There is provided pharmaceutical compositions suitable for topical application to the nail for the treatment of nail diseases such as onychomycosis, which compositions comprise: (a) a urea-based component; (b) a diol component, such as propylene glycol; (c) an organic acid component, such as lactic acid; and (d) a triol component, such as glycerol.
This invention relates to new pharmaceutical compositions that are useful in topical application for the treatment of fungal nail infections, in particular onychomycosis.

Fungal infections of the nail are much more common than is commonly perceived. It is often understood to be a niche problem, affecting only a few people. In fact, it is the most common disease of the nail, affecting about 100 million patients in Europe and North America. Prevalence is about 10% in the general population and over 25% in the over-50s.

Onychomycosis is the most common fungal disease of the nail and affects about 6 to 8% of the adult population. Onychomycosis can affect both toenails and fingernails and is chiefly manifest by thickening and discoloration of the nails. This results in the formation of opaque, thick and/or friable nail lesions caused by the invasion of fungi. The nail becomes dry, and breaks or flakes, often exhibiting a yellowish colour.

Nails that become hard and thick, make the care of the nail more difficult. Infected toenails can grow so thick that shoes became uncomfortable to wear. In extreme cases, destruction of the nail may result. Additionally, a perceived unsightliness in infected nails can lead to confidence and/or self esteem problems in situations when the hands and/or feet are necessarily exposed.

In addition to onychomycosis, about 40% of all patients with psoriasis are affected by changes in the nail. Dryness and/or superficial damage can also result in unsightly and discolored nails.

Nail fungus is also a very difficult condition to treat. Treatment times are often long; it can take a year or more for an infected nail to come away and a healthy new nail to grow out. Such longevity of treatment is known to cause poor compliance, meaning that the majority of patients are poorly treated or, in essence, untreated.

Significant effort has been directed towards research into alternative and/or better treatments of fungal infections of keratinous structures such as the nail.
Much of the research effort has been directed towards pharmaceutical formulations that attempt to administer a recognized antifungal compound, such as imidazoles, triazoles, thiazoles, echinocandins and allylamines (hereafter "antifungal drug compounds") into the nail structure. However, the problem of obtaining distribution of sufficient concentrations of such antifungal drug compounds throughout the nail and into the nail bed has proven to be a difficult one to solve. Thus far, a completely satisfactory solution eludes practitioners. Promising laboratory results for new formulations comprising antifungal drug compounds have often been followed by disappointing result in the clinic.

An efficacious pharmaceutical formulation that does not comprise an antifungal drug compound as such (including any of those listed above or hereinafter) is disclosed in US Patent No. 5,525,635 and European Patent No. EP 292495 B1. Here, a composition for the treatment of *inter alia* mycosis of the skin and nails is disclosed that comprises, as its main active components, propylene glycol and urea, although lactic acid may also be included.

The efficacy and safety of this formulation have been documented in several clinical trials (see, for example, Emtestam, Kaaman and Rensfeldt (2012), *Mycoses* 55, 532 (2012) and Faergemann, Gullstrand and Rensfeldt, *Journal of Cosmetics, Dermatological Sciences and Applications*, 1, (2011)). Furthermore, a product based on this formulation is sold under the trademark Emtrix®, or Nalox®. It is indicated primarily in the treatment of nail discoloration and damage caused by fungal nail infection or psoriasis.

Emtrix® ingredients are all GRAS (General Regarded as Safe by FDA) listed compounds and are fully biodegradable. The product is free from preservatives and fragrances. It is applied as a solution directly to the damaged nail.

Despite the efficacy of this product, we have found that its shelf-life could be improved at higher storage temperatures. This instability is unexpectedly solved by the addition of a triol, such as glycerol to the formulation.

