
(19) United States
USOORE44129E

(12) Reissued Patent (10) Patent Number: US RE44,129 E
Apisdorf et al. (45) Date of Reissued Patent: Apr. 2, 2013

(54) SYSTEMAND METHOD FOR 5,710,902 A * 1/1998 Sheaffer et al. T12/216
5,761474. A * 6/1998 Lesartreet al. 71.2/217 INSTRUCTION-LEVEL PARALLELISMINA 5,805,915 A 9, 1998 Wilkinson et al.

PROGRAMMABLE MULTIPLE NETWORK 5,850,533 A * 12/1998 Panwar et al. T12/216
PROCESSOR ENVIRONMENT 5,913,925 A * 6/1999 Kahleet al. T12/206

5,964,841. A 10/1999 Rekhter
(75) Inventors: Joel Zvi Apisdorf, Reston, VA (US); 376 A ck 2. Metal T12/216 - w Ill Cal.

Sam Brandon Sandbote, Dallas, TX 6,016,540 A * 1/2000 Zaidi et al. T12/214
(US); Michael Daniel Poole, Herndon, 6,044,438 A 3/2000 Olnowich
VA (US) 6,065,105. A * 5/2000 Zaidi et al. 71.2/23

6,065,112 A 5/2000 Kishida et al.
(73) Assignee: The United States of America, as 6,108,770 A : 8/2000 Chrysos et al. T12/216

represented by the Secretary of the 6,182,210 B1 1/2001 Akkary et al... 71.2/235
Navy, Washington, DC (US) (Continued)

OTHER PUBLICATIONS (21) Appl. No.: 11/862,815

(22) Filed: Sep. 27, 2007
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,950,927

Issued: Sep. 27, 2005
Appl. No.: 09/833,580
Filed: Apr. 13, 2001

(51) Int. Cl.
G06F 9/00 (2006.01)

(52) U.S. Cl. .. 712/216; 712/235
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4.941,143 A 7/1990 Twitty et al.
5,029, 169 A 7/1991 Smyk
5,197,130 A 3, 1993 Chen et al.
5,274,809 A 12/1993 Iwasaki et al.
5.488,730 A * 1/1996 Brown et al. T12/41
5,522,083. A 5, 1996 Grove et al.
5,524.212 A 6, 1996. Somani et al.
5,623,670 A 4/1997 Bohannon et al.
5,640,524 A 6, 1997 Beard et al.

Zhou et al. (Zhou) (Thread Scheduling for Out-of-Core Applications
with Memory Server on Multicomputers); IOPADS 99 Proceedings
of the sixth workshop on I/O in parallel and distributed systems; 11
pages total; 1999.*

Primary Examiner — Keith Vicary
(74) Attorney, Agent, or Firm — Sterne, Kessler,
Goldstein & Fox PL.L.C.

(57) ABSTRACT

A system and method process data elements with instruction
level parallelism. An instruction buffer holds a first instruc
tion and a second instruction, the first instruction being asso
ciated with a first thread, and the second instruction being
associated with a second thread. A dependency counter
counts satisfaction of dependencies of instructions of the
second thread on instructions of the first thread. An instruc
tion control unit is coupled to the instruction buffer and the
dependency counter, the instruction control unit increments
and decrements the dependency counter according to depen
dency information included in instructions. An execution
switch is coupled to the instruction control unit and the
instruction buffer, and the execution switch routes instruc
tions to instruction execution units.

23 Claims, 9 Drawing Sheets

instruction
execution

US RE44,129 E
Page 2

U.S. PATENT DOCUMENTS 6,629,233 B1 9, 2003 Kahle
6.212,623 B1 ck 4, 2001 Witt . T12/216 6,763,519 B1 ck T/2004 McColl et al.

6,782.469 B1* 8/2004 Wilkerson et al. T12/216 6,334,182 B2 * 12/2001 Merchant et al. 712/214 6,968.447 B1 1 1/2005 Apisdorf et al. 6.463,522 B1 * 10/2002 Akkary T12/216 6,978.459 B1 12/2005 Apisdorf et al.
6,493,804 B1 12/2002 Soltis et al. 2001/0023479 A1 9, 2001 Kimura et all
6,493.820 B2 * 12/2002 Akkary et al. 71.2/235 2002/038714 Ai: 92002 Leibholzetal 71.2/217
6,496,871 B1 12/2002 Jagannathan et al.

6,557,095 B1 * 4/2003 Henstrom T12/216
6,567,840 B1 5, 2003 Binns et al. * cited by examiner

U.S. Patent Apr. 2, 2013 Sheet 1 of 9 US RE44,129 E

SWITCH
FABRIC

FIG. 1

U.S. Patent Apr. 2, 2013 Sheet 2 of 9 US RE44,129 E

MEMORY CONTROLLER
24

NPUT OUPUT
NTERFACE NTERFACE

206 2O3

MULTIPROCESSOR
CORE
202

HOST CONTRO
PROCESSOR

210

FIG. 2

U.S. Patent Apr. 2, 2013 Sheet 3 of 9 US RE44,129 E

ON-CFPPERPHERAL UNS

302,
t 2. 3 an

9. 2
O 302

302,

PM: PROGRAMMEMORY
DM: DAAEMORY

FG 3 PE PROCESSNG ELEMENT

U.S. Patent Apr. 2, 2013 Sheet 4 of 9 US RE44,129 E

PROGRAMMEMORY 306

Ya are s are 408 4D

314 i DEPENDENCY
i cNERS

i

FSNCON
NT NERFACE

UNT

412

U.S. Patent Apr. 2, 2013 Sheet 5 of 9 US RE44,129 E

instruction
execution

F.G. 5

U.S. Patent Apr. 2, 2013 Sheet 7 of 9 US RE44,129 E

702 704 706 7 / / / - 70s
O T 2 T3

F.G. 7

800

818

U.S. Patent Apr. 2, 2013 Sheet 8 of 9 US RE44,129 E

902

receive first thread instruction

execution dependent upon
econd thread instruction?

900
904 ar

w r 908

examine COUnter associated
With Second thread

Counter value above
threshold? above threshold

NO

resurne execution of first
thread and decrement counter

FG. 9

suspend execution of first
thread until COunter detected

U.S. Patent Apr. 2, 2013 Sheet 9 of 9 US RE44,129 E

10O2

receive first thread instruction

/ 1006
Second thread

dependent on first thread
instruction?

1000

1004

YES 1008

increment Counter associated
with Second thread

execute first thread instruction

1012

NO

FIG. O

US RE44,129 E
1.

SYSTEMAND METHOD FOR
INSTRUCTION-LEVEL PARALLELISMINA
PROGRAMMABLE MULTIPLE NETWORK

PROCESSOR ENVIRONMENT

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present invention is related to patent applications
“System And Method For Processing Overlapping Tasks In A
Programmable Network Processor Environment” (Ser. No.
09/833,581) and “System and Method for Data Forwarding in
a Programmable Multiple Network Processor Environment'
(Ser. No. 09/833,578), both of which are incorporated herein
by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to digital comput

ing. More specifically, the present invention relates to net
work processors for processing network data elements.

2. Discussion of the Related Art
Network switches and routers, or network switch elements,

form the backbone of digital networks, such as the Internet.
Network switch elements connect network segments by
receiving network data from ingress network segments and
transferring the network data to egress network segments.
Because large telecommunications Switching facilities and
central offices aggregate network traffic from extensive net
works and many network segments, they require high-speed
and high-availability Switches and routers.

Network Switch elements select the egress network seg
ment by processing the address or destination included in the
network data according to network data processing program
logic. Traditionally, network Switch elements included Appli
cation Specific Integrated Circuits (ASICs) that provided the
program logic. Because ASICs are “hard-coded with pro
gram logic for handling network traffic, they provide the high
speed necessary to process a large Volume of network data.
ASICs, however, make it difficult to upgrade or reconfigure a
network Switch element, and it is expensive to design and
fabricate a new ASIC for each new type of network rig switch
element.

