (TLB) 136, which

is coupled to an instruction fetch unit 138, which is coupled to a decode unit 140. The decode

3

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

unit 140 (or decoder) may decode instructions, and generate as an output one or more micro-
operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect, or are derived from, the original
instructions. The decode unit 140 may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),
etc. In one embodiment, the core 190 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 140 or otherwise within the front
end unit 130). The decode unit 140 is coupled to a rename/allocator unit 152 in the execution
engine unit 150.

The execution engine unit 150 includes the rename/allocator unit 152 coupled to a
retirement unit 154 and a set of one or more scheduler unit(s) 156. The scheduler unit(s) 156
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 156 is coupled to the physical register file(s) unit(s) 158.
Each of the physical register file(s) units 158 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 158 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units may provide architectural vector
registers, vector mask registers, and general purpose registers. The physical register file(s)
unit(s) 158 is overlapped by the retirement unit 154 to illustrate various ways in which register
renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s) and a
retirement register file(s); using a future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.). The retirement unit 154 and the
physical register file(s) unit(s) 158 are coupled to the execution cluster(s) 160. The execution
cluster(s) 160 includes a set of one or more execution units 162 and a set of one or more memory
access units 164. The execution units 162 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed
integer, packed floating point, vector integer, vector floating point). While some embodiments
may include a number of execution units dedicated to specific functions or sets of functions,
other embodiments may include only one execution unit or multiple execution units that all
perform all functions. The scheduler unit(s) 156, physical register file(s) unit(s) 158, and

execution cluster(s) 160 are shown as being possibly plural because certain embodiments create

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar
floating point/packed integer/packed floating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster — and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution cluster of this pipeline has the
memory access unit(s) 164). It should also be understood that where separate pipelines are used,
one or more of these pipelines may be out-of-order issue/execution and the rest in-order.

The set of memory access units 164 is coupled to the memory unit 170, which includes a
data TLB unit 172 coupled to a data cache unit 174 coupled to a level 2 (L.2) cache unit 176. In
one exemplary embodiment, the memory access units 164 may include a load unit, a store
address unit, and a store data unit, each of which is coupled to the data TLB unit 172 in the
memory unit 170. The instruction cache unit 134 is further coupled to a level 2 (L2) cache unit
176 in the memory unit 170. The L2 cache unit 176 is coupled to one or more other levels of
cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order issue/execution core
architecture may implement the pipeline 100 as follows: 1) the instruction fetch 138 performs
the fetch and length decoding stages 102 and 104; 2) the decode unit 140 performs the decode
stage 106; 3) the rename/allocator unit 152 performs the allocation stage 108 and renaming stage
110; 4) the scheduler unit(s) 156 performs the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register read/memory read stage 114; the
execution cluster 160 perform the execute stage 116; 6) the memory unit 170 and the physical
register file(s) unit(s) 158 perform the write back/memory write stage 118; 7) various units may
be involved in the exception handling stage 122; and 8) the retirement unit 154 and the physical
register file(s) unit(s) 158 perform the commit stage 124.

The core 190 may support one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 190 includes logic to support a packed data
instruction set extension (e.g., AVX1, AVX2, and/or some form of the generic vector friendly
instruction format (U=0 and/or U=1), described below), thereby allowing the operations used by
many multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or more

parallel sets of operations or threads), and may do so in a variety of ways including time sliced

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

multithreading, simultaneous multithreading (where a single physical core provides a logical
core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of out-of-order execution, it should be
understood that register renaming may be used in an in-order architecture. While the illustrated
embodiment of the processor also includes separate instruction and data cache units 134/174 and
a shared L2 cache unit 176, alternative embodiments may have a single internal cache for both
instructions and data, such as, for example, a Level 1 (1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may include a combination of an internal cache
and an external cache that is external to the core and/or the processor. Alternatively, all of the
cache may be external to the core and/or the processor.

Figure 2 is a block diagram of a processor 200 that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in Figure 2 illustrate a processor 200 with a
single core 202A, a system agent 210, a set of one or more bus controller units 216, while the
optional addition of the dashed lined boxes illustrates an alternative processor 200 with multiple
cores 202A-N, a set of one or more integrated memory controller unit(s) 214 in the system agent
unit 210, and special purpose logic 208.

Thus, different implementations of the processor 200 may include: 1) a CPU with the
special purpose logic 208 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 202A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of the
two); 2) a coprocessor with the cores 202A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 202A-N being a large number of general purpose in-order cores. Thus, the processor 200
may be a general-purpose processor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 200 may be a part of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,

for example, BICMOS, CMOS, or NMOS.

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

The memory hierarchy includes one or more levels of cache within the cores, a set or one
or more shared cache units 206, and external memory (not shown) coupled to the set of
integrated memory controller units 214. The set of shared cache units 206 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 212 interconnects the integrated graphics logic 208, the set of shared cache
units 206, and the system agent unit 210/integrated memory controller unit(s) 214, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or more cache units 206 and cores 202-
A-N.

In some embodiments, one or more of the cores 202A-N are capable of multi-threading.
The system agent 210 includes those components coordinating and operating cores 202A-N. The
system agent unit 210 may include for example a power control unit (PCU) and a display unit.
The PCU may be or include logic and components needed for regulating the power state of the
cores 202A-N and the integrated graphics logic 208. The display unit is for driving one or more
externally connected displays.

The cores 202A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that is, two or more of the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a
different instruction set.

Figures 3-6 are block diagrams of exemplary computer architectures. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or
electronic devices capable of incorporating a processor and/or other execution logic as disclosed
herein are generally suitable.

Referring now to Figure 3, shown is a block diagram of a system 300 in accordance with
one embodiment of the present invention. The system 300 may include one or more processors
310, 315, which are coupled to a controller hub 320. In one embodiment the controller hub 320
includes a graphics memory controller hub (GMCH) 390 and an Input/Output Hub (IOH) 350
(which may be on separate chips); the GMCH 390 includes memory and graphics controllers to

which are coupled memory 340 and a coprocessor 345; the IOH 350 is couples input/output (I/O)

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

devices 360 to the GMCH 390. Alternatively, one or both of the memory and graphics
controllers are integrated within the processor (as described herein), the memory 340 and the
coprocessor 345 are coupled directly to the processor 310, and the controller hub 320 in a single
chip with the IOH 350.

The optional nature of additional processors 315 is denoted in Figure 3 with broken lines.
Each processor 310, 315 may include one or more of the processing cores described herein and
may be some version of the processor 200.

The memory 340 may be, for example, dynamic random access memory (DRAM), phase
change memory (PCM), or a combination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310, 315 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or similar
connection 395.

In one embodiment, the coprocessor 345 is a special-purpose processor, such as, for
example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 320 may include an integrated graphics accelerator.

There can be a variety of differences between the physical resources 310, 315 in terms of
a spectrum of metrics of merit including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instructions that control data processing
operations of a general type. Embedded within the instructions may be coprocessor instructions.
The processor 310 recognizes these coprocessor instructions as being of a type that should be
executed by the attached coprocessor 345. Accordingly, the processor 310 issues these
coprocessor instructions (or control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 345. Coprocessor(s) 345 accept and
execute the received coprocessor instructions.

Referring now to Figure 4, shown is a block diagram of a first more specific exemplary
system 400 in accordance with an embodiment of the present invention. As shown in Figure 4,
multiprocessor system 400 is a point-to-point interconnect system, and includes a first processor
470 and a second processor 480 coupled via a point-to-point interconnect 450. Each of
processors 470 and 480 may be some version of the processor 200. In one embodiment of the
invention, processors 470 and 480 are respectively processors 310 and 315, while coprocessor
438 is coprocessor 345. In another embodiment, processors 470 and 480 are respectively

processor 310 coprocessor 345.

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

Processors 470 and 480 are shown including integrated memory controller (IMC) units
472 and 482, respectively. Processor 470 also includes as part of its bus controller units point-
to-point (P-P) interfaces 476 and 478; similarly, second processor 480 includes P-P interfaces
486 and 488. Processors 470, 480 may exchange information via a point-to-point (P-P) interface
450 using P-P interface circuits 478, 488. As shown in Figure 4, IMCs 472 and 482 couple the
processors to respective memories, namely a memory 432 and a memory 434, which may be
portions of main memory locally attached to the respective processors.

Processors 470, 480 may each exchange information with a chipset 490 via individual P-
P interfaces 452, 454 using point to point interface circuits 476, 494, 486, 498. Chipset 490 may
optionally exchange information with the coprocessor 438 via a high-performance interface 439.
In one embodiment, the coprocessor 438 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communication processor, compression engine,
graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor is placed
into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an interface 496. In one embodiment,
first bus 416 may be a Peripheral Component Interconnect (PCI) bus, or a bus such as a PCI
Express bus or another third generation I/O interconnect bus, although the scope of the present
invention is not so limited.

As shown in Figure 4, various I/O devices 414 may be coupled to first bus 416, along
with a bus bridge 418 which couples first bus 416 to a second bus 420. In one embodiment, one
or more additional processor(s) 415, such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital signal processing (DSP)
units), field programmable gate arrays, or any other processor, are coupled to first bus 416. In
one embodiment, second bus 420 may be a low pin count (LPC) bus. Various devices may be
coupled to a second bus 420 including, for example, a keyboard and/or mouse 422,
communication devices 427 and a storage unit 428 such as a disk drive or other mass storage
device which may include instructions/code and data 430, in one embodiment. Further, an audio
I/0 424 may be coupled to the second bus 420. Note that other architectures are possible. For
example, instead of the point-to-point architecture of Figure 4, a system may implement a multi-

drop bus or other such architecture.

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

Referring now to Figure 5, shown is a block diagram of a second more specific
exemplary system 500 in accordance with an embodiment of the present invention. Like
elements in Figures 4 and 5 bear like reference numerals, and certain aspects of Figure 4 have
been omitted from Figure 5 in order to avoid obscuring other aspects of Figure 5.

Figure 5 illustrates that the processors 470, 480 may include integrated memory and I/O
control logic (“CL”) 472 and 482, respectively. Thus, the CL 472, 482 include integrated
memory controller units and include I/O control logic. Figure 5 illustrates that not only are the
memories 432, 434 coupled to the CL 472, 482, but also that I/O devices 514 are also coupled to
the control logic 472, 482. Legacy 1/O devices 515 are coupled to the chipset 490.

Referring now to Figure 6, shown is a block diagram of a SoC 600 in accordance with an
embodiment of the present invention. Similar elements in Figure 2 bear like reference numerals.
Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 6, an
interconnect unit(s) 602 is coupled to: an application processor 610 which includes a set of one
or more cores 202A-N and shared cache unit(s) 206; a system agent unit 210; a bus controller
unit(s) 216; an integrated memory controller unit(s) 214; a set or one or more coprocessors 620
which may include integrated graphics logic, an image processor, an audio processor, and a
video processor; an static random access memory (SRAM) unit 630; a direct memory access
(DMA) unit 632; and a display unit 640 for coupling to one or more external displays. In one
embodiment, the coprocessor(s) 620 include a special-purpose processor, such as, for example, a
network or communication processor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one
output device.

Program code, such as code 430 illustrated in Figure 4, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor, such
as, for example; a digital signal processor (DSP), a microcontroller, an application specific

integrated circuit (ASIC), or a microprocessor.

10

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

The program code may be implemented in a high level procedural or object oriented
programming language to communicate with a processing system. The program code may also
be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular programming language. In any case, the
language may be a compiled or interpreted language.

One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the
techniques described herein. Such representations, known as “IP cores” may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also be referred to as program
products.

In some cases, an instruction converter may be used to convert an instruction from a
source instruction set to a target instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction converter may be implemented in
software, hardware, firmware, or a combination thereof. The instruction converter may be on

processor, off processor, or part on and part off processor.

11

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

Figure 7 is a block diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction
set according to embodiments of the invention. In the illustrated embodiment, the instruction
converter is a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 7
shows a program in a high level language 702 may be compiled using an x86 compiler 704 to
generate x86 binary code 706 that may be natively executed by a processor with at least one x86
instruction set core 716. The processor with at least one x86 instruction set core 716 represents
any processor that can perform substantially the same functions as an Intel processor with at least
one x86 instruction set core by compatibly executing or otherwise processing (1) a substantial
portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 704 represents a compiler that is operable to
generate x86 binary code 706 (e.g., object code) that can, with or without additional linkage
processing, be executed on the processor with at least one x86 instruction set core 716.

