wo 2015/030972 A1 |1 IO OO0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/030972 A1l

5 March 2015 (05.03.2015) WIPOIPCT

(51) International Patent Classification: (74) Agent: BEHAR, Ari, M.; Bainwood, Huang & Associates,
GO6F 17/30 (2006.01) LLC, Highpoint Center, 2 Connector Road, Westborough,

M. husetts 01581 .

(21) International Application Number: assachuisets (US)
PCT/US2014/048456 (81) Designated States (unless otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: 28 July 2014 (28.07.2014 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY.
uly 2014 (28.07.2014) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
Lo . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
14/015227 30 August 2013 (30.08.2013) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 851 TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

West Cypress Creek Road, Fort Lauderdale, Florida 33309 ZW.
S).

US) o (84) Designated States (uniess otherwise indicated, for every
(72) Inventors: MARANO, Adam L.; c¢/o Citrix Systems, Inc., kind of regional protection available): ARIPO (BW, GH,

14 Crosby Drive, Bedford, Massachusetts 01730 (US).
LABORCZFALVI, Lee; c/o Citrix Systems, Inc., 14
Crosby Drive, Bedford, Massachusetts 01730 (US).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: REDIRECTING LOCAL STORAGE TO CLOUD STORAGE

Fig. 3

240

243
Application Wrapper

42
Client Application

244
Interceptor Module (Intercept calls to the local
storage driver directed to the cloud portion of

the filesystem and forward to cloud driver)

253
Cloud Driver
Interface
Module

247
Local Storage |« >
Module

54
Cloud Storage
Driver

246
Local Storage Driver

To Cloud Storage 37

(57) Abstract: One embodiment is directed to a method of
providing access to cloud storage performed by a mobile
computing device. The method includes (a) receiving a file-
level access command to perform a tile-level operation on a
file of filesystem storage of the mobile computing device,
the filesystem storage including remote storage provided by
a remote storage platform and locally-cached storage
provided by local storage, (b) evaluating whether the file-
level access command is directed to a pre-determined por-
tion of the filesystem provided by the remote storage plat-
form, (c) in response to evaluating, if the file-level access
command is directed to the pre-determined portion, then
performing a synchronization operation to ensure that the
file is stored on local storage in synchronization with the re-
mote storage platform, and (d) fulfilling the file-level access
command by accessing the local storage once the file is
stored on local storage in synchronization with the remote
storage platform.

WO 2015/030972 A1 WK 00N VT 0 A U0

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

REDIRECTING LOCAL STORAGE TO CLOUD STORAGE

BACKGROUND

Smart phones and other mobile computing devices have become ubiquitous
over the past several years. Users often use these devices to access and store
documents. Because users may also want to access these documents using other
devices (e.g., personal computers) and because mobile computing devices can easily
be lost, many cloud service providers have provided mobile applications to allow
users to synchronize files on a mobile device with the cloud. In addition, some
application developers have added a feature to their mobile applications whereby
users can save documents created with those applications to a cloud-based storage

service automatically.

SUMMARY

The above-described conventional systems for saving documents to the cloud
from a mobile device suffer from deficiencies. For example, a user is required to
actively choose to access documents from the cloud. In addition, unless an application
developer chooses to implement a cloud-based access feature in its application, the
user will not even have the option within the application to access documents stored
in the cloud if those documents are not already stored locally on the mobile device.

Thus, it would be desirable to alleviate these concerns by allowing a user to
automatically access documents and other files from the cloud using a mobile
computing device. It would further be desirable to allow the user to access the cloud
from a mobile application even if the developer did not explicitly implement such a
feature in the application. Thus, embodiments are directed to automatic techniques for
selectively redirecting file-level access commands of local storage of a mobile
computing device to the cloud by intercepting file-level access calls directed to a
specified area of a filesystem.

One embodiment is directed to a method of redirecting a file-level access
command performed by a mobile computing device. The method includes (a)
receiving a file-level access command to perform a file-level operation on a file of

filesystem storage of the mobile computing device, the filesystem storage including

-1-

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

remote storage provided by a remote storage platform and locally-cached storage
provided by local storage, (b) evaluating whether the file-level access command is
directed to a pre-determined portion of the filesystem provided by the remote storage
platform, (c) in response to evaluating, if the file-level access command is directed to
the pre-determined portion, then performing a synchronization operation to ensure that
the file is stored on local storage in synchronization with the remote storage platform,
and (d) fulfilling the file-level access command by accessing the local storage once the
file is stored on local storage in synchronization with the remote storage platform.
Other embodiments are directed to a computerized apparatus and computer program

products for performing methods similar to that described above.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from
the following description of particular embodiments of the present disclosure, as
illustrated in the accompanying drawings in which like reference characters refer to
the same parts throughout the different views. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating the principles of various
embodiments of the present disclosure.