The use of urea hydrogen peroxide (or carbamide peroxide) as a whitening agent is known from US Patent No. 6,573,301 and US Patent Application No. 2007/0098654. In Japanese patent application No. 2001-019610, a skin composition comprising urea is stabilised by the addition of a nucleotide in combination with an ester from a lower fatty acid and glycerol.
According to a first aspect of the invention there is provided a pharmaceutical composition suitable for topical application to the nails and/or skin which comprises:

(a) a urea-based component;
(b) a diol component;
(c) an organic acid component; and
(d) a triol component.

Such compositions are referred to hereinafter as "the compositions of the invention".

Wherever the word "about" is employed herein in the context of amounts (e.g. relative amounts, such as percentage amounts, of individual constituents in a composition or a component of a composition and absolute doses (including ratios) of active ingredients and/or excipients), temperatures, pressures, times, pH values, pKa values concentrations, etc., it will be appreciated that such variables are approximate and as such may vary by ± 10%, for example ± 5% and preferably ± 2% (e.g. ± 1%) from the numbers specified herein.

The urea-based component may comprise urea itself, and/or may comprise urea peroxide, also known as urea hydrogen peroxide (UHP), percarbamide or carbamide peroxide, which is an adduct of hydrogen peroxide and urea, and is used mainly as a disinfecting or bleaching agent in cosmetics and pharmaceuticals. We have found that the addition of urea peroxide improves the visual appearance of the nail more rapidly when such compositions of the invention are employed. This in turn leads to improved compliance; an improvement in appearance provides an incentive for the patient to continue treatment.

The diol component comprises at least one diol. Non-limiting examples of the diol component are ethylene glycol, propylene glycol, butanediol, pentanediol (for example 1,5-pentanediol), hexanediol, and mixtures thereof. If desired, the diol component may be a mixture of diols such as a mixture of propylene glycol and another diol, such as 1,5-pentanediol. A preferred diol is propylene glycol.

Organic acid components that may be employed enable the provision (at the site of application of compositions of the invention) of a pH of between about 2.0 (e.g. about 3.5) and about 6.5. For the purpose of this invention, the term includes substances that are safe for use in mammals, such as weak acids. Typical pKa values of weak acids are in the range of between about -1.5 (e.g. about -1.74, such as about 1.00, e.g. 2.00 and about
16 (e.g. about 15.74) (e.g. see Vollhardt, *Organic Chemistry* (1987)). A preferred range is between about 1 and about 10.

The organic acid component may thus comprise a C$_{1-10}$ carboxylic acid, which may be provided pure/neat and/or in (e.g. aqueous) solution. Examples of C$_{1-10}$ carboxylic acid include saturated and/or unsaturated, straight and/or branched aliphatic mono-, di- and polycarboxylic acids having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, alkylaryl or aromatic dicarboxylic acids, oxy and hydroxyl carboxylic acids (e.g. alpha-hydroxy acids) having 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms. Examples of suitable organic acid components include one or more of formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, sorbic acid, oxalic acid, hydroxybutyric acid, hydroxypropionic acid (e.g. 2-hydroxypropionic acid, hereinafter lactic acid), glycolic acid, citric acid, malic acid, tartaric acid, malonic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, pimelic acid, oxalacetic acid, phthalic acid, tartaric acid and pyruvic acid. Preferred organic acids include hydroxy acids, such as hydroxybutyric acid, hydroxypropionic acids (e.g. lactic acid), glycolic acid, citric acid, malic acid and tartaric acid. More preferred organic acids include lactic acid. Lactic acid may be provided in e.g. a 90% aqueous solution.

Urea-based components, diol components and/or organic acid components may be employed in pharmacologically effective amounts, which refers to amounts of such components that are capable, in combination, of conferring a desired therapeutic effect on a treated patient, whether administered alone or in combination with another ingredient. Such an effect may be objective (i.e. measurable by some test or marker) or subjective (i.e. the subject gives an indication of a positive effect).