Similarly, Figure 7 shows the program in the high level language 702 may be compiled using an
alternative instruction set compiler 708 to generate alternative instruction set binary code 710
that may be natively executed by a processor without at least one x86 instruction set core 714
(e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 712 is used to convert the x86 binary code 706 into code that
may be natively executed by the processor without an x86 instruction set core 714. This
converted code is not likely to be the same as the alternative instruction set binary code 710
because an instruction converter capable of this is difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 712 represents software, firmware, hardware, or a
combination thereof that, through emulation, simulation or any other process, allows a processor
or other electronic device that does not have an x86 instruction set processor or core to execute

the x86 binary code 706.

Apparatus and Method for Efficiently Invoking Accelerators

One embodiment of the invention provides a generic, extensible instruction for low-
latency invocation of synchronous (e.g., fixed function or programmable) accelerators (e.g., co-

processors, functional units), referred to herein as an “XCALL” instruction. In one embodiment,

12

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

the instruction is an x86 instruction. However, the underlying principles of the invention are not
limited to any instruction set architecture (ISA).

The instruction format according to one embodiment is: XCALL result-register,
command-register, param-register which identifies a result register for storing results following
executing of the instruction, a command register for storing the specific command and associated
information to be executed by an accelerator in response to the instruction, and a parameter
register for storing parameters associated with the invoked instruction, respectively. The
specific information stored in each register according to one embodiment of the invention is set
forth below.

Figure 8A illustrates a high level flow in which one or more processor clusters 804
perform general purpose processing operations and one or more accelerator clusters 801 perform
accelerator-specific operations. By way of example, the general purpose processor clusters 804
may include execution logic within a processor core for executing instructions (e.g., general
purpose instructions such as x86 instruction) including instructions which invoke commands on
the accelerator clusters 801. In one embodiment, the accelerators of the accelerator cluster 801
are co-processors or functional units for performing specialized data processing operations (e.g.,
vector/SIMD operations, graphics operations, sort and loop operations, etc). The underlying
principles of the invention, however, are not limited to any particular type of general purpose
cores or accelerator cores.

The processor clusters 804 and accelerator clusters 801 may be logical units within the
same processor chip or core. Alternatively, the processor clusters 804 may be on one chip and
the accelerator clusters 801 may be on a different chip (either in the same semiconductor
package or on different packages) and connected via a communication bus (e.g., such as a PCI
Express, Direct Media Interface (DMS) or other type of communication bus). In yet another
embodiment, some of the accelerator clusters 801 may be on the same chip or core as the
processor clusters 804, while other accelerator clusters 801 may be on a different chip or core.
The embodiments of the invention described herein are not limited to any particular
chip/packaging configuration and support implementations with multiple different types of
accelerator clusters.

As illustrated in Figure 8A, a set of registers 830 are provided to enable communication
of commands, parameters and results between the general purpose processor clusters 804 and the
accelerator clusters 801 as described herein. Specifically, in one embodiment, the register set
830 includes the command registers, result registers, and parameter registers specified by the

XCALL instruction. The register set 830 may be general purpose registers (GPRs) which are

13

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

used for the purposes specified below (e.g., storing commands, parameter data, and result data in
response to the execution of an XCALL instruction). In an alternate embodiment, these are
dedicated, application-specific registers.

In one embodiment, the clusters execute program code 806-807, 809-810, including an
XCALL instruction which may cause one or more accelerators to be invoked 808. In response,
control information specifying an operation to be performed is provided to the accelerator 801
via a command register (described below with respect to Figure 8B) and/or parameter register
within the register set 830. In response, the accelerator may use one or more fixed function units
802 and/or programmable function units 803 to execute the command. Alternatively, the
accelerator cluster 801 may respond with a busy indication, exception, or violation. The results
are then provided to the processor clusters 804 via a result register within the register set 830
(described below with respect to Figure 8C). If the command was successfully executed, the
resulting data may be stored in the result register. By contrast, if the command was not
successfully executed, then data indicating the reason for the failure may stored in the result
register (and used, for example, to determine whether to re-attempt to execute the command).

As indicated in Figure 8A, one or more handlers 805, 806 may be executed on the
processor clusters. In one embodiment, interrupts generated by a handler may cause an
invocation of the accelerator clusters, as illustrated.

Figure 8B illustrates one embodiment of a command register structure. As illustrated,
the top 16 bits of the command register (identified as fields §11-815) contain the following data
fields encoded with the specified number of bits:

Reserved 811: 2 bit
Continue 812: 1 bit
Tickle 813: 1 bit
Private §14: 1 bit
Id 815: 11 bits

In one embodiment, the id uniquely identifies the accelerator to invoke. For example, as
mentioned above, multiple accelerators may be included within the accelerator cluster 801 and
each of these accelerators may be uniquely identified by an accelerator id code.

In one embodiment, the “private” bit indicates whether the accelerator belongs to a
particular group of known accelerators. For example, if the private bit is set to 0, the id may
identify one of a universal set of accelerators (as defined by the assignee of the present patent
application) such that the same id refers to the same accelerator across all computer

systems/processors. If the private bit is set to 1, the id identifies a proprietary or stock-keeping

14

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

unit (SKU)-specific accelerator. Thus, with the private bit set to 1, the same id may refer to
different accelerators in different systems.

In one embodiment, the low 48 bits of the command register (identified as field 816 in
Figure 8B), and all of the parameter register (not shown), contain application-specific data
defined by the specific invoked accelerator.

In one embodiment, when retired, the XCALL instruction sets the Z-bit in EFLAGS as
follows. As is understood by those of skill in the art, EFLAGS is a status register in an x86
implementations which contains the current state of the processor. The Z bit is set to 1 if the
XCALL completed the execution of the requested accelerator. In this case, if the tickle bit was
set to 1, the result register is not modified, and no actual work is done. If the tickle bit was set to
0, the result register is set to an accelerator-specific value. The Z bit is set to 0 if the XCALL did
not do any work. While the Z-bit is used to indicate whether the XCALL instruction was
successful in this embodiment, a different bit may be set while still complying with the
underlying principles of the invention.

In one embodiment, illustrated in Figure 8C, the result register contains the following
data fields:

Reserved 817: 2 bits (always set to zero in one embodiment)
Permanent §18: 1 bit

Private §19: 1 bit

Failure Details 820: 60 bits

In one embodiment, the permanent bit 818 is used to indicate whether a subsequent call
to the same XCALL will succeed. For example, the permanent bit being set to O indicates that a
future call of the same XCALL may succeed (e.g., if the accelerator was busy serving another
HW thread). By contrast, if there is no point in re-trying the same XCALL (e.g., if the specified
accelerator does not exist in the current SKU, or if the specific command and/or parameter
combination requested is not supported by the accelerator in this SKU) then the permanent bit is
setto 1.

In one embodiment, the low 60 bits of the result register are set to provide additional data
on the reason for the XCALL failure. In one embodiment, the accelerator cluster 801 provides
the information needed to update the result register as described above.

In one embodiment, if the private bit of the result register 8§19 is set to 1, these details
have an accelerator-specific format. If the private bit is set to 0, these details are provided in a

predetermined, universal format (e.g., such as a format specified by the assignee of the present

15

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

patent application). Exemplary failure result codes employed in one embodiment of the
invention include:

Reserved bits in command register were not 0

Accelerator does not exist

Accelerator is busy serving another thread

The flowchart set forth in Figures 9A-C illustrates the operations performed by one
embodiment of the invention. At 901, an XCALL instruction is decoded. As a result, at 902,
data related to the command to be executed by an accelerator is sent to the command register and
any necessary parameters are sent to the parameter register. At 903, the private bit is set in the
command register depending on whether the accelerator belongs to a known group of
accelerators or a proprietary accelerator (as described above). In addition, at 903, an ID code is
updated in the command register to identify the specific accelerator which will execute the
command.

At 904, the identified accelerator receives the command specified by the XCALL
instruction and determines whether it can be executed. For example, the accelerator may
currently be busy servicing another hardware thread and so may be unable to execute the current
command. Additionally, if the current command and/or parameter combination requested is not
supported by the accelerator, then the accelerator will not be able to successfully execute the
command. Alternatively, the accelerator may successfully execute the command at 904.

If the command is successfully executed, then the process moves to Figure 9B where, at
906, the EFLAGS Z-bit is set equal to O to indicate successful execution of the command (as
discussed above). If the tickle bit of the command register was previously set to 1 (e.g., at
operation 902 in Figure 9A), determined at 907, then at 908, the result register is left
unmodified. If the tickle bit was previously set to 0, then at 909, the tickle bit is set to an
accelerator-specific value.

If the command specified by the XCALL instruction was not successfully executed by
the accelerator (determined at 905 in Figure 9A), then at 910 in Figure 9C, the Z bit of
EFLAGS is set equal to 1 (to indicate the failure to execute the command). If it is anticipated
that a future attempt to execute the XCALL instruction will be successful, determined at 911,
then at 913, the permanent bit of the result register (818 in Figure 8C) is set to 0. Additional
data specifying the reason for the failure may also be set in the failure details field 820 of the
result register.

If at 911 it is anticipated that a future attempt to execute the XCALL instruction will be

unsuccessful, then at 912 the permanent bit is set equal to 1 (to indicate the permanence of the

16

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

result) and additional data related to the failure to execute the XCALL instruction is set in the
details field 820 of the result register. In either case above, the data in the details field 820 may
be analyzed to determine the root cause of the failure and/or to take steps to modify the
instruction execution.

As mentioned above, the control register and/or the parameter register may be modified
by the XCALL instruction. In addition, just like a normal call, an XCALL may consume stack
area within the processor. In one embodiment which uses an x86 architecture, during the
XCALL (e.g., when examined by an exception handler), the 64-bit stack pointer register (RSP) is
be updated to reflect the stack usage. On retirement, the RSP register is restored to its original
value to reflect releasing the used stack area. The amount of stack used depends on the specific
accelerator in use.

The invoked accelerator may examine and/or modify the value of additional registers
and/or memory locations during the sequences of operations described herein. While the
specific semantics may be different for different accelerators, the underlying principles of the
invention remain the same.

In one embodiment, accelerators are configured to obey the following set of rules:

(1) If interrupts and/or exceptions are allowed during the XCALL, then the
continue bit is set to 1 and the XCALL is re-issued once the handler completes and execution
continues.

(2) The accelerator must ensure forward progress in the presence of interrupts
and/or exceptions.

(3) Any state required by the accelerator to implement forward progress in the
presence of interrupts and/or exceptions may be updated in documented accelerator-specific
location(s), which can be in one or more of (a) the command and/or parameter registers; (b) other
architectural registers; (c) the stack area; (d) additional memory locations. In all of the above
cases, such a state must survive save and restore operations such as from a context switch (e.g.,
XSAVE/context-switch/ XRESTORE).

(4) An accelerator may choose to permanently reject an invocation if it is given an
“invalid” command and/or parameter registers (e.g., unsupported features, values that exceed
hardware limitations, . . . etc.). However, if an accelerator has accepted an invocation, it is
responsible for completing the request and providing results.

(5) Programmable accelerators invoke user code, which may be restricted in
accelerator-specific ways (represented by programmable functions unit 803 in Figure 8A). For

example, a “sort” accelerator may invoke the comparison function, and a “loop” accelerator may

17

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

invoke the loop body. If the user code does not obey the expected restrictions (e.g., it tries to
enter ring O when a ring-based hierarchical protection domain is used), then the accelerator will
trigger an exception (specifically, UD), after saving its state as usual.

(6) The exception handler may choose to (a) complete the partially-evaluated
accelerator in non-accelerated software, based on the saved state; (b) emulate the unsupported
instruction, and re-issue the XCALL (requiring tweaking the saved state so the unsupported
operation is not re-tried); or (c) terminate the execution. Simply trying to re-issue the XCALL
without any modifications will simply re-trigger the exception (as expected for UD).

The embodiments of the invention described herein provide a standard mechanism which
may be incorporated into an instruction set architecture (ISA) such as an x86 ISA for invoking
accelerators. In contrast to the techniques described in the background of the present patent
application, the accelerator invocation techniques described herein allow for fine-grained, low-
latency synchronous accelerators that naturally share as much (or as little) of the core’s resources
such as memory translation, registers, caches, etc. Programmable XCALL accelerators allow the
user to accelerate normal x86 code (e.g. loops and sorting), which is an integral part of the main
x86 program and does not require a separate toolchain.