In response to these drawbacks, manufacturers of network
Switch elements are turning to programmable network pro
cessors to enable network Switchelements to process network
data. Programmable network processors process network
data according to program instructions, or software, stored in
a memory. The Software allows manufacturers and users to
define the functionality of the network switch elements-func
tionality that can be altered and changed as needed. With
programmable network processors, manufacturers and users
can change the Software to respond to new services quickly,
without costly system upgrades, as well as implement new
designs quickly.

To the extent that there is a drawback to the use of pro
grammable network processors in network Switch elements,
that drawback relates to speed. Because programmable net
work processors process network data using Software, they
are usually slower than a comparable hard-coded ASIC. One

10

15

25

30

35

40

45

50

55

60

65

2
of the major design challenges, therefore, is developing pro
grammable network processors fast enough to process the
large Volume of network data at large telecommunications
Switching facilities.
One technique used to increase speed in traditional proces

Sor design is “instruction-level parallelism,” or processing
multiple threads of instructions on a processing element in
parallel. However, traditional instruction-level parallelism
techniques are either highly complex, or would introduce
unacceptable delays and timing problems into the processing
of network data, which must be processed on a time critical
basis.

SUMMARY OF THE INVENTION

The present invention provides a system and method for
processing information using instruction-level parallelism. In
the system, an instruction buffer holds a first instruction and
a second instruction, the first instruction being associated
with a first thread, and the second instruction being associated
with a second thread. In this system, one or more instructions
from the second thread may be dependent on the execution of
one or more instructions in the first thread. A dependency
counter is used to record dependencies of instructions
between the first thread and the second thread. An instruction
control unit is coupled to the instruction buffer and the depen
dency counter, the instruction control unit increments and
decrements the dependency counter on the basis of informa
tion in the instructions. An execution Switch is coupled to the
instruction control unit and the instruction buffer, the execu
tion Switch sends instructions to an execution unit.

In the method, a first instruction associated with a first
thread is loaded on a processing element. The processing
element determines that execution of a second instruction
depends on the execution of the first instruction, where the
second instruction is associated with a second thread. A
dependency counter associated with the second thread is
incremented if the processing element determines that execu
tion of a second instruction depends on the execution of the
first instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the
accompanying drawings. In the drawings, like reference
numbers indicate identical or functionally similar elements.
Additionally, the left-most digit(s) of a reference number
identifies the drawing in which the reference number first
appears.

FIG. 1 illustrates a system block diagram of a data com
munications system.

FIG. 2 illustrates a system block diagram of a program
mable network processor.

FIG.3 illustrates a system block diagram of a multiproces
SO CO.

FIG. 4 illustrates a system block diagram of an exemplary
processing element.

FIG. 5 is a diagram illustrating concurrent processing of
three threads of instructions.

FIG. 6 illustrates concurrent processing of two threads of
instructions.

FIG. 7 illustrates dependency counter groups.
FIG. 8 illustrates an exemplary instruction.
FIG. 9 illustrates an exemplary process for executing

instructions.

US RE44,129 E
3

FIG. 10 illustrates an exemplary process for executing
instructions

DETAILED DESCRIPTION

Exemplary embodiments of the invention are discussed in
detail below. While specific implementations are discussed, it
should be understood that this is done for illustrative purposes
only. A person skilled in the relevant art will recognize that
other components and configurations may be used without
parting from the spirit and scope of the invention.

Programmable network processors offer a number of
advantages including flexibility, low cost, maintenance ease,
decreased time to market, and increased service life. It is
difficult, however, to develop a programmable network pro
cessor capable of meeting the demand for ever-increasing
speed. One technique for increasing the speed of a program
mable network processor is instruction-level parallelism. In
instruction-level parallelism, threads of parallel programs can
execute concurrently on a single processing element. Instruc
tion-level parallelism allows a processing element to continue
processing instructions, even if one or more threads are wait
ing for long-latency operations to complete.
One problem with instruction-level parallelism is main

taining synchronization of dependent instructions between
the threads running on a processing element. Often, an
instruction in one thread is dependent on the execution of
instructions in another thread. Examples of instruction
dependency are control dependency (i.e., the execution of one
instruction is conditioned on the execution of another) and
data dependency (i.e., one instruction uses the results of the
execution of another instruction). Unfortunately, conven
tional techniques for synchronizing the execution of instruc
tions among multiple threads do not lend themselves to pro
grammable network processor applications. Conventional
techniques introduce significant delays to processing, delays
that are unsuitable for processing time critical network data
elements.
The present invention is directed to a system and method

for synchronizing the execution of multiple threads of
instructions on a single processing element at high speed. An
instruction in a first thread can include dependence indicators,
Such as a bit orbits, that indicate dependence of the instruc
tion on the execution of a second thread. When a processing
element encounters an instruction that includes dependence
indicators that indicate dependence between threads, the pro
cessing element checks, decrements, or increments one or
more dependency counters that record satisfaction of depen
dencies between instructions and threads. If a dependency
indicatorindicates that an instruction in a first thread is depen
dent upon the execution of a second thread, a dependency
counter is checked. If the dependency counter is not above a
threshold, the processing element Suspends the execution of
the first thread until the dependency counter is incremented
by a second thread to above the threshold. This allows the
processing element to maintain synchronized execution of
dependent instructions between threads in a highly efficient
manner. It should be recognized that the concepts described
below are not restricted to processing network data elements
but are extensible to a generic form of data processing. Prior
to discussing the features of the present invention, a brief
description of a data communications system is provided.

FIG. 1 illustrates a block diagram of a network data com
munications system, according to an embodiment of the
present invention. Data communications system 100 can be,
for example, of the type used by network service providers
and telecommunication carriers to provide Voice and data

10

15

25

30

35

40

45

50

55

60

65

4
communications services to consumers. Data communica
tions system 100 includes network 102, networkline modules
104–104 and switch fabric 106. Note that a subscript “N”
in the figures denotes a plurality of elements generally, and
not a specific number or equality of number between different
elements with a subscript “N.”
Network 102 is connected to network line modules

104–104 which, in turn, are connected to switch fabric 106.
Although data communications system 100 is shown as
including physical connections between the various compo
nents, other configurations are possible. Such as wireless con
nections. Connections between network 102, network line
modules 104–104 and switch fabric 106 can be, for
example, wireless data connections, data over copper, fiber
optic connections (e.g., OC-48, OC-192, OC-768), or other
data communications connections as would be apparent.
Network line modules 104–104 send and receive net

work data elements to (from) network 102. Network line
modules 104–104 process the network data elements and
communicate the process network data elements with Switch
fabric 106. Network data elements are signals carrying infor
mation including communications information. Examples of
network data elements are asynchronous transfer mode
(ATM) cells, Frame Relay frames, Internet Protocol ("IP")
packets, etc., and portions (segments) of these. Processing
includes the concepts of performing a calculation or manipu
lation involving a network data element. Processing can
include, for example, determining the next hop or egress port
to which the network data element Star should be routed,
network management, Such as traffic shaping or policing,
network monitoring, etc. Network 102 is a network for com
municating network data elements. Network 102 can be, for
example, the Internet, a telecommunications data network, an
intranet, an extranet, a Voice over data communications net
work, etc., and combinations thereof.

For descriptive clarity, operation of data communication
system 100 is described in terms of network line module
104. Network line module 104, includes network line mod
ule ingress port 108, networkline module egress port 110, and
programmable network processors 112–112. Note that the
configuration of network line modules 104–104 is shown
for illustrative purposes only, and alternate configurations for
network line modules 104–104 are possible. Alternate con
figurations include, for example, single or additional pro
grammable network processors per network line module,
additional network line module ingress ports, multiple egress
ports, additional connections to network 102, etc.
Network line module 1041 104, receives network data

elements from network 102 at network line module ingress
port 108. Programmable network processor 112 receives
network data elements from network line module ingress port
108. Programmable network processor 112 enables network
line module 1041 104, to process the received network data
elements. Programmable network processor 112 provides
the network data elements to switch fabric 106 after process
1ng.