Fig. 1 depicts an example system for use in performing various embodiments.

Fig. 2 depicts an example memory configuration according to various
embodiments.

Fig. 3 depicts another example memory configuration according to various
embodiments.

Fig. 4 depicts an example method according to various embodiments.

Fig. 5 depicts an example method according to various embodiments.

DETAILED DESCRIPTION
Embodiments are directed to automatic techniques for selectively redirecting
file-level access commands of local storage of a mobile computing device to the cloud

by intercepting file-level access calls directed to a specified area of a filesystem.

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

Fig. 1 depicts an example system 30. System 30 includes a mobile computing
device 32 which connects to a network 34, which allows it to access a cloud-based
remote storage platform 36 that provides cloud storage 37 for user data.

Mobile computing device 32 may be any kind of network-connectable
computing device which is mobile, such as, for example, a cellular phone, a smart
phone, a tablet, a laptop computer, etc. Network 34 may be any kind of data
communication network, such as for example the Internet, a cellular data network, a
wireless local area network, similar systems, and combinations thereof.

Mobile computing device 32 includes a processor 38, memory 40, local
storage 48, a network interface 56, and a user interface (UI) 58.

Processor 38 may be any kind of processor or set of processors configured to
perform operations, such as, for example, a microprocessor, a multi-core
microprocessor, a digital signal processor, a collection of electronic circuits, or any
combination of the above.

Network interface 56 interfaces with network 34. Network interface 56 may
include a cellular modem, a Wireless Fidelity (WiFi) wireless networking adapter, a
Bluetooth adapter, a Near Field Communication adapter, any other device for
connecting to a network (especially a wireless network), or some combination thereof.

UI 58 allows the mobile computing device 32 to interact with a user. For
example, Ul 58 may include a touch-sensitive display screen (e.g., any kind of liquid
crystal display capable of receiving touch-based user input) and circuitry for
interfacing with such touch-sensitive display screen (e.g., a graphics adapter, a touch-
base input controller, etc.) or any combination of display screens and input devices
(e.g., keyboard, keypad, mouse, trackpad, tracking ball, pen-based digitizer, stylus-
based digitizer, etc.). Typically, the UI 58 is entirely integrated within the mobile
computing device 32 (e.g., a screen embedded into a smartphone), although in some
embodiments, portions of the Ul 58 may be external to the mobile computing device
32.

Memory 40 may be any kind of digital system memory, such as, for example,
RAM. Memory 40 stores programs and applications (e.g., mobile apps) executing on
processor 38 as well as data used by those programs. Memory 40 stores an operating

system (e.g., a version of the Android operating system) (not depicted) as well as

-3-

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

various other software modules (some of which may be independent applications,
while others are parts of other applications or the operating system). Memory 40 thus
includes one or more client applications 42, an interceptor module 44, a local storage
driver 46, and a cloud storage driver 54.

Client application 42 is an application which a user may operate to create and
access files. One example client application 42 is a document editor. Client
application 42 is configured to issue various kinds of file commands to the local
storage driver 46, which is part of the operating system. Local storage driver 46 is
configured to process all sorts of file commands by accessing local storage 48 on the
mobile computing device 32 to, for example, open, close, write, read, delete, move,
copy, or create files within a filesystem 50 of the local storage 48. Local storage 48
may be any type of non-volatile local data storage, such as, for example, embedded
flash storage, removable flash storage cards (e.g., SecureDigital (SD) or
CompactFlash and similar non-volatile memory cards), USB-based removable storage
devices, etc.

Interceptor module 44 is a software component which logically interposes
between client application 42 and local storage functionality of the local storage driver
46. In some embodiments (see, ¢.g., Fig. 2), interceptor module 44 is embedded
within the local storage driver 46, while, in other embodiments (see, ¢.g., Fig. 3),
interceptor module 44 is embedded within an application wrapper built around client
application 42. Functionally, interceptor module 44 serves to intercept file-level
access commands issued by client application 42 and redirect file-level access
commands which refer to files within a pre-defined cloud portion 52 of filesystem 50
to instead be processed by a cloud storage driver 54 for ultimate fulfillment by cloud
storage 37 of the remote cloud-based storage platform 36 instead of (or, in some
embodiments, in addition to) being processed locally by the local storage driver 46.

File-level access commands are commands which involve reading metadata of
a file, but not altering the contents of the file. Example file-level access commands
include file open commands and directory view (also referred to as list) commands,
while commands such as file read and file write commands are not file-level access

commands.