In addition, current accelerator interfaces are designed for a specific accelerator, while
the embodiments of the invention described herein are extensible, allowing the streamlined
provision of specific accelerators for specific market segments, as well as “universal”
accelerators across all market segments. Accelerator invocation can be done at low latencies
and without data copying overheads, allowing the ecosystem of such accelerators to cover
functionality that was impractical to provide previously. It also becomes possible to tailor SKUs
with accelerators for specific markets (embedded systems, image processing, HPC server, etcs),
maintaining the tight integration with existing ISAs such as x86.

The XCALL interface described herein also opens up the ability to extend CPUs to cover
functionality that was not previously accessible without stepping outside of the CPU ISA and
toolchain (the x86 ISA for processors designed by the assignee of the present patent application).
For example, using the techniques described herein programmable accelerators 803 such as
programmable loop accelerators (SKMD) and sort accelerators may be provided, as well as
fixed-function accelerators 802 such as those which perform Fast-Fourier Transform (FFT),

texture sampling, and various other functions.

Fast Failure Handling of Complex ISA Instructions

Currently, failing instructions don’t have a way to provide additional details about the

failure, except by way of dedicated flag bits and/or dedicated registers typically for use in

18

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

exception handlers. The embodiments of the invention described below provide a new “fast
failure” behavior for instructions. In this new behavior, an instruction may return a success/fail
indication (e.g., inside a flags register such as EFLAGS or some other register). In addition, in
one embodiment, the instruction writes additional failure details in a normal destination register
upon detection of a failure. This allows the application code to test the instruction
success/failure and respond to certain failure modes without wasting processing resources and
time which would result from the invocation of an exception handler or switching to a low level
domain on a system which employs hierarchical protection domains (e.g., ring 0).

The proposed new trade-off point for instruction failure handling is selected for a certain
class of instructions which are both failure-prone and have complex failure modes, such as the
XCALL instruction described above. However, it is not suitable for other classes of operations
such as division by zero (DIV) which are not prone to failure, or for failure-prone operations
such as locks that have a simple failure mode.

One embodiment of the invention classifies instructions into one of the following groups:

(1) Always succeed. For example, every instance of an instruction which adds the

values in two registers is expected to succeed. In one embodiment of the invention, no
failure handling is provided for instructions in this category.

(2) Expected to succeed most of the time. For example, an instruction which

divides the values stored in two registers will normally succeed. It will only fail as the
result of a divide by zero error. In one embodiment of the invention, this class of
instructions will trigger an exception handler on failure. The exception handler can then
examine dedicated registers such as x86 control registers (CR) containing additional
failure information to determine the correct course of action (e.g., CR2 for page faults).
The exception handler is separated from the normal application code, keeping the
application code clean and uncontaminated by the failure-handling logic.

(3) Expected to fail “‘often”” with a simple failure mode. In one embodiment, for

these types of instructions, bit(s) in flags and/or destination register(s) are set to indicate
failure, but no details are provided. One example is an instruction which attempts to set
locks data. For these simple failure modes, the application code itself explicitly handles
recovery (without requiring an exception handler).

(4) Expected to fail “often” with a complex failure mode. For this class of

instructions, processing systems currently need to resort to an exception handler to access
dedicated registers for examining the failure details. For instructions that fail “often” and

have complex failure modes, the embodiments of the invention allows setting bit(s) in

19

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

flags and/or destination register(s) to indicate failure, and also set additional bit(s) in

destination register(s) to specify the details of the failure, allowing the application code to

take the correct actions without resorting to an exception handler.

This reduces the cost of failure to a minimum (at the cost of having to test the result of
each instruction). It also allows the application to trivially tailor its failure-handling logic to the
current context, as opposed to using a hard-to-change universal exception handler (at the cost of
having to explicitly invoke this logic at any invocation point).

By way of example, this behavior is described above for the XCALL instruction. In the
example provided in Figures 9A-C, the XCALL instruction specifies a command to be executed
by a particular accelerator. In response, the accelerator may execute the command and provide
the results in the result register (which, as discussed may be a general purpose register).
Alternatively, the accelerator may fail to execute the command for a variety of reasons and
update the result register with the reasons for the failure. For example, the accelerator may
currently be busy servicing another hardware thread and so may be unable to execute the current
command. In this case, the XCALL instruction may be successfully executed at a later time
when the accelerator is no longer busy. As such, in response to the failure indication, the
permanent bit 818 is set to 0 in the result register to indicate that a second attempt may be made
to execute the XCALL instruction.

In contrast, if the current command and/or parameter combination requested is not
supported by the accelerator, then the accelerator will never be able to successfully execute the
command. As such, in response to the failure indication, the permanent bit 818 is set to 1 in the
result register to indicate that a second attempt will not result in successful execution of the
XCALL instruction.

Subsequent program code may then read the result register to determine how to proceed.
For example, if the permanent bit is set to 0, it may again attempt to execute the XCALL
instruction while if the permanent bit is set to 1, it may not attempt to execute the XCALL
instruction.

Figure 10 is a flowchart which illustrates one embodiment of the invention for
implementing this mode of operation. The operations specified in the flowchart may be
implemented by logic within an execution unit. At 1001, an attempt is made to execute a first
instruction and, at 1002, an attempt is made to execute a second instruction. If the first
instruction was successfully executed, determined at 1003, then at 1004, the second instruction is
also successfully executed. For example, the second instruction may rely on the results of the

first instruction written to a register (such as the result register mentioned above).

20

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

If the first instruction was not successfully executed then, at 1005, the second instruction
also fails to execute. In contrast to prior implementations, the complex failure details are
examined at 1006 without invoking an exception handler so that a failure evaluation can be
performed by the application program code. In particular, a subsequent instruction may be
executed to read the results from the result register and determine whether a new attempt should
be made to execute the first instruction. If the results of the failure indicate that a second attempt
would not work, then the second attempt may be prevented, saving time and processor resources.
If the results indicate that a second attempt may be successful, then a second attempt to execute
the first instruction may be made. While these specific examples are provided for ease of
explanation, it should be noted that the underlying principles of the invention are not limited to
these specific details.

Thus, in the embodiments of the invention described herein, an instruction’s normal
destination registers are used for a dual role; they hold the result in the case of normal execution,
and failure details if the instruction fails. This is different from current implementations where
there are dedicated registers for computation results and for failure results and/or where an
exception handler must be invoked. These techniques may be applied to all providers of
programmable processors (CPUs, DSPs, GPUs,...).

The use of fast failure handling of complex instructions opens up the possibility of
implementing instructions such as XCALL which would otherwise be difficult to define as an
efficient instruction. Processors using such efficient instructions will realize improved

performance and reduced development costs.

Task Switchable Synchronous HW Accelerators

Synchronous hardware accelerators need to ensure forward progress in case of
exceptions; for this they need to save their state in a location that survives save and restore
operations (such as XSAVE/XRESTORE in x86 architectures). One embodiment of the
invention enables this operation by extending the save/restore area in order to support new
hardware accelerators (such as those described above and illustrated in Figure 8A).

One embodiment of the invention uses the stack area in memory for storing the
intermediate state of synchronous hardware accelerators to allow for a robust exception model,
including handling task switching and core migration, without operating system (OS) enabling.
In particular, the embodiments of the invention allow accelerators such as synchronous hardware
accelerators to save their state in the memory stack, and safely restore their state following
various types of processor events (e.g., such as exceptions managed by an exception handler as

described below).

21

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

In one embodiment, the hardware accelerator invocation is treated as a CALL instruction
in which the accelerator may consume an area on the user’s stack to maintain its state. When an
exception and/or interrupt forces the accelerator to pause, this state is automatically persistent,
and is available when the accelerator is resumed following the exception handler, context switch
and/or core migration. In the latter case, the hardware accelerator resuming the computation
may be a different one (associated with the new core). In such a case, the new core may access
the saved state within the stack (e.g., from memory or a shared cache).

In one embodiment, the synchronous accelerator is treated like a library function which is
invoked, uses the stack following invocation, and then releases this portion of the stack when
completed (behaving like a function call). In one embodiment, when the accelerator is invoked,
the stack pointer is moved to work with the invoked accelerator’s local variables. When the
invocation is complete, the stack pointer is returned to the place that it originally was so that
caller can start where it left off when the call occurred. In one embodiment, in the even that an
exception handler is invoked, the program’s stack pointer is adjusted to reflect the accelerator’s
stack usage, thereby ensuring that the exception handler does not modify the accelerator’s save
area.

One embodiment of the invention is illustrated in Figure 11 which shows a hardware
stack 1150 in memory, an application hardware thread 1151, and an accelerator thread 1152.
The particular stack 1150 illustrated in Figure 11 includes a caller stack area 1120 for storing
data associated with the execution of the application hardware thread 1151; an accelerator save
area 1130 for storing data associated with the execution of the accelerator thread 1152; and an
exception handler stack area 1140 for storing data associated with the execution of an exception
handler 1105.

In one embodiment, during the execution of the application hardware thread, an
accelerator function is invoked. In response, the stack pointer is adjusted to point to the top of
the accelerator save area 1130 and the entries in the translation lookaside buffer (TLB)
associated with the accelerator save area 1130 are locked at 1101. One reason for doing so is
that if an exception occurs and the accelerator saves its state (be it on the stack or in a another
designated memory area), it is desirable to avoid an additional page fault which would convert
the original exception into a double one. One way to avoid this is to lock the TLB page entry (or
entries) for the accelerator save area 1130 when the accelerator begins work, thereby ensuring
that no such page fault will be generated. The OS can still mark the page as unavailable, but it is
forced to defer physically evicting it until the next context switch (when the thread isn’t running

at all, and the accelerator state is safely saved). On return from the context switch, the accelerator

22

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

re-acquires the TLB page entries (which may point at a different physical locations), load the
state, and continue. A large accelerator save area may span multiple TLB pages (in extreme
cases, dozens of 4k pages). The number of TLB entries that need to be locked can be reduced by
using large pages (e.g., 64k pages).

At 1102, the accelerator performs operations based on to the command which it is
executing and, at 1103, saves its current state to the accelerator save area 1130 within the stack
1150. It then unlocks the TLB 1104 (which had been locked at 1101 to avoid an additional page
fault as described above). As illustrated, an exception event is detected, which is passed to an
exception handler 1105 executed within the application hardware thread 1151. During
execution, the execution handler may read/write using a portion 1140 of the stack 1150 (i.e., it
uses the exception handler stack 1140 to store intermediate state information during the handling
of the exception condition). Once the exception handler has completed its operations, it allows
the accelerator thread 1152 to resume.

At 1106 the accelerator again locks the TLB (for the same reasons as stated above) and,
at 1107, it loads the state which had previously been stored to the accelerator save area 1130.
Note that, at this stage, the accelerator thread 1152 may, in fact, be executed on different core or
processor than the first portion of the accelerator thread (operations 1101-1104). In such a case,
it may simply load the saved accelerator state from the accelerator save area 1130 which may be
physically located in a shared memory or cache. It then completes it’s thread of execution at
1108, unlocks the TLB at 1109 and completes at 1110. Control is then transferred back to the
application hardware thread 1151, which resets the stack pointer to the top of the accelerator
save area 1130 (i.e., where it left off when it began execution of the accelerator thread 1152).

It will be appreciated that various modifications to the specific details provide above may
be implemented while still complying with the underlying principles of the invention. For
example, in one embodiment, a specific memory region may be designated for the accelerator to
hold its state in (rather than using the stack). In this case there is no need to modify the
program’s stack pointer for the exception handler.

In either embodiment, the techniques described herein allow accelerators to work
transparently when the invoking thread is migrated between (symmetrical) cores; the accelerator
on one core saves its state to memory, and when the thread is scheduled on another core, the
accelerator there loads the data from memory (e.g., via a shared common cache for efficiency).
Thus, the embodiments of the invention described herein allow an accelerator to transparently
save its state and ensure forward progress in the presence of exceptions, context switches and/or

core migrations, without OS enabling (e.g., without modifying XSAVE/XRESTORE and/or

23

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

adding architectural registers). This, in turn, permits the use of accelerator forms that previously
required the addition of new architectural registers and OS enabling via modified XSAVE.
Processors using such accelerators realize improved performance and reduced development

COsts.

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may be embodied in different
formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such systems, architectures, and
pipelines, but are not limited to those detailed.