Individual amounts of urea-based, diol and organic acid components that may be employed in combination in compositions of the invention may be determined by the skilled person, in relation to what will be most suitable for an individual patient. Although this may vary with the type and severity of the condition that is to be treated, and the response of the particular patient to be treated, typical total amounts that may be employed in a composition of the invention of:

(i) urea-based components are in the range of about 1% to about 35%, such as about 3% (e.g. about 5%) to about 30%, for example about 8% (e.g. about 10%) to about 25%; and

(ii) diol components are in the range of about 40% to about 80%, such as about 45% to about 75%, for example about 50% to about 70%; and
(iii) organic acid components are in the range of about 1% (e.g. about 2%) to about
20%, preferably from about 3% (e.g. about 4%) to about 15%, and more preferably from
about 5% (e.g. about 8%) to about 12%,
by weight based upon the total weight of the composition.

Suitable concentration ratios of the organic acid component and the diol component from
about 1:20 to about 1:1, preferably from about 1:15 to about 1:2 and more preferably
from about 1:12 to about 1:4, by weight based on the total weight of the composition.

The total combined concentration of the diol component and the organic acid component
in the formulation are preferably in the range of about 50% to about 90%, such as about
55% to about 85%, for example about 60% to about 80%.

In view of the presence of an organic acid component, compositions of the invention may
contain buffering agents to stabilize such components in the formulation. In this respect
the pH of the final formulation may need to be raised to comply with e.g. regulatory
requirements by the addition of a small amount of aqueous base (such as aqueous
sodium hydroxide, e.g. 10 M NaOH (aq.)). Final pHs of formulations are preferably in the
range of about 2 to about 6 (e.g. about 3.5 to about 4.5).

Compositions of the invention optionally comprise a volatile organic solvent. See for
example international patent application WO 2011/019317. If employed, volatile organic
solvent may be chosen so that it evaporates within about 5 minutes, more preferably
within about 3 minutes after application in room temperature. A volatile organic solvent
with a vapor pressure of at least 2 kPa at 20°C may be used, for example polar solvents
such as esters, alcohols, ketones and saturated hydrocarbons with a high vapor
pressure (greater than about 2 kPa at 20 °C). Examples of suitable volatile organic
solvents include methyl acetate, isopropanol (isopropyl alcohol), ethanol, acetone,
methyl ethyl ketone and methyl isobutyl ketone, particularly ethyl acetate and/or butyl
acetate.

Compositions of the invention further comprise a triol component, including glycerol and
derivatives thereof. As mentioned herein, we have found that glycerol surprisingly
increases the chemical stability of compositions the invention when compared similar
compositions such as those disclosed in US Patent No. 5,525,635 and European Patent
Compositions of the invention are more chemically stable, for example, at higher temperatures and may therefore be more readily stored in warmer climates.

By "chemical stability", we include that the compositions of the invention may be stored under normal storage conditions, with an insignificant degree of chemical degradation or decomposition. Examples of "normal storage conditions" include temperatures of between minus 80 and plus 50°C (preferably between 0 and 40°C and more preferably ambient temperature, such as between 15 and 30°C), pressures of between 0.1 and 2 bars (preferably atmospheric pressure), relative humidities of between 5 and 95% (preferably 10 to 60%), and/or exposure to 460 lux of UV/visible light, for prolonged periods (i.e. greater than or equal to six months). Under such conditions, compositions of the invention may be found to be less than about 15%, more preferably less than about 10%, and especially less than about 5%, chemically degraded/decomposed, or solid-state transformed, as appropriate. The skilled person will appreciate that the above-mentioned upper and lower limits for temperature and pressure represent extremes of normal storage conditions, and that certain combinations of these extremes will not be experienced during normal storage (e.g. a temperature of 50°C and a pressure of 0.1 bar).

Typical total amounts of triol, such as glycerol and/or derivatives, that may be employed in a composition of the invention are in the range of about 1% to about 25%, such as about 3% to about 15%, for example about 5% to about 12%, by weight based upon the total weight of the composition.