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

For example, local storage 48 may store a filesystem 50 prefixed by
“/mnt/SD/” while cloud portion 52 is the portion of that filesystem 50 having prefix
“/mnt/SD/cloud/” so that any file within /mnt/SD/cloud/ is actually physically located
within cloud storage 37, but appears locally via cloud storage driver 54 (although in
some cases, the file may also be stored locally). Thus, filesystem 50 is not, strictly
speaking, entirely within local storage 48, but logically, filesystem 50 may be seen to
be mapped to an address space that appears to be part of local storage 48. In particular,
cloud portion 52 may or may not be stored within local storage 48 (depending on the
embodiment, none, some, or all files of the cloud portion 52 may be stored within
local storage 48), although in any event, cloud portion 52 is stored within cloud
storage 37 (except, in certain embodiments in which files of the cloud portion 52 are
temporarily stored only on local storage 48 while network access is down).

Typically, cloud portion 52 is managed by a cloud management driver (not
depicted), which periodically ensures that locally-stored files within cloud portion 52
are synchronized to the cloud storage 37 version using well-known techniques. An
example cloud synchronization product is the Citrix ShareFile service based in
Raleigh, North Carolina. However, although the well-known cloud synchronization
products are able to synchronize files that are already locally-stored, they are not able
to provide access via the filesystem to files in cloud storage 37 that are not yet locally-
stored. Thus, in order to open a file stored within cloud portion 52, cloud storage
driver 54 is used to fetch an up-to-date copy of the file from the cloud storage 37 prior
to forwarding the open command to the local storage driver 46 for local fulfillment.

Memory 40 may include both a system memory portion for storing programs
and data in active use by the processor 38 as well as a persistent storage portion (e.g.,
solid-state storage and/or disk-based storage) for storing programs and data even
while the mobile computing device 32 is powered off. The operating system and the
software modules (e.g., 42, 44, 46, 54) are typically stored both in system memory and
in persistent storage so that they may be loaded into system memory from persistent
storage upon a system restart. Software modules 42, 44, 46, 54, when stored in non-
transient form either in system memory or in persistent storage, form a computer

program product. The processor 38 running one or more of these software modules

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

42, 44, 46, 54 thus forms a specialized circuit constructed and arranged to carry out
the various processes described herein.

In some embodiments, various components of the mobile computing device 32
(e.g., the processor 38, network interface 56, graphics adapter for the Ul 58, various
ancillary components, etc.) may be integrated into a single integrated circuit as a
system on a chip (SoC), as is known in the art.

Fig. 2 depicts an example arrangement 140 of software modules within
memory 40 according to one embodiment. In memory arrangement 140, interceptor
module 144 is embedded within local storage driver 146. Thus, client application 42,
issues a file-level access command 60 (e.g., file open and directory view commands)
to the local storage driver 146, which is intercepted by interceptor module 144 before
the file-level access command 60 reaches a local storage module 147 of the local
storage driver 146. Local storage module 147 is configured to actually process the
file-level access command 60 with reference to local storage 48. However, interceptor
module 144 first branches execution based on whether the file-level access command
60 is directed towards the cloud portion 52 of the filesystem 50. If the file-level access
command 60 does point towards the cloud portion 52, then the file-level access
command 60 is redirected to the cloud storage driver 54 (e.g., via a cloud driver
interface module 153 of the local storage driver 146) so that the cloud storage driver
54 can perform preliminary file-level access operations with respect to the cloud
storage 37 (e.g., by ensuring that a synchronized copy of the file from the cloud-based
remote storage platform 36 is present on the local storage 48) prior to continuing the
operation with respect to the local storage 48 by forwarding the file-level access
command 60 to the local storage module 147. On the other hand, if the file-level
access command 60 does not point towards the cloud portion 52, then the file-level
access command 60 is sent directly to the local storage module 147. In either case,
once the file-level access command 60 is received by the local storage module 147,
the local storage module 147 performs storage operations with respect to the local
storage 48.

In some embodiments, when the network interface 56 is unable to connect to
the network 34 (e.g., during a network outage), instead of redirecting the file-level

access command 60 to the cloud driver interface module 153 when the file-level

-6 -

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

access command 60 points towards the cloud portion 52, interceptor module 144
sends the file-level access command 60 to the local storage module 147 for local
processing just in case the file is already available locally.

Fig. 3 depicts an alternate example arrangement 240 of software modules
within memory 40 according to another embodiment. In memory arrangement 240,
interceptor module 244 is embedded within an application wrapper 243 that envelops
client application 42. Client application 42 is re-linked so that certain system calls
made by the client application 42 may be intercepted by library functions defined
within the application wrapper. This re-linking is typically performed by the
application developer, although it is sometimes possible to re-link the application
independently of the application developer. In any event, it is significantly easier for
the application developer to re-link the application 42 than it is to add in cloud
functionality into the application 42 directly. An example technology used to
implement the application wrapper 243 may be, for example, the MDX Vault
container produced by Citrix Systems, Inc. of Ft. Lauderdale, Florida. As depicted,
interceptor module 244 of the application wrapper 243 intercepts file-level access
commands 60 (e.g., file open and directory view commands) issued by the client
application 42 to the local storage driver 246 which are directed to the cloud portion
52 and instead redirects those file-level access commands 60 towards the cloud
storage driver 54 (e.g., via a cloud driver interface module 253 of the application
wrapper 243) so that the cloud storage driver 54 can perform preliminary file-level
access operations with respect to the cloud storage 37 (e.g., by ensuring that a
synchronized copy of the file from the cloud-based remote storage platform 36 is
present on the local storage 48) prior to continuing the operation with respect to the
local storage 48 by forwarding the file-level access command 60 to the local storage
driver 246. Otherwise, interceptor module 244 allows other file-level access
commands 60 to pass through directly to the local storage driver 46. In either case,
once received by the local storage driver 246, local storage module 247 is able to
perform the storage operation exclusively with respect to the local storage 48.