A vector friendly instruction format is an instruction format that is suited for vector
instructions (e.g., there are certain fields specific to vector operations). While embodiments are
described in which both vector and scalar operations are supported through the vector friendly
instruction format, alternative embodiments use only vector operations the vector friendly
instruction format.

Figures 12A-12B are block diagrams illustrating a generic vector friendly instruction
format and instruction templates thereof according to embodiments of the invention. Figure 12A
is a block diagram illustrating a generic vector friendly instruction format and class A instruction
templates thereof according to embodiments of the invention; while Figure 12B is a block
diagram illustrating the generic vector friendly instruction format and class B instruction
templates thereof according to embodiments of the invention. Specifically, a generic vector
friendly instruction format 1100 for which are defined class A and class B instruction templates,
both of which include no memory access 1105 instruction templates and memory access 1120
instruction templates. The term generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific instruction set.

While embodiments of the invention will be described in which the vector friendly
instruction format supports the following: a 64 byte vector operand length (or size) with 32 bit (4
byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector consists of
either 16 doubleword-size elements or alternatively, 8 quadword-size elements); a 64 byte vector
operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes); a 32
byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit
(1 byte) data element widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);

alternative embodiments may support more, less and/or different vector operand sizes (e.g., 256

24

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)
data element widths).

The class A instruction templates in Figure 12A include: 1) within the no memory access
1105 instruction templates there is shown a no memory access, full round control type operation
1110 instruction template and a no memory access, data transform type operation 1115
instruction template; and 2) within the memory access 1120 instruction templates there is shown
a memory access, temporal 1125 instruction template and a memory access, non-temporal 1130
instruction template. The class B instruction templates in Figure 11B include: 1) within the no
memory access 1105 instruction templates there is shown a no memory access, write mask
control, partial round control type operation 1112 instruction template and a no memory access,
write mask control, vsize type operation 1117 instruction template; and 2) within the memory
access 1120 instruction templates there is shown a memory access, write mask control 1127
instruction template.

The generic vector friendly instruction format 1100 includes the following fields listed
below in the order illustrated in Figures 12A-12B.

Format field 1140 — a specific value (an instruction format identifier value) in this field
uniquely identifies the vector friendly instruction format, and thus occurrences of instructions in
the vector friendly instruction format in instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only the generic vector friendly
instruction format.

Base operation field 1142 — its content distinguishes different base operations.

Register index field 1144 — its content, directly or through address generation, specifies
the locations of the source and destination operands, be they in registers or in memory. These
include a sufficient number of bits to select N registers from a PxQ (e.g. 32x512, 16x128,
32x1024, 64x1024) register file. While in one embodiment N may be up to three sources and
one destination register, alternative embodiments may support more or less sources and
destination registers (e.g., may support up to two sources where one of these sources also acts as
the destination, may support up to three sources where one of these sources also acts as the
destination, may support up to two sources and one destination).

Modifier field 1146 — its content distinguishes occurrences of instructions in the generic
vector instruction format that specify memory access from those that do not; that is, between no
memory access 1105 instruction templates and memory access 1120 instruction templates.
Memory access operations read and/or write to the memory hierarchy (in some cases specifying

the source and/or destination addresses using values in registers), while non-memory access

25

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

operations do not (e.g., the source and destinations are registers). While in one embodiment this
field also selects between three different ways to perform memory address calculations,
alternative embodiments may support more, less, or different ways to perform memory address
calculations.

Augmentation operation field 1150 — its content distinguishes which one of a variety of
different operations to be performed in addition to the base operation. This field is context
specific. In one embodiment of the invention, this field is divided into a class field 1168, an
alpha field 1152, and a beta field 1154. The augmentation operation field 1150 allows common
groups of operations to be performed in a single instruction rather than 2, 3, or 4 instructions.

Scale field 1160 — its content allows for the scaling of the index field’s content for
memory address generation (e.g., for address generation that uses 2°“ * index + base).

Displacement Field 1162A— its content is used as part of memory address generation
(e.g., for address generation that uses 2°*® * index + base + displacement).

Displacement Factor Field 1162B (note that the juxtaposition of displacement field
1162A directly over displacement factor field 1162B indicates one or the other is used) — its
content is used as part of address generation; it specifies a displacement factor that is to be scaled
by the size of a memory access (N) — where N is the number of bytes in the memory access (e.g.,
for address generation that uses 2°° * index + base + scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor field’s content is multiplied by the
memory operands total size (N) in order to generate the final displacement to be used in
calculating an effective address. The value of N is determined by the processor hardware at
runtime based on the full opcode field 1174 (described herein) and the data manipulation field
1154C. The displacement field 1162A and the displacement factor field 1162B are optional in
the sense that they are not used for the no memory access 1105 instruction templates and/or
different embodiments may implement only one or none of the two.

Data element width field 1164 — its content distinguishes which one of a number of data
element widths is to be used (in some embodiments for all instructions; in other embodiments for
only some of the instructions). This field is optional in the sense that it is not needed if only one
data element width is supported and/or data element widths are supported using some aspect of
the opcodes.

Write mask field 1170 — its content controls, on a per data element position basis,
whether that data element position in the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction templates support merging-

writemasking, while class B instruction templates support both merging- and zeroing-

26

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

writemasking. When merging, vector masks allow any set of elements in the destination to be
protected from updates during the execution of any operation (specified by the base operation
and the augmentation operation); in other one embodiment, preserving the old value of each
element of the destination where the corresponding mask bit has a 0. In contrast, when zeroing
vector masks allow any set of elements in the destination to be zeroed during the execution of
any operation (specified by the base operation and the augmentation operation); in one
embodiment, an element of the destination is set to 0 when the corresponding mask bit has a 0
value. A subset of this functionality is the ability to control the vector length of the operation
being performed (that is, the span of elements being modified, from the first to the last one);
however, it is not necessary that the elements that are modified be consecutive. Thus, the write
mask field 1170 allows for partial vector operations, including loads, stores, arithmetic, logical,
etc. While embodiments of the invention are described in which the write mask field’s 1170
content selects one of a number of write mask registers that contains the write mask to be used
(and thus the write mask field’s 1170 content indirectly identifies that masking to be performed),
alternative embodiments instead or additional allow the mask write field’s 1170 content to
directly specify the masking to be performed.

Immediate field 1172 — its content allows for the specification of an immediate. This
field is optional in the sense that is it not present in an implementation of the generic vector
friendly format that does not support immediate and it is not present in instructions that do not
use an immediate.

Class field 1168 — its content distinguishes between different classes of instructions.
With reference to Figures 11A-B, the contents of this field select between class A and class B
instructions. In Figures 11A-B, rounded corner squares are used to indicate a specific value is
present in a field (e.g., class A 1168A and class B 1168B for the class field 1168 respectively in
Figures 11A-B).

Instruction Templates of Class A

In the case of the non-memory access 1105 instruction templates of class A, the alpha
field 1152 is interpreted as an RS field 1152A, whose content distinguishes which one of the
different augmentation operation types are to be performed (e.g., round 1152A.1 and data
transform 1152A.2 are respectively specified for the no memory access, round type operation
1110 and the no memory access, data transform type operation 1115 instruction templates),
while the beta field 1154 distinguishes which of the operations of the specified type is to be
performed. In the no memory access 1105 instruction templates, the scale field 1160, the

displacement field 1162A, and the displacement scale filed 1162B are not present.

27

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

No-Memory Access Instruction Templates — Full Round Control Type Operation

In the no memory access full round control type operation 1110 instruction template, the
beta field 1154 is interpreted as a round control field 1154A, whose content(s) provide static
rounding. While in the described embodiments of the invention the round control field 1154A
includes a suppress all floating point exceptions (SAE) field 1156 and a round operation control
field 1158, alternative embodiments may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields (e.g., may have only the round
operation control field 1158).

SAE field 1156 — its content distinguishes whether or not to disable the exception event
reporting; when the SAE field’s 1156 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point exception flag and does not raise any
floating point exception handler.

Round operation control field 1158 — its content distinguishes which one of a group of
rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 1158 allows for the changing of the rounding
mode on a per instruction basis. In one embodiment of the invention where a processor includes
a control register for specifying rounding modes, the round operation control field’s 1150

content overrides that register value.

No Memory Access Instruction Templates — Data Transform Type Operation

In the no memory access data transform type operation 1115 instruction template, the
beta field 1154 is interpreted as a data transform field 1154B, whose content distinguishes which
one of a number of data transforms is to be performed (e.g., no data transform, swizzle,
broadcast).

In the case of a memory access 1120 instruction template of class A, the alpha field 1152
is interpreted as an eviction hint field 1152B, whose content distinguishes which one of the
eviction hints is to be used (in Figure 12A, temporal 1152B.1 and non-temporal 1152B.2 are
respectively specified for the memory access, temporal 1125 instruction template and the
memory access, non-temporal 1130 instruction template), while the beta field 1154 is interpreted
as a data manipulation field 1154C, whose content distinguishes which one of a number of data
manipulation operations (also known as primitives) is to be performed (e.g., no manipulation;
broadcast; up conversion of a source; and down conversion of a destination). The memory
access 1120 instruction templates include the scale field 1160, and optionally the displacement

field 1162A or the displacement scale field 1162B.

28

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

Vector memory instructions perform vector loads from and vector stores to memory, with
conversion support. As with regular vector instructions, vector memory instructions transfer
data from/to memory in a data element-wise fashion, with the elements that are actually
transferred is dictated by the contents of the vector mask that is selected as the write mask.
Memory Access Instruction Templates — Temporal

Temporal data is data likely to be reused soon enough to benefit from caching. This is,
however, a hint, and different processors may implement it in different ways, including ignoring

the hint entirely.

Memory Access Instruction Templates — Non-Temporal

Non-temporal data is data unlikely to be reused soon enough to benefit from caching in
the 1st-level cache and should be given priority for eviction. This is, however, a hint, and

different processors may implement it in different ways, including ignoring the hint entirely.

Instruction Templates of Class B

In the case of the instruction templates of class B, the alpha field 1152 is interpreted as a
write mask control (Z) field 1152C, whose content distinguishes whether the write masking
controlled by the write mask field 1170 should be a merging or a zeroing.

In the case of the non-memory access 1105 instruction templates of class B, part of the
beta field 1154 is interpreted as an RL field 1157A, whose content distinguishes which one of
the different augmentation operation types are to be performed (e.g., round 1157A.1 and vector
length (VSIZE) 1157A.2 are respectively specified for the no memory access, write mask
control, partial round control type operation 1112 instruction template and the no memory
access, write mask control, VSIZE type operation 1117 instruction template), while the rest of
the beta field 1154 distinguishes which of the operations of the specified type is to be performed.
In the no memory access 1105 instruction templates, the scale field 1160, the displacement field
1162A, and the displacement scale filed 1162B are not present.

In the no memory access, write mask control, partial round control type operation 1110
instruction template, the rest of the beta field 1154 is interpreted as a round operation field
1159A and exception event reporting is disabled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating point exception handler).

Round operation control field 1159A — just as round operation control field 1158, its
content distinguishes which one of a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control

field 1159A allows for the changing of the rounding mode on a per instruction basis. In one

29

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

embodiment of the invention where a processor includes a control register for specifying
rounding modes, the round operation control field’s 1150 content overrides that register value.

In the no memory access, write mask control, VSIZE type operation 1117 instruction
template, the rest of the beta field 1154 is interpreted as a vector length field 1159B, whose
content distinguishes which one of a number of data vector lengths is to be performed on (e.g.,
128, 256, or 512 byte).

In the case of a memory access 1120 instruction template of class B, part of the beta field
1154 is interpreted as a broadcast field 1157B, whose content distinguishes whether or not the
broadcast type data manipulation operation is to be performed, while the rest of the beta field
1154 is interpreted the vector length field 1159B. The memory access 1120 instruction
templates include the scale field 1160, and optionally the displacement field 1162A or the
displacement scale field 1162B.

With regard to the generic vector friendly instruction format 1100, a full opcode field
1174 is shown including the format field 1140, the base operation field 1142, and the data
element width field 1164. While one embodiment is shown where the full opcode field 1174
includes all of these fields, the full opcode field 1174 includes less than all of these fields in
embodiments that do not support all of them. The full opcode field 1174 provides the operation
code (opcode).

The augmentation operation field 1150, the data element width field 1164, and the write
mask field 1170 allow these features to be specified on a per instruction basis in the generic
vector friendly instruction format.