Switch fabric 106 includes switch fabric ingress ports
114-114 and switch fabric egress ports 116-116. Switch
fabric ingress ports 114-114 receive data from networkline
modules 104–104 and switch fabric egress ports
116-116 ports provide data to network line modules
104–104. Switch fabric 106 outputs network data elements
received from network processor 112 on the desired switch
fabric egress port 116-116. Network line module 104
receives processed network data elements from Switch fabric
egress port 116 and performs additional processing, as
required, and transmits the network data element to network

US RE44,129 E
5

102 via network line module egress port 110. Note that net
work line module ingress port 108, network element egress
port 110, switch fabric ingress ports 114–114, and switch
fabric egress ports 116-116 are logical representations of
physical devices, and other combinations, such as single ports
that transmit and receive network data elements, are possible.

FIG. 2 illustrates a system block diagram of a program
mable network processor, according to an embodiment of the
present invention. Programmable network processor 200 can
be considered an exemplary embodiment of both ingress and
egress programmable network processors 112-112 as
described above. Programmable network processor 200
includes memory controller 204, input interface 206, multi
processor core 202, and output interface 208. Multiprocessor
core 202 is connected to input interface 206, output interface
208, and memory controller 204. Note that the particular
configuration, number, and type of elements of program
mable processor 200 are shown for illustrative purposes only
and other configurations of programmable network processor
200 are possible as would be apparent.

For the purposes of this description, it is presumed that the
programmable network processor 200 of FIG. 2 corresponds
to programmable network processor 112. In operation, such
a programmable network processor 200 receives network
data elements from network line module ingress port 108 via
input interface 206. Input interface 206 receives the network
data elements and provides them to multiprocessor core 202
for processing as described above. Multiprocessor core 202
processes the network data elements and provides the result to
output interface 208. Output interface 208 receives processed
network data elements from multiprocessor core 202 and
forwards them to switch fabric 106 for routing. Multiproces
Sor core 202 accesses storage located off programmable net
work processor 200 via memory controller 204.

Multiprocessor core 202 is connected to host control pro
cessor 210. Host control processor 210 provides network
management logic and information for programmable net
work processor 200. Such network management logic and
information includes, for example, generating and receiving
network data elements for controlling switch fabric 106, net
work line modules 104–104 and other network compo
nents. Host control processor 210 performs other functions,
Such as generating network data elements for Switch fabric
control, setting up network connections and loading pro
grams into multiprocessor core 202 for operation.

FIG.3 illustrates a system block diagram of a multiproces
Sor core, according to an embodiment of the present inven
tion. Multiprocessor core 300 is an exemplary embodiment of
multiprocessor core 202, as described above. Although mul
tiprocessor core 300 can be used for a generic form of data
processing, multiprocessor core 300 can also be of the type
employed in data communications system 100. Multiproces
sor core 300 includes processing elements (PE) 302-302,
data memories (DM) 304-304, program memories (PM)
306–306 intraswitch 314, and host control interface 308.
Processing elements 302-302 are connected to program
memories 306–306, and intraswitch 314. Data memories
304-304 are connected to intraswitch 314. Program memo
ries 306–306 are connected to processing elements
302-302 and intraswitch 314. Host control interface 308 is
connected to intraswitch 314. Intraswitch 314 is connected to
on-chip peripheral units 310 and 312. Examples of on-chip
peripheral units 310 and 312 are input interface 206, output
interface 208, and memory controller 204 of FIG. 2.

Processing elements 302-302 process network data ele
ments, thereby providing the processing functionality for
multiprocessor core 300. Processing elements 302-302

5

10

15

25

30

35

40

45

50

55

60

65

6
execute program instructions from program memories
306–306, and load and store data in data memories
304-304. Each of processing elements 302-302 can pro
cess multiple threads of instructions concurrently, according
to an embodiment of the present invention.

Program memories 306–306 and data memories
304-304 provide data storage functionality for the various
elements of multiprocessor core 300. Program memories
306–306 store program instructions for the processing of
network data elements by processing elements 302-302.
Although FIG.3 depicts groups of four processing elements
directly connected to one of program memories 306–306,
other configurations connecting program memory to process
ing elements are possible, including for example, additional
processing elements or program memories as would be appar
ent. Data memories 304-304 provide on-chip storage for
data, Such as intermediate-results data from processing net
work data elements, for the operation of processing elements
302-302.

Intraswitch 314 enables communication between the vari
ous components of multiprocessor core 300. For example,
processing elements 302-302 access data memories
304-304 through intraswitch 314. Intraswitch 314 can be,
for example, a switching fabric in multiprocessor core 300, or
individual trace connections in multiprocessor core 300. Host
control interface 308 connects multiprocessor core 300 to
host control processor 210. Multiprocessor core 300 is con
nected to on-chip peripheral units 310 and 312 via intraswitch
314.

In operation, multiprocessor core 300 receives network
data elements from on-chip peripheral units 310 and 312.
Processing elements 302-302 receive the network data ele
ments and process them according to the programs stored as
instructions in program memories 306–306. The interme
diate results and final results of the processing operations are
stored in data memories 304-304. After a network data
element has been processed, it is sent to on-chip peripheral
unit 310 and 312.

FIG. 4 illustrates a system block diagram of an exemplary
processing element, according to an embodiment of the
present invention. Processing element 400 is an example of
one of the processing elements shown in FIG. 3, and can be
employed in a generic form of data processing or can be of the
type that is employed in data communications system 100.

Moreover, exemplary processing element 400 is an instruc
tion-level parallel processing element, in which two or more
threads of parallel programs execute concurrently. Processing
element 400 can, therefore, maintain a high utilization under
conditions where the processing element would otherwise
idle waiting for long-latency operations to complete. Note
that processing element 400 is provided for illustrative pur
poses only and that other processing element configurations
are possible.

Processing element 400 includes instruction fetch unit 402,
instruction buffers 404A, 404B, 404C, and 404D. Processing
element 400 also includes function decode and execution
switch 406, dependency counters 410, instruction issue con
trol 408, memory/peripheral interface unit4; 24 12, primary
function unit 414, auxiliary function unit 416, and register file
418. Note that although dependency counters 410 are shown
as being part of instruction issue control 408, other configu
rations are possible. For example, dependency counters 410
can also be connected to, but not part of instruction issue
control 408.

Instruction fetch unit 402 is connected to each of instruc
tion buffers 404A-404D. Each of the connections between
fetch unit 402 and instruction buffers 404A 404D provides a

US RE44,129 E
7

path for instructions from a program thread. Instruction buff
ers 404A-404D are, in turn, connected to function decode
and execution switch 406. Instruction buffers 404A-404D are
also connected to instruction issue control 408. Instruction
issue control 408 is connected to function decode and execu
tion switch 406. Function decode and execution switch 406 is
connected to memory peripheral interface unit 412, primary
function unit 414, and auxiliary function unit 416. Memory
peripheral interface unit 412, primary function unit 414, and
auxiliary function unit 416 are also referred to herein as
execution units 412–416. Memory peripheral interface unit is
connected to intraswitch 314, and register file 418. Primary
function unit 414 is connected to register file 418. Auxiliary
function unit 416 is connected to register file 418.

Register file 418 includes read ports 420 and write port
422. Read ports 420 allow execution units 412–416 to read
data from the various registers in register file 418. Write port
422 allows execution units 412–416 to write data to register
file 418.

Exemplary processing element 400 is shown as Supporting
four concurrent threads of instructions. Instruction fetch unit
402 fetches instructions from program memory 306. The
instructions are entered in the four instruction buffers
404A 404D according to the program thread they belong to.
Each of instruction buffers 404A-404D is associated with
one of four threads. For descriptive clarity, the convention of
associating thread 0 (TO) with instruction buffer 404A, thread
1 (T1) with instruction buffer 404B, thread 2 (T2) with
instruction buffer 404C, and thread 3 (T3) with instruction
buffer 404D is adopted.

Function decode and execution switch 406 receives the
instructions associated with the four threads from instruction
buffers 404A-404D. Function decode and execution switch
406 provides the instructions to execution units 412–416.

FIG. 5 is a diagram illustrating concurrent processing of
three threads of instructions. Instruction processing diagram
500 illustrates the problem of instruction synchronization
between multiple threads. The instructions of one thread can
be dependent on the results of instructions in another thread.
For example, the contents of a register that is set by a first
instruction in one thread can be used by a second instruction
in another thread. In such a case, if the first instruction is not
executed before the second instruction, the register will not
include data valid for the execution of the first second
instruction. These types of problems are referred to as syn
chronization problems, and may result in a program execu
tion error.