In some embodiments, when the network interface 56 is unable to connect to
the network 34 (e.g., during a network outage), instead of redirecting the file-level

access command 60 to the cloud driver interface module 253 when the file-level

-7 -

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

access command 60 points towards the cloud portion 52, interceptor module 244
sends the file-level access command 60 to the local storage driver 246 for local
processing just in case the file is already available locally.

Fig. 4 illustrates, as method 300, the operation of interceptor module 44, local
storage driver 46, and cloud storage driver 54 on mobile computing device 32 for
selectively redirecting access to local storage 48 to the cloud by intercepting file-level
access commands 60 directed to the cloud portion 52 of filesystem 50. It should be
understood that any time a piece of software, such as, for example, interceptor module
44, local storage driver 46, and/or cloud storage driver 54 is described as performing a
method, process, step, or function, in actuality what is meant is that a computing
device (e.g., mobile computing device 32) on which that piece of software is running
performs the method, process, step, or function when executing that piece of software
on its processor (e.g., processor 38). It should also be understood that, in some
embodiments, instead of processor 38 executing code of interceptor module 44, local
storage driver 46, and/or cloud storage driver 54, specialized circuitry of the mobile
computing device 32 operates to perform the method, process, step, or function
directly in hardware.

In step 310, interceptor module 44 receives a file-level access command 60 to
access the filesystem 50 addressable by the mobile computing device 32. In the
embodiment of Fig. 2, interceptor module 144 receives the file-level access command
60 once received by the local storage driver 146, while, in the embodiment of Fig. 3,
interceptor module 244 receives the file-level access command 60 prior to reaching
the local storage driver 246. In some cases, the file-level access command 60 may be a
file open command, while in other cases, file-level access command 60 may be a
directory view command, or, in certain embodiments, certain other kinds of file-level
access commands. However, in many embodiments, only certain specific kinds of file-
level access commands (e.g., file open and directory view commands) are intercepted
by interceptor module 44, all other file-level access commands being functionally
treated as equivalent to non-file-level access commands. Non-file-level access
commands (including commands treated as functionally equivalent to non-file-level
access commands) may bypass the cloud storage driver 54 because the traditional

cloud management driver (operating in parallel with the cloud driver 54 as a

-8 -

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

background process) is already responsible for ensuring that files already stored
locally on local storage 48 within cloud portion 52 are synchronized with the cloud
storage 37.

In step 320, interceptor module 44 performs an evaluation operation to
evaluate whether the file-level access command 60 is directed to the pre-determined
portion (e.g., the cloud portion 52 having address prefix /mnt/SD/cloud/) of the
filesystem 50.

When step 320 yields a positive result, operation proceeds with step 330. In
step 330, cloud storage driver 54 performs a synchronization operation to ensure that
the file (or directory) at which the command 60 is directed is in synchronization with
the remote storage platform 36. This primarily involves making sure that the file is
stored locally (fetching it from cloud storage 37 if it is not already locally-stored),
although it may also involve (especially in the case of a directory view command)
performing an up-to-date synchronization of a file or directory already stored locally
(e.g., using techniques similar to those found in the cloud management driver).
Further details with respect to step 320 will be provided below in connection with Fig.
5.

Upon completing step 330, operation proceeds with step 340. When step 320
yields a negative result, operation proceeds directly with step 340.

In step 340, local storage driver 46 fulfills the file-level access command 60 by
accessing (via local storage module 147, 247) the filesystem 50 on the local storage
48. This may be done because, whether or not the file (or directory) was previously
stored locally, after operation of step 320 (and step 330, when needed) the file (or
directory) is now stored locally (in a synchronized state, with respect to files within
cloud portion 52).

In the event that there is more storage space within cloud storage 37 than
within local storage 48, various algorithms (e.g., least-recently-accessed) may be used
to remove data from the locally-stored version of the cloud portion 52 of local storage
48 while preserving it within the cloud storage 37 version of the cloud portion 52.

Method 300 is particularly useful when the locally-cached contents of the
cloud portion 52 on local storage 48 are not identical to the full contents of the cloud

storage 37 (i.e., certain files are not present within the locally-cached contents of the

-9.