The combination of write mask field and data element width field create typed
instructions in that they allow the mask to be applied based on different data element widths.

The various instruction templates found within class A and class B are beneficial in
different situations. In some embodiments of the invention, different processors or different
cores within a processor may support only class A, only class B, or both classes. For instance, a
high performance general purpose out-of-order core intended for general-purpose computing
may support only class B, a core intended primarily for graphics and/or scientific (throughput)
computing may support only class A, and a core intended for both may support both (of course, a
core that has some mix of templates and instructions from both classes but not all templates and
instructions from both classes is within the purview of the invention). Also, a single processor
may include multiple cores, all of which support the same class or in which different cores
support different class. For instance, in a processor with separate graphics and general purpose

cores, one of the graphics cores intended primarily for graphics and/or scientific computing may

30

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

support only class A, while one or more of the general purpose cores may be high performance
general purpose cores with out of order execution and register renaming intended for general-
purpose computing that support only class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-order or out-of-order cores that support
both class A and class B. Of course, features from one class may also be implement in the other
class in different embodiments of the invention. Programs written in a high level language
would be put (e.g., just in time compiled or statically compiled) into an variety of different
executable forms, including: 1) a form having only instructions of the class(es) supported by the
target processor for execution; or 2) a form having alternative routines written using different
combinations of the instructions of all classes and having control flow code that selects the
routines to execute based on the instructions supported by the processor which is currently
executing the code.

Figure 13A is a block diagram illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention. Figure 13A shows a specific
vector friendly instruction format 1200 that is specific in the sense that it specifies the location,
size, interpretation, and order of the fields, as well as values for some of those fields. The
specific vector friendly instruction format 1200 may be used to extend the x86 instruction set,
and thus some of the fields are similar or the same as those used in the existing x86 instruction
set and extension thereof (e.g., AVX). This format remains consistent with the prefix encoding
field, real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields
of the existing x86 instruction set with extensions. The fields from Figure 12 into which the
fields from Figure 13 map are illustrated.

It should be understood that, although embodiments of the invention are described with
reference to the specific vector friendly instruction format 1200 in the context of the generic
vector friendly instruction format 1100 for illustrative purposes, the invention is not limited to
the specific vector friendly instruction format 1200 except where claimed. For example, the
generic vector friendly instruction format 1100 contemplates a variety of possible sizes for the
various fields, while the specific vector friendly instruction format 1200 is shown as having
fields of specific sizes. By way of specific example, while the data element width field 1164 is
illustrated as a one bit field in the specific vector friendly instruction format 1200, the invention
is not so limited (that is, the generic vector friendly instruction format 1100 contemplates other
sizes of the data element width field 1164).

The generic vector friendly instruction format 1100 includes the following fields listed

below in the order illustrated in Figure 13A.

31

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

EVEX Prefix (Bytes 0-3) 1202 - is encoded in a four-byte form.

Format Field 1140 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is the format
field 1140 and it contains 0x62 (the unique value used for distinguishing the vector friendly
instruction format in one embodiment of the invention).

The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields providing
specific capability.

REX field 1205 (EVEX Byte 1, bits [7-5]) — consists of a EVEX.R bit field (EVEX Byte
1, bit [7] - R), EVEX.X bit field (EVEX byte 1, bit [6] — X), and 1157BEX byte 1, bit[5] — B).
The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same functionality as the
corresponding VEX bit fields, and are encoded using 1s complement form, i.e. ZMMO is
encoded as 1111B, ZMM15 is encoded as 0000B. Other fields of the instructions encode the
lower three bits of the register indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr,
Xxxx, and Bbbb may be formed by adding EVEX.R, EVEX.X, and EVEX.B.

REX" field 1110 — this is the first part of the REX” field 1110 and is the EVEX.R’ bit
field (EVEX Byte 1, bit [4] - R”) that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the invention, this bit, along with others as
indicated below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit
mode) from the BOUND instruction, whose real opcode byte is 62, but does not accept in the
MOD R/M field (described below) the value of 11 in the MOD field; alternative embodiments of
the invention do not store this and the other indicated bits below in the inverted format. A value
of 1 is used to encode the lower 16 registers. In other words, R’Rrrr is formed by combining
EVEX.R’, EVEX.R, and the other RRR from other fields.

Opcode map field 1215 (EVEX byte 1, bits [3:0] — mmmm) — its content encodes an
implied leading opcode byte (OF, OF 38, or OF 3).

Data element width field 1164 (EVEX byte 2, bit [7] — W) - is represented by the
notation EVEX.W. EVEX.W is used to define the granularity (size) of the datatype (either 32-
bit data elements or 64-bit data elements).

EVEX.vvvv 1220 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may include
the following: 1) EVEX.vvvv encodes the first source register operand, specified in inverted (1s
complement) form and is valid for instructions with 2 or more source operands; 2) EVEX.vvvy
encodes the destination register operand, specified in 1s complement form for certain vector
shifts; or 3) EVEX.vvvv does not encode any operand, the field is reserved and should contain

1111b. Thus, EVEX.vvvy field 1220 encodes the 4 low-order bits of the first source register

32

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

specifier stored in inverted (1s complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size to 32 registers.

EVEX.U 1168 Class field (EVEX byte 2, bit [2]-U) — If EVEX.U = 0, it indicates class A
or EVEX.UQ; if EVEX.U =1, it indicates class B or EVEX.U1.

Prefix encoding field 1225 (EVEX byte 2, bits [1:0]-pp) — provides additional bits for the
base operation field. In addition to providing support for the legacy SSE instructions in the
EVEX prefix format, this also has the benefit of compacting the SIMD prefix (rather than
requiring a byte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one
embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into
the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior
to being provided to the decoder’s PLA (so the PLA can execute both the legacy and EVEX
format of these legacy instructions without modification). Although newer instructions could
use the EVEX prefix encoding field’s content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to
support the 2 bit SIMD prefix encodings, and thus not require the expansion.

Alpha field 1152 (EVEX byte 3, bit [7] — EH; also known as EVEX.EH, EVEX rs,
EVEX.RL, EVEX.write mask control, and EVEX.N; also illustrated with o) — as previously
described, this field is context specific.

Beta field 1154 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s,. o, EVEX.r2,
EVEX.rl, EVEX.LLO, EVEX.LLB; also illustrated with BBf) — as previously described, this
field is context specific.

REX’ field 1110 — this is the remainder of the REX” field and is the EVEX.V” bit field
(EVEX Byte 3, bit [3] - V’) that may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted format. A value of 1 is used to encode
the lower 16 registers. In other words, V’VVVV is formed by combining EVEX.V’,
EVEX.vvvv.

Write mask field 1170 (EVEX byte 3, bits [2:0]-kkk) — its content specifies the index of a
register in the write mask registers as previously described. In one embodiment of the invention,
the specific value EVEX . kkk=000 has a special behavior implying no write mask is used for the
particular instruction (this may be implemented in a variety of ways including the use of a write

mask hardwired to all ones or hardware that bypasses the masking hardware).

33

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

Real Opcode Field 1230 (Byte 4) is also known as the opcode byte. Part of the opcode is
specified in this field.

MOD R/M Field 1240 (Byte 5) includes MOD field 1242, Reg field 1244, and R/M field
1246. As previously described, the MOD field’s 1242 content distinguishes between memory
access and non-memory access operations. The role of Reg field 1244 can be summarized to
two situations: encoding either the destination register operand or a source register operand, or
be treated as an opcode extension and not used to encode any instruction operand. The role of
R/M field 1246 may include the following: encoding the instruction operand that references a
memory address, or encoding either the destination register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale field’s 1150
content is used for memory address generation. SIB.xxx 1254 and SIB.bbb 1256 — the contents
of these fields have been previously referred to with regard to the register indexes Xxxx and
Bbbb.

Displacement field 1162A (Bytes 7-10) — when MOD field 1242 contains 10, bytes 7-10
are the displacement field 1162A, and it works the same as the legacy 32-bit displacement
(disp32) and works at byte granularity.

Displacement factor field 1162B (Byte 7) — when MOD field 1242 contains 01, byte 7 is
the displacement factor field 1162B. The location of this field is that same as that of the legacy
x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since disp8 is
sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64 byte cache
lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64; since
a greater range is often needed, disp32 is used; however, disp32 requires 4 bytes. In contrast to
disp8 and disp32, the displacement factor field 1162B is a reinterpretation of disp8; when using
displacement factor field 1162B, the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the memory operand access (N). This type of
displacement is referred to as disp8*N. This reduces the average instruction length (a single byte
of used for the displacement but with a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is multiple of the granularity of the
memory access, and hence, the redundant low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field 1162B substitutes the legacy x86
instruction set 8-bit displacement. Thus, the displacement factor field 1162B is encoded the
same way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB
encoding rules) with the only exception that disp8 is overloaded to disp8*N. In other words,

there are no changes in the encoding rules or encoding lengths but only in the interpretation of

34

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

the displacement value by hardware (which needs to scale the displacement by the size of the
memory operand to obtain a byte-wise address offset).

Immediate field 1172 operates as previously described.

Full Opcode Field

Figure 13B is a block diagram illustrating the fields of the specific vector friendly
instruction format 1200 that make up the full opcode field 1174 according to one embodiment of
the invention. Specifically, the full opcode field 1174 includes the format field 1140, the base
operation field 1142, and the data element width (W) field 1164. The base operation field 1142
includes the prefix encoding field 1225, the opcode map field 1215, and the real opcode field
1230.

Register Index Field

Figure 13C is a block diagram illustrating the fields of the specific vector friendly
instruction format 1200 that make up the register index field 1144 according to one embodiment
of the invention. Specifically, the register index field 1144 includes the REX field 1205, the
REX’ field 1210, the MODR/M.reg field 1244, the MODR/M.r/m field 1246, the VVVYV field
1220, xxx field 1254, and the bbb field 1256.

Augmentation Operation Field

Figure 13D is a block diagram illustrating the fields of the specific vector friendly
instruction format 1200 that make up the augmentation operation field 1150 according to one
embodiment of the invention. When the class (U) field 1168 contains 0, it signifies EVEX.UO
(class A 1168A); when it contains 1, it signifies EVEX.U1 (class B 1168B). When U=0 and the
MOD field 1242 contains 11 (signifying a no memory access operation), the alpha field 1152
(EVEX byte 3, bit [7] — EH) is interpreted as the rs field 1152A. When the rs field 1152A
contains a 1 (round 1152A.1), the beta field 1154 (EVEX byte 3, bits [6:4]- SSS) is interpreted
as the round control field 1154A. The round control field 1154A includes a one bit SAE field
1156 and a two bit round operation field 1158. When the rs field 1152A contains a 0 (data
transform 1152A.2), the beta field 1154 (EVEX byte 3, bits [6:4]- SSS) is interpreted as a three
bit data transform field 1154B. When U=0 and the MOD field 1242 contains 00, 01, or 10
(signifying a memory access operation), the alpha field 1152 (EVEX byte 3, bit [7] — EH) is
interpreted as the eviction hint (EH) field 1152B and the beta field 1154 (EVEX byte 3, bits
[6:4]- SSS) is interpreted as a three bit data manipulation field 1154C.

When U=1, the alpha field 1152 (EVEX byte 3, bit [7] — EH) is interpreted as the write
mask control (Z) field 1152C. When U=1 and the MOD field 1242 contains 11 (signifying a no
memory access operation), part of the beta field 1154 (EVEX byte 3, bit [4]- So) is interpreted as

35

10

15

WO 2014/105164 PCT/US2013/047387

the RL field 1157A; when it contains a 1 (round 1157A.1) the rest of the beta field 1154 (EVEX
byte 3, bit [6-5]- S,.1) is interpreted as the round operation field 1159A, while when the RL field
1157A contains a 0 (VSIZE 1157.A2) the rest of the beta field 1154 (EVEX byte 3, bit [6-5]- S,
1) is interpreted as the vector length field 1159B (EVEX byte 3, bit [6-5]- L; o). When U=1 and
the MOD field 1242 contains 00, 01, or 10 (signifying a memory access operation), the beta field
1154 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the vector length field 1159B (EVEX byte
3, bit [6-5]- L;.0) and the broadcast field 1157B (EVEX byte 3, bit [4]- B).