Compositions of the invention optionally comprise an antifungal drug compound, such as one of the type mentioned hereinbefore. Examples of such compounds thus include imidazoles, such as miconazole, ketoconazole, econazole, bifonazole, butoconazole, fenticonazole, isoconazole, oxiconazole, sertaconazole, sulconazole, and tioconazole; triazoles, such as fluconazole, itraconazole, isavuconazole, ravuconazole, posaconazole, voriconazole, and terconazole; thiazoles, such as abafungin; echinocandins, such as anidulafungin, caspofungin, and micafungin; more preferably, allylamines, such as amorolfin, butenafine, particularly naftifine and, especially, terbinafine; and mixtures thereof.

If present, the antifungal drug compounds will be presented in a pharmaceutically effective amount, which amount may vary depending upon the particular antifungal component(s) selected, but may be in the range of about 0.01 % to about 15% (e.g.
about 10%), more preferably from about 0.2% to about 5%, more preferably from about
0.75% to about 2.5%, more preferably from about 0.8% to about 1.2%, by weight based
on the total weight of the composition.

If the antifungal drug compounds are presented in compositions of the invention, the
skilled person will appreciate that it may be necessary to correspondingly reduce the
above-stated preferred concentration ranges of other active components, such as urea-
based components and diol components (or organic acid components).

The urea-based compound may act in part as a keratolytic agent. Compositions of the
invention optionally comprise a further keratolytic agents include sulphur-containing
amino acids, such as cysteine, methionine, N-acetyl cysteine, homocysteine, methyl
cysteine, ethyl cysteine, N-carbomyl cysteine, glutathione, cysteamine and derivatives
thereof.

Furthermore, compositions of the invention may include compounds that improve texture
during administration and on the nail during treatment. This results in an increased
viscosity at administration which facilitates dosing. It also allows the product to stay at
the surface of the nail to perform its effect. Preferably, according to one embodiment of
the invention, the composition comprises a polymer having suitable viscosity-increasing
properties (hereinafter referred to as a "viscosity-increasing agent"). Non-limiting
examples of such compounds includes cellulose derivatives such as ethyl cellulose,
cellulose acetate butyrate and polymethacrylates such as Eudragit. Suitable
concentrations of such viscosity-increasing agents may be determined by a person
skilled in the art.

If desired, the composition may further comprise a sequestration agent. Non-limiting
examples of such sequestration agents include one or more of aminoacetic acids,
phosphonates, phosphonic acids and mixtures of these. Sequestration agents can be
metal complexing agents and thus, may form a complex with metals such as the alkali
metals or alkaline earth metals. A preferred aminoacetic acid is
ethylenediaminetetraacetic acid (EDTA). When included in the compositions, examples
of suitable amounts of the sequestration agent include from about 0.01 to about 5% by
weight, preferably from about 0.03% to about 0.5%.

Compositions of the invention may further comprises a detergent. Non-limiting examples
of suitable detergents include Tween 80. Suitable concentrations of detergent are in the
range of about 0.1 % to about 5%, more preferably from about 0.5% to about 3%, even more preferably from about 0.7% to about 1.5%.

Other pharmaceutically acceptable carriers and excipients, such as stabilizers, penetration enhancers, and colouring agents may also be added to compositions of the invention as desired.

A preferred embodiment of the invention comprises about 50% to about 70% of a diol component, such as a propylene glycol, about 5 (e.g. about 7%) to about 15% (e.g. about 12%) of an organic acid component, such as lactic acid, about 8% (e.g. about 15%) to about 25% of a urea-based component, such as urea and/or carbamide peroxide, about 5% to about 10% (e.g. about 7.5%) of a triol component, such as glycerol, and, optionally, about 2% to about 5% of aqueous base, such as 10 M sodium hydroxide.