Instruction processing diagram 500 shows three threads of
instructions, thread 502, thread 504, and thread 506. Threads
502-506 can be of the type employed in a generic form of data
processing or can be of the type that are employed in data
communications system 100. Note that three threads are
shown for descriptive clarity only, and other configurations
are possible. A processing element can process as few as two
threads, and as many threads as is accommodated by a pro
cessing element architecture. For example, processing ele
ment 400 accommodates four concurrent threads of instruc
tions.

Each of threads 502-506 is shown including two instruc
tions. Thread502 includes instruction 508 (i1) and instruction
510 (i2). Thread 504 includes instruction 512 (i3) and instruc
tion 514 (i4). Thread 506 includes instruction 516 (i5) and
instruction 518 (i6). Note that instruction processing diagram
500 shows two instructions per thread for descriptive clarity
only, and other configurations are possible. For example, each
of threads 502-506 can include additional instructions (not
shown) before the first instruction (e.g., instruction 508 in

10

15

25

30

35

40

45

50

55

60

65

8
thread 502), between the first and second instruction (e.g.,
instructions 508 and 510 in thread502), and after the second
instruction (e.g., instruction 510 in thread 502). Threads
502-506 can include as many instructions as are required to
perform generic data processing or perform processing for
data communications system 100.

Generally, a processing element processes the three threads
by executing their respective instructions. Instruction pro
cessing diagram 500 shows instruction execution proceeding
from left to right, and the relative spacing of instructions
indicates when an instruction is being executed. For example,
instruction processing diagram 500 shows instruction 508 is
executed before instruction 510 of thread 502. Note also the
chronological relationships between instructions of different
threads. For example, the processing element executes
instruction 508 of thread 502 before instruction 512 of thread
504, and instruction 512 before instruction 516 of thread 506.

Additionally, instruction processing diagram 500 shows
the dependency between the instructions of threads 502-506.
Dependency is when the execution of a second instruction is
conditional on the execution of a first instruction. Consider,
for example, a situation in which a first instruction in a first
thread writes a value to a register file, such as register file 418,
and a second instruction in a second thread Subsequently
reads the value from the register file and uses the value as an
operand in a calculation. In this situation, the first instruction
is referred to as the dependee instruction, and the second
instruction is referred to as the dependent instruction. A
dependent instruction is an instruction that must not be
executed before the instruction on which it depends. A
dependee instruction is an instruction on which a dependent
instruction depends. As long as the dependee instruction is
executed before the dependent instruction, the register file
includes the correct value for the execution of the dependent
instruction.

Depends indicators 520–526 are used to show dependen
cies between the instructions of threads 502-506. Depends
indicators are drawn from a dependent instruction to a
dependee instruction (i.e., the arrow of the depends indicator
points to the dependee instruction). Depends indicator 520
indicates that the execution of instruction 512 depends on the
execution of instruction 508. Depends indicator 522 indicates
that the execution of instruction of 510 depends on the execu
tion of instruction 514. Depends indicator 524 indicates that
the execution of instruction 516 depends on the execution of
instruction 510. Depends indicator 526 indicates that the
execution of instruction 518 is dependent on the execution of
instruction 514.
As described above, if a first instruction depends on a

second, earlier executed, instruction, processing may proceed
normally. Instruction processing diagram 500 shows instruc
tion 512 and instruction 516 dependent on earlier executed
instructions. Program errors may occur, however, if a first
instruction depends on a later executed instruction. Instruc
tion processing diagram 500 shows the synchronization prob
lem as instruction 510 depending on a later executed instruc
tion. As such, it is important for a processing element to
synchronize the execution order of dependent and dependee
instructions between threads to avoid Such program errors.
The present invention provides a system and method that

maintains the order of instruction execution between threads.
Generally, a processing element processes multiple threads of
instructions. Instructions in the threads can include depen
dence indicators that indicate dependencies between instruc
tions and threads. When the processing element encounters
instructions that include dependence indicators identifying a
dependent instruction or thread, it checks, decrements, or

US RE44,129 E
9

increments one or more dependency counters. If the depen
dency counter is not above a threshold, it indicates that a
dependency has not been satisfied, and the processing ele
ment can Suspend the execution of a thread until the depen
dency counter is incremented to above the threshold. This
allows the processing element to maintain a form of synchro
nized execution of dependent instructions between threads.

In one embodiment, instructions can include the depen
dence indicators as bits, called “depends' bits and “tells' bits.
A depends bit is an indicator in a dependent instruction that a
particular other thread includes an instruction on which this
one depends. A tells bit is an indicator in a dependee instruc
tion that a particular other thread includes an instruction
dependent on this one. The additional bits can be included
with the instruction in a number of ways. For example, a
compiler for instruction-level parallel processors can include
the bits at compile time based on dependencies, or a program
mer may specify the instruction execution order by including
“depends' and “tells' bits when coding, etc.
An exemplary embodiment is described herein to provide

context for discussion, and the present invention encom
passes other embodiments, as are described further below.
Consider an exemplary processing element processing four
threads of instructions. Each of the instructions in the four
threads can include depends bits and tells bits. In an exem
plary embodiment each instruction in a thread can include
three depends bits, each of which indicates that the instruction
is dependent on one of the other three threads. Similarly, each
instruction in a thread can include three tells bits, each of
which indicates that one of the other three threads depends on
the execution of the instruction.

In the exemplary embodiment, the processing element can
include four groups of dependency counters, each of which is
associated with one of the four threads. Each of the groups of
dependency counters includes three individual dependency
counters, each of which is associated with one of the other
three threads. For instance, consider four exemplary threads,
thread 0, thread 1, thread 2, and thread 3, each having an
associated group of dependency counters. The exemplary
group of dependency counters associated with thread 0
includes three individual dependency counters, each of which
is associated with one of thread 1, thread 2, or thread 3.

In operation, the exemplary processing element processes
the instructions of the four threads. When the exemplary
processing element encounters an instruction in a first thread
that includes a tells bit identifying a second thread (i.e., one of
the other three threads), the exemplary processing element
increments the dependency counter associated with the first
thread of the group of dependency counters associated with
the second thread.
When the exemplary processing element processes an

instruction in a first thread that includes a depends bit identi
fying a second thread, the processing element checks the
dependency counter associated with the second thread of the
group of dependency counters associated with the first thread
to determine whether the instruction can be executed. If the
value of the exemplary dependency counter is above a thresh
old (e.g., non-zero), the processing element executes the
instruction. If, on the other hand, the value of the exemplary
dependency counter is below a threshold, processing of the
first thread is inhibited. The processing element increments
the dependency counter when instructions including tells bits
in the second thread are executed, and processing the first
thread is resumed once the dependency counter is above the
threshold. Note that an instruction can include multiple
dependency indicators, such as one or more tells bits in com
bination with one or more depends bits. When an instruction
includes more than one depends bit, the associated depen
dency counters must be above the threshold before the
instruction is executed.

10

15

25

30

35

40

45

50

55

60

65

10
The threshold is a dependency counter value chosen to

ensure that dependent instructions are not executed before the
instructions in other threads on which they depend. The
threshold value can be set to ensure correct instruction level
synchronization. For example, the threshold can be chosen to
be Zero, so that a dependency counter must be incremented
before a dependent instruction can be executed, as is
described in further detail, below. Network data element pro
cessing is often repetitive and predictable. As such, a pro
grammer, or compiler, can determine that value at which the
threshold can be set. Note that although one embodiment of
the present invention is explained in terms of a “threshold.”
"above a threshold” and “not above a threshold other con
figurations that record dependency between instructions and
threads are possible. For example, in an alternate embodi
ment, the processing element can Suspend processing a thread
if a dependency counter falls below a threshold.

According to an embodiment of the present invention,
depends bits, tells bits, and dependency counters are used to
record the satisfaction of dependencies between instructions
in a first thread and the processing of a second thread. This is
in contrast to instruction processing diagram 500 of FIG. 5
that shows dependencies between individual instructions. It is
sufficient to record dependency at this level because the
present invention provides a system and method that ensures
that dependent instructions are executed after the instructions
on which they depend.