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

cloud portion 52). For example, when a user wishes to view a directory within cloud
portion 52 (e.g., the /mnt/SD/cloud/special/ directory) which contains files that are not
stored locally on local storage 48, using a legacy document editor application as client
application 42, the user will traditionally not be able to see the files that are not stored
locally (e.g., /mnt/SD/cloud/special/newfile.doc). However, via method 300, the user
is able to do so. So, when the user wishes to access the /mnt/SD/cloud/special/
directory, the client application 42 sends a directory view command targeting
/mnt/SD/cloud/special/ as command 60 towards local storage driver 46, but
interceptor module 44 intercepts the command 60 and makes sure that the version of
the directory file stored on local storage 48 includes a listing of all files within the
/mnt/SD/cloud/special/ directory on cloud storage 37 prior to the command 60 being
executed by the local storage module 147, 247. Thus, the user is able to see the
existence of /mnt/SD/cloud/special/newfile.doc via a directory listing displayed via Ul
58 even though that file is not stored locally. Then, when the user wishes to actually
open the /mnt/SD/cloud/special/newfile.doc file, client application 44 sends a file
open command targeting /mnt/SD/cloud/special/newfile.doc as command 60 towards
local storage driver 46, but interceptor module 44 intercepts the command 60 and
makes sure that the /mnt/SD/cloud/special/newfile.doc file is fetched from cloud
storage 37 and stored on local storage 48 prior to the command 60 being executed by
the local storage module 147, 247.

Fig. 5 depicts the operation of step 330 in further detail. In sub-step 332,
interceptor module 44 forwards the file-level access command 60 to the cloud storage
driver 54. In the context of Fig. 2, this is done by interceptor module 144 forwarding
command 60 to cloud driver interface module 153 within local storage driver 146, and
then cloud driver interface module 153 forwarding the command 60 on to cloud
storage driver 54. In the context of Fig. 3, this is done by interceptor module 244
forwarding command 60 to cloud driver interface module 253 within application
wrapper 243, and then cloud driver interface module 253 forwarding the command 60
on to cloud storage driver 54.

In step 334, the cloud storage driver 54 determines whether or not the file (or
directory) at which the command 60 is targeted is stored on local storage 48. Cloud

storage driver 54 typically interfaces with local storage module 147, 247 in order to

-10 -

10

15

20

25

30

WO 2015/030972 PCT/US2014/048456

make this determination. Thus, in some embodiments, cloud storage driver 54 may
send a request to local storage module 147, 247 to request confirmation of the
presence of the file (or directory) in question. In other embodiments, cloud storage
driver 54 requests a directory listing from local storage module 147, 247 and then
determines itself whether the directory listing includes the target file (or directory).

Step 336 is performed when the cloud storage driver 54 has determined that
the target file (or directory) is already present on the local storage 48. In step 336,
cloud storage driver 54 synchronizes the contents of the target file (or directory)
already locally-cached within local storage with the version from cloud storage 37 (via
network interface 56 and network 34) using well-known techniques. In some
embodiments, this step may involve making a function call to the cloud management
driver, while, in other embodiments, this step may involve executing code similar to
code found within the cloud management driver.

Step 338 is performed when the cloud storage driver 54 has determined that
the target file (or directory) is not already present on the local storage 48. In step 336,
cloud storage driver 54 retrieves (or fetches) the target file (or directory) from the
cloud storage 37 on cloud-based remote storage platform 36 via network interface 56
and network 34 and then stores the fetched file locally on local storage 48 (within
cloud portion 52).

Thus, techniques have been described for selectively redirecting file-level
access commands of local storage 48 of a mobile computing device 32 to the cloud by
intercepting file-level access calls 60 directed to a specified area 52 of a filesystem 50.

While various embodiments of the present disclosure have been particularly
shown and described, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the spirit and
scope of the present disclosure as defined by the appended claims.

For example, although various embodiments have been described as being
methods, software embodying these methods is also included. Thus, one embodiment
includes a tangible non-transient computer-readable medium (such as, for example, a
hard disk, a floppy disk, an optical disk, computer memory, flash memory, etc.)
programmed with instructions, which, when performed by a computer or a set of

computers, cause one or more of the methods described in various embodiments to be

-11 -

10

15

WO 2015/030972 PCT/US2014/048456

performed. Another embodiment includes a computer which is programmed to
perform one or more of the methods described in various embodiments.

Furthermore, it should be understood that all embodiments and/or features
which have been described may be combined in all possible combinations with each
other, except to the extent that such combinations have been explicitly excluded.
Moreover, such features and embodiments are hereby combined in this manner to
form all possible combinations, permutations, and variants except to the extent that
such combinations, permutations, and variants have been explicitly excluded or are
impossible or impractical. Support for such combinations, permutations, and variants
1s considered to exist in this document.