Compositions of the invention may be prepared by standard techniques, and using standard equipment, known to the skilled person. Other ingredients may be incorporated by standard mixing or other formulation principles.

Compositions of the invention may thus be incorporated into various kinds of pharmaceutical preparations intended for topical administration using standard techniques (see, for example, Lachman et al, "The Theory and Practice of Industrial Pharmacy", Lea & Febiger, 3rd edition (1986) and "Remington: The Science and Practice of Pharmacy", Gennaro (ed.), Philadelphia College of Pharmacy & Sciences, 19th edition (1995)), by combining compositions of the invention with conventional pharmaceutical additives and/or excipients used in the art for such preparations.

Compositions of the invention are preferably administered directly to the skin and/or nail. For instance, the composition is administered on and around a human toenail or fingernail affected by a fungal disease, such as onychomycosis. This may be performed by covering each affected nail from about twice or three times per day to about once per week with a layer of the composition. The composition may also be applied to the edge of a nail. Administration of the composition may be achieved by means of a suitable device such as a drop tip, a small brush or a spatula.

Compositions of the invention demonstrate high penetration of e.g. the nail. This can be assessed by an in vitro method for nail penetration. For example, a Franz cell can be
used to study the penetration through a membrane from a bovine hoof as described in the examples below.

Accordingly, compositions of the invention may be employed in the treatment of nail diseases, such as fungal infections of the nail, for example onychomycosis.

According to a further aspect of the invention there is provided a method for treating a nail disease which comprises administering a composition of the invention to the nail of a patient.

In accordance with the invention, compositions of the invention may be combined in treatment with one or more other antifungal nail treatments, including laser therapy, oral antifungal preparations, such as terbinafine and/or topical antifungal treatments, such as preparations comprising ciclopiroxolamine, amorolfine and the like.

By "treatment" of nail and/or skin diseases we include the therapeutic and/or cosmetic treatment, as well as the symptomatic, prophylactic and palliative treatment of the disease. Treatment this includes the alleviation of symptoms of fungal diseases as well as the improvement in the appearance of nails and/or skin.

Compositions of the invention are easy and inexpensive to manufacture, are easily applied topically, and may enabling rapid relief of symptoms, such as those described hereinbefore.

Compositions of the invention may also have the advantage that they may be prepared using established pharmaceutical processing methods and employ materials that are approved for use in food, pharmaceuticals or cosmetics and/or of like regulatory status.

Compositions of the invention may also have the advantage that they may be more efficacious than, be less toxic than, be longer acting than, be more potent than, produce fewer side effects than, be more easily absorbed than, possess a better patient acceptability than, have a better pharmaceutical profile than, and/or have other useful pharmacological, physical, or chemical properties over, pharmaceutical compositions known in the prior art, whether for use in the treatment of skin or nail diseases or otherwise.
The invention is illustrated by way of the following examples, with reference to the attached Figure 1, which shows a comparison of chemical stability of compositions of the invention compared to a commercial composition of the prior art.

Comparative Example 1
Marketed Formulation

A composition with ingredients in the following proportions was prepared in a three batch sizes (450 kg, 150 kg and 20 kg), each by dissolving urea in propylene glycol before adding lactic acid and then 10M aqueous NaOH.

<table>
<thead>
<tr>
<th>Component</th>
<th>w/w%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol</td>
<td>66.4</td>
</tr>
<tr>
<td>Urea</td>
<td>20</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>10</td>
</tr>
<tr>
<td>10 M NaOH (aq.)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Example 2
Composition Including Glycerol I

A composition with ingredients in the following proportions was prepared in a batch size of 0.5 kg by dissolving urea in propylene glycol and glycerol before adding lactic acid and then 10M aqueous NaOH.