Consider, for example, the application of “depends' bits
and “tells' bits to instruction processing diagram 500 of FIG.
5. In this example, instruction 512 would include a depends
bit identifying instruction 512 as dependent upon instructions
in thread 502. In one embodiment, the depends bit identifies
the thread that includes the instruction on which instruction
512 is dependent, which is, in this case, thread502. In another
embodiment, the depends bits can identify the type or par
ticular one of the instructions in thread 502. For example, the
instruction can include more bits (i.e., more information) that
identify instruction characteristics (such as type, priority,
etc.). For descriptive clarity, however, depends bits and tells
bits are described herein as identifying threads, and not
instructions. As such, instruction 508 would include a tells bit
that identifies thread 504 as including an instruction or
instructions that are dependent upon the execution of instruc
tion 508.

Similarly, instruction 510 would include a tells bit identi
fying thread 506 as including instructions dependent upon the
execution of instruction 510. Instruction 510 would also
include a depends bit identifying instruction 510 as depen
dent on the execution of instructions in thread 504. Instruc
tion 514 would include a tells bit identifying thread 502 as
including instructions that are dependent on the execution of
instruction 514. Instruction 514 also would include a tells bit
identifying thread 506 as including instructions dependent on
the execution of instruction 514. Instruction 516 would
include a bit identifying instruction 516 as dependent on
instructions in thread 502. Instruction 518 would include a
depends bit identifying instruction 518 as dependent on the
execution of instructions in thread 504.

FIG. 8 illustrates an exemplary instruction, according to an
embodiment of the present invention. Instruction 800
includes opcode 802, source 0804 0804, source 1806. I
806, result 808, depends bit 810, depends bit 812, depends bit
814, tells bit 816, tells bit 818, and tells bit 820. Opcode 802
is the operator for instruction800. Source 08040804 speci
fies a first operand operated upon by opcode 802. Source
1806 I 806 specifies a second operand operated upon by
opcode 802. Result 808 identifies a register to which the
results of opcode 1302 are stored.
Depends bits 810–814 indicate that instruction 800

depends upon the execution of instructions in other threads.

US RE44,129 E
11

Instruction 800 is configured for a processing element that
supports the operation of four threads. Note that although
instruction 800 includes three depends bits which identify
three other threads, and three tells bits, which also identify
three other threads, other configurations are possible. By
adding additional bits or changing how the bits are used,
instruction 800 can be configured for a processing element
that Supports more than four threads. Consider, for example,
binary coding of depends bits 810–814, and tells bits
816–818) 816-820. In such an example, depends bits
810–814 can represent up to eight other threads, extending
instruction 800 to a processing element Supporting nine
threads. Similarly, additional depends and tells bits can be
added as is necessary for a given processing element archi
tecture.

Consider, for example, the case in which instruction 800 is
executing in thread 1. If instruction 800 is executing in thread
1, the other three threads on which the execution of instruc
tion 800 may depend are thread 0, thread 2, and thread 3. In
this case, depends bit 810 can identify instruction 800 as
dependent on thread 0, depends bit 812 can identify instruc
tion 800 as dependent on thread 2, and depends bid 814 can
identify instruction 800 as dependent on thread 3. Likewise,
tells bit 816 can identify thread 0 as dependent on instruction
800. Tells bit 818 can identify thread 2 as dependent on
instruction 800. Tells bit 820 can identify thread 3 as depen
dent on instruction 800.
As Suggested by the relationships described above, depen

dency counter groups are a set of dependency counters asso
ciated with each thread. Each of threads 502-506 of instruc
tion processing diagram 500, for example, would have, or be
associated with, a dependency counter group. Each depen
dency counter group could include a number of individual
dependency counters, each of which is associated with one of
the other threads executing on the processing element. For
example, the dependency counter group associated with
thread 502 of instruction processing diagram 500 would
include two dependency counters, one related to, or associ
ated with, thread 504, and one related to, or associated with,
thread 506.

FIG. 7 illustrates exemplary dependency counter groups,
according to an embodiment of the present invention. FIG. 7
shows four dependency counter groups, each of which is
associated with one of four threads. Dependency counter
group 702 (TO) is associated with thread 0, dependency
counter group 704 (T1) is associated with thread 1, depen
dency counter group 706 (T2) is associated with thread 2, and
dependency counter group 708 (T3) is associated with thread
3. Each of dependency counter groups 702 708 includes
three dependency counters, each of which is associated with
one of the other three threads. Dependency countergroup 702
includes dependency counter T0, dependency counter T0.
and dependency counter T0. Dependency counter T0 is that
dependency counter of thread 0 that is related to, or associated
with, thread 1. Similarly, dependency counter T0, and depen
dency counter T0 are thread 0 dependency counters associ
ated with, or related to, threads 2 and 3, respectively. In the
same manner, dependency countergroup 704 includes depen
dency counter T1, dependency counter T1, and dependency
counter T1. Dependency counter T1 is associated with
thread 0, dependency counter T1 is associated with thread 2,
and dependency counter T1 is associated with thread3. Also,
dependency counter group 706 includes dependency counter
T2, dependency counter T2, and dependency counter T2.
Dependency counter T2 is associated with thread 0, depen
dency counter T2 is associated with thread 1, and depen
dency counter T1 is associated with thread 3. Dependency
counter group 708 includes dependency counter T3, depen
dency counter T3, and dependency counter T3. Depen
dency counter T3 is associated with thread 0, dependency

10

15

25

30

35

40

45

50

55

60

65

12
counter T3 is associated with thread 1, and dependency
counter T3 is associated with thread 2.

Note that although four dependency counter groups are
shown (as are implemented in one embodiment to Support
four threads), and the dependency counter groups include
three dependency counters each, other configurations are pos
sible. For example, greater or fewer than four dependency
counter groups can be used according to the number of
threads a processing element can execute concurrently. Addi
tionally, dependency counter groups 702 708 can include
more or fewer dependency counters, depending on the pro
cessing element architecture.

Moreover, although the invention and illustrative examples
are described in terms of dependency counter groups, and
dependency counters, other configurations are possible. Con
sider, for example, bi-state, or tri-state elements Substituted
for dependency counters 702708. A bi-state element asso
ciated with a first thread can be set when a corresponding
dependee instruction in a second thread is executed, and reset
when the dependent instruction is executed. In this example,
a processing element Suspends processing the first thread
when it encounters an instruction including a depends bit if
the bi-state element is not set. Similarly, tri-state elements,
and other state retaining elements can be set and reset by the
processing element. In this embodiment, however, care
should be taken to avoid overflowing the state elements. For
example, a bi-state element may be incremented, or changed,
only once in response to an instruction that includes a tells bit.

Similarly, the implementation of the present invention
should account for the size of the dependency counters to
avoid overflow. Consider, for example, the case in which
multiple instructions including tells bits identifying one
thread are executed. In such a case, it is possible to overflow
the dependency counter. Dependency counters, therefore,
should be specified large enough to ensure that overflow will
never occur, or limits should be set on the number of times a
dependency counter can be incremented. For example, a first
thread that includes many instructions that include tells bits
identifying a second thread can be suspended once the depen
dency counter associated with the second thread has reached
a limit. The limit can ensure that the dependency counter does
not overflow, and can also ensure that a dependee thread does
not get too far ahead of a dependent thread.

In operation, a tells bit affects one or more dependency
counters of the threads other than the one on which the tells bit
appears. By contrast, a depends bit affects one or more depen
dency counters of the thread on which the depends bit
appears. Thus, when the processing element detects a first
instruction in a first thread as including a tells bit that identi
fies a second thread, the processing element increments one
of the dependency counters in the dependency counter group
of the second thread. In particular, it increments that depen
dency counter of the second thread that is associated with the
first thread. Consider, for example, the case in which thread 1
is executing a stream of instructions. One of the instructions
in thread 1 includes a tells bit that identifies thread 0. In
response to the tells bit, the processing element increments
the particular dependency counter in dependency counter
group 702 associated with thread 1. In the example of depen
dency counter group 702, dependency counter T0, is asso
ciated with thread 1. The processing element, therefore,
increments T0 of dependency counter group 704 when the
thread 1 instruction tells bit is detected. Similarly, when the
processing element detects an instruction in a thread that
includes a depends bit, the dependency counters are checked,
and the processing element either Suspends the dependent
thread or executes the instruction and decrements the associ
ated dependency counter.