Figure 14 is a block diagram of a register architecture 1300 according to one
embodiment of the invention. In the embodiment illustrated, there are 32 vector registers 1310
that are 512 bits wide; these registers are referenced as zmmO through zmm31. The lower order
256 bits of the lower 16 zmm registers are overlaid on registers ymmO-16. The lower order 128
bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on
registers xmmO-15. The specific vector friendly instruction format 1200 operates on these

overlaid register file as illustrated in the below tables.

Adjustable Class Operations Registers

Vector Length

Instruction A (Figure 12A; | 1110, 1115, | zmm registers

Templates that | U=0) 1125, 1130 (the vector

do not include length is 64 byte)

the vector length | B (Figure 12B; | 1112 zmm registers

field 1159B U=1) (the vector
length is 64 byte)

Instruction B (Figure 12B; | 1117, 1127 zmm, ymm, or

Templates that | U=1) Xxmm registers

do include the (the vector

vector length length is 64 byte,

field 1159B 32 byte, or 16
byte) depending
on the vector
length field
1159B

In other words, the vector length field 1159B selects between a maximum length and one
or more other shorter lengths, where each such shorter length is half the length of the preceding

length; and instructions templates without the vector length field 1159B operate on the maximum

36

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

vector length. Further, in one embodiment, the class B instruction templates of the specific
vector friendly instruction format 1200 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar operations are operations performed
on the lowest order data element position in an zmm/ymm/xmm register; the higher order data
element positions are either left the same as they were prior to the instruction or zeroed
depending on the embodiment.

Write mask registers 1315 - in the embodiment illustrated, there are § write mask
registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 1315 are 16 bits in size. As previously described, in one embodiment of the invention,
the vector mask register kO cannot be used as a write mask; when the encoding that would
normally indicate kO is used for a write mask, it selects a hardwired write mask of OxFFFF,
effectively disabling write masking for that instruction.

General-purpose registers 1325 - in the embodiment illustrated, there are sixteen 64-bit
general-purpose registers that are used along with the existing x86 addressing modes to address
memory operands. These registers are referenced by the names RAX, RBX, RCX, RDX, RBP,
RSI, RDI, RSP, and RS through R15.

Scalar floating point stack register file (x87 stack) 1345, on which is aliased the MMX
packed integer flat register file 1350 - in the embodiment illustrated, the x87 stack is an eight-
element stack used to perform scalar floating-point operations on 32/64/80-bit floating point data
using the x87 instruction set extension; while the MMX registers are used to perform operations
on 64-bit packed integer data, as well as to hold operands for some operations performed
between the MMX and XMM registers.

Alternative embodiments of the invention may use wider or narrower registers.
Additionally, alternative embodiments of the invention may use more, less, or different register

files and registers.

An Exemplary Computer System

Figure 15 is a block diagram illustrating an exemplary clients and servers which may be
used in some embodiments of the invention. It should be understood that while Figure 15
illustrates various components of a computer system 1500, it is not intended to represent any
particular architecture or manner of interconnecting the components as such details are not
germane to the embodiments of the invention. It will be appreciated that other computer systems
that have fewer components or more components may also be used with the embodiments of

invention.

37

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

As illustrated in Figure 15, the computer system 1500, which is a form of a data
processing system, includes the interconnect(s)/bus(es) 1501 communicatively coupling the
processor cluster(s) 804 to the various other system components. The interconnects/buses may
include various levels of interconnection which may be connected to each other through various
bridges, controllers, and/or adapters as is well known in the art. By way of example, the
interconnect(s) 1501 may include a quick path interconnect (QPI) component, a Peripheral
Component Interconnect Express (“PCI Express”) component, or other technologies for
interconnecting the various components to the processor cluster(s) 804. The underlying
principles of the invention are not limited to any particular interconnects or buses.

Although illustrated as a separate component in Figure 15, the accelerator(s) 801 may be
integrated within the processor cluster(s) 804. Alternatively, some accelerator(s) may be
integrated within the processor cluster(s) and some may be connected to the computer system via
the interconnect(s)/bus(es). As described in detail above, the accelerators are adapted to
efficiently execute certain types of program code (e.g., vector/SIMD operations, graphics
operations, sort and loop operations, etc). By way of example, the general purpose processor
clusters 804 may include execution logic within a processor core for executing general purpose
instructions such as x86 instructions including instructions which invoke commands on the
accelerator clusters 801. The underlying principles of the invention, however, are not limited to
any particular type of general purpose clusters or accelerator clusters.

The embodiment illustrated in Figure 15 also includes a memory interface 1520 for
coupling memory modules 1525 computer system. In one embodiment, the memory modules
1525 are dual in-line memory modules (DIMMs) such as random access memory (RAM)
modules and the memory interface may generate the electrical signaling required to access the
memory modules 1525 (e.g., such as column address strobe (CAS), row address strobe (RAS),
write enable (WE), and output enable (OE) signals).

In one embodiment, the memory interface 1520 comprises logic and circuitry for
interfacing with different types of memory modules including volatile memory modules such as
RAM and non-volatile memory modules such as Phase-Change Memory (PCM), also sometimes
referred to as phase change random access memory (PRAM or PCRAM), PCME, Ovonic
Unified Memory, or Chalcogenide RAM (C-RAM). For example, one embodiment of the
computer system 1500 implements a two-level (2L) memory hierarchy comprising a “near
memory” portion which may be a volatile memory such as RAM and a “far memory” portion
which may be implemented as a Phase-Change Memory (PCM). In such a case, the memory

interface may include the logic and circuitry required to access both memory types.

38

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

The illustrated embodiment 1500 also includes one or more storage interfaces 1518 for
interfacing with storage devices such as hard drives or other non-volatile storage devices. In one
embodiment, the storage interface 1518 comprises a serial ATA storage interface and the hard
drive comprises a solid state drive (SSD) or a magnetic storage device. In an embodiment of the
invention which uses 2LM memory (as discussed above), a portion of the storage on the storage
device 1519 may be used for “far memory” (or a portion of “far memory”).

The illustrated embodiment 1500 also includes a graphics interface 1502 for interfacing
with one or more graphics processing units 1503. The GPUs may be embedded on a
motherboard of the computer system or on a separate card inserted in the motherboard (e.g., via a
PCI express graphics interface, or other high speed graphics interface). A video output interface
1504 such as a digital video interface (DVI), High-Definition Multimedia Interface (HDMI), or
DisplayPort video output interface outputs a video stream to a monitor 1505 which renders video
for the end user. As mentioned, the GPUs may be implemented as accelerator components for
executing graphics program code using any of the embodiments described herein.

The illustrated embodiment 1500 also includes an audio input interface 1516 for
receiving multiple digital and analog audio inputs. For example, a microphone may be coupled
to one of the audio input interfaces to capture the user’s voice (e.g., during Web chats, phone
calls, or for recording audio). Additionally, a digital audio input may be used such as a Toslink
interface.

The illustrated embodiment 1500 also includes a sensor hub 1515 for collecting data from
various different system sensors 1509. By way of example, and not limitation, the sensors 1509
may include mechanical sensors, motion sensors, and location sensors to detect a position and
orientation of the computer system 1500. For example, in one embodiment, the sensors may
include multi-axis accelerometers for detecting acceleration values along the X, Y, and Z axes
and reporting to the data to the sensor hub. The sensor hub may then perform calculations to
determine a current orientation of the computer system 1500. For example, if the computer
system is a notebook computer, the sensor hub may detect a current position of the computer
monitor. The sensors 1509 may also include inertial sensors for detecting displacements from a
reference location and/or proximity sensors for detecting proximity to a user or other device. In
one embodiment, the sensors 1509 include a global positioning system (GPS) sensor or other
sensor for determining the current global position of the computer system. The sensors 1509
may also include a magnetometer for detecting the orientation of the Earth’s electric field (i.e., to
determine a current position of the computing system relative to North). The sensors 1509 may

also include a gyro for detecting changes in orientation and an ambient light sensor for detecting

39

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

current lighting conditions (e.g., so that the sensor hub or other system component may
responsively adjust the brightness of the monitor 1505).

All of the data collected from the various sensors 1509 may be used to determine a
current mode of operation and responsively adjust operation of the computing device 1500. For
example, in response to the signals from the sensors 1509 the computing device may enter into a
first mode of operation in which in which the accelerator invocations described herein are
enabled and a second mode of operation in which the accelerator invocations described herein
are disabled.

The illustrated embodiment 1500 also includes a camera interface 1514 for coupling to a
video camera usable to capture motion video and still pictures. For example, in one
embodiment, the camera interface 1514 gathers motion video for video conferencing
applications in which the accelerator invocation techniques described herein may be used. For
example, one accelerator may be configured to efficiently encode video streams into the
H.264/MPEG-4 AVC format. It should be noted, however, that the underlying principles of the
invention are not limited to any particular video compression format.

The illustrated embodiment 1500 also includes a serial bus interface for establishing
serial data communication with connected devices (e.g., mobile phones, tablets, printers, external
cameras, MIDI devices, etc). This embodiment further includes an Ethernet interface 1512 for
establishing network connections over an Ethernet network and a cellular interface 1511 for
establishing voice and data connections over a cellular network using cellular communication
protocols. Various cellular technologies may be employed including, but not limited to 3rd
Generation Partnership Project technologies (e.g., 3GPP2) code division multiple access
technologies (e.g., CDMA2000 technology using 1xRTT/EVDO/eHRPD); Long Term Evolution
(LTE) technology and/or LTE-Advanced (LTE-A) technology; and Universal Mobile
Telecommunications System (UMTS) technology such as WCDMA/TDSCDMA. In addition,
the embodiment shown also includes a WiFi and/or Bluetooth interface 1510 for establishing
communication over WiFi channels (e.g., 802.11 channels) and/or Bluetooth channels,
respectively. Each of the Ethernet, Cellular, and WiFi communication interfaces include a
transceiver and other circuitry for generating analog transmission signals using the appropriate
technology. In one embodiment, an accelerator may also be invoked to support the network
communication process (e.g., for performing network baseband functions such as data encoding).

The illustrated embodiment 1500 also includes a power management interface 1517 for
detecting current conditions within the computer system (e.g., thermal, power usage, battery life,

etc) and responsively adjusting power usage to each of the different system components. For

40

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

example, under certain conditions, the the power management interface 1517 may turn off the
accelerator functions described herein to conserve power (e.g., when the battery drops below a
threshold value).

The illustrated embodiment 1500 also includes a power management interface 1517 may
also include various different types of Input/Output devices such as a cursor control (e.g., mouse,
touchscreen, touchpad, etc.), a keyboard, etc.) for receiving user input.

It will be appreciated that additional components, not shown in Figure 15, may also be a
part of the data processing system 1500 in certain embodiments of the invention, and in certain
embodiments of the invention fewer components than shown in Figure 15 may be used. In
addition, it will be appreciated that one or more buses and/or interconnects, not shown in Figure
15, may be used to interconnect the various components as is well known in the art.

Embodiments of the invention may include various steps, which have been described
above. The steps may be embodied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to perform the steps. Alternatively, these
steps may be performed by specific hardware components that contain hardwired logic for
performing the steps, or by any combination of programmed computer components and custom
hardware components.

As described herein, instructions may refer to specific configurations of hardware such as
application specific integrated circuits (ASICs) configured to perform certain operations or
having a predetermined functionality or software instructions stored in memory embodied in a
non-transitory computer readable medium. Thus, the techniques shown in the figures can be
implemented using code and data stored and executed on one or more electronic devices (e.g., an
end station, a network element, etc.). Such electronic devices store and communicate (internally
and/or with other electronic devices over a network) code and data using computer machine-
readable media, such as non-transitory computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only memory; flash memory devices; phase-
change memory) and transitory computer machine-readable communication media (e.g.,
electrical, optical, acoustical or other form of propagated signals — such as carrier waves, infrared
signals, digital signals, etc.). In addition, such electronic devices typically include a set of one or
more processors coupled to one or more other components, such as one or more storage devices
(non-transitory machine-readable storage media), user input/output devices (e.g., a keyboard, a
touchscreen, and/or a display), and network connections. The coupling of the set of processors
and other components is typically through one or more busses and bridges (also termed as bus

controllers). The storage device and signals carrying the network traffic respectively represent

41

10

WO 2014/105164 PCT/US2013/047387

one or more machine-readable storage media and machine-readable communication media.
Thus, the storage device of a given electronic device typically stores code and/or data for
execution on the set of one or more processors of that electronic device. Of course, one or more
parts of an embodiment of the invention may be implemented using different combinations of
software, firmware, and/or hardware. Throughout this detailed description, for the purposes of
explanation, numerous specific details were set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the art that
the invention may be practiced without some of these specific details. In certain instances, well
known structures and functions were not described in elaborate detail in order to avoid obscuring
the subject matter of the present invention. Accordingly, the scope and spirit of the invention

should be judged in terms of the claims which follow.