Finally, even if a technique, method, apparatus, or other concept is specifically
labeled as “conventional,” Applicants make no admission that such technique,
method, apparatus, or other concept is actually prior art, such determination being a
legal determination that depends upon many factors, not all of which are known to

Applicants at this time.

12 -

WO 2015/030972 PCT/US2014/048456

CLAIMS

What is claimed is:

1. A method of providing access to cloud storage performed by a mobile computing
device, the method comprising:

receiving a file-level access command to perform a file-level operation on a file of
filesystem storage of the mobile computing device, the filesystem storage including
remote storage provided by a remote storage platform and locally-cached storage
provided by local storage of the mobile computing device;

evaluating whether the file-level access command is directed to a pre-determined
portion of the filesystem, the pre-determined portion being provided by the remote
storage platform;

in response to evaluating, if the file-level access command is directed to the pre-
determined portion, then performing a synchronization operation to ensure that the file is
stored on local storage in synchronization with the remote storage platform; and

fulfilling the file-level access command by accessing the local storage once the

file is stored on local storage in synchronization with the remote storage platform.

2. The method of claim 1 wherein:
receiving the file-level access command is performed by a local storage system
driver executing on the mobile computing device;
evaluating is performed by the local storage system driver;
performing the synchronization operation includes:
forwarding the file-level access command from the local storage system
driver to a cloud storage driver executing on the mobile storage device, the cloud
storage driver being distinct from the local storage system driver;
determining, by the cloud storage driver, whether the file is stored on local

storage;

-13-

WO 2015/030972 PCT/US2014/048456

if the file is stored on local storage, then synchronizing the file stored on
local storage with the remote storage platform, by the cloud storage driver; and
if the file is not stored on local storage, then retrieving the file from the
remote storage platform via a network connection and storing the retrieved file
within local storage, by the cloud storage driver; and
fulfilling the file-level access command by accessing the local storage once the
file is stored on local storage in synchronization with the remote storage platform is

performed by the local storage system driver.

3. The method of claim 1 wherein:
the file-level access command originates at an application running on the mobile
computing device;
receiving the file-level access command includes intercepting the file-level access
command from the application by an application wrapper linked into the application, the
application wrapper logically interposing between the application and an operating
system of the mobile computing device;
evaluating is performed by the application wrapper;
performing the synchronization operation includes:
forwarding the file-level access command from the application wrapper to
a cloud storage driver executing on the mobile storage device;
determining, by the cloud storage driver, whether the file is stored on local
storage;
if the file is stored on local storage, then synchronizing the file stored on
local storage with the remote storage platform, by the cloud storage driver; and
if the file is not stored on local storage, then, by the cloud storage driver,
retrieving the file from the remote storage platform via a network connection and
storing the retrieved file within local storage; and
fulfilling the file-level access command by accessing the filesystem storage of the

mobile computing device includes:

-14 -

WO 2015/030972 PCT/US2014/048456

forwarding the file-level access command from the application wrapper to
a local storage system driver executing on the mobile storage device, the cloud
storage driver being distinct from the local storage system driver; and

providing access to the filesystem storage by the local storage system

driver in accordance with the file-level access command.

4. The method of claim 2 or 3 wherein the local storage system driver is a Secure Digital

(SD) storage driver.

5. The method of claim 1 wherein:

the file-level access command is directed to the pre-determined portion of the
filesystem;

the file-level access command is a file open command,

the file is not locally stored within locally-cached storage;

performing the synchronization operation to ensure that the file is stored on local
storage in synchronization with the remote storage platform includes fetching the file
from the remote storage platform and placing the fetched file into the locally-cached

storage.

6. The method of claim 1 wherein:

the file-level access command is directed to the pre-determined portion of the
filesystem;

the file-level access command is a directory view command directed toward a
directory file;

performing the synchronization operation to ensure that the file is stored on local
storage in synchronization with the remote storage platform includes fetching the
directory file from the remote storage platform and placing the fetched directory file into
the locally-cached storage; and

-15-

WO 2015/030972 PCT/US2014/048456

fulfilling the file-level access command by accessing the local storage once the
file is stored on local storage in synchronization with the remote storage platform
includes displaying a list of files listed in the fetched directory file even though at least
one file listed in the fetched directory file is not locally stored within locally-cached

storage.

7. The method of claim 6 wherein the method further comprises:

receiving a file open command for a second file listed in the fetched directory file,
the second file not being locally stored within locally-cached storage;

fetching the second file from the remote storage platform and placing the fetched
second file into the locally-cached storage; and

opening the fetched second file within locally-cached storage.