For example, thread 1 can include an instruction that
includes a depends bit that identifies the instruction as

US RE44,129 E
13

depending on the execution of thread 0. In this case, when the
processing element detects the depends bit, the dependency
counter associated with thread 0 of the dependency counter
group associated with the thread 1 is checked. In this case,
dependency counter T1 of dependency counter group 704 is
associated with thread T0. Depending on the value of depen
dency counter T1, the processing element either suspends
processing thread 1 or both decrements T1 and continues
processing the thread 1, thereby executing the instruction.
Once Suspended, the processing element resumes processing
thread 1 when dependency counter T1 is incremented by the
processing element (i.e., when an instruction in thread 0 with
a tells bit is executed).

FIG. 6 illustrates concurrent processing of two threads of
instructions, according to an embodiment of the present
invention. Thread synchronization diagram 600 shows thread
602 and thread 604 as a series of processing steps. A process
ing step is an action or actions performed by a processing
element in the implementation of one embodiment of the
present invention. A processing step can be, for example, the
execution of an instruction, incrementing a dependency
counter, decrementing a dependency counter, etc. Thread 602
includes processing step 606, processing step 608, processing
step 610, processing step 612, processing step 614, and pro
cessing step 616. Thread 604 includes processing step 618,
processing step 620, and processing step 622. Although syn
chronization diagram 600 only shows two threads of instruc
tions, other configurations are possible. For example, the
system and method of the present invention can be extended
to three, four, and more than fourthreads, as described above.

For the purpose of descriptive clarity, the instructions of
thread synchronization diagram 600 are referred to as instruc
tion 508 (i1), instruction 510 (i2), instruction 512 (i3), and
instruction 514 (i4). Note, however, that instruction process
ing diagram 500 shows instruction 512 as dependent on
instruction 508, and shows instruction 510 as dependent on
instruction 514. Thread synchronization diagram 600, on the
other hand, shows the instructions of thread 602 dependent on
the execution of instructions in thread 604 generally, and the
instructions of thread 604 dependent on the execution of
instructions in thread 602 generally. The dependencies
between instructions 508–514 shown in instruction process
ing diagram 500 are implemented in the operation of one
embodiment of the present invention through the general
dependency of instructions within one thread on the process
ing of another thread (i.e., rather than particular instructions).
This concept is illustrated in further detail below.

Additionally, thread synchronization diagram 600 shows
tells bits 624 and 630 and depends bit 626 and 628 as arrows
pointing from processing steps to the threads that the bits
identify. The arrows are shown to indicate that an instruction
being processed in a processing step includes a tells bit or
depends bit, and identifies the thread to which the bit points.
Either the thread pointed to depends on the instruction (i.e.,
tells bit), or the instruction depends on the thread (i.e.,
depends bit). For example, tells bit 624 identifies thread 604
as dependent on instruction 508 of processing step 606. Simi
larly, depends bit 626 identifies instruction 512 of processing
step 618 as dependent on thread 602.

Processing of thread 602 and thread 604 begins when the
processing element executes instruction 508, in processing
step 606. Instruction 508 includes tells bit 624 that identifies
thread 604 as dependent on instruction 508. The processing
element detects tells bit 624 and increments a dependency
counter in a dependency counter group 704 associated with
thread T1, 604.
As described above, a dependency counter group is asso

ciated with a thread, and the dependency counter group
includes dependency counters, each of which is associated
with one of the other threads executing on the processing

10

15

25

30

35

40

45

50

55

60

65

14
element. Thread synchronization diagram 600 is described in
terms of dependency counter group 702 (associated with
thread 602) and dependency counter group 704 (associated
with thread 604). Dependency counter To TI, of depen
dency counter group 704 is associated with thread 602, and
dependency counter T0, is associated with thread 602.

After processing step 606, the processing element receives
instruction 512, in processing step 618. Instruction 512
includes depends bit 626 identifying instruction 512 as
dependent on the execution of instructions in thread 602. The
processing element determines if dependency counter T1 is
above a predefined threshold. For the purposes of explana
tion, dependency counter T1 is assumed to have been above,
or at the threshold, so that it is above the threshold after being
incremented. Since the processing element has incremented
dependency counter T1, when the dependency counter is
checked in response to instruction 512, the processing ele
ment determines that dependency counter T1 is above the
threshold.

Since dependency counter T1 is above the threshold, the
processing element continues processing instruction 512, at
processing step 620. In processing step 620, the processing
element executes instruction 512 and decrements depen
dency counter T1.

Meanwhile, the processing element processes thread 602
in processing step 608. In processing step 608, the processing
element receives instruction 510 from program memory.
Instruction 510 includes depends bit 628, which identifies
instruction 510 as dependent on the execution of instructions
in thread 604. The processing element checks the dependency
counter group of thread 602, particularly the dependency
counter related to thread 604, in response to detecting
depends bit 628. This corresponds to dependency counter
T0. The value can be, for example, Zero, or some other
number representing a predetermined threshold. For exem
plary purposes, however, dependency counter T0 is defined
as having a value of the predetermined threshold. In any case,
the value of dependency counter T0 indicates that instruc
tions in thread 604 upon which instruction 510 depends, have
not yet been executed. In response to detecting that depen
dency counter T0 is not above a threshold, the processing
element Suspends execution of thread 602 in processing step
610.

Meanwhile, the processing element continues processing
thread 604. The processing element receives instruction 514
in processing step 622. Instruction 514 includes tells bit 630
that identifies thread 602 as including instructions dependent
on instruction 514. The processing element increments that
dependency counter of the thread 602 dependency counter
group that is related to thread 604 (namely, dependency
counter T0) in response to detecting tells bit 630, and
executes instruction 514, in processing step 622. Note that the
order of executing the instruction and incrementing or decre
menting dependency counters is chosen for illustrative pur
poses only, and the same outcome can be achieved with
reversed order.

After processing step 622, the processing element detects
that dependency counter T0 has been incremented to above
the threshold, in processing step 612. As such, the processing
element resumes processing thread 602 at instruction 510 in
processing step 614. After resuming processing thread 602,
the processing element executes instruction 510, decrements
dependency counter T0, and continues processing the
instructions of thread 602, in step 616. Note that in the
example of FIG. 6, dependency counter T0 is now equal to
the threshold value, and any additional instructions in thread
602 that include depends bits identifying thread 604 will
cause the processing element to Suspend execution of the
thread (absent prior instructions in thread 604 with tells bits
identifying thread 602).

US RE44,129 E
15

The operation of thread synchronization diagram 600 is
now described with reference to the elements of exemplary
processing element 400. The execution of thread 602 begins
in processing step 606. For descriptive clarity, thread 602 is
associated with instruction buffer 404A, and thread 604 is
associated with instruction buffer 404B. In general, instruc
tion fetch unit 402 fetches program instructions from pro
gram memory 306. Instruction fetch unit 402 distributes the
instructions associated with the four threads to one of instruc
tion buffers 404A, 404B, 404C, or 404D. In one embodiment,
each of instruction buffers 404A-404D is associated with a
particular thread.

Instruction issue control 408 detects the presence of
depends bits such as depends bits 810–814 or the presence of
tells bits, such as tells bits 816–820 included in instructions in
instruction buffers 404A 404D. Based on presence or
absence of depends bits and tells bits in the instruction,
instruction issue control 408 controls function decode and
execution Switch 406. Based on signals from instruction issue
control 408, function decode and execution switch 406 issues
instructions from instruction buffers 404A-404D to one of
execution units 412–416 (i.e., memory peripheral interface
unit 412, primary function unit 414, or auxiliary function unit
416).