42

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

CLAIMS
What is claimed is:

1. A processor comprising:

instruction failure logic to perform a plurality of operations in response to a detected
instruction execution failure, the instruction failure logic to be used for instructions which have
complex failure modes and which are expected to have a failure frequency above a threshold,
wherein the operations include:

detecting an instruction execution failure and determining a reason for the failure;

storing failure data in a destination register to indicate the failure and to specifty details
associated with the failure; and

allowing application program code to read the failure data and responsively take one or
more actions responsive to the failure,

wherein the instruction failure logic performs its operations without invocation of an
exception handler or switching to a low level domain on a system which employs hierarchical

protection domains.

2. The processor as in claim 1 wherein at least one bit of the failure data indicates
whether a subsequent attempt to execute the same instruction which failed execution will be

unsuccessful.

3. The processor as in claim 2 wherein a first value of the at least one bit indicates
that a subsequent attempt to execute the same instruction will be unsuccessful and a second value
of the bit indicates that a subsequent attempt to execute the same instruction may be successful.

4. The processor as in claim 3 wherein the application program code reads the bit to

determine whether to attempt to re-attempt execution of the same instruction.

S. The processor as in claim 1 wherein the destination register comprises a general

purpose register (GPR) accessible by the instruction failure logic.
6. The processor as in claim 1 wherein the failed instruction comprises an

instruction which invokes an accelerator, wherein the accelerator attempts to execute the

instruction and stores the failure data in the result register in response to the failure.

43

10

15

20

25

30

WO 2014/105164 PCT/US2013/047387

7. The processor as in claim 6 wherein the failure data indicates that the accelerator
was busy servicing a hardware thread different from a thread with which the failed instruction is

associated.

8. The processor as in claim 7 wherein the failure data indicates that the failed

instruction is not supported by the accelerator.

0. A method comprising:

identifying an instruction as one which has a complex failure mode and which is
expected to have a failure frequency above a threshold;

detecting a failure of an attempted execution of the instruction and determining a reason
for the failure;

storing failure data in a destination register to indicate the failure and to specity details
associated with the failure; and

allowing application program code to read the failure data and responsively take one or
more actions responsive to the failure,

wherein the instruction failure logic performs its operations without invocation of an
exception handler or switching to a low level domain on a system which employs hierarchical

protection domains.

10. The processor as in claim 9 wherein at least one bit of the failure data indicates
whether a subsequent attempt to execute the same instruction which failed execution will be

unsuccessful.
11. The processor as in claim 10 wherein a first value of the at least one bit indicates
that a subsequent attempt to execute the same instruction will be unsuccessful and a second value

of the bit indicates that a subsequent attempt to execute the same instruction may be successful.

12. The processor as in claim 11 wherein the application program code reads the bit

to determine whether to attempt to re-attempt execution of the same instruction.

13. The processor as in claim 9 wherein the destination register comprises a general

purpose register (GPR) accessible by the instruction failure logic.

44

10

WO 2014/105164 PCT/US2013/047387

14. The processor as in claim 9 wherein the failed instruction comprises an
instruction which invokes an accelerator, wherein the accelerator attempts to execute the

instruction and stores the failure data in the result register in response to the failure.
15. The processor as in claim 14 wherein the failure data indicates that the accelerator
was busy servicing a hardware thread different from a thread with which the failed instruction is

associated.

16. The processor as in claim 14 wherein the failure data indicates that the failed

instruction is not supported by the accelerator.

45

PCT/US2013/047387

WO 2014/105164

1721

9/l vl
<b] 1NN LINN IHOVO Viva | OLL LINN
JHOYD ZLl AYOWIN
Al 1NN 911 Y1Yg
i &
091 (S)43LSNTD NOILND3X3
91 (S)LINN 291
$S300V (S)LINN
AHOW3AN NOILNO3AX3
T _
|
861 (S)ILINN ST ¥ALSIOTY WIISAHd _
1 _ _ .
||||||||||| 1 1215 E
| _ 95 (UNNYFINGIHOS | | Ny Nawauiay |
iy e |
s
ZGL LINN _ w
_ 051 LINN
— — HOLYOOTTY/IWVNIY_ _ | 3INIONI NOILND3X3
0l
A
_ 8¢l HO134 NOILONYLSNI _ //
A 061 340D
9¢l LINN 97L NOILONYLSNI Zl 1INN
> $E1L LINN IHOYD NOILONYLSNI NOILOIdIdd HONVYE
A | oNranvH JLIYM 91 AvIY AYOWIN Zh 0Ll 904 ONI0O30 01
| LINWOD INOLLA30X3 AHOWAW | 39VLS 3LND3AX3 /avay JINAIHOS PNINYNIY D01V [30003a HIONTT HO134
| L ipovaaliy yasox |] _ e
vl 'Old 004 ANMAdId 7~

PCT/US2013/047387

WO 2014/105164

2/21

91z (S)LINN
HYITI0YLINOD
sng

L

e |
7Z(SILND | T 212 SN
YITIOYINOD 71— — — Alv ||||||||||
Adowaw | | SOCISILINA 3HOVO QHvHS
QaLVHOILN| — ==
IIIII L |1 Nvoz ." _ P02z
| (S)LINN | “ cew | |(S)LNN
012 LINN | 3HOVO _ FHOVO
INJOV WALSAS | N20Z 3409 VZ0Z 340D

= /1
J I
|
I

" ¢ Ol
80¢ 19017 _
350ddnd _
WI03dS _

// 00¢ 40SS300Hd

WO 2014/105164 PCT/US2013/047387
3/21

315
300 - — — 17
— 310

| i 1
|
r I: — PROCESSOR |~ — 7]
| — 395 |
w2 1w
“ 1 [coNTROLLER
cO- I— | —BI0 | MEMORY
| PROCESSOR | I_GMCH 390 |_
L _— T —
360 —_ |_ J'_/:I
0 . 104350 |
|
l_ _ —|

FIG. 3

PCT/US2013/047387

WO 2014/105164

4/21

VLY 'Ol
8¢y 0y
ANY 3d09 | s3omaa _ | 3snow
JOVHOLS Y1V Loy NNOD acy JAYYOIATN
h 0zp J h
Gy vZy iy 8Ly
¥0SSI00Nd o/l olany $301A30 0/l 390149 Sne
oy q —— — _
o6y —1 3/ 26y —1 9/ _ 8ey
g6y —1 06% 13SdIHO JES L gy _%mmmoom%o_
vey — e
bSP 2Sh
>
08¥ dd| |dd dd dd 0L
o8y — 88 4 \ \ Ly
8l¥
0S¥
— 28¥ a4
NI NI
by AN
AHOW3W AMOWAN
¥0SSIO0UdOD
/40SSI00Md ¥0SS3I00Ud

\ o

PCT/US2013/047387

WO 2014/105164

521

vEY
AJONIN

g o4
GG
O/ AQYOT1
06¥ 96y —1 /I
a6y —— d-d 13SdIHD . dd
Ewl* b Svl* %
B—
08 d-d dd dd d-d 0Ly

40$S300dd

40SS3004d

[4%4
AJONIN

142

S30IA3A O/l

\ e

PCT/US2013/047387

WO 2014/105164

6/21

¥1Z (S)LINN
0v9 0£9 Y3TIOYLINOD
LINN Avidsia | | “e2 LINnVAd LINN NYYS AHOWIW
EINEREIN
— . \
912 (S)LINN T | 7
Y3 TIOHULNOD \
sng] 209 (SILINN LOINNOJYIINI -
— lllllllllllll -
| |
I 902 (S)LINN FHOVD AFYVHS
F————r ===
- — =1
L1 wwoz | b0z
“ “ Amv._w_zw _ 'Y X va._._ZD
012 LINN | 3HOVO
INIOV WILSAS | _Ne0z 000 v2¢0¢ 3400
019 HOSSI00¥d NOILYDITddY

029 (S)40SSID0YL0D

,/ 009

dIHO ¥V NO W3LSAS

9 'Old

PCT/US2013/047387

WO 2014/105164

7/21

v0L 437dNOJ 98X

90£ 3000 AdVYNIG 98X

¢0L IOVNONVT T13AITHOIH

80. d31dNOD
135 NOILONYLSNI
JAILYNYALTY

¢l 43143ANOD
NOILONYLSNI

£'914 0123000 A¥YNIG
13S NOILONYLSNI
JHVMLIOS JALLYNY3LTY
IYYMAYVYH
Y
I P12 340D 13S NOILLONYLSNI
3409 13S NOILONYLSNI
98X AN LSy 98X NV LNOHLIM ¥0SS3004d
1V HLIM ¥0SS3004d

PCT/US2013/047387

WO 2014/105164

8/21

ve ‘bi4

€08
suoljoun4
s|qewweibold

UCTE[OIA

c08
suonpoung paxi4

L0g 481SN|D 10)eI8|800Y

[CTongeoxT” >

ﬂw:m >

auoQ

0L8
opocbonen K20] e
8po)
pojels|ad2eun
608 I8|pueH
o 8po)D
m pajela|sdoeun
(]
J\ﬂm_?
808 _
<08
10]E.B[309Y BOAU| IEE«E“‘ J8|pueH
e

K _1oAu00 |

208
apo) Buipes

08 si8)sn|D 10SsS8d01d

0£8 siajsiBay

WO 2014/105164 PCT/US2013/047387

9/21

811 812 813 814 815 816

D

Accelerator

63|62{61]60]59]58 48

N
~
o

Fig. 8B

WO 2014/105164 PCT/US2013/047387
10/21

817 818 819 820

Fig. 8C

PCT/US2013/047387

WO 2014/105164

11/21

06 '9Id

v6 ‘bi4

€96 "9Id

SOA

ON

06
9]qISSOd S| UOIIN08XT JoUIsyaA
seulw.ela pue uoiongsu| TTvIX Ag
paIloadg pUBLUWOYD S8AI908Y JOJEIB|800Y

A

€06
10JeJa]990Y Alusp| 0} d| PUe Jig 8jeAld 1S

A

206
Ja)siBay Jejsweled Ul sisjelieled pue

JeisiBay puewwo) Ul pueliwo) 810)g

A

106
uoljonJsul TTVOX 8pooaq

RS\ AR

PCT/US2013/047387

WO 2014/105164

12/21

g6 ‘b1

606
an|ep 2ll10edg-I0le.8[820Y
0] pabueyn Ja)sIbay Jnsey

806
psiipowun
lg)siBay Jnsay

906
0=392731S

PCT/US2013/047387

WO 2014/105164

13/21

€16
Ia)siBay Jnsay Ul ainjie] O] pale|ay
ele [eUOIPPY 2I01S PUE Q = Jig JusUBWISd 189S

06 b4

SOA

A%
Jg)siBay Jnsay Ul 8injieq 0] paie|ay

ejeq [eUONIPPY SI0)S PUE | = Jig JusueWIad 193

ON

LL6
&1IVOX 8ning Jo sssdong
pajedionuy

0L6
L =18 Z1°S

V6 'Old

PCT/US2013/047387

WO 2014/105164

14/21

9001
s|ielad
aulwexg

S00L
uononJisu|
IX8N 8Jnjie

0L ‘b4

ool
uononIsuy|
JXBN $S800Ng

ON

€001
$,68900NGQ

200l
uononsu| IxeN

SOA

{

LooL
uononIsy|

PCT/US2013/047387

WO 2014/105164

15/21

N
6011
gL Xo01uN
A
80LL
andwo)
A

L0LL
sig peoT |V
A
90LL
g71L %007
N

T

auoQ

T ———
auoQg

awnsay

SoLL
Is|pueH
uondeoxg

voLL
gL 3o0juN

A

€0LL -

8)e)g aAeg
A

2oLl
aindwo)