8. A computer program product comprising a non-transitory computer-readable storage
medium storing a set of instructions, which, when executed by a mobile computing
device, cause the mobile computing device to perform the following operations:

receiving a file-level access command by a local storage system driver executing
on the mobile storage device to perform a file-level operation on a file of filesystem
storage of the mobile computing device, the filesystem storage including remote storage
provided by a remote storage platform and locally-cached storage provided by local
storage of the mobile computing device;

evaluating, by the local storage system driver, whether the file-level access
command is directed to a pre-determined portion of the filesystem, the pre-determined
portion being provided by the remote storage platform;

in response to evaluating, if the file-level access command is directed to the pre-
determined portion, then causing a synchronization operation to be performed to ensure
that the file is stored on local storage in synchronization with the remote storage platform

by:

-16 -

WO 2015/030972 PCT/US2014/048456

forwarding the file-level access command from the local storage system
driver to a cloud storage driver executing on the mobile storage device, the cloud
storage driver being distinct from the local storage system driver;

determining, by the cloud storage driver, whether the file is stored on local
storage;

if the file is stored on local storage, then synchronizing the file stored on
local storage with the remote storage platform, by the cloud storage driver; and

if the file is not stored on local storage, then retrieving the file from the
remote storage platform via a network connection and storing the retrieved file
within local storage, by the cloud storage driver; and
fulfilling the file-level access command by the local storage system driver

accessing the local storage once the file is stored on local storage in synchronization with

the remote storage platform.

9. The computer program product of claim 8 wherein:

the file-level access command is directed to the pre-determined portion of the
filesystem;

the file-level access command is a file open command; and

the file is not locally stored within locally-cached storage.

10. The computer program product of claim 8 wherein:

the file-level access command is directed to the pre-determined portion of the
filesystem;

the file-level access command is a directory view command directed toward a
directory file; and

fulfilling the file-level access command by the local storage system driver
accessing the local storage once the file is stored on local storage in synchronization with

the remote storage platform includes displaying a list of files listed in the directory file

-17-

WO 2015/030972 PCT/US2014/048456

even though at least one file listed in the fetched directory file is not locally stored within

locally-cached storage.

11. The computer program product of claim 10 wherein the instructions, when executed
by the mobile computing device, further cause the mobile computing device to perform
the following operations:

receiving a file open command for a second file listed in the directory file, the
second file not being locally stored within locally-cached storage;

fetching the second file from the remote storage platform and placing the fetched
second file into the locally-cached storage; and

opening the fetched second file within locally-cached storage.

12. A computer program product comprising a non-transitory computer-readable storage
medium storing a set of instructions, which, when executed by a mobile computing
device, cause the mobile computing device to perform the following operations:

intercepting a file-level access command to perform a file-level operation on a file
of filesystem storage of the mobile computing device originating from an application
running on the mobile computing device by an application wrapper linked into the
application, the application wrapper logically interposing between the application and an
operating system of the mobile computing device, the filesystem storage including remote
storage provided by a remote storage platform and locally-cached storage provided by
local storage of the mobile computing device;

evaluating, by the application wrapper, whether the file-level access command is
directed to a pre-determined portion of the filesystem, the pre-determined portion being
provided by the remote storage platform;

in response to evaluating, if the file-level access command is directed to the pre-
determined portion, then causing a synchronization operation to be performed to ensure
that the file is stored on local storage in synchronization with the remote storage platform

by:

- 18-

WO 2015/030972 PCT/US2014/048456

forwarding the file-level access command from the application wrapper to
a cloud storage driver executing on the mobile storage device;
determining, by the cloud storage driver, whether the file is stored on local
storage;
if the file is stored on local storage, then synchronizing the file stored on
local storage with the remote storage platform, by the cloud storage driver; and
if the file is not stored on local storage, then, by the cloud storage driver,
retrieving the file from the remote storage platform via a network connection and
storing the retrieved file within local storage; and
fulfilling the file-level access command by accessing the filesystem storage of the
mobile computing device once the file is stored on local storage in synchronization with
the remote storage platform by:
forwarding the file-level access command from the application wrapper to
a local storage system driver executing on the mobile storage device, the cloud
storage driver being distinct from the local storage system driver; and
providing access to the filesystem storage by the local storage system

driver in accordance with the file-level access command.

13. The computer program product of claim 12 wherein:

the file-level access command is directed to the pre-determined portion of the
filesystem;

the file-level access command is a file open command; and

the file is not locally stored within locally-cached storage.

14. The computer program product of claim 12 wherein:

the file-level access command is directed to the pre-determined portion of the
filesystem;

the file-level access command is a directory view command directed toward a

directory file; and

-19-

WO 2015/030972 PCT/US2014/048456

providing access to the filesystem storage by the local storage system driver in
accordance with the file-level access command includes displaying a list of files listed in
the directory file even though at least one file listed in the directory file is not locally

stored within locally-cached storage.