In processing step 606, instruction 508 is received in
instruction buffer 404A. Instruction issue control 408 detects
the presence of tells bit 624 in instruction 508. In response to
detecting the presence of tells bit 624, instruction issue con
trol increments one of the dependency counters in depen
dency counters 410. As described above, instruction issue
control 408 increments dependency counter T1. Instruction
issue control 408 then causes function decode and execution
switch 406 to provide instruction 508 to one of execution
units 412–416 for execution. Meanwhile, processing element
400 is also processing thread 604. Instruction buffer 404B
receives instruction 512, in processing step 618. Instruction
issue control 408 detects the existence of depends bit 626 in
instruction 512. Depends bit 626 identifies instruction 512 as
dependent on instructions in thread 602. In response to detect
ing depends bit 626, instruction issue control 408 checks
dependency counter T1 in processing step 618. Since depen
dency counter T1 is above the threshold (as described
above), instruction issue control 408 enables function decode
and execution switch 406 to provide instruction 512 to one of
execution units 412–416 for execution. Additionally, instruc
tion issue control decrements dependency counter T1 in
dependency counters 410.

Meanwhile, processing element 400 receives instruction
510 in processing step 608. Instruction issue control 408
detects the existence of depends bit 628 in instruction buffer
404A. Depends bit 628 identifies instruction 510 as depen
dent on instructions in thread 604. In response to detecting
depends bit 628, instruction issue control 408 checks depen
dency counter T0 in dependency counters 410. In this par
ticular example, dependency counter T0 is equal to the
threshold necessary to continue processing instruction 510.
Since dependency counter T0 is not above the threshold,
instruction issue control 408 suspends execution of thread
602 by holding instruction 510 in function decode and execu
tion switch 406.

Processing element 400 continues processing thread 604,
and receives instruction 514 in processing step 622. Instruc
tion 514 includes tells bit 630 identifying thread 602 as
dependent on the execution of instruction 514. Instruction
issue control 408 increments dependency counter T0 in
response to detecting tells bit 630, in processing step 622.
Instruction issue control 408 causes function decode and
execution switch 406 to send instruction 514 to one of execu
tion units 412–416 for execution. After dependency counter
T0 has been incremented in processing step 622, instruction

10

15

25

30

35

40

45

50

55

60

65

16
issue control 408 detects that dependency counter T0 has
been incremented. Instruction issue control 408 checks
dependency counter T0 to determine if it is above the thresh
old. In the example of thread synchronization diagram 600,
instruction issue control 408 determines that dependency
counter T0 is above the threshold, in processing step 612. In
response to detecting dependency counter T0 above the
threshold, instruction issue control 408 resumes processing
thread 602 by issuing instruction 510 to one of execution units
412–416, in processing step 614. Instruction 510 is executed,
and instruction issue control 408 decrements dependency
counter T0 in processing step 616.

FIG. 9 illustrates a process for executing instructions,
according to an embodiment of the present invention. After
method 900 starts in step 902, a processing element receives
an instruction in a first thread, in step 904. In step 906, the
processing element determines if the execution of the instruc
tion in the first thread is dependent on the execution of instruc
tions in a second thread.

If the processing element determines that the execution of
the instruction in the first thread is not dependent on the
execution of instructions in a second thread, method 900 ends
in step 916.

If, on the other hand, the processing element determines
that the execution of the instruction in the first thread is
dependent on the execution of instructions in a second thread,
the process of method 900 continues in step 908. In step 908,
the processing element examines a dependency counter
group that includes a dependency counter associated with the
second thread.

In step 910, the processing element determines whether the
dependency counter includes a value above a threshold. If the
dependency counter includes a value above a threshold,
method 900 continues in step 914. In step 914, the processing
element executes the first thread instruction and decrements
the dependency counter.

If, on the other hand, the processing element determines
that the dependency counter does not include a value above a
threshold, method 900 continues in step 912. In step 912, the
processing element Suspends execution of the first thread
until the dependency counter is incremented to above a
threshold. Once the dependency counter is incremented to
above a threshold, processing the first thread resumes,
method 900 continues in step 914. In step 914, the processing
element executes the first thread instruction.

FIG. 10 illustrates an exemplary process for executing
instructions, according to an embodiment of the present
invention. After method 1000 starts in step 1002, a processing
element receives a first thread instruction, in step 1004. After
the first thread instruction has been received, the processing
element determines whether a second thread is dependent on
the first thread instruction, in step 1006.

If a second thread is dependent on the execution of the first
thread instruction, method 1000 continues in step 1008. In
step 1008, the processing element increments a dependency
counter included in a dependency counter group associated
with the second thread. After the dependency counter is incre
mented, the processing element executes the first thread
instruction, in step 1010.

If, on the other hand, the processing element determines
that a second thread is not dependent on the first thread
instruction, the process of method 1000 continues in step
1010. In step 1010, the processing element executes the first
thread instruction.

After step 1010, method 1000 ends in step 1012.
The present invention provides a system and method for

high speed processing of network data elements. A network
line module, such as network line module 104, receives
network data elements from a network or switch fabric via a
network line module ingress port. The network line module
provides the network data elements to a multiprocessor core.

US RE44,129 E
17

The received network data elements are distributed to mul
tiple processing elements within the multiprocessor core for
processing according to a program.

The processing elements process the network data ele
ments according to program instructions stored in program
memory. Each of the processing elements uses instruction
level parallelism to process multiple threads of instructions
concurrently. Instruction execution is synchronized by
recording dependencies between instructions and threads.
Instructions in the threads can include dependence indicators
identifying dependencies between instructions and threads.
When a processing element encounters an instruction that
includes dependence indicators identifying a dependent
instruction or thread, the processing element checks, decre
ments, or increments one or more dependency counters that
records dependency between instructions and threads. If an
instruction in a first thread is dependent upon the execution of
instructions in a second thread, a dependency counter is
checked. If the dependency counter is not above a predeter
mined threshold, the processing element Suspends the execu
tion of the first thread until the dependency counter is incre
mented by the second thread to above the threshold.

After processing, the multiprocessor core provides pro
cessed network data elements to the network line module. The
network line module provides the processed network data
element to an egress port connected to a network or Switch
fabric.

It will be apparent to one skilled in the art that various
changes and modifications can be made therein without
departing from the spirit and scope thereof. Thus, it is
intended that the present invention cover the modifications
and variations of this invention provided they come within the
scope of the appended claims and their equivalents.

What is claimed is:
1. An apparatus for instruction-level parallelism in a pro

cessing element, comprising: an instruction control unit. The
apparatus of claim 7, wherein the instruction buffer com
prises:

a first instruction buffer coupled to said instruction control
unit, the first instruction buffer configured to hold a the
first instruction including a dependency indicator and
being associated with a first thread and

a second instruction buffer coupled to said instruction con
trol unit, the second instruction buffer configured to hold
a the second instruction including a dependency indi
cator and being associated with a second thread; a
dependency counter coupled to said instruction control
unit and wherein

an the execution switch is coupled to said instruction
control unit, said first instruction buffer and said sec
ond instruction buffer and

an execution unit coupled to said execution Switch;
said instruction control unit configured to detect the depen

dency indicators and change the value of said depen
dency counter in response to detecting the dependency
indicators and configured to disallow execution of the
first instruction if said dependency counter includes a
value less than a threshold value.

2. The apparatus of claim 1, wherein said dependency
counter includes a first counter associated with the first
instruction buffer and a second counter associated with the
second instruction buffer.

3. The apparatus of claim 1, wherein said instruction con
trol unit identifies instruction dependency bits in said first
instruction buffer, the instruction dependency bits being asso
ciated with instructions.

4. The apparatus of claim 1, said instruction control unit
generating control signals based on the dependency bits and
values included in said dependency counter.

10

15

25

30

35

40

45

50

55

60

65

18
5. The apparatus of claim 4, said execution switch provid

ing instructions from said first instruction buffer to said
execution unit based on control signals from said instruction
control unit.

6. The apparatus of claim 1, said execution Switch provid
ing instructions from said first instruction buffer to said
execution unit based on control signals from said instruction
control unit.