A
LOLL
d1L 3207

ZSTT J01e13|920y

uondadxz

oAU

yoels 43||ed
Jo womnoq
01 dS 18S

01dS1sS

TSTT pesJyl sJempJeH uoneo|ddy

oviL
JOE)S J9|pUEH
uondsoxg

ocLl
BaJy 9ABS
JojeJa|asoy

ozZLlL
0E)S 49]|BD

0STT
3oe1S

L "Bi4

PCT/US2013/047387

WO 2014/105164

16/21

_ o | ZE] azons | e () Zhl N
lzzyy aaid|andia| S [45dsig (30 (St AR) 28k fveon v S aa | g | R
L M| viva | 4 dsia FTY L JAHONINE 3 Tsi93u[3sve 504
| _ _ _ 0EL
| _ ' | TY4OdWILNON
L o _ SSI0OV AYOWIW
| o | 22| azon g Y qooil | 1L ZrLl
TR o P okl et R It o Iy S o O P W PR O
[ALYIQINNIASYWN | NIw3 T3~ V2oLt
| UMM viva | 4 dasia £ vAv@ X JNHONIW 3 [sioqy| 3ovg [LYWHOS
T T _ _ iy
_ | desth | | GZ)L VHOdWAL dzkL
| | NOLLOIAT | _ _ AONIN
_——— ' N S
| o | B vzennle vl | wk | el | g |
lzzp arad|araE | g | pf esiianEd [CVEEk W veon vl ss3oov| 13 | amEm | P
IFLVIGIANI|ISYA [1nats WHOASNVYL v1va |HOSNTI ssvio | xuomaw| x3an [Noiwvaadol, i |
L e viva L AL OV Juaision| 3svs 04
_ | _ _ | 5} NOILYYIdO
L . | J34AL10SS300V AHONAN ON
| L1 961} ("
iy 8t} d131 vovil | vl vl
lzs1s arad|amae| A | | N0 AR | vy fveou vl ss3oov| amae | amm | P
| LYIGINAINISYA [1NgiAET3 VoL aTa g | ONMOY | sswio [A¥OnaW[X3aNi INoilvyEdo) o,
| PLew viva JOY.INOO aNNOoY k. A ON™ Ju3rsioqy[3sva |
| | vesi | ! “9: 'd0 3dAL TMIND GNNOY 501
004 LYWHO4 NOLLOMALSN _ | QT3S | _ I TIn4"$5300V AYONI ON 5300V
ATONTIH HOLFA DIHENTD _ _ _ ! _ ON
(— —_—— — — ! . JE |
Z511 @13 phil ay
221 arad|ad| S L dsia) Q9uh | verbanaidviae [y seEl ama | s o grgn | gEg | O |
3 48 a3 ssyih| 13
|ZLVIGINAN ISV iG] Tzm o ot | xaani Inoive3do[J3E -y
l_ _ _ 31IMM]| viva |n_ n_|m_m ._| _ 0911 1314 NOILYY3dO NOILYINTGWONY REIRN A 3Svd |_ Z1'914
7y 7) £
7314 300940 TN

PCT/US2013/047387

WO 2014/105164

17/21

=== w0 | g |)
0Ll az91) 8511 | e
201 i |aar| A1 |47 _lm_o_%%m_m RHENIES SRR RAEUAIES EITHR: BR:IALA B T IR = TE e
153 1viaanm sy, (RO —-r =] T HLONTT) 1ovo | J0RINCO Jssvio | 55300 | xaan Inoitvaadol, G,
! AlmNINEHE Y avoxs VJualsiony| 3sva _
-—=- - ! _ —
| L " _ L (i)
| . | | COWMOOV AW SS3o0V
_ _ _ _ _ _ AYONIN
I I
_ I L _
I I I I I I
_ I | _ _
! I _ ! _
_ I | _ _
_ I I | _ I
e : _ .
! oy | BA () (vorik | wmll | en
lz2pt @134 (03| g | FETEAIEH C JOT O Bhagey) gl ss300v | ama | am | |
|3LYIQINAN SV inga T3 BNy o o] SsvTo | Aoman| xaani [Noilvaddo), 1313 |
L [prem| viva J2ISA N ON_Judisiomy| “3sva [MYAHOH
_ — _ | 1iiy dO3dAL
_ Lo _ _ | 3215 WAL "O0V WA O
e o [5) (vorll | wi |z "
22k aaid || g | GVt A L 10%H CBdlagey) of ssaoov| gqmia | aqms | |
|ALVIGIANI | YSYA| 1NFH313 O Ll o] SV | AMONaW| X301 [NoiLvyiado] J3 |
L[| viva) N ON_Judisiozy| dsva 404
_ ! _ | 211 °dO IdAL THINO ONY
| | VLGLL | _ | Ldvd “OWM "00Y W ON IOk
001} LYINMO4 NOILONYLSNI a3, [SS300V
ATON3I44 HOLDIA O1¥3NID _ I _ | ! ASQIIN
(e — —_—— — — 1 P |
| o | A% | azon . 891 |
261} 4131 Lidds 43
2211 a3 || diaia |23 dsial | ver A vAae | Cppgngt aEd |) g | g | SR |
|3LVIGIARIYSYA | INGNZ 13~ V2OTT lung SOV 4, Sconl X3aNI INOLLYN3dOf vpriay o &
| _ _ _[P1¥M viva | 4 dsia |7 777 0S4 7314 NOLLY¥3dO NOLLYINIWONY EEMIREL IENT 1 won
3 7!)
Q7314 300040 TINA

PCT/US2013/047387

WO 2014/105164

18/21

0£Z1 Q71314 3A00d0 vy ¢zzl a134
4433 ONIGOON3
Q7314 NOILYYAdO 3SVE 3334

—-—"
] (Wi} {dfd] zex,

9G¢) 11 Q1314 AAMAA 97¢l el ‘
&9 g (7 $9L, 7314 HLAIM
_asg | o | [Alalala] [was | o3y | || Lulefx]y INIW3T3 viva vl a1
CTIEED N NEENSBER o4
TR 612} d¥IN 3009dO
y1} @1314 300240 11N gl "ol
002} LYWHO4 NOILONYLSNI ATANTIN4 ¥OLOIA O1]93dS
‘ N A8 G311dILIN SI HOIHM c7zL a3l K
H010v4 ININIOVTASIA FHL ATNO SOTOH 0Ll ONIAOONT
1n8 N.8dSId SV 01 a3¥43434 (L0=A0N NIHM GEE! X|434d
N.8dSIQ) 829} 1314 ¥OLOV4 INIWIOV1dSIa SSYIN ILIMM 26H 5121 ovLL @734
. . 05zl Q1319 YHd TV s oz LVWNOS
Nmn: _ ommmr o%ﬁ _ a3 m_ooon_o IV3IY 0¢cl a131d AANAA 300240 X34 | %
IIII___-I__-I__-I_I_ _ \ A
| Wl 00y dyah s [aon __>_>_>_>_>_>_>_>=v__x_v_ A d]9]d]o]a]d :_>_>_>_>_>>__>___>___>___>_ Algfx]uh ze00,

o | G ——
(0L=Q0W N3HM Z€dSIQ) _ _ 5Ll _
ve9ll d13ld Hzm_\,_m_o,q._am_m_ Q1314 v13ag 0Lzl X3y
ozl | wwzL |zvzi | Oveh X3 %mrmﬂw_u 911 1314 HLAIM
N | 934 |dowj . ININTTI V1V .
2 “9 L 20Z) X1434d X33
31AG 9IS 3LA9 /Y AOW Vel old

WO 2014/105164

PCT/US2013/047387
19/21
CLASS FIELD ALPHAFIELD
FIG. 13D 1168 ~_ 152 BETA FIELD 1154
AUGMENTATION OPERATION FIELD 1150 \LU HEEE
MOD FIELD 1242

FIEL§?152A u[B]B]B]
[

ROUND 1152A.1 |

i
FIELD 1152A

sae oLl [DATA/|0 32|S1|S°
ROUNIZ; 1O5F?ERATION FIELD 1158 ITRANSFORM
. . | 1152A2 DATA TRANSFORM
U=0 ROUND CONTROL FIELD 1154A I FIELD 1154B
MOD FIELD 1242
[T e[p] [eloR[o1]oR o]
A
EVICTION lf" ¢ = 3
HINT FIELD .. SiB hPhPh_Dl
11528 : 350 11628
DATA MA IPULATION FIELD 1154C
MOD FIELD 42
. :
FIELD FIELD
WRITE L1 | 1157A L 1 1157A
CONTROL 101 rouno | mE 1 veie
FIELD —~— T1157A1 | 1157A2
1152C R OERRTION | VECTOR LENGTH FIELD
U=1 MERGING FIELD 1159A |
MOD FIELD 1 242
10
ZEROING B[B]B [00|OR
11 2A
[[[
f5rares
L1|Lo Bl SIB i |IP| |
& 14628
VECTOR LENGTH BROADCAST FIELD 1157B

PCT/US2013/047387

WO 2014/105164

20/21

vl 'Ol

o

0y

sS1ig ¥9
GLE1 sloysibay Yse S1uAN

0G€L 3114 J31SI93Y
LV14 INI d3axovd XWIN

S11g +v9
A

1
|
|
|
“
a3sVITY |
|
|
]

s119 08
(d448X)
Syel

3714 H3F1SI9FH MOVLS d4 1VIvVOS

Feuwiz
s1ig 952
> N
ﬁmt.m_ 8zl
Slwwx SlwwA
Owiwx OWIWA owwz
L y J
sLigazis
0LE| sio1sIbay J0100A
S1ig#9 X 91

gze| siolsibay asoding [eisuss)

00€1 FHNLOFLIHOYEY HALSIO3Y

PCT/US2013/047387

WO 2014/105164

21/21

ST "Old
60ST SJ0SuUas
ﬂ ﬂ ﬂ €141
91ST STIST LD ERCINEHY TSt TIST
CRINEI]! qnH SJBLION| sng CRIIBENI] CRLIBENT]
nduj oipny 105Uag eIaWey |eas 1BUIBY13 IETES,
Q 0TST
(Yr0019N|g TT°Z08 “8°9)
2051 (S ERLINENT]
ERLINEV]| 1051 SS3I3JIM
soydeso (s)sng/(s)rosuuooiany|
6 LTST
£0ST ERLINENT]
(s)ndd 8TST 0zsT 108 p08 Eww_,%ww“m_\/_
é WUNH_LWHC_ wum..‘_LWHC_ Amvgwwms_u Amvgwnﬁ.ms_u
adeJols Alowap 101131370
bOST 1E19]902Y Jossanoud
90EJJII| 6
ndng
09pIA 6TST S¢St
22I1A3(Q SSINPON
6 a8eJ01S Aowa 00ST
S0ST
JONUOW

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/047387

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 9/28(2006.01)i, GO6F 9/38(2006.01)i

According to International Patent Classification (IPC) or to both national classitication and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/28; GO6F 11/34; HO3M 13/00; GO6F 11/14; GO6F 13/36; GO6F 11/00; GO6F 9/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: , ,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 4982402 A (BEAVEN; RICHARD C. et al.) 01 January 1991 1-16
See the abstract: col.4 line 21 - col.8 line 16, col.11 line 26 - line 54;
figures 1 and 5.

A US 7370243 B1 (GROHOSKI GREGORY F. et al.) 06 May 2008 1-16
See the abstract: col.13 line 23 - col.22 line 27; figures 4-7.

A US 5423025 A (GOLDMAN; GARY S. et al.) 06 June 1995 1-16
See the abstract; col.3 line 29 - line 65; figure 1.

A US 5550988 A (SARANGDHAR; NITIN V. et al.) 27 August 1996 1-16
See the abstract; col.5 line 50 - col.6 line 23; figures 5 and 6.

A US 6725416 B2 (DADURIAN TAN C.) 20 April 2004 1-16
See the abstract: col.3 line 56 - col.4 line 49; figure 2B.

|:| Further documents are listed in the continuation of Box C. }X‘ See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"I" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination

means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
30 August 2013 (30.08.2013) 02 September 2013 (02.09.2013)
Name and mailing address of the ISA/KR Authorized officer

Korean Intellectual Property Office
% 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, KYUNG Youn Jeong
. ¢ 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-3452

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/047387

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 4982402 A 01/01/1991 EP 0380858 A3 28/08/1991
EP 0380858 Bl 26/10/1994
JP 02-232737A 14/09/1990

US 7370243 Bl 06/05/2008 None

US 5423025 A 06/06/1995 None

US 5550988 A 27/08/1996 None

US 6725416 B2 20/04/2004 US 2003-0126544 Al 03/07/2003
US 6543026 Bl 01/04/2003

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - wo-search-report
	Page 69 - wo-search-report