<table>
<thead>
<tr>
<th>Component</th>
<th>w/w%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol</td>
<td>59.76</td>
</tr>
<tr>
<td>Glycerol</td>
<td>6.64</td>
</tr>
<tr>
<td>Urea</td>
<td>20</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>10</td>
</tr>
<tr>
<td>10 M NaOH (aq.)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Example 3
Composition Including Glycerol II

A composition with ingredients in the following proportions was prepared in a batch size of 50 g by dissolving urea hydrogen peroxide in lactic acid and glycerol before adding
propylene glycol and urea. 10M NaOH was added at the end of the sample preparation when the urea was fully dissolved.

<table>
<thead>
<tr>
<th>Component</th>
<th>w/w%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol</td>
<td>56.76</td>
</tr>
<tr>
<td>Glycerol</td>
<td>6.64</td>
</tr>
<tr>
<td>Urea</td>
<td>17</td>
</tr>
<tr>
<td>Urea hydrogen peroxide</td>
<td>6</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>10</td>
</tr>
<tr>
<td>10 M NaOH (aq.)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Example 4

Composition Including Glycerol III

A composition with ingredients in the following proportions was prepared in a batch size of 3 kg by dissolving urea in propylene glycol and glycerol before adding lactic acid and then 10M aqueous NaOH.

<table>
<thead>
<tr>
<th>Component</th>
<th>w/w%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol</td>
<td>56.4</td>
</tr>
<tr>
<td>Glycerol</td>
<td>10</td>
</tr>
<tr>
<td>Urea</td>
<td>20</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>10</td>
</tr>
<tr>
<td>10 M NaOH (aq.)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Example 5

Composition Including Glycerol IV

A composition with ingredients in the following proportions was prepared in a batch size of 5 kg by dissolving urea hydrogen peroxide in lactic acid and glycerol before adding propylene glycol and urea. 10M NaOH was added at the end of the sample preparation when the urea was fully dissolved.
<table>
<thead>
<tr>
<th>Component</th>
<th>w/w%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene glycol</td>
<td>53.90</td>
</tr>
<tr>
<td>Glycerol</td>
<td>10</td>
</tr>
<tr>
<td>Urea</td>
<td>17.5</td>
</tr>
<tr>
<td>Urea hydrogen peroxide</td>
<td>5</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>10</td>
</tr>
<tr>
<td>10 M NaOH (aq.)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Example 6
Comparative Test

Chemical decomposition of urea in the three different product batches (as described in Comparative Example 1) was studied in three different stability studies and compared to that of Example 2. An analytical method (RP-HPLC-UV) was used for determination of urea content.

The results are shown in Table 1 below and in Figure 1. All three Example 1 batches are out of specification (OOS) at 6 months. One is OOS at 3 months. However, the urea content for Example 2 is within specification for the whole of the 6 month study.

Thus, glycerol improves the stability of urea in a product formulation stored at accelerated conditions (40°C).

Table 1
Urea stability with and without glycerol for 6 months at 40°C

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Example 1 (450 kg batch)</td>
<td>20.10</td>
</tr>
<tr>
<td>Example 1 (150 kg batch)</td>
<td>20.00</td>
</tr>
<tr>
<td>Example 1 (20 kg batch)</td>
<td>20.00</td>
</tr>
<tr>
<td>Example 2</td>
<td>20.16</td>
</tr>
</tbody>
</table>

The italicised values are OOS.
Claims

1. A pharmaceutical composition suitable for topical application to the skin and/or nails which comprises:
 (a) a urea-based component;
 (b) a diol component;
 (c) an organic acid component; and
 (d) a triol component.

2. A composition as claimed in Claim 1, wherein the urea-based component comprises urea and/or urea peroxide.

3. A composition as claimed in Claim 1 or Claim 2 wherein the urea-based component is included in the composition an amount that is the range of about 3% to about 25% by weight based upon the total weight of the composition.

4. A composition as claimed in any one of the preceding claims, wherein the diol component is selected from the group ethylene glycol, propylene glycol, butanediol, hexanediol and mixtures thereof.