7. An apparatus for processing instructions in multiple
threads in an execution unit, comprising:

an instruction buffer holding configured to hold a first
instruction and a second instruction, the first instruction
being associated with a first thread, and the second
instruction being associated with a second thread, the
first instruction and the second instruction including one
or more instruction dependency bits:

a dependency counter,
an instruction control unit coupled to said instruction

buffer and said dependency counter, said instruction
control unit detecting configured to detect the instruc
tion dependency bits and incrementing and decrement
ing to increment and decrement said dependency
counter in response to detecting the instruction depen
dence bits, said instruction control unit configured to
disallow execution of the first instruction if in response
to said dependency counter includes including a value
less than a threshold value; and

an execution Switch coupled to said instruction control unit
and said instruction buffer, said execution switch send
ing configured to sendinstructions to the execution unit.

8. The apparatus of claim 7, wherein said dependency
counter includes a first counter associated with the first thread
and a second counter associated with the second thread.

9. The apparatus of claim 7, wherein said instruction buffer
includes the instruction dependency bits, the instruction
dependency bits being associated with instructions.

10. The apparatus of claim 7, wherein said instruction
control detects dependency between the first instruction and
the second threadbased on dependency bits in said instruction
buffer and a value of said dependency counter.

11. A method for processing instructions in multiple
threads, comprising:

receiving a first instruction associated with a first thread;
determining whether execution of the first instruction

depends on execution of a second instruction, the second
instruction being associated with a second thread;

examining a counter logic element associated with the
first thread if in response to said determining indi
cates indicating that the first instruction depends on the
execution of the second instruction, wherein the logic
element comprises a single bi-state element or a tri-state
element;

decrementing the counter if modifiving the logic element
in response to said examining indicates indicating that
the second instruction has already been executed; and

executing the first instruction, and
suspending the processing of the first thread until said

examining indicates that the second instruction has
already been executed and then resuming processing.

12. The method of claim 11, further comprising suspend
ing the processing of the first thread until said examining
indicates that the second instruction has already been
executed.

13. A method for processing instructions in multiple
threads, comprising:

receiving a first instruction associated with a first thread;
determining whether execution of a second instruction

depends on the execution of the first instruction, the
second instruction being associated with a second
thread;

US RE44,129 E
19

incrementing a counter associated with the second thread
if in response to said determining indicates indicat
ing that execution of a second instruction depends on the
execution of the first instruction; and

executing the first instruction, and
suspending the processing of the second thread in response

to the counter associated with the second thread not
exceeding a threshold and resuming the processing of
the second thread in response to the counter associated
with the second thread exceeding the threshold

wherein the first instruction and the second instruction
include One or more instruction dependency bits.

14. The method of claim 13, further comprising suspend
ing the processing of the second thread if the counter associ
ated with the second thread does not exceed a threshold

15. A method for processing instructions in multiple
threads, comprising:

receiving a first instruction associated with a first thread,
the first instruction including one or more instruction
dependency bits;

determining whether a second thread depends on said first
instruction;

incrementing a counter associated with the second thread
if in response to the second thread depends depend
ing on said first instruction;

loading a second instruction associated with a second
thread; and

processing the second instruction in a manner related to the
value of the counter associated with the second thread
and

suspending, the processing of the second thread in
response to the counter not exceeding a threshold and
resuming the processing of the second thread in
response to the counter exceeding said threshold.

16. The method of claim 15, further comprising suspend
ing the processing the second thread if the counter indicates
that a dependent thread has not been executed

17. The method of claim 15, further comprising executing
the second instruction if the counter indicates that said first
instruction has been executed.

18. An apparatus for processing instructions in multiple
threads, comprising:

an instruction buffer configured to hold a first instruction
and a second instruction, the first instruction including a
dependency indicator and being associated with a first
thread, and the second instruction including a depen
dency indicator and being associated with a second
thread;

an instruction control unit coupled to said instruction
buffer;

a dependency counter coupled to said instruction control
unit, said dependency counter associated with the first
thread:

5

10

15

25

30

35

40

45

20
said instruction control unit configured to detect the depen

dency indicators and change the value of increment
and decrement said dependency counter in response to
detecting the dependency indicators; and

said instruction control unit configured to disallow execu
tion of the first instruction if in response to said depen
dency counter includes including a value less than a
threshold value.

19. The apparatus of claim 18, wherein said instruction
control unit is configured to determine that the dependency
indicator included in the first instruction indicates that the
second thread includes an instruction on which the first
instruction depends.

20. The apparatus of claim 18, wherein the dependency
indicator included in the first instruction is a depends bit.

21. The apparatus of claim 18, wherein said instruction
control unit is configured to determine that the dependency
indicator included in the second instruction indicates that the
first thread includes an instruction that is dependent on the
second instruction.

22. The apparatus of claim 18, wherein the dependency
indicator included in the second instruction is a tells bit.

23. The apparatus of claim 1825, wherein said instruc
tion control unit is configured to increment said dependency
counter in response to detecting the dependency indicator
included in the second instruction.

24. The apparatus of claim 1825, wherein said instruc
tion control unit is configured to decrement said dependency
counter in response to detecting the dependency indicator
included in the first instruction.

25. The apparatus according to claim 18, wherein said
dependency counter is coupled to said instruction control unit
and associated with the first thread.

26. A method for processing instructions in multiple
threads, comprising:

receiving a first instruction associated with a first thread
determining that execution of the first instruction depends

On execution of a second instruction, the second instruc
tion being associated with a second thread

examining a dependency counter associated with the first
thread to determine whether the second instruction has
already been executed

incrementing the dependency counter in response to said
determining indicating that execution of the first instruc
tion depends on execution of the second instruction, and

suspending the processing of the first thread when exam
ining indicates that the dependency counter does not
exceed a threshold and resuming the processing after the
dependency counter exceeds said threshold,

wherein the first instruction and the second instruction
include One or more instruction dependency bits.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE44,129 E Page 1 Of 3
APPLICATIONNO. : 1 1/862815
DATED : April 2, 2013
INVENTOR(S) : Apisdorf et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Drawings:

In Fig. 4. Sheet 4 of 9, for Tag “408, adjust the text in the box. (See attached sheet)

In the Specifications:

In Column 1, Line 49, delete “network rig and insert -- network --, therefor.

In Column 4, Line 29, delete “element Star and insert -- element --, therefor.

In Column 4, Line 38, delete “104, and insert -- 1041 --, therefor.

In Column 4, Line 52, delete “112 and insert -- 1121--, therefor.

In Column 5, Line53, delete “(PE) and insert -- (PEs) --, therefor.

In Column 5, Line 54, delete “(DM) and insert -- (DMs) --, therefor.

In Column 5, Line 54, delete “(PM) and insert -- (PMs) --, therefor.

In Column 10, Line 65, delete “opcode 1302 and insert -- opcode 802 --, therefor.

In Column 14, Line 6, delete “T0, and insert --TO --, therefor.

In the Claims:

In Column 17, Line 65, in Claim 4, delete “Said' and insert -- wherein said --, therefor.

Signed and Sealed this
Seventeenth Day of September, 2013

Teresa Stanek Rea

Deputy Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 3
U.S. Pat. No. RE44,129 E

In Column 18, Line 1, in Claim 5, delete “Said and insert -- wherein said --, therefor.

In Column 18, Line 5, in Claim 6, delete “Said and insert -- wherein said --, therefor.

In Column 18, Line 17, in Claim 7, delete “counter, and insert -- counter, --, therefor.

In Column 18, Lines 22-23, in Claim 7, delete “dependence and insert -- dependency --, therefor.

In Column 19, Line 30, in Claim 15, delete “suspending, and insert -- suspending --, therefor.

In Column 19, Line 50, in Claim 18, delete “unit, and insert -- unit --, therefor.

In Column 20, Line 44, in Claim 26, delete “when and insert -- when said --, therefor.

CERTIFICATE OF CORRECTION (continued) Page 3 of 3

U.S. Patent Apr. 2, 2013 Sheet 4 of 9 RE44,129 E

PROGRAMMEMORY 306

ara - re - a a - as a - 8 w 8 as Yo 8 A has & a an as A h so A. As a as or a d AA A s a ow A &s a th Z. anA. o m are 1.

402
INSTRUCTION FETCH UNT

404B N / 404C 404A N / 404D
NSR

B

the w as wraa a

FUNCON DECODE
408 40

CY is RUCTION DEPENDE
ISSUE OUNERS

CONTROL

UN

412