15. The computer program product of claim 14 wherein the instructions, when executed
by the mobile computing device, further cause the mobile computing device to perform
the following operations:

intercepting a file open command for a second file listed in the directory file
originating from the application running on the mobile computing device by the
application wrapper, the second file not being locally stored within locally-cached
storage;

fetching the second file by the cloud storage driver from the remote storage
platform and placing the fetched second file into the locally-cached storage; and

opening the fetched second file within locally-cached storage.

-20-

WO 2015/030972

_~7

Fig. 1

1/5

38
Processor

32

Mobile Computing

Device

40
Memory

42

Client Application

v

44

Interceptor Module

N

46 54
Local Storage [«——{ Cloud Storage
Driver Driver
P S
48
Local Storage
FiIesS_Ostem 26
- _y_ _ Network Interface
|™ 52 I (e.g., cellular,
| Cloud WiFi, etc.)
| Porion

58

User Interfacz(e.g., touch-

sensitive display)

PCT/US2014/048456

30

36
Cloud-based
remote storage
platform

37
Cloud
Storage

WO 2015/030972

Fig. 2

2/5

42

Client Application

60
File-level
Command

PCT/US2014/048456

140

Y

146
Local Storage Driver

144

Interceptor Module (branch
execution based on whether
file storage command is
directed to the cloud portion
of the filesystem)

60
60
153
Cloud Driver 147
Local Storage
Interface Module
Module
60
Y
54

Cloudaorage
Driver

To Cloud Storage 37

WO 2015/030972 PCT/US2014/048456

Fig. 3 3

240

243
Application Wrapper

42
Client Application

60
244 60 253
Interceptor Module (Intercept calls to the local Cloud Driver
storage driver directed to the cloud portion of Interface
the filesystem and forward to cloud driver) Module
60 60
v
4
247 54
Local Storage |- » Cloud Storage
Module Driver
246
Local Storage Driver

To Cloud Storage 37

WO 2015/030972 PCT/US2014/048456

_k Fig. 4 45 300

310
Receive file-level access command to perform a file-level
operation on a file of filesystem storage of the mobile computing
device, the filesystem storage including remote storage provided
by a remote storage platform and locally-cached storage provided
by local storage of the mobile computing device

l

320
Evaluate whether the file-level access command is directed to a pre-
determined portion (e.g., cloud portion) of the filesystem, the pre-
determined portion being provided by the remote storage platform

Yes No

330
Perform a synchronization
operation to ensure that the
file is stored on local storage
in synchronization with the
remote storage platform

340
Fulfill the file-level access
»| command by accessing the
local storage of the mobile
computing device

WO 2015/030972 PCT/US2014/048456

1= Fig. 5 o5 330

332
Forward the file-level access command to a cloud
storage driver executing on the mobile storage
device, the cloud storage driver being distinct from
the local storage system driver

334
Determine, by the cloud storage driver, whether the file
is stored on local storage

Yes No
338
336 Retrieve the file from the
Synchronize the file stored on remote storage platform via a
local storage with the remote network connection and store
storage platform, by the cloud the retrieved file within local
storage driver storage, by the cloud storage
driver

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/048456

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

column 6, lines 35-57

X CHUNXIA ZHANG ET AL:

System",
JOURNAL OF SOFTWARE,

XP055151515,

ISSN: 1796-217X, DOI:
10.4304/jsw.8.6.1459-1470
section II.C

X US 6 754 696 B1 (KAMATH VIVEK P [US] ET
AL) 22 June 2004 (2004-06-22)
column 1, Tine 65 - column 2, line 22

column 11, Tine 18 - column 12, line 21
column 13, Tine 23 - column 14, Tine 9

"MFS: A Lightweight
Block-Level Local Mirror of Remote File

vol. 8, no. 6, 1 June 2013 (2013-06-01),

1-15

1-15

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 November 2014

Date of mailing of the international search report

28/11/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Correia Martins, F

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

Support With Virtual Device Drivers",
APPLIED COMPUTING 2002: PROCEEDINGS OF THE
2002 ACM SYMPOSIUM ON APPLIED COMPUTING ;
UNIVERSIDAD CARLOS III DE MADRID, MADRID,
SPAIN, MARCH 11 - 14, 2002, ACM.
ASSOCIATION FOR COMPUTING MACHINERY, US,
2 March 1999 (1999-03-02), pages 373-381,
XP002154936,

ISBN: 978-1-58113-445-2

Requirements;

page 374

page 376 - page 377; figures 1,2

PCT/US2014/048456
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 269 371 Bl (OHNISHI HAJIME [JP]) 1-15
31 July 2001 (2001-07-31)
column 4, Tine 29 - column 5, line 15
X HUIZINGA D M ET AL: "Mobile File System 1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/048456
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6754696 Bl 22-06-2004 US 6754696 Bl 22-06-2004
US 2005060316 Al 17-03-2005
US 6269371 Bl 31-07-2001 JP H11249948 A 17-09-1999
us 6269371 Bl 31-07-2001

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