5. A composition as claimed in Claim 4, wherein the diol component comprises propylene glycol.

6. A composition as claimed in any one of the preceding claims, wherein the diol component is included in the composition an amount that is the range of about 50% to about 70% by weight based upon the total weight of the composition.

7. A composition as claimed in any one of the preceding claims, wherein the organic acid component is selected from the group formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, sorbic acid, oxalic acid, hydroxybutyric acid, hydroxypropionic acids, lactic acid, glycolic acid, citric acid, malic acid, tartaric acid, malonic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, pimelic acid, oxalacetic acid, phthalic acid, tartronic acid, pyruvic acid and mixtures thereof.

8. A composition as claimed in Claim 7, wherein the organic acid component comprises lactic acid.
9. A composition as claimed in any one of the preceding claims, wherein the organic acid component is included in the composition an amount that is the range of about 5% to about 12%.

10. A composition as claimed in any one of the preceding claims, which further comprises a small amount of aqueous base.

11. A composition as claimed in any one of the preceding claims, wherein the triol component comprises glycerol.

12. A composition as claimed in any one of the preceding claims, which comprises about 50% to about 70% of the diol component, about 5% to about 12% of the organic acid component, about 8% to about 25% of the urea-based component, and about 5% to about 10% of the triol component.

13. A method of treatment of a nail disease, which method comprises administration of a composition as defined in any one of Claims 1 to 12 to a person suffering from, or susceptible to, that disease.

15. The use of a composition as defined in any one of Claims 1 to 12 for the manufacture of a medicament for a method of treatment of nail disease.

16. A method as claimed in Claim 13, a composition as claimed in Claim 14, or a use as claimed in Claim 15, wherein the nail disease is a fungal infection of the nail.

17. A method, composition or use as claimed in Claim 16, wherein the nail disease is onychomycosis.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB2013/050654

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A61K8/36</th>
<th>A61K8/34</th>
<th>A61K8/42</th>
<th>A61Q19/00</th>
<th>A61P17/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td>A61K8/47</td>
<td>A61K8/12</td>
<td>A61K8/18</td>
<td>A61K9/00</td>
<td>A61K9/00</td>
</tr>
</tbody>
</table>

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K A61Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2012/110430 MOBERG DERMA AB [SE] ; LINDAHL AAKE [SE] ; KAUFMANN PETER [SE] ; WOLPERT 23 August 2012 (2012-08-23) paragraph [0012] ; claims -----</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>wo 03/090736 BRADLEY PHARMACEUTICALS INC [US] 6 November 2003 (2003-11-06) examples; table 2 -----</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>US 5 525 635 MOBERG SVEN [SE] 11 June 1996 (1996-06-11) claims in the application on claims 1-7; example 2 -----</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>US 8 158 138 BL LANDAU RALPH [US] ET AL 17 April 2012 (2012-04-17) examples -----</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* Other categories of cited documents:
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search

6 August 2013

Date of mailing of the international search report

14/08/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040; Fax: (+31-70) 340-3016

Authorized officer

Gi ese, Hans-Hermann
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 87/04617 Al (MOBERG SVEN [SE]) 13 August 1987 (1987-08-13) claims 1-3</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>WO 03/080051 Al (BRADLEY PHARMACEUTICALS INC [US]) 2 October 2003 (2003-10-02) claims</td>
<td>1-17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2012110430 A1</td>
<td>23-08-2012</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6573301 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003199591 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03090736 A1</td>
</tr>
<tr>
<td>US 5525635 A</td>
<td>11-06-1996</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8313756 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 599086 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7023987 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1330198 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 519387 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 874150 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 462139 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8600501 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8704617 A1</td>
</tr>
<tr>
<td>WO 03080051 A1</td>
<td>02-10-2003</td>
<td>AU 2003218188 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003181526 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03080051 A1</td>
</tr>
</tbody>
</table>